WorldWideScience

Sample records for water quality bottom

  1. Measuring device for water quality at reactor bottom

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Takagi, Jun-ichi

    1995-10-27

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.).

  2. Measuring device for water quality at reactor bottom

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Takagi, Jun-ichi.

    1995-01-01

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.)

  3. Chemical quality of water and bottom sediment, Stillwater National Wildlife Refuge, Lahontan Valley, Nevada

    Science.gov (United States)

    Thodal, Carl E.

    2017-12-28

    The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected data on water and bottom-sediment chemistry to be used to evaluate a new water rights acquisition program designed to enhance wetland habitat in Stillwater National Wildlife Refuge and in Lahontan Valley, Churchill County, Nevada. The area supports habitat critical to the feeding and resting of migratory birds travelling the Pacific Flyway. Information about how water rights acquisitions may affect the quality of water delivered to the wetlands is needed by stakeholders and Stillwater National Wildlife Refuge managers in order to evaluate the effectiveness of this approach to wetlands management. A network of six sites on waterways that deliver the majority of water to Refuge wetlands was established to monitor the quality of streamflow and bottom sediment. Each site was visited every 4 to 6 weeks and selected water-quality field parameters were measured when flowing water was present. Water samples were collected at varying frequencies and analyzed for major ions, silica, and organic carbon, and for selected species of nitrogen and phosphorus, trace elements, pharmaceuticals, and other trace organic compounds. Bottom-sediment samples were collected for analysis of selected trace elements.Dissolved-solids concentrations exceeded the recommended criterion for protection of aquatic life (500 milligrams per liter) in 33 of 62 filtered water samples. The maximum arsenic criterion (340 micrograms per liter) was exceeded twice and the continuous criterion was exceeded seven times. Criteria protecting aquatic life from continuous exposure to aluminum, cadmium, lead, and mercury (87, 0.72, 2.5, and 0.77 micrograms per liter, respectively) were exceeded only once in filtered samples (27, 40, 32, and 36 samples, respectively). Mercury was the only trace element analyzed in bottom-sediment samples to exceed the published probable effect concentration (1,060 micrograms per kilogram).

  4. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    Science.gov (United States)

    Lotspeich, Russell

    2012-01-01

    Breckenridge Reservoir is located within the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because it serves as the principal water supply for the U.S. Marine Corps Base in Quantico, an assessment of the water-quality of Breckenridge Reservoir was initiated. Water samples were collected and physical properties were measured by the U.S. Geological Survey at three sites in Breckenridge Reservoir, and physical properties were measured at six additional reservoir sites from September 2008 through August 2009. Water samples were also collected and physical properties were measured in each of the three major tributaries to Breckenridge Reservoir: North Branch Chopawamsic Creek, Middle Branch Chopawamsic Creek, and South Branch Chopawamsic Creek. One site on each tributary was sampled at least five times during the study. Monthly profiles were conducted for water temperature, dissolved-oxygen concentrations, specific conductance, pH, and turbidity measured at 2-foot intervals throughout the water column of the reservoir. These profiles were conducted at nine sites in the reservoir, and data values were measured at these sites from the water surface to the bottom of the reservoir. These profiles were conducted along three cross sections and were used to define the characteristics of the entire water column of the reservoir. The analytical results of reservoir and tributary samples collected and physical properties measured during this study were compared to ambient water-quality standards of the Virginia Department of Environmental Quality and Virginia State Water Control Board. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and turbidity measured in Breckenridge Reservoir generally indicated a lack of stratification in the water column of the reservoir throughout the study period. This is unlike most other reservoirs in the region and may be influenced by

  5. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    Science.gov (United States)

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  6. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    Science.gov (United States)

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per

  7. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    Science.gov (United States)

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  8. MODIS-derived spatiotemporal water clarity patterns in optically shallow FloridaKeys waters: A new approach to remove bottom contamination

    Science.gov (United States)

    Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...

  9. A Study on the Environmental Standard of Sediment on the Bottom of the Water

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Yoo, Hye Jin [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Sediment on the bottom of the water has been considered one of the water pollutants in the environmental management of Korea so treated as a management on pollutants, as you can see the examples in the dragging operation in the polluted sea area. To healthily maintain and conserve the water ecosystem including bottom living things in the water, sediment on the bottom of the water should be recognized as the independent medium, which should maintain the certain quality like the water, the atmosphere, and soil, rather than the source of water pollution. Such recognition means that the management of sediment on the bottom of the water should change the fragmentary goal, centered the post management focusing on the water management, to the ecosystematic goal including the bottom living things. In a point of the view, this study has a great significance to suggest not only the final goal for the management of sediment on the bottom of the water but also the necessity of developing the environmental standard of the sediment on the bottom of the water, which is a standard of the management or judgment in the actual managing the sediment on the bottom of the water - an estimation on the pollution of sediment, a removal of the polluted sediment, a purification of sediment, and an abandonment of the dragged sediment -, and the development measures. Considering the situation that even the basic scheme related to the management of sediment is not prepared in the Government level, the concept of the environmental standard of sediment, the foreign example of the environmental standard of sediment, the current state of the domestic sediment pollution, and the development scheme of the environmental standard in this study must be the important foundation to establish the management system of sediment in the Government level. 121 refs., 10 figs., 45 tabs.

  10. Bottom friction models for shallow water equations: Manning’s roughness coefficient and small-scale bottom heterogeneity

    Science.gov (United States)

    Dyakonova, Tatyana; Khoperskov, Alexander

    2018-03-01

    The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.

  11. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  12. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    Science.gov (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    Science.gov (United States)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  14. SPREADING OF ANTARCTIC BOTTOM WATER IN THE ATLANTIC OCEAN

    Directory of Open Access Journals (Sweden)

    Eugene Morozov

    2012-01-01

    Full Text Available This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Brazil Basin splits. Part of the water flows through the Romanche and Chain fracture zones. The other part flows to the North American Basin. Part of the latter flow propagates through the Vema Fracture Zone into the Northeast Atlantic. The properties of bottom water in the Kane Gap and Discovery Gap are also analyzed.

  15. Strong Flows of Bottom Water in Abyssal Channels of the Atlantic

    Science.gov (United States)

    Morozov, E. G.

    Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.

  16. Spreading of Antarctic Bottom Water in the Atlantic Ocean

    OpenAIRE

    Morozov, E.; Tarakanov, R. Y.; Zenk, Walter

    2012-01-01

    This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Bra...

  17. Bottom-water observations in the Vema fracture zone

    Science.gov (United States)

    Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.

    1983-03-01

    The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.

  18. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  19. Lime application methods, water and bottom soil acidity in fresh water fish ponds

    Directory of Open Access Journals (Sweden)

    Queiroz Julio Ferraz de

    2004-01-01

    Full Text Available Although some methods for determining lime requirement of pond soils are available and commonly used, there is still no consensus on whether it is more effective to apply liming materials to the bottoms of empty ponds or to wait and apply them over the water surface after ponds are filled. There is also little information on how deep lime reacts in pond sediment over time, and whether the depth of reaction is different when liming materials are applied to the water or to the soil. Therefore, three techniques for treating fish ponds with agricultural limestone were evaluated in ponds with clayey soils at a commercial fish farm. Amounts of agricultural limestone equal to the lime requirement of bottom soils were applied to each of three ponds by: direct application over the pond water surface; spread uniformly over the bottom of the empty pond; spread uniformly over the bottom of the empty pond followed by tilling of the bottom. Effectiveness of agricultural limestone applications did not differ among treatment methods. Agricultural limestone also reacted quickly to increase total alkalinity and total hardness of pond water to acceptable concentrations within 2 weeks after application. The reaction of lime to increase soil pH was essentially complete after one to two months, and lime had no effect below a soil depth of 8 cm. Tilling of pond bottoms to incorporate liming materials is unnecessary, and tilling consumes time and is an expensive practice; filled ponds can be limed effectively.

  20. Properties of the Water Column and Bottom Derived from AVIRIS Data

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  1. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the American Falls Reservoir area, Idaho, 1988-89

    Science.gov (United States)

    Low, Walton H.; Mullins, William H.

    1990-01-01

    Increased concern about the quality of irrigation drainage and its potential effects on human health, fish, and wildlife prompted the Department of the Interior to begin a program during late 1985 to identify irrigation-induced water-quality problems that might exist in the Western States. During `988, the Task Group on Irrigation Drainage selected the American Falls Reservoir area, Idaho, for study to determine whether potentially toxic concentrations of trace elements or organochlorine compounds existed in water, bottom sediment, and biota. The 91-square mile American Falls Reservoir has a total capacity of 1.7 million acre-feet and is used primarily for irrigation-water supply and power generation. Irrigated land upstream from the reservoir totals about 550,000 acres. Total water inflow to the reservoir is about 5.8 million acre-feet per year, of which about 63 percent is from surface-water runoff, 33 percent is from ground-water discharge, and about 4 percent is from ungaged tributaries, canals, ditches, sloughs, and precipitation. Ground-water discharge to the reservoir originates, in part, from irrigation of land upstream from and adjacent to the reservoir. The 1988 water year was a drought year, and water discharge was about 34 percent less than during 1939-88. Water samples were collected during the post-irrigation (October 1987) and irrigation (July 1988) seasons and were analyzed for major ions and trace elements. Bottom-sediment samples were collected during the irrigation season and were analyzed for trace elements and organochlorine compounds. Biota samples were collected during May, June, July, and August 1988 and were analyzed for trace elements and organochlorine compounds. Dissolved-solids concentrations in water ranged from 216 to 561 milligrams per liter. The similarity of dissolved-solids concentrations between the irrigation and post-irrigation seasons can be attributed to the large volume of ground-water discharge in the study area. Most trace

  3. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  4. Evaluation of the bottom water reservoir VAPEX process

    Energy Technology Data Exchange (ETDEWEB)

    Frauenfeld, T.W.J.; Jossy, C.; Kissel, G.A. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    The mobilization of viscous heavy oil requires the dissolution of solvent vapour into the oil as well as the diffusion of the dissolved solvent into the virgin oil. Vapour extraction (VAPEX) is an enhanced oil recovery (EOR) process which involves injecting a solvent into the reservoir to reduce the viscosity of hydrocarbons. This paper describes the contribution of the Alberta Research Council to solvent-assisted oil recovery technology. The bottom water process was also modelled to determine its feasibility for a field-scale oil recovery scheme. Several experiments were conducted in an acrylic visual model in which Pujol and Boberg scaling were used to produce a lab model scaling a field process. The model simulated a slice of a 30 metre thick reservoir, with a 10 metre thick bottom water zone, containing two horizontal wells (25 metres apart) at the oil water interface. The experimental rates were found to be negatively affected by continuous low permeability layers and by oil with an initial gas content. In order to achieve commercial oil recovery rates, the bottom water process must be used to increase the surface area exposed to solvents. A large oil water interface between the wells provides contact for solvent when injecting gas at the interface. High production rates are therefore possible with appropriate well spacing. 11 refs., 4 tabs., 16 figs.

  5. BOTTOM DEPOSITS OF STRATIFIED, SEEPAGE, URBAN LAKE (ON EXAMPLE OF TYRSKO LAKE, POLAND AS A FACTOR POTENTIALLY SHAPING LAKE WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Renata Augustyniak

    2017-09-01

    The obtained results revealed, that bottom sediment of Tyrsko Lake can be classified as mixed, silica-organic type, with quite high content of iron (over 4% Fe in d.w.. The total phosphorus content was ca. 3.5 mg P g-1 d.w. on average. Phosphorus in bottom sediment was bound mainly with organic matter (NaOH-nrP fraction, which had over 50% share in TP. Easy mobile fractions (NH4-Cl-P and BD-P together included ca 5% to 7 % TP only. The obtained results show, that bottom sediment of Tyrsko Lake can bind phosphorus quite effectively. Calculated internal mineral phosphorus loading during summer stagnation period was 10.9 kg P and it was lower that the assessed annual external phosphorus load (22.6 kg P y-1. The assessed annual phosphorus loading from both sources still was lower than critical load according to Vollenweider criteria. But due to the fact that internal loading phenomenon is occurring in the lake it should be taken into consideration that the lake water quality can deteriorate gradually during the longer time perspective. These findings should be taken into consideration in the future if the potential protection and restoration procedures will be developed.

  6. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  7. Preliminary Assessment of Silting and The Quality of Bottom Sediments in A Small Water Reservoir

    Directory of Open Access Journals (Sweden)

    Bąk Łukasz

    2014-07-01

    Full Text Available The aim of this study was to assess the degree of silting and pollution of bottom sediments in a small water reservoir Lubianka situated in Starachowice, Świętokrzyskie Province, with selected heavy metals (Pb, Cr, Cd, Cu, Ni, Zn, Fe, Mn, Hg. Catchment basin of the reservoir is forested in 92%. Other parts are covered by estates of detached houses, barren lands and green areas. Bathymetric measurements and analyses of trace elements in bottom sediments were made in 2012. After 28 years of exploitation, reservoir's basin accumulated 43 thousand cubic metres of sediments i.e. 4.7% of its initial volume. Mean annual silting rate was 0.17%. Due to the content of copper and chromium, bottom sediments were classified to the II category (sediments of average pollution according to geochemical standards. Concentrations of Pb, Cd and Hg in all analysed samples were below geochemical background. In a sample collected at the inlet to the reservoir, the TEL index for chromium was exceeded by 25.6%. In other samples the threshold values of the TEL and PEL indices were not exceeded.

  8. Chemicals of emerging concern in water and bottom sediment in Great Lakes areas of concern, 2010 to 2011-Collection methods, analyses methods, quality assurance, and data

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Menheer, Michael A.; Foreman, William T.; Furlong, Edward T.; Smith, Steven G.

    2012-01-01

    The U.S. Geological Survey (USGS) cooperated with the U.S. Environmental Protection Agency and the U.S. Fish and Wildlife Service on a study to identify the occurrence of chemicals of emerging concern (CECs) in water and bottom-sediment samples collected during 2010–11 at sites in seven areas of concern (AOCs) throughout the Great Lakes. Study sites include tributaries to the Great Lakes in AOCs located near Duluth, Minn.; Green Bay, Wis.; Roches­ter, N.Y.; Detroit, Mich.; Toledo, Ohio; Milwaukee, Wis.; and Ashtabula, Ohio. This report documents the collection meth­ods, analyses methods, quality-assurance data and analyses, and provides the data for this study. Water and bottom-sediment samples were analyzed at the USGS National Water Quality Laboratory in Denver, Colo., for a broad suite of CECs. During this study, 135 environmental and 23 field dupli­cate samples of surface water and wastewater effluent, 10 field blank water samples, and 11 field spike water samples were collected and analyzed. Sixty-one of the 69 wastewater indicator chemicals (laboratory method 4433) analyzed were detected at concentrations ranging from 0.002 to 11.2 micrograms per liter. Twenty-eight of the 48 pharmaceuticals (research method 8244) analyzed were detected at concentrations ranging from 0.0029 to 22.0 micro­grams per liter. Ten of the 20 steroid hormones and sterols analyzed (research method 4434) were detected at concentrations ranging from 0.16 to 10,000 nanograms per liter. During this study, 75 environmental, 13 field duplicate samples, and 9 field spike samples of bottom sediment were collected and analyzed for a wide variety of CECs. Forty-seven of the 57 wastewater indicator chemicals (laboratory method 5433) analyzed were detected at concentrations ranging from 0.921 to 25,800 nanograms per gram. Seventeen of the 20 steroid hormones and sterols (research method 6434) analyzed were detected at concentrations ranging from 0.006 to 8,921 nanograms per gram. Twelve of

  9. The occurrence of heavy metals and metal-resistant bacteria in water and bottom sediments of the Straszyn reservoir (Poland

    Directory of Open Access Journals (Sweden)

    Kulbat Eliza

    2017-01-01

    Full Text Available The aim of this study is to investigate the distribution of selected heavy metals and metal–resistant bacteria in water and bottom sediments of the surface drinking water reservoir for Gdańsk. The following sequence of metals in regard to metal concentration in sediments can be written down: Zn > Pb > Cu > Cd. The evaluation of metals accumulation was performed using the Müller index, to indicate the bottom sediment's contamination and geochemical classification of sediment quality according to Polish standards. The Müller geochemical index was changing in a wide range: < 1–4.1. Although the maximum value of Müller's geochemical index determined for copper indicates that the sediment is ‘strongly contaminated’, in general the analysed bottom sediments were classified as the I and II category according to Polish geochemical standards. From the microbiological side a significant part of heterotrophic bacteria isolated from the bottom sediment and surface water (raw and treated water showed a resistance to 0.2 mM and 2 mM concentrations of zinc, copper and lead. The highest percentages of metal–resistant bacteria were recorded in the sediments of the reservoir (60%–88%. The share of metal–resistant strains in the raw water was significantly lower (34%–61%. The results indicate also that water treatment processes may contribute to the selection of resistant strains.

  10. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    Science.gov (United States)

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  11. Treated bottom ash medium and method of arsenic removal from drinking water

    Science.gov (United States)

    Gadgil, Ashok

    2009-06-09

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  12. Importance of the Gulf of Aqaba for the formation of bottom water in the Red Sea

    Science.gov (United States)

    Plähn, Olaf; Baschek, Burkard; Badewien, Thomas H.; Walter, Maren; Rhein, Monika

    2002-08-01

    Conductivity-temperature-depth tracer and direct current measurements collected in the northern Red Sea in February and March 1999 are used to study the formation of deep and bottom water in that region. Historical data showed that open ocean convection in the Red Sea can contribute to the renewal of intermediate or deep water but cannot ventilate the bottom water. The observations in 1999 showed no evidence for open ocean convection in the Red Sea during the winter 1998/1999. The overflow water from the Gulf of Aqaba was found to be the densest water mass in the northern Red Sea. An anomaly of the chlorofluorocarbon component CFC-12 observed in the Gulf of Aqaba and at the bottom of the Red Sea suggests a strong contribution of this water mass to the renewal of bottom water in the Red Sea. The CFC data obtained during this cruise are the first available for this region. Because of the new signal, it is possible for the first time to subdivide the deep water column into deep and bottom water in the northern Red Sea. The available data set also shows that the outflow water from the Gulf of Suez is not dense enough to reach down to the bottom of the Red Sea but was found about 250 m above the bottom.

  13. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  14. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    Science.gov (United States)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is

  15. a New Technique Based on Mini-Uas for Estimating Water and Bottom Radiance Contributions in Optically Shallow Waters

    Science.gov (United States)

    Montes-Hugo, M. A.; Barrado, C.; Pastor, E.

    2015-08-01

    The mapping of nearshore bathymetry based on spaceborne radiometers is commonly used for QC ocean colour products in littoral waters. However, the accuracy of these estimates is relatively poor with respect to those derived from Lidar systems due in part to the large uncertainties of bottom depth retrievals caused by changes on bottom reflectivity. Here, we present a method based on mini unmanned aerial vehicles (UAS) images for discriminating bottom-reflected and water radiance components by taking advantage of shadows created by different structures sitting on the bottom boundary. Aerial surveys were done with a drone Draganfly X4P during October 1 2013 in optically shallow waters of the Saint Lawrence Estuary, and during low tide. Colour images with a spatial resolution of 3 mm were obtained with an Olympus EPM-1 camera at 10 m height. Preliminary results showed an increase of the relative difference between bright and dark pixels (dP) toward the red wavelengths of the camera's receiver. This is suggesting that dP values can be potentially used as a quantitative proxy of bottom reflectivity after removing artefacts related to Fresnel reflection and bottom adjacency effects.

  16. MONITORING OF PHOSPHORUS CONTENT IN “WATER-PARTICULATE MATERIALS-BOTTOM SEDIMENTS SYSTEM” FOR RIVER PRUT

    Directory of Open Access Journals (Sweden)

    VASILE RUSU

    2011-03-01

    Full Text Available Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented schemeallows the analysis of the phosphorus forms for the entirely system “water –particulate materials – bottom sediments”, extending possibilities for interpretationof phosphorus dynamics in natural waters.

  17. Classification of bottom composition and bathymetry of shallow waters by passive remote sensing

    Science.gov (United States)

    Spitzer, D.; Dirks, R. W. J.

    The use of remote sensing data in the development of algorithms to remove the influence of the watercolumn on upwelling optical signals when mapping the bottom depth and composition in shallow waters. Calculations relating the reflectance spectra to the parameters of the watercolumn and the diverse bottom types are performed and measurements of the underwater reflection coefficient of sandy, mud, and vegetation-type seabottoms are taken. The two-flow radiative transfer model is used. Reflectances within the spectral bands of the Landsat MSS, the Landsat TM, SPOT HVR, and the TIROS-N series AVHRR were computed in order to develop appropriate algorithms suitable for the bottom depth and type mapping. Bottom depth and features appear to be observable down to 3-20 m depending on the water composition and bottom type.

  18. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

    Science.gov (United States)

    Lee, Zhongping; Carder, Kendall L.; Chen, Robert F.; Peacock, Thomas G.

    2001-06-01

    Using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data as an example, we show in this study that the properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments in the water column. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, with end-members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. Without bottom corrections, chlorophyll a retrievals were ˜50 mg m-3, while the retrievals after bottom corrections were tenfold less, approximating real values. These results suggest that the model and approach used work very well for the retrieval of subsurface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  19. Radioactive pollution of the Chernobyl cooling pond bottom sediments. I. Water-physical properties, chemical compound and radioactive pollution of pore water

    Directory of Open Access Journals (Sweden)

    L. S. Pirnach

    2011-03-01

    Full Text Available First results of complex research of the Chernobyl cooling pond bottom sediments are presented. The general problematic is considered. Information about vertical distribution of bottom sediments water-physical properties, and also ionic compound and radioactive pollution 137Cs and 90Sr of pore water is received. The inventory of bottom sediments pore water activity is calculated. Strong correlations between concentration in pore water 137Cs, K +, NH4 + within the selected sediments columns are found out. Results of researches are intended for the forecast of radioecological situation change in the cooling pond water-soil complex during drying-up.

  20. CHEMICAL WATER QUALITY INDICATORS IN BASIN FOREST PARCZEW

    Directory of Open Access Journals (Sweden)

    Antoni Grzywna

    2014-10-01

    Full Text Available This paper presents the characteristics of the chemistry of surface and ground water in the bottom of the river valley reclaimed Ochoza. Drained grassland accounts for 20% of the total catchment area and are located on organic soils in the valley Tyśmienica classified to the Natura 2000 sites. Analysis of physico-chemical properties of water are to assess the effects of anthropogenic transformation and identify factors that influence water quality in the study area. Water samples were collected in the years 2011–2012 in several points. The walls were characterized by surface water stagnant in the trenches, in July, blueberry plantation. Characterized by the highest quality of surface water runoff river with the test object. Occurring here throughout the growing season water flow reed growing on the bed and temporary impoundment of water contribute to the self-cleaning effect of water. Conducted at different times of the growing season (winter, spring, summer, autumn of water chemistry analysis allows to assess the impact of vegetation on the process of self-purification of water. Based on the survey it was found that the river is reduced by 26% BOD 5, COD by 37%, 12% phosphate and potassium by 13%. Concurrently, an increase in the content of nitrogen compounds – ammonia at 27% and 15% nitrate. The increase in the content of nitrogen compounds is particularly evident in the bottom of the object, which is probably associated with the deep trench causing excessive drying of the soil. The highest values of pollutants were recorded mostly in the spring probably due to the outflow of water from the drans.

  1. The bottom water exchange between the Singapore Strait and the West Johor Strait

    Science.gov (United States)

    Sun, Yunfang; Eltahir, Elfatih; Malanotte-Rizzoli, Paola

    2017-08-01

    As a part of the border between Singapore and Malaysia, the West Johor Strait (WJS) suffered newly from harmful algal blooms. There is no previous study showing the source of the nutrients in the WJS. This paper is investigating the possible water exchange between the water in the WJS and the bottom water in Singapore Strait. This paper adopts a two-level nesting atmosphere-ocean coupled models to downscale the global atmosphere-ocean model into the Singapore coastal water, keeping the large-scale and long-term ocean and climate circulation signals and the advantages of the high-resolution. Based on the high-resolution ocean circulation fields, a Lagrangian particle tracking model is used to trace the Singapore Strait's bottom water movement and the water mixing in the WJS. The results showed that the numerical models well resolved the Singapore coastal water regional circulation. There is a small but significant bottom water (1.25%) transport from the Singapore Strait to the WJS, which occurs from the southwest coastline of Singapore. The bottom water in the Singapore Strait prefers to enter the WJS during the spring tide and the flood period, and stay in Johor Strait for 6.4 days. The spring tide is the first-order factor for the water vertical mixing in the WJS, the wind is also very important for the vertical mixing especially in neap tide condition. An overall very important factor is the light perturbation. With the strongest vertical mixing of nutrients and bottom sediments due to the spring tide, the latter ones may inhibit the light penetration during the spring tide and reduce the algal bloom. The light penetration otherwise is greater during the neap tide, when the winds are the most important factor and hence favor the algal bloom. With the strongest wind in February and the longest permanence time in June and the sufficient nutrient supply in February and June, the most serious algal blooms may happen in February and June in the WJS.

  2. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world.

    Science.gov (United States)

    Yoon, Seung-Tae; Chang, Kyung-Il; Nam, SungHyun; Rho, TaeKeun; Kang, Dong-Jin; Lee, Tongsup; Park, Kyung-Ae; Lobanov, Vyacheslav; Kaplunenko, Dmitry; Tishchenko, Pavel; Kim, Kyung-Ryul

    2018-01-25

    The East Sea (Japan Sea), a small marginal sea in the northwestern Pacific, is ventilated deeply down to the bottom and sensitive to changing surface conditions. Addressing the response of this marginal sea to the hydrological cycle and atmospheric forcing would be helpful for better understanding present and future environmental changes in oceans at the global and regional scales. Here, we present an analysis of observations revealing a slowdown of the long-term deepening in water boundaries associated with changes of water formation rate. Our results indicate that bottom (central) water formation has been enhanced (reduced) with more (less) oxygen supply to the bottom (central) layer since the 2000s. This paper presents a new projection that allows a three-layered deep structure, which retains bottom water, at least until 2040, contrasting previous results. This projection considers recent increase of slope convections mainly due to the salt supply via air-sea freshwater exchange and sea ice formation and decrease of open-ocean convections evidenced by reduced mixed layer depth in the northern East Sea, resulting in more bottom water and less central water formations. Such vigorous changes in water formation and ventilation provide certain implications on future climate changes.

  3. Prediction of water quality variation caused by dredging urban river-bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hong-Je; Lee, Byung-Ho; Kim, Jung-Sik [University of Ulsan, Ulsan(Korea); Lee, Kun-Bae [Metropolitan City Hall of Ulsan, Ulsan(Korea)

    2002-04-30

    The purpose of this study was to examine the effect of water quality improvement due to dredging the bottom deposit at the downstream of a urban river. The finite difference method was used to analyze the water quality variations caused by the depths of dredging and intercepting ratios of the goal years. 21 boring points were selected along the 11.2 Km river reach running through a metropolitan city. The pollution levels of the deposits from the bored points were examined by the leaching test. The improvement effect of the water quality, measured as changes of COD, were carried at under drought, minimal, and normal flow. The result indicates that the dredging of the contaminated sludge contributes the improvement of the water quality. (author). 10 refs., 8 tabs., 7 figs.

  4. Quality assurance of MSWI bottom ash. Environmental properties; Kvalitetssaekring av slaggrus. Miljoemaessiga egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter [Lund Univ. (Sweden). Engineering Geology

    2006-04-15

    In Sweden, several hundred tonnes of MSWI bottom ash are generated annually at 29 incineration plants for municipal solid waste. So far bottom ash has mainly been disposed in to landfills or used as cover material in landfills or in other construction works at landfills. A few applications of bottom ash in construction works outside landfills have been reported. A large problem for the market of bottom ash and other secondary materials outside Swedish waste treatment plants is the lack of roles and regulations for a non-polluting use. During 2002 Hartlen and Groenholm presented a proposal to a system to assure the quality of bottom ash after homogenization and stabilization. They notice that the leaching of salts and metals to ground water constitutes the largest risk for the environment during use of bottom ash. Therefore, a quality assurance of environmental properties should be based on leaching tests. The aim of this project was to study how the control of environmental properties of bottom ash (at first hand leaching properties) earlier described in e.g. a product information sheet should be worked out. The starting-point has been a control system for bottom ash developed by Sysav. Different leaching tests illustrate however different aspects of the environmental properties, e.g. short-term and long-term leaching. Limit and target values for different variables could affect both the possibilities to use bottom ash as well as the sampling from storage heaps. We have chosen to investigate pH, availability and leached amount and the connection between these variables. the possibilities to use pH or the availability to assess both short-term and longterm leaching properties. how the number of subsamples that should be collected from a storage heap is affected by different control variables and quality requirements. how bottom ash is stabilized by today's storage technology and how the technology could be improved. Our sample test of bottom ash from Swedish

  5. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.

    Science.gov (United States)

    Fontseré Obis, Marta; Germain, Patrick; Troesch, Olivier; Spillemaecker, Michel; Benbelkacem, Hassen

    2017-02-01

    In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H 2 S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H 2 S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH 4 , CO 2 , O 2 , H 2 S and H 2 O in raw and treated biogas. The H 2 S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24g water /m 3 . The biogas water content was found to greatly affect bottom ash efficiency regarding H 2 S removal. With humid inlet biogas the H 2 S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH 2 S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H 2 S retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  7. STURM: Resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: Design and Applications

    Science.gov (United States)

    Sanford, L. P.; Porter, E.; Porter, F. S.; Mason, R. P.

    2016-02-01

    Shear TUrbulence Resuspension Mesocosm (STURM) tanks, with high instantaneous bottom shear stress and realistic water column mixing in a single system, allow more realistic benthic-pelagic coupling studies that include sediment resuspension. The 1 m3 tanks can be programmed to produce tidal or episodic sediment resuspension over extended time periods (e.g. 4 weeks), over muddy sediments with or without infaunal organisms. The STURM tanks use a resuspension paddle that produces uniform bottom shear stress across the sediment surface while gently mixing a 1 m deep overlying water column. The STURM tanks can be programmed to different magnitudes, frequencies, and durations of bottom shear stress (and thus resuspension) with proportional water column turbulence levels over a wide range of mixing settings for benthic-pelagic coupling experiments. Over eight STURM calibration settings, turbulence intensity ranged from 0.55 to 4.52 cm s-1, energy dissipation rate from 0.0032 to 2.65 cm2 s-3, the average bottom shear stress from 0.0068 to 0.19 Pa, and the instantaneous bottom shear stress from 0.07 to 2.0 Pa. Mixing settings can be chosen as desired and/or varied over the experiment, based on the scientific question at hand. We have used the STURM tanks for four 4-week benthic-pelagic coupling ecosystem experiments with tidal resuspension with or without infaunal bivalves, for stepwise erosion experiments with and without infaunal bivalves, for experiments on oyster biodeposit resuspension, to mimic storms overlain on tidal resuspension, and for experiments on the effects of varying frequency and duration of resuspension on the release of sedimentary contaminants. The large size of the tanks allows water quality and particle measurements using standard oceanographic instrumentation. The realistic scale and complexity of the contained ecosystems has revealed indirect feedbacks and responses that are not observable in smaller, less complex experimental systems.

  8. Numerical Simulation Study on Steam-Assisted Gravity Drainage Performance in a Heavy Oil Reservoir with a Bottom Water Zone

    Directory of Open Access Journals (Sweden)

    Jun Ni

    2017-12-01

    Full Text Available In the Pikes Peak oil field near Lloydminster, Canada, a significant amount of heavy oil reserves is located in reservoirs with a bottom water zone. The properties of the bottom water zone and the operation parameters significantly affect oil production performance via the steam-assisted gravity drainage (SAGD process. Thus, in order to develop this type of heavy oil resource, a full understanding of the effects of these properties is necessary. In this study, the numerical simulation approach was applied to study the effects of properties in the bottom water zone in the SAGD process, such as the initial gas oil ratio, the thickness of the reservoir, and oil saturation of the bottom water zone. In addition, some operation parameters were studied including the injection pressure, the SAGD well pair location, and five different well patterns: (1 two corner wells, (2 triple wells, (3 downhole water sink well, (4 vertical injectors with a horizontal producer, and (5 fishbone well. The numerical simulation results suggest that the properties of the bottom water zone affect production performance extremely. First, both positive and negative effects were observed when solution gas exists in the heavy oil. Second, a logarithmical relationship was investigated between the bottom water production ratio and the thickness of the bottom water zone. Third, a non-linear relation was obtained between the oil recovery factor and oil saturation in the bottom water zone, and a peak oil recovery was achieved at the oil saturation rate of 30% in the bottom water zone. Furthermore, the operation parameters affected the heavy oil production performance. Comparison of the well patterns showed that the two corner wells and the triple wells patterns obtained the highest oil recovery factors of 74.71% and 77.19%, respectively, which are almost twice the oil recovery factors gained in the conventional SAGD process (47.84%. This indicates that the optimized SAGD process

  9. Assessment of Near-Bottom Water Quality of Southwestern Coast of Sarawak, Borneo, Malaysia: A Multivariate Statistical Approach

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available The study on Sarawak coastal water quality is scarce, not to mention the application of the multivariate statistical approach to investigate the spatial variation of water quality and to identify the pollution source in Sarawak coastal water. Hence, the present study aimed to evaluate the spatial variation of water quality along the coastline of the southwestern region of Sarawak using multivariate statistical techniques. Seventeen physicochemical parameters were measured at 11 stations along the coastline with approximately 225 km length. The coastal water quality showed spatial heterogeneity where the cluster analysis grouped the 11 stations into four different clusters. Deterioration in coastal water quality has been observed in different regions of Sarawak corresponding to land use patterns in the region. Nevertheless, nitrate-nitrogen exceeded the guideline value at all sampling stations along the coastline. The principal component analysis (PCA has determined a reduced number of five principal components that explained 89.0% of the data set variance. The first PC indicated that the nutrients were the dominant polluting factors, which is attributed to the domestic, agricultural, and aquaculture activities, followed by the suspended solids in the second PC which are related to the logging activities.

  10. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    Science.gov (United States)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  11. Reconstructing bottom water temperatures from measurements of temperature and thermal diffusivity in marine sediments

    Science.gov (United States)

    Miesner, F.; Lechleiter, A.; Müller, C.

    2015-07-01

    Continuous monitoring of oceanic bottom water temperatures is a complicated task, even in relatively easy-to-access basins like the North or Baltic seas. Here, a method to determine annual bottom water temperature variations from inverse modeling of instantaneous measurements of temperatures and sediment thermal properties is presented. This concept is similar to climate reconstructions over several thousand years from deep borehole data. However, in contrast, the presented method aims at reconstructing the recent temperature history of the last year from sediment thermal properties and temperatures from only a few meters depth. For solving the heat equation, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature variations for the preceding years and the thermal properties of the sediments, the forward model determines the sediment temperature field. The bottom water temperature variation is modeled as an annual cosine defined by the mean temperature, the amplitude and a phase shift. As the forward model operator is non-linear but low-dimensional, common inversion schemes such as the Newton algorithm can be utilized. The algorithms are tested for artificial data with different noise levels and for two measured data sets: from the North Sea and from the Davis Strait. Both algorithms used show stable and satisfying results with reconstruction errors in the same magnitude as the initial data error. In particular, the artificial data sets are reproduced with accuracy within the bounds of the artificial noise level. Furthermore, the results for the measured North Sea data show small variances and resemble the bottom water temperature variations recorded from a nearby monitoring site with relative errors smaller than 1 % in all parameters.

  12. Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir.

    Science.gov (United States)

    Ma, Wei-Xing; Huang, Ting-Lin; Li, Xuan; Zhang, Hai-Han; Ju, Tuo

    2015-12-01

    Climate variation can have obvious effects on hydrologic conditions, which in turn can have direct consequences for the thermal regime and quality of water for human use. In this research, weekly surveys were conducted from 2011 to 2013 to investigate how changes of climate and hydrology affect the thermal regime and water quality at the Heihe Reservoir. Our results show that the hydrology change during the flooding season can both increase the oxygen concentration and accelerate the consumption of dissolved oxygen. Continuous heavy rainfall events occurred in September 2011 caused the mixing of the entire reservoir, which led to an increase in dissolved oxygen at the bottom until the next year. Significant turbid density flow was observed following the extreme rainfall events in 2012 which leading to a rapid increase in turbidity at the bottom (up to 3000 NTU). Though the dissolved oxygen at the bottom increased from 0 to 9.02 mg/L after the rainfall event, it became anoxic within 20 days due to the increase of water oxygen demand caused by the suspended matter brought by the storm runoff. The release of compounds from the sediments was more serious during the anaerobic period after the rainfall events and the concentration of total iron, total phosphorus, and total manganese at the bottom reached 1.778, 0.102, and 0.125 mg/L. The improved water-lifting aerators kept on running after the storm runoff occurred in 2013 to avoid the deterioration of water quality during anaerobic conditions and ensured the good water quality during the mixing period. Our results suggest preventive and remediation actions that are necessary to improve water quality and status.

  13. Effect of bottom slope on the nonlinear triad interactions in shallow water

    Science.gov (United States)

    Chen, Hongzhou; Tang, Xiaocheng; Zhang, Ri; Gao, Junliang

    2018-05-01

    This paper aims at investigating the effect of bottom slope to the nonlinear triad interactions for irregular waves propagating in shallow water. The physical experiments are conducted in a wave flume with respect to the transformation of waves propagating on three bottom slopes ( β = 1/15, 1/30, and 1/45). Irregular waves with different type of breaking that are mechanically generated based on JONSWAP spectra are used for the test. The obviously different variations of spectra measured on each bottom reveal a crucial role of slope effect in the energy transfer between harmonics. The wavelet-based bispectrum were used to examine the bottom slope effect on the nonlinear triad interactions. Results show that the different bottom slopes which waves are propagated on will cause a significant discrepancy of triad interactions. Then, the discussions on the summed bicoherence which denote the distribution of phase coupling on each frequency further clarify the effect of bottom slope. Furthermore, the summed of the real and imaginary parts of bispectrum which could reflect the intensity of frequency components participating in the wave skewness and asymmetry were also investigated. Results indicate that the value of these parameters will increase as the bottom slope gets steeper.

  14. Numerical simulation of water quality in Yangtze Estuary

    Directory of Open Access Journals (Sweden)

    Xi Li

    2009-12-01

    Full Text Available In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP. Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD and the initial water quality distribution as manifested by dissolved oxygen (DO, were obtained by application of the Environmental Fluid Dynamics Code (EFDC with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.

  15. Bottom Sediment Chemistry, Nutrient Balance, and Water Birds in ...

    African Journals Online (AJOL)

    Water bird characteristics, nutrient loadings, and the levels of bottom sediment silicon oxide (SiO2), aluminium oxide (Al2O3), ferric oxide (Fe2O3), calcium oxide (CaO), copper (Cu), phosphorus (P) and organic carbon (C) was studied in eight high altitude (2040-2640m) small shallow (0.065-0.249 km2; 0.9-3.1 m) ...

  16. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  17. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  18. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  19. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  20. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    Science.gov (United States)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a

  1. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    International Nuclear Information System (INIS)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.

    1990-01-01

    An investigation was initiated to determine whether irrigation drainage in and near the Stillwater Wildlife Management Area has caused or has potential to cause harmful effects on human health or fish and wildlife, or may adversely affect the suitability of water for beneficial uses. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert and were analyzed for potentially toxic trace elements, including selenium. Other analyses included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediments and biota. In areas affected by irrigation drainage, concentrations of the following constituents commonly were found to exceed baseline concentrations or federal and state criteria for the protection of aquatic life or the propagation of wildlife: in water, arsenic, boron, dissolved solids, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appear to be biomagnified whereas arsenic is bioaccumulated. Some radioactive substances were substantially higher at the downstream sites compared with upstream background sites, but the significance of this to wildlife is unknown at present. 88 refs., 32 figs., 19 tabs

  2. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  3. Bottom water oxygenation changes in the northern Okinawa Trough since the last 88ka: Controlled by local hydrology and climate

    Science.gov (United States)

    Zou, Jianjun; Shi, Xuefa; Zhu, Aimei; Bai, Yazhi; Selvaraj, Kandasamy

    2014-05-01

    Dissolved oxygen content in oceanic bottom water is closely related to the surface organic carbon export and subsurface water stratification, regulating the biogeochemical cycles of some key nutrients and trace elements in intermediate and deep water columns. Further, the rate of organic carbon flux to sediments and bottom water oxygen concentration together determine the intensity of reducing conditions in sediments. In this study, we obtain high-resolution geochemical elements (TOC, TN, TS, CaCO3, Cd, U, Mn and Mo) in a radiocarbon (14C) and δ18O dated, sediment core CSH1 collected from the northern Okinawa Trough to reconstruct the history of bottom water redox conditions over 88 ka. Our data revealed the presence of hypoxic bottom water in the northern Okinawa Trough during late MIS5a-early MIS4, Last Glacial Maximum, and the early Last Deglacial intervals. During the Holocene and the early MIS5a, the dissolved oxygen content in bottom water has increased with decreasing water stratification, which was probably caused by the increased upwelling from the bottom in tandem with the climbing of Kuroshio Current and subdued freshwater effect in the northern Okinawa Trough. The reasons that caused the change of dissolved oxygen content in bottom water in the northern Okinawa Trough varied during different periods. The main factors are related to sea level, strengths of East Asian monsoon and the Kuroshio Current, and the shift of Westerly Jet Axis. The semi-closed topography in the northern Okinawa Trough provides a space framework for the presence of anoxia, while the sea level together with the Kuroshio Current, the East Asian monsoon and the Westerly Jet Axis seems to affect the strength of water stratification and the nutrient supply; thereby, regulating the dissolved oxygen exchange between surface and bottom waters. This work was supported by the National Natural Science Foundation of China(Grant No.:40906035,40710069004) and by basic scientific fund for

  4. Quality assurance of MSWI bottom ash. Environmental properties; Kvalitetssaekring av slaggrus. Miljoemaessiga egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter [Lund Univ. (Sweden). Dept. of Engineering Geology

    2006-04-15

    In Sweden several hundred tonnes of MSWI bottom ash are generated annually at 29 incineration plants for municipal solid waste. So far bottom ash has mainly been disposed in to landfills or used as cover material in landfills or in other construction works at landfills. A few applications of bottom ash in construction works outside landfills have been reported. A large problem for the market of bottom ash and other secondary materials outside Swedish waste treatment plants is the lack of roles and regulations for a non-polluting use. During 2002 Hartlen and Groenholm (HG) presented a proposal to a system to assure the quality of bottom ash after homogenization and stabilization. A quality assurance of environmental properties should be based on leaching tests. The aim of this project was to study how the control of environmental properties of bottom ash earlier described in e.g. a product information sheet should be worked out. The starting-point has been a control system for bottom ash developed by the Sysav company. Different leaching tests illustrate however different aspects of the environmental properties, e.g. short-term and long-term leaching. Limit and target values for different variables could affect both the possibilities to use bottom ash as well as the sampling from storage heaps. We have chosen to investigate: pH, availability and leached amount and the connection between these variables; the possibilities to use pH or the availability to assess both short-term and long term leaching properties; how the number of subsamples that should be collected from a storage heap is affected by different control variables and quality requirements; how bottom ash is stabilized by today's storage technology and how the technology could be improved. Our sample test of bottom ash from Swedish incineration plants indicates that the availability of elements such as Cd, Cu, Cr, Ni, Pb and Zn in bottom ash usually is below Sysav's target values. Extreme values

  5. Phosphorus availability from bottom sediments of lakes using a nuclear technique

    International Nuclear Information System (INIS)

    Flores, F.; Facetti, J.F.

    1991-01-01

    Availability of phosphorus from the bottom sediments of a lake plays an import role in the development of aquatic biota and in the enhancement of eutrophication process. In this work the 31 P↔ 32 P isotopic exchange (E values) technique was applied to assess the potential influence of this phosphorus reservoir on the water quality of Acaray and Yguazu Dams, at the Eastern Region of Paraguay. Samples analyzed were taken from the bottom sediments of the water bodies at different sites as well as from the shores. The method is reliable and yields information of ecological significance

  6. Determination of Water Quality Parameters in Sivas - Kurugöl Lake

    Directory of Open Access Journals (Sweden)

    Ekrem Mutlu

    2013-12-01

    Full Text Available Kurugöl Lake; Sivas province Hafik county Kurugöl village located within the boundaries of Sivas province, 54 km, Hafik the town 24 miles away, an area of 8.9 ha altitude of 1362 m, an average depth of 3.4 - 4 m with gypsum plateau on the bottom of the boiling water along with rainfall and snowmelt with the lake is fed naturally. Kurugöl (Hafik - Sivas waters of Lake of the physical and chemical properties during the year changes occurring determining water quality characteristics to reveal the pollution levels are determined, living life in terms of the availability of the detection, water pollution and control regulations by the lake water classification and fishing activities, compliance with were identified. The inland lake in Kurugöl (SKKY according to the classification of water resources in accordance with the parameters measured I-III water quality varies from class.

  7. Water quality determination by photographic analysis. [optical density and water turbidity

    Science.gov (United States)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  8. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  9. Method of retrieving an object buried in the bottom of a body of water

    Energy Technology Data Exchange (ETDEWEB)

    van Steveninck, J

    1975-05-14

    In this method of retrieving an object buried in the bottom of a body of water, the object to be retrieved has a number of openings or nozzles, with the aid of at least some of which the object has been buried by fluidization in the bottom of a body of water, for example a fluidization device for burying a pipeline or a fluidization anchor. The method consists of supplying a gas to the buried object, allowing the gas to pass to and through openings or nozzles on the object in such a manner that the gas will be introduced into, and will refluidize the bottom material above the object, and raising the object. Experiments have shown that in this manner fluidization can be reestablished immediately, due to the low density and the low viscosity of the gas, whereafter the object due to the low resistance of the refluidized bottom material is easy to raise to the surface, even after the fluidization has been interrupted for a long period of time. Preferably, the gas used is air, since air is readily available; however, other gases can be used, if desired. (7 claims)

  10. Seasonal influence on water quality status of Temenggor Lake, Perak

    International Nuclear Information System (INIS)

    Wan Mohd Afiq Wan Abdul Khalik; Mohd Pauzi Abdullah; Mohd Pauzi Abdullah

    2012-01-01

    A study of the water quality in Temenggor Lake was conducted within two different seasons, namely wet season (November - January 2009) and dry season (March - July 2010). Thirteen sampling stations were selected representing open water body of the lake particularly surrounding Banding Island. Three depths layered sampling (surface, middle and bottom of lake) was performed at each sampling stations except in zone B. An average WQI for Temenggor Lake in wet season (90.49) is slightly higher than the average for dry season (88.87). This study indicates quite significant seasonal influence of rainfalls on environmental lake ecosystems by improving the quality through dilution effect on several parameters. Statistical analysis of two-way ANOVA test indicates that all measured parameters are affected by seasonal changes except for pH, turbidity, DO, BOD, oil and grease. Biochemical Oxygen Demand (BOD) and water hardness showed significant relationship with local community activities. Considering future development as eco tourism destination, the water quality of Temenggor Lake should be maintained thus some sort of integrated lake management system model on the integrated water resource management concept should be implemented. (author)

  11. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    International Nuclear Information System (INIS)

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring

  12. Phosphorus availability from bottom sediments of lakes using a nuclear technique

    International Nuclear Information System (INIS)

    Flores, F.; Facetti, J.F.

    1992-01-01

    Availability of phosphorus from the bottom sediments of a lake plays an import role in the development of aquatic biota and in the enhancement of the eutrophication process. In this work, the 31 P- 32 P isotopic exchange (E values) technique was applied to assess the potential influence of this phosphorus 'reservoir' on the water quality of the Acaray and Yguazu Dams in the Easter Region of Paraguay. Samples analyzed were taken from the bottom sediments of the water body at different sites as well as from the shores. The method is reliable and yields information of potential ecological significance. (author) 14 refs.; 2 tabs

  13. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River

  14. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997

    Science.gov (United States)

    Stumpf, R.P.; Frayer, M.L.; Durako, M.J.; Brock, J.C.

    1999-01-01

    Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated fight attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and fight attenuation in both winter and summer beginning in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a major Syringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward

  15. Distribution of Fe in waters and bottom sediments of a small estuarine catchment, Pumicestone Region, southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Liaghati, Tania; Cox, Malcolm E.; Preda, Micaela

    2005-01-01

    Dissolved and extractable iron concentrations in surface water, groundwater and bottom sediments were determined for Halls Creek, a small subtropical tidally influenced creek. Dissolved iron concentrations were much higher in fresh surface waters and groundwater compared to the estuarine water. In bottom sediments, iron minerals were determined by X-ray diffraction (XRD); of these, hematite (up to 11%) has formed by precipitation from iron-rich water in the freshwater section of the catchment. Pyrite was only identified in the estuarine reach and demonstrated several morphologies [identified by scanning electron microscopy (SEM)] including loosely and closely packed framboids, and the euhedral form. The forms of pyrite found in bottom sediments indicate in situ production and recrystallisation. In surface waters, pyrite was detected in suspended sediment; due to oxygen concentrations well above 50 μmol/l, it was concluded that framboids do not form in the water column, but are within resuspended bottom sediments or eroded from creek banks. The persistence of framboids in suspended sediments, where oxygen levels are relatively high, could be due to their silica and clay-rich coatings, which prevent a rapid oxidation of the pyrite. In addition to identifying processes of formation and transport of pyrite, this study has environmental significance, as this mineral is a potential source of bioavailable forms of iron, which can be a major nutrient supporting algal growth

  16. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  17. Influence of internal tides on Antarctic Bottom Water propagation through abyssal channels

    Science.gov (United States)

    Morozov, Eugene

    2010-05-01

    Antarctic Bottom Water (AABW) propagates in the Atlantic Ocean from the Weddell Sea to the north through narrow passages in submarine ridges. Submarine ridges are regions of strong internal tide generation in the ocean that causes mixing and eventually AABW loses its distinguishing properties such as low temperature and salinity. The Vema Fracture Zone (11 N) and Romanche Fracture Zone (equator) in the Mid-Atlantic Ridge (MAR) are pathways for AABW to the Northeast Atlantic. The deep basin of the Northeast Atlantic (Canary Basin and Gambia Abyssal Plain) are filled with the bottom water propagating through the Vema FZ rather than through the equatorial fracture zones because strong internal tides and mixing over the slopes of the MAR near the equator cause warming of AABW and decrease of its density. Further propagation of AABW through the Kane Gap is low. Recent field measurements in the fracture zones confirm this concept based on modeling results. Results of recent cruises are presented.

  18. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom

    Directory of Open Access Journals (Sweden)

    Katsunori Mizuno

    2016-05-01

    Full Text Available Digging is necessary to detect plant roots under the water bottom. However, such detection is affected by the transparency of water and the working skills of divers, usually requires considerable time for high-resolution sampling, and always damages the survey site. We developed a new automatic non-destructive acoustic measurement system that visualizes the space under the water bottom, and tested the system in the in situ detection of natural plant roots. The system mainly comprises a two-dimensional waterproof stage controlling unit and acoustic measurement unit. The stage unit was electrically controlled through a notebook personal computer, and the space under the water bottom was scanned in a two-dimensional plane with the stage unit moving in steps of 0.01 m (±0.0001 m. We confirmed a natural plant root with diameter of 0.025–0.030 m in the reconstructed three-dimensional acoustic image. The plant root was at a depth of about 0.54 m and the propagation speed of the wave between the bottom surface and plant root was estimated to be 1574 m/s. This measurement system for plant root detection will be useful for the non-destructive assessment of the status of the space under the water bottom.

  19. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  20. General introduction for the “National field manual for the collection of water-quality data”

    Science.gov (United States)

    ,

    2018-02-28

    BackgroundAs part of its mission, the U.S. Geological Survey (USGS) collects data to assess the quality of our Nation’s water resources. A high degree of reliability and standardization of these data are paramount to fulfilling this mission. Documentation of nationally accepted methods used by USGS personnel serves to maintain consistency and technical quality in data-collection activities. “The National Field Manual for the Collection of Water-Quality Data” (NFM) provides documented guidelines and protocols for USGS field personnel who collect water-quality data. The NFM provides detailed, comprehensive, and citable procedures for monitoring the quality of surface water and groundwater. Topics in the NFM include (1) methods and protocols for sampling water resources, (2) methods for processing samples for analysis of water quality, (3) methods for measuring field parameters, and (4) specialized procedures, such as sampling water for low levels of mercury and organic wastewater chemicals, measuring biological indicators, and sampling bottom sediment for chemistry. Personnel who collect water-quality data for national USGS programs and projects, including projects supported by USGS cooperative programs, are mandated to use protocols provided in the NFM per USGS Office of Water Quality Technical Memorandum 2002.13. Formal training, for example, as provided in the USGS class, “Field Water-Quality Methods for Groundwater and Surface Water,” and field apprenticeships supplement the guidance provided in the NFM and ensure that the data collected are high quality, accurate, and scientifically defensible.

  1. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  2. Water Quality Monitoring in the Execution of Canal Remediation Methods in the Florida Keys

    Science.gov (United States)

    Serna, A.; Briceno, H.

    2016-02-01

    Monitoring data indicate relatively high nutrient concentrations in waters close to shore along the Florida Keys, and corresponding responses from the system, such as higher phytoplankton biomass, turbidity and light attenuation as well as lower oxygenation and lower salinities of the water column. These changes, associated to human impact, have become more obvious near canal mouths. Waters close to shore show characteristics closely related to those in residential canals, affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water table. Many canals do not meet the minimum water quality (WQ) criteria established by the State of Florida and are a potential source of contaminants to near shore waters designated as Outstanding Florida Waters. Canal remediation is being conducted by the Monroe County targeting poor circulation and organic matter accumulation. The restoration technologies include reduction in weed wrack, enhanced circulation, organic removal and partial backfilling. The objective of WQ monitoring is to measure the status and trends of WQ parameters to evaluate progress toward achieving and maintaining WQ standards and protecting/restoring the living marine resources. Monitoring followed a Before-and-After-Control-Impact scheme (BACI). Field measurements, included diel observations and vertical profiles of physical-chemical properties (salinity, DO, %DO saturation, temperature and turbidity) and nutrient analysis. Comparing profiles between remediated and control canals indicated similar patterns in physicochemical properties, and suggesting larger seasonal than spatial variability. BACI diel observations, in surface and bottom waters of remediated canals indicated little difference for surface waters, but significant improvements for bottom waters. Most surface waters are well oxygenated, while bottom waters show a significant increase in DO following culvert installation.

  3. OIL DECONTAMINATION OF BOTTOM SEDIMENTS EXPERIMENTAL WORK RESULTS

    Directory of Open Access Journals (Sweden)

    Lushnikov Sergey V.

    2006-08-01

    Full Text Available This article presents the results of experimental work during 2004-2005 on oil decontamination of bottom sediments of Lake Schuchye, situated in the Komi Republic (Northern Russia. The cause of thecontamination were huge oil spills occurred after a series of accidental ruptures on the Harjaga-Usinsk and Vozej-Usinsk oil-pipe lines in 1994. Flotation technology was used for the cleaning of bottom sediments.157 tons of crude oil were removed during the course of 2-year experimental work from an area of 4,1 ha.The content of aliphatic and alicyclic oil hydrocarbons was reduced from 53,3 g/kg to 2,2 g/kg, on average.Hydrobiological investigations revealed that bottom sediments started to be inhabited by benthos organisms, dominantly Oligochaeta. Besides Oligochaeta, Chironomidae maggots and Bivalvia were detected. Theappearance of Macrozoobenthos organisms can serve as a bioindicator of water quality.

  4. Influence of near-bottom re-suspended sediment on benthic light availability

    DEFF Research Database (Denmark)

    Pedersen, Troels Møller; Gallegos, Charles L.; Nielsen, Søren Laurentius

    2012-01-01

    Increased light attenuation in the water column is a common consequence of the increased organic loading that accompanies anthropogenic eutrophication in coastal systems. Frequently, the best water quality correlate of the light attenuation coefficient is the total suspended solids, even in systems......-bottomlight attenuation using an array of in situ light sensors with very close spacing near the sediment–water interface and a radiative transfer (RT) modeling with the software “Hydrolight”. We found that the light attenuation coefficient over 4.5 cm just above the bottom exceeded the attenuation found higher...... in the water column by a factor ranging from 1.6 to >30. RT modeling indicated that light received at the bottom could be overestimated by a factor 4 or more by extrapolating measurements not taking the near-bottomlight attenuation into account. The results may help explain the wide range of seagrass light...

  5. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  6. Comparison of Mercury in Water, Bottom Sediment, and Zooplankton in Two Front Range Reservoirs in Colorado, 2008-09

    Science.gov (United States)

    Mast, M. Alisa; Krabbenhoft, David P.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, conducted a study to investigate environmental factors that may contribute to the bioaccumulation of mercury in two Front Range reservoirs. One of the reservoirs, Brush Hollow Reservoir, currently (2009) has a fish-consumption advisory for mercury in walleye (Stizostedion vitreum), and the other, Pueblo Reservoir, which is nearby, does not. Water, bottom sediment, and zooplankton samples were collected during 2008 and 2009, and a sediment-incubation experiment was conducted in 2009. Total mercury concentrations were low in midlake water samples and were not substantially different between the two reservoirs. The only water samples with detectable methylmercury were collected in shallow areas of Brush Hollow Reservoir during spring. Mercury concentrations in reservoir bottom sediments were similar to those reported for stream sediments from unmined basins across the United States. Despite higher concentrations of fish-tissue mercury in Brush Hollow Reservoir, concentrations of methylmercury in sediment were as much as 3 times higher in Pueblo Reservoir. Mercury concentrations in zooplankton were at the low end of concentrations reported for temperate lakes in the Northeastern United States and were similar between sites, which may reflect the seasonal timing of sampling. Factors affecting bioaccumulation of mercury were assessed, including mercury sources, water quality, and reservoir characteristics. Atmospheric deposition was determined to be the dominant source of mercury; however, due to the proximity of the reservoirs, atmospheric inputs likely are similar in both study areas. Water-quality constituents commonly associated with elevated concentrations of mercury in fish (pH, alkalinity, sulfate, nutrients, and dissolved organic carbon) did not appear to explain differences in fish-tissue mercury concentrations between the reservoirs. Low methylmercury

  7. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao

    2017-11-27

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  8. Topological helical edge states in water waves over a topographical bottom

    KAUST Repository

    Wu, Shi qiao; Wu, Ying; Mei, Jun

    2017-01-01

    We present the discovery of topologically protected helical edge states in water wave systems, which are realized in water wave propagating over a topographical bottom whose height is modulated periodically in a two-dimensional triangular pattern. We develop an effective Hamiltonian to characterize the dispersion relation and use spin Chern numbers to classify the topology. Through full wave simulations we unambiguously demonstrate the robustness of the helical edge states which are immune to defects and disorders so that the backscattering loss is significantly reduced. A spin splitter is designed for water wave systems, where helical edge states with different spin orientations are spatially separated with each other, and potential applications are discussed.

  9. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  10. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  11. Bottom head assembly

    International Nuclear Information System (INIS)

    Fife, A.B.

    1998-01-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs

  12. Combined effect of bottom reflectivity and water turbidity on steady state thermal efficiency of salt gradient solar pond

    International Nuclear Information System (INIS)

    Husain, M.; Patil, P.S.; Patil, S.R.; Samdarshi, S.K.

    2004-01-01

    In salt gradient solar ponds, the clarity of water and absorptivity of the bottom are important concerns. However, both are practically difficult to maintain beyond a certain limit. The reflectivity of the bottom causes the loss of a fraction of the incident radiation flux, resulting in lower absorption of flux in the pond. Turbidity hinders the propagation of radiation. Thereby it decreases the flux reaching the storage zone. Both these factors lower the efficiency of the pond significantly. However, the same turbidity also prevents the loss of radiation reflected from the bottom. Hence, the combined effect is compensatory to some extent. The present work is an analysis of the combined effect of the bottom's reflectivity and water turbidity on the steady state efficiency of solar ponds. It is found that in the case of a reflective bottom, turbidity, within certain limits, improves the efficiency of pond. This is apparently contradictory to the conventional beliefs about the pond. Nevertheless, this conclusion is of practical importance for design and maintenance of solar ponds

  13. Influence of submarine morphology on bottom water flow across the western Ross Sea continental margin

    Science.gov (United States)

    Davey, F.J.; Jacobs, S.S.

    2007-01-01

    Multibeam sonar bathymetry documents a lack of significant channels crossing outer continental shelf and slope of the western Ross Sea. This indicates that movement of bottom water across the shelf break into the deep ocean in this area is mainly by laminar or sheet flow. Subtle, ~20 m deep and up to 1000 m wide channels extend down the continental slope, into tributary drainage patterns on the upper rise, and then major erosional submarine canyons. These down-slope channels may have been formed by episodic pulses of rapid down slope water flow, some recorded on bottom current meters, or by sub-ice melt water erosion from an icesheet grounded at the margin. Narrow, mostly linear furrows on the continental shelf thought to be caused by iceberg scouring are randomly oriented, have widths generally less than 400 m and depths less than 30m, and extend to water depths in excess of 600 m.

  14. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    DEFF Research Database (Denmark)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus

    2017-01-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model....... On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient...

  15. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil.

    Science.gov (United States)

    do Nascimento, Marilia Teresa Lima; Santos, Ana Dalva de Oliveira; Felix, Louise Cruz; Gomes, Giselle; de Oliveira E Sá, Mariana; da Cunha, Danieli Lima; Vieira, Natividade; Hauser-Davis, Rachel Ann; Baptista Neto, José Antonio; Bila, Daniele Maia

    2018-03-01

    Endocrine disrupting compounds (EDCs) can be found in domestic sewage, wastewater treatment plant effluents, natural water, rivers, lakes and in the marine environment. Jurujuba Sound, located in the state of Rio de Janeiro, Southeastern Brazil, receives untreated sewage into its waters, one the main sources of aquatic contamination in this area. In this context, the aim of the present study was to evaluate the estrogenic potential of water sampled from different depths and from areas with differential contamination levels throughout Jurujuba Sound. Water quality was evaluated and acute toxicity assays using Allviibrio fischeri were conducted, while estrogenic activity of the water samples was determined by a Yeast Estrogen Screening assay (YES). Water quality was mostly within the limits established for marine waters by the Brazilian legislation, with only DOC and ammoniacal nitrogen levels above the maximum permissible limits. No acute toxicity effects were observed in the Allivibrio fisheri assay. The YES assay detected moderate estrogenic activity in bottom water samples from 3 sampling stations, ranging from 0.5 to 3.2ngL -1 , as well as in one surface water sample. Estrogenic activity was most frequently observed in samples from the bottom of the water column, indicating adsorption of estrogenic compounds to the sediment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China

    Directory of Open Access Journals (Sweden)

    Zi-zhen Zhou

    2015-10-01

    Full Text Available The seasonal variation characteristics of the water quality of the Jinpen Reservoir and the impacts of rainfall runoff on the reservoir were investigated. Water quality monitoring results indicated that, during the stable stratification period, the maximum concentrations of total nitrogen, total phosphorus, ammonia nitrogen, total organic carbon, iron ion, and manganese ion in the water at the reservoir bottom on September 6 reached 2.5 mg/L, 0.12 mg/L, 0.58 mg/L, 3.2 mg/L, 0.97 mg/L, and 0.32 mg/L, respectively. Only heavy storm runoff can affect the main reservoir and cause the water quality to seriously deteriorate. During heavy storms, the stratification of the reservoir was destroyed, and the reservoir water quality consequently deteriorated due to the high-turbidity particulate phosphorus and organic matter in runoff. The turbidity and concentrations of total phosphorus and total organic carbon in the main reservoir increased to 265 NTU, 0.224 mg/L, and 3.9 mg/L, respectively. Potential methods of dealing with the water problems in the Jinpen Reservoir are proposed. Both in stratification and in storm periods, the use of measures such as adjusting intake height, storing clean water, and releasing turbid flow can be helpful to safeguarding the quality of water supplied to the water treatment plants.

  17. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  18. Deep and bottom water characteristics in the Owen Fracture Zone, Western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Kureishy, T.W.

    Hydro chemical studies at a station (10 degrees 34.l'N,56 degrees 31,7'E) in the Owen Fracture zone reveal an active movement of bottom water as approx 75 m thick, cold, low-salinity layer. Silicate profile exhibits a broad maximum coinciding with a...

  19. Numerical simulation of water flow through the bottom en piece of a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Navarro, Moyses A.; Santos, Andre A. Campagnole dos

    2007-01-01

    The water flow through the bottom nozzle of a nuclear fuel assembly was simulated using a commercial CFD code, CFX 10.0. Previously, simulations with a perforated plate similar to the bottom nozzle plate were performed to define the appropriate mesh refinement and turbulence model (κ-ε or SST). Subsequently, the numerical simulation was performed with the optimized mesh using the turbulence model (κ-ε in a standard bottom nozzle with some geometric simplifications. The numerical results were compared with experimental results to determine the pressure drop through the bottom nozzle in the Reynolds range from ∼10500 to ∼95000. The agreement between the numerical simulations and experimental results may be considered satisfactory. The study indicated that the CFD codes can play an important role in the development of pieces with complex geometries, optimizing the planning of the experiments and aiding in the experimental analysis. (author)

  20. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003

    Science.gov (United States)

    Rivaro, Paola; Massolo, Serena; Bergamasco, Andrea; Castagno, Pasquale; Budillon, Giorgio

    2010-05-01

    Data from three Italian CLIMA project cruises between 1997 and 2003 were used to obtain sections of the hydrographic and chemical properties of the main water masses across the shelf break off Cape Adare (western Ross Sea, Antarctica). Dissolved oxygen, nitrate and phosphate data were combined on the basis of the Redfield ratio to obtain the quasi-conservative tracers NO (9[NO 3]+[O 2]), PO (135[PO 4]+[O 2]) and phosphate star PO4* ( PO4*=[PO 4]+[O 2]/175-1.95). In 1997 and 2003 the presence of the High Salinity Shelf Water at the bottom depth near the sill was traced by both physical and chemical measurements. In 2001 the Modified Shelf Water, characterized by warmer temperature and by a lower dissolved oxygen content than High Salinity Shelf Water, was observed at the shelf edge. The distribution of the chemical tracers together with the hydrographic observations showed recently formed Antarctic Bottom Water on the continental slope during all of the cruises. These observations were confirmed by the extended optimum multiparameter analysis. The calculated thickness of the new Antarctic Bottom Water, as well as the tracer content, were variable in time and in space. The estimated volume of the new Antarctic Bottom Water and the export of dissolved oxygen and nutrient associated with the overflowing water were different over the examined period. In particular, a lower (˜55%) export was evidenced in 2001 compared to 1997.

  1. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  2. Numerical analyses of soft bottom macroinvertebrates to diagnose the pollution in tropical coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Harkantra, S.N.; Rodrigues, N.R.

    of techniques to assess the impact of pollution on benthic community structure. Hence, to test this hypotheses some of the univariate and multivariate techniques were applied to soft bottom macro-invertebrates data of coastal waters of Mangalore, central west...

  3. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.

    Science.gov (United States)

    Gikanga, Benson; Chen, Yufei; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Using bottom-mounted mixers, particularly those that are magnetically driven, is becoming increasingly common during the mixing process in pharmaceutical and biotechnology manufacturing because of their associated low risk of contamination, ease of use, and ability to accommodate low minimum mixing volumes. Despite these benefits, the impact of bottom-mounted mixers on biologic drug product is not yet fully understood and is scarcely reported. This study evaluated four bottom-mounted mixers to assess their impact on monoclonal antibody formulations. Changes in product quality (size variants, particles, and turbidity) and impact on process performance (sterile filtration) were evaluated after mixing. The results suggested that mixers that are designed to function with no contact between the impeller and the drive unit are the most favorable and gentle to monoclonal antibody molecules. Designs with contact or a narrow clearance tended to shear and grind the protein and resulted in high particle count in the liquid, which would subsequently foul a filter membrane during sterile filtration using a 0.22 μm pore size filter. Despite particle formation, increases in turbidity of the protein solution and protein aggregation/fragmentation were not detected. Further particle analysis indicated particles in the range of 0.2-2 μm are responsible for filter fouling. A small-scale screening model was developed using two types of magnetic stir bars mimicking the presence or absence of contact between the impeller and drive unit in the bottom-mounted mixers. The model is capable of differentiating the sensitivity of monoclonal antibody formulations to bottom-mounted mixers with a small sample size. This study fills an important gap in understanding a critical bioprocess unit operation. Mixing is an important unit operation in drug product manufacturing for compounding (dilution, pooling, homogenization, etc.). The current trend in adopting disposable bottom-mounted mixers has

  4. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  5. Examination of abyssal sea floor and near-bottom water mixing processes using Ra-226 and Rn-222

    International Nuclear Information System (INIS)

    Key, R.M.

    1981-01-01

    Since Broecker's (1965) original work, extensive studies have been made on abyssal near-bottom water-mixing processes using the radioactive parent-daughter pair radium-226 (Ra) - radon-222 (Rn). One assumption critical to all of these studies is that sediments immediately under a given water column are the source of excess radon (=Rn concentration - Ra concentration) found in bottom waters. Since 1965 theoretical works of increasing complexity have tried to explain areal variations of excess radon and radium. However, Key et al. (1979b) have reported the only extensive measurements of radium and radon in bottom water and sediments at the same location. This dissertation is an expansion of that work both in theory and in scope. A diagenetic sediment model based on the work of Schink and Guinasso (1978), Cochran (1979), and Key et al. (1979b) was developed to model Ra-Rn in near-surface abyssal sediments. In order to maximize model application information, the degrees of freedom were minimized by measuring as many of the model parameters as possible. The most glaring discrepancy found was that measured near-surface total radium profiles could not be fit using plutonium-derived bioturbation rates. There is an implication that plutonium profiles modeled with currently accepted bioturbation models do not give a true indication of the real biologically induced mixing process. After adjusting for this problem in the source function, diagenetic theory explains near-surface radon-distributions adequately. Using both the adjusted diagenetic model and the empirical model developed by Key et al. (1979b), reasonable agreement was found between the sedimentary radon deficit and near-bottom water surplus. Inadequacy of present diagenetic theory makes any attempt to differentiate sedimentary radium sources academic

  6. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean.

    Science.gov (United States)

    Menezes, Viviane V; Macdonald, Alison M; Schatzman, Courtney

    2017-01-01

    Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade -1 ), warmer (0.06° ± 0.01°C decade -1 ), and less dense (0.011 ± 0.002 kg/m 3 decade -1 ). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade -1 ) compared to the 0.002 ± 0.001 kg/g decade -1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.

  7. Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images

    Science.gov (United States)

    Zhang, S.

    2015-12-01

    Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.

  8. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    Science.gov (United States)

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  9. Transport of Antarctic bottom water through the Kane Gap, tropical NE Atlantic Ocean

    NARCIS (Netherlands)

    Morozov, E.G.; Tarakanov, R.Y.; van Haren, H.

    2013-01-01

    We study low-frequency properties of the Antarctic Bottom Water (AABW) flow through the Kane Gap (9° N) in the Atlantic Ocean. The measurements in the Kane Gap include five visits with CTD (Conductivity-Temperature-Depth) sections in 2009–2012 and a year-long record of currents on a mooring using

  10. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    International Nuclear Information System (INIS)

    El-Tahawy, M.S.; Farouk, M.A.; Ibrahiem, N.M.; El-Mongey, S.A.M.

    1994-01-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238 U series, 232 Th series and 40 K did not exceed 16.0, 15.5 and 500.0 Bq kg -1 dry weight for sediments. The activity concentration of 238 U series and 40 K did not exceed 0.6 and 18.0 Bq l -1 for stream water. (author)

  11. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    Science.gov (United States)

    El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.

    1994-07-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.

  12. Acoustic water bottom investigation with a remotely operated watercraft survey system

    Science.gov (United States)

    Yamasaki, Shintaro; Tabusa, Tomonori; Iwasaki, Shunsuke; Hiramatsu, Masahiro

    2017-12-01

    This paper describes a remotely operated investigation system developed by combining a modern leisure-use fish finder and an unmanned watercraft to survey water bottom topography and other data related to bottom materials. Current leisure-use fish finders have strong depth sounding capabilities and can provide precise sonar images and bathymetric information. Because these sonar instruments are lightweight and small, they can be used on unmanned small watercraft. With the developed system, an operator can direct the heading of an unmanned watercraft and monitor a PC display showing real-time positioning information through the use of onboard equipment and long-distance communication devices. Here, we explain how the system was developed and demonstrate the use of the system in an area of submerged woods in a lake. The system is low cost, easy to use, and mobile. It should be useful in surveying areas that have heretofore been hard to investigate, including remote, small, and shallow lakes, for example, volcanic and glacial lakes.

  13. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  14. The role of the complete Coriolis force in cross-equatorial transport of the Antarctic Bottom Water

    Science.gov (United States)

    Stewart, Andrew; Dellar, Paul

    2010-05-01

    We investigate the equatorial crossing of the Antarctic Bottom Water using a shallow water model that includes the complete Coriolis force. Most theoretical models of the atmosphere and ocean neglect the component of the Coriolis force associated with the horizontal component of the Earth's rotation vector, the so-called traditional approximation. This approximation is typically justified on the basis that ratio of the ocean depth to the Rossby radius of deformation is negligibly small, H-Rd ≪ 1. However, the steep topography and weak stratification in the abyssal ocean magnify the role of the non-traditional component of the Coriolis force. This is most pronounced in equatorial regions, where the traditional component of the Coriolis force is weakest and the non-traditional component is strongest. The inclusion of the complete Coriolis force gives rise to a range of very long sub-inertial waves, whose frequencies lie below the inertial frequency, in the two-layer shallow water equations. These waves have a dramatically different structure to their traditional counterparts, particularly when the stratification is weak. We focus on the flow of the Antarctic Bottom Water from the Brazil Basin in the western South Atlantic to the Guiana Basin in the western North Atlantic. In this region, the current traverses a deep channel directed westwards and very slightly northwards across the equator. Previous attempts to model this flow have struggled to explain why the cross-equatorial transport is so high, with around 2.0-2.2 Sv exiting at the northern end of the channel. We present analytical and numerical solutions of the non-traditional shallow water equations for the cross-equatorial flow of the Antarctic Bottom Water. We obtain analytical solutions by considering the steady-state flow of a single layer of shallow water through a northwesterly channel with a simple geometry. We assume zero potential vorticity, as it may be shown that fluid whose potential vorticity q

  15. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.

    1991-08-01

    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  16. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  17. Development of gamma probe for radiation surveys of the bottoms of surface waters

    International Nuclear Information System (INIS)

    Lee, D.R.; Welch, S.J.; St Aubin, M.J.; Dal Bianco, R.

    1992-01-01

    We have developed a practical method for mapping variations in gamma activity and electrical conductivity of submerged sediments. Prototype probes are being constructed and tested. The first prototype was essentially a background survey meter (Jones, 1979) packaged in a 53-cm-long by 5.4-cm-diameter waterproof vehicle. This tubular vehicle was towed by boat in contact with the bottom sediments of lakes and rivers. Originally, this vehicle was designed (and is still frequently used) for locating groundwater and contaminant entry areas in surface waters. By logging geographic position and sediment variables, it has been possible to produce contour maps in areas of interest. Thus it is possible to optimize environmental analysis and avoid the 'hit or miss' approach of traditional bottom-sediment surveys. (author)

  18. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems

    NARCIS (Netherlands)

    Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J.

    2006-01-01

    Water quality and shrimp production were monitored in extensively managed ponds which were fed a 25% (P25) or 40% (P40) dietary protein, each diet complemented with or without carbohydrate (CH) addition. The experiment was carried out in 6-m3 concrete tanks, with a mud bottom and stocked with 7 post

  19. Effect of the Discharge Water which Mixed Sewage Disposal Water with Seawater Desalting Treated Sewage for Bottom Sediment and Hypoxic Water Mass

    Science.gov (United States)

    Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori

    For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.

  20. ANALYSIS OF SEA WATER POLLUTION IN COASTAL MARINE DISTRICT TUBAN TO THE QUALITY STANDARDS OF SEA WATER WITH USING STORET METHOD

    Directory of Open Access Journals (Sweden)

    Perdana Ixbal Spanton

    2017-05-01

    Full Text Available The sea water is a component that interacts with the terrestrial environment, where sewage from the land will lead to the sea. Waste containing these pollutants will enter into coastal waters and marine ecosystems. Partially soluble in water, partially sinks to the bottom and was concentrated sediment, and partly into the body tissues of marine organisms. This study was conducted to determine the level of pollution of sea water on the coast in the district of Tuban. This research was conducted in the Coastal Water Tuban, East Java. The main material used in research on Analysis of Water Pollution in Coastal Sea on Tuban. The method used in this research is using storet method and compared to the quality standards of the Environment Decree No. 51 in 2004. Based on the analysis of testing at five sampling point’s seawater around Bodies Tuban, obtained by sea water quality measurement results either in physics, chemistry, and microbiology varied. The level of pollution of sea water around Coastal Tuban obtained by using Storet Method average value of analysis is -4.2 included in class B are lightly blackened, while using values obtained Pollution Index average pollution index of 3.60 is included in the category lightly blackened. Keywords: Analysis of the pollution level of seawater on the coast in Tuban, Quality Standards of Sea Water, Storet Method.

  1. Property changes of deep and bottom waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-06-01

    The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5±0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989-2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the

  2. Bottom water production variability in the Ross Sea slope during the Late-Pleistocene-Holocene as revealed by benthic foraminifera and sediment geochemistry

    Science.gov (United States)

    Asioli, A.; Langone, L.; Tateo, F.; Giannossi, M. L.; Giglio, F.; Summa, V.; Piva, A.; Ridente, D.; Trincardi, F.

    2009-04-01

    The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters affect their flow toward the equator and are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. We present the results of a multidisciplinary study carried out on a core collected in 2377m of water depth on the slope off the Drygalski Basin (Ross Sea), along the modern path of the bottom waters. The goal of this research is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating micropaleontological and geochemical proxies. The micropaleontological signal is represented by the quantitative and qualitative variations of the agglutinated benthic foraminifera assemblages, while the amount of TOC, nitrogen, δ13C, δ15N, biogenic silica, CaCO3 in the sediment, along with the bulk rock mineralogy, provide information on the paleoproductivity and allow reconstruction of changes in the paleocirculation. The chronology is supported by 14C AMS datings on organic matter. Although this study is still in progress, the results obtained allow the following observations: 1) the Holocene sequence includes a major turnover around 8-8.5 calib kyr BP, leading to reduced nutrient utilization, probably reflecting an increased nutrient supply induced by an enhanced Upper Circumpolar Deep Water upwelling; 2) within this general context, the total concentration of benthic foraminifera preserved in the fossil component records millennial scale cycles of variable amplitude after 8.5 calib kyr BP and to present time. This oscillatory trend is paralleled by other parameters, such as the magnetic susceptibility, the dry density, the sheet silicates and the δ15N; 3) minima in foraminifera concentration reflect relatively increased dissolution, weaker

  3. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  4. Microbial quality of bagged baby spinach and romaine lettuce: effects of top versus bottom sampling.

    Science.gov (United States)

    Kase, Julie A; Borenstein, Stacey; Blodgett, Robert J; Feng, Peter C H

    2012-01-01

    Contamination with Escherichia coli O157:H7 and Salmonella have called into question the safety and microbial quality of bagged ready-to-eat leafy greens. This study expands on previous findings that these goods have high total bacteria counts (TBC) and coliform counts, variation in counts among different lots, that Escherichia coli is present, and disparities in counts when bags are top or bottom sampled. Nearly 100 bags of baby spinach and hearts of romaine lettuce from a single brand were subjected to both top and bottom sampling. Product was blended, and a portion serially diluted and plated to obtain TBC. Total coliform and E. coli levels were estimated by the most-probable-number (MPN) technique with ColiComplete discs. Top-sampled TBC from bags of baby spinach (48 bags, 13 different lots) ranged from 3.9 to 8.1 log CFU/g and bottom-sampled TBC ranged from 4.0 to 8.2 log CFU/g, with 52% of the bags (or 39% of the lots) producing TBC higher in bottom samples. For hearts of romaine (47 bags from 19 different lots), top-sampled bags had TBC ranging from 2.4 to 7.0 log, and bottom-sampled bags had TBC from 3.3 to 7.3 log, with 64% of the bags (or 63% of the lots) showing higher TBC in bottom samples. However, we are unable to reject the hypothesis that the top and bottom samples from either commodity contain the same TBC (P ≥ 0.08). No E. coli was detected and total coliform bacteria counts were, with few exceptions, ≥210 MPN/g, irrespective of TBC. In general, lots with the most number of days before the printed "use-by" date had lower TBC. However, the R(2) values for either baby spinach (0.4085) or hearts of romaine (0.2946) suggest that age might not be a very good predictor of higher TBC. TBC varied widely between lots and even more so within same-lot samples, as indicated by the sum of squares results. This finding, along with higher TBC in bottom samples, suggests further consideration when a microbiological sampling scheme of bagged produce is

  5. The nepheloid bottom layer and water masses at the shelf break of the western Ross Sea

    Science.gov (United States)

    Capello, Marco; Budillon, Giorgio; Cutroneo, Laura; Tucci, Sergio

    2009-06-01

    In the austral summers of 2000/2001 and 2002/2003 the Italian CLIMA Project carried out two oceanographic cruises along the northwestern margin of the Ross Sea, where the Antarctic Bottom Water forms. Here there is an interaction between the water masses on the sea floor of the outer shelf and slope with a consequent evolution of benthic nepheloid layers and an increase in total particulate matter. We observed three different situations: (a) the presence of triads (bottom structures characterized by a concomitant jump in turbidity, temperature, and salinity data) and high re-suspension phenomena related to the presence of the Circumpolar Deep Water and its mixing with cold, salty shelf waters associated with gravity currents; (b) the absence of triads with high re-suspension, implying that when the gravity currents are no longer active the benthic nepheloid layer may persist until the suspended particles settle to the sea floor, suggesting that the turbidity data can be used to study recent gravity current events; and (c) the absence of turbidity and sediment re-suspension phenomena supports the theory that a steady situation had been re-established and the current interaction no longer occurred or had finished sometime before.

  6. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    DEFF Research Database (Denmark)

    Holtappels, Moritz; Glud, Ronnie N.; Doris, Daphne

    2013-01-01

    Eddy correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print...... area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations...... in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2...

  7. Seasonal variation of CaCO3 saturation state in bottom water of a biological hotspot in the Chukchi Sea, Arctic Ocean

    Directory of Open Access Journals (Sweden)

    M. Yamamoto-Kawai

    2016-11-01

    Full Text Available Distribution of calcium carbonate saturation state (Ω was observed in the Chukchi Sea in autumn 2012 and early summer 2013. Ω in bottom water ranged from 0.3 to 2.0 for aragonite and from 0.5 to 3.2 for calcite in 2012. In 2013, Ω in bottom water was 1.1–2.8 for aragonite and 1.7–4.4 for calcite. Aragonite and calcite undersaturation was found in high productivity regions in autumn 2012 but not in early summer 2013. Comparison with other parameters has indicated that biological processes – respiration and photosynthesis – are major factors controlling the regional and temporal variability of Ω. From these ship-based observations, we have obtained empirical equations to reconstruct Ω from temperature, salinity and apparent oxygen utilization. Using 2-year-round mooring data and these equations, we have reconstructed seasonal variation of Ω in bottom water in Hope Valley, a biological hotspot in the southern Chukchi Sea. Estimated Ω was high in spring and early summer, decreased in later summer, and remained relatively low in winter. Calculations indicated a possibility that bottom water could have been undersaturated for aragonite on an intermittent basis even in the pre-industrial period, and that anthropogenic CO2 has extended the period of aragonite undersaturation to more than 2-fold longer by now.

  8. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  9. New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel

    Science.gov (United States)

    Frey, D. I.; Fomin, V. V.; Diansky, N. A.; Morozov, E. G.; Neiman, V. G.

    2017-05-01

    We used a numerical model of the ocean circulation with a high spatial resolution to obtain estimates of the kinematic characteristics of Antarctic Bottom Water flow through the abyssal Vema Channel in the southwestern part of the Atlantic Ocean. The results of simulations correspond to the data of direct velocity measurements made at several locations in the channel. The high horizontal and vertical resolution of the model in the bottom layer allowed us to study in detail the hydrodynamics of this flow over its entire length.

  10. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  11. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  12. A Synoptic View of the Ventilation and Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural Tracers

    Science.gov (United States)

    Purkey, Sarah G.; Smethie, William M.; Gebbie, Geoffrey; Gordon, Arnold L.; Sonnerup, Rolf E.; Warner, Mark J.; Bullister, John L.

    2018-01-01

    Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.

  13. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality...

  14. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  15. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    Science.gov (United States)

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  16. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore

    International Nuclear Information System (INIS)

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-01-01

    Highlights: • Water temperature is driven by solar radiation and air temperature in the West Johor Strait (WJS). • Salinity in WJS is driven by flood-ebb tide and seasonal variability due to monsoon. • Turbidity is mainly dependent on tidal current and river discharge in WJS. • Chl-a concentration increases with increase in air and water temperature in WJS. • Near-bottom Chl-a concentration in the WJS is high during SW monsoon. -- Abstract: The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales

  17. Ribeira do Iguape basin water quality assessment for drinking water supply; Avaliacao da qualidade da agua na bacia hidrografica do Ribeira de Iguape com vistas ao abastecimento publico

    Energy Technology Data Exchange (ETDEWEB)

    Cotrim, Marycel Elena Barboza

    2006-07-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction < 63 {mu}m) were also evaluated. The sampling period covered dry and wet seasons from March 2002 to February 2003. The descriptive analysis showed that Al, Fe and Mn, exceeding CONAMA 357 quality guideline. A comparison of the elemental concentrations with the Brazilian Drinking Water Legislation (Portaria 518/04) showed that with the exception of some violations, the levels of all the elements investigated were below the Brazilian Legislation maximum allowed concentrations. This study examined the relationship between the type of water supply and the quality of water used, showed different characteristics on Ca, Fe, Mn concentration. In bottom sediments (fraction <63 {mu}m), Al, Fe and Mg largest concentrations were found. Pb and Zn presents concentrations up to 142,0 {mu}g.g{sup -1} and 172 {mu}g.g{sup -1}, respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and

  18. Ribeira do Iguape basin water quality assessment for drinking water supply; Avaliacao da qualidade da agua na bacia hidrografica do Ribeira de Iguape com vistas ao abastecimento publico

    Energy Technology Data Exchange (ETDEWEB)

    Cotrim, Marycel Elena Barboza

    2006-07-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction < 63 {mu}m) were also evaluated. The sampling period covered dry and wet seasons from March 2002 to February 2003. The descriptive analysis showed that Al, Fe and Mn, exceeding CONAMA 357 quality guideline. A comparison of the elemental concentrations with the Brazilian Drinking Water Legislation (Portaria 518/04) showed that with the exception of some violations, the levels of all the elements investigated were below the Brazilian Legislation maximum allowed concentrations. This study examined the relationship between the type of water supply and the quality of water used, showed different characteristics on Ca, Fe, Mn concentration. In bottom sediments (fraction <63 {mu}m), Al, Fe and Mg largest concentrations were found. Pb and Zn presents concentrations up to 142,0 {mu}g.g{sup -1} and 172 {mu}g.g{sup -1}, respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and

  19. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  20. Hydrodynamics and water quality models applied to Sepetiba Bay

    Science.gov (United States)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  1. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  2. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  3. MATHEMATICAL MODEL FOR THE SIMULATION OF WATER QUALITY IN RIVERS USING THE VENSIM PLE® SOFTWARE

    Directory of Open Access Journals (Sweden)

    Julio Cesar de S. I. Gonçalves

    2013-06-01

    Full Text Available Mathematical modeling of water quality in rivers is an important tool for the planning and management of water resources. Nevertheless, the available models frequently show structural and functional limitations. With the objective of reducing these drawbacks, a new model has been developed to simulate water quality in rivers under unsteady conditions; this model runs on the Vensim PLE® software and can also be operated for steady-state conditions. The following eighteen water quality variables can be simulated: DO, BODc, organic nitrogen (No, ammonia nitrogen (Na, nitrite (Ni, nitrate (Nn, organic and inorganic phosphorus (Fo and Fi, respectively, inorganic solids (Si, phytoplankton (F, zooplankton (Z, bottom algae (A, detritus (D, total coliforms (TC, alkalinity (Al., total inorganic carbon (TIC, pH, and temperature (T. Methane as well as nitrogen and phosphorus compounds that are present in the aerobic and anaerobic layers of the sediment can also be simulated. Several scenarios were generated for computational simulations produced using the new model by using the QUAL2K program, and, when possible, analytical solutions. The results obtained using the new model strongly supported the results from the QUAL family and analytical solutions.

  4. Antarctic Bottom Water temperature changes in the western South Atlantic from 1989 to 2014

    Science.gov (United States)

    Johnson, Gregory C.; McTaggart, Kristene E.; Wanninkhof, Rik

    2014-12-01

    Warming of abyssal waters in recent decades contributes to global heat uptake and sea level rise. Repeat oceanographic section data in the western South Atlantic taken mostly in 1989 (1995 across the Scotia Sea), 2005, and 2014 are used to quantify warming in abyssal waters that spread northward through the region from their Antarctic origins in the Weddell Sea. While much of the Scotia Sea warmed between 1995 and 2005, only the southernmost portion, on the north side of the Weddell Gyre, continued to warm between 2005 and 2014. The abyssal Argentine Basin also warmed between 1989 and 2005, but again only the southernmost portion continued to warm between 2005 and 2014, suggesting a slowdown in the inflow of the coldest, densest Antarctic Bottom Waters into the western South Atlantic between 1989 and 2014. In contrast, the abyssal waters of the Brazil Basin warmed both between 1989 and 2005 and between 2005 and 2014, at a rate of about 2 m°C yr-1. This warming is also assessed in terms of the rates of change of heights above the bottom for deep isotherms in each deep basin studied. These results, together with findings from previous studies, suggest the deep warming signal observed in the Weddell Sea after the mid-1970s Weddell Polynya was followed by abyssal warming in the Argentine Basin from the late 1970s through about 2005, then warming in the deep Vema Channel from about 1992 through at least 2010, and warming in the Brazil Basin from 1989 to 2014.

  5. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  6. Aplication Of Life Cycle Assessment On Water Quality Caesed By Fish Culture Activity In Cirata Reservoir, Indonesia

    Directory of Open Access Journals (Sweden)

    Tri Heru Prihadi

    2017-12-01

    Full Text Available Life Cycle Assessment (LCA is an environmental analytical tool used for evaluating the environmental performance of products by compiling and evaluation of the inputs, outputs and potential environmental impacts of a product system throughout the life cycle of product.Sources of the decomposition at Cirata Reservoir are from industrial activities, household waste, agricultural waste, and the leftover from the activities of floating net fish cages. The wastes are in the form of fat, protein and carbohydrat. In decomposition process and the rate of destruction process of organic matters in the sediment  is carried our by bacteria, resulting in the oxygen dissolved in the waters will decrease. This lessens the oxygen at Cirata reservoir so that decomposition process takes place anaerobically at the bottom of the waters. The methodology was conducted by  water and sediment sampling, measuring water quality on location and laboratory analysis for samples of water and sediment. Analysis result showed that the data of water quality collected in every station was relatively homogeneous. The quality of water at measuring time approached critical treshold required for fish raising. The result showed that the level of decomposition Sediment Organic Metter, water quality in Cirata reservoir based on IKA_STORET valued class I, II, and III catagorized as worse. Valued DO, sulfide, Fenol, BOD, COD, Total Fosfat byone  water quality standar. The destruction will occur by itself, depending on the availability of oxygen on the sediment and interface when there is bacteria serving as heterotraphic aerobic in line with the availability of dissolved oxygen for bacteria to do the decomposition activity in the sediment. The result would be confirmed on dendogram classification hierarchy, result revealed that stations of observation were divided into 2 groups according to affecting characteristics. Group 1 covering stasion 1 and 2, group 2 which covering station 3

  7. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  8. Seasonal and inter-annual temperature variability in the bottom waters over the Black Sea shelf

    Science.gov (United States)

    Shapiro, G. I.; Wobus, F.; Aleynik, D. L.

    2011-02-01

    Long-term changes in the state of the Bottom Shelf Water (BSW) on the Western shelf of the Black Sea are assessed using analysis of intra- and inter-annual variations of temperature as well as their relations to physical parameters of both shelf and deep-sea waters. First, large data sets of in-situ observations over the 20th century are compiled into high-resolution monthly climatology at different depth levels. Then, the temperature anomalies from the climatic mean are calculated and aggregated into spatial compartments and seasonal bins to reveal temporal evolution of the BSW. For the purpose of this study the BSW is defined as such shelf water body between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal) which has limited ability to mix vertically with oxygen-rich surface waters during the warm season (May-November) due to the formation of a seasonal pycnocline. The effects of atmospheric processes at the surface on the BSW are hence suppressed as well as the action of the "biological pump". The vertical extent of the near- bottom waters is determined based on energy considerations and the structure of the seasonal pycnocline, whilst the horizontal extent is controlled by the shelf break, where strong along-slope currents hinder exchanges with the deep sea. The BSW is shown to occupy nearly half of the area of the shelf during the summer stratification period. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. A long-term time series of temperature anomalies in the BSW is constructed from observations during the May-November period for the 2nd half of the 20th century. The results reveal a warm phase in the 1960s/70s, followed by cooling of the BSW during 1980-2001. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was confirmed that the memory of winter

  9. Impacts on water quality by hydraulic fracturing in Pennsylvania

    Science.gov (United States)

    Yan, B.; Stute, M.; Chillrud, S. N.; Ross, J. M.; Howarth, M.; Panettieri, R.; Saberi, P.

    2015-12-01

    Shale gas development, including drilling and hydraulic fracturing, is rapidly increasing throughout the United States and, indeed, the rest of the world. Systematic surveys of water quality both pre- and post drilling/production are sparse. To examine the impacts of shale gas production on water quality, pilot studies have been conducted in adjacent counties of western NY (Chemung, Tioga, Broome, and Delaware) and northern PA (Bradford, Susquehanna, and Wayne). These 7 counties along the border of NY and PA share similar geology and demographic compositions and have been identified as a key area to develop shale gas with the key difference that active fracking is occurring in PA but there is no fracking yet in NY. Measurements include a suite of major and trace elements, methane and its stable isotopes, noble gases and tritium for dating purposes, and the primary radioactive elements of potential concern, radon and radium. We found elevated methane levels on both sides of the border. Higher levels of major ions were observed in PA samples close to the gas wells in the valley, possibly from hydraulic fracturing activities. The lab analysis of samples collected in recently launched 100 Bottom Project is ongoing and the results will be presented in this conference.

  10. 12 Trace Metals Distribution in Fish Tissues, Bottom Sediments and ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Abstract. Water samples, bottom sediments, Tilapia, and Cat Fish from Okumeshi River in Delta state of Nigeria were analysed ... Keywords: Trace metals, Fish Tissues, Water, Bottom sediments, Okumeshi River. Introduction ..... Grey Mangroove Avicemmia marina (Forsk). ... sewage treatment plant oulet pipe extension on.

  11. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  12. Hyperspectral signatures and WorldView-3 imagery of Indian River Lagoon and Banana River Estuarine water and bottom types

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor S.; Rotkiske, Tyler; Aziz, Samin; Morrisette, Charles; Callahan, Kelby; Mcallister, Devin

    2017-10-01

    Hyperspectral signatures and imagery collected during the spring and summer of 2017 and 2016 are presented. Ground sampling distances (GSD) and pixel sizes were sampled from just over a meter to less than 4.0 mm. A pushbroom hyperspectral imager was used to calculate bidirectional reflectance factor (BRF) signatures. Hyperspectral signatures of different water types and bottom habitats such as submerged seagrasses, drift algae and algal bloom waters were scanned using a high spectral and digital resolution solid state spectrograph. WorldView-3 satellite imagery with minimal water wave sun glint effects was used to demonstrate the ability to detect bottom features using a derivative reflectance spectroscopy approach with the 1.3 m GSD multispectral satellite channels centered at the solar induced fluorescence band. The hyperspectral remote sensing data collected from the Banana River and Indian River Lagoon watersheds represents previously unknown signatures to be used in satellite and airborne remote sensing of water in turbid waters along the US Atlantic Ocean coastal region and the Florida littoral zone.

  13. Summer Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sampling the coastal waters of the Gulf of Maine using the Northeast Fishery Science Center standardized bottom trawl has been problematic due to large areas of hard...

  14. An efficient and not polluting bottom ash extraction system

    International Nuclear Information System (INIS)

    Carrea, A.

    1992-01-01

    This paper reports that boiler waste water effluent must meet more and more tighter requirements to comply with environmental regulations; sluice water resulting from bottom ash handling is one of the main problems in this context, and many utilities are under effort to maximize the reuse of the sluice water, and, if possible, to meet the aim of zero water discharge from bottom ash handling system. At the same time ash reuse efforts gain strength in order to minimize waste production. One solution to these problems can be found in an innovative Bottom Ash Extraction System (MAC System), marked by the peculiarity to be a continuous dry ash removal; the system has been developed in the last four years by MAGALDI INDUSTRIE SRL in collaboration with ANSALDO Ricerche, the R and D department of ANSALDO, the main Italian Boiler Manufacturer, and is now installed in six ENEL Boilers. The elimination of the water as separation element between the bottom part of the furnace and the outside atmosphere gives advantages mainly from the environmental view point, but a certain improvement in the boiler efficiency has also been demonstrated by the application of the system

  15. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  16. Water Quality Monitoring

    Science.gov (United States)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  17. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  18. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  19. Fish farm and water quality management - doi: 10.4025/actascibiolsci.v35i1.10086

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Sipaúba Tavares

    2012-12-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Fish farms’ water quality management is analyzed with regard to the management employed and the different trophic states are compared within the system during the dry and rainy seasons. Six sites were marked two in the water supply (P1 and P2, and four within the fish farm (P3 to P6 . Whereas sites P1 and P2 (water supply were characterized as oligotrophic, the others were mesotrophic and eutrotrophic sites. Environmental variables, mainly nutrients, conductivity, COD, BOD5 and TSS tended to increase as from P3 due to management and fertilization. Greater impact has been registered in the fish farm under analysis for variables COD, ammonia, total phosphorus and TSS during the discharge and pond emptying period. Frequent monitoring of water quality should be undertaken in fish breeding and plankton production ponds, especially in those close to P3 and P4. Removal of sediment in decantation lake or P5 is also recommended to decrease nutrient concentrations, especially phosphorus, accumulated on the bottom soil.

  20. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  1. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  2. Impacts of Bottom Trawling and Litter on the Seabed in Norwegian Waters

    Directory of Open Access Journals (Sweden)

    Pål Buhl-Mortensen

    2018-02-01

    Full Text Available Bottom trawling and seabed littering are two serious threats to seabed integrity. We present an overview of the distribution of seabed litter and bottom trawling in Norwegian waters (the Norwegian Sea and the southern Barents Sea. Vessel Monitoring System (VMS records and trawl marks (TM on the seabed were used as indicators of pressure and impact of bottom trawling, respectively. Estimates of TM density and litter abundance were based on analyses of seabed videos from 1,778 locations, surveyed during 23 cruises, part of the Norwegian seabed mapping programme MAREANO. The abundance and composition of litter and the density of TM varied with depth, and type of sediments and marine landscapes. Lost or discarded fishing gear (especially lines and nets, and plastics (soft and hard plastic and rubber were the dominant types of litter. The distribution of litter reflected the distribution of fishing intensity (density of VMS records and density of TM at a regional scale, with highest abundance close to the coast and in areas with high fishing intensity, indicated from the VMS data. However, at a local scale patterns were less clear. An explanation to this could be that litter is transported with currents and accumulates in troughs, canyons, and local depressions, rather than reflecting the fisheries footprints directly. Also, deliberate dumping of discarded fishing gear is likely to occur away from good fishing grounds. Extreme abundance of litter, observed close to the coast is probably caused by such discarded fishing gear, but the contribution from aggregated populations on land is also indicated from the types of litter observed. The density of trawl marks is a good indicator of physical impact in soft sediments where the trawl gear leaves clear traces, whereas on harder substrates the impacts on organisms is probably greater than indicated by the hardly visible marks. The effects of litter on benthic communities is poorly known, but large litter

  3. Monitoring of metals in Tilapia nilotica tissues, bottom sediments ...

    African Journals Online (AJOL)

    Tilapia (Tilapia nilotica), bottom sediments and water were collected from Nworie River and Oguta Lake. The muscle, liver and gills of the fish as well as the bottom sediments and water were analysed for Al, Cr, Cd, Pb, As, Zn, Mn, Co, Se, Cu, Ni and Fe using atomic absorption spectrophotometer to highlight the importance ...

  4. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  5. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  6. Enhanced particle fluxes and heterotrophic bacterial activities in Gulf of Mexico bottom waters following storm-induced sediment resuspension

    Science.gov (United States)

    Ziervogel, K.; Dike, C.; Asper, V.; Montoya, J.; Battles, J.; D`souza, N.; Passow, U.; Diercks, A.; Esch, M.; Joye, S.; Dewald, C.; Arnosti, C.

    2016-07-01

    Bottom nepheloid layers (BNLs) in the deep sea transport and remobilize considerable amounts of particulate matter, enhancing microbial cycling of organic matter in cold, deep water environments. We measured bacterial abundance, bacterial protein production, and activities of hydrolytic enzymes within and above a BNL that formed in the deep Mississippi Canyon, northern Gulf of Mexico, shortly after Hurricane Isaac had passed over the study area in late August 2012. The BNL was detected via beam attenuation in CTD casts over an area of at least 3.5 km2, extending up to 200 m above the seafloor at a water depth of 1500 m. A large fraction of the suspended matter in the BNL consisted of resuspended sediments, as indicated by high levels of lithogenic material collected in near-bottom sediment traps shortly before the start of our sampling campaign. Observations of suspended particle abundance and sizes throughout the water column, using a combined camera-CTD system (marine snow camera, MSC), revealed the presence of macroaggregates (>1 mm in diameter) within the BNL, indicating resuspension of canyon sediments. A distinct bacterial response to enhanced particle concentrations within the BNL was evident from the observation that the highest enzymatic activities (peptidase, β-glucosidase) and protein production (3H-leucine incorporation) were found within the most particle rich sections of the BNL. To investigate the effects of enhanced particle concentrations on bacterial activities in deep BNLs more directly, we conducted laboratory experiments with roller bottles filled with bottom water and amended with experimentally resuspended sediments from the study area. Macroaggregates formed within 1 day from resuspended sediments; by day 4 of the incubation bacterial cell numbers in treatments with resuspended sediments were more than twice as high as in those lacking sediment suspensions. Cell-specific enzymatic activities were also generally higher in the sediment

  7. Study on the water circulation system to improve a semi-enclosed water environment. Improvement effects of the water circulation system in a marine area; Heisasei suiiki no kyosei junkan ni yoru suishitsu kaizen. Kaiiki no jitsukoji ni okeru kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Miyaoka, S.; Tsuji, H. [Obayashi Corp., Tokyo (Japan)

    1999-01-10

    In recent years, oxygen-deficient water is being formed in many semi-enclosed waters, such as canals and ports, due to the load from rivers in addition to oxygen consumption in bottom sediment and poor water circulation. In general, bottom sediments have been dredged in order to improve the water environment. But there is little space to dump it. An alternative method is to artificially promote water circulation in order to move the surface water that has a high dissolved oxygen concentration to the bottom. We applied the method in a port. The system consists of air compressors, rubber tubes and unique pipes. One end of a pipe was fixed on the bottom and the other end was kept in the water by floats. Air floated up through the pipe, so the bottom water flowed up to the surface. Two months after starting to run the system, the dissolved oxygen concentration of lower water was higher than 2 mg/l, which is the criterion of water quality standard grade V, thus showing the effectiveness of the system. (author)

  8. Setting water quality criteria for agricultural water reuse purposes

    Directory of Open Access Journals (Sweden)

    K. Müller

    2017-06-01

    Full Text Available The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

  9. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  10. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  11. Effect of adhesive properties of buffy coat on the quality of blood components produced with Top & Top and Top & Bottom bags.

    Science.gov (United States)

    Cerelli, Eugenio; Nocera, Martina; Di Bartolomeo, Erminia; Panzani, Paola; Baricchi, Roberto

    2015-04-01

    The Transfusion Medicine Unit of Reggio Emilia currently collects whole blood using conventional quadruple Fresenius Top & Top bags. In this study, new Fresenius Top & Bottom bags were assessed and compared to the routine method with regards to product quality and operational requirements. Twenty-one whole blood units were collected with both the new and the traditional bags, and then separated. Quality control data were evaluated and compared in order to estimate yield and quality of final blood components obtained with the two systems. We collected other bags, not included in the ordinary quality control programme, for comparison of platelet concentrates produced by pools of buffy coat. Compared to the traditional system, the whole blood units processed with Top & Bottom bags yielded larger plasma volumes (+5.7%) and a similar amount of concentrated red blood cells, but with a much lower contamination of lymphocytes (-61.5%) and platelets (-86.6%). Consequently, the pooled platelets contained less plasma (-26.3%) and were significantly richer in platelets (+17.9%). This study investigated the effect of centrifugation on the adhesiveness of the buffy coat to the bag used for whole blood collection. We analysed the mechanism by which this undesirable phenomenon affects the quality of packed red blood cells in two types of bags. We also documented the incomparability of measurements on platelet concentrates performed with different principles of cell counting: this vexing problem has important implications for biomedical research and for the establishment of universal product standards. Our results support the conclusion that the Top & Bottom bags produce components of higher quality than our usual system, while having equal operational efficiency. Use of the new bags could result in an important quality improvement in blood components manufacturing.

  12. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  13. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic­pelagic model of a coastal system

    NARCIS (Netherlands)

    Reed, D.C.; Slomp, C.P.; Gustafsson, B.G.

    2011-01-01

    The present study examines oxygen and phosphorus dynamics at a seasonally hypoxic site in the Arkona basin of the Baltic Sea. A coupled benthic–pelagic reactive-transport model is used to describe the evolution of bottom-water solute concentrations, as well as pore-water and sediment profiles.

  14. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in Bowdoin National Wildlife Refuge and adjacent areas of the Milk River basin, northeastern Montana, 1986-87

    Science.gov (United States)

    Lambing, J.H.; Jones, W.E.; Sutphin, J.W.

    1988-01-01

    Concentrations of trace elements, radiochemicals, and pesticides in the Bowdoin National Wildlife Refuge lakes generally were not substantially larger than those in the water supplied from Dodson South Canal or in irrigation drainage. Concentrations of arsenic (47 micrograms/L), uranium (43 microg/L), and vanadium (51 microg/L) in Dry Lake Unit, and boron (1,000 microg/L) in Lake Bowdoin were notably larger than at other sites. Zinc concentrations in an irrigation drain (56 microg/L) and two shallow domestic wells (40 and 47 microg/L) were elevated relative to other sites. Concentrations of gross alpha radiation (64 picocuries/L) and gross beta radiation (71 picocuries/L) were elevated in Dry Lake Unit. Pesticides concentrations at all sites were 0.08 microg/L or less. Water use guidelines concentrations for boron, cadmium, uranium, zinc, and gross alpha radiation were slightly exceeded at several sites. In general, trace-constituent concentrations measured in the water do not indicate any potential toxicity problems in Bowdoin National Wildlife Refuge; however, highwater conditions in 1986 probably caused dilution of dissolved constituents compared to recent dry years. Trace element concentrations in bottom sediments of the refuge lakes were generally similar to background concentrations in the soils. The only exception was Dry Lake Unit, which had concentrations of chromium (99 micrograms/g), copper (37 microg/g), nickel (37 microg/g), vanadium (160 microg/g), and zinc (120 microg/g) that were about double the mean background concentrations. The maximum selenium concentration in bottom sediment was 0.6 microg/g. Pesticide concentrations in bottom sediments were less than analytical detection limits at all sites. With few exceptions, concentrations of trace elements and pesticides in biota generally were less than values known to produce harmful effects on growth or reproduction. (Lantz-PTT)

  16. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  17. Water and bottom sediments quality of brackish water shrimp farms in Kaliganj Upazila, Satkhira, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Aktaruzzaman, Mohammed Shakhaoat Hossain, Abu Naieum Muhammad Fakhruddin, Mohammed Jamal Uddin, Syed Hafizur Rahman

    2013-05-01

    Full Text Available Shrimp culture plays a central part in the fisheries sector of Bangladesh that leads to a significant change in the structure and composition of frozen food export sector. An investigation was carried out to determine physiochemical parameters, nutrients content, bacterial contamination and metal content in shrimp “Gher” (Farms water and sediments. Physicochemical parameters were analyzed in situ by portable meters. Ammonia, phosphate, bacterial counts, and metals contents were analyzed by Nesslerization, colorimetric and standard microbiological methods and Atomic Absorption Spectrophotometery (AAS, respectively. Except Dissolve oxygen and temperature all other physiochemical parameters were unsuitable for shrimp culture. The concentration of ammonia was 0.384 to 1.5 mg L-1 and the concentration of phosphate ranged from 0.02 to 0.818 mg L-1. In bacteriological analysis, highest levels of coliform were found in the tested samples and total colifom count reached up to 2.04x103 cfu mL-1. Among the tested metals, Cr was highest in water and sediment samples. Concentration of Cr ranged from 0.150 to 0.807 mg L-1 and 1.957 to 3.436 mg kg-1 in water and sediment samples, respectively. A significant difference was observed for the concentration of metals in sediment and water samples. The high concentration of nutrients and metals in shrimp “Gher” water and sediment as well as the presence of pathogenic bacteria in the “Gher” and river water indicated unhygienic environment and the sources of contamination of shrimp “Gher”.

  18. Environmental complexity of a port: Evidence from circulation of the water masses, and composition and contamination of bottom sediments.

    Science.gov (United States)

    Cutroneo, L; Carbone, C; Consani, S; Vagge, G; Canepa, G; Capello, M

    2017-06-15

    Ports are complex environments due to their complicated geometry (quays, channels, and piers), the presence of human activities (vessel traffic, shipyards, industries, and discharges), and natural factors (stream and torrent inputs, sea action, and currents). Taking these factors into consideration, we have examined the marine environment of a port from the point of view of the circulation of the water masses, hydrological characteristics, distribution of the sediment grain-size, mineralogical characteristics, and metal concentrations of the bottom sediments. Our results show that, in the case of the Port of Genoa (north-western Italy), the impact of human activities (such as a coal power-plant, oil depots, shipyards, dredging of the bottom sediments, etc.), natural processes (such as currents, fresh water and sediment inputs from the torrents), and the morphology of the basin, are important factors in the sediment, water, and metal distributions that have given rise to a complex environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  20. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  1. Bottom sample taker

    Energy Technology Data Exchange (ETDEWEB)

    Garbarenko, O V; Slonimskiy, L D

    1982-01-01

    In order to improve the quality of the samples taken during offshore exploration from benthic sediments, the proposed design of the sample taker has a device which makes it possible to regulate the depth of submersion of the core lifter. For this purpose the upper part of the core lifter has an inner delimiting ring, and within the core lifter there is a piston suspended on a cable. The position of the piston in relation to the core lifter is previously assigned depending on the compactness of the benthic sediments and is fixed by tension of the cable which is held by a clamp in the cover of the core taker housing. When lowered to the bottom, the core taker is released, and under the influence of hydrostatic pressure of sea water, it enters the sediments. The magnitude of penetration is limited by the distance between the piston and the stopping ring. The piston also guarantees better preservation of the sample when the instrument is lifted to the surface.

  2. Cascadia Initiative Ocean Bottom Seismograph Performance

    Science.gov (United States)

    Evers, B.; Aderhold, K.

    2017-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provided instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigated geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marked the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments featured trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Station instrumentation included weak and strong motion seismometers, differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments is available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date, encompassing a diverse technical implementation and demonstrating an effective structure for community experiments. Thus, the results from Cascadia serve as both a technical and operational resource for the development of future community experiments, such as might be contemplated as part of the SZ4D Initiative. To guide future efforts, we investigate and summarize the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and diverse

  3. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    Science.gov (United States)

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in

  4. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  5. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    Science.gov (United States)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  6. Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: Results from redox-sensitive elements

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N; Pearce, N

    The concentrations of multiple redox-sensitive elements such as Re, U, Mo, Cd, V, Sb, and Tl were determined in sediments from the southeastern Arabian Sea (9 degrees 21 minutes N: 71 degrees 59 minutes E) to understand the bottom water oxygenation...

  7. Total Suspended Solid (TSS Distributed by Tidal Currents during Low to High Tide Phase in the Waters of Sayung, Demak: Its Relations to Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Ulung Jantama Wisha

    2017-05-01

    Full Text Available Sayung waters is a region highly vulnerable to catastrophic erosion along the coast, which is directly followed by an increase suspended sediments and particles from the bottom of the waters that was stirred by oceanography factors. The purpose of this study was to determine the concentration and distribution of the latest TSS condition and its effect on water quality parameters in the waters of Sayung. The sampling method is using purposive sampling, with the stations spread out along the coastal area of Sayung, the main data consist of current, tide, bathymetry, coastline and water quality, and the secondary data consist of RBI map and tide forecasting, those data is analyzed numerically and statistically. TSS value ranged between 23,1-199,6 mg.L-1, the distribution of TSS is simulated in the condition of ebb to tide with current speed ranged between 0-0.41 ms-1, that distribution also influenced by physical water factors such as salinity, temperature, and density and has  impacts to enhancing the turbidity and indirectly decrease the photosynthesis activity and inhibit the oxygen cycle in the Sayung waters.

  8. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; De Cicco, Laura; Dugan, Hilary A.; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke A.

    2017-02-01

    xml:id="wrcr22485-sec-1001" numbered="no">Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  9. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Features of distribution and quality of organic matter in the bottom sediments of the Great Peter Bay (Sea of Japan)

    Science.gov (United States)

    Nesterova, Olga; Tregubova, Valentina; Semal, Victoria; Vasenev, Ivan

    2017-04-01

    The nature and distribution of organic carbon in marine waters depends on: 1) biological productivity and revenue of the autochthonous organic matter to the bottom; 2) sediment grain-size composition and conditions of dumping, which in turn depends of hydrothermic regime, topography, speed River mist and received major erosion products; 3) living conditions of the benthos (the quantity consumed of OM, gas regime of habitats, physiological capacity of heterotrophs). Autochthonous OM of phytoplankton plays a dominant role in the processes of formation of humus in aquatic conditions. Bottom sediments at different distance from the shoreline to depths from 0.5 up to 480 m of the Sea of Japan, which are formed in various conditions of facies, were selected as the objects of study. There is no clear relationships to the amount of organic matter in bottom sediments on the characteristics of the distribution and nature of living matter in the oceans and seas. This is because the process of sedimentation and fossilization of organic matter on the seabed and the ocean floor depends on many factors (currents, depth). Humus of studied bottom sediments in composition can be attributed mainly to the humic type. Nonhydrolyzing rest is 70-90%. This is characteristic of bottom sediments formed in facial types of small bays, internal coastal shelf bights and the underwater slope. At a fraction of the carbon of humic acids in organic matter, ranging from 4 to 80% of the amount of humic and fulvic acids. Fulvic acids content is much less. This is due to more favourable conservation situation of humic acids in precipitation with high content of organic matter, whereas fulvic acids in aquatic environments are more labile and almost not dumped. Despite the fact humic acids are not the most stable component (s), however, with increased content of humic acids, the mobility of organic matter and removing it from the bottom sediments are reduced. Internal shelf facies of the Great Peter Bay

  11. Millennial Variability of Eastern Equatorial Bottom Water Oxygenation and Atmospheric CO2 over the past 100 kyr

    Science.gov (United States)

    Marcantonio, F.; Loveley, M.; Wisler, M.; Hostak, R.; Hertzberg, J. E.; Schmidt, M. W.; Lyle, M. W.

    2017-12-01

    Storage of respired carbon in the deep ocean may play a significant role in lowering atmospheric CO2 concentrations by about 80 ppm during the last glacial maximum compared to pre-industrial times. The cause of this sequestration and the subsequent release of the deep respired carbon pool at the last termination remains elusive. Within the last glacial period, on millennial timescales, the relationship between the CO2 cycle and any waxing and waning of a deep respired pool also remains unclear. To further our understanding of the millennial variability in the storage of a deep-ocean respired carbon pool during the last glacial, we measure authigenic uranium and 230Th-derived non-lithogenic barium fluxes (xsBa flux) in two high-sedimentation-rate cores from the Panama Basin of the Eastern Equatorial Pacific (EEP) (8JC, 6° 14.0' N, 86° 02.6' W; 1993 m water depth; 17JC 00° 10.8' S, 85° 52.0' W; 2846 m water depth). Sediment authigenic U concentrations are controlled by the redox state of sediments which, in turn, is a function of the rain of organic material from the surface ocean and the oxygen content of bottom waters. At both 8JC and 17JC, the mismatch between xsBa fluxes, a proxy for the reconstruction of oceanic productivity, and authigenic uranium concentrations suggests that the primary control of the latter values is changes in bottom water oxygenation. Peak authigenic uranium concentrations occur during glacial periods MIS 2, 3, and 4, respectively, and are two to three times higher than those during interglacial periods, MIS 1 and 5. EEP bottom waters were likely suboxic during times of the last glacial period when atmospheric CO2 concentrations were at their lowest concentrations. In addition, the pattern of increased deep-water oxygenation during times of higher CO2 during the last glacial is similar to that reported in a study of authigenic U in sediments from the Antarctic Zone of the Southern Ocean (Jaccard et al., 2016). We suggest that a respired

  12. Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin

    Directory of Open Access Journals (Sweden)

    K. Shimada

    2012-07-01

    Full Text Available Changes to the properties of Antarctic Bottom Water in the Australian-Antarctic Basin (AA-AABW between the 1990s and 2000s are documented using data from the WOCE Hydrographic Program (WHP and repeated hydrographic surveys. Strong cooling and freshening are observed on isopycnal layers denser than γn = 28.30 kg m−3. Changes in the average salinity and potential temperature below this isopycnal correspond to a basin-wide warming of 1300 ± 200 GW and freshening of 24 ± 3 Gt year−1. Recent changes to dense shelf water in the source regions in the Ross Sea and George V Land can explain the freshening of AA-AABW but not its extensive warming. An alternative mechanism for this warming is a decrease in the supply of AABW from the Ross Sea (RSBW. Hydrographic profiles between the western Ross Sea and George V Land (171–158° E were analyzed with a simple advective-diffusive model to assess the causes of the observed changes. The model suggests that the warming of RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in RSBW transport and the enhancement of the vertical diffusion of heat resulting from a 30 ± 7% weakening of the abyssal stratification. The documented freshening of Ross Sea dense shelf water leads to a reduction in both salinity and density stratification. Therefore the direct freshening of RSBW at its source also produces an indirect warming of the RSBW. A simple box model suggests that the changes in RSBW properties and volume transport (a decrease of 6.7% is assumed between the year 1995 and 2005 can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in AA-AABW.

  13. Trophic state categorisation and assessment of water quality in ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... In large water bodies there are two distinct zones, littoral and pelagic, which respond differently to changes in lake levels. (Wetzel, 2001). The littoral zone is defined as the zone of shallow water around the edges of lakes to the maximum depth at which light still penetrates to the bottom segments to allow.

  14. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  15. Net-bottom Cage Inserts for Water Bird Casualties

    Directory of Open Access Journals (Sweden)

    Jackie Belle

    2017-10-01

    Full Text Available My Bright Idea is a net-bottomed cage insert, which is used to support pelagic avian casualties. The idea was designed and modified by the International Bird Rescue in California (Bird Rescue.

  16. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  17. Seasonal variations of ground water quality and its agglomerates by water quality index

    International Nuclear Information System (INIS)

    Sharma, S.; Chhipa, R.C.

    2016-01-01

    Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality in north-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluoride and potassium, p H, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00, 273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium. Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  18. Microplastics in Baltic bottom sediments: Quantification procedures and first results.

    Science.gov (United States)

    Zobkov, M; Esiukova, E

    2017-01-30

    Microplastics in the marine environment are known as a global ecological problem but there are still no standardized analysis procedures for their quantification. The first breakthrough in this direction was the NOAA Laboratory Methods for quantifying synthetic particles in water and sediments, but fibers numbers have been found to be underestimated with this approach. We propose modifications for these methods that will allow us to analyze microplastics in bottom sediments, including small fibers. Addition of an internal standard to sediment samples and occasional empty runs are advised for analysis quality control. The microplastics extraction efficiency using the proposed modifications is 92±7%. Distribution of microplastics in bottom sediments of the Russian part of the Baltic Sea is presented. Microplastic particles were found in all of the samples with an average concentration of 34±10 items/kg DW and have the same order of magnitude as neighbor studies reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 40 CFR 130.3 - Water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made...

  20. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  1. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  2. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  3. Research NoteEffect of drought and fires on the quality of water in Lithuanian rivers

    Directory of Open Access Journals (Sweden)

    G. Sakalauskiene

    2003-01-01

    Full Text Available In August and September 2002, concentrations of heavy metals (copper, lead, and zinc were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water. Keywords: heavy metals, river water quality, Lithuania

  4. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  5. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  6. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    water, and expressing them to non-technical people may not always be easy. ... parameters for a case study; dissolved oxygen, pH, total coliforms, ... Several national agencies responsible for water supply and water pollution, have strongly .... good quality and required proper treatment if it were to be consumed as potable.

  7. National Recommended Water Quality Criteria

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health...

  8. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  9. British Columbia water quality guidelines (criteria): 1998 edition

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.; Pommen, L.W.; Swain, L.G.

    1998-08-01

    British Columbia has developed water quality guidelines in order that water quality data can be assessed and site-specific water quality objectives can be prepared. The guidelines provide benchmarks for the assessment of water quality and setting water quality objectives. Guidelines are provided to protect the following six major water uses: drinking water, aquatic life, wildlife, recreation/aesthetics, agriculture, and industrial. Water quality encompasses the physical, chemical and biological quality of the water, sediment and biota. Among other quality criteria the guide provides maximum approved concentrations for nitrogen, aluminum, copper, cyanide, lead, mercury, and molybdenum. 30 tabs.

  10. The footprint of bottom trawling in European waters

    NARCIS (Netherlands)

    Eigaard, Ole R.; Bastardie, Francois; Hintzen, Niels T.; Buhl-Mortensen, Lene; Buhl-Mortensen, Pål; Catarino, Rui; Dinesen, Grete E.; Egekvist, Josefine; Fock, Heino O.; Geitner, Kerstin; Gerritsen, Hans D.; González, Manuel Marín; Jonsson, Patrik; Kavadas, Stefanos; Laffargue, Pascal; Lundy, Mathieu; Gonzalez-Mirelis, Genoveva; Nielsen, J.R.; Papadopoulou, Nadia; Posen, Paulette E.; Pulcinella, Jacopo; Russo, Tommaso; Sala, Antonello; Silva, Cristina; Smith, Christopher J.; Vanelslander, Bart; Rijnsdorp, Adriaan D.

    2017-01-01

    Mapping trawling pressure on the benthic habitats is needed as background to support an ecosystem approach to fisheries management. The extent and intensity of bottom trawling on the European continental shelf (0-1000 m) was analysed from logbook statistics and vessel monitoring system data for

  11. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  12. Optimal Site Characterization and Selection Criteria for Oyster Restoration using Multicolinear Factorial Water Quality Approach

    Science.gov (United States)

    Yoon, J.

    2015-12-01

    Elevated levels of nutrient loadings have enriched the Chesapeake Bay estuaries and coastal waters via point and nonpoint sources and the atmosphere. Restoring oyster beds is considered a Best Management Practice (BMP) to improve the water quality as well as provide physical aquatic habitat and a healthier estuarine system. Efforts include declaring sanctuaries for brood-stocks, supplementing hard substrate on the bottom and aiding natural populations with the addition of hatchery-reared and disease-resistant stocks. An economic assessment suggests that restoring the ecological functions will improve water quality, stabilize shorelines, and establish a habitat for breeding grounds that outweighs the value of harvestable oyster production. Parametric factorial models were developed to investigate multicolinearities among in situ water quality and oyster restoration activities to evaluate posterior success rates upon multiple substrates, and physical, chemical, hydrological and biological site characteristics to systematically identify significant factors. Findings were then further utilized to identify the optimal sites for successful oyster restoration augmentable with Total Maximum Daily Loads (TMDLs) and BMPs. Factorial models evaluate the relationship among the dependent variable, oyster biomass, and treatments of temperature, salinity, total suspended solids, E. coli/Enterococci counts, depth, dissolved oxygen, chlorophyll a, nitrogen and phosphorus, and blocks consist of alternative substrates (oyster shells versus riprap, granite, cement, cinder blocks, limestone marl or combinations). Factorial model results were then compared to identify which combination of variables produces the highest posterior biomass of oysters. Developed Factorial model can facilitate maximizing the likelihood of successful oyster reef restoration in an effort to establish a healthier ecosystem and to improve overall estuarine water quality in the Chesapeake Bay estuaries.

  13. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    Science.gov (United States)

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed. Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek. Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to

  14. Role of algae in water quality regulation in NPP water reservoirs

    International Nuclear Information System (INIS)

    Klenus, V.G.; Kuz'menko, M.I.; Nasvit, O.I.

    1985-01-01

    Investigations, carried out in Chernobyl NPP water reservoir, show that sewage water inflow, being not sufficiently purified, enriched by mineral and organic substances, is accompanied by a considerable increase of algae productivity. The algae play a determining role in accumulation of radionuclides and their transformation into bottom depositions. Comparative investigation of accumulation intensity in alga cells 12 C and 14 C gives evidence that the rate of radioactive nuclide inclusions is practically adequate to the rate of inclusions of their stable analogues. Bacterial destruction of organic contaminations occurs more intensively under aerobic conditions, which are mainly provided due to photosynthetizing activity of algae

  15. Putting people into water quality modelling.

    Science.gov (United States)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  16. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  17. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  18. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  19. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  20. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  1. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  3. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  4. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  5. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  6. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    Science.gov (United States)

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  7. The estimation of turnover time in the Japan Sea bottom water by 129I

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Togawa, Orihiko; Minakawa, Masayuki

    2010-01-01

    It is well known that the Japan Sea is sensitive for the environment such a global warming. To understand the oceanic circulation in the Japan Sea, we estimated a turnover time and a potential formation rate of the Japan Sea bottom water (JSBW) using an oceanographic tracer of 129 I. The turnover time of JSBW was calculated based on the increased concentration during the nuclear era. The turnover time was estimated to be 180 - 210 years. The potential formation rate of JSBW is calculated based on the existence of the anthropogenic 129 I in the JSBW. The potential formation rate of JSBW is estimated to be (3.6-4.1) x 10 12 m 3 /y which is consistent with another estimation and is about quarter of that of the upper Japan Sea proper water. (author)

  8. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  9. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  10. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  11. 9 CFR 108.11 - Water quality requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  12. Mass imbalances in EPANET water-quality simulations

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  13. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    Directory of Open Access Journals (Sweden)

    D. Fischer

    2012-06-01

    Full Text Available The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment.

    Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr−1 to <1 cm yr−1 and the sulfate/methane transition (SMT deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6–9.3 mol m−2 yr−1. Depth-integrated rates of bioirrigation increased from 120 cm yr−1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr−1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM with sulfate high enough to provide

  14. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4...

  15. Dam water quality study. Report to Congress

    International Nuclear Information System (INIS)

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A

  16. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  17. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  18. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3years of studies.

    Science.gov (United States)

    Siedlewicz, Grzegorz; Białk-Bielińska, Anna; Borecka, Marta; Winogradow, Aleksandra; Stepnowski, Piotr; Pazdro, Ksenia

    2018-04-01

    Concentrations of selected antibiotic compounds from different groups were measured in sediment samples (14 analytes) and in near-bottom water samples (12 analytes) collected in 2011-2013 from the southern Baltic Sea (Polish coastal zone). Antibiotics were determined at concentration levels of a few to hundreds of ng g -1 d.w. in sediments and ng L -1 in near-bottom waters. The most frequently detected compounds were sulfamethoxazole, trimethoprim, oxytetracycline in sediments and sulfamethoxazole and trimethoprim in near-bottom waters. The occurrence of the identified antibiotics was characterized by spatial and temporal variability. A statistically important correlation was observed between sediment organic matter content and the concentrations of sulfachloropyridazine and oxytetracycline. Risk assessment analyses revealed a potential high risk of sulfamethoxazole contamination in near-bottom waters and of contamination by sulfamethoxazole, trimethoprim and tetracyclines in sediments. Both chemical and risk assessment analyses show that the coastal area of the southern Baltic Sea is highly exposed to antibiotic residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  20. Bottom friction optimization for a better barotropic tide modelling

    Science.gov (United States)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction

  1. 7 CFR 634.23 - Water quality plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  2. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  3. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  4. 40 CFR 130.8 - Water quality report.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to the Regional Administrator a water quality report in accordance with section 305(b) of the Act...

  5. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  6. 14 CFR 25.533 - Hull and main float bottom pressures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float bottom pressures. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.533 Hull and main float bottom pressures. (a) General. The hull and main float structure, including frames and bulkheads...

  7. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  8. Mass imbalances in EPANET water-quality simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-06

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.

  9. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  10. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  11. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  12. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water...

  13. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  14. Decline of deep and bottom water ventilation and slowing down of anthropogenic carbon storage in the Weddell Sea, 1984-2011

    NARCIS (Netherlands)

    Huhn, Oliver; Rhein, Monika; Hoppema, Mario; van Heuven, Steven

    We use a 27 year long time series of repeated transient tracer observations to investigate the evolution of the ventilation time scales and the related content of anthropogenic carbon (C-ant) in deep and bottom water in the Weddell Sea. This time series consists of chlorofluorocarbon (CFC)

  15. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  16. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  17. Quality Assurance for Iraqi Bottled Water Specifications

    Directory of Open Access Journals (Sweden)

    May George Kassir

    2015-10-01

    Full Text Available In this research the specifications of Iraqi drinking bottled water brands are investigated throughout the comparison between local brands, Saudi Arabia and the World Health Organization (WHO for bottled water standard specifications. These specifications were also compared to that of Iraqi Tap Water standards. To reveal variations in the specifications for Iraqi bottled water, and above mentioned standards some quality control tools are conducted for more than 33% of different bottled water brands (of different origins such as spring, purified,..etc in Iraq by investigating the selected quality parameters registered on their marketing labels. Results employing Minitab software (ver. 16 to generate X bar, and Pareto chart. It was found from X bar charts that the quality parameters of some drinking bottled water brands are not within Iraqi standards set by the “Central Agency for Standardization and Quality Control” such as pH values, Fe, Na, and Mg concentrations. While the comparison of previously mentioned standard specifications through radar chart many important issues are detected such as the absence of lower limits the whole bottled water quality parameters such as for Na and Mg also the radar chart shows that Iraqi bottled and tap water specifications are almost equal in their quality values. Also the same chart pictured the limited range of Iraqi specifications compared to that of Saudi Arabia, and WHO and the need to introduce other water specifications such as K, Na, etc. This confirms the need to improve Iraqi bottled water specifications since it was introduced on 2000. These results also highlighted the weakness of quality assurance activities since only 33 % of the investigated companies registered the whole water quality specifications as shown in Pareto chart. Other companies do not register any quality characteristics. Also certain companies should be stopped due to non-conforming specifications, yet these companies are

  18. Importance of bottom-up approach in water management - sustainable development of catchment areas in Croatia

    Science.gov (United States)

    Pavic, M.; Cosic-Flajsig, G.; Petricec, M.; Blazevic, Z.

    2012-04-01

    Association for preservation of Croatian waters and sea SLAP is a non-governmental organization (NGO) that gathers more than 150 scientist, hydrologist and civil engineers. SLAP has been established in 2006 and since then had organized many conferences and participated in projects dealing with water management. We have started our work developing plans to secure water supply to the 22 (21) villages in the rural parts of Dubrovnik (Pozega) area and trough the years we have accumulated knowledge and experience in dealing with stakeholders in hydrology and water management. Within this paper we will present importance of bottom-up approach to the stakeholders in water management in Croatia on two case studies: (1) Management of River Trebizat catchment area - irrigation of the Imotsko-Bekijsko rural parts; (2) Development of multipurpose water reservoirs at the River Orljava catchment area. Both projects were designed in the mid and late 1980's but due to the war were forgotten and on halt. River Trebizat meanders between Croatia and Bosnia and Herzegovina and acquires joint management by both countries. In 2010 and 2011 SLAP has organized conferences in both countries gathering all the relevant stakeholders from representatives of local and state governments, water management companies and development agencies to the scientist and interested NGO's. The conferences gave firm scientific background of the topic including presentation of all previous studies and measurements as well as model results but presented in manner appropriate to the stakeholders. The main result of the conference was contribution to the development of joint cross-border project sent to the EU Pre-Accession funds in December 2011 with the aim to strengthen capacities of both countries and prepare larger project dealing with management of the whole Trebizat catchment area to EU structural funds once Croatia enters EU in 2013. Similar approach was taken for the Orljava catchment in the northern

  19. Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods.

    Science.gov (United States)

    Yin, Ke; Dou, Xiaomin; Ren, Fei; Chan, Wei-Ping; Chang, Victor Wei-Chung

    2018-02-15

    Bottom ashes generated from municipal solid waste incineration have gained increasing popularity as alternative construction materials, however, they contains elevated heavy metals posing a challenge for its free usage. Different leaching methods are developed to quantify leaching potential of incineration bottom ashes meanwhile guide its environmentally friendly application. Yet, there are diverse IBA applications while the in situ environment is always complicated, challenging its legislation. In this study, leaching tests were conveyed using batch and column leaching methods with seawater as opposed to deionized water, to unveil the metal leaching potential of IBA subjected to salty environment, which is commonly encountered when using IBA in land reclamation yet not well understood. Statistical analysis for different leaching methods suggested disparate performance between seawater and deionized water primarily ascribed to ionic strength. Impacts of leachant are metal-specific dependent on leaching methods and have a function of intrinsic characteristics of incineration bottom ashes. Leaching performances were further compared on additional perspectives, e.g. leaching approach and liquid to solid ratio, indicating sophisticated leaching potentials dominated by combined geochemistry. It is necessary to develop application-oriented leaching methods with corresponding leaching criteria to preclude discriminations between different applications, e.g., terrestrial applications vs. land reclamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  1. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  2. Ocean Bottom Seismograph Performance during the Cascadia Initiative

    Science.gov (United States)

    Aderhold, K.; Evers, B.

    2015-12-01

    The Ocean Bottom Seismograph Instrument Pool (OBSIP) provides instrumentation and operations support for the Cascadia Initiative community experiment. This experiment investigates geophysical processes across the Cascadia subduction zone through a combination of onshore and offshore seismic data. The recovery of Year 4 instruments in September 2015 marks the conclusion of a multi-year experiment that utilized 60 ocean-bottom seismographs (OBSs) specifically designed for the subduction zone boundary, including shallow/deep water deployments and active fisheries. The new instruments feature trawl-resistant enclosures designed by Lamont-Doherty Earth Observatory (LDEO) and Scripps Institution of Oceanography (SIO) for shallow deployment [water depth ≤ 500 m], as well as new deep-water instruments designed by Woods Hole Oceanographic Institute (WHOI). Existing OBSIP instruments were also deployed along the Blanco Transform Fault and on the Gorda Plate through complementary experiments. Stations include differential pressure gauges (DPG) and absolute pressure gauges (APG). All data collected from the Cascadia, Blanco, and Gorda deployments will be freely available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC). The Cascadia Initiative is the largest amphibious seismic experiment undertaken to date and demonstrates an effective structure for community experiments through collaborative efforts from the Cascadia Initiative Expedition Team (CIET), OBSIP (institutional instrument contributors [LDEO, SIO, WHOI] and Management Office [IRIS]), and the IRIS DMC. The successes and lessons from Cascadia are a vital resource for the development of a Subduction Zone Observatory (SZO). To guide future efforts, we investigate the quality of the Cascadia OBS data using basic metrics such as instrument recovery and more advanced metrics such as noise characteristics through power spectral density analysis. We also use this broad and

  3. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  4. Assessment of stream bottom sediment quality in the vicinity of the Caldas uranium mine

    International Nuclear Information System (INIS)

    Oliveira, Priscila E.S. de; Silva, Nivaldo C.

    2015-01-01

    An evaluation of the quality of stream bottom sediments was performed in the surroundings of the Caldas Uranium Mining and Milling Facilities (UMMF), sited on Pocos de Caldas Plateau (southeastern Brazil), to verify whether the sediments in the water bodies downstream the plant, were impacted by effluents from a large waste rock pile, named Waste Rock Pile 4 (WRP4), and from the Tailings Dam (TD). In order to perform the research, twelve sampling stations were established in the watersheds around Caldas UMMF: the Soberbo creek, the Consulta brook, and the Taquari river. One of the stations was located inside the Bacia Nestor Figueiredo, a retention pond that receives effluents from WRP4, and another in a settling tank (D2) for radium, which receives the effluents from TD. A monitoring scheme has been developed, comprising four sampling campaigns in 2010 and 2011, and the samples were analyzed for selected metals-metalloids and radionuclides, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Ultraviolet-Visible (UV-Vis) Spectroscopy and Gamma-ray Spectrometry. The results suggest that effluents discharged from retention ponds to watercourses, causing an increase in the concentration of As, B, Ba, Cr, Mo, Mn, Pb, Zn, 238 U, 232 Th, 226 Ra, 228 Ra and 210 Pb in sediments. Detailed investigation in sub-superficial layers is recommended at these locations to evaluate the need of implementing mitigation actions such as lining and constructing hydraulic barriers downstream the ponds. Actually, the UTM/Caldas operator is already implementing control measures. (author)

  5. Assessment of stream bottom sediment quality in the vicinity of the Caldas uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Priscila E.S. de, E-mail: pge_13@hotmail.com [Universidade Federal de Ouro Preto (ProAmb/UFOP), Ouro Preto, MG (Brazil). Programa de Pos-Graduacao em Engenharia Ambiental; Filho, Carlos A.C.; Moreira, Rubens M.; Ramos, Maria E.A.F.; Dutra, Pedro H.; Ferreira, Vinicius V.M., E-mail: cacf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil); Silva, Nivaldo C., E-mail: ncsilva@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    An evaluation of the quality of stream bottom sediments was performed in the surroundings of the Caldas Uranium Mining and Milling Facilities (UMMF), sited on Pocos de Caldas Plateau (southeastern Brazil), to verify whether the sediments in the water bodies downstream the plant, were impacted by effluents from a large waste rock pile, named Waste Rock Pile 4 (WRP4), and from the Tailings Dam (TD). In order to perform the research, twelve sampling stations were established in the watersheds around Caldas UMMF: the Soberbo creek, the Consulta brook, and the Taquari river. One of the stations was located inside the Bacia Nestor Figueiredo, a retention pond that receives effluents from WRP4, and another in a settling tank (D2) for radium, which receives the effluents from TD. A monitoring scheme has been developed, comprising four sampling campaigns in 2010 and 2011, and the samples were analyzed for selected metals-metalloids and radionuclides, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Ultraviolet-Visible (UV-Vis) Spectroscopy and Gamma-ray Spectrometry. The results suggest that effluents discharged from retention ponds to watercourses, causing an increase in the concentration of As, B, Ba, Cr, Mo, Mn, Pb, Zn, {sup 238}U, {sup 232}Th, {sup 226}Ra, {sup 228}Ra and {sup 210}Pb in sediments. Detailed investigation in sub-superficial layers is recommended at these locations to evaluate the need of implementing mitigation actions such as lining and constructing hydraulic barriers downstream the ponds. Actually, the UTM/Caldas operator is already implementing control measures. (author)

  6. Industry disagrees with water quality recommendations

    International Nuclear Information System (INIS)

    Begley, R.

    1992-01-01

    Industry groups are distancing themselves from recommendations on cleaning up the nation's waters issued by Water Quality 2000, a coalition of more than 80 organizations representing industry, environmental groups, government, academia, and professional and scientific societies. The report, open-quotes A National Water Agenda for the 21st Centuryclose quotes, is a result of work begun in 1989. It recommends an approach to water quality that emphasizes pollution prevention, increased individual and collective responsibility for protecting water resources, and reorienting water resource programs and institutions along natural, rather than political, watershed boundaries. It includes 85 specific recommendations, many of which are to be implemented locally. The Natural Resources Defense Council (NRDC; Washington) open-quotes wholeheartedly endorses not only the specific solutions offered today but the process by which these proposals were reached,close quotes says Robert W. Adler, NRDC senior attorney and vice chairman of Water Quality 2000. John B. Coleman, corporate environmental affairs manager for Du Pont and a member of the groups's steering committee, says open-quotes Du Pont and the other industry members of Water Quality 2000 are committedclose quotes to working to make continuous improvements

  7. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  8. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  9. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  10. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  11. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    Science.gov (United States)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  12. Successful integration efforts in water quality from the integrated Ocean Observing System Regional Associations and the National Water Quality Monitoring Network

    Science.gov (United States)

    Ragsdale, R.; Vowinkel, E.; Porter, D.; Hamilton, P.; Morrison, R.; Kohut, J.; Connell, B.; Kelsey, H.; Trowbridge, P.

    2011-01-01

    The Integrated Ocean Observing System (IOOS??) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  13. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  14. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  15. Lost in translation? Multi-metric macrobenthos indicators and bottom trawling

    DEFF Research Database (Denmark)

    Gislason, Henrik; Bastardie, Francois; Dinesen, Grete E.

    2017-01-01

    trawling. We use linear mixed effects models to analyze how bottom trawling intensity affects the indicators used in the Danish (Danish Quality Index, DKI) and Swedish (Benthic Quality Index, BQI) environmental monitoring programs in the Kattegat, the sea area between Sweden and Denmark. Using year...... of individuals per sample (density), we expect species density and density to be positively correlated. This correlation was confirmed by a simulation model and by statistical analysis of the bottom samples in which log species density was highly significantly related to log density (r = 0.75, df = 144, p ...

  16. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware... or ``Commission'') approved amendments to its Water Quality Regulations, Water Code and Comprehensive...

  17. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  18. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  19. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  20. Experimental results of the consequences of sodium water reactions at the bottom tube plate region of straight tube steam generators

    International Nuclear Information System (INIS)

    Ruloff, G.

    1990-01-01

    Experience with sodium water reactions has shown, that the course of such a steam generator accident depends strongly on its place in the steam generator. For the EFR steam generators we have to differentiate between: weld region at the upper tube plate (gas space); bundle region; weld region at the bottom tube plate. This paper describes results of a running tests program simulating the bottom tube plate area. One main part of these tests is the investigation of the influence of wastage protection shrouds between the tubes in the weld region to avoid a fast leak propagation and to give time for leak detection and mastering of the accidents. (author). 10 figs, 2 tabs

  1. Monitoring of streams: macrozoobenthos and accumulation of heavy metals and radionuclides in bottom sediments

    International Nuclear Information System (INIS)

    Arbaciauskas, K.; Mackeviciene, G.; Striupkuviene, N.; Motiejunas, S; Kreslauskaite, R.

    1998-01-01

    To evaluate the environmental quality of streams in integrated monitoring sites (IMS) and agrostations (AS), the macrozoobenthos communities and accumulation of heavy metals and radionuclides in bottom sediments were studied during 1993-1996. Samples of macrozoobenthos were collected in stream biotopes which were recommended for monitoring. Community biodiversity was assessed by Shannon-Wiener and Simpson indices, and water quality of streams was estimated by Trent and Mean Chandler biotic indices. Heavy metal (Pb, Cd, Cu, Cr, Ni, Mn) concentrations and radionuclide ( 137 Cs, 134 Cs, 40 K, 90 Sr) activity were determined in sediments. Macrozoobenthos communities indicated that the studied streams were clean waters. The heavy metal concentrations in surficial sediments showed annual and seasonal changes and differences between monitoring sites. The Cu concentration in the soft turfy stream sediments at the Aukstaitija IMS was twice as high as that in sediments of other monitoring streams with hard sandy-gravel bottoms. During 1994-1996, the Ni concentration decreased, while levels of Cu, Cd and Cr were relatively stable. The Pb concentrations decreased in all IMS, while those in AS increased. The concentration of 137 Cs was relatively stable in agrostation streams. Compared to levels in 1993, an increase of 137 Cs activity was observed in sediments at the Dzuklija IMS during 1995-1996. 90 Sr activity fluctuated in the monitoring sites from 1.6 to 3.7 Bq/kg dry weight. (author)

  2. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  3. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    OpenAIRE

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report...

  4. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 14 CFR 23.533 - Hull and main float bottom pressures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float bottom pressures. 23... Water Loads § 23.533 Hull and main float bottom pressures. (a) General. The hull and main float....00213; K2=hull station weighing factor, in accordance with figure 2 of appendix I of this part; VS1...

  6. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  7. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  8. Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District

    Directory of Open Access Journals (Sweden)

    Desi Kartikasari

    2013-12-01

    Full Text Available This research aims to determine the water quality of tertiary irrigation in several subdistricts in Malang, namely Kepanjen, Karangploso, and Tumpang. The water quality depends on the water quality indices (National Sanitation Foundation’s-NSF Indices and O’Connor’s Indices based on variables TSS, TDS, pH, DO, and Nitrate concentrate and ecological indices of benthic macroinvertebrate (Diversity Indices Shannon-Wiener, Hilsenhof Biotic Indices-HBI, Average Score per Taxon-ASPT which is calculated by Biological Monitoring Working Party-BMWP, Ephemeroptera Indices, Plecoptera, Trichoptera-EPT. Observation of the physico-chemical water quality and benthic macroinvertebrate on May 2012 to April 2013. The sampling in each subdistrict was done at two selected stations in tertiary irrigation channel with three plot at each station. The data of physico-chemical quality of water were used to calculate the water quality indices, while the benthic macroinvertebrate data were used to calculate the ecological indices. The research findings showed that 27 taxa of benthic macroinvertebrates belong 10 classes were found in the three subdistrict. The pH, DO, Nitrate, TSS and TDS in six tertiary irrigation channels in Malang still met the water quality standards based on Government Regulation No. 82 of 2001 on Management of Water Quality and Water Pollution Control Class III. Based on NSF-WQI indices and O'Connor's Indices, water qualities in these irrigation channels were categorized into medium or moderate (yellow to good (green category. However, based on benthic macroinvertebrate communities which was used to determine the HBI, the water quality in the irrigation channels were categorized into the fair category (fairly significant organic pollution to fairly poor (significant organic pollution, while based on the value of ASPT, the water were categorized into probable moderate pollution to probable severe pollution. The irrigation water which was

  9. Benthic indicators to use in Ecological Quality classification of Mediterranean soft bottom marine ecosystems, including a new Biotic Index

    Directory of Open Access Journals (Sweden)

    N. SIMBOURA

    2002-12-01

    Full Text Available A general scheme for approaching the objective of Ecological Quality Status (EcoQ classification of zoobenthic marine ecosystems is presented. A system based on soft bottom benthic indicator species and related habitat types is suggested to be used for testing the typological definition of a given water body in the Mediterranean. Benthic indices including the Shannon-Wiener diversity index and the species richness are re-evaluated for use in classification. Ranges of values and of ecological quality categories are given for the diversity and species richness in different habitat types. A new biotic index (BENTIX is proposed based on the relative percentages of three ecological groups of species grouped according to their sensitivity or tolerance to disturbance factors and weighted proportionately to obtain a formula rendering a five step numerical scale of ecological quality classification. Its advantage against former biotic indices lies in the fact that it reduces the number of the ecological groups involved which makes it simpler and easier in its use. The Bentix index proposed is tested and validated with data from Greek and western Mediterranean ecosystems and examples are presented. Indicator species associated with specific habitat types and pollution indicator species, scored according to their degree of tolerance to pollution, are listed in a table. The Bentix index is compared and evaluated against the indices of diversity and species richness for use in classification. The advantages of the BENTIX index as a classification tool for ECoQ include independence from habitat type, sample size and taxonomic effort, high discriminative power and simplicity in its use which make it a robust, simple and effective tool for application in the Mediterranean Sea.

  10. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  11. Assessment of sludges and tank bottoms treatment processes

    International Nuclear Information System (INIS)

    Bhutto, A.W.; Bazmi, A.A.

    2005-01-01

    The petroleum refining industries generate considerable amounts of sludge and tank bottoms as waste. Petroleum refinery receives crude oil containing emulsified water and solids. As the crude oil storage tanks are repeatedly filled and emptied, the water and solids settle towards the bottom as sludge. For tanks that have been in service for several years, the sludge accumulation becomes several feet deep, results in a loss of ullage in refinery crude storage tanks. The accumulation of crude storage tank bottoms is a serious problem experienced by local refineries. The refinery sludge waste is categorized as hazardous waste, which is at present buried in the tankform ground. Since the no hazardous material land filling option available, the disposal of these hazardous materials has become a major problem because of the ISO-14000 certification requirements and expectation of stakeholder. To maximize the waste oil recovery from sludge and tank bottoms and to minimize the volume of the hazardous waste, a number of waste recovery and treatment processes are available. The process designs and unit operations of each process are different and each has its own merits, in terms of the technical complexity, operation friendliness, and costs and economics. A study on each of these technologies and the subsequent tide-up to the existing unit operations is conducted, and the associated technical comparisons are made. (author)

  12. Simulation of the effects of proposed tide gates on circulation, flushing, and water quality in residential canals, Cape Coral Florida

    Science.gov (United States)

    Goodwin, Carl R.

    1991-01-01

    Decades of dredging and filling of Florida's low-lying coastal wetlands have produced thousands of miles of residential tidal canals and adjacent waterfront property. Typically, these canals are poorly flushed, and over time, accumulated organic-rich bottom materials, contribute to an increasingly severe degraded water quality. One-dimensional hydrodynamic and constituent-transport models were applied to two dead-end canal systems to determine the effects of canal system interconnection using tide gates on water circulation and constituent flushing. The model simulates existing and possible future circulation and flushing conditions in about 29 miles of the approximately 130 miles of tidally influenced canals in Cape Coral, located on the central west coast of peninsular Florida. Model results indicate that tidal water-level differences between the two canal systems can be converted to kinetic energy, in the form of increased water circulation, but the use of one-way tide gate interconnections. Computations show that construction of from one to four tide gates will cause replacement of a volume of water equivalent to the total volume of canals in both systems in 15 to 9 days, respectively. Because some canals flush faster than others, 47 and 21 percent of the original canal water will remain in both systems 50 days after start of operation of one and four tide gates, respectively. Some of the effects that such increased flushing are expected to have include reduced density stratification and associated dissolved-oxygen depletion in canal bottom waters, increased localized reaeration, and more efficient discharge of stormwater runoff entering the canals.

  13. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Science.gov (United States)

    2012-11-29

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-OW-2011-0466; FRL 9756-2] 2012 Recreational Water Quality... Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing the availability of the 2012 Recreational Water Quality...

  14. A bottom-up approach of stochastic demand allocation in water quality modelling

    NARCIS (Netherlands)

    Blokker, E.J.M.; Vreeburg, J.H.G.; Beverloo, H.; Klein Arfman, M.; Van Dijk, J.C.

    2010-01-01

    An “all pipes” hydraulic model of a drinking water distribution system was constructed with two types of demand allocations. One is constructed with the conventional top-down approach, i.e. a demand multiplier pattern from the booster station is allocated to all demand nodes with a correction factor

  15. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  16. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  17. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  18. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  19. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  20. Hydrology and water quality of Shell Lake, Washburn County, Wisconsin, with special emphasis on the effects of diversion and changes in water level on the water quality of a shallow terminal lake

    Science.gov (United States)

    Juckem, Paul F.; Robertson, Dale M.

    2013-01-01

    toward the lake. Total groundwater inflow to Shell Lake is small (approximately 5 percent of the water budget) compared with water entering the lake from precipitation (83 percent) and surface-water runoff (13 percent). The MODFLOW model also was used to simulate average annual hydrologic conditions from 1949 to 2009, including effects of the removal of 3 billion gallons of water during 2003–5. The maximum decline in simulated average annual water levels for Shell Lake due to the diversion alone was 3.3 ft at the end of the diversion process in 2005. Model simulations also indicate that although water level continued to decline through 2009 in response to local weather patterns (local drought), the effects of the diversion decreased after the diversion ceased; that is, after 4 years of recovery (2006–9), drawdown attributable to the diversion alone decreased by about 0.6 ft because of increased groundwater inflow and decreased lake-water outflow to groundwater caused by the artificially lower lake level. A delayed response in drawdown of less than 0.5 ft was transmitted through the groundwater-flow system to upgradient lakes. This relatively small effect on upgradient lakes is attributed in part to extensive layers of shallow clay that limit lake/groundwater interaction in the area. Data collected in the lake indicated that Shell Lake is polymictic (characterized by frequent deep mixing) and that its productivity is limited by the amount of phosphorus in the lake. The lake was typically classified as oligotrophic-mesotrophic in June, mesotrophic in July, and mesotrophic-eutrophic in August. In polymictic lakes like Shell Lake, phosphorus released from the sediments is not trapped near the bottom of the lake but is intermittently released to the shallow water, resulting in deteriorating water quality as summer progresses. Because the productivity of Shell Lake is limited by phosphorus, the sources of phosphorus to the lake were quantified, and the response in water

  1. National Water-Quality Assessment Program, western Lake Michigan drainages: Summaries of liaison committee meeting, Green Bay, Wisconsin, March 28-29, 1995

    Science.gov (United States)

    Peters, Charles A.

    1995-01-01

    The Western Lake Michigan Drainages (WMIC) study unit, under investigation since 1991, drains 20,000 square miles (mi2) in eastern Wisconsin and Upper Michigan (fig. 1). The major water-quality issues in the WMIC study unit are: (1) nonpoint-source contamination of surface and ground water by agricultural chemicals, (2) contamination in bottom sediments of rivers and harbors by toxic substances, including polychlorinated biphenyls (PCB's), other synthetic organic compounds, and trace elements, (3) nutrient enrichment of rivers and lakes resulting from nonpoint- and point-source discharges, and (4) acidification and mercury contamination of lakes in poorly buffered watersheds in the northwestern part of the study unit.

  2. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Science.gov (United States)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  3. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  4. Water quality for the year 2000

    International Nuclear Information System (INIS)

    Newman, A.

    1991-01-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings

  5. Quality status of bottled water brands in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M. A.; Tahir, M.A.

    2005-01-01

    The (PCRWR) has carried out a study to evaluate the quality of mineral water brands available in the market owing to demand of general public and consumer associations. Twenty one brands of bottled water were collected from Islamabad and Rawalpindi. Each water sample was analyzed for 24 aesthetic, physico-chemical and bacteriological water quality parameters by adopting standard analytical methods. It was observed that only 10 out of 21 brands (47.62%) were fit for drinking purpose. The remaining eleven brands (52.38%), including one imported brand, were found unsafe for human consumption. It was also concluded that present situation of water quality of bottled water is due to lack of legislation for water quality control. Hence there is a dire need for a legal organization to monitor and regulate the quality issues of bottled water industry. (author)

  6. Refinement of the bottom boundary of the INES scale

    International Nuclear Information System (INIS)

    Ferjencik, Milos

    2010-01-01

    No existing edition of the International Nuclear Events Scale (INES) Manual addresses in depth the determination of the bottom boundary of the Scale, although a need for a definition is felt. The article introduces a method for determining the INES bottom boundary applicable to pressurized water reactors. This bottom boundary is put identical with the threshold of degradation of the installation's nuclear safety assurance. A comprehensive flowchart has been developed as the main outcome of the analysis of the nuclear safety assurance violation issue. The use of this flowchart in INES classification to replace the introductory question in the General INES Rating Procedure in the INES Manual is recommended. (orig.)

  7. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware... hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality...

  8. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    . * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt

  9. GKI water quality studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  10. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  11. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    FDC analysis showed that over 80% of the time, all rivers in the study area would not meet the target community's water demand, without the dams in place. Water quality assessments show biological contamination as the major water quality problem. Significant seasonal variation in water quality is evident, with the dry ...

  13. The Economic Value of Changes in Water Quality

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    Water quality is from both a European and Danish perspective challenged by private use of the resource. The public good characteristics of the resource require that regulation should internalize the non-market values of water quality, in order to reach an optimal level from a welfare economic...... perspective. Valuation using stated preference techniques to value changes in ecosystem services has been widely used to estimate values of water quality. However, heterogeneity in values exists across different groups in the population. The objective of this PhD-thesis is to explore two different kinds...... of preference heterogeneity, when valuing changes in water quality. The PhD thesis consists of four papers all related to heterogeneity in the public preferences for water quality improvements. Papers referred to as 1, 2 and 3 are based on a discrete choice experiment (DCE) on water quality improvements...

  14. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  17. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  18. Variations in the Strength of the North Atlantic Bottom water during Holocene.

    Science.gov (United States)

    Kissel, C.; Van Toer, A.; Michel, E.; Cortijo, E.

    2012-04-01

    One aspect of the Past4Future project is to combine multidisciplinary approaches to monitor changes in ocean circulation during previous interglacial periods. In the framework of this project, our study focusses on the changes in the strength of the North Atlantic deep water during the Holocene period using multiproxy analysis (magnetic and sedimentary). The main part of the study has been conducted on two cores located at the western termination of the northern deep channel of the Charlie-Gibbs fracture zone. This natural E-W corridor is bathed by the Iceland-Scotland overflow water (ISOW) when it passes westward out of the Iceland Basin into the western North Atlantic basin. At present, it is also described as the place where southern sourced silicate-rich Lower Deep Water (LDW) derived from the Antarctic Bottom Waters (AABW) are passing westward, mixing with the ISOW. One core had been taken by the R. V. Charcot in 1977 and the second one is a CASQ core taken during the IMAGES-AMOCINT MD168- cruise in the framework of the 06-EuroMARC-FP-008 Project on board the R.V. Marion Dufresne (French Polar Institute, IPEV) in 2008. Radiocarbon ages indicate an average sedimentation rate of about 90 cm/kyr during early Holocene and 50 cm/kyr through middle and late Holocene allowing a data resolution ranging from 40 to 100 years depending on the proxy. We coupled magnetic properties, anisotropy, sortable silt and benthic foraminifera isotopes. On the long term, a decrease in the amount of magnetic particles (normalized by the carbonate content) is first observed from 10 kyr to 8.6 kyr and then from 6 to 2 kyrs before reaching a steady state during the last two millenia. Following Kissel et al. (2009), this indicates a two steps decrease in the ISOW strength. The mean sortable silt shows exactly the same pattern indicating that not only the intensity of the ISOW but the whole deep water mass bathing the sites has decreased. On the short term, a first very prominent event

  19. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  20. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  1. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  2. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  3. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  4. Possible Significance of Early Paleozoic Fluctuations in Bottom Current Intensity, Northwest Iapetus Ocean

    Science.gov (United States)

    Lash, Gary G.

    1986-06-01

    Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.

  5. Marine water-quality management in South- Africa

    CSIR Research Space (South Africa)

    Taljaard, Susan

    1995-01-01

    Full Text Available In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all ''beneficial uses''. Beneficial uses provide a basis for the derivation of water quality guidelines, which, for South Africa, are defined...

  6. Overview of the National Water-Quality Assessment Program

    Science.gov (United States)

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  7. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  8. The structure of water quality monitoring in the disaster area

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    2012-01-01

    Described are monitoring systems of water environment at usual times and after the 2011 Tohoku Earthquake and Tsunami Disaster, and measures taken by the Ministry of the Environment (ME) for radioactive substances in the water environment. At usual times, the monitoring of hazardous substance in water environment is conducted by local governments. At/after the Disaster, ME conducted the monitoring investigation concerning the environmental quality standards and toxicants like dioxins in the river, sea and groundwater from late May to late July, 2011 because undesirable effects on health and life of the residents had been feared due to possible leak of hazardous substances in public water area and underground water of victim prefectures, Aomori, Iwate, Miyagi, Fukushima and Ibaraki. As the results, no high contamination due to the Disaster was found, and a part of regions exhibited the slight chemical contamination, where continuous and additional monitoring was to be kept locally with guidance of drinking the concerned well water. ME measured radioactive iodine and cesium at 29 places of Fukushima rivers to find <65 and <30,000 Bq/kg, respectively, of 4 spots of river bed material alone (late May); then Cs 32 Bq/L in water at 1 spot and <26,000 Bq/kg in bed at all places after rain (early July). In groundwater, no radioactive nuclides above were detected in any of 111 places of Fukushima Prefecture (late June to early August). Cs was not found in sea water of 9 places of concerned prefectures, but was in the sea bottom soil, <1,380 Bq/kg (middle June). As well, local governments measured those two radioactive nuclides in water and ambient dose rate of 551 sea bathing beaches (late May to early Oct.) and found only one beach (Iwaki City, Fukushima) inappropriate for swimming play. Hereafter, ME is still to investigate the bed material of public water area and to continue to monitor the marine environment in cooperation with related authorities. (T.T.)

  9. Privatization of Water and Sanitation Services in Kenya: Challenges ...

    African Journals Online (AJOL)

    seriane.camara

    2009-05-14

    May 14, 2009 ... method of service delivery that also enhances quality and performance. This .... The bottom-line argument is that water and sanitation systems ... finally urged that decision-making, implementation of projects and operation.

  10. COMPARISON OF WATER RATES IAP RISK INDICES AND THE QUALITY OF DRINKING WATER IRCA USED FOR DETERMINING THE QUALITY OF DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Javier Mauricio González Díaz

    2010-05-01

    Full Text Available This work discusses the results of a technical and operative diagnosis of the urban system of aqueduct of the municipality of Villapinzón. Water quality and public service characteristics were determined assessed against the legal principles of continuity, quality and coverage of the domiciliary public service law. Drinking water quality was evaluated according to the methodology established by Resolution 2115 de 2007 of the Ministerial de la Protection Social de Colombia. In addition, a new methodology is suggested and the calculated indexes are compared to those determined by resolution 2115 de 2007. An analysis of the results indicates the proposed methodology is more reliable than the current methodology for determining water quality criteria.

  11. Benthic foraminifera and bottom water evolution in the middle-southern Okinawa Trough during the last 18 ka

    Institute of Scientific and Technical Information of China (English)

    LI Tiegang; XIANG Rong; SUN Rongtao; CAO Qiyuan

    2005-01-01

    A piston sediment core E017 from the middle-southern Okinawa Trough was investigated. A preliminary study of the deep-water evolution since 18 cal. ka BP was performed based on the quantitative census data of benthic foraminiferal fauna, together with planktonic foraminiferal oxygen and carbon isotope, AMS14C dating, and the previous results achieved in the southern Okinawa Trough. The result shows that the benthic fauna was dominated by Bulimina aculeata (d'Orbigny), Uvigerina peregrina (Cushman), Hispid Uvigerina and Uvigerina dirupta (Todd) during the glaciation-deglaciation before 9.2 cal. ka BP, while Epistominella exigua (Brady), Pullenia bulloides (d'Orbigny), Cibicidoides hyalina (Hofker), Sphaeroidina bulloides (d'Orbigny) and Globocassidulina subglobosa (Brady) predominated the fauna in the post-glacial period after 9.2 cal. ka BP. The benthic foraminifera accumulation rate (BFAR), paleoproductivity estimates and benthic foraminiferal assemblage conformably indicate that surface water paleoproductivity and organic matter flux during the glaciation-deglaciation were higher than those of the post-glacial period in the middle-southern Okinawa Trough, and gradually enhanced from the southern to the central Okinawa Trough during the glaciation-deglaciation, which could be caused by the discrepancy of the terrigenous nutrients supply. High abundances of E. exigua, an indicator of pulsed organic matter input, after 9.2 cal. ka BP may indicate that the intensity of seasonally riverine pulsed flux during the post-glacial period was stronger than that of the glaciation-deglaciation period, and the seasonal influx in the central trough might be stronger than in the south. The temporal distributions of the typical species indicating bottom water oxygen content and ventilation condition show that the ventilation of the bottom water during the post-glacial period is more active than the glaciation-deglaciation, which reflects that the evolution of the intermediate and

  12. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Science.gov (United States)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  13. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Directory of Open Access Journals (Sweden)

    Kordach A.

    2018-01-01

    Full Text Available The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS, and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  14. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  15. 40 CFR 227.31 - Applicable marine water quality criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  16. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Vermejo Project area and the Maxwell National Wildlife Refuge, Colfax County, northeastern New Mexico, 1993

    Science.gov (United States)

    Bartolino, J.R.; Garrabrant, L.A.; Wilson, Mark; Lusk, J.D.

    1996-01-01

    Based on findings of limited studies during 1989-92, a reconnaissance investigation was conducted in 1993 to assess the effects of the Vermejo Irrigation Project on water quality in the area of the project, including the Maxwell National Wildlife Refuge. This project was part of a U.S. Department of the Interior National Irrigation Water-Quality Program to determine whether irrigation drainage has caused or has the potential to cause significant harmful effects on human health, fish, and wildlife and whether irrigation drainage may adversely affect the suitability of water for other beneficial uses. For this study, samples of water, sediment, and biota were collected from 16 sites in and around the Vermejo Irrigation Project prior to, during the latter part of, and after the 1993 irrigation season (April, August-September, and November, respectively). No inorganic constituents exceeded U.S. Environmental Protection Agency drinking-water standards. The State of New Mexico standard of 750 micrograms per liter for boron in irrigation water was exceeded at three sites (five samples), though none exceeded the livestock water standard of 5,000 micrograms per liter. Selenium concentrations exceeded the State of New Mexico chronic standard of 2 micrograms per liter for wildlife and fisheries water in at least eight samples from five sites. Bottom-sediment samples were collected and analyzed for trace elements and compared to concentrations of trace elements in soils of the Western United States. Concentrations of three trace elements at eight sites exceeded the upper values of the expected 95-percent ranges for Western U.S. soils. These included molybdenum at one site, selenium at seven sites, and uranium at four sites. Cadmium and copper concentrations exceeded the National Contaminant Biomonitoring Program 85th percentile in fish from six sites. Average concentrations of selenium in adult brine flies (33.7 mg/g dry weight) were elevated above concentrations in other

  17. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  18. Water quality in the central Columbia Plateau, Washington and Idaho, 1992-95

    Science.gov (United States)

    Williamson, Alex K.; Munn, Mark D.; Ryker, Sarah J.; Wagner, Richard J.; Ebbert, James C.; Vanderpool, Ann M.

    1998-01-01

    in this area, but fish are harmed by decreased stream-water quality,' said Mark Munn, the biologist for the USGS study. 'Pesticides and habitat degradation are the main concerns.' He noted that stream sampling by the USGS showed seven currently used pesticides at concentrations above the limits recommended for protecting aquatic life. Soil erosion, a long-term problem for farmers in the Palouse River Basin, transports some soil to streams, degrading habitat and carrying with it older pesticides and their breakdown products. A breakdown product of the banned insecticide DDT was found in both streambed sediment and bottom fish at concentrations exceeding guidelines for the protection of aquatic life. 'Another problem for fish habitat is excessive plant growth caused by high levels of nutrients in streams,' said Munn, who explained that these nutrients enter streams in runoff from agricultural fields and discharge from urban wastewater treatment plants. Some agricultural practices, such as allowing cattle to graze near streams, are associated with higher rates of erosion. However, increased use of BMPs may improve water quality of the plateau. The USGS study showed that use of sprinkler or drip rather than furrow irrigation has decreased soil erosion in the CBIP area. In the Palouse, erosion

  19. Field measurements of bottom boundary layer and suspend particle materials on Jyoban coast in Japan

    International Nuclear Information System (INIS)

    Yagi, Hiroshi; Sugimatsu, Kouichi; Nishi, Yoshihiro; Kawamata, Shigeru; Nakayama, Akiyoshi; Udagawa, Toru; Suzuki, Akira

    2013-01-01

    To understand the characteristics of the bottom boundary layer (BBL), movements of suspended particle material (SPM) and its related radionuclide transport on Jyoban coast, the continuous monitoring of bottom environments using the mooring system and the intensive field survey of BBL with FRA-TRIPOD were performed. The observation results have shown the fundamental characteristics of BBL (vertical distributions of velocities and bottom roughness, etc.) and bottom turbidity variations. The turbidity at the shallow water depth (30 m) was strongly influenced by waves and turbid water generated on rough wave conditions was transported by the coastal currents with the several days period. Turbidities at the deeper depths (80 m and 130 m) were affected by semidiurnal internal tides. (author)

  20. Guide to federal water quality programs and information: A guide with computer software developed by the interagency work group on water quality

    International Nuclear Information System (INIS)

    1993-02-01

    The publication makes key Federal information on water quality available to environmental analysts. The Guide includes information on (1) underlying demographic pressures; (2) the use of land, water, and resources; (3) pollutant loadings; (4) ambient water quality; (5) other effects of water pollution; and (6) a listing of programs established to preserve, protect and restore water quality

  1. Water quality issues and status in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Tahir, M. A.; Ashraf, M.

    2005-01-01

    Per capita water availability in Pakistan has dropped drastically during the last fifty years. Recent extended droughts have further aggravated the situation. In order to meet the shortage and crop water requirements, groundwater is being used extensively in the Indus Basin. Groundwater is also the main source of water for drinking and industrial uses. This increased pressure on groundwater has lowered the water table in many cities. It is reported that water table has dropped by more than 3 m in many cities. This excessive use of groundwater has seriously affected the quality of groundwater and has increased the incidences of water-borne diseases many folds. A recent water quality study has shown that out of 560,000 tube wells of Indus Basin, about 70 percent are pumping sodic water. The use of sodic water has in turn affected the soil health and crop yields. This situation is being further aggravated due to changes in climate and rainfall patterns. To monitor changes in surface and groundwater quality and groundwater levels, Pakistan Council of Research in Water Resources has undertaken a countrywide programme of water quality monitoring. This programme covers twenty-one cities from the four provinces, five rivers, 10 storage reservoirs and lakes and two main drains of Pakistan. Under this programme a permanent monitoring network is established from where water samples are collected and analyzed once every year. The collected water samples are analyzed for aesthetic, chemical and bacteriological parameters to determine their suitability for agricultural, domestic and industrial uses. The results of the present study indicate serious contamination in many cities. Excessive levels of arsenic, fluoride and sodium have been detected in many cities. This paper highlights the major water quality issues and briefly presents the preliminary results of the groundwater analysis for major cities of Pakistan. (author)

  2. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Science.gov (United States)

    2013-09-04

    ... 131 Water Quality Standards Regulatory Clarifications; Proposed Rule #0;#0;Federal Register / Vol. 78... AGENCY 40 CFR Part 131 [EPA-HQ-OW-2010-0606; FRL-9839-7] RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards (WQS...

  3. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  4. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  5. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  6. Recent experiences with ultrasonic inservice inspection systems with phased array probes on spherical bottoms of boiling water reactors

    International Nuclear Information System (INIS)

    Wustenberg, H.; Brekow, G.; Erhard, A.; Hein, E.

    1988-01-01

    The special geometry of the spherical bottom of boiling water reactors with control rods and measuring nozzles requires a very special surveillance technique during the in-service inspection. Reside visual inspection an ultrasonic inspection has been established due to the requirements of German authorities. A first application of a new phased array system took place August 1987. The 100% inspection of a spherical bottom had been enabled by the application of phased array probes with electronically controlled skewing angles. The data acquisition had been based on the storage of whole A-scans, which had been pixellized into 256 points. This A-scan storage procedure makes possible the application of a simple and fast algorithm to present the data as TD-(time displacement)-scans. Defect reconstruction by echotomographique approaches are under development. This paper presents the ultrasonic technique applied including the phased array probes, the electronic system, as well as the software package used for the control of the inspection parameters depending on the probe position

  7. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  8. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  9. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  10. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  11. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  12. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.

  13. 40 CFR 35.2111 - Revised water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator has...

  14. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  15. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  16. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  17. Model testing of radioactive contamination by {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu of water and bottom sediments in the Techa River (Southern Urals, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Kryshev, I.I. [Scientific and Production Association ' Typhoon' , 82 Lenin Ave., Obninsk, Kaluga Region, 249038 (Russian Federation)], E-mail: ecomod@obninsk.com; Boyer, P.; Monte, L.; Brittain, J.E.; Dzyuba, N.N.; Krylov, A.L.; Kryshev, A.I.; Nosov, A.V.; Sanina, K.D.; Zheleznyak, M.I. [Scientific and Production Association ' Typhoon' , 82 Lenin Ave., Obninsk, Kaluga Region, 249038 (Russian Federation)

    2009-03-15

    This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for {sup 90}Sr in water for all considered models, {sup 137}Cs for MARTE and TRANSFER-2, and {sup 239,240}Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of {sup 137}Cs and {sup 239,240}Pu in water more reliably than in bottom sediments. The models MARTE ({sup 239,240}Pu) and CASSANDRA ({sup 137}Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For {sup 90}Sr and {sup 137}Cs the agreement between empirical data and model predictions was good, but not for all the observations of {sup 239,240}Pu in the river water-bottom sediment system. The modelling of {sup 239,240}Pu distribution proved difficult because, in contrast to {sup 137}Cs and {sup 90}Sr, most of models have not been previously tested or validated for plutonium.

  18. Water quality estimation method for primary coolant circuit

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Hidefumi.

    1994-01-01

    The present invention is suitable to water quality diagnosis at each of the portions in a reactor upon hydrogen injection for preventing stress corrosion crackings (SCC) of a BWR type reactor. That is, a plurality of simulations are conducted how the water quality at each of the portions in the reactor is changed when hydrogen injection amount is changed depending on the design and operation conditions of the plant. The result of the calculation is stored in a memory device. A water quality distribution in a pressure vessel having a solution which agrees with a value actually measured by a water quality measuring device disposed at the outside of a reactor core is retrieved from the results of the calculation. If no agreeing solution can be found, water quality distribution containing the actually measured value is determined based on the result of the calculation by using interpolation. In the present invention, the result of the calculation obtained by the simulation and the actually measured value at the outside of the reactor core can be utilized, to map the distribution of reactor water ingredients on a screen, which can accurately estimate the water quality at the periphery of the reactor core on real time. As a result, an operational efficiency of a reactor which can control water quality upon hydrogen injection at an optimum condition. (I.S.)

  19. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  20. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  1. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  2. Up-going Red Water in the Ice at the Bottom of the World: Picture Taking Boxes and Listening Boxes Tell Us How and Why

    Science.gov (United States)

    Carr, C. G.; Pettit, E. C.

    2017-12-01

    Blood Falls is a place where red water comes out from under ice to the top of the ice and makes a strange red water fall. This ice is part of the big ice at the bottom of the world. The red water only comes out at some times and not every year, but it always comes out at the same place. The red water is important because it has tiny tiny not-animal life that tells us how life could be on other worlds. Knowing about the ice and red water is important because this ice is cold, colder than other ice in other places, and we want to know how water can get through. We didn't know why the red water comes up from under the ice when it does or how. We wanted to understand how the ice breaks and we watched the ice by taking pictures all year to see when the red water comes out. We found out that in the cold part of one year, the red water came out even though the air was not warm enough for water to be water! We think the red water comes out because the red water is blocked under the heavy ice and gets pushed tight. In the cold part of the year, cracks break down from the air into the ice and other cracks break up from under the ice because the red water is so pushed. The cracks from the top and bottom of the ice join, and the red water comes out. We used listening boxes that can feel how the ground moves to understand that the ice is breaking at the bottom and we can see that it breaks at the top of the ice. The red water can stay water and not ice inside the big ice because the red water has tiny pieces of the same stuff that can turn ice into water on the roads. If the ice breaks in the cold time, no water can get in from the top of the ice, so the red water under the ice stays clean from the air water. If the ice breaks in the warm time of year, water could get in from the top of the ice and make the red water under the ice not clean from the air. Since we saw in our pictures that the red water came out in the cold time of year, this means the red water could stay clean

  3. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  4. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  5. Distribution of shallow water soft and hard bottom seabeds in the Isla del Coco National Park, Pacific Costa Rica

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Sibaja-Cordero

    2012-11-01

    Full Text Available Geographic Information Systems (GIS applications used in marine habitats are powerful tools for management and monitoring of marine reserves and resources. Here, we present a series of maps of the soft and hard substrates in the shallow waters (>80 m depth of Parque Nacional Isla del Coco (PNIC= Isla del Coco National Park. We use bathymetry data and field data as input for a GIS, GAM, and kriging methods to generate a series of maps that describe the bottom characteristics. Eight types of bottom were found in the PNIC by composition and grain size. The shore of the island and islets consisted of rocky formations (mainly basalts, with coral reefs in the subtidal of some areas. Rhodolith beds had a dispersing distribution. The bottom on the southern and southwestern region is hard substrate, while sediments cover the northern and northeastern zones. Slightly gravelly sand dominated the bays, while gravelly sand (with more coarse grains was frequent offshore. The inner areas of Chatham and Wafer bays have mud and organic matter. The sediments in the area are mostly carbonates, except in Bahía Yglesias where clastic sediments (from the erosion of basalts are presented. The information generated in this study could be a valuable input for future monitoring in the PNIC.

  6. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  7. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  8. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  9. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    Science.gov (United States)

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  10. Comparision of Bathymetry and Bottom Characteristics From Hyperspectral Remote Sensing Data and Shipborne Acoustic Measurements

    Science.gov (United States)

    McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.

    2002-12-01

    There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types

  11. MANAGING MANURE TO IMPROVE AIR AND WATER QUALITY

    OpenAIRE

    Aillery, Marcel P.; Gollehon, Noel R.; Johansson, Robert C.; Kaplan, Jonathan D.; Key, Nigel D.; Ribaudo, Marc

    2005-01-01

    Animal waste from confined animal feeding operations is a potential source of air and water quality degradation from evaporation of gases, runoff to surface water, and leaching to ground water. This report assesses the potential economic and environmental tradeoffs between water quality policies and air quality policies that require the animal agriculture sector to take potentially costly measures to abate pollution. A farm-level analysis of hog farms estimates the economic and environmental ...

  12. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  13. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  14. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    Science.gov (United States)

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  15. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Application of thermal hydraulic and severe accident code SOCRAT/V3 to bottom water reflood experiment QUENCH-LOCA-0

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Stuckert, J.

    2013-01-01

    Highlights: ► QLOCA-0 test simulates a design basis LOCA NPP accident with maximum temperature 1300 K. ► Deep understanding of hydraulics and thermal mechanics under accident conditions is necessary. ► We model the test QLOCA-0 with bottom flooding using the Russian code SOCRAT/V3. ► Calculated and experimental data are in a good agreement. ► Experimental procedure is determined to reach a representative LOCA scenario in future tests. -- Abstract: The thermal hydraulic and SFD (severe fuel damage) best estimate computer modeling code SOCRAT/V3 has been used for the calculation of QUENCH-LOCA-0 experiment. The new QUENCH-LOCA bundle tests with different cladding materials will simulate a representative scenario of the LOCA (loss of coolant accident) nuclear power plant accident sequence in which the overheated up to 1300 K reactor core would be reflooded from the bottom by ECCS (emergency core cooling system). The first test QUENCH-LOCA-0 was successfully conducted at the KIT, Karlsruhe, Germany, in July 22, 2010, and was performed as the commissioning test for this series. The rod claddings are identical to that used in PWRs. The bundle was electrically heated in steam from 800 K to 1340 K with the heat-up rate of approximately 2.7 K/s. After cooling in the saturated steam the bottom flooding with water flow rate of about 100 g/s was initiated. The SOCRAT calculated results are in a good agreement with experimental data taking into account additional quenching due to water condensate entrainment at the steam cooling stage. SOCRAT/V3 has been used for estimation of further steps in experimental procedure to reach a representative LOCA scenario in future tests

  17. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    Science.gov (United States)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  18. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  19. BOTTOM SEDIMENTS IN DELTAIC SHALLOW-WATER AREAS – ARE THEY SOILS?

    Directory of Open Access Journals (Sweden)

    Anna N. Tkachenko

    2016-01-01

    Full Text Available This article is based on long-term research of aquatic landscapes in the VolgaRiver delta which was held in 2010–2012 and included investigation and sampling of bottom sediments in deltaic lagoons, fresh-water bays, small channels, oxbow lakes, and part of the deltaic near-shore zone. Contrasting hydrological regime and suspended matter deposition together with huge amount of water plants in the river delta provide for the formation of different types of subaquatic soils. The purpose of this research is to reveal the properties of the subaquatic soils in the Volga River deltaic area and to propose pedogenetic approaches to the diagnostic of aquazems as soil types. It is suggested to name the horizons in aquazems in the same way as in terrestrial soils in the recent Russian soil classification system, and apply symbols starting with the combination of caps – AQ (for “aquatic”. The aquazems’ horizons are identified and their general properties are described. Most typical of aquazems is the aquagley (AQG horizon; it is dove grey, homogeneous in color and permeated by clay. The upper part is usually enriched in organic matter and may be qualified for aquahumus (AQA or  aquapeat (AQT horizons. In case of active hydrodynamic regime and/or strong mixing phenomena, the oxidized (AQOX or aqox horizon, or property could be formed. It is yellowish-grey, thin, and depleted of organic matter. The main types of aquzems specified by forming agents and combinations of horizons are described.

  20. Development of drainage water quality from a landfill cover built with secondary construction materials.

    Science.gov (United States)

    Travar, Igor; Andreas, Lale; Kumpiene, Jurate; Lagerkvist, Anders

    2015-01-01

    The aim of this study was to evaluate the drainage water quality from a landfill cover built with secondary construction materials (SCM), fly ash (FA), bottom ash (BA) sewage sludge, compost and its changes over time. Column tests, physical simulation models and a full scale field test were conducted. While the laboratory tests showed a clear trend for all studied constituents towards reduced concentrations over time, the concentrations in the field fluctuated considerably. The primary contaminants in the drainage water were Cl(-), N, dissolved organic matter and Cd, Cu, Ni, Zn with initial concentrations one to three orders of magnitude above the discharge values to the local recipient. Using a sludge/FA mixture in the protection layer resulted in less contaminated drainage water compared to a sludge/BA mixture. If the leaching conditions in the landfill cover change from reduced to oxidized, the release of trace elements from ashes is expected to last about one decade longer while the release of N and organic matter from the sludge can be shortened with about two-three decades. The observed concentration levels and their expected development over time require drainage water treatment for at least three to four decades before the water can be discharged directly to the recipient. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  2. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  3. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  4. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  5. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  6. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  7. A review of hydrological/water-quality models

    Directory of Open Access Journals (Sweden)

    Liangliang GAO,Daoliang LI

    2014-12-01

    Full Text Available Water quality models are important in predicting the changes in surface water quality for environmental management. A range of water quality models are wildly used, but every model has its advantages and limitations for specific situations. The aim of this review is to provide a guide to researcher for selecting a suitable water quality model. Eight well known water quality models were selected for this review: SWAT, WASP, QUALs, MIKE 11, HSPF, CE-QUAL-W2, ELCOM-CAEDYM and EFDC. Each model is described according to its intended use, development, simulation elements, basic principles and applicability (e.g., for rivers, lakes, and reservoirs and estuaries. Currently, the most important trends for future model development are: (1 combination models─individual models cannot completely solve the complex situations so combined models are needed to obtain the most appropriate results, (2 application of artificial intelligence and mechanistic models combined with non-mechanistic models will provide more accurate results because of the realistic parameters derived from non-mechanistic models, and (3 integration with remote sensing, geographical information and global position systems (3S ─3S can solve problems requiring large amounts of data.

  8. Water quality in okara and its suburbs

    International Nuclear Information System (INIS)

    Butt, M.T.; Imtiaz, N.; Athar, M.

    2007-01-01

    Ground water samples (70), collected from Okara and its sburbs were studied. Thirty samples were collected from municipal supply of urban areas while forty from deep water pumps of non-urban areas. The samples were investigated for various physiochemical parameters. Outcome of the study is that ground water of municipal supply area is suitable for human consumption while the water quality of non supply area is slightly brackish to saline and nitrate content is high above the acceptable levels of drinking water quality. (author)

  9. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  10. Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Mason, R.P.; Jayachandran, S.; Vudamala, K.; Armoury, K.; Sarkar, Arindam; Chakraborty, S.; Bardhan, P.; Naik, R.

    benthic flux of MeHg to the overlying water (Hollweg et al., 2010; Balcom et al., 2008). On the contrary, however, a study in the Gulf of Mexico did not find that MeHg in bottom waters correlated with the extent of hypoxia (Liu et al., 2015... in the sediments of the so-called “dead zone” in the Gulf of Mexico. Others (Mason et al., 2006; Emili et al., 2011) have shown that total Hg and MeHg fluxes from sediments are enhanced by low oxygen concentrations in the overlying waters. The aim of this study...

  11. Co-sintering of treated APC-residues with bottom ash

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Bergfeldt, Britta; Vehlow, Jürgen

    2001-01-01

    the influence of co-sintering of Ferrox products with bottom ashes on the quality of the residues and the effects on the combustion process. Only few elements showed higher concentrations in the bottom ashes of these co-combustion tests compared to reference tests. No significant effect on the leaching......Air pollution control residues stabilised by means of the Ferrox process can be sager disposed of due to lower contents of soluble salts and lesssoluble heavy metals stabilised in iron oxides. Co-combustion tests in the Karlsruhe test incinerator TAMARA were carried out in order to investigate...... behaviour of the bottom ashes could be found. During the co-combustion process an increase in SO2 concentrations in the raw gas and slightly lower temperatures in the fuel bed could be observed....

  12. Some Durability Aspects of Ambient Cured Bottom Ash Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Saravanakumar R.

    2017-09-01

    Full Text Available The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC.

  13. Statistical Framework for Recreational Water Quality Criteria and Monitoring

    DEFF Research Database (Denmark)

    Halekoh, Ulrich

    2008-01-01

    recreational governmental authorities controlling water quality. The book opens with a historical account of water quality criteria in the USA between 1922 and 2003. Five chapters are related to sampling strategies and decision rules. Chapter 2 discusses the dependence of decision-making rules on short...... modeling exploiting additional information like meteorological data can support the decision process as shown in Chapter 10. The question of which information to extract from water sample analyses is closely related to the task of risk assessment for human health. Beach-water quality is often measured......Administrators of recreational waters face the basic tasks of surveillance of water quality and decisions on beach closure in case of unacceptable quality. Monitoring and subsequent decisions are based on sampled water probes and fundamental questions are which type of data to extract from...

  14. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  15. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  16. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  17. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  18. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  19. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    Science.gov (United States)

    Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  20. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  1. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  2. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  3. Water quality in vicinity of Fenton Hill Site, 1974

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Adams, W.H.; Owens, J.W.

    1975-09-01

    The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium

  4. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  5. Trophic state categorisation and assessment of water quality in ...

    African Journals Online (AJOL)

    Thus, water quality information is crucial in setting up guidelines for freshwater ... water quality in the Manjirenji Dam was generally fair, with a CCME value averaging 78.1, ... The current water quality data set for the Manjirenji Dam is vital for ...

  6. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    transport, (3) the process of wave transition in shallow water in the presence of strong alongshore currents, (4) the interaction between oblique...conducted in relatively deep water with bottom sediment comprised mostly of silt. One of the earlier studies for a wide shallow shelf was conducted off...wave asymmetry in combined flows and how this drives mass transport, (3) the process of wave transition in shallow water in the presence of strong

  7. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  8. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  9. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  10. Post-fire Water Quality Response and Associated Physical Drivers

    Science.gov (United States)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  11. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    Science.gov (United States)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  12. Aquatic macroinvertebrates and water quality in Sandia Canyon

    International Nuclear Information System (INIS)

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities

  13. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  14. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  15. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  16. Water Quality Vocabulary Development and Deployment

    Science.gov (United States)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  17. The study of the stress - strain state of the tank with bottom water drainage during operation

    Science.gov (United States)

    Shchipkova, Yu V.; Tokarev, V. V.

    2018-04-01

    Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.

  18. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  19. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof ...

  20. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  1. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  2. Sorption behaviour of cobalt-60 on Suez Canal bottom sediments

    International Nuclear Information System (INIS)

    Abdel Gawad, S.A.; El-Shinawy, R.M.K.; Abdel Malik, W.E.Y.

    1981-01-01

    Mineralogical, elemental analysis and sorption behaviour of the Suez Canal bottom sediments in the Port Said area were investigated. It was found that the bottom sediment consist mainly of quartz, feldspars and traces of calcite mineral. The cation-exchange capacity was found to increase as the particle size of the sediment decreased. Sorption of 60 Co by the bottom sediment increased with contact time up to 6 h. Variation of the solution pH from 4 to 9 showed limited increase in the sorption of 60 Co. As carrier concentrations increase from 10 -7 N to 10 -3 N, sorption of Co was found to increase linearly following Freundlich isotherm. The presence of Mg 2+ and Fe 3+ in solution depressed the sorption of 60 Co by the sediments. The desorption of 60 Co from bottom sediment with distilled and Suez Canal water was found to increase with contact time. (author)

  3. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  4. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    Science.gov (United States)

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  5. Landsat Thematic Mapper monitoring of turbid inland water quality

    Science.gov (United States)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  6. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false EPA promulgation of water quality... PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality standards. (a) If the State does not adopt the changes specified by the Regional...

  7. After effects of a dinoflagellate bloom on the hard bottom community in Kalpakkam coastal waters

    International Nuclear Information System (INIS)

    Sasikumar, N.; Azariah, J.; Venugopalan, V.P.; Nair, K.V.K.

    1989-01-01

    A bloom of the dinoflagellate, Noctiluca scintillans (Macartney) was observed in Kalpakkam coastal waters during the second and third week of October, 1988. Associated with the incidence of the bloom, signficant variations in the distribution of intertidal hard bottom communities were observed. Considerable difference in the dissolved oxygen content was also recorded during the bloom period. A sudden disapperance of grazers like limpets was observed after the onset of the bloom. Subsequent to this, there was a recolonization process, which showed a regular succession. Following limpet disappearance there was a rapid 'greening' of the surface by Enteromorpha Later, Dictyota dichotoma excluded Enteromorpha. Experimental teak wood panels also showed a decline in cy prid settlement during the bloom. (author). 3 tabs., 19 refs

  8. A Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  9. Adsorption of 90Sr and 90Y by bottom-set beds in the Atlantic ocean

    International Nuclear Information System (INIS)

    Gromov, V.V.; Shakhova, N.F.; Emel'yanov, E.M.

    1978-01-01

    The behaviour of 90 Sr and 90 Y has been studied in an adsorption system of sea water-bottom-set beds of the Atlantic ocean (red clay; pelitic silt). It has been shown that strontium is present in the sea water in one form, viz, Sr 2+ . Adsorption of 90 Sr with bottom-set beds follows the ion-exchange mechanism. Yttrium is present in the sea water at least three forms (two absorbable and one non-absorbable). Yttrium-90 adsorption is an irreversible process and only about 10% 90 Y is desorbed by the sea water from red clay and silt

  10. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  11. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  12. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    Science.gov (United States)

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  14. Modelling a water purification process for quality monitoring

    NARCIS (Netherlands)

    Meulen, van der F.H.; Luca, S.; Overal, G.; Dubbeldam, J.L.A.; Di Bucchianico, A.; Jongbloed, G.; Dubbeldam, J.; Groenevelt, W.; Heemink, A.W.; Lahaye, D.; Meerman, C.; Meulen, van der F.

    2014-01-01

    This paper deals with a quality engineering problem introduced by ‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-terest lies in determining an optimal sampling frequency that provides suÿcient information on the water quality in a drinking water purifica-tion plant. The water

  15. A study on the applicability of the ecosystem model on water quality prediction in urban river outer moats of Yedo Castle, Nihonbashi River

    Science.gov (United States)

    Kakinuma, Daiki; Tsushima, Yuki; Ohdaira, Kazunori; Yamada, Tadashi

    2015-04-01

    The objective of the study is to elucidate the waterside environment in the outer moats of Yedo Castle and the downstream of Nihonbashi River in Tokyo. Scince integrated sewage system has been installed in the area around the outer moats of Yedo Castle and the Nihon River basin, when rainfall exceeds more than the sewage treatment capacity, overflowed untreated wastewater is released into the moats and the river. Because the moats is a closed water body, pollutants are deposited to the bottom without outflowing. While reeking offensive odors due to the decomposition, blue-green algae outbreaks affected by the residence time and eluted nutrient causes problems. Scince the Nihonbashi River is a typical tidal river in urban area, the water pollution problems in the river is complicated. This study clarified the characteristics of the water quality in terms of dissolved oxygen saturation through on-site observations. In particular, dissolved oxygen saturation in summer, it is clarified that variations from a supersaturated state due to the variations of horizontal insolation intensity and water temperature up to hypoxic water conditions in the moats. According to previous studies on the water quality of Nihonbashi River, it is clarified that there are three types of variations of dissolved oxygen which desided by rainfall scale. The mean value of dissolved oxygen saturation of all layers has decreased by about 20% at the spring tide after dredging, then it recoveres gradually and become the value before dredging during about a year. Further more, in places where sewage inflows, it is important to developed a ecosystem medel and the applicability of the model. 9 variables including cell quota (intracellular nutrients of phytoplankton) of phosphorus and nitrogen with considerring the nitrification of ammonia nitrogen are used in the model. This model can grasp the sections (such as oxygen production by photosynthesis of phytoplankton, oxygen consumption by respiration of

  16. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  17. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  18. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage system in Poland was conducted. Materials and methods. Method of analysis of secondary statistical data was applied, mostly based on data available in the materials of the Central Statistical Office in Warsaw, the Waterworks Polish Chamber of Commerce in Bydgoszcz and the National Water Management in Warsaw. Result and discussion. 60 % of Poles do not trust to drink water without prior boiling. Water flowing from the taps, although widely available, is judged to be polluted, with too much fluorine or not having the appropriate consumer values (colour, smell and taste. The current water treatment systems can however improve them, although such a treatment, i.e. mainly through chlorination of water, deteriorates its quality in relation to pure natural water. The result is that fewer and fewer Poles drink water directly from the tap. They also less and less use tap water to cook food for which the bottled water is trusted more. Reason for that is that society does not trust the safety of the water supplied by the municipal water companies. The question thus is: Are they right? Tap water in Poland meets all standards since it is constantly monitored by the water companies and all relevant health services. Tap water supplied through the water supply system can be used without prior boiling. Studies have shown that only the operating parameters of water, suc h as taste, odour and hardness, are not satisfactory everywhere, different in each city, and sometimes in different districts of cities, often waking thoughts among users about its inappropriateness. The lowered water value can be easily improved at home through the use of filters. In conclusion, due to constant monitoring and investment in upgrading treatment processes, the quality of tap water has improved significantly in the last years. Conclusion. The results first allow assessing the

  19. Water You Engineering? An Activity to Develop Water-Quality Awareness

    Science.gov (United States)

    Riskowski, Jody; Todd, Carrie Davis

    2009-01-01

    Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…

  20. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  1. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  2. Examining Water Quality Variations of Tidal Pond System

    Science.gov (United States)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  3. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  4. Quality Management of Lontar Village Coastal Waters, Banten

    Directory of Open Access Journals (Sweden)

    Ani Rahmawati

    2017-11-01

    Full Text Available The coastal waters of Lontar Village is located in Tirtayasa District, Banten. The coastal waters of Lontar Village is also used for fishing activities that become the livelihood of the surrounding community. Communities around the coast of Lontar village dispose of household waste directly into the waters so that the waters become dirty. The existence of these activities can cause the condition of the waters to decrease even can lead to contamination. Decrease in water conditions will affect the living biota inside. Waters quality can be determined by measuring physical, chemical, biological and heavy metal parameters. Physical parameters include brightness, turbidity, and temperature. Chemical parameters are salinity, pH, dissolved oxygen, nitrate, phosphate, BOD, TSS. The biological parameter is total coliform. The parameters of heavy metals are lead and copper. The purpose of this study is to analyze the quality of coastal waters of Lontar Village based on physical, chemical, biological and heavy metal parameters. The results showed that most of the parameters of water quality (physics, chemistry, biology and heavy metals are still in accordance with the value of water quality standards (Decree of the Minister of Environment No. 51 of 2004 only the value of lead metals exceeding the standard quality. It must be overcome so as not to disrupt the life of biota in the waters. Management that can be done is utilize aquatic biota that can absorb heavy metal content such as green shell (shell should not be consumed, reducing oil spilled from the activity of motor boats (giving box shelter under motor boat engines so that oil does not directly spill into the waters.

  5. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Science.gov (United States)

    2010-04-01

    ... Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of... CODE AND ADMINISTRATIVE MANUAL-PART III WATER QUALITY REGULATIONS § 410.1 Basin regulations—Water Code and Administrative Manual—Part III Water Quality Regulations. (a) The Water Code of the Delaware River...

  6. Changes in Bottom Water Physical Properties Above the Mid-Atlantic Ridge Flank in the Brazil Basin

    Science.gov (United States)

    Zhao, Jian; Thurnherr, Andreas M.

    2018-01-01

    Warming of abyssal waters in recent decades has been widely documented around the global ocean. Here repeat hydrographic data collected in 1997 and 2014 near a deep fracture zone canyon in the eastern Brazil Basin are used to quantify the long-term change. Significant changes are found in the Antarctic Bottom Water (AABW) within the canyon. The AABW in 2014 was warmer (0.08 ± 0.06°C), saltier (0.01 ± 0.005), and less dense (0.005 ± 0.004 kg m-3) than in 1997. In contrast, the change in the North Atlantic Deep Water has complicated spatial structure and is almost indistinguishable from zero at 95% confidence. The resulting divergence in vertical displacement of the isopycnals modifies the local density stratification. At its peak, the local squared buoyancy frequency (N2) near the canyon is reduced by about 20% from 1997 to 2014. Similar reduction is found in the basinwide averaged profiles over the Mid-Atlantic Ridge flank along 25°W in years 1989, 2005, and 2014. The observed changes in density stratification have important implications for internal tide generation and dissipation.

  7. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  8. Water quality status and trends in the United States

    Science.gov (United States)

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  9. U.S. Midwestern Residents Perceptions of Water Quality

    Directory of Open Access Journals (Sweden)

    Lois Wright Morton

    2011-02-01

    Full Text Available The plurality of conservation and environmental viewpoints often challenge community leaders and government agency staff as they seek to engage citizens and build partnerships around watershed planning and management to solve complex water quality issues. The U.S. Midwest Heartland region (covering the states of Missouri, Kansa, Iowa, and Nebraska is dominated by row crop production and animal agriculture, where an understanding of perceptions held by residents of different locations (urban, rural non-farm, and rural farm towards water quality and the environment can provide a foundation for public deliberation and decision making. A stratified random sample mail survey of 1,042 Iowa, Kansas, Missouri, and Nebraska residents (54% response rate reveals many areas of agreement among farm, rural non-farm, and those who live in towns on the importance of water issues including the importance and use of water resources; beliefs about water quality and perceptions of impaired water quality causality; beliefs about protecting local waters; and environmental attitudes. With two ordinal logistic models, we also found that respondents with strong environmental attitudes have the least confidence in ground and surface water quality. The findings about differences and areas of agreement among the residents of different sectors can provide a communication bridge among divergent viewpoints and assist local leaders and agency staff as they seek to engage the public in discussions which lead to negotiating solutions to difficult water issues.

  10. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    Science.gov (United States)

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  11. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  12. Bacteriological physicochemical quality of recreational water bodies ...

    African Journals Online (AJOL)

    tinsae

    logical quality, and there are no guidelines (standards) towards the safe use and quality control of recreational water. Under this circumstances, it is neither possible to know the gravity of the problem, nor simple to manage the possible health related risks that are associated with the use of recreational water bodies.

  13. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  14. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  15. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    Recreational boating and personal watercraft use have the potential to adversely impact shallow water systems through contaminant release and physical disturbance of bottom sediments. These nearshore areas are often already degraded by surface runoff, municipal and industrial effluents, and other anthropogenic activities. For proper management, information is needed on the level of contamination and environmental quality of these systems. A number of field and laboratory procedures can be used to provide this much needed information. Contaminants, such as metals, pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons, entering aquatic environments generally attach to particulate matter that eventually settles and becomes incorporated into the bottom sediments. Because bottom sediments serve as a sink and as a source for contaminants, environmental assessments generally focus on this matrix. While contaminant residues in sediments and sediment pore waters can reflect environmental quality, characteristics of sediment (redox potential, sediment/pore-water chemistry, acid volatile sulfides, percent organic matter, and sediment particle size) influence their bioavailability and make interpretation of environmental significance difficult. Comparisons of contaminant concentrations in pore water (interstitial water) and sediment with water quality criteria and sediment quality guidelines, respectively, can provide insight into potential biological effects. Laboratory bioaccumulation studies and residue concentrations in resident or caged biota also yield information on potential biological impacts. The usefulness of these measurements may increase as data are developed relating in-situ concentrations, tissue residue levels, and biological responses. Exposure of test organisms in situ or to field-collected sediment and pore water are additional procedures that can be used to assess the biological effects of contaminants. A battery of tests using multi

  16. Coastal Freshening Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study From 2003 to 2015

    Science.gov (United States)

    Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.

    2018-03-01

    The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.

  17. The case for regime-based water quality standards

    Science.gov (United States)

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  18. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  19. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  20. Water quality management in shrimp aquaculture ponds using remote water quality logging system

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Kulkarni, S.; Suryavanshi, U.; Ingole, B.S.; Drensgstig, A.; Braaten, B.

    Currently an institutional co-operation project funded by NORAD is evaluating different environmental management strategies for sustainable aquaculture in India. A brief description of a remote water quality logging system installed in shrimp ponds...

  1. Comparative analyses of contaminant levels in bottom feeding and predatory fish using the National Contaminant Biomonitoring Program data

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, J.M. [Clement International Corp., Fairfax, VA (United States); Phillips, L.J. [Versar Inc., Springfield, VA (United States); Birchard, G.F. [George Mason Univ., Fairfax, VA (United States)

    1995-06-01

    Both bottom feeding and predatory fish accumulate chemical contaminants found in water. Bottom feeders are readily exposed to the greater quantities of chlorinated hydrocarbons and metals that accumulate in sediments. Predators, on the other hand, may bioaccumulate organochlorine pesticides, PCBs, and metals from the surrounding water or from feeding on other fish, including bottom feeders, which may result in the biomagnification of these compounds in their tissues. This study used National Contaminant Biomonitoring Program data produced by the Fish and Wildlife Service to test the hypothesis that differences exist between bottom feeders and predators in tissue levels of organochlorine pesticides, PCBs, and metals. 7 refs., 2 tabs.

  2. Analysis of water quality on several waters affected by contamination in West Sumbawa Regency

    Science.gov (United States)

    Dewi, N. N.; Satyantini, W. H.; Sahidu, A. M.; Sari, L. A.; Mukti, A. T.

    2018-04-01

    This study reports the result of water quality in several waters in West Sumbawa Regency. The load of waste input from anthropogenic activity becomes an indication of the decrease of water quality in West Sumbawa Regency Waters. The existence of illegal mining activities around the water has the potential to cause water pollution. Sample of water were collected on April 2017 in four location such as Sejorong 1, Sejorong 2, Tongo, and Taliwang. Sample were analyzed as insitu and exsitu parameters. The result of this research showed that Sejorong 2 have the highest value of pollution index but generally four site on West Sumbawa Regency Waters were categorized lightly contaminated. Concentration of heavy metal cadmium at four locations exceed the water quality standard for fisheries and drinking water. However, the trophic classification using TSI and TRIX of all location was oligothropic water.

  3. Water quality assessment and meta model development in Melen watershed - Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    Science.gov (United States)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates

  5. EPA Office of Water (OW): STORET Water Quality Monitoring Stations NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  6. A multivariate analysis of water quality in lake Naivasha, Kenya

    NARCIS (Netherlands)

    Ndungu, J.N.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.; Fulanda, B.; Kitaka, N.; Mathooko, J.M.

    2014-01-01

    Water quality information in aquatic ecosystems is crucial in setting up guidelines for resource management. This study explores the water quality status and pollution sources in Lake Naivasha, Kenya. Analysis of water quality parameters at seven sampling sites was carried out from water samples

  7. Water Quality Data (WQX)

    Science.gov (United States)

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  8. Principles and Practices of Water Quality Monitoring

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  9. Value of Clean Water Resources: Estimating the Water Quality Improvement in Metro Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2017-12-01

    Full Text Available While having many positive impacts, a tremendous economic performance and rapid industrial expansion over the last decades in the Philippines has had negative effects that have resulted in unfavorable hydrological and ecological changes in most urban river systems and has created environmental problems. Usually, these effects would not be part of a systematic assessment of urban water benefits. To address the issue, this study investigates the relationship between poor water quality and resident’s willingness to pay (WTP for improved water quality in Metro Manila. By employing a contingent valuation method (CVM, this paper estimates the benefits of the provision of clean water quality (swimmable and fishable in waterbodies of Metro Manila for its residents. Face-to-face interviews were completed with 240 randomly selected residents. Residents expressed a mean WTP of PHP102.44 (USD2.03 for a swimmable water quality (good quality and a mean WTP of PHP102.39 (USD2.03 for fishable water quality (moderate quality. The aggregation of this mean willingness-to-pay value amounted to annual economic benefits from PHP9443 billion to PHP9447 billion (approx. USD190 million per year for all taxpayers in Metro Manila. As expected, these estimates could inform local decision-makers about the benefits of future policy interventions aimed at improving the quality of waterbodies in Metro Manila.

  10. Microbial quality of agricultural water in Central Florida

    OpenAIRE

    Topalcengiz, Zeynal; Strawn, Laura K.; Danyluk, Michelle D.

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six a...

  11. A space satellite perspective to monitor water quality using ...

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  12. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  13. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    Science.gov (United States)

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  14. Review on water quality sensors

    Science.gov (United States)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  15. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Science.gov (United States)

    2010-07-01

    ... § 141.87 Monitoring requirements for water quality parameters. All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality... methods. (i) Tap samples shall be representative of water quality throughout the distribution system...

  16. Study on water quality around mangrove ecosystem for coastal rehabilitation

    Science.gov (United States)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  17. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    The water quality assessment conducted in the Densu, Birim and Ayensu Basins of Ghana in the Okyeman area ... All the mean nutrient values for Densu, Birim and Ayensu were not significantly .... variability in the composition of the river.

  18. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  19. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  20. Socioeconomic dynamics of water quality in the Egyptian Nile

    Science.gov (United States)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification

  1. Effect of Batik Waste Water on Kali Wangan Water Quality in Different Seasons

    Science.gov (United States)

    Lestari, S.; Sudarmadji; Tandjung, S. D.; Santoso, S. J.

    2018-02-01

    Sokaraja Batik Center is one of batik industrial centers in Banyumas Regency. The craftsmen in Sokaraja Batik Center dispose of their waste water directly to a river named Kali Wangan. This study aims at figuring out the quality of Kali Wangan in dry and rainy seasons. The research is conducted along the Wangan River in January - November 2015. The research method used is survey with Purposive Random Sampling. The Kali Wangan water is sampled in four observation stations. The obtained data are analyzed descriptively and compared against the environmental quality standards. The research results show that the quality of Kali River water is found contaminated by the batik waste water, all parameters are below the class III standards quality based on Government Regulation Number 82 Year 2001 during dry and rainy season

  2. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  3. Peach Bottom HTGR decommissioning and component removal

    International Nuclear Information System (INIS)

    Kohler, E.J.; Steward, K.P.; Iacono, J.V.

    1977-07-01

    The prime objective of the Peach Bottom End-of-Life Program was to validate specific HTGR design codes and predictions by comparison of actual and predicted physics, thermal, fission product, and materials behavior in Peach Bottom. Three consecutive phases of the program provide input to the HTGR design methods verifications: (1) Nondestructive fuel and circuit gamma scanning; (2) removal of steam generator and primary circuit components; and (3) Laboratory examinations of removed components. Component removal site work commenced with establishment of restricted access areas and installation of controlled atmosphere tents to retain relative humidity at <30%. A mock-up room was established to test and develop the tooling and to train operators under simulated working conditions. Primary circuit ducting samples were removed by trepanning, and steam generator access was achieved by a combination of arc gouging and grinding. Tubing samples were removed using internal cutters and external grinding. Throughout the component removal phase, strict health physics, safety, and quality assurance programs were implemented. A total of 148 samples of primary circuit ducting and steam generator tubing were removed with no significant health physics or safety incidents. Additionally, component removal served to provide access fordetermination of cesium plateout distribution by gamma scanning inside the ducts and for macroexamination of the steam generator from both the water and helium sides. Evaluations are continuing and indicate excellent performance of the steam generator and other materials, together with close correlation of observed and predicted fission product plateout distributions. It is concluded that such a program of end-of-life research, when appropriately coordinated with decommissioning activities, can significantly advance nuclear plant and fuel technology development

  4. Mixing Phenomena in a Bottom Blown Copper Smelter: A Water Model Study

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Akbar Rhamdhani, M.; Nguyen, Anh; Zhao, Baojun

    2015-03-01

    The first commercial bottom blown oxygen copper smelting furnace has been installed and operated at Dongying Fangyuan Nonferrous Metals since 2008. Significant advantages have been demonstrated in this technology mainly due to its bottom blown oxygen-enriched gas. In this study, a scaled-down 1:12 model was set up to simulate the flow behavior for understanding the mixing phenomena in the furnace. A single lance was used in the present study for gas blowing to establish a reliable research technique and quantitative characterisation of the mixing behavior. Operating parameters such as horizontal distance from the blowing lance, detector depth, bath height, and gas flow rate were adjusted to investigate the mixing time under different conditions. It was found that when the horizontal distance between the lance and detector is within an effective stirring range, the mixing time decreases slightly with increasing the horizontal distance. Outside this range, the mixing time was found to increase with increasing the horizontal distance and it is more significant on the surface. The mixing time always decreases with increasing gas flow rate and bath height. An empirical relationship of mixing time as functions of gas flow rate and bath height has been established first time for the horizontal bottom blowing furnace.

  5. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  6. The development of water quality methods within ecological ...

    African Journals Online (AJOL)

    The development of water quality methods within ecological Reserve ... Water Act (NWA, No 36 of 1998), the ecological Reserve is defined as the quality and quantity ... provide ecologically important flow-related habitat, or geomorphological ...

  7. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    Science.gov (United States)

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  8. 90Sr content in the Black Sea bottom sediments after the Chernobyl NPP accident and its use as a radiotracer for an assessment of bottom settlement rate

    International Nuclear Information System (INIS)

    Mirzoyeva, N. Y.; Egorov, V. N.; Polikarpov, G. G.

    2006-01-01

    The increase of 9 0Sr concentrations in the Black Sea bottom sediments along to western coast of the Black Sea and south part of Crimea was observed in 1987-1988 years. To our opinion, it was connected with hydrological processes (for example, currents), occurring in the given sea parts. The most polluted by post-Chernobyl 9 0Sr areas were bottom sediments of Dnieper, Dniester and Danube River deltas, territory of an arrangement of a main channel of the North-Crimea Channel - region of a peninsula Tarkhankut, southeast part of Crimea (Feodosiya area). The similar situation in confined of the greatest contents 9 0Sr to the specified areas not only is kept with time (till 2000), but the process of increase of 9 0Sr concentration in bottom sediments of the investigated regions is observed. So average concentration of 9 0Sr in Dnieper River delta bottom sediments in 1987 was 28,5 Bq kg - 1 , in 2000 - 148,2 28,5 Bq kg - 1 of Dry Weight. Such character of 9 0Sr redistribution shows, that both in first years after Chernobyl NPP accident, and in the following time, the entry of 9 0Sr in the Black Sea basin occurs, basically, with water flow of the large rivers in a northwest part of the Black Sea, discharge waters of the North-Crimean Channel. These sources of 9 0Sr input to the Black Sea ecosystem considerably prevailed above direct atmospheric pollution by given radionuclide in April-May 1986 at once after the Chernobyl NPP accident. On the base of monitoring researches results the maps of 9 0Sr dynamics redistribution in the Black Sea bottom sediments (0-5 cm) since 1986 (Chernobyl NPP accident) up to 2000 were sketched out. The distribution of 9 0Sr radionuclide in the bottom sediments columns, which were selected from the Corukh river mouth region and from the Dnieper-Bug estuary area, is investigated. The peaks of 9 0Sr increased contents were founded in the profile of its vertical distribution in the bottom sediments. These peaks correspond to the periods of 9 0Sr

  9. Water quality monitoring device for nuclear power plant

    International Nuclear Information System (INIS)

    Kubo, Mitsushi.

    1995-01-01

    The device of the present invention measures quality of feedwater after heated in a regenerative heat exchanger device of a coolant cleanup system in a BWR type reactor, to detect ions generated from organic materials decomposed at high temperature and specify the position where impurities are formed. Namely, in a power plant having a reactor coolant cleanup pipeline connected to a feedwater pipeline, a water quality measuring portion is disposed to the feedwater system at the downstream of the junction to the feedwater system pipeline. A water quality sample is taken to measure the water quality in a state where the feedwater heated by a feedwater heater and flowing to the reactor, and the cleanup coolants heated by the regenerative heat exchanger are mixed. Thus, the impurities formed at the down stream of the feedwater system pipeline, as well as the water quality including impurities decomposed in a high temperature state can be measured. (I.S.)

  10. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  11. E-chem page: A Support System for Remote Diagnosis of Water Quality in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Naohiro Kusumi; Takayasu Kasahara; Kazuhiko Akamine; Kenji Tada; Naoshi Usui; Nobuyuki Oota

    2002-01-01

    It is important to control and maintain water quality for nuclear power plants. Chemical engineers sample and monitor reactor water from various subsystems and analyze the chemical quality as routine operations. With regard to controlling water quality, new technologies have been developed and introduced to improve the water quality from both operation and material viewpoints. To maintain the quality, it is important to support chemical engineers in evaluating the water quality and realizing effective retrieval of stored data and documents. We have developed a remote support system using the Internet to diagnose BWR water quality, which we call e-chem page. The e-chem page integrates distributed data and information in a Web server, and makes it easy to evaluate the data on BWR water chemistry. This system is composed of four functions: data transmission, water quality evaluation, inquiry and history retrieval system, and reference to documents on BWR water chemistry. The developed system is now being evaluated in trial operations by Hitachi, Ltd. and an electric power company. In addition diagnosis technology applying independent component analysis (ICA) is being developed to improve predictive capability of the system. This paper describes the structure and function of the e-chem page and presents results of obtained with the proposed system for the prediction of chemistry conditions in reactor water. (authors)

  12. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    Determination of water quality index and portability of Iguedo stream in Edo ... has been found functional in assessing the water quality of this stream based on the ... Key words: Water quality index, physicochemical parameters, Iguedo Stream.

  13. National Water Quality Inventory, 1975 Report to Congress.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  14. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  15. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  16. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  17. Restrictions in Mg/Ca-Paleotemperature Estimations in High-Latitude Bottom Waters: Evidence from the Fram Strait and the Nordic Seas

    Science.gov (United States)

    Werner, K.; Marchitto, T. M., Jr.; Not, C.; Spielhagen, R. F.; Husum, K.

    2014-12-01

    Mg to Ca ratios of the benthic foraminifer species Cibicidoides wuellerstorfi provide a great potential for reconstructing bottom water temperatures, especially from the lower end of the temperature range between 0 and 6°C (Tisserand et al., 2013). A set of core top samples from the Fram Strait and the Norwegian margin have been studied for Mg/Ca ratios in C. wuellerstorfi in order to establish a calibration relationship to the environmental conditions. In this part of the northern North Atlantic the bottom water temperature range between -0.5 and -1°C. For the calibration to modern water mass conditions, modern oceanographic data from both existing conductivity-temperature-depth (CTD) casts and the World Ocean Data Base 2013 (Boyer et al., 2013) have been used. Benthic Mg/Ca ratios are relatively high suggesting a preference of C. wuellerstorfi to incorporate Mg below 0°C. Although no correlation has been found to existing temperature calibrations, the data are in line with earlier Mg/Ca data from C. wuellerstorfi in the area (Martin et al., 2002; Elderfield et al., 2006). The carbonate ion effect is most likely a main cause for the relatively high Mg/Ca ratios found in core top samples from the Fram Strait and the Nordic Seas, however, other factors may influence the values as well. Holocene records of benthic trace metal/Ca ratios from the eastern Fram Strait display trends similar to those found in other proxy indicators, despite the difficulties to constrain a temperature calibration for this low temperature range. In particular, the benthic B/Ca and Li/Ca records resemble trends in Holocene planktic foraminifer assemblages, suggesting to be influenced by environmental factors such as the carbonate ion effect consistent for the entire water column.

  18. 75 FR 4173 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2010-01-26

    ... Part III Environmental Protection Agency 40 CFR Part 131 Water Quality Standards for the State of...-HQ-OW-2009-0596; FRL-9105-1] RIN 2040-AF11 Water Quality Standards for the State of Florida's Lakes... Environmental Protection Agency (EPA) is proposing numeric nutrient water quality criteria to protect aquatic...

  19. From headwaters to coast: Influence of human activities on water quality of the Potomac River Estuary

    Science.gov (United States)

    Bricker, Suzanne B.; Rice, Karen C.; Bricker, Owen P.

    2014-01-01

    The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in

  20. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Science.gov (United States)

    2012-12-18

    ... proposing numeric water quality criteria to protect ecological systems, aquatic life, and human health from... III surface waters share water quality criteria established to protect fish consumption, recreation... Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida Inland...