WorldWideScience

Sample records for water quality effects

  1. Drainage water management effects on tile dicharge and water quality

    Science.gov (United States)

    Drainage water management (DWM) has received considerable attention as a potential best management practice for improving water quality in tile drained landscapes. However, only a limited number of studies have documented the effectiveness of DWM in mitigating nitrogen (N) and phosphorus (P) loads. ...

  2. Drainage water management effects on tile discharge and water quality

    Science.gov (United States)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  3. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water......While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water...... and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response relationships a range of effects from different drinking water qualities is merged into a holistic...

  4. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  5. Water quality and surfactant effects on the water repellency of a sandy soil

    Science.gov (United States)

    Differences in irrigation water quality may affect the water repellency of soils treated or untreated with surfactants. Using simulated irrigations, we evaluated water quality and surfactant application rate effects upon the water repellency of a Quincy sand (Xeric Torripsamment). We used a split ...

  6. Effect of the Distribution System on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    A. Grünwald

    2001-01-01

    Full Text Available The overall objective of this paper is to characterise the main aspects of water quality deterioration in a distribution system. The effect of residence time on chlorine uptake and the formation and evolution of disinfection by-products in distributed drinking water are discussed.

  7. The effect of floating houses on water quality

    OpenAIRE

    Foka, E.; Rutten, M.; Boogaard, F. van de; de Graaf, R; Lima, R.; N. van de Giesen

    2015-01-01

    The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water boards. Moreover, plans to incorporate floating houses in the urban planning have already been developed. However, the knowledge gap regarding the potential effect on the water quality halts the fur...

  8. Microscreen effects on water quality in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2015-01-01

    This study investigated the effects of three microscreen mesh sizes (100, 60 and 20 μm) on water quality and rainbow trout (Oncorhynchus mykiss) performance compared to a control group without microscreens, in triplicated recirculating aquaculture systems (RAS). Operational conditions were kept....... Fish performed similarly in all treatments. Preliminary screening of trout gills did not reveal any pathological changes related to microscreen filtration and the resulting water quality. Biofilter performance was also unaffected, with 0′-order nitrification rates (k0a) being equivalent for all twelve...

  9. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin

    2012-01-01

    in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion......Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210...

  10. Review of Wildfire Effects on Chemical Water Quality

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Bitner; Bruce Gallaher; Ken Mullen

    2001-05-01

    The Cerro Grande Fire of May 2000 burned almost 43,000 acres of forested land within the Pajarito Plateau watershed in northern New Mexico. Runoff events after the fire were monitored and sampled by Los Alamos National Laboratory. Changes in the composition of runoff water were noted when compared to runoff water composition of the previous 20 years. In order to understand the chemical water quality changes noted in runoff water after the Cerro Grande Fire, a summary of the reported effects of fire on runoff water chemistry and on soils that contribute to runoff water chemistry was compiled. The focus of this report is chemical water quality, so it does not address changes in sediment transport or water quantity associated with fires. Within the general inorganic parameters, increases of dissolved calcium, magnesium, nitrogen, phosphorus, and potassium and pH in runoff water have been observed as a result of fire. However, the dissolved sodium, carbon, and sulfate have been observed to increase and decrease as a result of fire. Metals have been much less studied, but manganese, copper, zinc, and cesium-137 have been observed to increase as a result of fire.

  11. THE EFFECTS OF ABATTOIR WASTE ON WATER QUALITY IN ...

    African Journals Online (AJOL)

    Osondu

    This paper examined the impact of abattoir wastes on water quality around an abattoir ... Aluminium (Al) Cyanide (Cn), Boron (B), and Nickel (Ni)., as well as some physical and chemical ... Key words: Abattoir; Wastes; Water quality, Pollution.

  12. [Effects of reclaimed water recharge on groundwater quality: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  13. Effect of Irrigation Water Quality on Soil Hydraulic Conductivity

    Institute of Scientific and Technical Information of China (English)

    XIAOZHEN-HUA; B.PRENDERGAST; 等

    1992-01-01

    The effect of irrigation water quality on unsaturated hydraulic conductivity (HC) of undisturbed soil in field was studied.Results show that within the operating soil suction range (0-1.6 KPa) of disc permeameters,the higher the electric conductivity (EC) of irrigation water,the higher the soil HC became.The soil HC doubled when EC increased from 0.1 to 6.0ds m-1.High sodium-adsorption ratio(SAR) of irrigation water would have an unfavorable effect on soil HC.Soil HC decreased with the increasing of SAR,especially in the case of higher soil suction.An interaction existed between the effects of EC and SAR of irrigation water on soil HC.The HC of unsaturated soil dependent upon the macropores in surface soil decreased by one order of magnitude with 1 KPa increase of soil suction.In the study on the effect of very low soluble salt concentration (EC=0.1 ds m-1 of irrigation water on soil HC,soil HC was found to be lowered by 30% as a consequence of blocking up of some continuous pores by the dispersed and migrated clay particles.Nonlinear successive regression analysis and significance test show that the effects of EC and SAR of irrigation water on soil HC reached the extremely significant level.

  14. 76 FR 79604 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2011-12-22

    ... AGENCY 40 CFR Part 131 RIN 2040-AF36 Effective Date for the Water Quality Standards for the State of... of the ``Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Final Rule... for the ``Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Final...

  15. Effects of global warming on floods and droughts and related water quality of rivers

    NARCIS (Netherlands)

    De Jong, B.

    2006-01-01

    This review focuses on the effect of global warming on droughts, rainstorms and floods and related water quality of rivers. Relations of temperature, rainstorms and river discharges with water quality variables like water temperature, chemical concentrations and microbiological activity are

  16. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Science.gov (United States)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and

  17. Ecosystem attributes related to tidal wetland effects on water quality.

    Science.gov (United States)

    Findlay, S; Fischer, D

    2013-01-01

    Biogeochemical functioning of ecosystems is central to nutrient cycling, carbon balance, and several ecosystem services, yet it is not always clear why levels of function might vary among systems. Wetlands are widely recognized for their ability to alter concentrations of solutes and particles as water moves through them, but we have only general expectations for what attributes of wetlands are linked to variability in these processes. We examined changes in several water quality variables (dissolved oxygen, dissolved organic carbon, nutrients, and suspended particles) to ascertain which constituents are influenced during tidal exchange with a range of 17 tidal freshwater wetlands along the Hudson River, New York, USA. Many of the constituents showed significant differences among wetlands or between flooding and ebbing tidal concentrations, indicating wetland-mediated effects. For dissolved oxygen, the presence of even small proportional cover by submerged aquatic vegetation increased the concentration of dissolved oxygen in water returned to the main channel following a daytime tidal exchange. Nitrate concentrations showed consistent declines during ebbing tides, but the magnitude of decline varied greatly among sites. The proportional cover by graminoid-dominated high intertidal vegetation accounted for over 40% of the variation in nitrate decline. Knowing which water-quality alterations are associated with which attributes helps suggest underlying mechanisms and identifies what functions might be susceptible to change as sea level rise or salinity intrusion drives shifts in wetland vegetation cover.

  18. The valuation of water quality: Effects of mixing different drinking water qualities

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2009-01-01

    impacts are cardiovascular diseases, dental caries, atopic eczema, lifetime of dish and clothes washing machines, heat exchangers, distribution systems, bottled water consumption and soap usage. The method includes an uncertainty assessment that ranks the imacts having the hi hest influence on the result......As water supplies increasingly turn to use desalination technologies it becomes relevant to consider the options for remineralization and blending with mineral rich water resources. We present a method for analyzing economic consequences due to changes in drinking water mineral content. Included...... and associated uncertainty. Effects are calculated for a scenario where 50% of Copenhagen's water supply is substituted by desalinated water. Without remineralization the total impact is expected to be negative ((sic) -0.44 +/- 0.2/m(3)) and individual impacts expected in the range of (sic)0.01-0.51/m(3...

  19. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  1. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  2. 77 FR 13496 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-03-07

    ... AGENCY 40 CFR Part 131 RIN 2040-AF36 Effective Date for the Water Quality Standards for the State of... of the March 6, 2012 effective date of the ``Water Quality Standards for the State of Florida's Lakes...? Citizens concerned with water quality in Florida may be interested in this rulemaking. Entities...

  3. The genomics revolution and its effect on water quality

    Science.gov (United States)

    Genomic-based molecular tools are emerging as powerful laboratory methods for assessing water quality characteristics and improving our ability to assess the human health risks posed by microbial contaminants in drinking water. To a great extent, this revolution in genomics-rese...

  4. The genomics revolution and its effect on water quality

    Science.gov (United States)

    Genomic-based molecular tools are emerging as powerful laboratory methods for assessing water quality characteristics and improving our ability to assess the human health risks posed by microbial contaminants in drinking water. To a great extent, this revolution in genomics-rese...

  5. A commercial trial evaluating three open water sources for farmed ducks: effects on water usage and water quality.

    Science.gov (United States)

    Liste, G; Kirkden, R D; Broom, D M

    2013-01-01

    1. Providing open water to farmed ducks is beneficial for their health and behaviour but, at commercial densities, may also have negative consequences for the health of the ducks, the productivity of the farms and environmental contamination. 2. The current experiment investigated the suitability of three types of open water resources in a commercial setting, assessing their effects on water usage and water quality. The three resources were: narrow troughs (15 cm wide and 8 cm deep), intermediate troughs (20 cm wide and 12 cm deep) and wide troughs (50 cm wide and 8 cm deep). A total of 23 flocks of ducks with a mean size of 4,540 ± 680 individuals and a final stocking density less than 17 kg/m(2) were studied. 3. Intermediate troughs used twice as much water as narrow troughs and wide troughs. Intermediate troughs had the best microbiological water quality, wide troughs had the worst physical and microbiological quality and narrow troughs tended to be intermediate. 4. Open water provision resulted in high water usage, but this might be reduced by further investigating cleaning regimes, ballcock systems and the volumetric capacity of the troughs. It was difficult to maintain good water quality, and more research is needed to investigate the long term effects on productivity and public health.

  6. Effects of Metals Associated with Wildfire Ash on Water Quality

    Science.gov (United States)

    Cerrato, J.; Clark, A.; Correa, N.; Ali, A.; Blake, J.; Bixby, R.

    2015-12-01

    The forests of the western United States are impacted dramatically by climate change and have suffered from large-scale increases in wildfire activity. This rise in wildfires introduces additional ash to ecosystems and can represent a serious and ongoing threat to water quality in streams and rivers from storm event runoff in burn areas. The effect of metals associated with wildfire ash (from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico) on solution pH and dissolved oxygen was assessed through a series of laboratory experiments. Microscopy and spectroscopy analyses were conducted to characterize the elemental content and oxidation state of metals in unreacted and reacted ash. Certain metals (e.g., Ca, K, Al, Mg) were detected in ash from ponderosa pine, one of the dominant species in the Valles Caldera, with mean concentrations ranging from 400-1750 mg kg-1. Other metals (e.g., Na, Fe, Mn, V, Zn, Ni) were present at lower mean concentrations ranging from 12-210 mg kg-1. The initial pH after conducting batch experiments reacting ash with water started at 9.9 and the alkalinity of the water was 110 mg L-1 as CaCO3. Solution pH decreased to 8.0 after 48 hours of reaction, which is almost a delta of two pH units. Dissolved oxygen concentrations decreased by 2 mg L-1 over the course of 12 hours before the rate of reaeration surpassed the rate of consumption. This presentation will discuss how redox-active metals, such as Fe and Mn, could contribute to the increased dissolved oxygen demand and fluctuation of the oxidation/reduction potential in the system.

  7. Water quality, pesticide occurrence, and effects of irrigation with reclaimed water at golf courses in Florida

    Science.gov (United States)

    Swancar, Amy

    1996-01-01

    Reuse of treated wastewater for golf course irrigation is an increasingly popular water management option in Florida, where growth has put stress on potable water supplies. Surface water, ground water, and irrigation water were sampled at three pairs of golf courses quarterly for one year to determine if pesticides were present, and the effect of irrigation with treated effluent on ground-water quality, with an emphasis on interactions of effluent with pesticides. In addition to the six paired golf courses, which were in central Florida, ground water was sampled for pesticides and other constituents at three more golf courses in other parts of the State. This study was the first to analyze water samples from Florida golf courses for a broad range of pesticides. Statistical methods based on the percentage of data above detection limits were used to determine the effects of irrigation with reclaimed water on ground-water quality. Shallow ground water at golf courses irrigated with treated effluent has higher concentrations of chloride, lower concentrations of bicarbonate, and lower pH than ground water at golf courses irrigated with water from carbonate aquifers. There were no statistically significant differences in nutrient concentrations in ground water between paired golf courses grouped by irrigation water type at a 95 percent confidence level. The number of wells where pesticides occurred was significantly higher at the paired golf courses using ground water for irrigation than at ones using reclaimed water. However, the limited occurrences of individual pesticides in ground water make it difficult to correlate differences in irrigation- water quality with pesticide migration to the water table. At some of the golf courses, increased pesticide occurrences may be associated with higher irrigation rates, the presence of well-drained soils, and shallow depths to the surficial aquifer. Pesticides used by golf courses for turf grass maintenance were detected in

  8. [The effect of water pipelines on the quality of drinking water].

    Science.gov (United States)

    Wichrowska, B; Zyciński, D; Krogulska, B; Szlachta, R; Ranke-Rybicka, B; Kozłowski, J

    1997-01-01

    The purpose of the study was to assess the effects of various pipelines on drinking water quality. For the study carried out in Warsaw buildings were chosen in which the installations were made of polypropylene, polyvinyl chloride, copper and steel. Water samples were taken from the sites of water leading to the buildings and from the highest floors, if possible. Physicochemical studies included determination of turbidity, colour, odour, pH, hardness, chlorides, ammonia, nitrates, nitrites, oxidation, manganese, iron, lead, cadmium, copper and zinc content. Bacteriological tests included determination of total microorganism count at 20 degrees C and 37 degrees C, total number of sporing bacteria and Pseudomonas aeruginosa. The hydro-biological testing of water samples included quantitative and qualitative analysis of macroscopic and microscopic plant and animal organisms. All studies were carried out according to Polish Standards and the methods of the State Institute of Hygiene. The results of the physicochemical, bacteriological and hydro-biological tests failed to show any effect of the material of pipelines on the quality of drinking water in the range of the determined parameters.

  9. Effects of global warming on floods and droughts and related water quality of rivers

    NARCIS (Netherlands)

    De Jong, B.

    2006-01-01

    This review focuses on the effect of global warming on droughts, rainstorms and floods and related water quality of rivers. Relations of temperature, rainstorms and river discharges with water quality variables like water temperature, chemical concentrations and microbiological activity are discusse

  10. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  11. Effects of Urban Development on Water Quality in the Piedmont of North Carolina: Association of Landscape Variables With Water Quality

    Science.gov (United States)

    Harned, D. A.; Cuffney, T. F.

    2005-12-01

    An assessment of effects of urban development on water quality in the Piedmont of North Carolina is part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Thirty sites along a gradient of undeveloped to fully urbanized basins were selected using geographic information analysis to control variability in natural factors that influence water quality. Data collected include nutrient, pesticide, ion, and dissolved-oxygen concentrations, temperature, pH, specific conductance, streamflow, stage, habitat characteristics, and algal, benthic invertebrate, and fish communities. Sampling for water chemistry ranged from two samples (at 20 sites) to six samples (at 10 sites) per year from October 2002 to September 2003. Geomorphic and biological data were collected once in each basin. An index that integrates information on human influences, including land cover, population, and socioeconomic characteristics was used to define the urban gradient and to select sites. Relations among landscape, streamflow, temperature, and water-chemistry variables were analyzed to define urban effects on water quality. Distinct patterns of association occurred between landscape variables and water quality. An increase in urban index is associated with increases in pH (r=0.60), specific conductance (0.72), sulfate (0.68), a multiple-constituent chemical index (0.91), and a pesticide index (0.76). Landscape characteristics correlated with water quality in a similar manner. Increasing basin population density is associated with higher pH (0.55, 1990; 0.56, 2000), specific conductance (0.71, 1990), chloride (0.66, 1990), sulfate (0.72), and pesticides (0.71, 1990; 0.68, 2000). This pattern also is reflected in household density (pH (0.60), chemical index (0.87), and pesticide index (0.68)); in the total percentage of developed land in the basin (specific conductance (0.85), chloride (0.77), sulfate (0.81), total nitrogen (0.50), chemical index (0.84), and pesticide

  12. Effects of rainfall on water quality in six sequentially disposed fishponds with continuous water flow

    Directory of Open Access Journals (Sweden)

    LH. Sipaúba-Tavares

    Full Text Available An investigation was carried out during the rainy period in six semi-intensive production fish ponds in which water flowed from one pond to another without undergoing any treatment. Eight sampling sites were assigned at pond outlets during the rainy period (December-February. Lowest and highest physical and chemical parameters of water occurred in pond P1 (a site near the springs and in pond P4 (a critical site that received allochthonous material from the other ponds and also from frog culture ponds, respectively. Pond sequential layout caused concentration of nutrients, chlorophyll-a and conductivity. Seasonal rains increased the water flow in the ponds and, consequently, silted more particles and other dissolved material from one fish pond to another. Silting increased limnological variables from P3 to P6. Although results suggest that during the period under analysis, rainfall affected positively the ponds' water quality and since the analyzed systems have been aligned in a sequential layout with constant water flow from fish ponds and parallel tanks without any previous treatment, care has to be taken so that an increase in rain-induced water flow does not have a contrary effect in the fish ponds investigated.

  13. An application of water quality index to reduce the effect of flood on water quality of rivers

    Directory of Open Access Journals (Sweden)

    Mahmoodreza Nooralinejad

    2016-06-01

    Full Text Available The rivers are among the most important resources of water supplying used for drinking consumptions, agriculture, industry, etc. Creation of a regular control plan and monitoring the water quality of these resources are the most important solutions in order to reduce the pollution and promote their qualitative conditions. The changes in climatic such as low levels of rainfall, is one of the factors influencing on the quantitative level of rivers. In addition, weather pollution and reduction in the power of soil resources are very important. This paper presents an investigation to investigate on how to reduce the influences of flood water on the water quality of the rivers based on the model of water quality index. The applied methodology is descriptive-analytical, which uses SPSS software, and t-test and correlation tests are used to analyze the data. The investigation carried out on the influences of the flood water due to raining on the qualitative changes of the water of Cesar River represented that there was a significant relationship between raining, discharge and the parameters of water quality. These relations indicate that the occurrence of raining and increase in the discharge follow the increase in the water quality of the river.

  14. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Science.gov (United States)

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  15. Effect of Water Conveyance to Impove Water Quality in the Barato River

    Science.gov (United States)

    Sugihara, K.; Nakatsugawa, M.

    2014-12-01

    The Barato River, in the northern part of Sapporo, Hokkaido, was deteriorated because of stagnated water bodies and Sapporo's wastewater inflow. To improve the water quality of the Barato River, water has been diverted from the Ishikari River and the Toyohira River into the uppermost reach and the middle stream of the Barato River since 2007. This study clarifies the water quality change by water conveyance, based on our surveys and simulations. The water quality surveys found that inorganic nitrogen (IN) and biological oxygen demand (BOD) were decreased after water conveyance. And inorganic phosphorus (IP) was increased. To estimate these water quality findings, we constructed a water quality simulation model that incorporates the freezing-over of water bodies. The constructed model shows good temporal and spatial reproducibility and enables water quality to be forecast throughout the year, including the ice-cover period. The forecasts using the model agree well with the survey results of the 2007-2010. From calculation results, it was assumed that IN and BOD decreasing was caused by dilution and phytoplankton decreasing. IP increasing assumed due to accumulation of unused phosphorus by phytoplankton. And remarkable changes seem in survey result. Blue-green algae decreased selectively with water conveyance year by year from 2007.However, blue-green algae increased from 2011, in additionally dominant species of blue-green algae change to Merismopedia punctate from Phormidium spp. These change suggest that regime sift occurred in blue-green algae selectively and BOD value of the Barato River showed to improved. But, ecosystem model parameter of phytoplankton needs to calibrate again.

  16. Crowdsourcing Water Quality Data

    OpenAIRE

    World Bank

    2016-01-01

    Using mobile phone technologies coupled with water quality testing, there is great opportunity to increase the awareness of water quality throughout rural and urban communities in developing countries. Whether the focus is on empowering citizens with information about the quality of water they use in daily life or providing scientific data to water managers to help them deliver safe water to the ...

  17. The effect of land use change on water quality: A case study in Ciliwung Watershed

    Science.gov (United States)

    Ayu Permatasari, Prita; Setiawan, Yudi; Nur Khairiah, Rahmi; Effendi, Hefni

    2017-01-01

    Ciliwung is the biggest river in Jakarta. It is 119 km long with a catchment area of 476 km2. It flows from Bogor Regency and crosses Bogor City, Depok City, and Jakarta before finally flowing into Java Sea through Jakarta Bay. The water quality in Ciliwung River has degraded. Many factors affect water quality. Understanding the relationship between land use and surface water quality is necessary for effective water management. It has been widely accepted that there is a close relationship between the land use type and water quality. This study aims to analyze the influence of various land use types on the water quality within the Ciliwung Watershed based on the water quality monitoring data and remote sensing data in 2010 and 2014. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. The result can provide scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource.

  18. Assessing BMP effectiveness: multiprocedure analysis of observed water quality data.

    Science.gov (United States)

    Tuppad, Pushpa; Santhi, Chinnasamy; Srinivasan, Raghavan

    2010-11-01

    Observed water quality data obtained from eight stream monitoring locations within Richland-Chambers Watershed in north central Texas were analyzed for trends using box-and-whisker plots, exceedance probability plots, and linear and Mann-Kendall statistical methods. Total suspended solids decreased at seven out of eight stations, and at two of these stations, the decrease was significant. Mixed results were obtained for nitrogen across the stations. A nonsignificant and significant increase in nitrite plus nitrate nitrogen (nitrite+nitrate N) was noticed in two stations each, whereas at the other four stations showed nonsignificant decrease. The results of organic nitrogen (Org N) was similar to nitrite+nitrate N except that the two stations that showed significant increase in nitrite+nitrate N showed nonsignificant decrease in Org N. Mixed results were also noticed for orthophosphorus (Ortho P) including nonsignificant decrease at two stations, significant decrease and increase at one station each, and nonsignificant increase in four stations. In general, total phosphorus (TP) decreased at all stations, significantly at some, except one station where it increased significantly. Decreasing trends in sediment, Org N, Ortho P, and TP were likely related to implementation of best management practices (BMPs). Increasing trends in dissolved constituents including Ortho P and nitrite+nitrate N were likely due to increased surface residue as a result of some BMPs such as conservation tillage.

  19. Study on the Effects of Probiotics on the Growth of Cyprinus carpiod and Water Quality

    Institute of Scientific and Technical Information of China (English)

    Wanqing GUO; Lidan BAI; Hai WANG; Xiaowei LI; Wei SHI; Shuo SUN

    2015-01-01

    Objective] The aim was to discuss the effects of probiotics on the growth of Cyprinus carpiod and water quality. [Method] Taking C. carpiod as the research object, probiotics were supplemented in the fodder and water to study their effects on the growth of C. carpiod and water quality. [Result] Probiotics had promoting ef-fects on the growth of C. carpiod and its optimum dosage was 6%. pH, ammonia nitrogen content and nitrite content in water body in experimental groups were al lower than those in control group. [Conclusion] Compound probiotics had a broad application foreground in the aquatic breeding industry.

  20. Reusing larval rearing water and its effect on development and quality of Anopheles arabiensis mosquitoes.

    Science.gov (United States)

    Mamai, Wadaka; Lees, Rosemary Susan; Maiga, Hamidou; Gilles, Jeremie R L

    2016-03-16

    There is growing interest in applying the sterile insect technique (SIT) against mosquitoes. Mass production of mosquitoes for large-scale releases demands a huge amount of water. Yet, many arid and/or seasonally arid countries face the difficulties of acute water shortage, deterioration of water quality and environmental constraints. The re-use of water to rear successive generations of larvae is attractive as a way to reduce water usage and running costs, and help to make this control method viable. To determine whether dirty larval water was a suitable rearing medium for Anopheles arabiensis, in place of the 'clean' dechlorinated water routinely used, a series of three experiments was carried out to evaluate the effect of dirty water or mixed clean and dirty water on several parameters of insect quality. Batches of 100 fresh eggs were distributed in dirty water or added to clean water to test the effect of dirty water on egg hatching, whereas first-instar larvae were used to determine the effect on immature development time, pupation, adult emergence, body size, and longevity. Moreover, to assess the effect of dirty water on larval mortality, pupation rate, adult emergence, and longevity, L4 larvae collected after the tilting or larvae/pupae separation events were returned either to the dirty water or added to clean water. Results indicated that reusing dirty water or using a 50:50 mix of clean and dirty water did not affect egg hatching. Moreover, no difference was found in time to pupation, larval mortality or sex ratio when first-instar larvae were added to clean water, dirty water, or a 75:25, 50:50 or 25:75 mix of clean and dirty water and reared until emergence. When late-instar larvae were put back into their own rearing water, there was no effect on pupation rate, emergence rate or female longevity, though male longevity was reduced. When reared from first-instar larvae, however, dirty water decreased pupation rate, emergence rate, body size, and adult

  1. Effects of cage fish culture on water quality and selected biological ...

    African Journals Online (AJOL)

    Effects of cage fish culture on water quality and selected biological ... varied spatially and temporally but were generally within safe ranges for freshwater habitats. ... and depressed zooplankton diversity at WC suggested impacts from the fish ...

  2. Water quality degradation effects on freshwater availability: Impacts to human activities

    Science.gov (United States)

    Peters, N.E.; Meybeck, Michel

    2000-01-01

    The quality of freshwater at any point on the landscape reflects the combined effects of many processes along water pathways. Human activities on all spatial scales affect both water quality and quantity. Alteration of the landscape and associated vegetation has not only changed the water balance, but typically has altered processes that control water quality. Effects of human activities on a small scale are relevant to an entire drainage basin. Furthermore, local, regional, and global differences in climate and water flow are considerable, causing varying effects of human activities on land and water quality and quantity, depending on location within a watershed, geology, biology, physiographic characteristics, and climate. These natural characteristics also greatly control human activities, which will, in turn, modify (or affect) the natural composition of water. One of the most important issues for effective resource management is recognition of cyclical and cascading effects of human activities on the water quality and quantity along hydrologic pathways. The degradation of water quality in one part of a watershed can have negative effects on users downstream. Everyone lives downstream of the effects of some human activity. An extremely important factor is that substances added to the atmosphere, land, and water generally have relatively long time scales for removal or clean up. The nature of the substance, including its affinity for adhering to soil and its ability to be transformed, affects the mobility and the time scale for removal of the substance. Policy alone will not solve many of the degradation issues, but a combination of policy, education, scientific knowledge, planning, and enforcement of applicable laws can provide mechanisms for slowing the rate of degradation and provide human and environmental protection. Such an integrated approach is needed to effectively manage land and water resources.

  3. Effect of community activities on water qualities of the Bangpakong River, Chachoengsao Province

    Directory of Open Access Journals (Sweden)

    Paibulkichakul, C.

    2006-03-01

    Full Text Available The effect of community activities on water qualities of the Bangpakong River were investigated. Water from three different areas, Huasai temple, Thayai market and Sothorn temple, were sampled for quality monitoring for its physical, chemical and biological properties during July-September 2004. Analysis of variance was used for data analysis, and Duncan's Multiple Range Test was applied for means comparison at 95% confidence level.The results showed that ranges of dissolved oxygen, ammonia, nitrite, nitrate and orthophosphatephosphorus in all stations were 4.10-6.35, 0.022-0.156, 0.012-0.050, 0.084-0.299 and 0.004-0.047 mg/L, res the large food market, had the lowest water quality. Sothorn temple, the well-known tourist temple, had water quality in the middle of the three stations. Huasai temple, the agricultural site, had the best water qualities. The differences of water quality may be caused by the differences of community activities. The other parameters of this study could not clearly indicate the resons for the difference on water qualities.However, water quality from three areas met the Surface Water Quality Standard, class 3. Bangpakong River, the main river of Chachoengsao Province, is not only the source of water supply for households consumption as well as agricultural and industrial activities, but also receives untreated waste water from households, markets and industrial estates. Consequently, unless wastewater has been treated properly before discharging into the Bangpakong River, there will be water pollution in the near future.

  4. Water Quality Standards Handbook

    Science.gov (United States)

    The Water Quality Standards Handbook is a compilation of the EPA's water quality standards (WQS) program guidance including recommendations for states, authorized tribes, and territories in reviewing, revising, and implementing WQS.

  5. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  6. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  7. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  8. Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers.

    Science.gov (United States)

    Boënne, Wesley; Desmet, Nele; Van Looy, Stijn; Seuntjens, Piet

    2014-05-01

    The effects on river water quality of sewer overflows are not well known. Since the duration of the overflow is in the order of magnitude of minutes to hours, continuous measurements of water quality are needed and traditional grab sampling is unable to quantify the pollution loads. The objective of this paper was to demonstrate the applicability of high frequency measurements for assessing the impacts of waste water treatment plants on the water quality of the receiving surface water. In our in situ water quality monitoring setup, two types of multiparameter sensors mounted on a floating fixed platform were used to determine the dynamics of dissolved oxygen, specific conductivity, ammonium-N, nitrate-N and dissolved organic carbon downstream of a waste water treatment plant (WWTP), in combination with data on rainfall, river discharge and WWTP overflow discharge. The monitoring data for water quantity and water quality were used to estimate the pollution load from waste water overflow events and to assess the impact of waste water overflows on the river water quality. The effect of sewer overflow on a small river in terms of N load was shown to be significant. The WWTP overflow events accounted for about 1/3 of the river discharge. The NH4-N loads during overflow events contributed 29% and 21% to the August 2010 and June 2011 load, respectively, in only 8% and 3% of the monthly time span. The results indicate that continuous monitoring is needed to accurately represent the effects of sewer overflows in river systems.

  9. Effects of Water Quality on Survival and Reproduction of Four Species of Planaria (Turbellaria: Tricladida)

    Science.gov (United States)

    1994-01-01

    EB 24 ’ L Effects of water quality on survival and reproduction of four species of planaria ( Turbellaria : Tricladida)" V.R. RIVERAI and M.J. PERICH2...Introduction Historically, researchers have investigated planar- ians for their regeneration, physiology, memory and Planaria ( Turbellaria : Tricladida) are...determined to be the most adaptable and tolerant of the species evaluated. _ Key words: Planaria , water quality, survival, reproduction 0

  10. Interaction of water extractable pentosans with gluten protein : effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Hamer, R.J.; Vliet, van T.; Oudgenoeg, G.

    2002-01-01

    The effects of modified water extractable pentosans (WEP) on gluten yield, dough properties, gluten quality and composition were studied. The results show that WEP interfere with gluten formation in both a direct and an indirect way. WEP interfere indirectly by competing for water and thus changing

  11. Interaction of water extractable pentosans with gluten protein : effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Hamer, R.J.; Vliet, van T.; Oudgenoeg, G.

    2002-01-01

    The effects of modified water extractable pentosans (WEP) on gluten yield, dough properties, gluten quality and composition were studied. The results show that WEP interfere with gluten formation in both a direct and an indirect way. WEP interfere indirectly by competing for water and thus changing

  12. Estimated effects on water quality of Lake Houston from interbasin transfer of water from the Trinity River, Texas

    Science.gov (United States)

    Liscum, Fred; East, Jeffery W.

    2000-01-01

    The City of Houston is considering the transfer of water from the Trinity River to Lake Houston (on the San Jacinto River) to alleviate concerns about adequate water supplies for future water demands. The U.S. Geological Survey, in cooperation with the City of Houston, conducted a study to estimate the effects on the water quality of Lake Houston from the transfer of Trinity River water. A water-quality model, CE–QUAL–W2, was used to simulate six water-quality properties and constituents for scenarios of interbasin transfer of Trinity River water. Three scenarios involved the transferred Trinity River water augmenting streamflow in the East Fork of Lake Houston, and three scenarios involved the transferred water replacing streamflow from the West Fork of the San Jacinto River.The estimated effects on Lake Houston were determined by comparing volume-weighted daily mean water temperature, phosphorus, ammonia nitrogen, nitrite plus nitrate nitrogen, algal biomass, and dissolved oxygen simulated for each of the transfer scenarios to simulations for a base dataset. The effects of the interbasin transfer on Lake Houston do not appear to be detrimental to water temperature, ammonia nitrogen, or dissolved oxygen. Phosphorus and nitrite plus nitrate nitrogen showed fairly large changes when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Algal biomass showed large decreases when Trinity River water was transferred to augment East Fork Lake Houston streamflow and large increases when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Regardless of the scenario simulated, the model indicated that light was the limiting factor for algal biomass growth.

  13. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  14. The effects of sewer infrastructure on water quality: implications for land use studies.

    Science.gov (United States)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  15. Effects of sulphuric acid and acidifying ammonium deposition on water quality and vegetation of simulated soft water ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Schuurkes, J.A.A.R.; Heck, I.C.C; Hesen, P.L.G.M.; Leuven, R.S.E.W.; Roelofs, J.G.M.

    1986-11-01

    In a greenhouse, seven identical mini-ecosystems, simulating soft water ponds, were exposed to different types of artificial rain water. The effects of rain water containing H/sub 2/SO/sub 4/ and nitrate, and rain water containing ammonium sulphate on water quality and vegetation were studied and compared. Causal relations were established between rain water quality, water chemistry and changes in floristic composition. Ammonium sulphate deposition, particularly, strongly affected water quality and vegetation development. Although ammonium sulphate deposition was only slightly acid, due to nitrification it acted as an important acid source, causing acidification to pH 3.8. Under acidified conditions, ammonium sulphate deposition led to a luxuriant growth of Juncus bulbosus and Agrostis canina. In the mini-ecosystems, H/sub 2/SO/sub 4/ deposition with a pH of 3.5 only decreased the pH of the water to 5.1 within 1 yr, the acidification of water appeared to be coupled with changes in alkalinity, sulphate, Al, Cd, Ca, Mg, K and inorganic-N. It is concluded that in NH/sub 3/-affected regions in The Netherlands, the high atmospheric deposition of ammonium sulphate probably contributes to a large extent in the acidification, eutrophication and floristic changes of oligotrophic soft waters. 10 references.

  16. Tsunamis: Water Quality

    Science.gov (United States)

    ... Landslides Tornadoes Tsunamis Volcanoes Wildfires Winter Weather Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  17. The effect of floating houses on water quality

    NARCIS (Netherlands)

    Foka, E.; Rutten, M.; Boogaard, F.; Graaf, R. de; Lima, R.; Giesen, N. van de

    2015-01-01

    The need of an adaptive sustainable solution for the increased land scarcity, growing urbanization, climate change and flood risks resulted in the concept of the floating urbanization. In The Netherlands this new type of housing attracted the interest of local authorities, municipalities and water b

  18. Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA

    Science.gov (United States)

    Peters, N. E.

    2009-05-01

    A long-term stream water-quality monitoring network was established in the City of Atlanta (COA) during 2003 to assess baseline water-quality conditions and the effects of urbanization on stream water quality. Routine hydrologically-based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted approximately 12 times per year at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) water-quality stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature, and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water-quality and sediment-related constituents. This paper summarizes an evaluation of field parameters and concentrations of major ions, minor and trace metals, nutrient species (nitrogen and phosphorus), and coliform bacteria among stations and with respect to watershed characteristics and plausible sources from 2003 through September 2007. The concentrations of most constituents in the COA streams are statistically higher than those of two nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. The combination of routine manual sampling, automatic sampling during stormflows, and real-time water-quality monitoring provided sufficient information about the variability of urban stream water quality to develop hypotheses for causes of water-quality differences among COA streams. Fecal coliform bacteria concentrations of most individual samples at each station exceeded Georgia's water-quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s), and

  19. Wildfire effects on water quality in forest catchments: A review with implications for water supply

    Science.gov (United States)

    Smith, Hugh G.; Sheridan, Gary J.; Lane, Patrick N. J.; Nyman, Petter; Haydon, Shane

    2011-01-01

    SummaryWildfires burn extensive forest areas around the world each year. In many locations, fire-prone forest catchments are utilised for the supply of potable water to small communities up to large cities. Following wildfire, increased erosion rates and changes to runoff generation and pollutant sources may greatly increase fluxes of sediment, nutrients and other water quality constituents, potentially contaminating water supplies. Most research to date has focused on suspended sediment exports and concentrations after wildfire. Reported first year post-fire suspended sediment exports varied from 0.017 to 50 t ha -1 year -1 across a large range of catchment sizes (0.021-1655 km 2). This represented an estimated increase of 1-1459 times unburned exports. Maximum reported concentrations of total suspended solids in streams for the first year after fire ranged from 11 to ˜500,000 mg L -1. Similarly, there was a large range in first year post-fire stream exports of total N (1.1-27 kg ha -1 year -1) and total P (0.03-3.2 kg ha -1 year -1), representing a multiple change of 0.3-431 times unburned, while NO3- exports of 0.04-13.0 kg ha -1 year -1 (3-250 times unburned) have been reported. NO3-, NO2-, and NH 3/ NH4+ concentrations in streams and lakes or reservoirs may increase after wildfire but appear to present a generally low risk of exceeding drinking water guidelines. Few studies have examined post-fire exports of trace elements. The limited observations of trace element concentrations in streams after wildfire found high levels (well over guidelines) of Fe, Mn, As, Cr, Al, Ba, and Pb, which were associated with highly elevated sediment concentrations. In contrast, Cu, Zn, and Hg were below or only slightly above guideline values. Elevated Na +, Cl - and SO42- solute yields have been recorded soon after fire, while reports of concentrations of these constituents were mostly confined to coniferous forest areas in North America, where maximum sampled values were well

  20. [Effects of aquatic plants during their decay and decomposition on water quality].

    Science.gov (United States)

    Tang, Jin-Yan; Cao, Pei-Pei; Xu, Chi; Liu, Mao-Song

    2013-01-01

    Taking 6 aquatic plant species as test objects, a 64-day decomposition experiment was conducted to study the temporal variation patterns of nutrient concentration in water body during the process of the aquatic plant decomposition. There existed greater differences in the decomposition rates between the 6 species. Floating-leaved plants had the highest decomposition rate, followed by submerged plants, and emerged plants. The effects of the aquatic plant species during their decomposition on water quality differed, which was related to the plant biomass density. During the decomposition of Phragmites australis, water body had the lowest concentrations of chemical oxygen demand, total nitrogen, and total phosphorus. In the late decomposition period of Zizania latifolia, the concentrations of water body chemical oxygen demand and total nitrogen increased, resulting in the deterioration of water quality. In the decomposition processes of Nymphoides peltatum and Nelumbo nucifera, the concentrations of water body chemical oxygen demand and total nitrogen were higher than those during the decomposition of other test plants. In contrast, during the decomposition of Potamogeton crispus and Myriophyllum verticillatum, water body had the highest concentrations of ammonium, nitrate, and total phosphorus. For a given plant species, the main water quality indices had the similar variation trends under different biomass densities. It was suggested that the existence of moderate plant residues could effectively promote the nitrogen and phosphorus cycles in water body, reduce its nitrate concentration to some extent, and decrease the water body nitrogen load.

  1. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    Science.gov (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  2. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  3. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    Science.gov (United States)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  4. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  5. Effects of storm-water runoff on water quality of the Edwards Aquifer near Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Schertz, Terry L.; Slade, Raymond M.; Rawson, Jack

    1984-01-01

    Analyses of samples collected from Barton Springs at approximately weekly Intervals and from Barton Creek and five wells in the Austin area during selected storm-runoff periods generally show that recharge during storm runoff resulted in significant temporal and area! variations in the quality of ground water in the recharge zone of the Edwards aquifer. Recharge during storm runoff resulted in significant increases of bacterial densities in the ground water. Densities of fecal coliform bacteria in samples collected from Barton Springs, the major point of ground-water discharge, ranged from less than 1 colony per 100 milliliters during dry weather in November 1981 and January and August 1982 to 6,100 colonies per 100 milliliters during a storm in May 1982. Densities of fecal streptococcal bacteria ranged from 1 colony per 100 miniliters during dry weather in December 1981 to 11,000 colonies per 100 miniliters during a storm in May 1982.

  6. Effects of climate change on water quality in the Yaquina Estuary, Oregon

    Science.gov (United States)

    As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water quality in the Yaquina Estuary. Due to uncertainty in the ...

  7. Effect of cooking bag and netting packaging on the quality of pork ham during water cooking.

    Science.gov (United States)

    Cheng, Qiaofen; Sun, Da-Wen

    2007-02-01

    As a preliminary test for combining water cooking with vacuum cooling in soup of pork ham, three package treatments were designed to study the effect of cooking bag and netting on the quality of water cooked ham, i.e. ham cooked with a cooking bag and without a cooking bag (single netting and double netting). For treatments without a cooking bag, the results indicated that there was no significant superiority of ham cooked with double netting compared with ham cooked with single netting on the processing efficiency and quality characteristics. Although the hams cooked with a bag performed better in some chemical retentions and pigment, the water contents were significantly lower than those hams cooked in single netting (P0.05). By considering the safety, convenience, cost, and the recovery effect on the quality changes of ham during vacuum cooling in soup, cooking with single netting is a better choice for future research.

  8. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  9. The Effect of Water Shortage on Water Quality of Different Resources in Jerash Governorate/Jordan, Based On New Water Quality Index

    Directory of Open Access Journals (Sweden)

    Eham Al-Ajlouni

    2016-06-01

    Full Text Available The individual average of water share In Jerash governorate is only 71 litres per day and that is the lowest allotment in Jordan. The aim of the study is to assess water quality of different resources in Jerash governorate, based on demographic, chemical and biological changes within a period of 11 years. Cluster survey method was applied and samples of drinking water were taken from different resources. Water of municipality and bottled groundwater resources were of acceptable quality; groundwater of tanker trucks and wells were also acceptable except that of high level of nitrate; spring water and harvested rainwater were potentially not safe and susceptible for biological contamination. At level of sub-districts, based on a new developed water quality index, it was chemically found that water in Mastaba sub-district was more complying with standards than Jerash and Burma sub-districts, but in biological respect both Jerash and Burma sub-districts were more compliance with the standards than Mastaba sub-district. In general, drinking water in Jerash governorate was chemically found of medium quality, and biologically of good quality.

  10. Effects of land use on surface-water quality in the East Everglades, Dade County, Florida

    Science.gov (United States)

    Waller, Bradley G.

    1982-01-01

    Water-quality characteristics were determined at five developed areas in the East Everglades, Dade County, Florida, during the 1978 wet season (June through October). These areas are designated as: Coopertown; Chekika Hammock State Park; residential area; rock-plowed tomato field; and Cracker Jack Slough agricultural area. Data from the developed areas were compared with data from four baseline sites in undeveloped areas to determine the effects of land use on the surface-water quality. The rock-plowed tomato field was the only area where surface-water quality was affected. Water quality at this field is affected by agricultural activities and chemical applications as indicated by increased concentrations of orthophosphate, organic nitrogen, organic carbon, copper, manganese, mercury, and potassium. The remaining four areas of land use had water-quality characteristics typical of baseline sites in nearby Northeast Shark River Slough or Taylor Slough. Chemical analyses of soil indicated chlorinated-hydrocarbon insecticide residues at Coopertown and the two agricultural areas, Cracker Jack Slough and the rock-plowed tomato field. Trace elements in concentrations greater than base level occurred at both agricultural areas (manganese), Chekika Hammock State Park (manganese), and at Coopertown (lead and zinc). (USGS)

  11. EFFECTS OF SEASONALITY ON STREAMFLOW AND WATER QUALITY OF THE PINANG RIVER IN PENANG ISLAND, MALAYSIA

    Institute of Scientific and Technical Information of China (English)

    Ahmad Jailani Muhamed YUNUS; Nobukazu NAKAGOSHI

    2004-01-01

    For the Pinang River, originating in the western highlands of Penang Island, the nature, sources and extent of pollution were studied. The river water samples collected at five selected sites were analyzed for various physical and chemical parameters, namely temperature, DO, BOD, COD, SS, pH, ammoniac nitrogen (AN), and conductance. Long-term data of rainfall and temperature were analyzed to determine the seasonal variations of the streamflow.The streamflow during the dry season is extremely Iow compared to the wet season, thus concentrations of contaminants derived from point pollution source increase due to lack of rainfall and runoff events. On the contrary, in the predominantly urban and agricultural catchments, non-point pollution source increases during rainy season through seepage and runoff. Effects of seasonal variations consequently determine the quantity and quality of the water parameters.The Jelutong River, the Dondang River and the Air Itam River carry the seepage from widely urban and residential arcas to the main Pinang River systems. Water quality of the Pinang River at different points assessed by the water quality indices was compared. According to the quality indices during the study period, water quality in the upper reaches of the river is medium to good. It dwindled in the plains, due to the seepage from urban areas and discharges from the industrial and agricultural lands.

  12. Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality

    Science.gov (United States)

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...

  13. Effects of pond draining on biodiversity and water quality of farm ponds.

    Science.gov (United States)

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  14. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    Science.gov (United States)

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  15. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  16. Pinhole test for identifying susceptibility of soils to piping erosion: effect water quality and hydraulic head

    Energy Technology Data Exchange (ETDEWEB)

    Nadal Romero, E.; Verachtert, E.; Poesen, J.

    2009-07-01

    Piping has been observed in both natural and soils, as well as under different types of land uses and vegetation covers. Despite its importance, no standard widely-applied methodology exists to assess susceptibility of soils to piping. This study aims at evaluating the pinhole test for assessing the susceptibility of soils to piping under different conditions. More precisely, the effects of hydraulic head and water quality are being assessed. Topsoil samples (remoulded specimens) with a small range of water contents were taken in Central Belgium (Heverlee) and the susceptibility of these soil samples are investigated under standardized laboratory conditions with a pinhole test device. Three hydraulic heads (50,180 and 380 mm) and two water qualities (tap and distilled water) were used, reflecting dominant field conditions. (Author) 6 refs.

  17. Effect of Canal Bank Filtration on Quality of Water Long Hyderabad City

    Directory of Open Access Journals (Sweden)

    IMDAD ALI KANDHAR

    2016-07-01

    Full Text Available The focus of the present study was to examine the effect of canal bank filtration on the quality of water and the geological settings along the banks of canals at the shallow depth aquifers. The four Model wells were drilled at different locations of the Line channel, Pinyari and phulali canals in the study area. The samples of soil were collected throughout drilling of the model wells for the analysis of grain size distribution .In addition to this, canal water and model well water samples were collected and analyzed for the water quality characteristics during winter and summer seasons. The analysis of soil and water samples reveals that the ground water is influenced by the grain size distribution, hydraulic conductivity and the location of the model Wells. The model well that has higher percentage of 0.075 mm of grain size distribution(hydraulic conductivity between 10-25 ft/day was more suitable for the filtration of the canal water through its banks, followed by 0.15 mm of grain size distribution (hydraulic conductivity > 25ft/ day. Moreover, the present study also shows that the canal water filtration is suitable in terms of total alkalinity, nitrate-nitrogen, total iron and pH to get the potable water at the location near upstream of the canal, especially in the summer season.

  18. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    Directory of Open Access Journals (Sweden)

    javad baghani

    2016-02-01

    Full Text Available Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any research done on the use of saline and brackish waters is statistically significant. Materials and Methods: To study the effects of different water salinity and water management on some of the agronomic traits of late summer melon with drip irrigation, an experiment with 7 treatments and 3 repetitions was conducted in a randomized complete block design, in Torogh station, Mashhad. The irrigation treatments were: 1- fresh water from planting to harvesting, 2- water (3 dS/m from planting to harvesting, 3- water (6 dS/m from planting to harvesting, 4- water (6 dS/m from 20 days after plantation to harvesting, 5-water (6 dS/m from 40 days after plantation to harvesting, 6-water (3 dS/m from 20 days after plantation to harvesting, 7-water (6 dS/m from 40 days after plantation to harvesting. Row spacing and plant spacing were 3 m and 60 cm, respectively and the pipe type had 6 liters per hour per unit of meters in the drip irrigation system. Finally, the amount of salinity water, number of male and female flowers, number of seed germination, dry leaves' weight, leaf area, chlorophyll (with SPAD etc. were measured and all data were analyzed by using MSTAT-C software and all averages of data, were compared by using the Duncan test. Results and Discussion The results of analysis of data showed the following: Number of seeds germination: Salinity in water irrigation had no significant effects on the number of seed germination. However, there was the most number of seed

  19. The effects of UV disinfection on drinking water quality in distribution systems.

    Science.gov (United States)

    Choi, Yonkyu; Choi, Young-June

    2010-01-01

    UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV(254,) SUVA(254), the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.

  20. Effects of Water Age Blind Spots on the Water Quality in the Water Distribution Systems with the Use of EPANET Model

    Directory of Open Access Journals (Sweden)

    Hossein Shamsaei

    2013-04-01

    Full Text Available The increase in water age may be due to the distance travelled and the residence time in the water distribution. The water age of the blind spots in water distribution system causes deterioration in water quality systems. In general, blind spots have been causing increased water age in the water distribution network. Water age has more value in distribution systems with Lang transmission lines. For blind spots (dead end point, there has been an analysis of the primary distribution system. The goal of this study is to improve the water age and water quality as well as minimizing incidences of dead end points in the water distribution systems with the use of EPANET model software. Considering the above results this study for minimizing incidences of dead end points in the water distribution systems will be water age, smaller water and removal of the blind spots are required and need for the design of a pipe diameter that would effectively accommodate blind spots by ensuring appropriate sizes at appropriate points along the system network, so Pressure must be maintained in the distribution network system. Finally, the amount water age and generation of blind spots in the system and distribution network will be due to inaccuracies in network design and distribution systems or inability to consider some important factors when designing the distribution network system.

  1. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  2. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  3. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  4. THE EFFECT OF STOCKING FISH PRODUCTION ON THE QUALITY OF WATER DISCHARGED FROM THE HATCHERY

    Directory of Open Access Journals (Sweden)

    Małgorzata Bonisławska

    2016-09-01

    Full Text Available The aim of this study was to assess the effect of a fish hatchery (Stocking-Breeding Centre in Goleniów -OHZ, focused on the production and on-growing of stocking material, on the quality of post-production water. The following parameters were determined: dissolved oxygen, organic matter content, buffering capacity, the concentration of some forms of nitrogen and phosphorus ((N-NH4+, N-NO2–, N-NO3-, total nitrogen, P-PO43-, total phosphorus and the concentration of chloride ions. The study also included the measurements of water temperature, electrolytic conductivity and pH. It was shown that the water supplied to the hatchery had good quality, providing optimum conditions for growth and living of fry and juvenile forms of various fish species (most indices were within the range of the first water quality class. Production activities at the hatchery caused a reduction in the quality of discharged post-production water with respect to indicators such as total suspended solids, organic matter and phosphorus.

  5. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  6. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment.

  7. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  8. Predicting fire effects on water quality: a perspective and future needs

    Science.gov (United States)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick

    2017-04-01

    Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape

  9. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    Science.gov (United States)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    Reservoirs located in highly populated and industrialized regions receive discharges of nutrients and pollutants from the watershed that have great potential to impair water quality and threaten aquatic life. The Euiam reservoir is a multiple-purpose water body used for tourism, fishery, and water supply and has been reported as eutrophic since 1990s. The external nutrients loading is considered to be the main cause of eutrophication of water bodies, and control strategies therefore focus on its reduction. However, algae blooms often continue even after external nutrients loading has been controlled, being benthic nutrient loading the main source of nutrients in the water column. Attempts to quantify benthic nutrients fluxes and their role as a source of nutrients to the water column have produced ambiguous results. Benthic flux is dependent on the upward flow of pore water caused by hydrostatic pressure, molecular diffusion, and mixing of sediment and water. In addition, it is controlled by dissolved oxygen (DO) levels, pH values and temperature in the overlying water. Therefore, linking a benthic flux to a water quality model should give us more insight on the effects of benthic fluxes to better quantify nutrient concentration within an entire reservoir system where physical, chemical, biological properties are variable. To represent temporal and spatial variations in the nutrient concentrations of the reservoir, a three-dimensional time variable model, Generalized Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) was selected. The GLLVHT model is imbedded within the Generalized Environmental Modeling System for Surface waters (GEMSS). The computational grid of the three-dimensional model was developed using the GIS. The horizontal grid is composed of 580 active cells at the surface layer with spacing varies from 54.2 m to 69.8 m. There are 15 vertical layers with uniform thickness of 1.9 m resolution. To calibrate the model, model prediction for

  10. Water Quality Data (WQX)

    Science.gov (United States)

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  11. The effects of the environment and ecology projects on lake management and water quality.

    Science.gov (United States)

    Koç, Cengiz

    2008-11-01

    In this study, the characteristics, benefits, and effects of the environment and ecology project, which has been implemented in Turkey for the first time to restore the natural life that has been spoilt and the ecological balance of Lake Bafa located in Great Meander Basin, are searched. Moreover, the water samples taken from the stations that were spotted in the lake have been analyzed for the physical and chemical changes taking place in water quality before and after the project. The water cycle occurring as a result of giving water that was raised in Great Meander River by the Rubber regulator, which is the most important element of the project, through the Serçin inlet and feeder channel; and draining the saline and low-quality water to the river bed of the Great Meander, will improve the water quality, the natural life, and the ecological balance of the lake in time. Thanks to the water given to the lake within the scope of project, the salinity of the lake water decreased from 25,500 to 22,500 mmhos cm( - 1). The electrical conductivity, Na+, Mg+2, Ca+2, Cl(-), CO3(-2), HCO3(-), and the amount of the organic substances were found as over the appropriate values for fishery. Besides, the decreases in the amounts of NO3(-), HN3(-) and PO4(-3) affect the living beings in the lake negatively. In addition, the measures to take are specified, so that the natural life of the Lake and the ecological balance can renew themselves within a short time.

  12. EPANET water quality model

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, L.A.

    1993-01-01

    EPANET represents a third generation of water quality modeling software developed by the U.S. EPA's Drinking Water Research Division, offering significant advances in the state of the art for network water quality analysis. EPANET performs extended period simulation of hydraulic and water quality behavior within water distribution systems. In addition to substance concentration, water age and source tracing can also be simulated. EPANET includes a full featured hydraulic simulation model that can handle various types of pumps, valves, and their control rules. The water quality module is equipped to handle constituent reactions within the bulk pipe flow and at the pipe wall. It also features an efficient computational scheme that automatically determines optimal time steps and pipe segmentation for accurate tracking of material transport over time. EPANET is currently being used in the US to study such issues as loss of chlorine residual, source blending and trihalomethane (THM) formation, how altered tank operation affects water age, and total dissolved solids (TDS) control for an irrigation network.

  13. Purified water quality study

    Energy Technology Data Exchange (ETDEWEB)

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  14. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  15. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): synergic effects of fluoride, cadmium and hardness of water.

    Science.gov (United States)

    Wasana, Hewa M S; Aluthpatabendi, Dharshani; Kularatne, W M T D; Wijekoon, Pushpa; Weerasooriya, Rohan; Bandara, Jayasundera

    2016-02-01

    High prevalence of chronic kidney disease of unknown etiology (CKDu) in some regions of the world is suspected mainly due to a toxin-mediated renal failure. We examined the incidence of CKDu and potable chemical water quality in a CKDu-affected region. This region has been identified as a high-risk zone for CKDu (location: latitude: 8.3500°-9.0000°, longitude: 80.3833°-81.3000°, North Central Province, NCP, Sri Lanka) by the World Health Organization (WHO). However, within this macro-region, small pockets of CKDu non-prevalence zones do exist; notably, the residents in those pockets consume spring water. Therefore, the drinking water quality of four areas, namely high-CKDu-prevalence areas (zone I), low-CKDu-prevalence area (zone II), the CKDu-free isolated pockets (zone III) and control areas (controls) were examined for F, Al, Cd, and As, and hardness and the statistical analysis were carried out to probe possible correlations among these parameters. The fluoride and hardness concentrations of water in zone III and control areas are much lower compared to zones I and II, and the water hardness is ~61 mg/L CaCO3. In zones I and II, the harness of drinking water is ~121-180 mg/L CaCO3; however, Al, Cd and As concentrations are almost comparable and below WHO recommendations. In most of the locations in zones I and II, the F concentration in drinking water is higher than the WHO recommendations. The peculiar distribution patterns of CKDu point to a synergic effect of trace elements in water for etiology of the disease.

  16. Water quality monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Conio, O. [Azienda Mediterranea Gas e Acqua spa, Genua (Italy)

    1998-12-31

    By involving institutions and rules, and technology as well, water resources management presents remarkable complexity. In institutions such a complexity is due to division of competence into monitoring activities, quality control, water utility supply and water treatment. As far as technology goes, complexity results from a wide range of physical, chemical and biological requisites, which define water quality according to specific water uses (for populations, farms, factories). Thus it`s necessary to have reliable and in-time environmental data, so to fulfil two complementary functions: 1) the control of any state of emergency, such as floods and accidental pollution, in order to take immediate measures by means of timely available information; 2) the mid- and long-term planning of water resources, so to achieve their reclamation, conservation and exploitation. An efficient and reliable way to attain these goals is to develop integrated continuous monitoring systems, which allow to control the quality of surface and underground water, the flow of bodies of water and those weather conditions that directly affect it. Such systems compose an environmental information network, which enables to collect and process data relative to the state of the body of water, its aquifer, and the weather conditions.

  17. Water-quality and hydrogeologic data used to evaluate the effects of farming systems on ground-water quality at the Management Systems Evaluation Area near Princeton,Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.

    1997-01-01

    The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.

  18. Effects of coal strip mining on stream water quality and biology, southwestern Washington

    Science.gov (United States)

    Fuste, L.A.; Meyer, D.F.

    1987-01-01

    Strip mining for coal in southwestern Washington may be affecting the water quality of streams. To investigate these possible effects, five streams were selected for study of water quality in each of the two coal bearing areas: the Centralia-Chehalis coal district, and Kelso-Castle Rock coal area. In the Centralia-Chehalis coal district, three of the streams have drainage basins in which mines are active. Water in streams that drain unmined basins is typical of western Washington streams and is characterized as a mixed water because calcium, magnesium, sodium, and bicarbonate ions predominate. A change in anionic composition from bicarbonate to sulfate in streams draining mined areas was not sufficient to change the general water composition and thus make the streams acidic. The largest downstream changes in water quality in both mined and unmined drainage basins were observed during summer low-flow conditions, when minimal dilution, increased water temperatures, and low dissolved oxygen concentrations occurred. High dissolved solids were found in the mined drainage basins during this period. High concentrations of iron, manganese, and zinc were present in the bottom sediments of the mined basins. Moderate concentrations of chromium, cobalt, copper, and zinc were also found in the bottom sediments of a few unmined basins. Streams with substrates of gravel-cobble or gravel-coarse sand had the most diverse benthic fauna and a higher number of ubiquitous taxa than streams with sand-silt substrates, which had the most dissimilar fauna. Mayflies, stoneflies, and caddisflies were rare at the site most affected by mining. The erosion potential of a basin appears to be related to the average basin slope and the amount of forested areas. Strip mining for coal in steep basins may lead to massive movements of unconsolidated spoils after vegetal cover is removed if the land disturbed is graded to pre-mining slopes. (Lantz-PTT)

  19. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    Science.gov (United States)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-01-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels. PMID:28195172

  20. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    Science.gov (United States)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  1. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    Science.gov (United States)

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  2. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    Science.gov (United States)

    Thullen, J.S.; Sartoris, J.J.; Walton, W.E.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998-1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia - nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate = 9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. [Effects of sediment dredging on benthos community structure and water quality in Zhushan Bay].

    Science.gov (United States)

    Liu, Guo-Feng; Zhang, Zhi-Yong; Liu, Hai-Qin; Zhong, Ji-Cheng; Yan, Shao-Hua; Fan, Cheng-Xin

    2010-11-01

    We surveyed the changes of macro-benthos community composition and nutrients concentration in water in Zhushan Bay after it had been dredged 6 months, which aimed to remove the polluted surface sediments. The results showed that the main benthos in the dredged and un-dredged sediments were Limodrilus hoffmeisteri, Pelopia and Bellamya aeruginosa; compared to the un-dredged sediments, the bio-diversity of dredged areas became lower. However, its biomass became higher than that in un-dredged areas. Concentration range changes of TN and TP in overlying water was 1.64-4.45 mg/L and 0.133-0.258 mg/L, respectively. The post-dredged sediments were still in a higher state of nutrients for the higher concentration nutrients in overlying water, macro-benthos were the species that lived in a serious polluted water environment. Using Shannon-Weaver, Simpson, and Goodnight benthic index to evaluate the results show that the dredged area is in the moderately polluted level, but un-dredged area is in the middle-heavily polluted level. According to the benthos fauna surveys and water quality monitoring results, the effective of sediment dredging could play its role only the strict control on the external pollution resources have been made and reduces the effects of polluted water on the sediments.

  4. Modelling the effect of water recycling on the quality of potato products

    NARCIS (Netherlands)

    Asselt-den Aantrekker, van E.D.; Padt, van der A.; Boom, R.M.

    2003-01-01

    Purifying and recycling process water is a way to minimize the use of potable water and the production of wastewater in the food industry. Water recycling should, however, never affect the quality of the final products. Therefore, a model has been developed to investigate the possibilities of water

  5. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  6. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.

  7. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  8. Assessment of the water stress effects on peach fruit quality and size using a fruit tree model, QualiTree

    OpenAIRE

    Alcobendas, Rosalía; Alarcón, Juan José; VALSESIA, Pierre; Génard, Michel; Nicolás, Emilio

    2013-01-01

    Low water availability has increased the use of regulated deficit irrigation strategies in fruit orchards.However, these water restrictions may have implications on fruit growth and quality. The current paperassesses the suitability of an existing fruit tree model (QualiTree) for describing the effects of water stresson peach fruit growth and quality. The model was parameterised and calibrated for a mid-late maturingpeach cultivar (‘Catherine’). Mean and variability over time of fruit and veg...

  9. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed.

    Science.gov (United States)

    Yang, Wanhong; Liu, Yongbo; Ou, Chunping; Gabor, Shane

    2016-06-01

    Wetland conservation has two important tasks: The first is to halt wetland loss and the second is to conduct wetland restoration. In order to facilitate these tasks, it is important to understand the environmental degradation from wetland loss and the environmental benefits from wetland restoration. The purpose of the study is to develop SWAT based wetland modelling to examine water quality effects of riparian wetland loss and restoration scenarios in the 323-km(2) Black River watershed in southern Ontario, Canada. The SWAT based wetland modelling was set up, calibrated and validated to fit into watershed conditions. The modelling was then applied to evaluate various scenarios of wetland loss from existing 7590 ha of riparian wetlands (baseline scenario) to 100% loss, and wetland restoration up to the year 1800 condition with 11,237 ha of riparian wetlands (100% restoration). The modelling was further applied to examine 100% riparian wetland loss and restoration in three subareas of the watershed to understand spatial pattern of water quality effects. Modelling results show that in comparing to baseline condition, the sediment, total nitrogen (TN), and total phosphorus (TP) loadings increase by 251.0%, 260.5%, and 890.9% respectively for 100% riparian wetland loss, and decrease by 34.5%, 28.3%, and 37.0% respectively for 100% riparian wetland restoration. Modelling results also show that as riparian wetland loss increases, the corresponding environmental degradation worsens at accelerated rates. In contrast, as riparian wetland restoration increases, the environmental benefits improve but at decelerated rates. Particularly, the water quality effects of riparian wetland loss or restoration show considerable spatial variations. The watershed wetland modelling contributes to inform decisions on riparian wetland conservation or restoration at different rates. The results further demonstrate the importance of targeting priority areas for stopping riparian wetland loss

  10. Effects of a drought period on physico-chemical surface water quality in a regional catchment area.

    Science.gov (United States)

    Wilbers, Gert-Jan; Zwolsman, Gertjan; Klaver, Gerard; Hendriks, A Jan

    2009-06-01

    Hydrological drought periods are expected to become more severe in North-Western Europe as a result of climate change. This may have implications for water quality, as demonstrated by declining water quality of large rivers (e.g. Rhine, Meuse) during droughts. However, similar investigations in regional catchment areas are lacking to date. In the present study, we investigated the effects of a drought period on the water quality of the Dommel River, a tributary of the Meuse river in the Netherlands. Water quality during the drought of 2003 was compared to that in reference years (2004-2006) for 18 physical/chemical parameters using ANOVA analysis. It was demonstrated that the drought period of 2003 did not significantly affect water quality, although the origin of river flow during the drought shifted from mainly overland flow to deep groundwater flow and (treated) communal effluents. Significant differences in water quality were noted for some monitoring stations during the study period, which could be related to operational water management such as cleaning of sediment traps in the river and improvements in communal effluent treatment. The results of this study are interesting to water managers in Western Europe as they contribute to understanding the potential impact of climate change on water quality/quantity patterns in regional water systems.

  11. Experimental forest watershed studies contribution to the effect of disturbances on water quality

    Science.gov (United States)

    Daniel G. Neary

    2012-01-01

    The most sustainable and best quality fresh water sources in the world originate in forested watersheds (Dissmeyer 2000, Brooks et al. 2003, Barten and Ernst 2004). The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, and moderating the climatic extremes which affect stream...

  12. Stream Water Quality Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987).

  13. Assessing the Effects of Corn-Based Ethanol Production on Stream Water Quality

    Science.gov (United States)

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.

    2007-12-01

    Corn grain-based ethanol production nearly doubled over the past five years in response to energy security concerns and the use of ethanol as a gasoline additive. Corn prices show similar increases with much of the rise occurring in more recent years. Farmers responded by planting 93 million acres of corn in 2007, a 19 percent increase over 2006, with most of the new acreage converted from lands in soybeans and cotton. The projected doubling of corn-based ethanol production by 2016 is expected to exert a continued demand for increased corn acreage and production. Both the recent and projected increases in corn production have raised concerns about the degradation of stream water quality; these include the water-quality effects of possible conversions of Conservation Reserve Program lands of which 16 million enrolled acres are slated to expire in 2007. However, no studies of the potential water-quality impacts have been conducted to date. Corn-based agriculture is currently recognized as a major source of nitrogen to Midwestern streams and the northern Gulf of Mexico where increased nitrogen has contributed to coastal eutrophication over the last several decades. Phosphorus from agricultural sources, including corn-based crops, is also known to impair the quality of inland streams and rivers. We use the spatially explicit water-quality model SPARROW (Spatially Referenced Regression on Watershed Attributes) to simulate the potential effects of recent and projected ethanol-related corn production on stream nutrient loads and coastal nutrient delivery. We simulate mean-annual total nitrogen and phosphorus loads in major streams of the conterminous United States, based on the use of a previously estimated national model. The model accounts for major sources and inputs of nutrients to watersheds (e.g., agricultural, atmospheric deposition, human wastes); these are mediated in the model by the effects of climate, topography, soils, and aquatic attenuation processes on

  14. Effect of Upper Zab River Confluence Point on The Quality Characteristics of Tigris River Water

    Directory of Open Access Journals (Sweden)

    Mohamed Saeed

    2013-05-01

    Full Text Available Many sources play a significant role in changing the Tigris river water quality within Iraqi territory, such as the river's tributaries receiving points, impounding like Mosul dam, the residential settlements as Mosul city, and the untreated discharge of agricultural activities.The First river tributary is Khabbor which confluences the Tigris River at Feshkhaboor village, near the Iraqi-Turkish borders. The second one is Upper Zab which meeting the river at Mishraq, 45 Km south of Mosul. Upper Zab Tributary is characterized by high discharges rates, and high pollution content. The study aim to evaluate its effect on the Tigris river water quality.The Study revealed that the Upper Zab river has  buffering capacity that polishes or enhances the Tigris river water characteristics, with an adverse effect for the others. For example, the values increased by 6% for pH, 56% for Dissolved oxygen, and 134.5% for alkalinity, Whereas the other characteristics decreased by 27.7% for electrical conductivity, 23.6% for total solids, 40% for suspended solids,16.5% for calcium ion, 20% for chloride, 33% for sulfate, 50% for chemical oxygen demand, and 6% for biological oxygen demand.  

  15. Evaluation of anthropogenic effects on water quality and bacterial diversity in Rawal Lake, Islamabad.

    Science.gov (United States)

    Saeed, Asma; Hashmi, Imran

    2014-05-01

    Water quality and bacterial diversity in the surface water of Rawal Lake was investigated for a period of 8 months to evaluate the pollution load from anthropogenic effects of surrounding areas. Rawal Lake in Islamabad, Pakistan is an artificial reservoir that provides the water needs for the residents of Rawalpindi and Islamabad. Grabbed water samples were collected according to standard protocols from ten different locations of the lake and tributaries keeping in view the recharge points from adjacent areas. Temperature, pH, electrical conductivity, dissolved oxygen, total dissolved solids, hardness, alkalinity, and turbidity of water samples were determined to study the water quality characteristics. The physicochemical parameters showed higher values at the tributaries as compared to the sampling locations within the lake such as values of hardness and alkalinity were 298 and 244 mg/L, respectively, at the tributary of the Nurpur stream. Bacterial strains were isolated by streaking on differential and selective growth media by observing colony morphology and other biochemical tests such as Gram reaction, oxidase, and catalase test. Template DNA was prepared from pure cultivated bacteria and 16S rRNA gene analysis was performed using universal primers for bacteria. Sequencing was performed by using BigDye terminator cycle sequencing kit. Sequences of nearest relative microbial species were identified by using basic local alignment search tool and used as reference sequences for phylogenetic analysis. Phylogenetic trees were inferred using the neighbor-joining method. Sequencing and phylogenetic characterization of microbes showed various phylotypes, of which Firmicutes, Teobacteria, and Proteobacteria were predominant.

  16. The effect of Yucca schidigera liquid extract on water quality and survival of Pacific Red Snapper Lutjanus peru during acclimatization

    National Research Council Canada - National Science Library

    Castillo-Vargasmachuca, S; Ponce-Palafox, JT; Arredondo-Figueroa, JL; García-Ulloa, M; Benítez-Valle, A; Martínez-Cárdenas, L; Puga-López, D; Seidavi, A

    2015-01-01

    The goal of this study was to determine the effect of the liquid extract of Yucca schidigera on water quality and survival of Pacific red snapper Lutjanus peru during its transfer from wild to laboratory conditions...

  17. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    Science.gov (United States)

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  18. The Effect of Ambient Water Quality on Lakefront Property Values: Evidence from Coeur d'Alene, Idaho

    Science.gov (United States)

    Liao, H.

    2015-12-01

    Climate warming is causing water temperatures to increase and subsequent changes in water quality. To develop innovative approaches for mitigating the possible negative social consequences of such changes, more research efforts are needed to investigate how people perceive and respond to ambient water quality. This research examines the amenity value of water quality in the areas centered on Lake Coeur d'Alene of Northern Idaho. Through a hedonic analysis, we find that two important water-quality variables have had significant effects on lakefront property values, including Secchi disc reading, a technical measure of water clarity, and the presence of Eurasian watermilfoil, an aquatic invasive species. We further explore the spatial heterogeneity of water-quality benefits along the urban-rural gradient and find that access to urban amenities has strengthened the water-quality benefits in the lakefront housing market. Our findings could be used to incentivize private property owners and stakeholders to commit time and funding to cope with the potential degradation of water quality under climate change.

  19. Effect of type of water supply on water quality in a developing community in South Africa

    CSIR Research Space (South Africa)

    Genthe, Bettina

    1997-01-01

    Full Text Available taps, private outdoor and indoor taps) and point-of-use water samples were examined for heterotrophic plate counts (HPC), total and faecal coliforms, E. coil, and coliphages. Ten percent of samples were also analysed for enteric viruses, Giardia...

  20. Effects of seasonal operation on the quality of water produced by public-supply wells.

    Science.gov (United States)

    Bexfield, Laura M; Jurgens, Bryant C

    2014-09-01

    Seasonal variability in groundwater pumping is common in many places, but resulting effects of seasonal pumping stress on the quality of water produced by public-supply wells are not thoroughly understood. Analysis of historical water-quality samples from public-supply wells completed in deep basin-fill aquifers in Modesto, California (134 wells) and Albuquerque, New Mexico (95 wells) indicates that several wells have seasonal variability in concentrations of contaminants of concern. In Modesto, supply wells are more likely to produce younger groundwater with higher nitrate and uranium concentrations during the summer (high) pumping season than during the winter (low) pumping season. In Albuquerque, supply wells are more likely to produce older groundwater with higher arsenic concentrations during the winter pumping season than during the summer pumping season. Seasonal variability in contaminant concentrations in Modesto is influenced primarily by effects of summer pumping on vertical hydraulic gradients that drive migration of shallow groundwater through the aquifer to supply wells. Variability in Albuquerque is influenced primarily by the period of time that a supply well is idle, allowing its wellbore to act as a conduit for vertical groundwater flow and contaminant migration. However, both processes are observed in each study area. Similar findings would appear to be likely in other alluvial basins with stratified water quality and substantial vertical head gradients. Results suggest that even in aquifers dominated by old groundwater, changes to seasonal pumping patterns and/or to depth of well completion can help reduce vulnerability to selected contaminants of either natural or anthropogenic origin.

  1. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    Science.gov (United States)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  2. EFFECT OF NOT THE APPLICATION OF THE QUALITY CONTROL OF THE WATER IN THE NOURISHING INDUSTRIES

    Directory of Open Access Journals (Sweden)

    Tatiana Cristina Roloff

    2006-06-01

    Full Text Available This paper refers the factors relationship with the quality water control, wishing a better development of food process, showing that investment be possible reduce by organization, when it has systematic water analysis that use in its process. The water, universal solvent, beyond its composition, may introduce undesirable particles, as like as microorganisms type fermenting of lactose, that liberate gas and acid after the fermentation, deteriorating the foods, further much others pathogenic bacterium, causing high danger of contamination or sedimentary solids yet, that can cause incrustation on machinery. In spite of an unsatisfied level of salts like calcium and magnesium, may favor the corrosive process in engine, and to reduce the detergents effect, needing the use in most of concentration, lifting the maintenance cost. With the objective to contribute for the quality food industry increasing and also an production income greater and better foods life time on the shelf, will be approaches subjects relating simple method and low cost, that may being adopted for the enterprise, as like as factors been causing damage to the machines and utensils.

  3. Scale-dependence of land use effects on water quality of streams in agricultural catchments.

    Science.gov (United States)

    Buck, Oliver; Niyogi, Dev K; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.

  4. Effects of mineral content of bovine drinking water: does iron content affect milk quality?

    Science.gov (United States)

    Mann, G R; Duncan, S E; Knowlton, K F; Dietrich, A D; O'Keefe, S F

    2013-01-01

    The composition of water given to dairy cattle is often ignored, yet water is a very important nutrient and plays a major role in milk synthesis. The objective of this study was to study effects of elevated levels of iron in bovine drinking water on milk quality. Ferrous lactate treatments corresponding to 0, 2, 5, and 12.5mg/kg drinking water concentrations were delivered through the abomasum at 10 L/d to 4 lactating dairy cows over 4 periods (1 wk infusion/period) in a Latin square design. On d 6 of infusion, milk was collected, processed (homogenized, pasteurized), and analyzed. Mineral content (Fe, Cu, P, Ca) was measured by inductively coupled plasma mass spectrometry. Oxidative stability of whole processed milk was measured by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde (MDA) and sensory analysis (triangle test) within 72 h of processing and after 7d of storage (4°C). Significant sensory differences between processed milks from cows receiving iron and the control infusion were observed. No differences in TBARS (1.46±0.04 mg of MDA/kg) or mineral content (0.22±0.01 mg/kg Fe) were observed. A 2-way interaction (iron treatment by cow) for Ca, Cu, and Fe concentrations was seen. While iron added directly to milk causes changes in oxidation of milk, high levels of iron given to cattle have subtle effects that initially may not be obvious.

  5. EFFECT OF DYNAMICAL WATER QUALITY ON SHRIMP CULTURE IN THE INTEGRATED MULTITROPIC AQUACULTURE (IMTA

    Directory of Open Access Journals (Sweden)

    Brata Pantjara

    2015-06-01

    Full Text Available One of the technologies to improve the productivity of shrimp farms are environmentally friendly shrimp farming multitrophic integrated system known as Integrated Multitrophic Aquaculture (IMTA. The aims of the study were to observe the water quality dynamic on the integrated multitrophic aquaculture and the effect on the production. This study was used four plots which each of pond had 4,000 m2 in sizing, located in experiment pond, at Research and Development Institute for Coastal Aquaculture, Maros. The main commodities used were tiger and vannamei shrimp. In the A pond was cultivated the tiger shrimp with density 12 ind./m2, in B pond was tiger shrimp with density 8 ind./m2, C pond was vannamei shrimp with density 50 ind./m2, and D pond was vannamei shrimp with density 25 ind./m2. Other commodities were red tilapia (Oreochromis niloticus. Each pond had stocking density 2,400 ind./plot which was divided into 5 hapas having a size of (6 m x 4 m x 1.2 m/each, mangrove oysters (Crassostrea iredalei and Saccostrea cucullata with density 7,500 ind./4,000 m2 and seaweed (Gracilaria verrucosa of 500 kg/4,000 m2. The observation of dynamic water quality in the pond was conducted every day i.e. temperature, dissolved oxygen, salinity, and measured pH, while the total organic matter total (TOM, total ammonia nitrogen (TAN, nitrite, nitrate, phosphate were taken every two weeks. The measurements methods of water quality in laboratory was refered to APHA (2008; and Boyd (1990. During the study, absorption of N and P in seaweed were measured, the obtained plankton was identified and the ratio of carbon and nitrogen during the observation was also calculated. To determine the effect of dominant water quality on production was used the principal component analysis (PCA. The result showed that water quality during the study was suitable for shrimp and red tilapia culture. The dominant water qualities which effected the shrimp production in

  6. Overview of the effects of the coal fuel cycle on hydrology, water quality and use, and aquatic ecology

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Gough, S.B.; Moran, M.S.

    1980-05-01

    Literature is summarized for the effects of the coal fuel cycle (mining, mine-site processing, transportation, storage, onsite processing, combustion, and waste collection and disposal) on water resources. Aspects considered include surface- and ground-water hydrology, water quality and use, and aquatic ecology. Water use is discussed with regard to both availability and water quality constraints on use. Requirements of the recently enacted Surface Mining Control and Reclamation Act are introduced where appropriate. For the combustion step in the fuel cycle, only those effects which are specific to coal as a fuel are addressed. Effects not specific to coal use (such as thermal effects, impingement, and entrainment resulting from cooling water withdrawal and use) are not considered. Reference is made to more exhaustive studies of the topics reviewed. A summary of the major environmental effects of the coal fuel cycle is given below.

  7. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  8. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    Science.gov (United States)

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    Shell Lake is a relatively shallow terminal lake (tributaries but no outlets) in northwestern Wisconsin that has experienced approximately 10 feet (ft) of water-level fluctuation over more than 70 years of record and extensive flooding of nearshore areas starting in the early 2000s. The City of Shell Lake (City) received a permit from the Wisconsin Department of Natural Resources in 2002 to divert water from the lake to a nearby river in order to lower water levels and reduce flooding. Previous studies suggested that water-level fluctuations were driven by long-term cycles in precipitation, evaporation, and runoff, although questions about the lake’s connection with the groundwater system remained. The permit required that the City evaluate assumptions about lake/groundwater interactions made in previous studies and evaluate the effects of the water diversion on water levels in Shell Lake and other nearby lakes. Therefore, a cooperative study between the City and U.S. Geological Survey (USGS) was initiated to improve the understanding of the hydrogeology of the area and evaluate potential effects of the diversion on water levels in Shell Lake, the surrounding groundwater system, and nearby lakes. Concerns over deteriorating water quality in the lake, possibly associated with changes in water level, prompted an additional cooperative project between the City and the USGS to evaluate efeffects of changes in nutrient loading associated with changes in water levels on the water quality of Shell Lake. Numerical models were used to evaluate how the hydrology and water quality responded to diversion of water from the lake and historical changes in the watershed. The groundwater-flow model MODFLOW was used to simulate groundwater movement in the area around Shell Lake, including groundwater/surface-water interactions. Simulated results from the MODFLOW model indicate that groundwater flows generally northward in the area around Shell Lake, with flow locally converging

  9. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    Science.gov (United States)

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction estimated to be due to

  10. Effects of Environmental and Anthropogenic Factors on Water Quality in the Rock Creek Watershed

    Science.gov (United States)

    2016-04-08

    waters, and culture -based methods for detecting their presence. There exists a growing body of knowledge investigating the occurrence of microbial...water quality and abundance of enteric bacteria of coastal surface water in southwestern Istanbul , Turkey using GIS, the multiple tube fermentation...in surface water, the most common two being those in which the organisms are cultured (67), and those in which the deoxyribonucleic acid (DNA) is

  11. Tillage and nutrient source effects on water quality and corn grain yield from a flat landscape.

    Science.gov (United States)

    Thoma, David P; Gupta, Satish C; Strock, Jeffrey S; Moncrief, John F

    2005-01-01

    Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.

  12. 77 FR 29271 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2012-05-17

    ... quality designated uses. More specifically, the numeric nutrient criteria translate Florida's narrative... adoption of nutrient water quality standards. EPA decided that a four month extension was warranted (77 FR... State numeric nutrient rules to EPA for review and action under section 303(c) of the CWA, for EPA...

  13. Assessment of urbanization/impervious effects on water quality in the urban river Annaba (Eastern Algeria) using physicochemical parameters.

    Science.gov (United States)

    Hafsi, R; Ouerdachi, L; Kriker, A E O; Boutaghane, H

    2016-11-01

    Surface water quality is deteriorating due to the increase of urbanization which increases the load of stormwater and wastewater discharged into rivers. To evaluate the quality of an urban river (Annaba, northeastern Algeria), multivariate statistical analyses were applied to the physicochemical measures of 38 parameters. The application of principal component analysis and factor analysis pointed out 19 dominant components, explaining 83.40% of the variance. Reducing the amount of data will allow a reduction in the number of parameters that need to be analysed to have sufficient information on the water quality. An analysis of the statistical tools' results and effective impervious area leads to an estimation of the urbanization threshold level at which the impact on water quality occurs. Estimating the threshold of impervious areas to abide will ensure urban development while protecting the quality of water and environmental health.

  14. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  15. Effect of the litter material on drinking water quality in broiler production

    Directory of Open Access Journals (Sweden)

    RG Garcia

    2010-09-01

    Full Text Available Considering the importance of drinking water and its effect on broiler performance, drinking water quality was studied using six different litter materials. The presence of coliform bacteria and Escherichia coli was investigated. The following litter materials were used in the trial: wood shavings, rice husks, chopped Napier grass (Pennisetum pupureum, 50% sugarcane bagasse (Saccharum L. + 50% wood shavings, 50% sugarcane bagasse (Saccharum L. + 50% rice husks, and plain sugarcane bagasse (Saccharum L.. A number of 1620 Ross® one-day-old chicks were reared in 54 pens measuring 4.5 m² each, equipped with a bell drinker and a tube feeder. Water samples were collected in sterile tubes on days 28 and 42 of the rearing period, and submitted to the laboratory for analyses. Microbiological data were organized by classes expressed in a logarithm scale, where the lowest contamination corresponds to class 1 and the highest contamination to class 4. Results showed that total coliform contamination was higher on day 28 than in the end of the rearing period, and that E. coli presence was detected during both analyzed periods. The litter materials that presented lower degree of water contamination, predominantly class 1, were sugarcane bagasse and 50% of sugarcane bagasse and 50% of rice husks.

  16. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    Science.gov (United States)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    were irrigated abundantly until the full ripening of the grapes. The results revealed that a period of water stress during the early stages of bunches growth can induce irreversible changes in the physiology of the plant. Even if the leaf water potential was restored after abundant irrigations, the photosynthetic capacity was compromised, provoking remarkable effects on the composition of the grape. Although the plants produced similar amounts of grape, the water stress reduced the average berry weight. The plants with higher water availability synthesized more sugars and organic acids, while a strong water stress promoted the accumulation of anthocyanins and phenolic compounds. Soil typology and AWC influenced water stress and physiology of plants, and grape yield and quality. As expected, the plants grafted on 1103 Paulsen resulted more productive, while on the 110-14 they showed similar response to water stress that non-grafted vines. The results in the pots confirmed the effect of soil type that was monitored in the field, and highlighted a strong interaction between rootstock, soil, and microbial community. Acknowledgements: Financial support for this project was provided by the Italy - Israel Cooperation in Agricultural Research.

  17. Effects of pig age at market weight and magnesium supplementation through drinking water on pork quality.

    Science.gov (United States)

    Frederick, B R; van Heugten, E; See, M T

    2006-06-01

    Thirty-two halothane-negative pigs (109 +/- 0.6 kg of BW) were used to determine the effect of pig age at marketing (and thus growth rate), and magnesium supplementation through drinking water, on pork quality. Two initial groups of 50 pigs that differed by 30 +/- 2 d of age were fed diets to meet or exceed nutrient requirements beginning at 28 kg of BW. Sixteen average, representative pigs were selected from each group to represent older, slow-growing pigs and younger, fast-growing pigs. For the duration of the study, pigs were individually penned, provided 2.7 kg of feed (0.12% Mg) daily, and allowed free access to water. After 7 d of adjustment, pigs were blocked by sex and BW and allotted to 0 or 900 mg of supplemental Mg/L as MgSO4 in drinking water for 2 d before slaughter. All 32 pigs were then transported (110 km) to a commercial abattoir on the same day and slaughtered 2.5 h after arrival. Longissimus and semimembranosus (SM) chops were packaged and stored to simulate display storage for fluid loss and Minolta color determinations at 0, 2, 4, 6, and 8 d. Two remaining sections of the LM were vacuum-packaged and stored at 4 degrees C for 25 or 50 d. Fast- (younger) and slow- (older) growing pigs differed by 27 +/- 0.3 d of age (153 and 180 +/- 0.3 d; P 0.10). Surface exudate of the SM from older pigs was lower than that of younger pigs (61 vs. 74 +/- 6 mg; P = 0.05) but was not different for the LM (P = 0.22). The LM from older pigs displayed for 4 and 8 d; P water for 2 d did not affect pork quality of either older, slower growing pigs or younger, faster growing pigs.

  18. The effect of algal and bacterial filters on sea water quality during ...

    African Journals Online (AJOL)

    tion in closed culture systems was tested by comparing water quality changes in bacterial and algal filtration systems over a two month period. Juvenile Penaeus ..... the greater surface area offered for bacterial attachment by the gravel chips.

  19. An improved effective microorganism (EM) soil ball-making method for water quality restoration.

    Science.gov (United States)

    Park, Gun-Seok; Khan, Abdur Rahim; Kwak, Yunyoung; Hong, Sung-Jun; Jung, ByungKwon; Ullah, Ihsan; Kim, Jong-Guk; Shin, Jae-Ho

    2016-01-01

    Soil balls containing the so-called effective microorganisms (EM) have been applied to improve water quality of small ponds, lakes, and streams worldwide. However, neither the physical conditions facilitating their proper application nor the diversity of microbial community in such soil balls have been investigated. In this study, the application of 0.75% of hardener to the soil balls exerted almost neutral pH (pH 7.3) which caused up to a fourfold increased hardness of the soil ball. Moreover, the 0.75% of hardener in the soil ball also improved the water quality due to a significant reduction in dissolved oxygen, total phosphorus, and total nitrogen contents. Metagenomic analysis of the microbial community in the soil ball with 0.75% hardener was compared with control (traditional soil ball) through next-generation sequencing. The traditional soil ball microbial community comprised 96.1% bacteria, 2.7% eukaryota, and 1% archaea, whereas the soil ball with 0.75% hardener comprised 71.4% bacteria, 27.9% eukaryota, and 0.2% viruses. Additionally, metagenomic profiles for both traditional and improved soil balls revealed that the various xenobiotic biodegradation, such as those for caprolactam, atrazine, xylene, toluene, styrene, bisphenol, and chlorocyclohexane might be responsible for organic waste cleanup.

  20. National Recommended Water Quality Criteria

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health...

  1. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Uwimana, Brigitte; Dam, van Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-01-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment,

  2. Hemodialysis and water quality.

    Science.gov (United States)

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed.

  3. Agriculture in the Mississippi River Basin; effects on water quality, aquatic biota, and watershed conservation.

    Science.gov (United States)

    Agriculture has been identified as a potential leading source of nutrients (nitrogen and phosphorus) and sediment enrichment of water bodies within the Mississippi River basin (MRB) and contributes to impaired water quality and biological resources in the MRB and the northern Gulf of Mexico (GOM). T...

  4. Examining the Effects of Altered Water Quality on Sea Urchin Fertilization Success and Embryo Development

    Science.gov (United States)

    Haverkort-Yeh, Roxanne Dominique; Tamaru, Clyde S.; Gorospe, Kelvin Dalauta; Rivera, Malia Ana J.

    2013-01-01

    As a result of shifting marine environmental conditions caused by global climate change and localized water pollution, marine organisms are becoming increasingly exposed to changing water quality conditions. For example, they are exposed to more extreme salinity fluctuations as a result of heavier rainfall, melting polar caps, or extreme droughts.…

  5. Examining the Effects of Altered Water Quality on Sea Urchin Fertilization Success and Embryo Development

    Science.gov (United States)

    Haverkort-Yeh, Roxanne Dominique; Tamaru, Clyde S.; Gorospe, Kelvin Dalauta; Rivera, Malia Ana J.

    2013-01-01

    As a result of shifting marine environmental conditions caused by global climate change and localized water pollution, marine organisms are becoming increasingly exposed to changing water quality conditions. For example, they are exposed to more extreme salinity fluctuations as a result of heavier rainfall, melting polar caps, or extreme droughts.…

  6. Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model development and its application in natural waters.

    Science.gov (United States)

    Wang, Xinghao; Qu, Ruijuan; Wei, Zhongbo; Yang, Xi; Wang, Zunyao

    2014-06-01

    Mercury (Hg) compounds are widely distributed toxic environmental and industrial pollutants and they may bring danger to growth and development of aquatic organisms. The distribution of Hg species in the 3 percent NaCl solution was calculated using the chemical equilibrium model Visual MINTEQ, which demonstrated that Hg was mainly complexed by chlorides in the pH range 5.0-9.0 and the proportions of HgCl4(2-), HgCl3(-) and HgCl2(aq) reached to 95 percent of total Hg. Then the effects of cations (Ca(2+), Mg(2+), K(+) and H(+)), anions (HCO3(-), NO3(-), SO4(2-) and HPO4(2-)) and complexing agents (ethylene diamine tetraacetic acid (EDTA) and dissolved organic matter (DOM)) on Hg toxicity to Photobacterium phosphoreum were evaluated in standardized 15min acute toxicity tests. The significant increase of 6.3-fold in EC50 data with increasing pH was observed over the tested pH range of 5.0-8.0, which suggested the possible competition between hydroxyl and the negatively charged chloro-complex. By contrast, it was found that major cations (Ca(2+), Mg(2+) and K(+)) have little effect on Hg toxicity to P. phosphoreum. An interesting finding was that the addition of HPO4(2-) significantly increased Hg toxicity, which may imply that the addition of phosphate increased the soluble Hg-chloro complex species. Additions of complexing agents (EDTA and DOM) into the exposure water increased Hg bioavailability via complexation of Hg. Finally, a model which incorporated the effect of pH, HPO4(2-), HCO3(-), SO4(2-) and DOM on Hg toxicity was developed to predict acute Hg toxicity for P. phosphoreum, which may be a useful tool in setting realistic water quality criteria for different types of water.

  7. Mixture effects of organic micropollutants present in water: towards the development of effect-based water quality trigger values for baseline toxicity.

    Science.gov (United States)

    Tang, Janet Y M; McCarty, Shane; Glenn, Eva; Neale, Peta A; Warne, Michel St J; Escher, Beate I

    2013-06-15

    In this study we propose for the first time an approach for the tentative derivation of effect-based water quality trigger values for an apical endpoint, the cytotoxicity measured by the bioluminescence inhibition in Vibrio fischeri. The trigger values were derived for the Australian Drinking Water Guideline and the Australian Guideline for Water Recycling as examples, but the algorithm can be adapted to any other set of guideline values. In the first step, a Quantitative Structure-Activity Relationship (QSAR) describing the 50% effect concentrations, EC50, was established using chemicals known to act according to the nonspecific mode of action of baseline toxicity. This QSAR described the effect of most of the chemicals in these guidelines satisfactorily, with the exception of antibiotics, which were more potent than predicted by the baseline toxicity QSAR. The mixture effect of 10-56 guideline chemicals mixed at various fixed concentration ratios (equipotent mixture ratios and ratios of the guideline values) was adequately described by concentration addition model of mixture toxicity. Ten water samples were then analysed and 5-64 regulated chemicals were detected (from a target list of over 200 chemicals). These detected chemicals were mixed in the ratios of concentrations detected and their mixture effect was predicted by concentration addition. Comparing the effect of these designed mixtures with the effect of the water samples, it became evident that less than 1% of effect could be explained by known chemicals, making it imperative to derive effect-based trigger values. The effect-based water quality trigger value, EBT-EC50, was calculated from the mixture effect concentration predicted for concentration-additive mixture effects of all chemicals in a given guideline divided by the sum of the guideline concentrations for individual components, and dividing by an extrapolation factor that accounts for the number of chemicals contained in the guidelines and for

  8. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    Science.gov (United States)

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  9. Effect of chlorination of drinking-water on water quality and childhood diarrhoea in a village in Pakistan

    DEFF Research Database (Denmark)

    Jensen, Peter K; Ensink, Jeroen H J; Jayasinghe, Gayathri

    2003-01-01

    To evaluate the importance of public-domain transmission of pathogens in drinking-water, an intervention study was carried out by chlorinating the public water-supply system in a village in Pakistan. The water quality improved and reached a geometric mean of 3 Escherichia coli per 100 mL at the l...... had a higher risk of diarrhoea than children using groundwater sources, controlled for confounding by season and availability of a toilet and a water-storage facility. The incidence of diarrhoea in the village (7.3 episodes per 10(3) person-days) was not statistically different from...

  10. Density currents in the Chicago River: Characterization, effects on water quality, and potential sources

    Science.gov (United States)

    Jackson, P. Ryan; Garcia, Carlos M.; Oberg, Kevin A.; Johnson, Kevin K.; Garcia, Marcelo H.

    2008-01-01

    Bidirectional flows in a river system can occur under stratified flow conditions and in addition to creating significant errors in discharge estimates, the upstream propagating currents are capable of transporting contaminants and affecting water quality. Detailed field observations of bidirectional flows were made in the Chicago River in Chicago, Illinois in the winter of 2005-06. Using multiple acoustic Doppler current profilers simultaneously with a water-quality profiler, the formation of upstream propagating density currents within the Chicago River both as an underflow and an overflow was observed on three occasions. Density differences driving the flow primarily arise from salinity differences between intersecting branches of the Chicago River, whereas water temperature is secondary in the creation of these currents. Deicing salts appear to be the primary source of salinity in the North Branch of the Chicago River, entering the waterway through direct runoff and effluent from a wastewater-treatment plant in a large metropolitan area primarily served by combined sewers. Water-quality assessments of the Chicago River may underestimate (or overestimate) the impairment of the river because standard water-quality monitoring practices do not account for density-driven underflows (or overflows). Chloride concentrations near the riverbed can significantly exceed concentrations at the river surface during underflows indicating that full-depth parameter profiles are necessary for accurate water-quality assessments in urban environments where application of deicing salt is common.

  11. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale.

    Science.gov (United States)

    Wang, Xixi; Shang, Shiyou; Qu, Zhongyi; Liu, Tingxi; Melesse, Assefa M; Yang, Wanhong

    2010-07-01

    Wetlands are one of the most important watershed microtopographic features that affect hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models such as the Soil and Water Assessment Tool (SWAT), enhanced by the hydrologic equivalent wetland (HEW) concept developed by Wang [Wang, X., Yang, W., Melesse, A.M., 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 51 (1), 55-72.], can be a best resort. However, there is a serious lack of information about simulated effects using this kind of integrated modeling approach. The objective of this study was to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota. The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10-20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50-80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority

  12. The effects of sea-level rise on water quality in coastal floodplain sediments

    Science.gov (United States)

    Wong, Vanessa; Johnston, Scott; Burton, Edward; Bush, Richard; Sullivan, Leigh; Slavich, Peter

    2013-04-01

    Sea level has risen approximately 1.2 mm/year over the last 100 years (Hennessy et al. 2004) and is predicted to rise up to 80 cm by 2100 relative to 1990 sea levels (IPCC 2007). The number of extreme events related to sea level such as higher sea levels and increased inter-annual variability have also increased in frequency in the same time period (Hennessy et al. 2004). Globally, large areas of coastal and estuarine floodplains are underlain by sulfidic sediments and acid sulfate soils (ASS). These sediments frequently contain high concentrations of acidity and trace metals. A significant portion of the stored acidity occurs in the form of exchangeable and hydrolysable acidic metal cations such as Al and Fe. Watertables in these environments are often close to the surface and intercepted by relatively shallow drains. Due to their low elevation and locations, these floodplains are highly susceptible to pulses of saline water caused by saltwater intrusion, storm surge and rising sea levels. Construction of extensive drainage systems has further increased the susceptibility of the floodplain to seawater inundation by increasing connectivity to the estuarine channel. This risk is likely to increase in the future with predicted increases in sea level and extreme events due to climate change. This study uses both batch experiments to determine the effects of increasing ionic strength on exchange processes and trace metal desorption in oxidised floodplain sediments and sulfidic drain sediments, and intact soil cores to determine the surface water-porewater interactions over the short term following seawater inundation in coastal floodplain sediments. We found that that saline inundation of oxidised ASS floodplain sediments, even by relatively brackish water may cause rapid, shorter-term water quality changes and a pulse release of acidity due to desorption of acidic metal cations (Wong et al. 2010). We also found that trace metals can be mobilised from sulfidic

  13. Effects of uranium-mining releases on ground-water quality in the Puerco River Basin, Arizona and New Mexico

    Science.gov (United States)

    Van Metre, Peter C.; Wirt, Laurie; Lopes, T.J.; Ferguson, S.A.

    1997-01-01

    Shallow ground water beneath the Puerco River of Arizona and New Mexico was studied to determine the effects of uranium-mining releases on water quality. Ground-water samples collected from 1989 to 1991 indicate that concentrations of dissolved uranium have decreased. Most samples from the alluvial aquifer downstream from Gallup, New Mexico, met with U.S. Environmental Protection Agency's maximum contaminant levels for gross alpha, gross beta, and radium and the proposed maximum contaminant level for uranium.

  14. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems

    Science.gov (United States)

    Rainbow trout Oncorhynchus mykiss performance and water quality were evaluated and compared within six replicated 9.5 cubic meter water recirculating aquaculture systems (WRAS) operated with and without ozone at various water exchange rates. Three separate studies were conducted: 1) low water exchan...

  15. ORD Studies of Water Quality in Hospitals

    Science.gov (United States)

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  16. Water quality index using multivariate factorial analysis

    National Research Council Canada - National Science Library

    Christiane Coletti; Roberto Testezlaf; Túlio A. P. Ribeiro; Renata T. G. de Souza; Daniela de A. Pereira

    2010-01-01

    The evaluation of environmental effects generated by agricultural production on water quality became essential in Brazil after the creation of policies for the use and conservation of water resources...

  17. The effect of lake water quality and wind turbines on Rhode Island property sales price

    Science.gov (United States)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  18. Contrasting effects of managed opening regimes on water quality in two intermittently closed and open coastal lakes

    Science.gov (United States)

    Schallenberg, M.; Larned, S. T.; Hayward, S.; Arbuckle, C.

    2010-03-01

    Intermittently closed and open lakes and lagoons (ICOLLs) are shallow barrier lakes which are intermittently connected to the sea and experience saline intrusions. Many ICOLLs are mechanically opened to prevent flooding of surrounding agricultural and urban land and to flush water of poor quality. In this study, the effects of modified opening regimes (frequency and duration of barrier openings and closures) on water quality and phytoplankton in two New Zealand ICOLLs were investigated over a number of opening/closure cycles. Water quality in Lake Ellesmere (Te Waihora) responded weakly to both opening and closing events, indicating that sea-ICOLL exchange did not markedly improve water quality. Conversely, water quality in Waituna Lagoon responded rapidly to barrier openings; water level decreased to near sea level within days of opening and subsequent seawater exchange resulted in rapid decreases in nitrate and chlorophyll a concentrations. The closure of Waituna Lagoon resulted in rapid rise in water level and a pulse of nitrate and phosphorus in the water column and phytoplankton chlorophyll a concentrations increased with increasing closed-period duration. Based on data on the underwater light climate and nutrient dynamics, phytoplankton in Lake Ellesmere was probably light-limited, whereas phytoplankton in Waituna Lagoon was rarely light-limited, and appeared to be predominately P-limited. The marked differences in responses of Lake Ellesmere and Waituna Lagoon to barrier openings and closures reflected differences in ICOLL water levels and morphological characteristics, which dictated the degree of tidal flushing when the barriers were open. The inter-ICOLL differences observed in this study indicate that unless the effects of ICOLL openings/closures on phytoplankton and nutrient dynamics are understood, changes to ICOLL opening regimes may have unintended consequences for the water quality and ecology of these systems.

  19. Effect of Suburban Development and Landscape Position on Water Quality in Three Small Watersheds Within the Croton System, New York.

    Science.gov (United States)

    Hassett, J. M.; Endreny, T. A.; Wolosoff, S.; Adam, M.; Mitchell, M. J.

    2003-12-01

    Internal hydrological processes in suburban watersheds and their effects on water quality warrant investigation. Instrument clusters (throughfall collectors, suction lysimeters, monitoring wells, and shallow and deep piezometers) were installed at several locations within three small (50 - 70 ha) watersheds (one forested, two with different degrees of suburban development) in the Croton Watershed, southeastern New York. Biweekly and storm samples were analyzed for base cations, selected anions, and DOC over a one-year period. The topographic index (TI) quantified landscape position; flowpath analyses determined degree of development at each cluster, using % impervious cover as the metric. Water quality degradation was observed in sites with medium and high TI values; no such effect was observed along the ridges, i.e., low TI values. At medium TI values, areas with more than 5% impervious had degraded water quality. At high TI values, the water chemistry degradation appeared at 10% or greater impervious surface

  20. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, J.D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  1. Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process.

    Science.gov (United States)

    Walsh, M E; Zhao, N; Gora, S L; Gagnon, G A

    2009-08-01

    The removal of natural organic matter under variable coagulation and flocculation pretreatment conditions was evaluated for three surface waters in an immersed ultrafiltration (UF) process. Coagulation with alum, flocculation and UF treatment were conducted in a bench-scale test apparatus designed to simulate pilot- and full-scale water treatment systems. Variable coagulation and flocculation operating conditions were investigated, including coagulant dose, hydraulic retention time (HRT) and mixing intensity (e.g. velocity gradient). Treatment performance was evaluated by measuring specific water quality parameters in the permeate stream, including dissolved organic carbon (DOC), UV254 and true colour. Coagulant dose was found to be the most important variable for treatment performance with regard to permeate water quality, with significantly lower alum dosages required to achieve enhanced coagulation water quality targets than conventional filtration systems. Experiments conducted to evaluate variable flocculation stage HRT and applied velocity gradient demonstrated that traditional set points for these operating variables, applied in conventional filtration systems, may not be required in UF systems. In particular, optimized UF permeate water quality was found with reduced flocculation retention times (e.g. process tank during operation was also evaluated. The use of air scour, tested as an intermittent operation at an applied velocity gradient of 50 s(-1) was found to significantly reduce DOC concentrations and UV254 measurements in the UF permeate stream when compared with UF operations without air scour.

  2. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    Science.gov (United States)

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  3. Institutional design and regime effectiveness in transboundary river management – the Elbe water quality regime

    Directory of Open Access Journals (Sweden)

    I. Dombrowsky

    2008-02-01

    Full Text Available The literature on transboundary river management suggests that institutions play an important role in bringing about cooperation. However, knowledge about how such institutions should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships that lead to the respective outcomes. In order to gain further insights into the relationship between institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE. The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expediency of the institutional arrangements. The study shows overall that the countries were relatively successful in improving water quality in the Elbe basin. However, this outcome can only partly be attributed to the ICPE itself. Furthermore, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity: it was relatively significant where the main responsibility for action lay with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model, but was practically non-existent in the reduction of non-point pollution from agriculture, where success depended on the behavior of individual private actors (farmers. The commission contributed towards problem solving by serving as a forum for the joint identification of priorities for action from a basin-wide perspective. The resulting international obligations increased the power of national water administrations and their access to funds

  4. Water Quality vs. Sanitation Accessibility: What is the most effective intervention point for preventing cholera in Dhaka, Bangladesh?

    Science.gov (United States)

    Majumder, M. S.; Gute, D.; Faruque, A. S.

    2011-12-01

    Every year, 3 to 5 million individuals contract cholera, an acute diarrheal infection that is caused by the ingestion of food or water containing the Vibrio cholerae bacterium. Because cholera is a waterborne disease, it can be transmitted quickly in environments with inadequate water and sanitation systems where infected waste can easily pollute drinking water. Today, Bangladesh continues to struggle with endemic cholera. Donor organizations address water and sanitation via localized initiatives, including the installation of community water collection sites (i.e. tubewells; water-boiling points; etc.). At this small-scale level, water quality and sanitation accessibility can be improved independently of one another, and when resources are limited, donors must invest in the most effective disease prevention options. This study used laboratory-confirmed cholera incidence data (2000-2009) collected by the International Centre of Diarrheal Disease Research, Bangladesh at their on-site hospital to compare the efficacy of interventions addressing water quality versus sanitation accessibility in Dhaka, Bangladesh. Data regarding use of sanitary latrines and boiling of drinking water were extracted from sequential patient interviews conducted at the Dhaka facility and used as surrogate variables for sanitation accessibility and water quality respectively. Our analysis indicates that boiling water is 10 times more effective at preventing cholera than the use of a sanitary latrine. This finding suggests that regulating water quality is perhaps more critical to cholera prevention than increasing sanitation accessibility in an urban environment like that of Dhaka. At present, WaterAid - one of Bangladesh's most significant water and sanitation donor organizations - invests the majority of its budget on improving sanitation accessibility. The World Health Organization and the United Nations Millennium Development Goals also prioritize sanitation accessibility. However, in

  5. Water chemistry and poultry processing water quality

    Science.gov (United States)

    This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

  6. Effect of a phenolic extract from olive vegetation water on fresh salmon steak quality during storage

    Directory of Open Access Journals (Sweden)

    Dino Miraglia

    2016-11-01

    Full Text Available This study aimed to evaluate the antioxidant and antimicrobial effects of a phenolic extract from olive vegetation water on fresh salmon steaks stored at 4°C under modified atmosphere. Twenty-four salmon steaks were respectively immersed in solutions of the diluted phenolic extract at 1.5 g/L (A, 3 g/L (B, and water only as a control (CTR, packaged within a protective atmosphere (70% carbon dioxide, 25% nitrogen and 5% oxygen and then stored at 4°C. After 2 h, and 3 and 6 days of storage, the fish samples were analysed for the total viable count, Enterobacteriaceae count, pH, colour (CIE L*a*b* colour system, phenolic composition, α- tocopherol content, antioxidant activity by 2,2- diphenyl-1-picrylhydrazyl (DPPH˙ assay, and thiobarbituric reactive substances (TBARS. A 3 g/L phenolic extract contributed positively to the hygienic quality of the salmon by reducing the microbial growth during storage. The treated samples were slightly yellower than the CTR but only at the beginning of storage. The flesh contained 6.2% of the total polyphenols present in the initial solutions, with various percentages of the single fractions. After 6 days storage, the α- tocopherol content in the CTR and A samples was statistically lower than the B group that also showed the lowest DPPH˙ and TBARS values. In conclusion, the phenolic extract increased the microbiological quality and antioxidant concentration and decreased the lipid oxidation of salmon steaks during storage at 4°C under modified atmosphere.

  7. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    OpenAIRE

    W.Wilopo; R.Resili; D.P.E. Putra

    2013-01-01

    There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our dat...

  8. Pioneering water quality data on the Lake Victoria watershed: effects on human health.

    Science.gov (United States)

    Jovanelly, Tamie J; Johnson-Pynn, Julie; Okot-Okumu, James; Nyenje, Richard; Namaganda, Emily

    2015-09-01

    Four forest reserves within 50 km of Kampala in Uganda act as a critical buffer to the Lake Victoria watershed and habitat for local populations. Over a 9-month period we capture a pioneering water quality data set that illustrates ecosystem health through the implementation of a water quality index (WQI). The WQI was calculated using field and laboratory data that reflect measured physical and chemical parameters (pH, dissolved oxygen, biological oxygen on demand, nitrates, phosphates, fecal coliform, and temperature turbidity). Overall, the WQI for the four forest reserves reflect poor to medium water quality. Results compared with US Environmental Protection Agency and World Health Organization drinking water standards indicate varying levels of contamination at most sites and all designated drinking water sources, with signatures of elevated nitrates, phosphates, and/or fecal coliforms. As critical health problems are known to arise with elevated exposure to contaminants in drinking water, this data set can be used to communicate necessary improvements within the watershed.

  9. Irrigation system and land use effect on surface water quality in river, at lake Dianchi, Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    Takashi Tanaka; Takahiro Sato; Kazuo Watanabe; Ying Wang; Dan Yang; Hiromo Inoue; Kunzhi Li

    2013-01-01

    The surface water samples were collected in river Dahe and its tributaries,which flow into severely eutrophic lake Dianchi,Yunnan Province,China,in order to elucidate factors controlling water quality fluctuations.The temporal and spatial distribution of water quality tendency was observed.The water quality of each river is dependent on the hydrology effect such water gate and circulating irrigation system.We must consider the hydrology effect to accurately understand water quality variations of river in this study field.In river without highly circulating irrigation system or water gate effect,the downstream nitrate nitrogen (NO3-N) concentration increase occurred in area dominated by open field cultivation,whereas the NO3-N concentration was constant or decreased in area dominated by greenhouse land use.This result suggests that greenhouse covers the soil from precipitation,and nitrate load of greenhouse could be less than that of open field cultivation while the rainfall event.In the upper reaches of river,where is dominated by open field cultivation,there were no sharp increase dissolved molybdate reactive phosphorus and total phosphorus concentration,but P load was accumulated in the lower reaches of river,whose predominant land use is greenhouse.Although the P sources is unclear in this study,greenhouse area may have potential of P loads due to its high P content in greenhouse soil.Considering hydrology effect is necessary to determine what the major factor is influencing the water quality variation,especially in area with highly complicated irrigation system in this studying site.

  10. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  11. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  12. Effects of Forest Management and Roads on Runoff, Erosion, and Water Quality: the Judd Creek Experiment

    Science.gov (United States)

    MacDonald, L. H.; James, C.

    2012-12-01

    The effects of forest management have long been a concern for land managers, and California has instituted particularly strict best management practices (BMPs) to minimize the potential adverse impacts of timber harvest on water quality and fisheries. This paper presents the results of the long-term study of Judd Creek, a 17.6 km2 watershed in the volcanic terrane of northeastern California. Runoff and turbidity monitoring began in late 2001 at five stations spaced along the main stem. In 2007 extensive road work was conducted in preparation for timber harvest, and this included abandoning 2.4 km of existing roads and constructing 4.23 km of new roads. In summer 2009 16% of the watershed was clearcut in 34 units that were 8-12 ha each. In 2011 detailed assessments were conducted on selected harvest units, 43 landings, streamside protection zones below clearcut units, and 23 km of roads; 30 sediment fences were installed to measure road sediment production. Elevations range from 970 to 1680 m, and mean annual precipitation is about 1200 mm. The clearcut units had little or no evidence of surface erosion, and this was attributed to the ripping and high surface cover from logging slash, rocks, and regrowth. Landings generated only eight rills or sediment plumes; none of these were longer than 24 m long and none were connected to a stream. Mean road sediment production in the relatively dry winter of 2011-12 was less than 10 Mg ha-1. Twenty-eight percent of the abandoned roads were connected to the streams, while only 7% of the new roads were connected. Mean daily turbidity values exceeded 25 NTU only 1.2% of the time, and single highest mean daily value was only slightly greater than 200 NTU. Runoff and turbidity levels are controlled primarily by the interannual variations in precipitation, and there was no evidence of a management impact on either runoff, turbidities, or suspended sediment concentrations. The combination of high infiltration rates, relatively

  13. Effects of logging activities on ecological water quality indicators in the Berasau River, Johor, Malaysia.

    Science.gov (United States)

    Nor Zaiha, A; Mohd Ismid, M S; Salmiati; Shahrul Azri, M S

    2015-08-01

    Influence of deforestation on biodiversity of aquatic organisms was investigated in a stream in the Ulu Sedili Forest Reserve. The stream was monitored five (5) times from December 2011 until December 2012 with 2-month intervals. Sampling of benthic communities was carried out using rectangular dip net while water quality study using a YSI ProPlus meter and the rest were done in the laboratory. Physicochemical parameters and water quality index (WQI) calculation showed no significant difference among the investigated events. WQI classified the Berasau River between Class II (good) to III (moderate) of river water quality. In total, 603 individuals representing 25 taxa that were recorded with Decapods from genus Macrobrabchium were widely distributed. Several intolerant taxa, especially Ephemeroptera and Odonata, were also observed in this river. According to Pearson's correlation analysis, the richness and diversity indices were generally influenced by water quality parameters represented by WQI (P < 0.01). In conclusion, logging activities have strong attributes for variation in benthic macroinvertebrate assemblage.

  14. Effect of silt, water and periphyton quality on survival and growth of the mayfly Heptagenia sulphurea

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Brugmans, B.T.M.J.; Beijer, J.A.J.; Franken, R.J.M.

    2006-01-01

    The herbivorous mayfly Heptagenia sulphurea is characteristic of rivers with stony bottoms. Records from the 20th century showed that this species had disappeared from the Common Meuse in the Netherlands, probably due to river regulation or changes in water quality. A field survey in 2003 showed tha

  15. Interaction of water unextractable solids with gluten protein: Effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Oudgenoeg, G.; Vliet, T. van; Hamer, R.J.

    2003-01-01

    In a previous study, we have shown that water unextractable solids (WUS) interfere with gluten formation and affect the quality of the resulting gluten. In this study we aim to explain how WUS can affect the process of gluten formation. To this end, WUS were modified with NaOH, xylanase, horseradish

  16. Interaction of water unextractable solids with gluten protein: Effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Oudgenoeg, G.; Vliet, T. van; Hamer, R.J.

    2003-01-01

    In a previous study, we have shown that water unextractable solids (WUS) interfere with gluten formation and affect the quality of the resulting gluten. In this study we aim to explain how WUS can affect the process of gluten formation. To this end, WUS were modified with NaOH, xylanase, horseradish

  17. Interaction of water unextractable solids with gluten protein: effect on dough properties and gluten quality

    NARCIS (Netherlands)

    Wang, M.; Oudgenoeg, G.; Vliet, van T.; Hamer, R.J.

    2003-01-01

    Abstract In a previous study, we have shown that water unextractable solids (WUS) interfere with gluten formation and affect the quality of the resulting gluten. In this study we aim to explain how WUS can affect the process of gluten formation. To this end, WUS were modified with NaOH, xylanase,

  18. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    Science.gov (United States)

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  19. Water quality of the Boca Raton canal system and effects of the Hillsboro Canal inflow, southeastern Florida, 1990-91

    Science.gov (United States)

    McKenzie, D.J.

    1995-01-01

    The City of Boca Raton in southeastern Palm Beach County, Florida, is an urban residential area that has sustained a constant population growth with subsequent increase in water use. The Boca Raton network of canals is controlled to provide for drainage of excess water, to maintain proper coastal ground-water levels to prevent saltwater intrusion, and to recharge the surficial aquifer system from which the city withdraws potable water. Most of the water supplied to the Boca Raton canal system and the surficial aquifer system, other than rainfall and runoff, is pumped from the Hillsboro Canal. The Biscayne aquifer, principal hydrogeologic unit of the surficial aquifer system, is highly permeable and there is a close relation between water levels in the canals and the aquifer. The amount of water supplied by seepage from the conservation areas is unknown. Because the Hillsboro Canal flows from Lake Okeechobee and Water Conservation Areas 1 and 2, which are places of more highly mineralized ground water and surface water, the canal is a possible source of contamination. Water samples were collected at 10 canal sites during wet and dry seasons and analyzed for major inorganic ions and related characteristics, nutrients, and trace elements. All concentrations were generally within or less than the drinking-water standards established by the Florida Department of Environmental Protection. The high concentrations of sodium and chloride that were detected in samples from the Boca Raton canal system are probably from the more mineralized water of the Hillsboro Canal. Other water-quality data, gathered from various sources from 1982 through 1991, did not indicate any significant changes nor trends. The effects of the Hillsboro Canal on the water quality of the Boca Raton canal system are indicated by increased concentrations of sodium, chloride, dissolved solids, and total organic carbon. Concentrations of the constituents in the canal water generally decrease with distance

  20. Effects of a cattail wetland on water quality of Irondequoit Creek near Rochester, New York

    Science.gov (United States)

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plusorganic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb. Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB?s), also were detected, but concentrations of these compounds were within the ranges often found in

  1. EFFECT OF INDUSTRIAL POLLUTION ON THE SPATIAL VARIATION OF SURFACE WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Islam Mir Sujaul

    2013-01-01

    Full Text Available Surface water quality deterioration is the impact of anthropogenic activities at the study areas due to rapid industrialization. The study was done to know the spatial variation of the water quality of the Tunggak River and surrounding area because of industrial activities. In-situ parameters and ex-situ data of chemical, bio-chemical parameters and heavy metals were collected monthly to fulfill the objectives. The samples were collected from 10 selected stations and analyses were carried out using standard methods. Heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS. SPSS statistical software was used for data analysis. The results of the study revealed that industrial effluents were the major source of pollutants and caused of spatial variation among the stations. Less amount of Dissolved Oxygen (DO and higher concentration of Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD, ammoniacal-nitrogen and heavy metals made the water un-usable except irrigation. Analyzed surface water was classified based on Department of Environment-Water Quality Index (DOE-WQI Malaysia and found that the maximum stations except lower and uppermost were in class IV (highly polluted. Pollution rate was higher in the middle stations due to large number of industries were located in the middle and they discharged all their effluents in the river stream. Due to tidal interference in the lower stream and minimum industry in the upper stream pollution was less in those stations.

  2. Seascape context and predators override water quality effects on inshore coral reef fish communities

    Science.gov (United States)

    Gilby, Ben L.; Tibbetts, Ian R.; Olds, Andrew D.; Maxwell, Paul S.; Stevens, Tim

    2016-09-01

    Understanding the relative influence of factors that influence faunal community structure, such as habitat and landscape arrangement, has been a long-standing goal of ecologists. This is complicated in marine environments by the high importance of physico-chemical water factors in determining species distributions relative to their physiological or behavioural limits. In this study, we rank the relative importance of 17 seascape, habitat and physico-chemical water factors for structuring the composition of fish communities on the inshore coral reefs of Moreton Bay, eastern Australia. Fish were surveyed at 12 reef sites along the ambient estuarine water gradient in the bay during summer and winter using a baited underwater video approach. Multivariate random forest analyses showed that reef fish community composition correlated most strongly with the local abundance of piscivorous fish and the seascape context of individual reefs (especially distance to nearest seagrass and mangroves), while water quality factors ranked much lower in importance. However, fish communities from sites nearer to rivers were more spatiotemporally variable than those from sites nearer to oceanic waters, indicating that water quality can drive variations in community structure along short-term temporal scales. In turn, piscivore abundance was greatest on reefs near large areas of seagrass, and with low sand cover, high coral cover and high water clarity. Our findings demonstrate that a reef's location within the broader seascape can be more important for fish communities than factors relating to the reef habitat itself and exposure to reduced water quality. To improve the spatial conservation of marine ecosystems, we encourage a more intimate understanding of how these factors contribute to structuring the use of habitats across seascapes by mobile species.

  3. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-07-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  4. Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density

    Science.gov (United States)

    Sullivan, A.B.; Jager, H.I.; Myers, R.

    2003-01-01

    We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.

  5. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  6. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  7. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  8. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  9. Ozone application in water sources: effects of operational parameters and water quality variables on ozone residual profiles and decay rates

    Directory of Open Access Journals (Sweden)

    F. A. Lage Filho

    2010-12-01

    Full Text Available Systematic ozonation tests were conducted by means of a mobile pilot plant. Water source 1 was a low turbidity stream with very low solids content and very low turbidity, apparent color and alkalinity. Water source 2 was reservoir water with higher turbidity, solids content and alkalinity than source 1. The ozone plant was a counter-current contactor composed of four columns in series. Variations in contact time, in the feed gas concentration (in terms of percent by weight of ozone and in splitting of the total applied ozone dosage between columns 1 and 2 were tested. Concentration - time (CT products were calculated and decay coefficients K were estimated from experimental data. The relative importance of water quality and certain operational parameters with regard to CT products and ozone decay was assessed. Total CT values seemed to increase with: (a total applied ozone dosage, (b percent by weight of ozone in the feed gas to the bubble contactor, (c increasing contact time and (d higher water quality, with regard to turbidity, apparent color, total organic carbon and particle counts. As the total applied ozone dosage was increased, the more important the contact time and ozone dosage configuration became for the total CT value. The apparent first order ozone decay rate constant (K decreased with increasing total applied ozone dosage. The contact time appeared to exert a much stronger influence on total CT values than on K values, particularly so as the total applied ozone dosage was increased.

  10. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    weather, while the overflow from the combined sewer system plays a minor role. Oxygen depletion in urban rivers is caused by intermittent discharges from both sewer system and wastewater treatment plant. Neglecting one of them in the evaluation of the environmental impact gives a wrong impression of total......The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  11. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water.

    Science.gov (United States)

    Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I

    2017-10-15

    Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental

  12. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  13. Water Quality Assessment Tool 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Quality Assessment Tool project was developed to assess the potential for water-borne contaminants to adversely affect biota and habitats on Service lands.

  14. Effects of variable climate, land use, and hydrogeochemical setting on decadal surface water quality trends, Iowa, USA

    Science.gov (United States)

    Green, C. T.; Bekins, B. A.; Kalkhoff, S.; Hirsch, R. M.; Liao, L.; Barnes, K.

    2013-12-01

    Nitrogen fluxes from agricultural lands are a major concern for ecological health and water quality. Understanding how these fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the midwestern USA, intensification of corn cropping as a result of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to surface water and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile drainage results in smaller storage volumes and shorter residence times, and the glacial sediments are naturally reducing. Effects of agricultural intensification from ethanol production and other factors will likely be delayed for years or decades in

  15. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    Science.gov (United States)

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining

  16. Status of water quality in the Dhaleshwari River and its effect on aquatic organism

    Directory of Open Access Journals (Sweden)

    Sirajul Islam

    2012-09-01

    Full Text Available The study was conducted to know the status of water quality in the Dhaleshwari river and its temporal changes over monsoon, post-monsoon and pre-monsoon seasons due to change of physicochemical parameters during the period from June 2011 to May 2012. The river starts off the Jamuna near the north-western tip of Tangail district with high potential for fisheries production in this area. Over exploitation of fisheries resources, river bank erosion and human activities are gradually hampered the aquatic environment of the river. For existence and conservation of aquatic resources, it is essential to investigate the water quality and surrounding environment of the river. The results of the study showed that the concentrations of EC (Electric conductivity, DO (Dissolved oxygen, BOD (Biological oxygen demand, Hardness, Sodium, Potassium and Copper were within the standard limit as well as suitable for aquatic lives. The water pH was less than the standard i.e. slightly acidic, transparency was incalculable and TDS (Total dissolved solid was increased in both post and pre-monsoon seasons. The content of Total Nitrogen, Phosphorus and Cadmium exceeded the permissible limit in all seasons. The excessive abundance of Total Nitrogen and Phosphorus made the river prone to eutrophication which ultimately resulted into degradation of water quality, phytoplankton blooms and change in fish production. This could be due to excessive agricultural activities near and adjacent to the bank of the river. The comparative study showed that most of the water quality parameters of the Dhaleshwari river were suitable for aquaculture of aquatic organisms as well as fishes.

  17. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  18. Effect of water content and flour particle size on gluten-free bread quality and digestibility.

    Science.gov (United States)

    de la Hera, Esther; Rosell, Cristina M; Gomez, Manuel

    2014-05-15

    The impact of dough hydration level and particle size distribution of the rice flour on the gluten free bread quality and in vitro starch hydrolysis was studied. Rice flour was fractionated in fine and coarse parts and mixed with different amounts of water (70%, 90% and 110% hydration levels) and the rest of ingredients used for making gluten free bread. A larger bread specific volume was obtained when coarser fraction and great dough hydration (90-110%) were combined. The crumb texture improved when increasing dough hydration, although that effect was more pronounced when breads were obtained from a fine fraction. The estimated glycaemic index was higher in breads with higher hydration (90-110%). Slowly digestible starch (SDS) and resistant starch (RS) increased in the coarse flour breads. The coarse fraction complemented with a great dough hydration (90-110%) was the most suitable combination for developing rice bread when considering the bread volume and crumb texture. However, the lowest dough hydration limited starch gelatinization and hindered the in vitro starch digestibility.

  19. Prediction and assessment of drought effects on surface water quality using artificial neural networks: case study of Zayandehrud River, Iran.

    Science.gov (United States)

    Safavi, Hamid R; Malek Ahmadi, Kian

    2015-01-01

    Although drought impacts on water quantity are widely recognized, the impacts on water quality are less known. The Zayandehrud River basin in the west-central part of Iran plateau witnessed an increased contamination during the recent droughts and low flows. The river has been receiving wastewater and effluents from the villages, a number of small and large industries, and irrigation drainage systems along its course. What makes the situation even worse is the drought period the river basin has been going through over the last decade. Therefore, a river quality management model is required to include the adverse effects of industrial development in the region and the destructive effects of droughts which affect the river's water quality and its surrounding environment. Developing such a model naturally presupposes investigations into pollution effects in terms of both quality and quantity to be used in such management tools as mathematical models to predict the water quality of the river and to prevent pollution escalation in the environment. The present study aims to investigate electrical conductivity of the Zayandehrud River as a water quality parameter and to evaluate the effect of this parameter under drought conditions. For this purpose, artificial neural networks are used as a modeling tool to derive the relationship between electrical conductivity and the hydrological parameters of the Zayandehrud River. The models used in this research include multi-layer perceptron and radial basis function. Finally, these two models are compared in terms of their performance using the time series of electrical conductivity at eight monitoring-hydrometric stations during drought periods between the years 1997-2012. Results show that artificial neural networks can be used for modeling the relationship between electrical conductivity and hydrological parameters under drought conditions. It is further shown that radial basis function works better for the upstream stretches

  20. The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture

    NARCIS (Netherlands)

    Azim, M.E.; Wahab, M.A.; Verdegem, M.C.J.; Dam, van A.A.; Rooij, van J.M.; Beveridge, M.C.M.

    2002-01-01

    As a first step in assessing the viability of periphyton-based fish production in South Asian pond aquaculture systems, the effects of artificial substrates on development of periphyton and on water quality were evaluated. Earthen ponds (10 x 7.5 m) were provided with an artificial substrate constru

  1. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water quality

    Science.gov (United States)

    Manny, Bruce A.; Johnson, W.C.; Wetzel, R.G.

    1994-01-01

    Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y-1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m-2 y-1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y-1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m-3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.

  2. Potential effects of organic carbon production on ecosystems and drinking water quality

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands in the Sacramento-San Joaquin Delta (Delta is an important component of the Ecosystem Restoration Program of the CALFED Bay-Delta Program (CALFED. CALFED is a collaborative effort among state and federal agencies to restore the ecological health and improve water management of the Delta and San Francisco Bay (Bay. Tidal wetland restoration is intended to provide valuable habitat for organisms and to improve ecosystem productivity through export of various forms of organic carbon, including both algae and plant detritus. However, the Delta also provides all or part of the drinking water for over 22 million Californians. In this context, increasing sources of organic carbon may be a problem because of the potential increase in the production of trihalomethanes and other disinfection by-products created during the process of water disinfection. This paper reviews the existing information about the roles of organic carbon in ecosystem function and drinking water quality in the Bay-Delta system, evaluates the potential for interaction, and considers major uncertainties and potential actions to reduce uncertainty. In the last 10 years, substantial progress has been made on the role of various forms of organic carbon in both ecosystem function and drinking water quality; however, interactions between the two have not been directly addressed. Several ongoing studies are beginning to address these interactions, and the results from these studies should reduce uncertainty and provide focus for further research.

  3. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey.

    Science.gov (United States)

    Baba, Alper; Gunduz, Orhan

    2010-04-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.

  4. The effect of anthropogenic activities to the decrease of water quality

    Science.gov (United States)

    Sidabutar, N. V.; Namara, I.; Hartono, D. M.; Soesilo, T. E. B.

    2017-05-01

    The raw water in Jakarta is supplied from Jatiluhur Dam, which is distributed pass through West Tarum Canal with an open canal about 70 km long. This water quality does not meet the standard set by the government and heavily polluted by anthropogenic activities along its river. This research uses a quantitative research approach with the mix-method. This research did an in-depth interview with inhabitants along the riverbank about their daily activity. The water along the riverbank is polluted by anthropogenic activities, such as: first: domestic activities (washing, cooking, and bathing), second: littering into the river, and third: discharging waste water from households into the river. This present research measures water quality for parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Total Dissolved Solid (TDS), Total Suspended Solid (TSS), and Fecal coliform. In this social segment, it is shown that pH, DO, TDS and Fecal coliformin the downstream part are worse than in the upstream.

  5. Institutional design and regime effectiveness in transboundary river management – the Elbe water quality regime

    Directory of Open Access Journals (Sweden)

    I. Dombrowsky

    2007-06-01

    Full Text Available The literature on transboundary river management suggests that institutions play an important role in bringing cooperation about. However, the knowledge on how they should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships leading to the respective outcomes. In order to gain further insights into the relationship of institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE. The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expedience of the institutional arrangements. The study shows that overall due to external as well as internal institutional factors the ICPE proved relatively successful, and as such it also provides insights into how institutions matter: The commission served as platform for joint problem solving by identifying priorities for action. These international obligations increased the power of national administrations and their access to funds. At the same time, the Commission's reporting to the public served as an enforcement mechanism. However, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity. It was high where the main responsibility for action was with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model. It was practically non existent in the reduction of non-point pollution from agriculture, where the success depended on the behavior of individual private actors (farmers. From a

  6. Effects of application of composted water-bamboo leaves on soil nutrients and vegetable quality

    Science.gov (United States)

    Luo, Zhi-Qing; Hu, Xue-Feng; Lu, Xinzhe; Luo, Fan

    2017-04-01

    CK; while those with CF only by 18.4% and 4.9%, respectively. Likewise, the contents of Vitamin C and soluble proteins in cabbage treated with HM increased by 115.3% and 31.4%, respectively. Compared with synthetic chemical fertilizers, the fermented manure released nutrients slowly and persistently, which was conducive to maintain soil fertility for a long term and reduce agricultural diffuse pollution effectively. Moreover, the application of this fermented manure increased the contents of soluble sugar and Vitamin C in vegetables and improved their quality significantly. Turning discarded water-bamboo leaves into organic manure through fermenting and composting is not only low in cost, but also contributes to the development of recycling agriculture in the suburbs of Shanghai.

  7. A drinking water quality framework for South Africa

    African Journals Online (AJOL)

    Quality Framework for South Africa to enable effective management of drinking water quality and the protection of public health. ... to monitor, manage, communicate and regulate drinking water quality. ... Inadequate WSA institutional capacity (staffing, funding, .... Although demonstrating compliance with regulatory limits.

  8. Channel incision and water quality

    Science.gov (United States)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p Ecological engineering of stream corridors must focus at least as much energy on mediating hydrologic

  9. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    Science.gov (United States)

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  10. Fertilizer Use and Water Quality.

    Science.gov (United States)

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  11. Fertilizer Use and Water Quality.

    Science.gov (United States)

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  12. Correlation study among water quality parameters an approach to water quality management.

    Science.gov (United States)

    Sinha, D K; Rastogi, G K; Kumar, R; Kumar, N

    2009-04-01

    To find out an approach to water quality management through correlation studies between various water quality parameters, the statistical regression analysis for six data points of underground drinking water of different hand pumps at J. P. Nagar was carried out. The comparison of estimated values with W.H.O drinking water standards revealed that water of the study area is polluted with reference to a number of physico-chemical parameters studied. Regression analysis suggests that conductivity of underground water is found to be significantly correlated with eight out of twelve water quality parameters studied. It may be suggested that the underground drinking water quality at J. P. Nagar can be checked very effectively by controlling the conductivity of water. The present study may be treated one step forward towards the water quality management.

  13. Improved or Unimproved Urban Areas Effect on Soil and Water Quality

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-04-01

    Full Text Available Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without the negative impact of nutrient loss in runoff. Four sets of lawns were compared, with or without compost plus aeration, as a paired comparison. Surface bulk density was significantly reduced in the treated lawns (1.32 versus 1.42 Mg·m−3. Visual evaluation of soil structure showed improvement in the treated lawns. Of fifteen measurement dates over four years, four dates showed significantly higher surface soil water contents in the treated lawns compared with the untreated lawns. When compared over time, three of the four treated lawns had significantly higher soil water content than the untreated lawns. Nutrient concentrations in rainfall simulator runoff were not significantly different between treated and control lawns, which showed that compost did not negatively impact water quality. Compost and aeration helped restore soil quality for urban soils of recent construction.

  14. Effect of liquid municipal biosolid application method on tile and ground water quality.

    Science.gov (United States)

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  15. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    Science.gov (United States)

    Vargas-González, Héctor Hugo; Arreola-Lizárraga, José Alfredo; Mendoza-Salgado, Renato Arturo; Méndez-Rodríguez, Lía Celina; Lechuga-Deveze, Carlos Hernando; Padilla-Arredondo, Gustavo; Cordoba-Matson, Miguel

    2014-01-01

    This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX) and the Arid Zone Coastal Water Quality Index (AZCI). It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove. PMID:24711731

  16. Effects of Sewage Discharge on Trophic State and Water Quality in a Coastal Ecosystem of the Gulf of California

    Directory of Open Access Journals (Sweden)

    Héctor Hugo Vargas-González

    2014-01-01

    Full Text Available This paper provides evidence of the effects of urban wastewater discharges on the trophic state and environmental quality of a coastal water body in a semiarid subtropical region in the Gulf of California. The concentrations of dissolved inorganic nutrients and organic matter from urban wastewater primary treatment were estimated. La Salada Cove was the receiving water body and parameters measured during an annual cycle were temperature, salinity, dissolved oxygen, nitrite, nitrate, ammonia, orthophosphate, and chlorophyll a. The effects of sewage inputs were determined by using Trophic State Index (TRIX and the Arid Zone Coastal Water Quality Index (AZCI. It was observed that urban wastewater of the city of Guaymas provided 1,237 ton N yr−1 and 811 ton P yr−1 and TRIX indicated that the receiving water body showed symptoms of eutrophication from an oligotrophic state to a mesotrophic state; AZCI also indicated that the environmental quality of the water body was poor. The effects of urban wastewater supply with insufficient treatment resulted in symptoms of eutrophication and loss of ecological functions and services of the coastal ecosystem in La Salada Cove.

  17. Research NoteEffect of drought and fires on the quality of water in Lithuanian rivers

    Directory of Open Access Journals (Sweden)

    G. Sakalauskiene

    2003-01-01

    Full Text Available In August and September 2002, concentrations of heavy metals (copper, lead, and zinc were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water. Keywords: heavy metals, river water quality, Lithuania

  18. Effects of reduced water quality on coral reefs in and out of no-take marine reserves.

    Science.gov (United States)

    Wenger, Amelia S; Williamson, David H; da Silva, Eduardo T; Ceccarelli, Daniela M; Browne, Nicola K; Petus, Caroline; Devlin, Michelle J

    2016-02-01

    Near-shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro-algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long-term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro-algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short-term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ∼ 50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ∼ 20% decline in coral cover between 2011 to 2013. Although zoning (no-take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water

  19. Fire effects on reservoir water quality: lessons from the 2013 Sydney wildfires

    Science.gov (United States)

    Doerr, Stefan; Santin, Cristina; Chafer, Chris

    2014-05-01

    Unseasonally, early and severe forest fires burnt ca 10,000 ha of dry sclerophyl eucalypt forest in Oct. 2013 near Sydney (NSW, Australia). The fire affected parts of the Nepean catchment, which contributes to the greater Sydney water supply system. The spatial extent and severe nature of the burn raised concerns about the risk of water contamination from post-fire erosion. An investigation was launched with the aim to determine (i) the total loads of ash and loose charred topsoil that are particular susceptible to erosion, (ii) their chemical composition regarding constituents relevant to water quality, and (iii) the potential impacts of post-fire erosion events transferring some of this material into the reservoir. Sampling was carried out at a ridge in the Nepean catchment with a relatively homogeneous vegetation species composition, fuel load and soil characteristics, but with a range of burn severities, resulting from wind-driven differences in fire behaviour. This allowed sampling of three replicate sites each, with 30 sampling points each, for extreme, moderate-severe, and low burn severities, including also soil and litter sampling at a long-unburned control site. Burn severity was determined using the differenced normalised burn ratio (dNBR) obtained from satellite images immediately before (1 day) and after (1 week) the fire, validated by on site determination of fuel consumption completeness. Between the fire and the sampling campaign, rainfall was very limited so that there had been no significant redistribution of ash and loose charred topsoil by water erosion. The ash and loose charred topsoil were consistently wettable and the underlying uncharred soil highly water repellent at all sites and sampling points irrespective of burn severity. The total loads of ash and loose charred topsoil increased substantially with burn severity and changed in composition from comprising mainly charred litter and charcoal at low severity sites to charred litter

  20. Investigating Effect of a Period of Water Exercise on Sleep Quality in Male Elders

    Directory of Open Access Journals (Sweden)

    A Dadashpoor

    2013-08-01

    Full Text Available Introduction: Elderly population is growing in developing countries and sleep quality is one of the most common problems facing the elderly. The present study investigated the effect of an aquatic exercise on sleep quality in male elders. Methods: Thirty elderly male subjects randomly participated in this study. The subjects were randomly divided in two control and experimental groups. First, all subjects completed Pittsburgh Quality of Sleep Questionnaire; then, experimental group participated in aquatic exercise three days a week for six weeks. The control group were asked to continue their daily activity. After the training, both groups again completed the Pittsburgh Questionnaire. Data analysis was performed by paired and independent samples t-test. (P≤0/05. Results: The results showed that aquatic exercise had significant effect on sleep quality of the experimental group (P<0/001, while in the control group who had not participated in aquatic exercises, no significant changes were observed (P=0/55. The results also showed that there is a significant difference (P<0/001 between the average score of mental general health of experimental and control group after the exercise while in the pre test no significant changes were observed (P = 0/648. Conclusion: As the study results reveal, it appears that aquatic exercise is effective in improving sleep quality in older men and can be considered as an effective intervention.

  1. EFFECT OF THE GOCZAŁKOWICE RESERVOIR ON THE CHANGES OF WATER QUALITY IN THE VISTULA RIVER

    Directory of Open Access Journals (Sweden)

    Andrzej Bogdał

    2015-11-01

    Full Text Available The paper aims at the assessment of the Goczałkowice Reservoir effect on the changes of surface water quality. For this purpose, tests of 20 physicochemical water quality indices were conducted using reference methods. Water samples were collected every month from April to November 2011 in five measurement-control points: the first was located on the Vistula river inflow to the reservoir, the other three were placed evenly along the reservoir bowl, whereas the fifth was situated on water outflow from the reservoir. The values of each tested indicator were characterized by using descriptive statistics. Moreover, the empirical data were subjected to detailed statistical procedures by means of cluster analysis and t-Student parametric test. The analysis the data obtained from the conducted investigations demonstrated that because of the complexity of the processes, the retention reservoir differently influences the water quality. As a result of the Vistula river water flow through the Goczałkowice Reservoir, concentrations of nitrites and nitrate nitrogen decreased significantly, as has been proved statistically on the significance level α = 0.05. The reservoir also positively affected a decline in the concentrations of phosphates, total phosphorus, total iron and a majority of salinity indices, but worsened oxygen conditions, however, it was not statistically proved.

  2. Effects of Rainfall on Water Quality of Aquaculture along the Coastal Areas of Jiangsu Province and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The study aimed to decrease the effects of rainfall on water quality of aquaculture along the coastal areas of Jiangsu Province and improve the yield and quality of aquatic products.[Method] We firstly designed the methods to calculate average pH of different rainfalls,total precipitation,as well as the changes of pH and salinity in the studied pond and coastal culture zone,then analyzed the dynamic variation of precipitation,pH and salinity caused by rainfall to discuss the effects of rainfall ...

  3. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  4. Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  5. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  6. Effects of ambient water quality on the endangered Lost River sucker in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Martin, B.A.; Saiki, M.K.

    1999-01-01

    Populations of the Lost River sucker Deltistes luxatus have declined so precipitously in the Upper Klamath Basin of Oregon and California that this fish was recently listed for federal protection as an endangered species. Although Upper Klamath Lake is a major refuge for this species, fish in the lake occasionally experience mass mortalities during summer and early fall. This field study was implemented to determine if fish mortalities resulted from degraded water quality conditions associated with seasonal blooms of phytoplankton, especially Aphanizomenon flos-aquae. Our results indicated that fish mortality did not always increase as water temperature, pH, and un-ionized ammonia concentration increased in Upper Klamath Lake. Little or no mortality occurred when these water quality variables attained their maximum values. On the other hand, an inverse relation existed between fish mortality and dissolved oxygen concentration. High mortality (>90%) occurred whenever dissolved oxygen concentrations decreased to 1.05 mg/L, whereas mortality was usually low (< 10%) when dissolved oxygen concentrations equaled or exceeded 1.58 mg/L. Stepwise logistic regression also indicated that the minimum concentration of dissolved oxygen measured was the single most important determinant of fish mortality.

  7. Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US

    Directory of Open Access Journals (Sweden)

    Amira Oun

    2014-11-01

    Full Text Available Most of the waterborne disease outbreaks observed in North America are associated with rural drinking water systems. The majority of the reported waterborne outbreaks are related to microbial agents (parasites, bacteria and viruses. Rural areas are characterized by high livestock density and lack of advanced treatment systems for animal and human waste, and wastewater. Animal waste from livestock production facilities is often applied to land without prior treatment. Biosolids (treated municipal wastewater sludge from large wastewater facilities in urban areas are often transported and applied to land in rural areas. This situation introduces a potential for risk of human exposure to waterborne contaminants such as human and zoonotic pathogens originating from manure, biosolids, and leaking septic systems. This paper focuses on waterborne outbreaks and sources of microbial pollution in rural areas in the US, characterization of the microbial load of biosolids and manure, association of biosolid and manure application with microbial contamination of surface and groundwater, risk assessment and best management practice for biosolids and manure application to protect water quality. Gaps in knowledge are identified, and recommendations to improve the water quality in the rural areas are discussed.

  8. Effects of impervious area and BMP implementation and design on storm runoff and water quality in eight small watersheds

    Science.gov (United States)

    Aulenbach, Brent T.; Landers, Mark N.; Musser, Jonathan W.; Painter, Jaime A.

    2017-01-01

    The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001-2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.

  9. ASSESSMENT OF WATER QUALITY INDEX FOR GROUNDWATER ...

    African Journals Online (AJOL)

    2013-12-31

    Dec 31, 2013 ... measurement units in a single metric and its effectiveness as a communication tool. ... Fair. Water quality is usually protected but occasionally threatened or ... Electrical Conductivity (EC) value is an index to represent the total.

  10. Water quality indicators: bacteria, coliphages, enteric viruses.

    Science.gov (United States)

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  11. Status of water quality in the Dhaleshwari River and its effect on aquatic organism

    OpenAIRE

    Sirajul Islam; Mahmudul Islam

    2012-01-01

    The study was conducted to know the status of water quality in the Dhaleshwari river and its temporal changes over monsoon, post-monsoon and pre-monsoon seasons due to change of physicochemical parameters during the period from June 2011 to May 2012. The river starts off the Jamuna near the north-western tip of Tangail district with high potential for fisheries production in this area. Over exploitation of fisheries resources, river bank erosion and human activities are gradually hampered the ...

  12. Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality

    DEFF Research Database (Denmark)

    Huser, Brian J; Egemose, Sara; Harper, Harvey;

    2016-01-01

    114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment...... (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment...

  13. Effects of highway construction on stream water quality and macroinvertebrate condition in a Mid-Atlantic Highlands watershed, USA

    Science.gov (United States)

    Chen, Y.; Viadero, R.C.; Wei, X.; Fortney, Ronald H.; Hedrick, Lara B.; Welsh, S.A.; Anderson, James T.; Lin, L.-S.

    2009-01-01

    Refining best management practices (BMPs) for future highway construction depends on a comprehensive understanding of environmental impacts from current construction methods. Based on a before-after-control impact (BACI) experimental design, long-term stream monitoring (1997-2006) was conducted at upstream (as control, n = 3) and downstream (as impact, n = 6) sites in the Lost River watershed of the Mid-Atlantic Highlands region, West Virginia. Monitoring data were analyzed to assess impacts of during and after highway construction on 15 water quality parameters and macroinvertebrate condition using the West Virginia stream condition index (WVSCI). Principal components analysis (PCA) identified regional primary water quality variances, and paired t tests and time series analysis detected seven highway construction-impacted water quality parameters which were mainly associated with the second principal component. In particular, impacts on turbidity, total suspended solids, and total iron during construction, impacts on chloride and sulfate during and after construction, and impacts on acidity and nitrate after construction were observed at the downstream sites. The construction had statistically significant impacts on macroinvertebrate index scores (i.e., WVSCI) after construction, but did not change the overall good biological condition. Implementing BMPs that address those construction-impacted water quality parameters can be an effective mitigation strategy for future highway construction in this highlands region. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. EFFECT OF ANTHROPOGENIC POLLUTANTS ON THE QUALITY OF SURFACE WATERS AND GROUNDWATERS IN THE CATCHMENT BASIN OF LAKE BIALSKIE

    Directory of Open Access Journals (Sweden)

    Krzysztof Jóżwiakowski

    2016-09-01

    Full Text Available The work evaluates the effect of anthropogenic pollutants on the quality of water in Lake Bialskie (51º32’07” N 23º00’55” E and its catchment basin. Samples of water were taken from the lake (4 sampling points and from wells dug within the catchment basin. The quality of water was analysed in May, June, August and November 2015. In the wells only in single cases was the level of chemical pollution found to exceed drinking water standards. However, in all samples the standard content of manganese was exceeded. In waters from the lake the concentrations of total phosphorus, which can contribute to eutrophication were recorded above the standard level. Both in waters from the lake and from the well a large count of meso- and psychrophiles and Coli and faecal coliforms as well as faecal Enterococci was found, which points to a high degree of contamination of the analysed waters with anthropogenic faeces. The phenomenon was observed to intensify in summer months, which can be associated with increased tourist traffic around the lake in this period.

  15. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    The effects of highway-deicer application on ground-water quality were studied at a site in northwestern Indiana using a variety of geochemical indicators. Site characteristics such as high snowfall rates; large quantities of applied deicers; presence of a high-traffic highway; a homogeneous, permeable, and unconfined aquifer; a shallow water table; a known ground-water-flow direction; and minimal potential for other sources of chloride and sodium to complicate source interpretation were used to select a study area where ground water was likely to be affected by deicer application. Forty-three monitoring wells were installed in an unconfined sand aquifer (the Calumet aquifer) near Beverly Shores in northwestern Indiana. Wells were installed along two transects that approximately paralleled groundwater flow in the Calumet aquifer and crossed US?12. US?12 is a highway that receives Indiana?s highest level of maintenance to maintain safe driving conditions. Ground-water quality and water-level data were collected from the monitoring wells, and precipitation and salt-application data were compiled from 1994 through 1997. The water-quality data indicated that chloride was the most easily traced indicator of highway deicers in ground water. Concentration ratios of chloride to iodide and chloride to bromide and Stiff diagrams of major element concentrations indicated that the principal source of chloride and sodium in ground water from the uppermost one-third to one-half of the Calumet relative electromagnetic conductivity defined a distinct plume of deicer-affected water in the uppermost 8 feet of aquifer at about 9 feet horizontally from the paved roadway edge and a zone of higher conductivity than background in the lower one-third of the aquifer. Chloride and sodium in the deep parts of the aquifer originated from natural sources. Chloride and sodium from highway deicers were present in the aquifer throughout the year. The highest concentrations of chloride and sodium

  16. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  17. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  18. Acid mine drainage and stream recovery: Effects of restoration on water quality, macroinvertebrates, and fish

    Directory of Open Access Journals (Sweden)

    Williams K.M.

    2015-01-01

    Full Text Available Acid mine drainage (AMD is a prominent threat to water quality in many of the world’s mining districts as it can severely degrade both the biological community and physical habitat of receiving streams. There are relatively few long-term studies investigating the ability of stream ecosystems to recover from AMD. Here we assess watershed scale recovery of a cold-water stream from pollution by AMD using a 1967 survey of the biological and chemical properties of the stream as a pre-restoration benchmark. We sampled water chemistry, benthic macroinvertebrates, and fish throughout the watershed during the spring and summer of 2011. Water chemistry results indicated that pH and total alkalinity increased post-restoration, while acidity, sulfate, and iron concentrations decreased. Watershed-level taxa richness, local taxa richness, biomass, diversity, and density of macroinvertebrates were significantly higher post-restoration; however, %EPT was not significantly different. Fish species richness, density, and brook trout density were all significantly higher post-restoration. These results provide clear evidence that both abiotic and biotic components of streams can recover from AMD pollution.

  19. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  20. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus.

    Science.gov (United States)

    Xu, Yingyin; Tian, Ying; Ma, Ruonan; Liu, Qinghong; Zhang, Jue

    2016-04-15

    Non-thermal plasma is a new approach to improving microbiological safety while maintaining the sensory attributes of the treated foods. Recent research has reported that plasma activated water (PAW) can also efficiently inactivate a wide variety of microorganisms. This study invested the effects of plasma-activated water soaking on the postharvest preservation of button mushrooms (Agaricus bisporus) over seven days of storage at 20°C. Plasma activated water reduced the microbial counts by 1.5 log and 0.5 log for bacteria and fungi during storage, respectively. Furthermore, the corresponding physicochemical and biological properties were assessed between plasma activated water soaking groups and control groups. The results for firmness, respiration rate and relative electrical conductivity suggested that plasma activated water soaking can delay mushroom softening. Meanwhile, no significant change was observed in the color, pH, or antioxidant properties of A. bisporus treated with plasma activated water. Thus, plasma activated water soaking is a promising method for postharvest fresh-keeping of A. bisporus.

  1. Ground Water Quality

    African Journals Online (AJOL)

    southwestern Nigeria with a view to determining its suitability for human .... are likely to affect the composition and quality of ...... Fasasi, K. A., Malaka, S. L. O. and Amund, O. O. Studies on the Life Cycle and Morphometrics of Honeybees,.

  2. Effect of Hot Water Treatment on Postharvest Shelf Life and Quality of Broccoli

    Institute of Scientific and Technical Information of China (English)

    WU Ping; LI Wu

    2003-01-01

    Broccoli was stored at 0, 10, or 20℃ after immersion in hot water (38 -52℃ ) for 10 or 30min. Yellowing of broccoli was significantly slowed and shelf life significantly increased when broccoli wastreated with hot water at 42 -46℃ and then stored at 10 or 20℃. Heat injury occurred when treatment washigher than 46℃ in some varieties. Broccoli lasted 2 -3 days longer when stored at 10℃ and 1 -2 days longerwhen stored at 20℃ after hot water treatment at 46℃. There was no significant effect of treatment on shelflife after long time storage at 0℃. Weight loss was reduced by hot water treatment and the respiration behav-ior of the broccoli was also changed.

  3. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    Science.gov (United States)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  5. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  6. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  7. Primer on Water Quality

    Science.gov (United States)

    ... pH), dissolved oxygen, and electrical conductance (an indirect indicator of dissolved minerals in the water). Analyses of ... in the intestinal tracts of humans and animals, signal that disease-causing pathogens may be present. Giardia ...

  8. GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects.

    Science.gov (United States)

    Ferrer, Javier; Pérez-Martín, Miguel A; Jiménez, Sara; Estrela, Teodoro; Andreu, Joaquín

    2012-12-01

    This paper describes two different GIS models - one stationary (GeoImpress) and the other non-stationary (Patrical) - that assess water quantity and quality in the Júcar River Basin District, a large river basin district (43,000km(2)) located in Spain. It aims to analyze the status of surface water (SW) and groundwater (GW) bodies in relation to the European Water Framework Directive (WFD) and to support measures to achieve the WFD objectives. The non-stationary model is used for quantitative analysis of water resources, including long-term water resource assessment; estimation of available GW resources; and evaluation of climate change impact on water resources. The main results obtained are the following: recent water resources have been reduced by approximately 18% compared to the reference period 1961-1990; the GW environmental volume required to accomplish the WFD objectives is approximately 30% of the GW annual resources; and the climate change impact on water resources for the short-term (2010-2040), based on a dynamic downscaling A1B scenario, implies a reduction in water resources by approximately 19% compared to 1990-2000 and a reduction of approximately 40-50% for the long-term (2070-2100), based on dynamic downscaling A2 and B2 scenarios. The model also assesses the impact of various fertilizer application scenarios on the status of future GW quality (nitrate) and if these future statuses will meet the WFD requirements. The stationary model generates data on the actual and future chemical status of SW bodies in the river basin according to the modeled scenarios and reflects the implementation of different types of measures to accomplish the Urban Waste Water Treatment Directive and the WFD. Finally, the selection and prioritization of additional measures to accomplish the WFD are based on cost-effectiveness analysis.

  9. The effects of electrical stunning methods on broiler meat quality: effect on stress, glycolysis, water distribution, and myofibrillar ultrastructures.

    Science.gov (United States)

    Huang, J C; Huang, M; Yang, J; Wang, P; Xu, X L; Zhou, G H

    2014-08-01

    This study was designed to compare the effects of different stunning systems on the meat quality of broilers. This was done by investigating meat water-holding capacity, meat color, muscle glycogen, and lactate concentrations, as well as blood parameters, low-field nuclear magnetic resonance (NMR) transverse relaxation, and myofibrillar ultrastructures. A total of 160 broilers were divided into 4 treatment groups: a low-voltage stunning (LS) with a constant voltage of 15 V at 750 Hz for 10 s; a midvoltage stunning (MS) with a constant voltage of 50 V at 50 Hz for 10 s; a high-voltage stunning (HS) with a constant voltage of 100 V at 50 Hz for 5 s; and a control group with no stunning (NS). Blood samples were collected immediately after cutting the neck. Pectoralis major muscles were removed from the carcass after chilling and placed in ice. Breast muscle pH, meat color, glycogen, and lactate contents were determined at both 2 and 24 h postmortem. Drip loss, cooking loss, pressing loss, cooked breast meat shear values, low-field NMR, and ultrastructures of myofibrils were determined 24 h postmortem. The NS and MS treatments significantly increased (P plasma corticosterone, initial rate of glycolysis, and drip loss, and significantly reduced (P low-field NMR reflect that NS and MS significantly decreased (P treatments reduce meat water-holding capacity and decrease meat shear force when compared with LS and HS.

  10. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.

    Science.gov (United States)

    Miserendino, María Laura; Casaux, Ricardo; Archangelsky, Miguel; Di Prinzio, Cecilia Yanina; Brand, Cecilia; Kutschker, Adriana Mabel

    2011-01-01

    Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of

  11. Effect of water quality on the feeding ecology of axolotl Ambystoma mexicanum

    Directory of Open Access Journals (Sweden)

    Diego de Jesus Chaparro-Herrera

    2013-10-01

    Full Text Available Ambystoma mexicanum, a highly endangered species, is endemic to lake Xochimilco (Mexico City, Mexico which currently is being negatively affected by the introduction of Oreochromis niloticus (Tilapia and water pollution. During the first weeks of development, when mortality is the highest, Ambystoma mexicanumdepends on a diet of zooplankton. The aim of this study was to check whether contamination levels in lake Xochimilco influence zooplankton consumption by similar size classes of A. mexicanum and Oreochromis niloticus. In this study, we analysed changes in the functional responses and prey preference of A. mexicanum and larval Tilapia in two media, one with filtered lake Xochimilco water and another one with reconstituted water. As prey we used cladocerans (Moina macrocopa, Alona glabra, Macrothrix triserialis and Simocephalus vetulus and ostracods (Heterocypris incongruens. Zooplankton was offered in 5 different densities, 10, 20, 40, 80, 160 ind./mL. Prey consumption by A. mexicanum varied in relation to the species offered and age of the larvae. From the first week to the eighth week prey consumption by A. mexicanum increased by 57%. Our functional response tests showed that regardless of the prey type, prey consumption by A. mexicanum was lower in the contaminated water from lake Xochimilco. Among the zooplankton offered in the contaminated environment predators preferred smaller and slower moving microcrustaceans such as Alona glabra and Heterocypris incongruens. Furthermore, O. niloticus preferred prey such as Moina macrocopa and Macrothrix triserialis in the contaminated medium and was more voracious than the axolotl. Our results indicate that both water quality of the lake and the presence of the more resistant exotic fish adversely impact the survival of this endangered amphibian.

  12. Evaluating the effect of river restoration techniques on reducing the impacts of outfall on water quality

    Science.gov (United States)

    Mant, Jenny; Janes, Victoria; Terrell, Robert; Allen, Deonie; Arthur, Scott; Yeakley, Alan; Morse, Jennifer; Holman, Ian

    2015-04-01

    Outfalls represent points of discharge to a river and often contain pollutants from urban runoff, such as heavy metals. Additionally, erosion around the outfall site results in increased sediment generation and the release of associated pollutants. Water quality impacts from heavy metals pose risks to the river ecosystem (e.g. toxicity to aquatic habitats). Restoration techniques including establishment of swales, and the re-vegetation and reinforcement of channel banks aim to decrease outfall flow velocities resulting in deposition of pollutants and removal through plant uptake. Within this study the benefits of river restoration techniques for the removal of contaminants associated with outfalls have been quantified within Johnson Creek, Portland, USA as part of the EPSRC funded Blue-Green Cities project. The project aims to develop new strategies for protecting hydrological and ecological values of urban landscapes. A range of outfalls have been selected which span restored and un-restored channel reaches, a variety of upstream land-uses, and both direct and set-back outfalls. River Habitat Surveys were conducted at each of the sites to assess the level of channel modification within the reach. Sediment samples were taken at the outfall location, upstream, and downstream of outfalls for analysis of metals including Nickel, Lead, Zinc, Copper, Iron and Magnesium. These were used to assess the impact of the level of modification at individual sites, and to compare the influence of direct and set-back outfalls. Concentrations of all metals in the sediments found at outfalls generally increased with the level of modification at the site. Sediment in restored sites had lower metal concentrations both at the outfall and downstream compared to unrestored sites, indicating the benefit of these techniques to facilitate the effective removal of pollutants by trapping of sediment and uptake of contaminants by vegetation. However, the impact of restoration measures varied

  13. Effect of temperature on seawater desalination-water quality analyses for desalinated seawater for its use as drinking and irrigation water.

    Science.gov (United States)

    Guler, Enver; Ozakdag, Deniz; Arda, Muserref; Yuksel, Mithat; Kabay, Nalan

    2010-08-01

    The effect of feed seawater temperature on the quality of product water in a reverse osmosis process was investigated using typical seawater at Urla Bay, Izmir region, Turkey. The tests were carried out at different feed seawater temperatures (11-23 degrees C) using two RO modules with one membrane element each. A number of variables, including pH, conductivity, total dissolved solids, salinity, rejection percentage of a number of ions (Na+, K+, Ca2+, Mg2+, Cl(-), HCO3(-), and SO4(2-)), and the levels of boron and turbidities in collected permeates, were measured. The suitability of these permeates as irrigation and drinking water was checked by comparison with water quality standards.

  14. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    Science.gov (United States)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  15. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO

    Directory of Open Access Journals (Sweden)

    Mohamed FARISSI

    2014-06-01

    Full Text Available The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L. populations (Taf 1, Taf 2, Dem and Tata originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver. The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an amount of water corresponding to the potential evapo-transpiration of the crop, and the second treatment was water deficit stress (one irrigation per cut. For each treatment, the experiment was conducted as a split plot based on a randomized complete block design with four replications. The plants were measured and analyzed over three cuts. Some agronomic traits as, plant height, fresh and dry forage yields were measured. The forage quality was evaluated by leaf:stem ratio and the contents of plants in proteins and nitrogen. The results indicated that the water deficit has negatively affected the plant height and forage yield. The decrease in leaf:stem ratio was observed under water deficit conditions. However, the proteins and nitrogen contents were unaffected. The behavior of tested alfalfa genotypes was significantly different. The Moroccan alfalfa populations were more adapted to water deficit conditions comparatively to Siriver variety and the Tata population was the most adapted one.

  16. Effects analysis of river water quality improvement by water diversion%引调水改善河流水质的效果分析

    Institute of Scientific and Technical Information of China (English)

    卢卫; 应聪惠

    2014-01-01

    For plain river network area, the factors influencing effects of river water quality improvement by water diversion are various due to the complicated flow condition. We propose water diversion improvement efficiency as the judging basis to deter-mine optimal water diversion solution, and further carry out effect analysis on river water quality improvement by water diversion for Shangtanghe River watershed in Zhejiang Province using the hydrodynamics and water quality module of MIKE11 software, in which the diverted water quantity, diversion duration as well as diverted modes are comprehensively considered. The results show that the staged water diversion solution is better than the continuous water diversion solution, because it can obtain the same im-proving effect but consume less time and water volume, therefore the staged water diversion solution can gain the same social ben-efits and better economical benefits.%平原河网地区水流流向复杂,影响引调水改善河网水质效果的因素众多。以浙江省杭嘉湖平原地区的上塘河流域为例,运用MIKE11水动力与水质模型并综合考虑上塘河引调水水量、历时及引水模式,研究了河网引调水改善水质的效果,并提出以引调水效率作为确定最佳引调水方案的依据。研究表明,阶段性引调水的效率优于连续性引调水,能在减少实际引调水历时与水量的同时,达到与连续性引调水相近的改善水质效果,从而在取得相近社会效益的同时,获得更佳的经济效益。

  17. Effects of Water Quality on Dissolution of Yerba Mate Extract Powders

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2014-01-01

    Full Text Available Yerba mate tea is known as one of the most popular nonalcoholic beverages favoured by South Americans due to its nutrition facts and medicinal properties. The processing of yerba mate tea is found to affect the properties of its final forms. This study presents an investigation into the effects of water sources on the dissolution of yerba mate extract powders. Comparisons were conducted between yerba mate teas prepared by dissolving yerba mate extract powders into tap water and deionized water. Topics to be explored in this work are the major compositions and antioxidant activities, including total phenol content, reducing power, DPPH scavenging activity, and ABTS+• scavenging capacity. It is indicated that there is little difference for antioxidant activities and major constituents of yerba mate teas between both water sources. However, a deeper color is seen in the tap water case, resulting from the reaction between tannic acid and ions. This research finding can be treated as a way to benefit the yerba mate tea processing for applications.

  18. The effect of Yucca schidigera liquid extract on water quality and survival of Pacific Red Snapper Lutjanus peru during acclimatization

    Directory of Open Access Journals (Sweden)

    S Castillo-Vargasmachuca

    2015-01-01

    Full Text Available The goal of this study was to determine the effect of the liquid extract of Yucca schidigera on water quality and survival of Pacific red snapper Lutjanus peru during its transfer from wild to laboratory conditions. Three experimental groups (0.00; 0.25 and 0.75 mg of Y. schidigera liquid extract per liter of culture were tested with four replicates using water recirculating systems. The liquid extract was dispensed every 72 h during 28 days. It was proved that Y. schidigera extract could be effective to reduce ammonia nitrogen caused by biogenic source (excretion of fish juveniles diminishing mortality of Pacific red snapper during acclimatization process. It is recommended the use of yucca extract concentration at a dose of 0.75 mg L-1 to reduce ammonia concentration in marine water for holding red snapper juveniles.

  19. Process parameters effect on material removal mechanism and cut quality of abrasive water jet machining

    Directory of Open Access Journals (Sweden)

    Janković P.

    2013-01-01

    Full Text Available The process of the abrasive water jet cutting of materials, supported by the theories of fluid mechanics, abrasive wear and damage mechanics, is a high-tech technologies that provides unique capabilities compared to conventional machining processes. This paper, along the theoretical derivations, provides original contributions in the form of mathematical models of the quantity of the cut surface damage, expressed by the values of cut surface roughness. The particular part of this paper deal with the results of the original experimental research. The research aim was connected with the demands of industry, i.e. the end user. Having in mind that the conventional machining processes are not only lagging behind in terms of quality of cut, or even some requests are not able to meet, but with the advent of composite materials were not able to machine them, because they occurred unacceptable damage (mechanical damage or delamination, fiber pull-out, burning, frayed edges.

  20. Effects of changing land use on the microbial water quality of tidal creeks.

    Science.gov (United States)

    DiDonato, Guy T; Stewart, Jill R; Sanger, Denise M; Robinson, Brian J; Thompson, Brian C; Holland, A Frederick; Van Dolah, Robert F

    2009-01-01

    Population growth along the southeastern United States coast has precipitated the conversion of forested watersheds to suburban and urban ones. This study sampled creeks representing forested, suburban, and urban watersheds along a longitudinal gradient for indicators of water quality, including traditional indicator bacteria (fecal coliforms and enterococci) and alternative viral indicators (male-specific and somatic coliphages). Tested microorganisms were generally distributed with highest concentrations in creek headwaters and in more developed watersheds. The headwaters also showed the strongest predictive relationship between indicator concentrations and urbanization as measured by impervious cover. A seasonal pattern was observed for indicator bacteria but not for indicator viruses. Coliphage typing indicated the likely source of contamination was nonhuman. Results suggest that headwater creeks can serve as sentinel habitat, signaling early warning of public health concerns from land-based anthropogenic activities. This study also implies the potential to eventually forecast indicator concentrations under land use change scenarios.

  1. Improved water quality can ameliorate effects of climate change on corals.

    Science.gov (United States)

    Wooldridge, Scott A; Done, Terence J

    2009-09-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Moreover, rates of genetic adaptation and/or changes in the coral-zooxanthella partnerships are considered unlikely to be sufficiently fast for corals to acquire increased physiological resistance to increasing sea temperatures and declining pH. However, it has been suggested that coral reef resilience to climate change may be improved by good local management of coral reefs, including management of water quality. Here, using major data sets from the Great Barrier Reef (GBR), Australia, we investigate geographic patterns of coral bleaching in 1998 and 2002 and outline a synergism between heat stress and nutrient flux as a major causative mechanism for those patterns. The study provides the first concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of coral reefs to global climate change.

  2. Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive water spill, Plainsboro Township, New Jersey

    Science.gov (United States)

    Lewis, J.C.; Spitz, F.J.

    1987-01-01

    Princeton University, under contract to the Department of Energy , maintains a Tokamak fusion test reactor in New Jersey. The U.S. Geological Survey investigated groundwater flow and estimated the effects of a hypothetical spill of radioactive water at the site on the local groundwater system. The study included test drilling; aquifer testing; measurement of water levels, infiltration capacity, and stream discharge; and a simulation of the hypothetical spill. The Triassic Stockton Formation-a water supply aquifer composed primarily of jointed siltstone and sandstone-underlies the site. The aquifer is confined by overlying weathered bedrock and underlying unjointed rock. Weathered bedrock is overlain by unconsolidated, partially saturated material which ranges from 6 to 39 ft in thickness. Groundwater recharge is by lateral flow into the study area, stream leakage, and precipitation. Discharge is by pumpage, evapotranspiration, stream inflow, and lateral flow out of the study area. Transmissivity of the aquifer is about 1,740 sq ft/day, and the storage coefficient is about 0.0002. The average linear velocity of groundwater at the site ranges from 100 to 270 ft/yr depending on location and time of year. The velocity over a large part of the site is controlled by on-site pumpage. Groundwater samples were collected and analyzed for common ions, trace metals, and tritium. The analyses reported no concentrations of common ions or trace metals which exceeded the criteria for drinking water standards recommended by the EPA, except for some instances of moderately high concentrations of iron and manganese. Iron and manganese are common in groundwater and surface water in the area and are not indicative of an on-site source of contamination. Tritium concentrations in the collected samples were also considered representative of background levels and were well below the maximum concentration permitted by the EPA. The fate of spilled radioactive water after a hypothetical

  3. Effects of land use and surficial geology on flow and water quality of streams in the coal-mining region of southwestern Indiana, October 1979 through September 1980

    Science.gov (United States)

    Wilber, William G.; Renn, Danny E.; Crawford, Charles G.

    1985-01-01

    An assessment of streams in the coal-mining region of southwestern Indiana was done from October 1979 through September 1980 during stable stream flows to provide baseline hydrologic and water-quality information and to document the effect of several natural and human-induced factors on water quality in the region.

  4. Effect of the South Bay Ocean Outfall (SBOO) on ocean beach water quality near the USA-Mexico border.

    Science.gov (United States)

    Gersberg, Richard; Tiedge, Jürgen; Gottstein, Dana; Altmann, Sophie; Watanabe, Kayo; Lüderitz, Volker

    2008-04-01

    In early 1999, primary treatment and discharge of sewage from Tijuana, Mexico (approximately 95 million liters per day) began through South Bay Ocean Outfall (SBOO) into the ocean 4.3 km offshore. In this study, statistical comparisons were made of the bacterial water quality (total and fecal coliforms and enterococci densities) of the ocean, both before and after discharge of sewage to the SBOO began, so that the effect of this ocean discharge on nearshore ocean water quality could be quantitatively assessed. The frequency of exceedence of bacterial indicator thresholds was statistically analyzed for 11 shore (surfzone) stations throughout US and Mexico using the Fisher's exact test, for the years before (1995-1998) as compared to after the SBOO discharge began (1999-2003). Only four of the 11 shoreline stations (S2, S3, S11, and S12) showed significant improvement (decreased frequency of exceedence of bacterial indicator thresholds) after SBOO discharge began.

  5. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  6. The EPANET water quality model

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, L.A. [Environmental Protection Agency, Cincinnati, OH (United States)

    1995-10-01

    EPANET is a software package developed by US EPA`s Drinking Water Research Division for modeling hydraulic and water quality behavior within water distribution systems. Starting with a geometric description of the pipe network, a set of initial conditions, estimates of water usage, and a set of rules for how the system is operated, EPANET predicts all flows, pressures, and water quality levels throughout the network during an extended period of operation. In addition to substance concentration, water age and source tracing can also be simulated. EPANET offers a number of advanced features including: modular, highly portable C language code with no pre-set limits on network size; a simple data input format based on a problem oriented language; a full-featured hydraulic simulator; improved water quality algorithms; analysis of water quality reactions both within the bulk flow and at the pipe wall; an optional graphical user interface running under Microsoft{reg_sign} Windows{trademark}. The Windows user interface allows one to edit EPANET input files, run a simulation, and view the results all within a single program. Simulation output can be visualized through: color-coded maps of the distribution system with full zooming, panning and labeling capabilities and a slider control to move forward or backward through time; spreadsheet-like tables that can be searched for entries meeting a specified criterion; and time series graphs of both predicted and observed values for any variable at any location in the network. EPANET is currently being used to analyze a number of water quality issues in different distribution systems across the country. These include: chlorine decay dynamics, raw water source blending, altered tank operation, and integration with real-time monitoring and control systems.

  7. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors

    Directory of Open Access Journals (Sweden)

    Kang Ki-Mun

    2011-06-01

    Full Text Available Abstract Background Cancer patients receiving radiotherapy often experience fatigue and impaired quality of life (QOL. Many side effects of radiotherapy are believed to be associated with increased oxidative stress and inflammation due to the generation of reactive oxygen species during radiotherapy. Hydrogen can be administered as a therapeutic medical gas, has antioxidant properties, and reduces inflammation in tissues. This study examined whether hydrogen treatment, in the form of hydrogen-supplemented water, improved QOL in patients receiving radiotherapy. Methods A randomized, placebo-controlled study was performed to evaluate the effects of drinking hydrogen-rich water on 49 patients receiving radiotherapy for malignant liver tumors. Hydrogen-rich water was produced by placing a metallic magnesium stick into drinking water (final hydrogen concentration; 0.55~0.65 mM. The Korean version of the European Organization for Research and Treatment of Cancer's QLQ-C30 instrument was used to evaluate global health status and QOL. The concentration of derivatives of reactive oxidative metabolites and biological antioxidant power in the peripheral blood were assessed. Results The consumption of hydrogen-rich water for 6 weeks reduced reactive oxygen metabolites in the blood and maintained blood oxidation potential. QOL scores during radiotherapy were significantly improved in patients treated with hydrogen-rich water compared to patients receiving placebo water. There was no difference in tumor response to radiotherapy between the two groups. Conclusions Daily consumption of hydrogen-rich water is a potentially novel, therapeutic strategy for improving QOL after radiation exposure. Consumption of hydrogen-rich water reduces the biological reaction to radiation-induced oxidative stress without compromising anti-tumor effects.

  8. Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values.

    Science.gov (United States)

    Escher, Beate I; van Daele, Charlotte; Dutt, Mriga; Tang, Janet Y M; Altenburger, Rolf

    2013-07-02

    The induction of adaptive stress response pathways is an early and sensitive indicator of the presence of chemical and non-chemical stressors in cells. An important stress response is the Nrf-2 mediated oxidative stress response pathway where electrophilic chemicals or chemicals that cause the formation of reactive oxygen species initiate the production of antioxidants and metabolic detoxification enzymes. The AREc32 cell line is sensitive to chemicals inducing oxidative stress and has been previously applied for water quality monitoring of organic micropollutants and disinfection byproducts. Here we propose an algorithm for the derivation of effect-based water quality trigger values for this end point that is based on the combined effects of mixtures of regulated chemicals. Mixture experiments agreed with predictions by the mixture toxicity concept of concentration addition. The responses in the AREc32 and the concentrations of 269 individual chemicals were quantified in nine environmental samples, ranging from treated effluent, recycled water, stormwater to drinking water. The effects of the detected chemicals could explain less than 0.1% of the observed induction of the oxidative stress response in the sample, affirming the need to use effect-based trigger values that account for all chemicals present.

  9. The effect of phosphorus binding clay (Phoslock) in mitigating cyanobacterial nuisance: A laboratory study on the effects on water quality variables and plankton

    NARCIS (Netherlands)

    Oosterhout, J.F.X.; Lurling, M.

    2013-01-01

    This laboratory study examined the lanthanum modified clay Phoslock® for its effectiveness to bind soluble reactive phosphorus (SRP), release of nutrients from this modified clay, its influence on water quality variables (pH, oxygen saturation %, conductivity and turbidity), effects on phytoplankton

  10. The effect of phosphorus binding clay (Phoslock) in mitigating cyanobacterial nuisance: A laboratory study on the effects on water quality variables and plankton

    NARCIS (Netherlands)

    Oosterhout, J.F.X.; Lurling, M.

    2013-01-01

    This laboratory study examined the lanthanum modified clay Phoslock® for its effectiveness to bind soluble reactive phosphorus (SRP), release of nutrients from this modified clay, its influence on water quality variables (pH, oxygen saturation %, conductivity and turbidity), effects on phytoplankton

  11. Environmental Setting and the Effects of Natural and Human-Related Factors on Water Quality and Aquatic Biota, Oahu, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.; Brasher, Anne M.D.

    2003-01-01

    -use patterns on Oahu reflected increases in population and decreases in large-scale agricultural operations over time. The last two remaining sugarcane plantations on Oahu closed in the mid-1990's, and much of the land that once was used for sugarcane now is urbanized or used for diversified agriculture. Although two large pineapple plantations continue to operate in central Oahu, some of the land previously used for pineapple cultivation has been urbanized. Natural and human-related factors control surface- and ground-water quality and the distribution and abundance of aquatic biota on Oahu. Natural factors that may affect water quality include geology, soils, vegetation, rainfall, ocean-water quality, and air quality. Human-related factors associated with urban and agricultural land uses also may affect water quality. Ground-water withdrawals may cause saltwater intrusion. Pesticides and fertilizers that were used in agricultural or urban areas have been detected in surface and ground water on Oahu. In addition, other organic compounds associated with urban uses of chemicals have been detected in surface and ground water on Oahu. The effects of urbanization and agricultural practices on instream and riparian areas in conjunction with a proliferation of nonnative fish and crustaceans have resulted in a paucity of native freshwater macrofauna on Oahu. A variety of pesticides, nutrients, and metals are associated with urban and agricultural land uses, and these constituents can affect the fish and invertebrates that live in the streams.

  12. A Paired watershed Evaluation of Agroforestry effects on Water Quality on a Corn/Soybean Rotation

    Science.gov (United States)

    Udawatta, Ranjith; Jose, Shibu; Garrett, Harold

    2015-04-01

    Rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited and thus limit the adoption of agroforestry practices throughout the world. The objective of the study was to examine non point source pollution (NPSP) reduction by agroforestry buffers in row-crop watersheds. The study consists of three watersheds in a paired watershed design in Knox County, Missouri, USA. Watersheds were established in 1991 and treatments of agroforestry (trees+grass) and grass buffers were established on two watersheds in 1997 after a 7-year calibration period. Runoff water samples were analyzed for sediment, total nitrogen (TN) and total phosphorus (TP) for the 2009 to 2010 period. Results indicated that agroforestry and grass buffers on row crop watersheds significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with row crop management reduced runoff by 26% during the study period as compared to the control treatments. Average sediment loss for row crop management and buffer watersheds was 14.8 and 9.7 kg ha-1 yr-1 respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared to the control treatments. These differences could in part be attributed to the differences in management, soils, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be implemented to reduce NPSP to water bodies while improving land value and environmental quality.

  13. Water Quality Standards for Coral Reef Protection

    Science.gov (United States)

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  14. Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values.

    Science.gov (United States)

    Escher, Beate I; Neale, Peta A; Leusch, Frederic D L

    2015-09-15

    Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few

  15. Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus.

    Science.gov (United States)

    Álvarez, S; Sánchez-Blanco, M J

    2014-07-01

    The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m(-1)) and saline (4 dS·m(-1)). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl- in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m(-1)) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.

  16. Effects of Water Volume and Nitrogen Fertilization on Yield and Quality Traits of Air-cured Burley Tobacco (Nicotianatabacum L.

    Directory of Open Access Journals (Sweden)

    Ascione S

    2014-12-01

    Full Text Available Based on a two-year field trial in the region of Campania (Southern Italy the effects of water volume and nitrogen fertilization on the yield and quality of Burley tobacco (Nicotianatabacum L. were investigated with reference to the following traits: cured leaf yield, price index, yield value, leaf area, specific leaf weight, burning capacity, color parameters, total alkaloid, nitrate and chloride leaf content. The experimental design was a factorial comparison among three water volumes (40, 80 and 120% evapotranspiration (ET, four nitrogen fertilization levels (0, 80, 160 and 240 kg ha-1 and two genotypes (cv TN86 and the hybrid R7-11. The yield of cured leaves rose with the increase in water and nitrogen availability, albeit at a decreasing rate. With the increase in water volume, the price index, burning capacity, specific leaf weight, total alkaloid and nitrate content decreased, while leaf area and chloride content increased. Up to a rate of 160 kg ha-1, nitrogen fertilization increased the price index, yield value, burning capacity, leaf area, specific leaf weight, total alkaloid and nitrates, and reduced leaf chloride content especially at 40% ET water volume. Both, nitrogen fertilization and water volume had little influence on leaf color. The year had considerable effects on yield, leaf area and color parameters, with higher values in the rainier season. In the two years, genotype TN86 showed higher stability for yield and yield value, lower alkaloid and higher nitrate content in the leaf than the R7-11 hybrid.

  17. Water Availability--The Connection Between Water Use and Quality

    Science.gov (United States)

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  18. Grey associated analysis of the underground water quality effected by the leaching water of dumping area or hillock of coal mine

    Institute of Scientific and Technical Information of China (English)

    LU Guo-bin(卢国斌); ZHANG Lang(张浪); LIU Zi-bin(刘志斌)

    2003-01-01

    The underground water has been contaminated seriously by the leaching water of dumping area or hillock. To determine the pollution limits of underground water, author took samples in the study area, analyzed samples for water quality, assessed the water quality of each monitoring point by the grey associated analysis method, and gave out the classifications of the underground water quality of the study area. Comparing with fuzzy comprehensive appraisal method, it is demonstrated that grey associated analysis method is applied easily, because of its clear concept, simple and convenient calculation and excellently operation.

  19. Agroecosystem Impacts on Water Quality

    Science.gov (United States)

    Reedy, R. C.; Scanlon, B. R.

    2010-12-01

    Agroecosystems can have large scale impacts on soil water and groundwater quality by mobilizing salts into underlying aquifers through enhanced recharge and increasing chemical loading to systems through fertilizer applications and irrigation water. Crop evapotranspiration is similar to desalinization in that root-water uptake excludes most salts, and soil-water salinity levels may build up when water drainage or percolation through the root zone is insufficient to flush accumulated salts. The objective of this study was to evaluate impacts of agroecosystems on soil water and groundwater quality using data from the US High Plains and California Central Valley. Natural ecosystems accumulated large reservoirs of salts in unsaturated soils in the southern High Plains and southern part of the Central Valley. Increased recharge under rainfed and irrigated agriculture mobilized these salt reservoirs into the underlying aquifer in the southern High Plains, increasing groundwater salinity, particularly chloride and sulfate. Deficit irrigation in the southern High Plains has created large salt bulges in the unsaturated zone because of insufficient irrigation to flush these salts into the underlying aquifer. Irrigation in both the High Plains and Central Valley regions has markedly increased groundwater nitrate levels, particularly in irrigated areas because of higher fertilizer applications. Agroecosystem impacts on water quality reflect a delicate balance between water and salt cycles and crop production should be managed to minimize negative environmental impacts.

  20. BACTERIOLOGICAL QUALITY OF TAP WATER

    Directory of Open Access Journals (Sweden)

    Justyna Zamorska

    2016-06-01

    Full Text Available The most sensitive method of detecting contamination in water supply networks is microbiological testing. Microbiological water safety is evaluated mainly based on the results of traditional tests that rely on bacteria culturing on the so called bacterial growth mediums. Flow cytometry is a modern technology that has been used in microbiology only recently. The diagnostic method based on flow cytometry is much faster and more versatile. Microbiological quality testing was conducted in rzeszowski district, in the area of water network supplied by surface waters, and in the area of water network supplied by underground waters. The scope of the analysis of the microbiological quality of tap water was based on the determination of selected indicators of the sanitary condition of water ie; the total number of psychrophilic and mesophilic bacteria on nutrient agar (reference called Agar A and additionally called agar supplemented with R, the number of coliforms and faecal streptococci. Determination of the total number of microorganisms by flow cytometry was performed using two dyes SYBR Green and iodide pyridine. Water from underground water intakes, not under the permanent control of microbial had worse microbiological parameters. Used new methods of microbiological assays showed greater amounts of microbiological contamination.

  1. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  2. The effects of calcium magnesium acetate (CMA) deicing material on the water quality of Bear Creek, Clackamas County, Oregon, 1999

    Science.gov (United States)

    Tanner, Dwight Q.; Wood, Tamara M.

    2000-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Transportation (ODOT), to evaluate the effects of the highway deicing material, calcium magnesium acetate (CMA), on the water quality of Bear Creek, in the Cascade Range of Oregon. ODOT began using CMA (an alternative deicer that has fewer adverse environmental effects than road salt) in the mid-1990s and began this study with the USGS to ensure that there were no unexpected effects on the water quality of Bear Creek. Streamflow, precipitation, dissolved oxygen, pH, specific conductance, and water temperature were measured continuously through the 1998?99 winter. There was no measurable effect of the application of CMA to Highway 26 on the biochemical oxygen demand (BOD), calcium concentration, or magnesium concentration of Bear Creek and its tributaries. BOD was small in all of the water samples, some of which were collected before CMA application, and some of which were collected after application. Five-day BOD values ranged from 0.1 milligrams per liter to 1.5 milligrams per liter, and 20-day BOD values ranged from 0.2 milligrams per liter to 2.0 milligrams per liter. Dissolved copper concentrations in a small tributary ditch on the north side of Highway 26 exceeded the U.S. Environmental Protection Agency aquatic life criteria on three occasions. These exceedances were probably not caused by the application of CMA because (1) one of the samples was a background sample (no recent CMA application), and (2) dissolved copper was not detected in Bear Creek water samples to which CMA was added during laboratory experiments.

  3. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  4. Spatial Assessment of the Effect of Sediment Quality on the Nutrient Levels in Shallow Waters: Cernek Lake Case

    Directory of Open Access Journals (Sweden)

    Hüseyin Cüce

    2017-06-01

    Full Text Available This study was conducted to determine the water-sediment quality and trophic status changes of Cernek Lake located in the Kızılırmak Delta (one of the most important wetlands in Turkey and protected as a Ramsar site. The main objective, was evaluated and examined the effects on trophic level of surface water that the layers of lake sediments can create. In the study, the periodic exchange on trophic level have been evaluated with Geographic Information Systems (GIS by identifying existing water of lake and sediment quality of lake. Spatial analysis was realized for water and sediment quality parameters (pH, salinity, Secchi disc depth and chlorophyll-a, total phosphate and total organic carbon (TOC concentrations. The results of field studies conducted at Cernek Lake for three seasons (2010-2011 showed that the sediments contain high phosphate (annual average 541 mg / kg PO4-P, dry weight and high organic carbon content (annual average 22.4 G / kg TOC, Dry weight. During the summer, Carlson Index values relatively declined during this period compared to autumn (81 to 79, but the eutrophic structure of the lake is still found to be high character. Findings, showed that the contaminated lake sediment layer would be highly effective in trophic level of the lake therefore it has revealed the necessity of taking measures for eutrophication. According to the results of study, taking the medium and long term measures to eutrophication and implementation of the strategic action plan is required.

  5. Effects of impervious cover on the surface water quality and aquatic ecosystem of the Kyeongan stream in South Korea.

    Science.gov (United States)

    Lee, Bum-Yeon; Park, Shin-Jeong; Paule, Ma Cristina; Jun, Woosong; Lee, Chang-Hee

    2012-08-01

    The extent of impervious cover in a watershed has been linked to the quality of an urban aquatic environment. The Kyeongan watershed in South Korea was investigated to evaluate the relationship between the total impervious area (TIA) and the aquatic ecosystem of the watershed, including water quality and aquatic life using a relatively high-resolution (0.4 m) image. The TIA was found to be approximately 12% of the watershed, which indicates that the quality of its environment was being adversely affected by it. For water quality, Pearson correlation analyses showed that all water quality parameters studied were found to be positively correlated with TIA at p water quality. Some water quality parameters, such as nitrite (NO2-), total phosphorus, and phosphate (PO4(3-)) were highly affected by discharges from wastewater treatment plants. Water quality data suggest that TIA could be used to predict the water quality of streams. For ecological parameters, the diatom index for organic pollution and trophic diatom index were found to be highly correlated with TIA, whereas physical habitat and benthic macroinvertebrates were poorly correlated with TIA. However, the results indicate that the extent of impervious cover can be a useful indicator for predicting the status of specific ecosystem of streams.

  6. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    Science.gov (United States)

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    Land application of municipal wastewater biosolids is the most common method of biosolids management used in North Carolina and the United States. Biosolids have characteristics that may be beneficial to soil and plants. Land application can take advantage of these beneficial qualities, whereas disposal in landfills or incineration poses no beneficial use of the waste. Some independent studies and laboratory analysis, however, have shown that land-applied biosolids can pose a threat to human health and surface-water and groundwater quality. The effect of municipal biosolids applied to agriculture fields is largely unknown in relation to the delivery of nutrients, bacteria, metals, and contaminants of emerging concern to surface-water and groundwater resources. Therefore, the North Carolina Department of Environment and Natural Resources (NCDENR) collaborated with the U.S. Geological Survey (USGS) through the 319 Nonpoint Source Program to better understand the transport of nutrients and bacteria from biosolids application fields to groundwater and surface water and to provide a scientific basis for evaluating the effectiveness of the current regulations.

  7. Effects of Water-Based Exercise Training on the Cognitive Function and Quality of Life of Healthy Adult Women.

    Science.gov (United States)

    Ayán, Carlos; Carvalho, Paulo; Varela, Silvia; Cancela, José María

    2017-09-25

    Research regarding the impact of aquatic exercise on cognition is scarce. This study aimed at identifying the effects of water-based exercise training on the cognitive function and quality of life of healthy adult women. Fifty-one healthy women [mean age: 46.5 (12.3) y] were assigned to group A or B and followed a water-based exercise program for 6 months. During the first 3 months, the sessions performed by group A were focused on stimulating cognitive function. For the next 3 months, the sessions were mainly aimed at improving physical fitness. Participants in group B followed the same program in reverse order. The trail making and symbol digit modality tests were used to assess the impact of the program on cognition. The effects of the intervention on the participants' physical and mental health were measured by means of the medical outcomes study 36-item short-form health survey. Once the intervention ended, significant improvements were observed in the participants' cognitive function and mental health domain, regardless of the group in which they were initially included. Water-based exercise is a training modality capable of enhancing cognitive function and quality of life through improvements in mental health in healthy adult women.

  8. BACTERIOLOGICAL QUALITY OF TAP WATER

    OpenAIRE

    Justyna Zamorska; Monika Zdeb; Dorota Papciak

    2016-01-01

    The most sensitive method of detecting contamination in water supply networks is microbiological testing. Microbiological water safety is evaluated mainly based on the results of traditional tests that rely on bacteria culturing on the so called bacterial growth mediums. Flow cytometry is a modern technology that has been used in microbiology only recently. The diagnostic method based on flow cytometry is much faster and more versatile. Microbiological quality testing was conducted in rzes...

  9. Effects of Game Location, Quality of Opposition, and Starting Quarter Score in the Outcome of Elite Water Polo Quarters.

    Science.gov (United States)

    Ruano, Miguel Á; Serna, Ana D; Lupo, Corrado; Sampaio, Jaime E

    2016-04-01

    The notational analysis is used to investigate teams' performance in water polo, especially focused on the determinants of success. Recently, a new topic has emerged "the situational variables," which includes the game conditions that may influence the performance at a behavioral level. The aim of this study was to identify the interactive effects of starting quarter score (SQS) (i.e., score difference at the beginning of each quarter and at the final score) and game location (GL) (i.e., home and away teams) in relation to quality of opposition (i.e., positions of difference between opposing teams at the end-of-season rankings) in elite men's water polo games. Data comprised 528 games (n = 2,112 quarters) from the first Spanish water polo division. A linear regression analysis was applied to show the impact of SQS and GL in relation to quality of opposition (unbalanced and balanced) for quarter (all quarters, and second, third, and fourth quarters). Results showed that SQS has an important effect for all quarters (0.16) and for the second (0.14) and third (0.14) quarters in balanced games (whereas the fourth quarter has an unpredictable outcome), and for each quarter (all quarters: 0.33; second quarter: 0.55; third quarter: 0.44; fourth quarter: 0.26) in unbalanced games. In addition, GL effects emerged for balanced (0.31) and unbalanced (0.45) games for all quarters and specifically for the second quarter of the unbalanced games. Therefore, this study showed that the elite water polo game dynamics, indirectly providing a reference for coaches (i.e., effective tactical approach) and physical trainers (i.e., high performance intensities), plans to improve their players' performance.

  10. The interaction between surface water and groundwater and its effect on water quality in the Second Songhua River basin, northeast China

    Indian Academy of Sciences (India)

    Bing Zhang; Xianfang Song; Yinghua Zhang; Ying Ma; Changyuan Tang; Lihu Yang; Zhong-Liang Wang

    2016-10-01

    The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes ($\\delta$D, $\\delta^{18}$O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.

  11. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria x ananassa) fruit quality.

    Science.gov (United States)

    Terry, Leon A; Chope, Gemma A; Bordonaba, Jordi Giné

    2007-12-26

    Deficit irrigation (DI) detrimentally affected berry size but had a profound effect on fruit physiology and biochemistry. Strawberry cv. Elsanta fruit from DI-treated plants had higher levels of abscisic acid (ABA). Dry matter content as a proportion of fresh weight was increased by a quarter in fruit from water-stressed plants as compared to fruit harvested from plants held at or near field capacity. Concomitant to this, the concentration of some taste-related (viz. monosaccharides and sugar/acid ratios) and health-related compounds/parameters (viz. antioxidant capacity and total phenolics) were generally much greater in DI-treated fruit. The effect of inoculation with Botrytis cinerea on fruit quality was also tested. Fruit derived from inoculated plants displayed symptoms of gray mold postharvest disease earlier than noninoculated fruit and had double the concentration of ABA. Inoculation had no significant effects on all other target analytes measured. There was no interaction between water treatment and inoculation. The possible mechanisms for increased synthesis of ABA and the different effects of pathogen-induced stress versus drought stress on fruit quality are discussed.

  12. Effects of long-term flooding on biogeochemistry and vegetation development in floodplains - a mesocosm experiment to study interacting effects of land use and water quality

    Science.gov (United States)

    Banach, A. M.; Banach, K.; Peters, R. C. J. H.; Jansen, R. H. M.; Visser, E. J. W.; Stepniewska, Z.; Roelofs, J. G. M.; Lamers, L. P. M.

    2009-03-01

    The frequent occurrence of summer floods in Eastern Europe, possibly related to climate change, urges the need to understand the consequences of combined water storage and nature rehabilitation as an alternative safety measure instead of raising and reinforcing dykes, for floodplain biogeochemistry and vegetation development. We used a mesocosm design to investigate the possibilities for the creation of permanently flooded wetlands along rivers, in relation to water quality (nitrate, sulphate) and land use (fertilization). Flooding resulted in severe eutrophication of both sediment pore water and surface water, particularly for more fertilized soil and sulphate pollution. Vegetation development was mainly determined by soil quality, resulting in a strong decline of most species from the highly fertilized location, especially in combination with higher nitrate and sulphate concentrations. Soils from the less fertilized location showed, in contrast, luxurious growth of target Carex species regardless water quality. The observed interacting effects of water quality and agricultural use are important in assessing the consequences of planned measures for ecosystem functioning (including peat formation) and biodiversity in river floodplains.

  13. Effects of long-term flooding on biogeochemistry and vegetation development in floodplains – a mesocosm experiment to study interacting effects of land use and water quality

    Directory of Open Access Journals (Sweden)

    A. M. Banach

    2009-03-01

    Full Text Available The frequent occurrence of summer floods in Eastern Europe, possibly related to climate change, urges the need to understand the consequences of combined water storage and nature rehabilitation as an alternative safety measure instead of raising and reinforcing dykes, for floodplain biogeochemistry and vegetation development. We used a mesocosm design to investigate the possibilities for the creation of permanently flooded wetlands along rivers, in relation to water quality (nitrate, sulphate and land use (fertilization. Flooding resulted in severe eutrophication of both sediment pore water and surface water, particularly for more fertilized soil and sulphate pollution. Vegetation development was mainly determined by soil quality, resulting in a strong decline of most species from the highly fertilized location, especially in combination with higher nitrate and sulphate concentrations. Soils from the less fertilized location showed, in contrast, luxurious growth of target Carex species regardless water quality. The observed interacting effects of water quality and agricultural use are important in assessing the consequences of planned measures for ecosystem functioning (including peat formation and biodiversity in river floodplains.

  14. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  15. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  16. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    Science.gov (United States)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  17. The effect of water quality on reliability of boiler plants performance

    Directory of Open Access Journals (Sweden)

    Gajić Anto S.

    2010-01-01

    Full Text Available This paper presents sources and types of corrosion processes of boiler tube system of the Thermal Power Plant "Ugljevik". The main goal in the electric power production is to achieve lower prices, which can only be done by providing low maintenance costs. While it is not possible to completely stop corrosion, it could be slowed down and it's effects could be reduced. In order to reduce corrosion to a minimum on thermal power plants' vital equipment, particularly boilers, it is necessary to determine in each particular case the acting mechanism of corrosion and agents that cause it. Damages and failures on thermal power plants are largely caused by the development of various types of corrosion processes. Special attention is given to the preparation of water, considering its importance to the occurrence of corrosion. The following types of corrosion were detected on the screen tube boiler by visual examination on the side of water and steam: erosive, pitting and impact corrosion. The inner surface of screen pipes, from which the scale layer was removed, indicates that the erosive corrosion with the thinning of pipe walls occurs. Perforation of the welded screen pipes shows that stress corrosion occurred on the screen pipe with formation of cracks and that pipe exploded. Pits on the inner surface of the screen pipes, visible after the removal of scale and corrosion products, are proof that pitting corrosion occurred. The causes of corrosion were discovered and proposed measures for their elimination were given.

  18. Solid Wastes and Water Quality.

    Science.gov (United States)

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  19. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of

  20. Assessment of the mining practices effects on the water quality in the Ibar river within the Leposavić municipality

    Directory of Open Access Journals (Sweden)

    Milentijević Gordana

    2010-01-01

    Full Text Available Exploitation, development and primary extraction of the minerals result in release of the harmful substances, e.g. heavy metals, toxic gases, dirt, etc, that are often uncontrolled deposit in the environment. Those deposited and overlooked substances remain as a heritage and challenge for the coming generations that would involve abundant human, technical and financial resources for the environmental reclamation. The mining activities of the Trepča - RIF Kopaonik has both positive and negative influences within the Leposavić municipality, i.e., industrial development and environmental degradation. As a result of the mining activities the air, land and water resources both surface and underground are severely polluted. The main objective of this paper is to present adverse effects of the mineral resources (lead and zinc exploitation and primary extraction on the Ibar River water quality degradation mainly by heavy metals. Since the heavy metals are frequently ingested by the people through the food chain and given the high toxicity of them they are crucial parameters for the water quality monitoring practices that should be carefully assessed and controlled. Thus this paper includes comprehensive analyses of the heavy metals concentration (Pb, Zn, Cu, Cd and Fe in the Ibar River within the Leposavić municipality.

  1. The in vitro effect of leptin on semen quality of water b uffalo ( Bubalus bubalis bulls

    Directory of Open Access Journals (Sweden)

    Amir Khaki

    2013-03-01

    Full Text Available The purpose of this study was to evaluate the probable effects of leptin addition indifferentlevels to the semen extender on sperm quality (motility and motility parameters,viability,sperm membrane integrity, and DNA damage. Semen specimens were evaluatedimmediately after leptin addition, equilibration time and after thawing the frozen semen.Fivehealthy buffalo bulls (5 ejaculates from each bull were used.Each ejaculate was diluted at 37 ̊Cwith tris-based extender containing 0 (control, 10, 20, 50, 100, and 200 ng mL-1leptin. Thediluted semen was kept 4 hr in refrigerator to reach to the equilibration time and thenpacked in 0.5 mL French straws and frozen in liquid nitrogen. Our results showed that, in thefresh semen, no significant difference was observed in all sperm quality parametersevaluated among all of the examined leptin concentrations. Addition of 10 ng mL-1leptin intosemen extender significantly preserved sperm motility, all of the motility parameters, andviability in equilibrated semen compared to that of control group. However,in vitroadditionof 200 ng mL-1leptin, significantly decreased theses parameters. In the frozen thawed semen,all leptin concentrations decreased sperm motility and viability, but significant decrease wasobserved in concentrations of 100 and 200 ng mL-1. Adding leptin to semen extender did nothave any significant influence on sperm DNA damage andsperm membrane integrity in allexamined groups. These findings suggest thatin vitroaddition of 10 ng mL-1leptin couldpreserve sperm motility and viability in cooled semen of buffaloes.

  2. Water Quality Management in the Americas

    Science.gov (United States)

    Biswas, Asit K.; Tortajada, Cecilia; Braga, Benedito; Rodriguez, Diego J.

    The book contains several in-depth case studies which comprehensively analyze the present status of water quality management practices at country and state levels, especially in terms of their effectiveness and overall impacts. The objective is to identify opportunities, shortcomings, and constraints that currently exist. The analyses include the mechanisms and instruments that have succeeded in improving water quality, at which locations, for what reasons, and how whatever constraints and deficiencies that exist at present can be overcome in the future in a cost-effective and timely manner.

  3. Effects of long-term flooding on biogeochemistry and vegetation development in floodplains; a mesocosm experiment to study interacting effects of land use and water quality

    Science.gov (United States)

    Banach, A. M.; Banach, K.; Peters, R. C. J. H.; Jansen, R. H. M.; Visser, E. J. W.; Stepniewska, Z.; Roelofs, J. G. M.; Lamers, L. P. M.

    2009-07-01

    Raising safety levees and reinforcing dykes is not a sufficient and sustainable solution to the intense winter and summer floods occurring with increasing frequency in Eastern Europe. An alternative, creating permanently flooded floodplain wetlands, requires improved understanding of ecological consequences. A 9 month mesocosm study (starting in January), under natural light and temperature conditions, was initiated to understand the role of previous land use (fertility intensity) and flooding water quality on soil biogeochemistry and vegetation development. Flooding resulted in severe eutrophication of both sediment pore water and surface water, particularly for more fertilized soil and sulphate pollution. Vegetation development was mainly determined by soil quality, resulting in a strong decline of most species from the highly fertilized location, especially in combination with higher nitrate and sulphate concentrations. Soils from the less fertilized location showed, in contrast, luxurious growth of target Carex species regardless water quality. The observed interacting effects of water quality and agricultural use are important in assessing the consequences of planned measures for ecosystem functioning and biodiversity in river floodplains.

  4. Effects of long-term flooding on biogeochemistry and vegetation development in floodplains; a mesocosm experiment to study interacting effects of land use and water quality

    Directory of Open Access Journals (Sweden)

    R. C. J. H. Peters

    2009-07-01

    Full Text Available Raising safety levees and reinforcing dykes is not a sufficient and sustainable solution to the intense winter and summer floods occurring with increasing frequency in Eastern Europe. An alternative, creating permanently flooded floodplain wetlands, requires improved understanding of ecological consequences. A 9 month mesocosm study (starting in January, under natural light and temperature conditions, was initiated to understand the role of previous land use (fertility intensity and flooding water quality on soil biogeochemistry and vegetation development. Flooding resulted in severe eutrophication of both sediment pore water and surface water, particularly for more fertilized soil and sulphate pollution. Vegetation development was mainly determined by soil quality, resulting in a strong decline of most species from the highly fertilized location, especially in combination with higher nitrate and sulphate concentrations. Soils from the less fertilized location showed, in contrast, luxurious growth of target Carex species regardless water quality. The observed interacting effects of water quality and agricultural use are important in assessing the consequences of planned measures for ecosystem functioning and biodiversity in river floodplains.

  5. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  6. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis).

    Science.gov (United States)

    Godfrey, Earl W; Sanders, George E

    2004-04-01

    Husbandry and health of the African clawed frog, Xenopus laevis, greatly influences the quality of oocytes produced. One factor affecting oocyte quality is the water conditions in which females are maintained. Dechlorination and adequate salt concentration are known to affect oocytes, but water hardness has not been considered an important factor in Xenopus husbandry by the research community. We found that, when females were kept in soft water or water with marine salts alone, even when it was cooled to 17 to 18 degrees C, the quality of oocytes decreased; only 20 to 25% of resulting embryos developed to tailbud stages. Survival and normal development of embryos increased significantly within one month of addition to the laboratory housing water of salts that mimic conditions in African Rift Valley lakes. These salts greatly increased water hardness; development of embryos to tailbud stages remained high (50 to 70% on average) for more than a year after their addition to the water housing females. Water from South African ponds where X. laevis are collected, and from wells used by the major suppliers of X. laevis, also was moderately to very hard. Our results suggest that X. laevis is naturally adapted to hard water, and indicate that increasing general hardness during laboratory housing is more important for oocyte quality and embryo development than is increasing carbonate hardness (alkalinity) in the water used to house females.

  7. An innovative modeling approach using Qual2K and HEC-RAS integration to assess the impact of tidal effect on River Water quality simulation.

    Science.gov (United States)

    Fan, Chihhao; Ko, Chun-Han; Wang, Wei-Shen

    2009-04-01

    Water quality modeling has been shown to be a useful tool in strategic water quality management. The present study combines the Qual2K model with the HEC-RAS model to assess the water quality of a tidal river in northern Taiwan. The contaminant loadings of biochemical oxygen demand (BOD), ammonia nitrogen (NH(3)-N), total phosphorus (TP), and sediment oxygen demand (SOD) are utilized in the Qual2K simulation. The HEC-RAS model is used to: (i) estimate the hydraulic constants for atmospheric re-aeration constant calculation; and (ii) calculate the water level profile variation to account for concentration changes as a result of tidal effect. The results show that HEC-RAS-assisted Qual2K simulations taking tidal effect into consideration produce water quality indices that, in general, agree with the monitoring data of the river. Comparisons of simulations with different combinations of contaminant loadings demonstrate that BOD is the most import contaminant. Streeter-Phelps simulation (in combination with HEC-RAS) is also performed for comparison, and the results show excellent agreement with the observed data. This paper is the first report of the innovative use of a combination of the HEC-RAS model and the Qual2K model (or Streeter-Phelps equation) to simulate water quality in a tidal river. The combination is shown to provide an alternative for water quality simulation of a tidal river when available dynamic-monitoring data are insufficient to assess the tidal effect of the river.

  8. Effects of different water qualities on the early development of Atlantic salmon and brown trout exposed in situ

    Energy Technology Data Exchange (ETDEWEB)

    Norrgren, L. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Pathology); Degerman, E. (Inst. of Freshwater Research, Drottningholm (Sweden))

    1993-01-01

    Early developmental stages of Atlantic salmon and brown trout were exposed in situ to different water qualities in a river affected by acidification and wetland liming. Mortality, hatching frequency, histopathology and whole-body electrolytes were investigated. The hatching frequency was low in acidic aluminium-rich water, and the whole-body concentration of potassium and sodium decreased as early as after 13 days of exposure. Prolonged exposure caused 100% mortality of Atlantic salmon at this locality. A histochemical study disclosed Al precipitates in the gills of fish exposed to the acidic brooks. The precipitates were associated with the apical plasma membrane, and were also occasionally present intracellularly. The latter observation was confirmed by ultrastructural studies in which electron-dense precipitates were found in the cytoplasm of chloride cells. Chorions from non- to incompletely hatched eggs exposed in the acidic part of Torskabaecken were compared with the chorions from fry hatched in the limed part of the same brook. Eggs which failed to hatch had an intact inner chorion surface. Atlantic salmon were more sensitive to acidic Al-rich waters than brown trout, both at hatching and as yolksac fry. Wetland liming effectively protected salmonid fish reproducing in such waters. (27 refs., 13 figs., 1 tab.)

  9. MOBILLAB-NIVA - a complete station for monitoring water quality

    OpenAIRE

    A. Henriksen; Røgeberg, E.; Andersen, S.; Veidel, A.

    1986-01-01

    MOBILLAB-NIVA is a complete mobile station for monitoring water quality with telemetric transmission of recorded data to a central receiving station. It is intended for use in studies of rapid changes in water quality and its effects on aquatic life and short term studies to decide on water quality monitoring strategy. The present version of Mobillab-niva is specially designed to study effects of acid inputs on water chemistry, fish and invertebrates. The station is equipped with physical and...

  10. Assessment of the effect of water quality on copper toxicity in Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Richards, L. [Univ. of Guelph, Guelph, Ontario (Canada); Walsh, S.; Shultz, C.; Stuart, M. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-06-15

    The objective of this study was to test the hypothesis that when standard artificial media 5-salt culture water (SAM-5S) is used to test sediment toxicity of much lower ionic-strength aquatic ecosystems, the resulting toxicity estimates are lower than if the tests had been conducted in water of comparable ionic strength. Results showed that this concern was unfounded for testing of copper toxicity to Hyalella azteca (H. azteca) in Ottawa River water. Sediment testing is often conducted using a standard water that is prepared in the laboratory. However, this water may have an ionic strength that is different than local water bodies. It follows that laboratory results using the standard water may be unrepresentative. A study was undertaken to assess the copper tolerance of 2 strains of H. azteca in SAM-5S, diluted SAM-5S (similar in electrical conductivity to Ottawa River water), and Ottawa River water. Acute (96 h) copper toxicity tests were conducted with 9-16 day-old H. azteca. For a given water type, the 2 strains of H. azteca yielded comparable responses to copper. The highest copper tolerance was found in Ottawa River water (closely followed by SAM-5S), whereas the lowest copper tolerance was found in diluted SAM-5S. Our results suggest that sediment toxicity is not lowered by the higher ionic strength of SAM-5S and that sediment toxicity tests of Ottawa River sediments, conducted with SAM-5S, can be used to estimate the in situ toxicity of the sediments. (author)

  11. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  12. Effects of acrolein and other pesticides on water quality and aquatic biota in Tule Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this study was to evaluate the potential impacts of acrolein and other pesticides on water quality and aquatic invertebrates and fish, with a...

  13. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  14. Using field data to assess the effects of pesticides on crustacea in freshwater aquatic ecosystems and verifying the level of protection provided by water quality guidelines.

    Science.gov (United States)

    Guy, Martha; Singh, Lucina; Mineau, Pierre

    2011-07-01

    The purpose of this study was to investigate how well single-species laboratory data predict real-world pesticide toxicity effects on Crustacea. Data from field pesticide exposures from experimental mesocosm and small pond studies were converted into toxicity units (TUs) by dividing measured pesticide concentrations by the L(E)C50 for Daphnia or acute 5% hazard concentration for Crustacea (HC5-C). The proportion of crustacean taxa significantly affected by the pesticide treatment, called the count ratio of effect, was used in logistic regression models. Of 200 possible logistic model combinations of the TUs, fate, physicochemical variables, and structural variables versus the count ratio of effect for the mesocosm data, the best model was found to incorporate log(TU HC5-C). This model was used to convert pesticide water quality guidelines from around the world into estimates of the proportion of crustacean taxa predicted to be impacted by exposure to a pesticide at the water quality guideline concentration. This analysis suggests 64% of long-term water quality guidelines and 88% of short-term pesticide water quality guidelines are not protective of the aquatic life they are designed to protect. We conclude that empirically derived data from mesocosm studies should be incorporated into water quality guideline derivation for pesticides where available. Also, interspecific differences in susceptibility should be accounted for more accurately to ensure water quality guidelines are adequately protective against the adverse effects of pesticide exposure. Copyright © 2011 SETAC.

  15. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities.

  16. Climate change influence on drinking water quality

    Science.gov (United States)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  17. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  18. The effects of water quality and age on the acute toxicity of copper to the Florida apple snail, Pomacea paludosa.

    Science.gov (United States)

    Rogevich, E C; Hoang, T C; Rand, G M

    2008-05-01

    Copper (Cu)-containing compounds have been used in Florida as fungicides, herbicides, and soil amendments, resulting in elevated Cu in the aquatic ecosystem. The Florida apple snail (Pomacea paludosa), a key species in south Florida, may be adversely affected by Cu. Water-quality parameters, such as hardness, dissolved organic carbon (DOC), pH, and alkalinity, affect metal bioavailability and toxicity in aquatic organisms; however, it is uncertain to what extent these factors affect Cu toxicity in the Florida apple snail. The research presented here characterized the acute (96-hour) toxicity of Cu in water to the Florida apple snail at various life stages and under different water-quality parameters. Cu was more toxic to juvenile than adult apple snails. There was no difference between the 96-hour LC(50) at pH 5.5 and 6.5; however, the 96-hour LC(50 )values at pH 7.5 and 8.5 were greater than at lower pHs. The decrease in Cu(2+) above pH 7, as predicted by the MINTEQ model, accounted for the pH effect. Cu toxicity decreased as DOC increased from 0.2 to 30 mg/L. Unlike other aquatic organisms, hardness had no effect on Cu toxicity to the Florida apple snail, suggesting another mechanism of toxicity. Whole-body tissue analysis indicated that the lethal body burden of 120-day-old snails exposed to Cu for 4 days was 30 mg/kg Cu dry weight. Multiple regression analysis indicated that Cu toxicity was a function of organism age, DOC, and pH.

  19. Effects of C/N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors

    Directory of Open Access Journals (Sweden)

    Md. Rezoanul Haque

    2014-08-01

    Full Text Available The effects of C:N controlled periphyton based organic farming of freshwater prawn on water quality parameters and biotic factors were investigated. The experiment had two treatments: T1 and T2 each with three replications. Stocking density was maintained at 20,000 juveniles ha-1. In T1, only commercially available prawn feed was applied and in T2, a locally formulated and prepared feed containing 24% crude protein with C:N ratio close to 20 was used, and maize flour and bamboo side shoots were provided for maintaining C:N ratio 20.Mean values of water quality parameters did not vary significantly (P>0.05 between treatments. Periphytic biomass in terms of dry matter, ash free dry matter (AFDM and chlorophyll a showed significant difference (P<0.05 among different sampling months. Individual harvesting weight, individual weight gain, specific growth rates, gross and net yields of prawn were significantly higher (P<0.05 in T2 than T1. Therefore, it was concluded that freshwater prawn might consume periphyton biomass in C:N controlled periphyton based organic farming practices resulted a significantly (P<0.05 higher production of freshwater prawn than traditional farming.

  20. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo)

    OpenAIRE

    Albona Shala; Fatbardh Sallaku; Agron Shala; Shkëlzim Ukaj

    2015-01-01

    An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of th...

  1. A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system.

    Science.gov (United States)

    Whitehead, P G; Crossman, J; Balana, B B; Futter, M N; Comber, S; Jin, L; Skuras, D; Wade, A J; Bowes, M J; Read, D S

    2013-11-13

    The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

  2. Effects of 1-methylcyclopropene and hot water quarantine treatment on quality of "Keitt" mangos.

    Science.gov (United States)

    Ngamchuachit, Panita; Barrett, Diane M; Mitcham, Elizabeth J

    2014-04-01

    The optimal 1-methylcyclopropene (1-MCP) treatment to slow ripening of whole "Keitt" mangos, either alone or in combination with hot water treatment (HWT) (prior to or post 1-MCP) was identified. USDA-APHIS mandates that HWT can be used for control of fruit flies, but this may affect fruit response to 1-MCP. Mangos were evaluated by repeated measurement of nondestructive firmness, peel color, and ethylene production on the same mango fruits during 2 wk of ripening at 20 °C after treatment. The magnitude of ethylene production increased as a result of both 1-MCP and HWT. With softer mangos (65 N), treatment with 1-MCP alone delayed fruit softening and extended the number of days to full-ripeness (25 N) from 5 d in untreated fruit to 11 d. For these riper fruit, application of 1-MCP prior to HWT extended the days to full-ripeness to 9 d compared with 7 d when 1-MCP was applied after HWT. With firmer mangos (80 N), 1-MCP treatments alone prolonged the days to full-ripeness to 13 d as compared to 11 d for the untreated fruit. There was no significant concentration effect on firmness retention among 1-MCP treatments (0.5, 1.0, or 10.0 μL/L). HWT resulted in a faster rate of fruit softening, taking only 7 d to reach full-ripeness. Combining 1-MCP with HWT reduced the rate of softening compared to HWT alone, resulting in 9 to 11 d to full-ripeness. Application of 1-MCP before HWT showed a greater ability to reduce the rate of fruit softening compared with 1-MCP treatment after HWT.

  3. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.

    2010-01-01

    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling w

  4. Iowa ground-water quality

    Science.gov (United States)

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The population served by ground-water supplies in Iowa (fig. L4) is estimated to be about 2,392,000, or 82 percent of the total population (U.S. Geological Survey, 1985, p. 211). The population of Iowa is distributed fairly uniformly throughout the State (fig. IB), with 59 percent residing in rural areas or towns of less than 10,000 (U.S. Bureau of the Census, 1982). Surficial aquifers, the Jordan aquifer, and aquifers that form the uppermost bedrock aquifer in a particular area are most commonly used for drinking-water supplies and usually provide ample amounts of good quality water. However, naturally occurring properties or substances such as hardness, dissolved solids, and radioactivity limit the use of water for drinking purposes in some areas of each of the five principal aquifers (fig. 2/4). Median concentrations of nitrate in all aquifers and radium-226 in all aquifers except the Jordan are within the primary drinking-water standards established by the U.S. Environmental Protection Agency (1986a). Median concentrations for dissolved solids in the surficial, Dakota, and Jordan aquifers exceed secondary drinking-water standards established by the U.S. Environmental Protection Agency (1986b).

  5. Perceptions of drinking water quality and risk and its effect on behaviour: a cross-national study.

    Science.gov (United States)

    Doria, Miguel de França; Pidgeon, Nick; Hunter, Paul R

    2009-10-15

    There is a growing effort to provide drinking water that has the trust of consumers, but the processes underlying the perception of drinking water quality and risks are still not fully understood. This paper intends to explore the factors involved in public perception of the quality and risks of drinking water. This purpose was addressed with a cross-national mixed-method approach, based on quantitative (survey) and qualitative (focus groups) data collected in the UK and Portugal. The data were analysed using several methods, including structural equation models and generalised linear models. Results suggest that perceptions of water quality and risk result from a complex interaction of diverse factors. The estimation of water quality is mostly influenced by satisfaction with organoleptic properties (especially flavour), risk perception, contextual cues, and perceptions of chemicals (lead, chlorine, and hardness). Risk perception is influenced by organoleptics, perceived water chemicals, external information, past health problems, and trust in water suppliers, among other factors. The use of tap and bottled water to drink was relatively well explained by regression analysis. Several cross-national differences were found and the implications are discussed. Suggestions for future research are provided.

  6. Effect of anthropogenic activities on the water quality of Amala and Nyangores tributaries of River Mara in Kenya.

    Science.gov (United States)

    Nyairo, Wilfrida Nyanduko; Owuor, Philip Okinda; Kengara, Fredrick Orori

    2015-11-01

    Mau Forest in the upper reaches of the Mara River basin has recently undergone increased forest destruction followed by human settlement and agricultural activities. These anthropogenic activities may be contributing nutrients and heavy metals, ultimately polluting the river water and eventually Lake Victoria water hence damaging these aquatic ecosystems. This study sought to establish the effect of anthropogenic activities and season on the water quality of the Amala and Nyangores tributaries of the River Mara in Kenya. Pristine springs in the Mau Forest were used as reference sites. Water samples were analyzed for pH, temperature, conductivity, nutrients, selected heavy metals, and selenium. The mean range of the parameters measured from sites along the tributaries was pH 5.44-7.48 and that for conductivity was 20-99 μS/cm while the mean range of nutrient levels (μg/L) was 80-443 (NO3--N), 21.7-82.7 (NH4+-N), 11.9-65.0 (soluble reactive phosphorous), and 51-490 (total phosphorous). The mean range for heavy metals and selenium (in μg/L) from sites along the tributaries were 6.56-37.6 (Cu), 0.26-4.97 (Cd), 13.9-213 (Zn), 0.35-3.14 (Cr), 0.19-5.53 (Mn), 1.90-9.62 (Pb), and 0.21-4.50 (Se). The results indicated a significant difference (p≤0.05) between the reference sites and the different sampling sites, indicating that anthropogenic activities were impacting the quality of water in the two tributaries. Although most of the parameters were within the WHO (2004), USEPA (2014) and NEMA (2006) acceptable limits for surface waters, they were above the permissible levels for domestic use. Moreover, the levels of nutrients, heavy metals, and selenium were significantly higher in the wet season than in the dry season, further indicating that anthropogenic activities are causing a disturbance in the aquatic system. Therefore, further anthropogenic activities should be checked and limited so as to conserve the ecosystem.

  7. Assessment on reliability of water quality in water distribution systems

    Institute of Scientific and Technical Information of China (English)

    伍悦滨; 田海; 王龙岩

    2004-01-01

    Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.

  8. Cost-effective solutions for water quality improvement in the Dommel River supported by sewer-WWTP-river integrated modelling.

    Science.gov (United States)

    Benedetti, Lorenzo; Langeveld, Jeroen; van Nieuwenhuijzen, Arjen F; de Jonge, Jarno; de Klein, Jeroen; Flameling, Tony; Nopens, Ingmar; van Zanten, Oscar; Weijers, Stefan

    2013-01-01

    This project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the Dommel River (The Netherlands). Within the project, both acute and long-term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied with a monitoring campaign in the urban wastewater system (wastewater treatment plant and sewers) and in the receiving surface water system. An integrated model, which proved to be a powerful tool to analyse the interactions within the integrated urban wastewater system, was first used to evaluate measures in the urban wastewater system using the existing infrastructure and new real-time control strategies. As the latter resulted to be beneficial but not sufficient, this paper investigated the use of additional infrastructural measures to improve the system cost-effectively and have it meet the Directive's goals. Finally, an uncertainty analysis was conducted to investigate the impact of uncertainty in the main model assumptions and model parameters on the performance robustness of the selected set of measures. Apart from some extreme worst-case scenarios, the proposed set of measures turned out to be sufficiently robust. Due to the substantial savings obtained with the results of this project, the pay-back time of the whole monitoring and modelling work proved to be less than 5 months. This illustrates the power of mathematical modelling for decision support in the context of complex urban water systems.

  9. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface.

    Science.gov (United States)

    Bielefeldt, Angela R; Stewart, Michael W; Mansfield, Elisabeth; Scott Summers, R; Ryan, Joseph N

    2013-08-01

    A quartz crystal microbalance was used to determine the effects of different water quality parameters on the detachment of silver nanoparticles from surfaces representative of ceramic pot filters (CPFs). Silver nanoparticles stabilized with casein were used in the experiments. The average hydrodynamic diameter of the nanoparticles ranged from 20 nm to 100 nm over a pH range of 6.5-10.5. The isoelectric point was about 3.5 and the zeta potential was -45 mV from pH 4.5 to 9.5. The silver nanoparticles were deposited onto silica surfaces and a quartz crystal microbalance was used to monitor silver release from the surface. At environmentally relevant ranges of pH (4.8-9.3), ionic strength (0 and 150 mol/m(3) NaNO3 or 150 mol/m(3) Ca(NO3)2), and turbidity (0 and 51.5 NTU kaolin clay), the rates of silver release were similar. A high concentration of sodium chloride and bacteria (Echerichia coli in 10% tryptic soy broth) caused rapid silver release. Water containing sodium hypochlorite removed 85% of the silver from the silica surface within 3 h. The results suggest that contact between CPFs and prechlorinated water or bleach CPF cleaning should be avoided.

  10. EFFECT OF SEALED MUNICIPAL WASTE LANDFILL ON THE QUALITY OF UNDERGROUND WATER

    Directory of Open Access Journals (Sweden)

    Elżbieta Halina Grygorczuk-Petersons

    2016-01-01

    Full Text Available The aim of the study was to evaluate the impact of the landfill on the groundwater environment. The assessment of water status in the region of landfill sealed with a layer of clay with a thickness of 0.5 m, was based on the own research and monitoring received from the municipal office, and conducted in 2007–2010. Waters flowing out of the landfill revealed an increase in pollution indicators such as: total organic carbon (TOC, concentrations of PAHs and heavy metals including zinc, cadmium, and chromium. It was demonstrated that the landfill sealed with a clay layer does not reduce the outflow of leachate to groundwater, but also that the purity of these waters is influenced by increased agricultural activity in the areas adjacent to the landfill.

  11. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  12. SF Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  13. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  14. Water Quality Trading Toolkit for Permit Writers

    Science.gov (United States)

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  15. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  16. Effects of stock use and backpackers on water quality in wilderness in Sequoia and Kings Canyon National Parks, USA.

    Science.gov (United States)

    Clow, David W; Forrester, Harrison; Miller, Benjamin; Roop, Heidi; Sickman, James O; Ryu, Hodon; Domingo, Jorge Santo

    2013-12-01

    During 2010-2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use (P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.

  17. Assessing the effectiveness of regulatory controls on farm pollution using chemical and biological indices of water quality and pollution statistics.

    Science.gov (United States)

    Foy, R H; Lennox, S D; Smith, R V

    2001-08-01

    Water quality was measured in 42 streams in the Colebrooke and Upper Bann catchments in Northern Ireland over the period 1990-1998. Despite ongoing pollution control measures, biological water quality, as determined by the invertebrate average score per taxon (ASPT) index, did not improve and there was no appreciable decline in recorded farm pollution incidents. However, the lack of decline in pollution incidents could reflect changes in detection policy, as a greater proportion of incidents were recorded from less polluting discharges such as farm-yard runoff. In contrast, there was an improvement during 1997 and 1998 in annual chemical water quality classification based on exceedence values (90th percentiles) for dissolved oxygen, ammonium and BOD concentrations. In 1998, 11.9% of streams were severely polluted compared to 26.2% in 1990, while the proportion classed as of salmonid water quality, increased from 40.5% in 1990 to 59.6% in 1998. Although water quality in 1996 did not improve relative to 1990 values, there was a notable increasing trend from 1990 in the numbers of samples taken during the summer which had good water quality with low ammonium ( 70% sat). The trend for samples with low BOD (<4 mgl(-1)) was more erratic, but an improvement was apparent from 1994. These improvements in chemical water quality suggest that point-source farm pollution declined after 1990. The fact that this was not reflected in stream biology may reflect the limited time scale for biological recovery. An important factor preventing biological recovery may be the high pollution capacity of manures and silage effluent, so that even reduced numbers of farm pollution incidents can severely perturb stream ecosystems. The intractable nature of farm pollution suggests that there is a need to consider an interactive approach to problem resolution involving both farmers and regulators.

  18. Effect of Geogenic Factors on Water Quality and Its Relation to Human Health around Mount Ida, Turkey

    Directory of Open Access Journals (Sweden)

    Alper Baba

    2017-01-01

    Full Text Available Water–rock interactions strongly influence water quality. Waters originating from highly altered zones affect human health. Mount Ida region in western Anatolia is an example for such geogenic interactions and additional anthropogenic impacts. A water quality monitoring study was held and a total of 189 samples were collected from 63 monitoring stations to characterize the quality of water resources and its relation with human health. The results indicated that waters originating from altered volcanic rocks that are mainly used for drinking purposes have low pH, high conductivity and elevated trace element levels. In addition, a number of acidic mining lakes were formed in the open pits of abandoned mine sites in the study area and pyrite oxidation in altered volcanic rocks resulted in extremely acidic, high mineral content and toxic waters that demonstrate an eminent threat for the environmental health in the area. Overall, the water quality constituents in Mount Ida region had a spatially variable pattern and were locally found to exceed the national and international standards, mainly due to geogenic alteration zones and anthropogenic intervention.

  19. Effects of Artificial Destratification on Water Quality at East Sidney Lake, New York

    Science.gov (United States)

    1993-09-01

    Schindler 1974, Dillon u and Rigler 1974, Chapra and Robertson 1977). Numerous techniques for e restoration of eutrophic systems have been evaluated and...the assessment of design criteria and impacts on thermal structure, in support of numerical methods being used to evaluate system performance...3 2-Project Location and Description ......................... 4 3-Materials and Methods ................................ 6 0 Water

  20. Improved or unimproved urban areas effect on soil and water quality

    Science.gov (United States)

    Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without negative im...

  1. Effects on Sucrose Metabolism,Dry Matter Distribution and Fruit Quality of Tomato Under Water Deficit

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yan; LI Tian-lai; ZHANG Jie; WANG Lei; CHEN Yuan-hong

    2003-01-01

    Four irrigation treatments were designed with 2, 4, 6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose and fructose content of tomato's fruit were increased but sucrose content was decreased with fruit growth and development. In different stages, carbohydrate content of tomato fruit in the treatment 3 was the highest, in the treatment 2 was higher, and in the other treatments was the lowest. SS(sucrose synthase) activity was decreased but SPS(sucrose phosphate synthase) activity was increased with development of tomato. SS and SPS activity were increased but acid invertase and neutral invertase activity of ripe stage were decreased under deficit irrigation. Glucose and fructose content were increased in leaves of tomato under water deficit.Soluble sugars, organic acid and the ratio of sugar/acid in tomato fruits were increased and dry matter accumulation of plant was enhanced under water deficit. But the growth of fruits upside the plant and its dry matter accumulation were badly affected under water stress.

  2. Water quality effects of switchgrass intercropping on pine forest in Coastal North Carolina.

    Science.gov (United States)

    Augustine Muwamba; Devendra Amatya; George M Chescheir; Jamie Nettles; Timothy Appelboom; Herbert Ssegane; Ernest Tollner; Mohamed Youssef; Francois Birgand; R. Wayne Skaggs; Shiying Tian

    2017-01-01

    Interplanting a cellulosic bioenergy crop (switchgrass, Panicum virgatum L.) between loblolly pine (Pinus taeda L.) rows could potentially provide a sustainable source of bio-feedstock without competing for land currently in food production. The objectives of this study were to: (1) quantify the concentrations and loads of drainage water nitrogen (N) and phosphorus (...

  3. The water quality and quantity effects of biofuel operations in pine plantations of the southeastern USA

    Science.gov (United States)

    J. Nettles; M. Youssef; J. Cacho; J. Grace; Z. Leggett; E. Sucre

    2011-01-01

    Working alongside operational trials, a comprehensive research programme was developed to evaluate sustainability, life-cycle analysis, soil productivity, wildlife, and water resource impacts. The hydrology field studies consist of three sets of forested watersheds, each with mid-rotation pine reference, switchgrass (Panicum virgatum) interplanted, typical...

  4. Petal abscission in rose flowers: effects of water potential, light intensity and light quality

    NARCIS (Netherlands)

    Doorn, van W.G.; Vojinovic, A.

    1996-01-01

    Petal abscission was studied in roses (Rosa hybrida L.), cvs. Korflapei (trade name Frisco), Sweet Promise (Sonia) and Cara Mia (trade name as officially registered cultivar name). Unlike flowers on plants in greenhouses, cut flowers placed in water in the greenhouse produced visible symptoms of wat

  5. Effect of alteration zones on water quality: A case study from Biga Peninsula, Turkey

    OpenAIRE

    Baba, Alper; Gündüz, Orhan

    2010-01-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Çan volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in KirazlI area (KirazlI and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity...

  6. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  7. Land use change and its effects on water quality in typical inland lake of arid area in China.

    Science.gov (United States)

    Cui, Hong; Zhou, Xiaode; Guo, Mengjing; Wei, Wu

    2016-07-01

    Land-use change is very important for determining and assessing the influence of human activity on aquatic environment of rivers and lakes. The present work with Bosten River basin as the subject, analyzes features of dynamic land-use change of the basin from 1993 to 2013, in order to study the influence of land-use pattern change on the basin water quality, according to the land-use/land-cover(LUCC) chart from 2000 to 2013 made by ArcGIS and ENVI. It shows cultivated land, wetland and forestland constitute most of Bosten River basin, taking up over 41.7% of the total; from 1993-2000, LUCC of the basin is relatively small, with an increase of cultivated land, residential-industry land, water wetlands by 15.09%-18.33%,most of which are transformed from forestland, grassland and unused land; from 2000-2013, LUCC of the basin is relatively significant, with a continuing and bigger increase of cultivated land and Residential-industry area, most of which are transformed from water wetlands and unused land. Based on analysis of landuse pattern and water quality index, it can be told that water pollution is positively correlated to cultivated land and residential-industry area and negatively correlated to water and grassland. Also, the influence of land-use pattern change on water quality has been discussed, whose finding can serve as the scientific evidence for land-use optimization and water pollution control.

  8. Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality.

    Science.gov (United States)

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Keener, Harold M; Klingman, Michael; Dick, Warren A

    2012-12-01

    Melamine resin (MR) is introduced to the environment from many industrial effluents, including waste paint sludge (WPS) from the automobile industry. Melamine resin contains a high nitrogen (N) content and is a potential N source during composting. In this study, two carbon sources, waste paper (WP) and plant residue (PR), were used to study their effects on composting of WPS. Additional work tested the WPS-composts effects on plant growth and soil water quality. After 84 days of composting, 85% and 54% of the initial MR was degraded in WP- and PR-composts, respectively. The limiting factor was that the MR created clumps during composting so that decomposition was slowed. Compared to the untreated control, both WP- and PR-composts increased growth of cucumber (Cucumis sativus), radish (Raphanus sativus) and lettuce (Lactuca sativa). Concentrations of trace elements in plants and soil water did not rise to a level that would preclude WPS-composts from being used as a soil amendment.

  9. Research Note Effect of drought and fires on the quality of water in Lithuanian rivers

    Science.gov (United States)

    Sakalauskiene, G.; Ignatavicius, G.

    In August and September 2002, concentrations of heavy metals (copper, lead, and zinc) were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water.

  10. EFFECT OF SOAKING PROCESS IN WATER ON THE ACOUSTICAL QUALITY OF WOOD FOR TRADITIONAL MUSICAL INSTRUMENTS

    Directory of Open Access Journals (Sweden)

    Mehran Roohnia

    2011-04-01

    Full Text Available The damping coefficient of the first mode in the longitudinal vibration of mulberry and walnut woods was characterized to find justifications for the water soaking of woods in traditional musical instrument industries in Iran. Visually clear and sound beams were prepared from Morus alba and Juglans regia, and the damping coefficient in the temporal field was evaluated before and after three continuous cycles of soaking of specimens in distilled water (24 hours, pH 7, and temperature 50 oC. Experiments were conducted with free longitudinal vibration using the free-free bar method in 360×20×20 (L×R×T dimensions. Soaking cycles homogenized and decreased the damping coefficient in both species. On the basis of such results, the suitability of water soaked specimens is discussed in traditional musical instrument industries in Iran, taking into the account the longitudinal sound velocity, modulus of elasticity, and density affecting the acoustic limits. These two series of testing specimens were suitable in resonators and xylophone bars for backs, sides, and ribs and not for top plates, unless as the outstanding piece, since they marginally meet the density, sound velocity and damping coefficient limits qualified for those applications.

  11. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  12. Effects of land use change on streamflow and stream water quality of a coastal catchment

    CSIR Research Space (South Africa)

    Petersen, Chantel R

    2017-01-01

    Full Text Available data for the period 1980–2013 were available for the Touws River (K3H005) and for 1998–2013 for the Duiwe River (K3H011) (Fig. 1). Variables used were: electrical conductivity (EC), pH, total alkalinity and the dissolved inorganic ions measured... annual runoff, which was estimated from mean annual rainfall using regional rainfall–runoff relationships developed for water resource studies (see Scott et al., 1998a, and updated by Nel et al., 2013) was used to estimate the pre- development mean...

  13. Using multivariate techniques to assess the effects of urbanization on surface water quality: a case study in the Liangjiang New Area, China.

    Science.gov (United States)

    Luo, Kun; Hu, Xuebin; He, Qiang; Wu, Zhengsong; Cheng, Hao; Hu, Zhenlong; Mazumder, Asit

    2017-04-01

    Rapid urbanization in China has been causing dramatic deterioration in the water quality of rivers and threatening aquatic ecosystem health. In this paper, multivariate techniques, such as factor analysis (FA) and cluster analysis (CA), were applied to analyze the water quality datasets for 19 rivers in Liangjiang New Area (LJNA), China, collected in April (dry season) and September (wet season) of 2014 and 2015. In most sampling rivers, total phosphorus, total nitrogen, and fecal coliform exceeded the Class V guideline (GB3838-2002), which could thereby threaten the water quality in Yangtze and Jialing Rivers. FA clearly identified the five groups of water quality variables, which explain majority of the experimental data. Nutritious pollution, seasonal changes, and construction activities were three key factors influencing rivers' water quality in LJNA. CA grouped 19 sampling sites into two clusters, which located at sub-catchments with high- and low-level urbanization, respectively. One-way ANOVA showed the nutrients (total phosphorus, soluble reactive phosphorus, total nitrogen, ammonium nitrogen, and nitrite), fecal coliform, and conductivity in cluster 1 were significantly greater than in cluster 2. Thus, catchment urbanization degraded rivers' water quality in Liangjiang New Area. Identifying effective buffer zones at riparian scale to weaken the negative impacts of catchment urbanization was recommended.

  14. Effect of hot water surface pasteurization of whole fruit on shelf life and quality of fresh-cut cantaloupe.

    Science.gov (United States)

    Fan, X; Annous, B A; Beaulieu, J C; Sites, J E

    2008-04-01

    Cantaloupes are associated with recent outbreaks of foodborne illnesses and recalls. Therefore, new approaches are needed for sanitization of whole and cut fruit. In the present study, whole cantaloupes were submerged into water in the following 3 conditions: 10 degrees C water for 20 min (control), 20 ppm chlorine at 10 degrees C for 20 min, and 76 degrees C water for 3 min. Populations of microflora were measured on the rinds of the whole cantaloupes. Quality and microbial populations of fresh-cut cantaloupes prepared from whole fruit were analyzed after 1, 6, 8, 10, 13, 16, and 20 d of storage at 4 degrees C. The hot water significantly reduced both total plate count (TPC) and yeast and mold count on rind of whole fruits while chlorine or cold water wash did not result in a significant reduction of microbial population. Fresh-cut pieces prepared from hot water-treated cantaloupes had lower TPC than the other 2 treatments in the later storage periods (days 13 to 20) in 2 of 3 trials. The hot water treatment of whole fruits was inconsistent in reducing yeast and mold count of fresh-cut pieces. Soluble solids content, ascorbic acid content, fluid loss, and aroma and appearance scores were not consistently affected by either hot water or chlorine treatment. Our results suggested that hot water pasteurization of whole cantaloupes frequently resulted in lower TPCs of fresh-cut fruit during storage and did not negatively affect quality of fresh-cut cantaloupes.

  15. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  16. The Impact of Traditional Septic Tank Soakaway Systems and the Effects of Remediation on Water Quality in Ireland

    Science.gov (United States)

    Kilroy, Kate; Keggan, Mary; Barrett, Maria; Dubber, Donata; Gill, Laurence W.; O'Flaherty, Vincent

    2014-05-01

    In Ireland the domestic wastewater of over 1/3 of the population is treated by on-site systems. These systems are based on a traditional design for disposal of domestic wastewater and rely on the surrounding subsoil for further treatment. Inefficient treatment is often associated with these systems and can cause pollution of local aquifers and waterways. The effluent nutrient load can contribute to eutrophication, depletion of dissolved oxygen and excessive algae growth in surface water bodies. Human enteric pathogens associated with faecal pollution of water sources may promote the outbreak of disease through contamination of drinking water supplies. The subsoil attenuation plays an important role in the protection of groundwater from effluent pollution. Therefore, as over 25% of the countries domestic water supplies are provided by groundwater, the protection of groundwater resources is crucial. This project involves both the assessment of traditional septic tank soakaway systems and the effects of remediation in low permeability subsoil settings on water quality in Ireland. The study aims to confirm by microbial source tracking (MST), the source (human and/or animal) of faecal microorganisms detected in groundwater, surface water and effluent samples, and to monitor the transport of pathogens specific to on-site wastewater outflows. In combination with MST, the evaluation of nitrification and denitrification in surrounding soil and effluent samples aims to assess nitrogen removal at specific intervals; pre-remediation and post-remediation. Two experimental sites have been routinely sampled for effluent, soil and groundwater samples as well as soil moisture samples using suction lysimeters located at various depths. A robust and reproducible DNA extraction method was developed, applicable to both sites. MST markers based on host-specific Bacteriodales bacteria for universal, human and cow-derived faecal matter are being employed to determine quantitative target

  17. Simulating the Effect of Alternative Climate Change Scenarios on Pollutant Loading Reduction Requirements for Meeting Water Quality Standards Under USEPA's Total Maximum Daily Load Program

    Science.gov (United States)

    Gronewold, A. D.; Alameddine, I.; Anderson, R.; Wolpert, R.; Reckhow, K.

    2008-12-01

    The United States Environmental Protection Agency (USEPA) total maximum daily load (TMDL) program requires that individual states assess the condition of surface waters and identify those which fail to meet ambient water quality standards. Waters failing to meet those standards must have a TMDL assessment conducted to determine the maximum allowable pollutant load which can enter the water without violating water quality standards. While most of the nearly 30,000 TMDL assessments completed since 1995 use mechanistic or empirical water quality models to forecast water quality conditions under alternative pollutant loading reduction scenarios, few, if any, also simulate water quality conditions under alternative climate change scenarios. As a result, model-based loading reduction requirements (which serve as the cornerstone for implementing water resource management plans, and initiating environmental management infrastructure projects), believed to improve water quality in impaired waters and reinstate their designated use, may misrepresent the actual required reduction when future climate change scenarios are considered. For example, recent research indicates a potential long term future increase in both the number of days between, and the intensity of, individual precipitation events. In coastal terrestrial and aquatic ecosystems, such climate conditions could lead to an increased accumulation of pollutants on the landscape between precipitation events, followed by a washoff event with a relatively high pollutant load. On the other hand, anticipated increases in average temperature and evaporation rate might not only reduce effective rainfall rates (resulting in less energy for transporting pollutants from the landscape) but also reduce the tidal exchange ratio in shallow estuaries (many of which are valuable recreational, commercial, and aesthetic natural resources). Here, we develop and apply a comprehensive watershed-scale model for simulating water quality in

  18. Water quality management system; Suishitsu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H.; Hanawa, T.; Hatano, K.; Fujiu, M. [Meidensha Corp., Tokyo (Japan)

    1997-12-19

    Water quality management system designed in consideration of compliance with the environmental ISO is outlined. The water quality management system is positioned at the center, connected to water quality monitors that are deployed at various parts of the water supply facility, and performs the real-time display of information about water quality and the operating status of the water quality monitors for every one of the monitoring locations. The communication software run on this system supports 30 water quality monitors and performs uninterrupted surveillance using dedicated lines. It can also use public lines for periodic surveillance. Errors in communication if any are remedied automatically. A pipeline diagnosing/estimating function is provided, which utilizes water quality signals from received water quality monitors for estimating the degree of corrosion of pipelines in the pipeline network. Another function is provided of estimating water quality distribution throughout the pipeline network, which determines the residual chlorine concentration, conductivity, pH level, water temperature, etc., for every node in the pipeline network. A third function estimates water quality indexes, evaluating the trihalomethane forming power through measuring the amounts of low-concentration organic matters and utilizing signals from low-concentration UV meters in the water purification process. 3 refs., 7 figs.

  19. Effects of flow modification on a cattail wetland at the mouth of Irondequoit Creek near Rochester, New York: Water levels, wetland biota, sediment, and water quality

    Science.gov (United States)

    Coon, William F.

    2004-01-01

    An 11-year (1990-2001) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) wetland at the mouth of Irondequoit Creek, was conducted to document the effects that flow modifications, including installation of a flow-control structure (FCS) in 1997 and increased diversion of stormflows to the backwater areas of the wetland, would have on the wetland's ability to decrease chemical loads transported by Irondequoit Creek into Irondequoit Bay on Lake Ontario. The FCS was designed to raise the water-surface elevation and thereby increase the dispersal and detention of stormflows in the upstream half of the wetland; this was expected to promote sedimentation and microbial utilization of nutrients, and thereby decrease the loads of certain constituents, primarily phosphorus, that would otherwise be carried into Irondequoit Bay. An ecological monitoring program was established to document changes in the wetland's water levels, biota, sedimentation rates, and chemical quality of water and sediment that might be attributable to the flow modifications.Water-level increases during storms were mostly confined to the wetland area, within about 5,000 ft upstream from the FCS. Backwater at a point of local concern, about 13,000 ft upstream, was due to local debris jams or constriction of flow by bridges and was not attributable to the FCS.Plant surveys documented species richness, concentrations of nutrients and metals in cattail tissues, and cattail productivity. Results indicated that observed differences among survey periods and between the areas upstream and downstream from the FCS were due to seasonal changes in water levels—either during the current year or at the end of the previous year's growing season—that reflected the water-surface elevation of Lake Ontario, rather than water-level control by the FCS. Results showed no adverse effects from the naturally high water levels that prevail annually during the spring and summer in the wetland

  20. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities.

    Science.gov (United States)

    Liu, Yaoze; Engel, Bernard A; Flanagan, Dennis C; Gitau, Margaret W; McMillan, Sara K; Chaubey, Indrajeet

    2017-12-01

    Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP

  1. Assessing large spatial scale landscape change effects on water quality and quantity response in the lower Athabasca River basin.

    Science.gov (United States)

    Seitz, Nicole E; Westbrook, Cherie J; Dubé, Monique G; Squires, Allison J

    2013-07-01

    Increased land use intensity has been shown to adversely affect aquatic ecosystems. Multiple landscape stressors interact over space and time, producing cumulative effects. Cumulative Effects Assessment (CEA) is the process of evaluating the impact a development project may have on the ecological surroundings, but several challenges exist that make current approaches to cumulative effects assessment ineffective. The main objective of this study was to compare results of different methods used to link landscape stressors with stream responses in a highly developed watershed, where past work has shown that the river has experienced significant water quality and quantity changes to improve approaches to CEA. The study site was the lower reaches of the Athabasca River, Canada that have been subjected to a diverse range of intense anthropogenic developments since the late 1960s. Linkages between landscape change and river response were evaluated using correlation analyses, stepwise, multiple regression, and regression trees. Notable landscape changes include increased industrial development and forest cut-blocks, made evident from satellite imagery and supporting ancillary data sets. Simple regression analyses showed water use was closely associated with total phosphorus (TP) and Na(+) concentrations, as well as specific conductance. The regression trees for total organic carbon (TOC), TP, and Na(+) showed that the landscape variables that appear as the first characteristic were the same variables that showed significant relations for their respective simple regression models. Simple, stepwise, and multiple regressions in conjunction with regression trees were useful in this study for capturing the strongest associations between landscape stressors and river response variables. The results highlight the need for improved scaling methods and monitoring strategies crucial to managing cumulative effects to river systems. Copyright © 2012 SETAC.

  2. Effects of Weathering at Waste Rock Dump on Water Quality Inside the Mine Wastes; A Case Study in Korea

    Science.gov (United States)

    Yim, G.; Cheong, Y.; Park, H.; Ji, S.; Lee, H.

    2008-05-01

    This study was carried out to investigate the route of acid rock drainage production and some of the important factors at the abandoned Geo-pung copper mine in Okcheon, Korea. In this research area, planting and remediation have been carried out to prevent environmental pollution, but these effects turned out to be a failure and that acid rock drainage is observed around waste rock dump and planted vegetation is dying. Currently, the slope of mine waste rock dump in the study site is about 40°. It is composed of particles with a variety of shapes, with the surface exposure to atmosphere being transformed to oxide minerals due to weathering. Since groundwater level underneath the mine wastes is directly related to rainfall, a comparative evaluation of weather records and groundwater level data obtained using on-site measuring device (CTD diver) would allow estimation of locational media-specific pattern of rainfall effect in term of infiltration flux and time of threshold impact on groundwater. Sampling and analysis of there borehole water were conducted in July and September, 2007. It was found that all of the borehole water had highly variable levels of Fe (0.4-588 mg/l), Al (8.2-41.9 mg/l), Cu (6.0-32.2 mg/l), Zn (22.2-226.7 mg/l) and other elements. Also, in general, pH of the borehole waters decreased while electric conducivity measured. Such a high variance in the water quality among different borehole water suggests that geochemical environment inside the mine wastes is largely dependent on the local variation in rainfall infiltration of waste rock dump and underneath groundwater level. Vadose zone which has vertical variation of 2-4 m is directly impacted by amount of rainfall and maintains oxidizing condition due to diffusion of oxygen carred by rainfall. Therefore, sulfide minerals within in the zone continued to be oxidized, producing acid rock drainage. To prevent production of acid rock drainage of mine waste, it is necessary to control infiltration of

  3. Pulse versus continuous peracetic acid applications: Effects on rainbow trout performance, biofilm formation and water quality

    DEFF Research Database (Denmark)

    Liu, Dibo; Straus, David L.; Pedersen, Lars-Flemming

    2017-01-01

    in triplicate flow-through tanks stocked with rainbow trout. The gentler and shorter water cortisol increase measured along twice-per-week pulse applications of 1 mg L−1 PAA indicated a progressive adaptation of fish. In contrast, the continuous application of 0.2 mg L−1 PAA caused no stress to fish....... Meanwhile, no mortality and no impact on growth or innate cellular immunity were observed. The pulse applications restricted biofilm formation, and partially inhibited nitrification. Additionally, the highest oxygen concentration and stable pH were observed. In contrast, the continuous application promoted...... biofilm formation, and caused a pH increase and intermediate oxygen concentration. The contrast was probably due to different susceptibility of microbes to PAA-induced oxidative stress. To summarize, pulse PAA applications cause minor stress in fish, but have advantages over continuous application...

  4. In situ monitoring of the effects of water quality on benthic detrital decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.J.; Mastropaolo, C.; McEnery, M.; Tietjen, J.H.; Garrison, J.

    1978-01-01

    Detrital decomposition is an important marine benthic process which contributes to the fertility of seas, particularly in estuarian and coastal waters. The process involves a complex community of microorganisms and small animals which interact with each other in a manner similar to that which occurs in forest litter and in composts. Plastic chambers for measuring decomposition rates of Spartina alterniflora were placed on the bottom of the sea at four sites in the northeast: Towd Point, Southampton, New York; the effluent quarry of the Millstone power plant on Niantic Bay, Long Island Sound; Winsor Cove, Cataumet, Massachusetts (the site of an oil spill); and Sippewissett marsh, Falmouth, Massachusetts (a control site for Winsor Cove). The stations were visited monthly. By various means we measured the rates of decomposition and growth of sediment microbial and animal populations.

  5. Land use effects on quality and quantity aspects of water resources in headwater areas of the Jaguari River Basin

    Science.gov (United States)

    Figueiredo, R. D. O.; Camargo, P. B. D.; Piccolo, M. C.; Zuccari, M. L.; Ferracini, V. L.; Cruz, P. P. N. D.; Green, T. R.; Costa, C. F. G. D.; Reis, L. D. C.

    2015-12-01

    In the context of the recent drought conditions in southeastern Brazil, EMBRAPA (Brazilian Agricultural Research Corporation) in partnership with two Brazilian universities (USP/CENA and UNIFAL) planned a research project, called BaCaJa, to understand the hydrobiogeochemistry processes that occur in small catchments (macro invertebrates as indicators of water quality. Based on a synthesis of the results, the project team intends to point out the environmental impacts and contribute recommendations of management for the focused region to conserve water resources in terms of quality and quantity.

  6. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: a mesocosm experiment.

    Science.gov (United States)

    Ahn, C; Mitsch, W J; Wolfe, W E

    2001-03-01

    We investigated the use of flue-gas-desulfurization (FGD) by-products from electric power plant wet scrubbers as liners in wetlands constructed to improve water quality. Mesocosm experiments were conducted over two consecutive growing seasons with different phosphorus loadings. Wetland mesocosms using FGD liners retained more total and soluble reactive phosphorus, with lower concentrations in the leachate (first year) and higher concentrations in the surface water (second year). Leachate was higher in conductivity (second year) and pH (both years) in lined mesocosms. Surface outflow did not reveal any significant difference in physicochemical characteristics between lined and unlined mesocosms. There was no significant difference in total biomass production of wetland plants between lined and unlined mesocosms although lower average stem lengths and fewer stems bearing flowers were observed in mesocosms with FGD liners. Potentially phytotoxic boron was significantly higher in the belowground biomass of plants grown in lined mesocosms with low phosphorus loading. A larger-scale, long-term wetland experiment close to full scale is recommended from this two-year mesocosm study to better predict the potentially positive and negative effects of using FGD by-products in constructed wetlands.

  7. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  8. Effects of industrial waste disposal on the water quality of the river Kolak

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Sabnis, M.M.; Mandalia, A.V.; Desai, B.N.

    influence with strong flood and ebb currents is observed upto about 3.5 km only, from the mouth. The effluent if discharged in this region would be effectively washed to the sea during the ebb tide...

  9. Effects of irrigating with wastewater on ground-water quality at Fort Carson Military Reservation golf course near Colorado Springs, Colorado

    Science.gov (United States)

    Edelmann, Patrick

    1984-01-01

    Fort Carson Military Reservation has used treatment wastewater for irrigation of the Fort Carson golf course since 1971. The effect of applied wastewater on groundwater quality at Fort Carson golf course was evaluated using water levels and water-quality data from 20 observation wells. The water-quality constituents analyzed included dissolved solids, major ions, nutrients, detergents, dissolved organic carbon, chemical and biological oxygen demand, and trace elements. Effects of the applied wastewater on ground-water quality for most constituents were obscured by large areal variations and by high concentrations of the constituents upgradient from the golf course. The sources of nitrogen observed in the ground water beneath the golf course were applied wastewater, applied fertilizer, leachate from the organic-rich shale, and from unknown upgradient sources. Nitrogen loading at the golf course from wastewater and applied fertilizer was estimated to be 18 ,900 pounds per year. After 10 years, less than 1 percent of the nitrogen applied was actually present in the ground water. Loss of nitrogen to the atmosphere as nitrous oxides, absorption, and to fixation by grass resulted in the much smaller concentrations observed in the ground water. (USGS)

  10. Water quality characteristics of rivers and ponds in Japan

    Institute of Scientific and Technical Information of China (English)

    幸彦; 杜茂安; 玄正

    2004-01-01

    In Japan, various countermeasures have been taken to improve the water quality of public waters such as rivers and lakes. Though water quality has improved, it is still insufficient. In summer, eutrophication is seen in lakcs and inner bays, as well as rivers. As a countermeasure to prevent eutrophication, the removal treatment of nutrient salts such as nitrogen and phosphorus is done, in addition to organic substance elimination in the domestic sewerage system. This report will show the water quality characteristics of rivers and ponds in Japan. It is considered that these investigative results are effective when the water quality improvement of the stabilization ponds where eutrophication occurs are examined in China.

  11. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; DeSimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, Marylynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  12. The effect of snowmelt on the water quality of Filson Creek and Omaday Lake, northeastern Minnesota

    Science.gov (United States)

    Siegel, D.I.

    1981-01-01

    Sulfate concentration and pH were determined in surface water, groundwater, and precipitation samples collected in the Filson Creek watershed to evaluate the sources of sulfate in Filson Creek. During and immediately after snowmelt, sulfate concentrations in Filson Creek increased from about 2 to 14 mg/l. Concurrently, H+ ion activity increased from an average of 10−6.6 to 10−5.5. These changes suggest that sulfate acidity is concentrated in the snowpack at snowmelt, which is similar to changes reported in Scandinavia in areas subject to acid precipitation. Mass balance calculations indicate that the sulfate contribution from groundwater during snowmelt was minimal in comparison to that from snow. During base flow, sulfate did not appreciably increase from the headwaters of Filson Creek to the mouth, even though sulfate was as high as 58 mg/l in groundwater discharging to the creek from surficial materials overlying a sulfide-bearing mineralized zone in the lower third of the watershed. Approximately 10.6 kg of sulfate per hectare per year was retained in 1977.

  13. Temperature and water quality effects in simulated woodland pools on the infection of Culex mosquito larvae by Lagenidium giganteum (Oomycetes: Lagenidiales) in North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D.R.; Axtell, R.C.

    1987-06-01

    Asexual stages of the California (CA) isolate of Lagenidium giganteum cultured on sunflower seed extract (SFE)-agar, were applied to outdoor pools containing Culex larvae near Raleigh, NC in August and September 1984. Infection rates among the larvae ranged from 19 to 74% at 2-4 days posttreatment and subsequent epizootics eliminated most of the newly hatched larvae for at least 10 days posttreatment. Substantial reductions in numbers of larvae and adult emergence were achieved from a single application of the fungus. Water quality and temperature data are presented. From laboratory assays of organically polluted water, the percent infection of Culex quinquefasciatus by the fungus was correlated with water quality and temperature. A logistic model of water quality (COD and NH/sub 3/-N) effects on infectivity rates by the CA isolate is described.

  14. Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment

    Science.gov (United States)

    Gallo, Erika L.; Lohse, Kathleen A.; Brooks, Paul D.; McIntosh, Jennifer C.; Meixner, Thomas; McLain, Jean E. T.

    2012-11-01

    SummaryStormwater drainage systems can have a large effect on urban runoff quality, but it is unclear how ephemeral urban streams alter runoff hydrochemistry. This problem is particularly relevant in semi-arid regions, where urban storm runoff is considered a renewable water resource. Here we address the question: how do stream channels alter urban runoff hydrochemistry? We collected synoptic stormwater samples during three rainfall-runoff events from nine ephemeral streams reaches (three concrete or metal, three grass, three gravel) in Tucson, Arizona. We identified patterns of temporal and spatial (longitudinal) variability in concentrations of conservative (chloride and isotopes of water) and reactive solutes (inorganic-N, soluble reactive phosphorous, sulfate-S, dissolved organic carbon (DOC) and nitrogen, and fecal indicator bacteria). Water isotopes and chloride (Cl) concentrations indicate that solute flushing and evapoconcentration alter temporal patterns in runoff hydrochemistry, but not spatial hydrochemical responses. Solute concentrations and stream channel solute sourcing and retention during runoff were significantly more variable at the grass reaches (CV = 2.3 - 144%) than at the concrete or metal (CV = 1.6 - 107%) or gravel reaches (CV = 1.9 - 60%), which functioned like flow-through systems. Stream channel soil Cl and DOC decreased following a runoff event (Cl: 12.1-7.3 μg g-1 soil; DOC: 87.7-30.1 μg g-1 soil), while soil fecal indicator bacteria counts increased (55-215 CFU g-1 soil). Finding from this study suggest that the characteristics of the ephemeral stream channel substrate control biogeochemical reactions between runoff events, which alter stream channel soil solute stores and the hydrochemistry of subsequent runoff events.

  15. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    Science.gov (United States)

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  16. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality.

    Science.gov (United States)

    Olaleye, Victor F; Oluyemi, Emmanuel A

    2010-03-01

    Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P cement factory catchment areas.

  17. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  18. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of t

  19. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  20. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales.

  1. Cost-effective solutions for water quality improvement in the Dommel river supported by sewer-WWTP-river integrated modelling

    NARCIS (Netherlands)

    Benedetti, L.; Langeveld, J.; Nieuwenhuijzen, van A.F.; Jonge, de J.; Weijers, S.; Klein, de J.J.M.; Nopens, I.; Flameling, T.; Zanten, van O.

    2013-01-01

    This project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the Dommel River (The Netherlands). Within the project, both acute and long-term impacts of the urban wastewater system on the chemical and ecological quality of the river are

  2. Cost-effective solutions for water quality improvement in the Dommel river supported by sewer-WWTP-river integrated modelling

    NARCIS (Netherlands)

    Benedetti, L.; Langeveld, J.; Nieuwenhuijzen, van A.F.; Jonge, de J.; Weijers, S.; Klein, de J.J.M.; Nopens, I.; Flameling, T.; Zanten, van O.

    2013-01-01

    This project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the Dommel River (The Netherlands). Within the project, both acute and long-term impacts of the urban wastewater system on the chemical and ecological quality of the river are s

  3. Effects of climate and nutrient load on the water quality of shallow lakes assessed through ensemble runs by PCLake

    NARCIS (Netherlands)

    Nielsen, A.; Trolle, D.; Bjerring, R.

    2014-01-01

    Complex ecological models are used to predict the consequences of anticipated future changes in climate and nutrient loading for lake water quality. These models may, however, suffer from nonuniqueness in that various sets of model parameter values may yield equally satisfactory representations of t

  4. Determining the quality of water in environmental measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Bonfig, K.W.; Kramp, E.

    1983-11-01

    The present high degree of pollution of our water resources due to environmental effects endangers the natural cleaning processes. With the growing demand for water from domestic, industrial and other users, certain minimum requirements must be postulated for the quality of water returned to the natural circuit. This requires continuous control and monitoring of the quality of water in many industrial and community areas, such as water treatment plants, for example. Measuring processes and equipment are used to an increasing degree here. This article reports on processes for determining important parameters for the quality of water. Processes with and without treatment of samples are mentioned.

  5. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p management strategy on the livelihoods of the riparian inhabitants.

  6. [Effects of riparian ecological restoration engineering with offshore wave-elimination weir on restoration area's water quality].

    Science.gov (United States)

    Tang, Hao; Zhang, Hui; Xie, Fei; Xu, Chi; Wang, Lei; Liu, Mao-Song

    2012-06-01

    Riparian ecological restoration engineering with offshore wave-elimination weir is an engineering measure with piled wave-elimination weir some meters away from the shore. This measure can dissipate waves, promote sediment deposition, and create an artificial semi-closed bay to restore vegetation in a riparian area which has hard dam and destroyed vegetation. Three habitat gradient zones, i. e., emerged vegetation zone, submerged vegetation zone, and open water area, can be formed after this engineering. In June 2010-May 2011, a field investigation was conducted on the water quality in the three zones in an ecological restoration area of Gonghu Bay, Taihu Lake. The water body inside the weir generally had lower concentrations of nitrite and nitrate but higher concentrations of ammonium and total nitrogen than the water body outside the weir. The water phosphorus concentration inside the weir was lower than that outside the weir in autumn and winter, while an opposite trend was observed in spring and summer. The coefficients of variation of the water body' s nitrite and orthophosphate concentration inside the weir decreased, and the annual maximum values of the water nitrite, nitrate, and orthophosphate concentrations inside the weir were lower than those outside the weir. On the contrary, the coefficients of variation of the water body's ammonium and total nitrogen concentrations inside the weir increased, and the annual maximum values of the water ammonium and total nitrogen concentrations inside the weir were higher than those outside the weir. To some extent, the restoration engineering could exacerbate the deterioration of the water quality indices such as ammonium and total nitrogen in the restoration area by the end of growth season

  7. Regional cost-effectiveness in transboundary water quality management for the Baltic Sea

    DEFF Research Database (Denmark)

    Hasler, Berit; Smart, James Christopher Rudd; Fonnesbech-Wulff, Anders

    scientists, is used to identify the most cost-effective configuration of abatement measures. BALTCOST utilises detailed regional and spatial data down to 10 x 10km grid cell level for all Baltic littoral countries. Modelling results suggest that it should be possible to achieve the BSAP load reduction......In 2007 HELCOM launched a plan for transboundary management of the Baltic Sea. This plan, called the Baltic Sea Action Plan (BSAP), aims amongst other things, to reduce eutrophication in the different regions of the Baltic Sea by reducing incoming nutrient loads from all discharging drainage basins....... This paper investigates the costeffective distribution of nutrient abatement measures between drainage basins and Baltic Sea regions, where the aim is to achieve the BSAP nutrient load reduction targets. The cost-minimisation model BALTCOST, an interdisciplinary development involving economists and natural...

  8. Modeling Water Quality in Rivers

    Directory of Open Access Journals (Sweden)

    Liren Yu

    2005-01-01

    Full Text Available This study reports a PC software, used in a Windows-based environment, which was developed based on the first order reaction of Biological Oxygen Demand (BOD and a modified Streeter and Phelps equation, in order to simulate and determine the variations of Dissolved Oxygen (DO and of the BOD along with the studied river reaches. The software considers many impacts of environmental factors, such as the different type of discharges (concentrated or punctual source, tributary contribution, distributed source, nitrogenous BOD, BOD sedimentation, photosynthetic production and benthic demand of oxygen, and so on. The software has been used to model the DO profile along one river, with the aim to improve the water quality through suitable engineering measure.

  9. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  10. [Microorganisms effect with probiotic potential in water quality and growth of the shrimp Litopenaeus vannamei (Decapoda: Penaeidae) in intensive culture].

    Science.gov (United States)

    Melgar Valdes, Carolina Esther; Barba Macías, Everardo; Alvarez-González, Carlos Alfonso; Tovilla Hernández, Cristian; Sánchez, Alberto J

    2013-09-01

    The use of probiotics has gained acceptance in aquaculture, particularly in maintaining water quality and enhancing growth in organisms. This study analyzed the effect of the commercial (EM, Japan) natural product composed by (Rhodopseudomonas palustris, Lactobacillus plantarum, Lactobacillus casei and Saccharomyces cerevisiae) added to the water, in order to determine its effect in water quality, sediment and growth of L. vannamei under intensive culture. The evaluation included three treatments with a weekly addition of EM: i) tanks without probiotics (C), ii) tanks with a dose of 4 L/ha (EM1) and iii) tanks with a dose of 10 L/ha (EM2). The treatment C was carried out three times, while treatments EM1 and EM2 were carried out four times. A total of 4 350 shrimps were measured for total length and weight, to calculate total and porcentual weight gain, daily weight gain, specific growth rate (TCE), and food conversion factor (FCA); besides, the survival rate was estimated. The use of probiotics allowed a shorter harvest time in treatments EM1 (90 d) and EM2 (105 d) with relation to the treatment C (120d). Treatments EM1 and EM2 were within the recommended intervals for culture, with respect to treatment C. The use of probiotic bacteria significantly regulated pH (EM1, 8.03 +/- 0.33; EM2, 7.77 +/- 0.22; C, 9.08 +/- 0.35) and reduced nitrate concentration (EM1, 0.64 +/- 0.25 mg/L; EM2, 0.39 +/- 0.26 mg/L; C, 0.71 mg/L). Water pH mostly explained the variance with respect to the treatments. Treatment EM2 presented the greatest removal of organic matter (1.77 +/- 0.45%), whereas the contents of extractable phosphorus increased significantly in treatment EM1 with 21.6 +/- 7.99 mg/kg and in treatment EM2 with 21.6 +/- 8.45 mg/kg with control relation (14.3 +/- 5.47). The shrimp growth was influenced by dissolved oxygen, salinity and pH in the sediment, establishing that salinity was the most important variable in the weight with a negative association. Treatment EM1

  11. Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  12. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  13. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir.

    Science.gov (United States)

    Liang, Shidong; Jia, Haifeng; Xu, Changqing; Xu, Te; Melching, Charles

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5-1030.6t·yr(-1); Total Phosphorus (TP): 23.3-31.0t·yr(-1); and Total Nitrogen (TN): 480-1918.0t·yr(-1). The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS) determination. The sources

  14. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  15. Pilot scale application of ozonated water wash - effect on microbiological and sensory quality parameters of processed iceberg lettuce during self-life

    OpenAIRE

    Särkkä-Tirkkonen, Marjo; Leskinen, Marita; Ölmez, Hulya

    2008-01-01

    The aim of the study was to assess the effect of ozonated water wash on the microbiological and sensory quality parameters of minimally processed iceberg lettuce in pilot scale in comparison to aqueous chlorine wash. Alternative solutions for chlorine are needed, since its use is prohibited in organic food processing. Iceberg lettuce samples were washed with three different ozone solutions and the water wash and the 100 ppm chlorine wash were used as control. Ozone generator based on corona d...

  16. Development of a water quality loading index based on water quality modeling.

    Science.gov (United States)

    Song, Tao; Kim, Kyehyun

    2009-03-01

    Water quality modeling is an ideal tool for simulating physical, chemical, and biological changes in aquatic systems. It has been utilized in a number of GIS-based water quality management and analysis applications. However, there is considerable need for a decision-making process to translate the modeling result into an understandable form and thereby help users to make relevant judgments and decisions. This paper introduces a water quality index termed QUAL2E water quality loading index (QWQLI). This new WQI is based on water quality modeling by QUAL2E, which is a popular steady-state model for the water quality of rivers and streams. An experiment applying the index to the Sapgyo River in Korea was implemented. Unlike other WQIs, the proposed index is specifically used for simulated water quality using QUAL2E to mainly reflect pollutant loading levels. Based on the index, an iterative modeling-judgment process was designed to make decisions to decrease input pollutants from pollutant sources. Furthermore, an indexing and decision analysis can be performed in a GIS framework, which can provide various spatial analyses. This can facilitate the decision-making process under various scenarios considering spatial variability. The result shows that the index can evaluate and classify the simulation results using QUAL2E and that it can effectively identify the elements that should be improved in the decision-making process. In addition, the results imply that further study should be carried out to automate algorithms and subsidiary programs supporting the decision-making process.

  17. River water quality modelling in developing a catchment water safety plan

    OpenAIRE

    Vieira, J. M. Pereira; Pinho, José L. S.

    2014-01-01

    The primary aim of a catchment water safety plan is to reduce risks within the catchment to protect the quality of drinking water sources at the intake point. Even where effective arrangements for catchment management and control have been implemented, unexpected deterioration in raw water quality can pose a risk to treated drinking water quality. Thus potential sources of pollution impacting the area of influence of the intake should be identified and monitored. An important part of any catc...

  18. Michigan lakes: An assessment of water quality

    Science.gov (United States)

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  19. Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin.

    Science.gov (United States)

    Romero, P; Navarro, J M; Pérez-Pérez, J; García-Sánchez, F; Gómez-Gómez, A; Porras, I; Martinez, V; Botía, P

    2006-12-01

    Differences between rootstocks, 'Cleopatra' mandarin and 'Carrizo' citrange, in soil-plant water relations and the influence of these factors on vigor, crop yield, fruit quality and mineral nutrition were evaluated in field-grown Clemenules mandarin trees irrigated at 100% of potential seasonal evaporation (ET(c)) (control treatment), or irrigated at 100% ET(c), except during Phases I and III of fruit growth and post-harvest when no irrigation was applied (deficit irrigation (DI) treatment), for 3 years. Differences between rootstocks in plant-soil water relations were the primary cause of differences among trees in vegetative development and fruit yield. After 3 years of DI treatment, trees on 'Cleopatra' showed more efficient soil water extraction than trees on 'Carrizo', and maintained a higher plant water status, a higher gas exchange rate during periods of water stress and achieved faster recovery in gas exchange following irrigation after water stress. The DI treatment reduced vegetative development more in trees on 'Carrizo' than in trees on 'Cleopatra'. Cumulative fruit yield decreased more in DI trees on 'Carrizo' (40%) than on 'Cleopatra' (27%). The yield component most affected by DI in 'Cleopatra' was the number of fruit, whereas in 'Carrizo' it depended on the severity of water stress reached in each phase (severe water stress in Phase I affected mainly the number of fruit, whereas it affected fruit size the most in Phase III). In the third year of DI treatment, water-use efficiency decreased sharply in trees on 'Carrizo' (70%) compared to trees on 'Cleopatra' (30%). Thus, trees on 'Cleopatra' were able to tolerate moderate water stress, whereas trees on 'Carrizo' were more sensitive to changes in soil water content.

  20. Feeding of the brine shrimp Artemia on yeast: effect of mechanical disturbance, animal density, water quality and light intensity

    OpenAIRE

    Coutteau, P. (Peter); Sorgeloos, P.

    1989-01-01

    Details are given of experiments conducted to determine the effects of tank culture conditions on the feeding of Artemia. Mechanical disturbance, animal density and water quality were found to affect the feeding rate of Artemia. The importance of culture conditions in maintaining a rate of food consumption which does not limit the growth of the brine shrimp is stressed.

  1. EFFECTS OF IRRIGATION WATER QUALITY (DIFFERENT SALINITY LEVELS AND BORON CONCENTRATIONS ON MORPHOLOGICAL CHARACTERISTICS OF GRAFTED AND NON-GRAFTED EGGPLANTS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available High yield cultivars with quite high resistance against pests and diseases, irrigation water salinity and deficit irrigation conditions are significant in plant production activities. Researches have been conducted also to improve the resistance of available cultivars. Since 1990s, researchers have tried to use low quality irrigation waters just because of deficit water resources and current trends in global warming and climate change. The basic target in all these researches is to reduce production costs and to improve quality and yields. Availability of low quality irrigation waters is a basic component of sustainable agricultural production. The present study was conducted in 40 liter pots under greenhouse conditions. Grafted and non-grafted eggplant seedlings were planted into these pots. Then, plants were irrigated with irrigations waters with different salinity levels (0.25, 1, 1.5, 2, 4, 6, 10 and 15 dS/m and boron concentrations (0, 1, 2, 4, 8, 16, 32 and 64 ppm. In this way, effects of different irrigation water qualities on plant morphological characteristics were investigated.

  2. Monitoring Lake Victoria Water Quality from Space: Opportunities for Strengthening Trans-boundary Information Sharing for Effective Resource Management

    Science.gov (United States)

    Mugo, R. M.; Korme, T.; Farah, H.; Nyaga, J. W.; Irwin, D.; Flores, A.; Limaye, A. S.; Artis, G.

    2014-12-01

    Lake Victoria (LV) is an important freshwater resource in East Africa, covering 68,800 km2, and a catchment that spans 193,000km2. It is an important source of food, energy, drinking and irrigation water, transport and a repository for agricultural, human and industrial wastes generated from its catchment. For such a lake, and a catchment transcending 5 international boundaries, collecting data to guide informed decision making is a hard task. Remote sensing is currently the only tool capable of providing information on environmental changes at high spatio-temporal scales. To address the problem of information availability for LV, we tackled two objectives; (1) we analyzed water quality parameters retrieved from MODIS data, and (2) assessed land cover changes in the catchment area using Landsat data. We used L1A MODIS-Aqua data to retrieve lake surface temperature (LST), total suspended matter (TSM), chlorophyll-a (CHLa) and diffuse attenuation coefficient (KD490) in four temporal periods i.e. daily, weekly, monthly and seasonal scales. An Empirical Orthogonal Function (EOF) analysis was done on monthly data. An analysis of land cover change was done using Landsat data for 3 epochs in order to assess if land degradation contributes to water quality changes. Our results indicate that MODIS-Aqua data provides synoptic views of water quality changes in LV at different temporal scales. The Winam Gulf in Kenya, the shores of Jinja town in Uganda, as well as the Mwanza region in Tanzania represent water quality hotspots due to their relatively high TSM and CHLa concentrations. High levels of KD490 in these areas would also indicate high turbidity and thus low light penetration due to the presence of suspended matter, algal blooms, and/or submerged vegetation. The EOF analysis underscores the areas where LST and water color variability are more significant. The changes can be associated with corresponding land use changes in the catchment, where for instance wetlands are

  3. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    Directory of Open Access Journals (Sweden)

    Jiabo Chen

    Full Text Available Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA, Principal component analysis (PCA, Pearson correlations, Multiple regression analysis (MRA and Redundancy analysis (RDA were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  4. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    Science.gov (United States)

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  5. Comparative analysis of regional water quality in Canada using the Water Quality Index.

    Science.gov (United States)

    de Rosemond, Simone; Duro, Dennis C; Dubé, Monique

    2009-09-01

    The Canadian Council of Ministers for the Environment (CCME) has developed a Water Quality Index (WQI) to simplify the reporting of complex water quality data. This science-based communication tool tests multi-variable water data against numeric water quality guidelines and/or objectives to produce a single unit-less number that represents overall water quality. The CCME WQI has been used to rate overall water quality in spatial and temporal comparisons of site(s). However, it has not been used in a comparative-analysis of exposure sites to reference sites downstream of point source discharges. This study evaluated the ability of the CCME WQI to differentiate water quality from metal mines across Canada at exposure sites from reference sites using two different types of numeric water quality objectives: (1) the water quality guidelines (WQG) for the protection of freshwater aquatic life and (2) water quality objectives determined using regional reference data termed Region-Specific Objectives (RSO). The application of WQG to the CCME WQI was found to be a good tool to assess absolute water quality as it relates to national water quality guidelines for the protection of aquatic life, but had more limited use when evaluating spatial changes in water quality downstream of point source discharges. The application of the RSO to the CCME WQI resulted in assessment of spatial changes in water quality downstream of point source discharges relative to upstream reference conditions.

  6. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Microbial quality of drinking water from groundtanks and tankers at source ... and lower educational standard were associated with poorer water quality, ... Keywords: drinking water; point of use; water quality; water quantity; hygiene; sanitation ...

  7. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples...... water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses...... a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD...

  8. Polymer microcantilevers for water quality monitoring

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-10-01

    Full Text Available The microcantilever project aims to develop novel polymer based microcantilevers able to detect E.coli in water samples for use as a rapid diagnostic for on-site water quality monitoring....

  9. National Water Quality Assessment (NAWQA) Program

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — National scope of NAWQA water-quality sample- and laboratory-result data and other supporting information obtained from NWIS systems hosted by individual Water...

  10. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  11. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    Science.gov (United States)

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  12. Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Arunkumar Shetty

    2015-02-01

    Full Text Available The fish assemblage and diversity in relation to water quality of three coastal rivers Sita, Swarna and Varahi of Udupi district, Karnataka, India was studied. 71 species representing 7 orders, 20 families and 41 genera were recorded from 21 sites along the three rivers. Species composition varied longitudinally in relation to the environmental factors of the habitat. The downstream change in the three rivers indicates that fish assemblage changed with increasing loss of riparian canopy cover and increasing agricultural land-use. The richness and abundance of fishes were correlated with land-use type, canopy cover, pH and turbidity. Diversion of water, discharge of domestic sewage and agricultural runoff were prominent among the disturbances that alter the habitat quality.

  13. Deriving Chesapeake Bay Water Quality Standards

    Science.gov (United States)

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  14. A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shidong, E-mail: emblembl@sina.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Jia, Haifeng, E-mail: jhf@tsinghua.edu.cn [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Xu, Changqing, E-mail: 2008changqing@163.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Xu, Te, E-mail: xt_lichking@qq.com [School of Environment, Tsinghua University, 1 Qinghuayuan, Haidian District, Beijing 100084 (China); Melching, Charles, E-mail: steve.melching17@gmail.com [Melching Water Solutions, 4030 W. Edgerton Avenue, Greenfield, WI 53221 (United States)

    2016-08-01

    Facing increasingly serious water pollution, the Chinese government is changing the environmental management strategy from solely pollutant concentration control to a Total Maximum Daily Load (TMDL) program, and water quality models are increasingly being applied to determine the allowable pollutant load in the TMDL. Despite the frequent use of models, few studies have focused on how parameter uncertainty in water quality models affect the allowable pollutant loads in the TMDL program, particularly for complicated and high-dimension water quality models. Uncertainty analysis for such models is limited by time-consuming simulation and high-dimensionality and nonlinearity in parameter spaces. In this study, an allowable pollutant load calculation platform was established using the Environmental Fluid Dynamics Code (EFDC), which is a widely applied hydrodynamic-water quality model. A Bayesian approach, i.e. the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is a high-efficiency, multi-chain Markov Chain Monte Carlo (MCMC) method, was applied to assess the effects of parameter uncertainty on the water quality model simulations and its influence on the allowable pollutant load calculation in the TMDL program. Miyun Reservoir, which is the most important surface drinking water source for Beijing, suffers from eutrophication and was selected as a case study. The relations between pollutant loads and water quality indicators are obtained through a graphical method in the simulation platform. Ranges of allowable pollutant loads were obtained according to the results of parameter uncertainty analysis, i.e. Total Organic Carbon (TOC): 581.5–1030.6 t·yr{sup −1}; Total Phosphorus (TP): 23.3–31.0 t·yr{sup −1}; and Total Nitrogen (TN): 480–1918.0 t·yr{sup −1}. The wide ranges of allowable pollutant loads reveal the importance of parameter uncertainty analysis in a TMDL program for allowable pollutant load calculation and margin of safety (MOS

  15. Evaluating the effects of woody biomass production for bioenergy on water quality and hydrology in the southeastern United States

    Science.gov (United States)

    Natalie Griffiths; C. Rhett Jackson; Menberu Bitew; Enhao Du; Kellie Vache' Jeffrey J. McDonnell; Julian Klaus; Benjamin M. Rau

    2016-01-01

    Forestry is a dominant industry in the southeastern United States, and there is interest in sustainably growing woody feedstocks for bioenergy in this region. Our project is evaluating the environmental sustainability (water quality, quantity) of growing and managing short-rotation (10-12 yrs) loblolly pine for bioenergy using watershed-scale experimental and modeling ...

  16. Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas

    Science.gov (United States)

    Scanlon, B. R.; Gates, J. B.; Reedy, R. C.; Jackson, W. A.; Bordovsky, J. P.

    2010-09-01

    Trade-offs between water-resource depletion and salinization need to be understood when promoting water-conservative irrigation practices. This companion paper assesses impacts of groundwater-fed irrigation on soil water and groundwater quality using data from the southern High Plains (SHP). Unsaturated zone soil samples from 13 boreholes beneath irrigated agroecosystems were analyzed for water-extractable anions. Salt accumulation in soils varies with irrigation water quality, which ranges from low salinity in the north (median Cl: 21 mg/L) to higher salinity in the south (median Cl: 180 mg/L). Large Cl bulges under irrigated agroecosystems in the south are similar to those under natural ecosystems, but they accumulated over decades rather than millennia typical of natural ecosystems. Profile peak Cl concentrations (1200-6400 mg/L) correspond to irrigation efficiencies of 92-98% with respect to drainage and are attributed to deficit irrigation with minimal flushing. Perchlorate (ClO4) also accumulates under irrigated agroecosystems, primarily from irrigation water, and behaves similarly to Cl. Most NO3-N accumulation is below the root zone. Groundwater total dissolved solids (TDS) have increased by ≤960 mg/L and NO3-N by ≤9.4 mg/L since the early 1960s. Mobilization of salts that have accumulated under irrigated agroecosystems is projected to degrade groundwater much more in the future because of the essentially closed-basin status of the aquifer, with discharge occurring primarily through irrigation pumpage. TDS are projected to increase by an additional 2200 mg/L (median), ClO4 by 21 μg/L, and NO3-N by 52 mg/L. Water and salt balances should be considered in irrigation management in order to minimize salinization issues.

  17. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  18. Interactive Effects of Storms, Drought, and Weekly Land Cover Changes on Water Quality Patterns in an Agricultural-dominated Subtropical Catchment in New Zealand

    Science.gov (United States)

    Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2013-12-01

    Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to

  19. West Knox Pond water budget and water quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to analyze the water budget and water quality for West Knox Pond for the May through September period of 2002 and 2003. The...

  20. Future scenarios of urbanization and its effects on water quantity and quality in three New England watersheds

    Science.gov (United States)

    Hutyra, L.; Yang, Y.; Kim, J.; Cheng, C.; O'Brien, P.; Rouhani, S.; Douglas, E. M.; Nicolson, C.; Ryan, R.; Schaaf, C.; Warren, P.; Wollheim, W. M.

    2013-12-01

    New England watersheds have been impacted by human development and environmental stressors that are similar to those projected to impact large portions of the United States and the world. These impacts are likely to continue as some parts of the region are projected to lose over 60% of private forestland to development by 2030. Such dramatic changes have important consequences for water quality and quantity. Because of the complex and varied interactions between human and natural systems, simply understanding the processes affecting current and historical conditions in urbanizing watersheds is inadequate to model the future. Understanding future hydrologic conditions is made more difficult because of the uncertainties inherent in projecting future climate conditions. One approach to handling this complexity is to use scenarios to explore a range of potential futures following contrasting trajectories of change. Here we describe how four scenarios of land use change were developed using a stakeholder driven process. We then began using the scenarios in hydrological models to estimate future changes in water quality and quantity. The study area includes three watersheds (the Charles, Neponset and Ipswich) that have undergone varying degrees of urbanization in the greater Boston area of Massachusetts in the northeastern United States. The Charles and Neponset River watersheds are densely populated and include the city of Boston itself. Municipal water supplies in these two watersheds are mostly from the Massachusetts Water Resources Authority (MWRA) sources in western Massachusetts. The Ipswich River watershed is highly suburban, and communities are largely dependent on local water supplies. If the historical urbanization trends continue, the impervious area in the Charles River watershed is projected to increase by 13%, 16% in Neponset River watershed, and 24% in Ipswich River watershed by 2030. For the Charles River watershed, analyses identified hot spots for

  1. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    Science.gov (United States)

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  2. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  3. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  4. Process water usage and water quality in poultry processing equipment

    Science.gov (United States)

    The operation of poultry processing equipment was analyzed to determine the impact of water reduction strategies on process water quality. Mandates to reduce the consumption of process water in poultry processing facilities have created the need to critically examine water usage patterns and develop...

  5. Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton.

    Science.gov (United States)

    Wang, Zhi; Zhang, Zhiyong; Zhang, Junqian; Zhang, Yingying; Liu, Haiqing; Yan, Shaohua

    2012-11-01

    An ecological engineering project using water hyacinth for nutrient removal was performed in Baishan Bay of a large shallow eutrophic lake, Lake Dianchi in China. In the present study, a systematic survey of water quality, macrozoobenthos and zooplankton inside (IWH), around (AWH) and far away (FWH) water hyacinth mats was conducted in Baishan Bay from August to October 2010. The results showed that the water quality significantly improved at AWH area. Concentrations of nitrogen and phosphorus were lower and transparency was higher at AWH area than those in IWH and FWH areas. Total densities, dominant species densities, and biodiversity indexes of macrozoobenthos and cladocerans as well as copepods did not differ (P>0.05) among each other in all three areas. It was significantly (P<0.05) different for those of rotifers at IWH area compared to those in AWH and FWH areas. The results might suggest a tremendous potential for the utilization of water hyacinth in the eutrophic lake like Lake Dianchi for nutrients removal.

  6. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of TiO2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S.

    Science.gov (United States)

    Serrão Sousa, Vânia; Corniciuc, Claudia; Ribau Teixeira, Margarida

    2017-02-01

    Nanoparticles, namely titanium dioxide (TiO2), are emerging contaminants widely used to commercial and industrial applications, are a potential hazard and can cause damage to environment and human health due to their toxicity. Therefore, their removal from the water is urgent to minimize or eliminate the adverse environmental and human effects. This work, investigates the efficiency of conventional coagulation/flocculation/sedimentation (C/F/S) from drinking water treatment to remove TiO2 nanoparticles (NPs) from surface waters, and pretends to understand if the removal of TiO2 NPs affects the ability of C/F/S to remove natural organic matter (NOM) and turbidity, and consequently affects the quality of the treated water. Results show that TiO2 NPs removal is high (>90%) for all the waters studied (hydrophobic and hydrophilic waters) and the treated water quality is not compromised (turbidity, Ti and Al concentrations, pH and conductivity are below the national and international guidelines). In addition, TiO2 initial concentrations, ranging between 0.2 and 10 mg/L, have not a significant impact on NPs removal by C/F/S. Therefore, the widely used polyaluminium based coagulants are effective in the removal of TiO2 NPs by conventional C/F/S treatment, but removal is strongly influenced by the water characteristics. Hydrophobic waters need a higher coagulant dose than hydrophilic waters to achieve the same TiO2 NPs removals, as well as water with higher UV254nm values. The principal mechanism involved in TiO2 NPs removal is charge neutralisation.

  8. Principles and Practices of Water Quality Monitoring

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  9. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  10. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, Jane Njeri

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of aqu

  11. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2016-12-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  12. Lethal effects of water quality on threatened California salamanders but not on co-occurring hybrid salamanders.

    Science.gov (United States)

    Ryan, Maureen E; Johnson, Jarrett R; Fitzpatrick, Benjamin M; Lowenstine, Linda J; Picco, Angela M; Shaffer, H Bradley

    2013-02-01

    Biological invasions and habitat alteration are often detrimental to native species, but their interactions are difficult to predict. Interbreeding between native and introduced species generates novel genotypes and phenotypes, and human land use alters habitat structure and chemistry. Both invasions and habitat alteration create new biological challenges and opportunities. In the intensively farmed Salinas Valley, California (U.S.A.), threatened California tiger salamanders (Ambystoma californiense) have been replaced by hybrids between California tiger salamander and introduced barred tiger salamanders (Ambystoma tigrinum mavortium). We conducted an enclosure experiment to examine the effects habitat modification and relative frequency of hybrid and native California tiger salamanders have on recruitment of salamanders and their prey, Pacific chorus frogs (Pseudacris regilla). We tested whether recruitment differed among genetic classes of tiger salamanders (hybrid or native) and pond hydroperiod (seasonal or perennial). Roughly 6 weeks into the experiment, 70% (of 378 total) of salamander larvae died in 4 out of 6 ponds. Native salamanders survived (n = 12) in these ponds only if they had metamorphosed prior to the die-offs. During die-offs, all larvae of native salamanders died, whereas 56% of hybrid larvae died. We necropsied native and hybrid salamanders, tested water quality, and queried the California Department of Pesticide Regulation database to investigate possible causes of the die-offs. Salamander die-offs, changes in the abundance of other community members (invertebrates, algae, and cyanobacteria), shifts in salamander sex ratio, and patterns of pesticide application in adjacent fields suggest that pesticide use may have contributed to die-offs. That all survivors were hybrids suggests that environmental stress may promote rapid displacement of native genotypes.

  13. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Cassan, Delphine; Mercier, Béatrice; Castex, Françoise; Rambaud, André

    2006-03-01

    The aim of our study was to determine the impact of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. An indoor swimming pool was equipped with two medium-pressure UV lamps. We collected eight samples of water daily over a four-weeks period and measured total and free chlorine, pH, water temperature, bacteriological parameters, total organic carbon and trihalomethanes. During the first week, which served as control, medium-pressure UV lamps were turned off. During the next three weeks, medium-pressure UV lamps were kept on 24 h per day. The third week, we reduced the level of the injected chlorine into water, and the last week we also reduced the water renewal volume by 27%. Our results showed that bacteriological parameters remained within allowable french limits. When medium-pressure UV lamps were kept on, total, free and active chlorine levels were significantly increased (P<0.001), whereas combined chlorine level were significantly decreased (P<0.001 and P<0.05, respectively). The levels of chloroform and bromodichloromethane were significantly increased when medium-pressure UV lamps were kept on (P<0.001), whereas chlorodibromomethane and bromoform levels significantly decreased (P<0.05 and P<0.001, respectively). The additional formation of chloroform and bromodichloromethane may be explained by the increase in active chlorine and by radicalizing mechanisms initiated by UV radiation.

  14. Assessment of Drinking Water Quality from Bottled Water Coolers.

    Directory of Open Access Journals (Sweden)

    Marzieh Farhadkhani

    2014-05-01

    Full Text Available Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers.A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC, temperature, pH, residual chlorine, turbidity, electrical conductivity (EC and total organic carbon (TOC. Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA.The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05 higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified.A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control.

  15. Effect on Groundwater Quality from Proximal Surface Water Bodies and Effect on Arsenic Distribution in Bangladesh: Geochemical Controls

    Science.gov (United States)

    Barua, S.; Kulkarni, H.; Mladenov, N.; Khan, M. A.; Mahfuz, M.; Ahmed, K. M.; Datta, S.

    2014-12-01

    Matlab is one of the areas in SE Bangladesh highly affected with elevated concentrations of dissolved As in drinking waters. Matlab is stratigraphically composed of thick floodplain deposits of Holocene age overlying Plio-Pleistocene grey fine to coarse sands with considerable clay (Dupi Tila). The dissolved As concentrations in the studied area ranged from detection in shallow well waters (MPN= 3.6-74.1) was high as well as in ponds and canals (MPN= 8.5-433.4). Microbial activity in groundwater was lower than in unprotected surface waters. Freshness index (β:α), humification index (HIX), fluorescence source index (FI) values showed that DOM in shallow and surface water bodies was distinct from deep groundwater. Concurrent with the lower DOC in deeper wells, the overall fluorescence intensities decreased with depth. The results thus far point to more humic DOM in shallow groundwaters, which is not expected to be a labile carbon source for microorganisms, but which may be involved in complexation or other biogeochemical reactions that mobilize arsenic.

  16. Effects of catchment and riparian landscape setting on water chemistry and seasonal evolution of water quality in the upper Han River basin, China.

    Directory of Open Access Journals (Sweden)

    Siyue Li

    Full Text Available Six-year (2005-2010 evolution of water chemistry (Cl(-, NO(3(-, SO(4(2-, HCO(3(-, Na(+, K(+, Ca(2+ and Mg(2+ and their interactions with morphological properties (i.e., slope and area, land cover, and hydrological seasonality were examined to identify controlling factors and processes governing patterns of stream water quality in the upper Han River, China. Correlation analysis and stepwise multiple regression models revealed significant correlations between ions (i.e., Cl(-, SO(4(2-, Na(+ and K(+ and land cover (i.e., vegetation and bare land over the entire catchment in both high- and low-flow periods, and in the buffer zone the correlation was much more stronger in the low-flow period. Catchment with steeper slope (>15° was negatively correlated with major ions, largely due to multicollinearity of basin characteristics. Land cover within the buffer zone explained slightly less of major elements than at catchment scale in the rainy season, whereas in the dry season, land cover along the river networks in particular this within 100 m riparian zone much better explained major elements rather than this over the entire catchment. Anthropogenic land uses (i.e., urban and agriculture however could not explain water chemical variables, albeit EC, TDS, anthropogenic markers (Cl(-, NO(3(-, SO(4(2, Na(+, K(+ and Ca(2+ significantly increased during 2005-2010, which was corroborated by principal component analyses (PCA that indicated anthropogenic inputs. Observations demonstrated much higher solute concentrations in the industrial-polluted river. Our results suggested that seasonal evolution of water quality in combined with spatial analysis at multiple scales should be a vital part of identifying the controls on spatio-temporal patterns of water quality.

  17. EFFECTS OF WATER QUALITY ON DEVELOPMENT OF XENOPUS LAEVIS: A FETAX ASSESSMENT OF SURFACE WATER ASSOCIATED WITH MALFORMATIONS IN NATIVE ANURANS

    Science.gov (United States)

    The purpose of this work was to determine if surface water from a site in Minnesota with malformed anurans was able to elicit adverse developmental effects in the Frog Embryo Teratogenesis Assay: Xenopus (FETAX)...

  18. AMBIENT AQUATIC LIFE WATER QUALITY CRITERIA FOR ...

    Science.gov (United States)

    Nonylphenol is a toxic breakdown product of nonylphenol ethoxylate (NPE) surfactants. NPE surfactants are used in industrial cleaning applications and pesticide formulations. EPA published a draft ambient water quality criteria document for nonylphenol in January 2004. This document contains ambient water quality criteria for the protection of aquatic organisms and their uses. Acute and chronic criteria recommendations have been developed for the protection of aquatic life in both freshwater and saltwater. These criteria are published pursuant to Section 304 (a) of the Clean Water Act (CWA) and serve as technical information for States for establishing criteria within their State Water Quality Standards.

  19. Effects of selected low-impact-development (LID) techniques on water quality and quantity in the Ipswich River Basin, Massachusetts-Field and modeling studies

    Science.gov (United States)

    Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.

    2010-01-01

    During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored

  20. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  1. Effects of Hardened Low-Water Crossings on Periphyton and Water Quality in Selected Streams at the Fort Polk Military Reservation, Louisiana, 1998-99 and 2003-04

    Science.gov (United States)

    Bryan, Barbara W.; Bryan, C. Frederick; Lovelace, John K.; Tollett, Roland W.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS), at the request of the U.S. Army Joint Readiness Training Center and Fort Polk, began a follow-up study to determine whether installation and modification of hardened low-water crossings had short-term (less than 1 year) or long-term (greater than 1 year) effects on periphyton or water quality in five streams at the Fort Polk Military Reservation, Louisiana. Periphyton data were statistically analyzed for possible differences between samples collected at upstream and downstream sites and before and after low-water crossings were modified on three streams, Big Brushy Creek, Tributary to East Fork of Sixmile Creek, and Tributary to Birds Creek, during 2003?04. Periphyton data also were analyzed for possible differences between samples collected at upstream and downstream sites on two streams, Tributary to Big Brushy Creek and Little Brushy Creek, during 1998?99 and 2003. Variations in periphyton communities could not be conclusively attributed to the modifications. Most of the significant changes in percent frequency of occurrence and average cell density of the 10 most frequently occurring periphyton taxa were increases at downstream sites after the hardened low-water crossing installations or modifications. However, these changes in the periphyton community are not necessarily deleterious to the community structure. Water-quality data collected from upstream and downstream sites on the five streams during 2003?04 were analyzed for possible differences caused by the hardened crossings. Generally, average water-quality values and concentrations were similar at upstream and downstream sites. When average water-quality values or concentrations changed significantly, they almost always changed significantly at both the upstream and downstream sites. It is probable that observed variations in water quality at both upstream and downstream sites are related to differences in rainfall and streamflow during the sample collection

  2. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey).

    Science.gov (United States)

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-04-15

    The aim of this study is evaluate water quality of the Aksu River, the main river recharging the Karacaören-1 Dam Lake and flowing approximately 145km from Isparta province to Mediterranean. Due to plan for obtaining drinking water from the Karacaören-1 Dam Lake for Antalya Province, this study has great importance. In this study, physical and chemical analyses of water samples taken from 21 locations (in October 2011 and May 2012, two periods) through flow path of the river were investigated. The analysis results were compared with maximum permissible limit values recommended by World Health Organization and Turkish drinking water standards. The water quality for drinking purpose was evaluated using the water quality index (WQI) method. The computed WQI values are between 35.6133 and 337.5198 in the study. The prepared WQI map shows that Karacaören-1 Dam Lake generally has good water quality. However, water quality is poor and very poor in the north and south of the river basin. The effects of punctual and diffuse pollutants dominate the water quality in these regions. Furthermore, the most effective water quality parameters are COD and Mg on the determination of WQI for the present study.

  3. Survey of water quality in Moradbeik river basis on WQI index by GIS

    OpenAIRE

    Mohammad Taghi Samadi; Shahram Sadeghi; Alireza Rahmani; Mohammad Hossien Saghi

    2015-01-01

    Background: Survey of pollution and evaluation of water quality in rivers with Oregon Water Quality Index (OWQI) and GIS are effective tools for management of the impact of environmental water resources. The information in calculating the WQI of Moradbeikriver allowed us to take our tests results and make a scientific conclusion about the quality of water. GIS can be a powerful tool for developing solutions for water resources problems for assessing water quality, determining water availabili...

  4. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  5. Storage of Eggs in Water Affects Internal Egg Quality, Embryonic Development, and Hatchling Quality

    NARCIS (Netherlands)

    Brand, van den H.; Reijrink, I.A.M.; Hoekstra, L.A.; Kemp, B.

    2008-01-01

    In a series of experiments, effects of storage of eggs in water on internal egg quality, embryonic development, and hatchling quality were investigated. In experiment 1, unfertilized eggs were stored for 4 to 14 d in water (W) or air (control; C). In experiment 2, fertilized eggs were stored for 3 t

  6. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.; Mitsch, W.J.; Wolfe, W.E.

    2001-07-01

    This paper investigates the use of flue gas desulfurization (FGD) by-products from power plant wet scrubbers as liners in wetlands constructed to improve water quality. Mesocosm experiments were conducted over two consecutive growing seasons with different phosphorus loadings. Wetland mesocosms using FGD liners retained more total and soluble reactive phosphorus, with lower concentrations in the leachate (first year) and higher concentrations in the surface water (second year). Leachate was higher in conductivity (second year) and pH (both years) in lined mesocosms. Surface outflow did not reveal any significant difference in physicochemical characteristics between lined and unlined mesocosms. There was no significant difference in total biomass production of wetland plants between lined and unlined mesocosms.

  7. Effects of two stormwater management methods on the quality of water in the upper Biscayne aquifer at two commercial areas in Dade County, Florida

    Science.gov (United States)

    McKenzie, D.J.; Irwin, G.A.

    1988-01-01

    This study is part of a continued effort to assess the effects of urban stormwater recharge on the water quality of the Biscayne aquifer in southeast Florida. In this report, the water-quality effects on shallow ground water resulting from stormwater disposal by exfiltration trench and grassy swale were investigated at two small commercial areas in Dade County, Florida. One study area (airport ) was located near the Miami International Airport and had a drainage area of about 10 acres overlying a sandy soil; the other study area ( free zone ) was located at the Miami International Free Trade Zone and had a drainage area of about 20 acres overlying limestone. The monitoring design for each study area consisted of seven sites and included water-quality sampling of the stormwater in the catch basin of the exfiltration trench, ground water from two wells 1 foot from the trench (trench wells), two wells 20 feet from the trench, and ground water from two wells at the swale from April 1985 through May 1986. Eleven water-quality variables (target variables) commonly found in high levels in urban stormwater runoff were used as tracers to estimate possible changes in ground-water quality that may have been caused by stormwater recharge. Comparison of the distribution of target variables indicated that the concentrations tended to be greater in the stormwater in the exfiltration trench than in water from the two wells 1 foot from the trench at both study areas. The concentration difference for several target variables was statistically significant at the 5-percent level. Lead, for example, had median concentrations of 23 and 4 micrograms per liter, respectively, in stormwater and water from the two trench wells at the airport study area, and 38 and 2 micrograms per liter, respectively, in stormwater and groundwater at the free zone. Similar reductions in concentrations between stormwater and water from the two trench wells were indicated for zinc at both study areas and also

  8. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  9. Microbes and Water Quality in Developed Countries

    Science.gov (United States)

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  10. Reading Water Quality Variables with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules; Minkman, Ellen

    2015-04-01

    Many relevant water quality variables can be measured cost-effectively with standard indicator strips. These are local measurements, although usually done within a larger water network. Only if these measurements can be made available in a central database, the entire network can benefit from the extra data point. This requires an analog data source to be converted to a digital data point. A tool that is equipped to do that and also communicate the value to a central system, is a smartphone. A water quality monitoring method is introduced that requires standard indicator strips attached to a reference card and an app with which a picture can be taken from this card. The color or other indication is automatically read with dedicated pattern recognition algorithms and, by using the gps-localization of the smartphone, is stored in the right location in the central database. The method is low-cost and very user-friendly, which makes it suitable for crowd sourcing.

  11. The Effects of Informational Interventions on Household Water Management, Hygiene Behaviors, Stored Drinking Water Quality, and Hand Contamination in Peri-Urban Tanzania

    Science.gov (United States)

    Davis, Jennifer; Pickering, Amy J.; Rogers, Kirsten; Mamuya, Simon; Boehm, Alexandria B.

    2011-01-01

    Safe water storage and hand hygiene have been shown to reduce fecal contamination and improve health in experimental settings; however, triggering and sustaining such behaviors is challenging. This study investigates the extent to which personalized information about Escherichia coli contamination of stored water and hands influenced knowledge, reported behaviors, and subsequent contamination levels among 334 households with less than 5-year-old children in peri-urban Dar es Salaam, Tanzania. One-quarter of the study participants received information about strategies to reduce risk of water- and sanitation-related illness. Respondents in another three study cohorts received this same information, along with their household's water and/or hand-rinse test results. Findings from this study suggest that additional work is needed to elucidate the conditions under which such testing represents a cost-effective strategy to motivate improved household water management and hand hygiene. PMID:21292883

  12. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  13. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  14. Surface water quality assessment by environmetric methods.

    Science.gov (United States)

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  15. Ground-water quality atlas of Wisconsin

    Science.gov (United States)

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  16. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma; analysis of available water-quality data through 1987

    Science.gov (United States)

    Parkhurst, D.L.; Christenson, S.C.; Schlottmann, J.L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to: (1) Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) Define long-term trends (or lack of trends) in water quality; and (3) Identify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends. The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs. At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study area. The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial

  17. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based .... The measures for improvement of monitoring were: .... purposes, the effectiveness and desirability of a government.

  18. Water Quality Assessment using Satellite Remote Sensing

    Science.gov (United States)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  19. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    Science.gov (United States)

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  20. Water quality in the eastern Iowa basins

    Science.gov (United States)

    Kalkhoff, Stephen J.; Barnes, Kymm K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.; Creswell, John

    2001-01-01

    This article summarizes major findings about nutrients in surface and groundwater in the eastern Iowa basins (see map) between 1996 and 1998. The data were collected as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA). Water quality is discussed in terms of local and regional issues and compared with conditions found in all 36 National NAWQA study areas assessed to date. Findings are explained in the context of selected national U.S. Environmental Protection Agency (EPA) benchmarks, such as those for drinking water quality and the protection of aquatic organisms.

  1. Chattahoochee River Water Quality Analysis.

    Science.gov (United States)

    1978-04-01

    supply and cold water fishery. Georgia Fish and Game has stocked this area with both fingerlings and trout of catchable size. Eighty thousand (80,000...fish per year of catchable size are planted from April to October. It is estimated that the standing crop of cold water fish is on the order of thirty

  2. Impacts of climate change on surface water quality in relation to drinking water production.

    Science.gov (United States)

    Delpla, I; Jung, A-V; Baures, E; Clement, M; Thomas, O

    2009-11-01

    Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.

  3. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  4. Effects of advanced treatment of municipal wastewater on the white river near Indianapolis, Indiana: Trends in water quality, 1978-86. Geological Survey water supply paper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.G.; Wangsness, D.J.

    1994-01-01

    The report describes changes in the water quality of the White River that occurred after the implementation of Advanced Wastwater Treatment (AWT). The report includes analyses of data collected from three locations on the White River between 1978 and 1986 by the City of Indianapolis, Department of Public Works, and by the USGS and data from one location on the White River collected by the Indiana State Board of Health between 1958 and 1986. The report also includes analyses of daily effluent data from the Belmont and Southport municipal wastewater-treatment plants from 1978 through 1986.

  5. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Science.gov (United States)

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality.

  6. Monitoring of recharge water quality under woodland

    Science.gov (United States)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  7. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    Science.gov (United States)

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  8. Influence of water quality on the embodied energy of drinking water treatment.

    Science.gov (United States)

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  9. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    Directory of Open Access Journals (Sweden)

    Changjun Zhu

    2013-01-01

    Full Text Available In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake.

  10. 40 CFR 130.3 - Water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made...

  11. The Choptank Watershed Wetland Conservation Effects Assessment Project: Monitoring the Effect of Wetland Conservation Practices on Water Quality

    Science.gov (United States)

    The Choptank Watershed Wetland Conservation Effects Assessment Project (CEAP) brings together an interdisciplinary group of experts and resources from multiple federal agencies and the University of Maryland to assess the ability of native, restored, and prior-converted wetlands on cropland to impro...

  12. WATER QUALITY MODELING OF SUZHOU CREEK

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Water-quality models are important tools for improving river environment. In this paper, the project "Water Quality Modeling of the Suzhou Creek" was briefly described, including the choice and the principle of the model, the model study and methods, the calibration and verification of the stream model. A set of parameters about water environmental characteristic of the Suzhou Creek were put forward in the period of the third water dispatch experiment in 1999. It is necessary to point out that these parameters will change with the rehabilitation and construction of the Suzhou Creek.

  13. Modelling of Buckingham Canal water quality.

    Science.gov (United States)

    Abbasi, S A; Khan, F I; Sentilvelan, K; Shabudeen, A

    2002-10-01

    The paper presents a case study of the modelling of the water quality of a canal situated in a petrochemical industrial complex, which receives wastewaters from Madras Refineries Limited (MRL), and Madras Fertilizers Limited (MFL). The canal well known Buckingham Canal which passes through Chennai (Madras), India has been modelled using the software QUAL2E-UNCAS. After testing and validation of the model, simulations have been carried out. The exercise enables forecasting the impacts of different seasons, base flows, and waste water inputs on the water quality of the Buckingham Canal. It also enables development of water management strategies.

  14. Quality and effectiveness of strategic environmental assessment ...

    African Journals Online (AJOL)

    Quality and effectiveness of strategic environmental assessment (SEA) as a tool ... The water management sector has been one of the first sectors in South Africa to ... Reviewed against 'direct output' indicators it achieved a 'poor' effectiveness ...

  15. A New Empirical Sewer Water Quality Model for the Prediction of WWTP Influent Quality

    NARCIS (Netherlands)

    Langeveld, J.G.; Schilperoort, R.P.S.; Rombouts, P.M.M.; Benedetti, L.; Amerlinck, Y.; de Jonge, J.; Flameling, T.; Nopens, I.; Weijers, S.

    2014-01-01

    Modelling of the integrated urban water system is a powerful tool to optimise wastewater system performance or to find cost-effective solutions for receiving water problems. One of the challenges of integrated modelling is the prediction of water quality at the inlet of a WWTP. Recent applications

  16. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  17. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  18. Connecting Water Quality With Air Quality Through Microbial Aerosols

    Science.gov (United States)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  19. Potential effects of coal mining and road construction on the water quality of Scofield Reservoir and its drainage area, central Utah, October 1982 to October 1984

    Science.gov (United States)

    Stephens, D.W.; Thompson, K.R.; Wangsgard, J.B.

    1996-01-01

    Studies were done during 1983-84 to determine the effect of coal mining in Pleasant Valley and construction of State Road 264 in Eccles Canyon on the water quality of local streams and on Scofield Reservoir. Streamflow during 1983-84 set high-flow records in all gaged streams and transported considerable sediment and associated trace metals and nutrients to Scofield Reservoir. Concentrations of most toxic substances were not sufficient to constitute a hazard in the streams or reservoir; however, concentrations of total phosphorus in the streams commonly exceeded water-quality criterion for phosphate as phosphorus of 0.05 milligram per liter, established by the State as an indicator of pollution. Data from Eccles Canyon creek, which is in an actively mined area, were compared to data from Boardinghouse Canyon creek, which is in a nearby canyon with no active mining or construction activities. Concentrations of iron, manganese, and zinc were substantially larger in Eccles Canyon creek than in Boardinghouse Canyon creek. Loads of suspended sediment during storms and base-flow conditions also were larger in Eccles Canyon creek. Concentrations of ammonia nitrogen, total phosphorus, mercury, and zinc in water from Scofield Reservoir occasionally exceeded Utah State water- quality standards and criteria for protection of aquatic wildlife that were in effect during 1983- 84. In combination with the generally cooler spring temperatures, shortened growing season, and greater flushing rate for the reservoir, the large inflow of water into the reservoir prevented the occurrence of blue-green blooms common in earlier years. Large concentrations of orthophosphorus and manganese were released from sediment cores, and concentrations of manganese in the hypolimnion frequently exceeded the Federal drinking-water standard.

  20. Maui Citizen Science Coastal Water Quality Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A network of citizen science volunteers periodically monitors water quality at several beaches across the island of Maui in the State of Hawaii. This community-based...

  1. Mobile Water Quality Information Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Water quality remote sensing has grown to allow for operational monitoring of trophic status, assessment of cyanobacteria blooms, and historical and trend analysis...

  2. Determination of the Effect of Water Depth and Flow Velocity on the Quality of an In-Stream Habitat in Terms of Climate Change

    Directory of Open Access Journals (Sweden)

    V. Macura

    2016-01-01

    Full Text Available The study is focused on the objectification of an assessment of the quality of an in-stream habitat in mountain and piedmont streams by the decision-making Instream Flow Incremental Methodology (IFIM due to climate change. The quality of the habitat was assessed on the basis of a bioindication, represented by ichthyofauna. Sixty-four reaches of 47 watercourses in five river basins in Slovakia, in which ichthyologic, topographic, and hydraulic measurements were performed, were evaluated. The effect of the physical characteristics of the stream channel on the quality of the in-stream habitat has been verified on a number of reference reaches in which the measurements were performed at different water levels. From the set of the data measured, an analysis aimed at determining the impact of individual characteristics on the quality of an in-stream habitat has been carried out. The results show the optimum ratio of the weights of the flow velocity and water depth for an assessment of the quality of an in-stream habitat due to climate change.

  3. A Simple Stream Water Quality Modelling Software for Educational and Training Purposes

    OpenAIRE

    Erturk, Ali

    2010-01-01

    Water quality models are important decision support system tools for water pollution control, study of the health of aquatic ecosystems and assessment of the effects of point and diffuse pollution. However, water quality models are usually comprehensive software, which are usually not easy to learn and apply. Thus extensive training is needed before scientists and engineers can use most of the water quality models effectively. In this study; a new, easy to use and simple stream water quality ...

  4. Quality of water, Quillayute River basin, Washington

    Science.gov (United States)

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants en