WorldWideScience

Sample records for water purification systems

  1. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  2. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  3. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  4. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is...

  5. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  6. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  7. The effect of water purification systems on fluoride content of drinking water.

    Science.gov (United States)

    Prabhakar, A R; Raju, O S; Kurthukoti, A J; Vishwas, T D

    2008-03-01

    The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  8. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  9. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water...

  10. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  11. THE WATER PURIFICATION SYSTEM OF MACHINE-BUILDING COMPLEX FROM OIL-PRODUCTS

    Directory of Open Access Journals (Sweden)

    A. S. Panasugin

    2005-01-01

    Full Text Available The developed system of purification of sewage water from petroleum products allows to provide efficiency of purification up to the norms of PDK, and if necessary the devices can be used as a separate modules or their combinations.

  12. Water Purification

    Science.gov (United States)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  13. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  14. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  15. The controllability analysis of the purification system for heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. D.; Cho, B. H.; Shin, C. H.; Kim, S. H. [KEPRI, Taejon (Korea, Republic of); Lee, Y. K.; Kim, K. U. [KHNP, Kyungju (Korea, Republic of)

    2001-10-01

    The heavy water reactor such as Wolsung No.1 and No.2 has a purification system to purify the reactor coolant. The control system regulates the coolant temperature to protect the ion exchanger. After the fuel exchanges of operating plant, the increase of the coolant pressure makes the purification temperature control difficult. In this paper, the controllability of the control dynamics of the purification system was analysed and the optimal parameters were proposed. To reduce the effects of the flow disturbance, the feedforward control structure was proposed and analysed.

  16. The Borexino purification system

    Science.gov (United States)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  17. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  18. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  19. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  20. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    Science.gov (United States)

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  1. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    Science.gov (United States)

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  2. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  3. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  4. The importance of the ammonia purification process in ammonia-water absorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Vigo, Campus Lagoas-Marcosende No. 9, 36200 Vigo (Spain)]. E-mail: jseara@uvigo.es; Sieres, Jaime [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Vigo, Campus Lagoas-Marcosende No. 9, 36200 Vigo (Spain)

    2006-08-15

    Practical experience in working with ammonia-water absorption systems shows that the ammonia purification process is a crucial issue in order to obtain an efficient and reliable system. In this paper, the detrimental effects of the residual water content in the vapour refrigerant are described and quantified based on the system design variables that determine the effectiveness of the purification process. The study has been performed considering a single stage system with a distillation column with complete condensation. The ammonia purification effectiveness of the column is analysed in terms of the efficiencies in the stripping and rectifying sections and the reflux ratio. By varying the efficiencies from 0 to 1, systems with neither the rectifying nor stripping section, with either the rectifying or stripping section, or with both sections can be considered. The impact of the ammonia purification process on the absorption system performance is studied based on the column efficiencies and reflux ratio; and its effects on refrigerant concentration, system COP, system pressures and main system mass flow rates and concentrations are analysed. When the highest efficiency rectifying sections are used a combination of generation temperature and reflux ratio which leads to optimum COP values is found. The analysis covers different operating conditions with air and water cooled systems from refrigeration to air conditioning applications by changing the evaporation temperature. The importance of rectification in each kind of application is evaluated.

  5. Water purification through vacuum system; Purificacion de agua bajo vacio

    Energy Technology Data Exchange (ETDEWEB)

    Armenta-Deu, C.

    2004-07-01

    Fresh water production through vacuum systems are today a reasonable option at a much lower cost than tray conventional units, also based on evaporation-condensation process. The use of simple devices such as vacuum ejectors allows to reduce pressure down to 5 kPa at a very low cost, only 7. The requirement of having a constant water flow to reduce pressure has been easily solved using a close circuit and a low power pump which is powered by solar energy. The energy cost has been reduced dramatically, as the system operates at a very reduced temperature, 45 degree Celsius, and even as low as 35 degree Celsius, what causes a much lower energy requirement. The results obtained during the tests have shown that is possible to save up to 230 kJ per litre of fresh water, and up to 40 W per l/h. The system is fully compatible with thermal solar collectors of low temperature, and can be electrically powered by a solar panel of low power. (Author)

  6. Development of concept for concurrent biocide generation and water system purification. [with application to Skylab water tanks

    Science.gov (United States)

    1974-01-01

    An attempt was made to construct an electrochemical system, using iodine, for water purification in Skylab. Data cover measurements of iodine production rates, effect of electrode size and geometry on iodine production rates, and feasibility of using stainless steels as reference electrodes.

  7. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  8. Dialysate purification after introduction of automated hot water disinfection system to central dialysis fluid delivery system.

    Science.gov (United States)

    Ogawa, Tomonari; Matsuda, Akihiko; Yamaguchi, Yumiko; Sasaki, Yusuke; Kanayama, Yuki; Maeda, Tadaaki; Noiri, Chie; Hasegawa, Hajime; Matsumura, Osamu; Mitarai, Tetsuya

    2012-01-01

    Most dialysis clinics in Japan have mainly adopted the central dialysis fluid delivery system (CDDS) to provide constant treatment to many patients. Chemical disinfection is the major maintenance method of the CDDS. Our clinic introduced an automated hot water disinfection system that used the heat conduction effect to disinfect a reverse osmosis (RO) device and dialysis fluid supply equipment. Endotoxin level and the amount of viable bacteria often showed abnormal values before introduction of this system. After its introduction, weekly disinfection resulted in endotoxin levels and the amount of viable bacteria lower than measurement sensitivity. In hot water disinfection, water heated to 90°C in the RO tank flows into the dialysis fluid supply equipment. The maximum temperature inside the tank of the supply equipment is 86.3°C. (We confirmed that the temperature was maintained at 80°C or more for 10 minutes or more during the monitoring.) Dialysate purification was maintained even after introduction of the automated hot water disinfection system and the dialysate could be supplied stably by the CDDS. Therefore, this disinfection system might be very useful in terms of both cost and safety, and can be used for dialysis treatment of multiple patients.

  9. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  10. Advanced Water Purification System For In Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prior to electrolysis, the water generated as an intermediate product must be treated to remove absorbed hydrochloric and hydrofluoric acids, byproducts derived from...

  11. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  12. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)]. E-mail: rosenberg@uaem.mx; Siqueiros, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Huicochea, A. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)

    2007-04-15

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP{sub WP} is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP{sub ET}) and water purification coefficient of performance (COP{sub WP}) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP{sub ET} up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP{sub WP} allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP{sub A} value or working fluid-absorbent pair.

  13. Increase of COP for heat transformer in water purification systems. Pt. 2 - Without increasing heat source temperature

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Siqueiros, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico); Huicochea, A. [Posgrado en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos (Mexico)

    2007-04-15

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP{sub WP} is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP{sub ET}) and water purification coefficient of performance (COP{sub WP}) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP{sub ET} up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP{sub WP} allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP{sub A} value or working fluid-absorbent pair. (author)

  14. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system

    Directory of Open Access Journals (Sweden)

    Mazzola Priscila

    2002-08-01

    Full Text Available Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i identification system (api 20 NE, Bio-Mérieux for non-enteric and non-fermenting gram-negative rods; and (ii identification system (BBL crystal, Becton and Dickson for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.

  15. Water Collection Purification System: Identifying CF Capabilities and Requirements, and Assessing off-the-Shelf Purification Systems

    Science.gov (United States)

    2006-08-01

    media Ohio Pure Water Co Sand and silica dioxide of different grain sizes Birm media filter Ohio Pure Water Co Specific resin for iron when water does...Terminator filters Ohio Pure Water Co Same than Birm filter but with air injection system to add oxygen in the mixture Nitrate filter Ohio Pure Water Co...media 1,000-4,000 Birm media filter 1,000-2,000 Manganese greensand filter 1,000-2,700 Terminator filters 800-1,000 Nitrate filter

  16. Nanomechanical Water Purification Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, proposes a lightweight, low-pressure water purification device that harnesses the unique properties of carbon nanotubes and will operate...

  17. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Directory of Open Access Journals (Sweden)

    Penna Thereza CV

    2006-08-01

    Full Text Available Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value necessary to inactivate 90% of the initial bioburden (decimal reduction time was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2 and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10 population (n cycles. To kill 90% of the initial population (or one log10 cycle, the necessary time (D-value was for P. aeruginosa into: (i 0.5% citric acid, D = 3.8 min; (ii 0.5% hydrochloric acid, D = 6.9 min; (iii 70% ethanol, D = 9.7 min; (iv 0.5% sodium bisulfite, D = 5.3 min; (v 0.4% sodium hydroxide, D = 14.2 min; (vi 0.5% sodium

  18. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  19. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  20. [Immobilized microorganisms and water purification].

    Science.gov (United States)

    Mogilevich, N F

    1995-01-01

    Advantages and disadvantages of cells of aerobic microorganisms immobilized by the type of adhesion and incorporation into the gel beads, the amount of retained biomass, limitations of diffusion of oxygen and nutrients, viability, morphology, biochemical properties are described. Immobilized biocatalysts are discussed in the aspect of their use in purification of sewage waters.

  1. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  2. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  3. The SELEX Air Purification System

    Science.gov (United States)

    2010-01-07

    REPORT Final Report for the SELEX Air Purification System 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A new air purification technology ( SELEX ) was...developed and demonstrated. The SELEX system utilizes an array of electrospray wick aerosol sources for particle ionization and an electrostatic...precipitator for particle collection. The particle ionization process does not produce ozone and the SELEX technology provides a unique combination of

  4. Purification of dialysis water in the central dialysis fluid delivery system in Japan: a prospective observation study.

    Science.gov (United States)

    Uchino, Junji; Kawasaki, Tadayuki

    2009-01-01

    Whereas the main measure of dialysis fluid purity is endotoxin (ET) activity in Japan, it is the viability count in Western countries. Because of this difference, little information is available concerning dialysis fluid purity determined in terms of viability count in Japan. Under these circumstances a fact-finding investigation was planned and conducted concerning dialysis fluid purity to demonstrate the effectiveness of dialysis fluid purification measures. 93 medical institutions are equipped with the central dialysis fluid delivery system (CDDS) unique to Japan. Almost all medical institutions surveyed have achieved the purification level of ultrapure dialysis fluid after ETRF, but the methods of ETRF use and management widely vary with each institution so that early validation of the methods of evaluation of ET inhibition and system management is in urgent need. It is also important that simple universal microbial monitoring and purification procedures be diffused far and wide as suggested by the Purification Guidelines proposed by us.

  5. A scintillator purification system for the Borexino solar neutrino detector

    Science.gov (United States)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  6. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, E.A. van; Bruins, M.; Beerling, E.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recirculation that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of pur

  7. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, van E.A.; Bruins, M.A.; Beerling, E.A.M.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recircula-tion that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of

  8. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  9. Analysis And Design Of A Water Purification System For The West African Area Of Operation

    Science.gov (United States)

    2016-12-01

    corrective maintenance time MCWSM Marine Combat Water Survival Manual MDT maintenance down time MTBF mean time between failure MTBM mean time... water . Places where rainfall is rare utilize river water as the source of drinking water . The users do not have the capability of filtering the river...safer drinking water , eliminate IED attacks during water transportation process, and reduce cost savings in recycling used water bottles.  Adequate

  10. [Potential of nitrification and denitrification in water purification system with hydroponic bio-filter method].

    Science.gov (United States)

    Li, Xian-ing; Lu, Xi-wu; Song, Hai-liang; Osamu, Nishimura; Yuhei, Inamori

    2005-03-01

    The potential of nitrification and denitrification of sediment and the density of ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in sediment in water quality purifying system with hydroponic bio-filter method (HBFM) were measured. The variation of nitrification and denitrification potential of the sediment along the stream way was quantitatively studied. The results show that among the sediments from front, middle and retral part of the stream way, the sediment from middle part reached a maximum nitrification potential . nitrification potential of 4.76 x 10(-6) g/(g x h), while the sediment from front part reached a maximum denitrification potential of 8 .1 x 10(-7) g/(g x h). The distribution of nitrification potential accords with the ammonium-oxidizing bacteria density. The key for improving nitrogen removal efficiency of HBFM system consists in changing nitrification & denitrification region distributing and accordingly enhances denitrification process.

  11. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  12. Standardization of water purification in the central dialysis fluid delivery system: validation and parametric method.

    Science.gov (United States)

    Tomo, Tadashi; Shinoda, Tosiho

    2009-01-01

    The central dialysis fluid delivery system (CDDS) has been mainly used for hemodialysis therapy in Japan. Validation and a parametric method are necessary for the quality control of dialysis fluid in CDDS. Validation is a concept for the assurance of system compatibility and product quality, and is defined as follows: the manufacturing and quality control methods including the system design and equipment of the manufacturing facility, manufacturing procedure and processes. Confirmed results must be kept within acceptable limits and they must be documented in a record. Important parameters for validating CDDS include: (1) setting the sterilized area; (2) decision of sterilization level; (3) confirmation of the maximum bio-burden; (4) performance of endotoxin retentive filter and reverse osmosis (RO) module, and (5) checkpoints of purity of dialysis water in the system. Taking the concept of validation and a parametric method in the management of CDDS into consideration enables the supply the purified dialysis fluid or the online prepared substitution fluid that meet the 2008 standards of the Japanese Society for Dialysis Therapy.

  13. Purification Of Water From Nsukka Water Pond Using Solar Still.

    Directory of Open Access Journals (Sweden)

    Ugwuoke E.C

    2015-08-01

    Full Text Available Abstract This work presents the analysis of a solar water distillation system. There is important need for good drinking water in the world today due to harmful effect of water borne diseases. Most water from rivers ponds seas are either salty or brackish and require purification before drinking. The water used in this work is collected from pond at Nsukka Urban and the experiment was performed at University of Nigeria Nsukka. Twenty litres of water was used for the experiment and 4 litres was obtained as the maximum volume after 10 days .The average temperature recorded during the experiment was 29C. The chemical and physical properties of the distillate correspond to world Health Organization Standard.

  14. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  15. AM-DMC-AMPS Multi-Functionalized Magnetic Nanoparticles for Efficient Purification of Complex Multiphase Water System

    Science.gov (United States)

    Ge, Yuru; Li, Yushu; Zu, Baiyi; Zhou, Chaoyu; Dou, Xincun

    2016-04-01

    Complex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants. Excellent overall removal efficiencies for both cations, including K+, Ca2+, Na+, and Mg2+ of 80.68 %, and anions, namely Cl- and SO4 2-, of 85.18 % along with oil of 97.4 % were shown. The high removal efficiencies are attributed to the effective binding of the functional groups from the selected monomers with cations, anions, and oil emulsions.

  16. AM-DMC-AMPS Multi-Functionalized Magnetic Nanoparticles for Efficient Purification of Complex Multiphase Water System.

    Science.gov (United States)

    Ge, Yuru; Li, Yushu; Zu, Baiyi; Zhou, Chaoyu; Dou, Xincun

    2016-12-01

    Complex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants. Excellent overall removal efficiencies for both cations, including K(+), Ca(2+), Na(+), and Mg(2+) of 80.68 %, and anions, namely Cl(-) and SO4 (2-), of 85.18 % along with oil of 97.4 % were shown. The high removal efficiencies are attributed to the effective binding of the functional groups from the selected monomers with cations, anions, and oil emulsions.

  17. Ecological aspects of the extreme purification of water

    Science.gov (United States)

    Shaposhnik, Vladimir A.; Mazo, A. A.; Frölich, P.

    1991-11-01

    The influence on the eco-system of the products of the large-scale technology for the preparation of ultra-pure water required for the electronic and radiotechnical industries is examined. The distillation, ion-exchange, and membrane methods are subjected to a comparative analysis. It is shown that the membrane method for the extreme purification of water is ecologically the most desirable. The methods for the elimination of nitrates from drinking water are examined. The bibliography includes 41 references.

  18. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  19. Water Purification by Shock Electrodialysis: Deionization, Filtration, Separation, and Disinfection

    CERN Document Server

    Deng, Daosheng; Braff, William A; Schlumpberger, Sven; Suss, Matthew E; Bazant, Martin Z

    2014-01-01

    The development of energy and infrastructure efficient water purification systems are among the most critical engineering challenges facing our society. Water purification is often a multi-step process involving filtration, desalination, and disinfection of a feedstream. Shock electrodialysis (shock ED) is a newly developed technique for water desalination, leveraging the formation of ion concentration polarization (ICP) zones and deionization shock waves in microscale pores near to an ion selective element. While shock ED has been demonstrated as an effective water desalination tool, we here present evidence of other simultaneous functionalities. We show that, unlike electrodialysis, shock ED can thoroughly filter micron-scale particles and aggregates of nanoparticles present in the feedwater. We also demonstrate that shock ED can enable disinfection of feedwaters, as approximately $99\\%$ of viable bacteria (here \\textit{E. coli}) in the inflow were killed or removed by our prototype. Shock ED also separates...

  20. Nanomechanical Water Purification Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, proposes a lightweight, low-pressure water filtration device that harnesses the unique properties of nanoparticles to destroy or remove...

  1. Water purification by electrical discharges

    Science.gov (United States)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  2. Applications of Water Fog Purification System in the Flare System%水雾净化系统在火炬回收系统中的应用

    Institute of Scientific and Technical Information of China (English)

    白丽影; 熊梦林

    2012-01-01

    The gas from refineries contains hydrogen sulfide, fine coke, catalyst fines, rusty stain, which makes equipments and pipelines corrode, leak, block and destroy to seriously influence safe operation of the flare system. In this paper, the working principle of water fog purification system was introduced as well as its application in the flare system, and some suggestions were put forward to solve the problems in the operation, which can ensure the best work condition of the system.%炼油装置产生的瓦斯气中含有的硫化氢、焦粉、催化剂粉末、锈渣等成分,极易造成设备、管线腐蚀泄漏、堵塞损坏,给火炬回收系统的安全运行带来严重影响.针对某炼油厂增上的水雾净化系统的工作原理和在火炬回收系统的应用情况进行了介绍,针对运行中出现的问题提出了整改建议,以确保实现系统最佳运行工况.

  3. MATHEMATICAL MODEL OF PURIFICATION PROCESS OF OIL CONTAMINATED WATERS

    Directory of Open Access Journals (Sweden)

    С. Бойченко

    2012-04-01

    Full Text Available Sorption properties of carbonic sorbents on natural raw materials for purification of waste waters frompetroleum products are investigated. Temperature influence on sumption properties of sorbents on naturalraw materials to increase the purification degree of water ecosystem is studied. Mathematical model ofpurification process of oil contaminated waters is developed

  4. MATHEMATICAL MODEL OF PURIFICATION PROCESS OF OIL CONTAMINATED WATERS

    OpenAIRE

    С. Бойченко; Кучер, О.; Л. Павлюх

    2012-01-01

    Sorption properties of carbonic sorbents on natural raw materials for purification of waste waters frompetroleum products are investigated. Temperature influence on sumption properties of sorbents on naturalraw materials to increase the purification degree of water ecosystem is studied. Mathematical model ofpurification process of oil contaminated waters is developed

  5. Solid State Air Purification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this proposed research is to develop a new air purification system based on a liquid membrane, capable of purifying carbon dioxide from air in a far...

  6. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Science.gov (United States)

    2010-04-01

    ... water purification system is currently in operation on the property. If the system in operation employs... untreated water for flushing toilets may be constructed. (2) The system is sufficient to assure an... maintaining. I undertstand that the individual water supply is unsafe for consumption unless the system is...

  7. Dense Medium Plasma Water Purification Reactor (DMP WaPR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  8. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  9. Materials for next-generation desalination and water purification membranes

    Science.gov (United States)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  10. Crystallization using reverse micelles and water-in-oil microemulsion systems: the highly selective tool for the purification of organic compounds from complex mixtures.

    Science.gov (United States)

    Kljajic, Alen; Bester-Rogac, Marija; Klobcar, Andrej; Zupet, Rok; Pejovnik, Stane

    2013-02-01

    The active pharmaceutical ingredient orlistat is usually manufactured using a semi-synthetic procedure, producing crude product and complex mixtures of highly related impurities with minimal side-chain structure variability. It is therefore crucial for the overall success of industrial/pharmaceutical application to develop an effective purification process. In this communication, we present the newly developed water-in-oil reversed micelles and microemulsion system-based crystallization process. Physiochemical properties of the presented crystallization media were varied through surfactants and water composition, and the impact on efficiency was measured through final variation of these two parameters. Using precisely defined properties of the dispersed water phase in crystallization media, a highly efficient separation process in terms of selectivity and yield was developed. Small-angle X-ray scattering, high-performance liquid chromatography, mass spectrometry, and scanning electron microscopy were used to monitor and analyze the separation processes and orlistat products obtained. Typical process characteristics, especially selectivity and yield in regard to reference examples, were compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  11. Natural water purification and water management by artificial groundwater recharge.

    Science.gov (United States)

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  12. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    Science.gov (United States)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements

  13. Application of Moving Bed Biofilm Reactor (MBBR) and Integrated Fixed Activated Sludge (IFAS) for Biological River Water Purification System: A Short Review

    Science.gov (United States)

    Lariyah, M. S.; Mohiyaden, H. A.; Hayder, G.; Hayder, G.; Hussein, A.; Basri, H.; Sabri, A. F.; Noh, MN

    2016-03-01

    This review paper present the MBBR and IFAS technology for urban river water purification including both conventional methods and new emerging technologies. The aim of this paper is to present the MBBR and IFAS technology as an alternative and successful method for treating different kinds of effluents under different condition. There are still current treatment technologies being researched and the outcomes maybe available in a while. The review also includes many relevant researches carried out at the laboratory and pilot scales. This review covers the important processes on MBBR and IFAS basic treatment process, affecting of carrier type and influent types. However, the research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. The research concluded so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the news approach. To this end, the most feasible technology could be the combination of advanced biological process (bioreactor systems) including MBBR and IFAS system.

  14. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    Science.gov (United States)

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d.

  15. Iodine generator for reclaimed water purification

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H. (Inventor)

    1977-01-01

    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser.

  16. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    Science.gov (United States)

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  17. Drinking water safety and the development of purification technology

    Institute of Scientific and Technical Information of China (English)

    Li Guibai

    2012-01-01

    This paper briefly introduced the evolution of purification technology for drinking water over time. After description of the 1st generation processes in the beginning of the 20th century -- conventional processes and the 2nd generation processes in 1970s -- advanced treatment processes, a tertiary processes -- UF (ultrafiltration) based on integrated processes was proposed. Moreover, reaction measures (dosing variety of regents for different contaminants) for urban source water emergencies.were illustrated in brief. A new technology of KMnO4 and potassium permanganate composite (PPC) for drinking water purification which was developed by Harbin Institute of Technology (HIT) was concisely introduced.

  18. Removal of Pb, Cd, and Cr in a water purification system using modified mineral waste materials and activated carbon derived from waste materials

    Science.gov (United States)

    Lu, H. R.; Su, L. C.; Ruan, H. D.

    2016-08-01

    This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.

  19. A Scintillator Purification Plant and Fluid Handling System for SNO+

    CERN Document Server

    Ford, Richard J

    2015-01-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  20. Dynamic Adsorptive Removal of Toxic Chemicals for Purification of Water

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2005-04-01

    Full Text Available To determine the efficiency of carbon column for the removal of toxic chemicals from water, the adsorption of phenol in concentration range from 0.600 glt to 1.475 gll was studied on activecarbon of 80 CTC grade, 12 X 30 BSS particle size, 1280 m2/g surface area, and of coconut shell origin, under dynamic conditions at space velocity from 0.318 min-' to 4.24 min-' at 25 'C. The carbon column of 100 cm length and 2 cm diameter was found to be removing phenol from the aqueous solution of concentration 1.475 gll up to 84 min at 0.678 min-' space velocity at 5.0 ppm phenol breakthrough concentration. However, no phenol was observed in carbon-treated water after 80 min. The service life of carbon column (100 cm lengthX25 cm diameter was assessed through the water purification system developed at the Defence Laboratory, Jodhpur and was determined to be 4.095 days with twoas factor of safety for 10 ppm initial concentration of phenol at 0.678 min-' space velocity (corresponding to water flow rate. Effects of carbon bed length, water flow rate, and the phenol concentration were also studied.

  1. [Isolation, screening and identification of yeast for aquaculture water purification].

    Science.gov (United States)

    Xie, Fengxing; Zhang, Fengfeng; Zhou, Ke; Zhao, Yujie; Sun, Haibo; Wang, Yun

    2015-05-04

    In order to get excellent yeast strains for aquiculture water purification, we isolated, screened and identified yeasts from the aquacultural environment and intestinal tract of shrimp. The potential water purification ability of yeasts, isolated from the activated sludge of aquacultural environment and intestinal tract of white shrimp and mantis shrimp under normal and low temperature, was evaluated in the simulated wastewater. Morphological physio-biochemical characteristics, 5.8S rDNA ITS gene sequence analysis were used to identify the strains. Thirty-seven yeast strains were isolated from 3 samples, among them 16 strains were isolated under normal temperature (25 °C) while 21 strains were isolated under low temperature (15° C). Water purification test suggested 5 strains isolated under 25 °C and 6 strains isolated under 15 °C had higher removal ability of nitrite and ammonia from water. After 48 hours treatment with DN9 and CN6, 10.64 mg/L nitrite in the water was completely removed. After 96 hours treatment, CODcr degradation rates of the 2 strains were 52% and 67%, respectively. According to morphological, physio-biochemical characteristics and 5.8S rDNA ITS gene sequence analysis, the strain DN9 was identified as Rhodotorula mucilaginosa and CN6 as Rhodosporidium paludigenum. Strains DN9 and CN6 would be promising for water purification in aquiculture.

  2. Intein-mediated purification system: mechanism and applications

    Institute of Scientific and Technical Information of China (English)

    Sarra setrerrahmane; Shuhua Tan

    2013-01-01

    The incorporation of self-cleaving protein elements into a variety of fusion-based purification systems; has been an important development in the area of recombinant protein purification. The self-cleaving capability of these tags has recently been combined with additional purification tags to generate novel and convenient protein purification methods. This review elucidates the properties of intein, the mechanism of the intein-based protein splicing and the progress of intein-based protein purification procedures, and recent advances in the applications of intein.

  3. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  4. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  5. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  6. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  7. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  8. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  9. Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands.

    Science.gov (United States)

    Morand, Philippe; Robin, Paul; Pourcher, Anne-Marie; Oudart, Didier; Fievet, Sebastien; Luth, Daniel; Cluzeau, Daniel; Picot, Bernadette; Landrain, Brigitte

    2011-01-01

    Since 2001 the swine experimental station of Guernévez has studied biological treatment plants for nutrient recovery and water recycling, suited to the fresh liquid manure coming out of flushing systems. An integrated system with continuous recycling was set up in 2007, associated with a piggery of 30 pregnant sows. It includes a screen, a vermifilter, and macrophyte ponds alternating with constructed wetlands. The screen and the vermifilter had a lower removal efficiency than in previous studies on finishing pigs. A settling tank was then added between the vermifilter and the first lagoon to collect the worm casts. A second vermifilter was added to recover this particulate organic matter. A storage lagoon was added to compensate for evaporative losses and complete pollution abatement, with goldfish as a bioindicator of water quality. The removal efficiency of the whole system was over 90% for COD and nitrogen, over 70% for phosphorus and potassium, and more than 4 logarithmic units for pathogens (E. coli, enterococci, C perfringens). Plant production was about 20 T DM ha(-1) y(-1). Floating macrophytes (Azolla caroliniana, Eichhornia crassipes, Hydrocotyle vulgaris) were more concentrated in nutrients than helophytes (Phragmites australis, Glyceria aquatica,…). Azolla caroliniana was successfully added to feed finishing pigs.

  10. Organic hydrogels as potential sorbent materials for water purification

    Science.gov (United States)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    the adsorption efficiency is the charge content of the hydrogel x, as well as the pH of the aqueous solution, since acrylic acid is a weak acid. ACKNOWLEDGMENTS. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Archimedes III. Investing in knowledge society through the European Social Fund; research project Archimedes III: "Synthesis and characterization of novel nanostructured materials and study of their use as water purification systems".

  11. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    Science.gov (United States)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  12. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  13. Evaluation of Survivor-06 Water Purification Device

    Science.gov (United States)

    1993-03-01

    is extensive literature documenting the efficacy of reverse osmosis for sterilising and desalinating water (Scott, 1981; Wellon and Soucey, 1987...as a moderately brackish water With biological i 6 contamination. The beach effluent water was chosen as a salty water with biological contamination...for crashed aircrew at sea. It may have limited applications for Army to desalinate bore water for small groups. However, a larger unit would be more

  14. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2016-08-06

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  15. Use of abaca and banana fibers for water purification

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2014-08-01

    Full Text Available Some previous researches show the potential of natural fibers for the production of filters, as these materials are commonly used in the production of tea bags or filters for tobacco. This paper focuses on the use of banana and abaca fiber for water purification, showing thus their capacity for heavy metals adsorption; on the other hand, since the filtering media used is formed by natural materials, microbiological analysis was carried out, ensuring that no organic pollution happens during the filtering process. This research has been approached with cupper and iron (Cu2+ and Fe2+, being both materials commonly used in water supply systems. Spanish regulation allows maximum levels of 2 mg/L for Cu2+ and 0.2 mg/L for Fe2+. Two types of vegetable fibers were used: banana fiber from Canary Islands and abaca fiber from Ecuador. Also different length fibers have been used, studying that way the effect of the superficial area on the adsorptive of ions on natural material. The amount of fiber used has also been varied, from 5 to 20 g per 100mL of water sample. Concentration of the metallic ions has also been modified, i.e.: 2, 4 and 6 mg/L for Cu2+ and 0.2, 0.4 and 0.6 mg/L for Fe2+. Ions were either studied separately or when both were present in concentrations mentioned above. It has been shown that both types of fiber show ability for metallic content reduction in water, without introducing microbial pollution in treated samples.

  16. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  17. Use of abaca and banana fibers for water purification

    OpenAIRE

    Zaida Ortega; Jennifer Vaswani; Miriam Velasco; Mario Domingo Monzón; Juan Emilio González

    2014-01-01

    Some previous researches show the potential of natural fibers for the production of filters, as these materials are commonly used in the production of tea bags or filters for tobacco. This paper focuses on the use of banana and abaca fiber for water purification, showing thus their capacity for heavy metals adsorption; on the other hand, since the filtering media used is formed by natural materials, microbiological analysis was carried out, ensuring that no organic pollution happens during th...

  18. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  19. Household Water Purification: Low-Cost Interventions

    OpenAIRE

    Agrawal, VK; Bhalwar, R

    2009-01-01

    Numerous studies have shown that improving the microbiological quality of household water by point-of-use treatment reduces diarrhoea and other waterborne diseases. The most promising and accessible of the technologies for household water treatment are filtration with ceramic filters, chlorination with storage in an improvised vessel, solar disinfection in clear bottles by the combined action of UV radiation and heat, thermal disinfection (pasteurization) in opaque vessels with sunlight from ...

  20. PURIFICATION OF WHITE WATERS BY SELECTIVE FLOTATION

    Directory of Open Access Journals (Sweden)

    Antti Haapala

    2010-08-01

    Full Text Available Removal of detrimental contaminants from paper machine circulation waters is known to benefit process runnability and paper quality. The applicability of selective flotation to remove substances of a hydrophobic nature from paper machine circulation waters was investigated in laboratory-scale experiments. The separation efficiency of ink, stickies, and wood extractives was studied by using a flotation scheme in which the froth was generated by the white water’s inherent surface active components without any chemical addition. The removal efficiency of detrimental contaminants was considered in relation to total losses of solid materials. The results showed that while not all white waters were able to produce stabile froth, those that generated froth also exhibited substantial separation of contaminants in the froth. With a moderate removal of 10% of total solids from white waters, removal of 45% of stickies, 27% of ink, and 20 to 50% of wood extractives was observed. Higher removal of contaminants resulted in solids losses at levels that are not economically feasible in paper production. The results showed that selective white water flotation can have beneficial results for papermaking processes.

  1. Decentralized water purification using solar thermal energy

    NARCIS (Netherlands)

    Bhardwaj, R.

    2016-01-01

    Provision of clean drinking water to poor can prevent a large number of deaths and illnesses amongst children around the world. In 2010, about 0.75 million child deaths were caused due to diarrhea, and a further 22.5 million years of life were lost due to ill-health, disability or early

  2. Decentralized water purification using solar thermal energy

    NARCIS (Netherlands)

    Bhardwaj, R.

    2016-01-01

    Provision of clean drinking water to poor can prevent a large number of deaths and illnesses amongst children around the world. In 2010, about 0.75 million child deaths were caused due to diarrhea, and a further 22.5 million years of life were lost due to ill-health, disability or early

  3. Treatment for purification water of biodiesel using electrofloculation

    Directory of Open Access Journals (Sweden)

    Juliana Ferreira de Brito

    2012-01-01

    Full Text Available Biodiesel was created as a solution for a great economic and enviromental problem of petroleum, a resource with sustainable characteristics. But its production still needs optimization, because it uses a lot of water and generates a large volume of this residue, which appears improper to disposal without correct treatment. This work propose an economic, viable and efficient way to treat the Biodiesel purification water, not only aiming at a proper disposal, but the reuse as input in the process, generating a large industrial economy, and greater environmental progress. For both treatment uses the electrofloculation technique.

  4. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  5. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical alkaline Fe(VI) water purification and remediation.

    Science.gov (United States)

    Licht, Stuart; Yu, Xingwen

    2005-10-15

    Fe(VI) is an unusual and strongly oxidizing form of iron, which provides a potentially less hazardous water-purifying agent than chlorine. A novel on-line electrochemical Fe(VI) water purification methodology is introduced. Fe(VI) addition had been a barrier to its effective use in water remediation, because solid Fe(VI) salts require complex (costly) syntheses steps and solutions of Fe(VI) decompose. Online electrochemical Fe(VI) water purification avoids these limitations, in which Fe(VI) is directly prepared in solution from an iron anode as the FeO42- ion, and is added to the contaminant stream. Added FeO42- decomposes, by oxidizing a wide range of water contaminants including sulfides (demonstrated in this study) and other sulfur-containing compounds, cyanides (demonstrated in this study), arsenic (demonstrated in this study), ammonia and other nitrogen-containing compounds (previously demonstrated), a wide range of organics (phenol demonstrated in this study), algae, and viruses (each previously demonstrated).

  7. Reactive nanostructured membranes for water purification.

    Science.gov (United States)

    Lewis, Scott R; Datta, Saurav; Gui, Minghui; Coker, Eric L; Huggins, Frank E; Daunert, Sylvia; Bachas, Leonidas; Bhattacharyya, Dibakar

    2011-05-24

    Many current treatments for the reclamation of contaminated water sources are chemical-intensive, energy-intensive, and/or require posttreatment due to unwanted by-product formation. We demonstrate that through the integration of nanostructured materials, enzymatic catalysis, and iron-catalyzed free radical reactions within pore-functionalized synthetic membrane platforms, we are able to conduct environmentally important oxidative reactions for toxic organic degradation and detoxification from water without the addition of expensive or harmful chemicals. In contrast to conventional, passive membrane technologies, our approach utilizes two independently controlled, nanostructured membranes in a stacked configuration for the generation of the necessary oxidants. These include biocatalytic and organic/inorganic (polymer/iron) nanocomposite membranes. The bioactive (top) membrane contains an electrostatically immobilized enzyme for the catalytic production of one of the main reactants, hydrogen peroxide (H(2)O(2)), from glucose. The bottom membrane contains either immobilized iron ions or ferrihydrite/iron oxide nanoparticles for the decomposition of hydrogen peroxide to form powerful free radical oxidants. By permeating (at low pressure) a solution containing a model organic contaminant, such as trichlorophenol, with glucose in oxygen-saturated water through the membrane stack, significant contaminant degradation was realized. To illustrate the effectiveness of this membrane platform in real-world applications, membrane-immobilized ferrihydrite/iron oxide nanoparticles were reacted with hydrogen peroxide to form free radicals for the degradation of a chlorinated organic contaminant in actual groundwater. Although we establish the development of these nanostructured materials for environmental applications, the practical and methodological advances demonstrated here permit the extension of their use to applications including disinfection and/or virus inactivation.

  8. Photodetoxification and purification of water and air

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M. [Univ. of Wisconsin, Madison, WI (United States); Blake, D.M. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  9. Purification of metal electroplating waste waters using zeolites.

    Science.gov (United States)

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2003-12-01

    The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. The batch method has been employed using metal concentrations in solution ranged from 10 to 200 mg/l and solid/liquid ratios ranged from 2.5 to 10 g/l. The Langmuir model was found to describe well all sorption processes, allowing to establish metal sorption sequences from which the main retention mechanism involved for each metal has been inferred. Synthetic zeolite exhibited about 10 times greater sorption capacities (b(Cr)=0.838 mmol/g, b(Ni)=0.342 mmol/g, b(Zn)=0.499 mmol/g, b(Cu)=0.795 mmol/g, b(Cd)=0.452 mmol/g) than natural zeolite (b(Cr)=0.079 mmol/g, b(Ni)=0.034 mmol/g, b(Zn)=0.053 mmol/g, b(Cu)=0.093 mmol/g, b(Cd)=0.041 mmol/g), appearing, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters.

  10. The modified swirl sedimentation tanks for water purification.

    Science.gov (United States)

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10(-5) to 5.1⋅10(-4) [m(3)/s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks.

  11. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  12. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  13. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  14. Possible applications of clinoptilolites for natural water purification

    Directory of Open Access Journals (Sweden)

    N.I. Vatin

    2013-03-01

    Full Text Available Possible applications of clinoptilolites (CP in natural water purification processes from various contaminants are evaluated. Sorption properties of CP in various deposits of Russia are studied in relation to heavy metal ions. It was found that the studied specimens have a considerable sorption exchange capacity not only for ions of toxic (Hg2+, Cd2+, Pb2', but also other heavy metals (Cu2+, Co2+, Ni2+, Zn2+, Ba2+ , Sr2+. It is shown that CP sorption capacity is more efficient when a Mn2+ ion is removed from natural water compared to synthetic ion-exchange resins and activated coals. The dynamic sorption capacities for a Mn2+ ion up to a breakthrough 0.01 mg/1 and 0.1 mg/1 is determined. The CP sorption capacity is insignificant for various halide ions except a fluoride ion the removal of which from natural underground waters is possible with the help of sorption on CP. It was proposed to use CP for removing natural radionuclides (radium 226 and potassium 40 from deep wellbore waters. The purification efficiency with the initial radium 226 concentration at the level 3,0 Bq/I (30 MPC was not below 96%. The efficiency of removing potassium 40 natural isotope depends on the CP form and is maximal for Na form. Post treatment of natural waters after their coagulation treatment with the use of CP has been studied. It is shown that sorption filters with CP allow not only post-treatment of waters from excessive aluminum and zinc, but also additional reduction of odor, color, and ammonium ion content.

  15. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Science.gov (United States)

    EL-Rafei, A. M.; El-Kalliny, Amer S.; Gad-Allah, Tarek A.

    2017-04-01

    Three-dimensional random calcium ferrite, CaFe2O4, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe2O4 phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe2O4 NFs were fabricated with diameters in the range of 50-150 nm and each fiber was composed of 20-50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field.

  16. Investigating the Effectiveness of Ultraviolet (UV Water Purification as Replacement of Chlorine Disinfection in Domestic Water Supply

    Directory of Open Access Journals (Sweden)

    Olaoye

    2012-08-01

    Full Text Available Domestic water supply to residential buildings through hand-dug wells has been widely accepted as a reliable substitute to government owned municipal water supply system in Nigeria. This Paper investigates theeffectiveness of Ultraviolet (UV Water Sterilizers as a suitable replacement of chlorine disinfection in the removal of microbiological contaminants in domestic water supply. Water from an established contaminated well in Ogbomoso, Nigeria, were subjected, simultaneously and in parallel, to chlorine dosing and contact withUV light, over a period of seven (7 days without pre-filtration, and additional seven (7 days with pre-filtration. Pre-filtration was accomplished by the use of a calibrated pressure filter. Effluent water samples were taken daily for the two (2 scenarios to the laboratory for physical, chemical and biological analyses. The resultsindicated that UV water purification method was more effective only when pre-filtration of raw water was introduced. With monitored prefiltration prior to ultraviolet purification, the colony count, MPN Coliform Organisms and MPN E. Coli Organisms recorded seven day-average values of 1, 0 and 0, respectively. In both scenarios, it was confirmed that UV method produced no bi-products and did not alter the taste, pH or other properties of water, in contradistiction to chlorine disinfection method

  17. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification

    National Research Council Canada - National Science Library

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications...

  18. Natural water purification and water management by artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    Klaus-Dieter BALKE; Yan ZHU

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and fiver water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant puri- fication and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quanti-tative advantages. The contamination of infiltrated fiver water will be reduced by natural attenuation. Clay minerals, iron hy-droxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing fiver discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the fiver discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  19. Purification

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2017-01-01

    —was treated before it was returned to the river where it continues its flow downstream towards cultivated fields and, finally, into the Pacific Ocean. It takes specialized knowledge and manifold technologies to manage water and sustain life in Arequipa, and engineers are central actors for making water flow......In Arequipa, Peru’s second largest city, engineers work hard to control water flows and provide different sectors with clean and sufficient water. In 2011, only 10 percent of the totality of water used daily by Arequipa’s then close to 1 million people—in households, tourism, industry, and mining...

  20. Application of tidal energy for purification in fresh water lake

    Directory of Open Access Journals (Sweden)

    Jung Rho-Taek

    2015-01-01

    Full Text Available In order to preserve the quality of fresh water in the artificial lake after the reclamation of an intertidal flat at the mouth of a river, we suggest two novel methods of water purification by using tidal potential energy and an enclosed permeable embankment called an utsuro (Akai et al., 1990 in the reclaimed region. One method uses an inflatable bag on the seabed within an utsuro, while the other uses a moored floating barge out of a dyke. Each case employs a subsea pipe to allow flow between the inside and outside of the utsuro. The change in water level in the utsuro, which is pushed through the pipe by the potential energy outside, caused circulation in the artificial lake. In this paper, we analyzed the inflatable bag and floating barge motion as well as the pipe flow characteristics and drafts as given by a harmonic sea level, and compared the theoretical value with an experimental value with a simple small model basin. The numerical calculation based on theory showed good agreement with experimental values.

  1. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  2. Forward osmosis :a new approach to water purification and desalination.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  3. WATER PURIFICATION BY COAGULATION UNDER THE INFLUENCE OF ULTRASONIC FIELD

    Directory of Open Access Journals (Sweden)

    Vikulina Vera Borisovna

    2016-03-01

    Full Text Available The authors carried out experiments on the in-fluence of ultrasound on the subsidence of suspended materials. The efficiency of coagulation process in wa-ter purification in ultrasound field is estimated. The influence of ultrasound on the water with suspended materials before introducing coagulant was a condition of the experiment. The magnetostriction method for obtaining ultrasound oscillations with the help of ultra-sound generator of batch production was applied. The samples were chosen and the coagulation process was controlled using standard procedures. The experimental data was obtained which estimate the efficiency in-crease in the subsidence of suspended materials de-pending on the duration of ultrasound processing. Dur-ing one minute of ultrasound processing the following results were obtained: the subsidence efficiency in-creased by 25.83 % in case of coagulant share Al2O3 2.5 mg/l; the subsidence efficiency increased by 23.70 % in case of coagulant share Al2O3 5.0 mg/l.

  4. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  5. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  6. 纯化水系统臭氧消毒方法的研究%Study of Ozone Disinfection of Purification Water System

    Institute of Scientific and Technical Information of China (English)

    韩冬; 安爱军

    2013-01-01

    Objective To study the bactericidal effect of ozone on staphylococcus aureus and disinfection ability of purified water storage tank and pipeline. Methods 0.98 mg/L ozone solution is prepared with JW-5 water treatment ozone generator, and its bactericidal effects on staphylococcus aureus and disinfection effect on purified water storage tank and pipeline are measured. The sample, which is quantification ally trained through membrane filtration-agar culture, is taken at different time to calculate sterilization rate. Results The sterilization rates of ozone solution against staphylococcus aureus in 5 min, 10 min, 30 min are 99.29%, 100%, 100%. The sterilization rates for purified water pipeline and storage tank in 10 min, 45 min and 60 min are 95.79%, 99.85% and 100%. Conclusion Ozone disinfection is an exact method in the course of purifying water system disinfection.%目的 研究臭氧对金黄色葡萄球菌的杀菌效果和对纯化水贮罐和管道的消毒能力.方法利用JW-5型水处理臭氧发生器制备浓度为0.98 mg/L的臭氧溶液,分别对金黄色葡萄球菌杀菌,对纯化水贮罐及管道消毒,在不同时间取样,经薄膜过滤-琼脂培养法定量培养,计算杀菌率.结果臭氧溶液对金葡菌作用5 min、10 min、30 min后,对金葡菌的杀菌率分别为99.29%、100%、100%;对纯化水管道和贮罐冲洗消毒10 min、45 min和60 min,杀菌率分别为95.79%、99.85%和100%.结论臭氧消毒效果确切,能满足纯化水贮罐和管道的消毒要求.

  7. Selection of technical and economic purification system wastewater, applying the assessment of the water decontamination; Seleccion tecnico-economica del sistema de depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Miranda, J. P.

    2009-07-01

    The decontamination in water bodies can be realised among others by treatments at the end of the tube. For it is necessary to apply to a methodology or procedure for economic the technical selection of alternatives for the handling or treatments of liquid residues at the end of the tube. Calculation example, a study of case (municipality) in the Savannah of Bogota was developed (Colombia), where the technical valuation of the best alternative of treatment at the end of the tube was observed that stops the case of the analysis, the optimal system is the percolating filter from the plant of comparison of removal efficiencies, costs of investment, operation and maintenance, as well as the specific qualitative valuation of each alternative. (Author) 27 refs.

  8. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi [Department of Physics, Faculty of Mathematics and Natural Science Universitas Negeri Semarang, Jalan Raya Sekaran Gunungpati 50229 Indonesia (Indonesia)

    2016-04-19

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  9. 一种净化水质的复合生物修复系统%A composite bioremediation system for water purification

    Institute of Scientific and Technical Information of China (English)

    袁亚光; 张弛; 谢卫平; 赵福庚; 钦佩

    2012-01-01

    在实验室内利用人工模拟方法,选择水蕹菜(Ipomoea aquatica)、泥鳅(Misgurus anguillicaudatus)、沼泽红假单胞菌(Rhodopseudomonas palustris)为工程物种,构建一套水生经济植物-水生动物-微生物复合生物修复系统进行污水修复,研究该系统中动植物生物量及水质指标的变化.结果表明,在23 d的实验周期中,水体铵态氮(NH4+-N)下降96.5%,硝态氮(NO3--N)下降82.2%,总磷(TP)下降53.2%,化学需氧量(CODMn)下降24.5%.水蕹菜平均增重31.2%,泥鳅平均增重6.1%.这种复合的生物修复模式具有较好的经济效益与环境效益.%By the method of artificial simulation in laboratory, and with water spinach (Ipomoea aquatic), loach (Misgurus anguillkaudatus) , and a kind of pseudomonad (Rhodopseudomonas palustris) as the engineering species, a composite bioremediation system of aquatic economic plant - aquatic animal - microorganism was constructed to improve the water quality of sewage. The biomass of I. aquatic and M. anguillicaudatus in the system and the water quality indices were investigated. Within the 23 days experimental period, the nutrient concentrations in the sewage decreased significantly, with the removal rates of NH4+-N, NO3--N, TP, and CODMn being 96.5%, 82. 2%, 53. 2%, and 24.5%, respectively. Meanwhile, the biomass of I. aquatic and M. anguillicaudatus was averagely increased by 31.2% and 6. 1% , respectively. All the results suggested that this composite bioremediation model had good economic and environmental benefits.

  10. Presence of Acanthamoeba spp.in water purification plants in southern England

    Institute of Scientific and Technical Information of China (English)

    Shanmuganathan V; Khan NA

    2009-01-01

    Objective:To identify the prevalence of Acanthamoeba in drinking water treatment plants during the course of the purification processes.Methods:Samples were taken from two drinking water purification plants and moni-tored for the presence of Acanthamoeba in order to estimate the removal capacity of treatment methods em-ployed.Water samples were collected at each step in the purification,during the one year survey,and ana-lysed for the presence of Acanthamoeba spp.by plating on bacterial-seeded plates.Results:The results showed that amoebae were present in surface raw waters in 100 % of the samples tested.Acanthamoeba spp.were iso-lated from 71 % and 57 % of the water samples collected from post flat-bottom clarifier 1 and post-sedimenta-tion plant respectively.Considering the outflow drinking waters,the removal capacity was 100 % in both puri-fication plants monitored.The occurrence of Acanthamoeba was not associated with seasonality.Conclusion:These findings confirm that water purification plants employing methods of flocculation,sedimentation,and fil-tration in combination with activated charcoal filtration,ozonisation and chlorination exhibited sufficient Acan-thamoeba removal capacity and the presence of amoebae in the tap water may be due to older plumbing,water storage tanks,tap water hygiene,and /or environmental settings.

  11. Dynamics of aluminum leaching from water purification sludge.

    Science.gov (United States)

    Cheng, Wen-Po; Fu, Chi-Hua; Chen, Ping-Hung; Yu, Ruey-Fang

    2012-05-30

    In this investigation, the shrinking core model is used to study the rate of aluminum salt leaching from water purification sludge (WPS). This model, which describes the aluminum leaching rate, can be developed to maximize the Al(III) recovering efficiency. Laboratory results indicate that when the mixing speed exceeds 80rpm, the effect of film diffusion control on the leaching process is greatly reduced, such that any further increase in the mixing speed does not affect the Al(III) leaching rate. Additionally, increasing the temperature or acid concentration improves Al(III) leaching rate. The laboratory data were verified by using the shrinking core model to confirm that the leaching of Al(III) from WPS is consistent with the inert-layer diffusion control model. This finding reveals that large amounts of SiO(2), Al(2)O(3) and other inert constituents will form an inter diffusion layer in the WPS and thus become the major limiting factors that control the Al(III) leaching process. The dynamic equation can be expressed as 1-3(1-x)(2/3)+2(1-x)=(2707.3 exp(-3887.6/T))t, in which the apparent activation energy and pre-exponential factors are 32.32 kJ/mol and 2707.3 min(-1), respectively, as determined by solving the Arrhenius equation.

  12. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier.

    Science.gov (United States)

    Zhang, Lingling; Zhao, Jing; Cui, Naxin; Dai, Yanran; Kong, Lingwei; Wu, Juan; Cheng, Shuiping

    2016-04-01

    Floating treatment wetlands (FTWs) and biofilm carriers are widely used in water purification. The objective of the present work was to explore whether and to what extent an FTW integrated with plants and biofilm carriers (FTW-I) could enhance the nutrient removal efficiency. Significantly higher removal rates of ammonia nitrogen (85.2 %), total phosphorus (82.7 %), and orthophosphate (82.5 %) were observed in the FTW-I treatment relative to the FTW with plants (FTW-P; 80.0, 78.5, and 77.6 %, respectively) and the FTW with biofilm carriers (FTW-B; 56.7, 12.9, and 13.4 %, respectively) (p < 0.05). The mass balance results indicated that plant uptake was the main pathway for N and P removal (accounting for 58.1 and 91.4 %, respectively) in FTW-I, in which only 1.2 % of the N and 5.7 % of the P was deposited on the bottom of the tank. In addition, the plants translocated 43.9 and 80.2 % of the N and P in the water and 83.5 and 88.3 % of the absorbed N and P, respectively, into their aboveground tissues. The combination of an FTW and biofilm carriers can improve the efficiency of water purification, and nutrients can be rapidly removed from the system by harvesting the aboveground plant tissues.

  13. Efficiency in removing pollutants by constructed wetland purification systems in Poland.

    Science.gov (United States)

    Samecka-Cymerman, A; Stepien, D; Kempers, A J

    2004-02-27

    The aim of this study was to compare the efficiency between Phragmites communis, Salix viminalis, and Populus canadensis in removing the heavy metals Al, Ba, Mn, Ni, Sr, V, Zn, Cd, Cu, and Pb and the eutrophying macroelements phosphate, nitrate, nitrite, ammonia, chloride, sulfate, Ca, Mg, K, and Fe from sewage in subsurface flow constructed wetlands in Poland. The effectiveness of the sewage treatment system was higher in summer compared to winter for the removal of (1) all heavy metals, phosphate (P) and mineral nitrogen (N) for all of species, (2) sulfates (S) for Phragmites and Salix, (3) iron (Fe) for Salix, and (4) chloride (Cl) for Salix and Populus. Analysis of variance indicated that there was no significant difference between the purifications systems in phytoremediation of Mn; so all species were equally effective (99%, prob. level 0.001). The Salix wetland system was most effective in purification of water and removal of macroelements (24-82% in summer, 10-80% in winter with Fe 97%), Cd (58-71%), V (100%), and Zn (84-92%). The Phragmites system was most effective in purification and removal of Al (81-97%), Ba (70-95%), Pb (64-81%), and Sr (24-51%), while in the case of Cu (49-60%) and Ni (55-67%) the Populus wetland system proved most effective. The outflowing water of the wetlands contained elements in amounts exceeding the admissible levels as established for unpolluted water both in winter and summer. Therefore the effectiveness of the observed phytoremediation systems in this study was not sufficient alone to remove these elements and can be considered as a supplemental tool in purification of sewage.

  14. Preparation of improved catalytic materials for water purification

    Science.gov (United States)

    Cherkezova-Zheleva, Z.; Paneva, D.; Tsvetkov, M.; Kunev, B.; Milanova, M.; Petrov, N.; Mitov, I.

    2014-04-01

    The aim of presented paper was to study preparation of catalytic materials for water purification. Iron oxide (Fe3O4) samples supported on activated carbon were prepared by wet impregnation method and low temperature heating in an inert atmosphere. The as-prepared, activated and samples after catalytic test were characterized by Mössbauer spectroscopy and X-ray diffraction. The obtained X-ray diffraction patterns of prepared samples show broad and low-intensity peaks of magnetite phase and the characteristic peaks of the activated carbon. The average crystallite size of magnetite particles was calculated below 20 nm. The registered Mössbauer spectra of prepared materials show a superposition of doublet lines or doublet and sextet components. The calculated hyperfine parameters after spectra evaluation reveal the presence of magnetite phase with nanosize particles. Relaxation phenomena were registered in both cases, i.e. superparamagnetism or collective magnetic excitation behavior, respectively. Low temperature Mössbauer spectra confirm this observation. Application of materials as photo-Fenton catalysts for organic pollutions degradation was studied. It was obtained high adsorption degree of dye, extremely high reaction rate and fast dye degradation. Photocatalytic behaviour of a more active sample was enhanced using mechanochemical activation (MCA). The nanometric size and high dispersion of photocatalyst particles influence both the adsorption and degradation mechanism of reaction. The results showed that all studied photocatalysts effectively decompose the organic pollutants under UV light irradiation. Partial oxidation of samples after catalytic tests was registered. Combination of magnetic particles with high photocatalytic activity meets both the requirements of photocatalytic degradation of water contaminants and that of recovery for cyclic utilization of material.

  15. Effect of Replacement of New Reverse Osmosis Film of Water Purification System to Clinical Biochemistry%实验室纯水系统更换反渗透膜对生化检验的影响

    Institute of Scientific and Technical Information of China (English)

    莫基浩; 刘鲜茹; 李少侠

    2014-01-01

    目的:研究实验室纯水系统更换新反渗透膜后,所产纯水的质量是否符合生化检验的要求并评价其影响。方法通过Beckman Coulter生化分析系统配套纯水机天创TCHS-RO/100A自带电阻表和 HM COM-100电导率测量笔连续监测新产纯水中的实时离子含量。用正常纯水在 AU680上重复20次测量 ALT,AST,TBIL,ALP,GGT,TP,ALB,BUN, CR,UA,GLU,TC,TG,HDL,LDL,CK,LDH,P,Ca(对照组),更换为新产纯水后进行相同试验操作(试验组),以评估新产纯水对生化分析的影响。连续5天,每天3次(间隔2 h)监测新产纯水的 TG试剂空白,监测水中甘油水平。结果开机30 min后,HM COM-100测得电导率降至(0.1±0.0)μS/cm,机载电阻表测得新产纯水在开机50 min后稳定在18.25 MΩcm。在用 AU680进行生化分析时,对照组中TG测量值=1.04 mmol/L,试验组=21.39 mmol/L,差异有统计学意义(P<0.01),而除TG其他生化项目偏倚均在5%以内,CV<1/4CLIA’88,差异无统计学意义(P>0.05)。TG试剂空白在第5天稳定在A660nm=0.0156±0.0004。结论新纯水系统在生产约2800 L水后,所产纯水中的甘油可以清除干净。实验室纯水系统在更换反渗透膜后,需要对水质进行连续监测,以评价其对常规生化项目检测的影响。%Objective To test if the quality of produced water could come up to the standards of clinical biochemistry,and e-valuate the effect of the produced water after replacement of a new reverse osmosis film of the laboratory water purification system.Methods The ion concentration of the produced water was tested by ohmmeter in Beckman Coulter supporting TianChuang water purification system TCHS-RO/100A and HM COM-100 conductivity meter.The biochemical index ALT,AST,TBIL,ALP,GGT,TP,ALB,BUN,CR,UA,GLU,TC,TG,HDL,LDL,CK,LDH,P,Ca of mixed serum were tested 20 times by AU680 under the condition of

  16. 罗氏沼虾育苗系统中生物滤池对水质的净化作用%Water purification effect of biofilter in Macrobrachium rosenbergii seeds nursery system

    Institute of Scientific and Technical Information of China (English)

    辛建美; 李倩; 周志明; 胡廷尖; 王军毅; 刘士力; 王雨辰

    2014-01-01

    Water purification effect of biological membranes in circulating water nursery system of Macrobrachium rosenbergii was studied. The results showed that water pollutant clearance rates of biological membranes were higher in the early seedling stage and the highest clearance rates for total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH3-N), nitrite nitrogen (NO2-N) and CODMn were up to 46.13%, 58.33%, 22.68%, 32.22% and 7.73% respectively. In the middle stage, clearance rates for each contaminant had different degrees of decline. Changing the water of the seedling pool during middle seedling stage effectively controlled the concentration of pollutants in water.%研究了生物膜对罗氏沼虾( Macrobrachium rosenbergii)循环水育苗系统水体的净化效果.结果表明,在罗氏沼虾育苗早期,生物膜对水体中污染物的清除率均较高,对水体中总氮( TN)最高清除率可达46.13%,对总磷(TP)最高清除率可达58.33%,对氨氮(NH3-N)最高清除率可达22.68%,对亚硝酸盐氮(NO2-N)最高清除率可达32.22%,对化学需氧量CODMn最高清除率可达7.73%.育苗中期,生物膜对各污染物清除率均有不同程度的减弱.于育苗中期对育苗池进行一次换水可以有效控制水体中污染物的浓度.

  17. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  18. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification

    Science.gov (United States)

    Liao, Wuxia; Wang, Ning; Wang, Taisheng; Xu, Jia; Han, Xudong; Liu, Zhenyu; Yu, Weixing

    2016-01-01

    This paper reports a biomimetic design of microchannels in the planar reactors with the aim to optimize the photocatalytic efficiency of water purification. Inspired from biology, a bifurcated microchannel has been designed based on the Murray's law to connect to the reaction chamber for photocatalytic reaction. The microchannels are designed to have a constant depth of 50 μm but variable aspect ratios ranging from 0.015 to 0.125. To prove its effectiveness for photocatalytic water purification, the biomimetic planar reactors have been tested and compared with the non-biomimetic ones, showing an improvement of the degradation efficiency by 68%. By employing the finite element method, the flow process of the designed microchannel reactors has been simulated and analyzed. It is found that the biomimetic design owns a larger flow velocity fluctuation than that of the non-biomimetic one, which in turn results in a faster photocatalytic reaction speed. Such a biomimetic design paves the way for the design of more efficient planar reactors and may also find applications in other microfluidic systems that involve the use of microchannels. PMID:26958102

  19. Biomimetic Membranes for Water Purification and Wastewater Treatment

    DEFF Research Database (Denmark)

    Tang, Chuyang Y.; Wang, Zhining; Hélix-Nielsen, Claus

    2016-01-01

    Reverse osmosis (RO)-based desalination and wastewater reclamation are gaining increasing popularity driven by water shortages and population growth. Advances in membrane technology in the past few decades have resulted in great savings in energy consumption of RO processes. Further reduction...... in energy consumption calls for novel membranes with significantly enhanced water permeability compared to the current state of the art thin-film composite polyamides. An attractive option is to learn from nature's high efficiently water filtration systems that involve a group of specialised water transport...

  20. Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Maliyekkal, Shihabudheen Mundampra [School of Mechanical and Building Sciences, VIT University, Chennai Campus, Chennai 600048 (India); Pradeep, Thalappil, E-mail: pradeep@iitm.ac.in [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-02-15

    Highlights: ► Facile strategy to make graphenic materials from cheaper precursor such as asphalt. ► Material can be made in solution; also as anchored on solid substrates. ► The synthesized material, GSC, was found to be excellent for water purification. ► The applicability was demonstrated through batch and laboratory columns experiments. ► The capacity was compared to other similar adsorbents and was found to be superior. -- Abstract: An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm{sup −1} and 1345 cm{sup −1} in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

  1. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    Science.gov (United States)

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  2. Studies on bacterial activities in aerobic and anaerobic waste water purification.

    Science.gov (United States)

    Adamse, A D; Deinema, M H; Zehnder, A J

    1984-01-01

    Some aspects of the bacteriology of aerobic and anaerobic waste water purification are discussed in view of current opinions and recent developments in the technology of waste water treatment. Various contributions of scientific workers attached to the Department of Microbiology of the Agricultural University, Wageningen, during the past 65 years are summarized. Besides, present investigations are described and research activities in future indicated.

  3. Some observations on the development of superior photocatalytic systems for application to water purification by the "adsorb and shuttle" or the interphase charge transfer mechanisms.

    Science.gov (United States)

    Langford, Cooper; Izadifard, Maryam; Radwan, Emad; Achari, Gopal

    2014-11-26

    Adsorb and shuttle (A/S) and interfacial charge transfer are the two major strategies for overcoming recombination in photocatalysis in this era of nanoparticle composites. Their relationships are considered here. A review of key literature is accompanied by a presentation of three new experiments within the overall aim of assessing the relation of these strategies. The cases presented include: A/S by a high silica zeolite/TiO2 composite, charge transfer (CT) between phases in a TiO2/WO3 composite and both A/S and CT by composites of TiO2 with powered activated carbon (AC) and single-walled carbon nanotubes (SWCNT). The opportunities presented by the two strategies for moving toward photocatalysts that could support applications for the removal of contaminants from drinking water or that lead to a practical adsorbent for organics that could be regenerated photocatalytically link this discussion to ongoing research here.

  4. Some Observations on the Development of Superior Photocatalytic Systems for Application to Water Purification by the “Adsorb and Shuttle” or the Interphase Charge Transfer Mechanisms

    Directory of Open Access Journals (Sweden)

    Cooper Langford

    2014-11-01

    Full Text Available Adsorb and shuttle (A/S and interfacial charge transfer are the two major strategies for overcoming recombination in photocatalysis in this era of nanoparticle composites. Their relationships are considered here. A review of key literature is accompanied by a presentation of three new experiments within the overall aim of assessing the relation of these strategies. The cases presented include: A/S by a high silica zeolite/TiO2 composite, charge transfer (CT between phases in a TiO2/WO3 composite and both A/S and CT by composites of TiO2 with powered activated carbon (AC and single-walled carbon nanotubes (SWCNT. The opportunities presented by the two strategies for moving toward photocatalysts that could support applications for the removal of contaminants from drinking water or that lead to a practical adsorbent for organics that could be regenerated photocatalytically link this discussion to ongoing research here.

  5. Microbiological water purification without the use of chemical disinfection.

    Science.gov (United States)

    Gerba, C P; Naranjo, J E

    2000-01-01

    Point-of-use (POU) water treatment systems are self-contained units that can be used by recreational enthusiasts who normally obtain drinking water from untreated sources (i.e., rivers, lakes, etc). Microbiological water purifier units are capable of removing all waterborne pathogens. The purpose of this study was to evaluate a new technology (Structured Matrix) capable of micro-biologically purifying the water without the use of chemical disinfectants or an external power requirement. Each of 3 identical portable water filtration units were evaluated for their ability to remove Klebsiella terrigena, poliovirus type 1, rotavirus SA-11, and Cryptosporidium parvum oocysts. Units were operated according to the manufacturer's instructions to process 378 L of water. Each unit was challenged with test organisms after 0, 94, 190, 227, 284, 340, and 378 L had passed through it. For the 227-L and 284-L challenges, a "worst-case" water quality (4 degrees C, pH 9, and turbidity 30 NTU) was used that contained 1500 mg/L dissolved solids and 10 mg/L humid acid. At 340-L and 378-L challenges, worst-case water quality was adjusted to pH 5.0. Units were tested after stagnation for 48 hours following passage of 190, 340, and 378 L of water. The geometric average removal exceeded 99.9999% for bacteria, 99.99% for viruses, and 99.9% for Cryptosporidium parvum oocysts. These units comply with the criteria guidelines for microbial removal under the United States Environmental Protection Agency's "Guide Standard and Protocol for Testing Microbiological Water Purifiers."

  6. RESEARCH METHODS OF WATER PURIFICATION FROM POLLUTION WITH PETROLEUM AND PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Privalova N. M.

    2015-11-01

    Full Text Available This article provides an overview of the currently existing methods of purification of waters from pollution with petroleum and petroleum products. The most popular cleaning ways and new emerging technologies are considered. For each method of combating with petroleum pollution the circumstances and the factors are given, under which the application of this method is the most efficient and cost-effective. The article briefly describes the technology of each method, and its main strengths and weaknesses, particularly the use and quality of water purification

  7. A facile TiO2/PVDF composite membrane synthesis and their application in water purification

    Science.gov (United States)

    Zhang, Wei; Zhang, Yiming; Fan, Rong; Lewis, Rosmala

    2016-01-01

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO2/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO2 nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO2 composite membranes were studied systematically. The TiO2/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  8. RESEARCH INVESTIGATIONS OF WATER PURIFICATION PROCESS WITH PHOTOCATALYST BASED ON POROUS TITANIUM WITH NANOPARTICLES OF TITANIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    L. Pilinevich

    2013-01-01

    Full Text Available The paper presents results of the investigations on the water purification process with the help of photocatalysis using the photocatalyst which is developed on the basis of porous titanium with the layer of nanoparticle layer of titanium dioxide and an experimental plant. The investigations results have shown high efficiency of the developed photocatalytic materials and a water purification plants

  9. Water quality management system; Suishitsu kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Tsugura, H.; Hanawa, T.; Hatano, K.; Fujiu, M. [Meidensha Corp., Tokyo (Japan)

    1997-12-19

    Water quality management system designed in consideration of compliance with the environmental ISO is outlined. The water quality management system is positioned at the center, connected to water quality monitors that are deployed at various parts of the water supply facility, and performs the real-time display of information about water quality and the operating status of the water quality monitors for every one of the monitoring locations. The communication software run on this system supports 30 water quality monitors and performs uninterrupted surveillance using dedicated lines. It can also use public lines for periodic surveillance. Errors in communication if any are remedied automatically. A pipeline diagnosing/estimating function is provided, which utilizes water quality signals from received water quality monitors for estimating the degree of corrosion of pipelines in the pipeline network. Another function is provided of estimating water quality distribution throughout the pipeline network, which determines the residual chlorine concentration, conductivity, pH level, water temperature, etc., for every node in the pipeline network. A third function estimates water quality indexes, evaluating the trihalomethane forming power through measuring the amounts of low-concentration organic matters and utilizing signals from low-concentration UV meters in the water purification process. 3 refs., 7 figs.

  10. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  11. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  12. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Nur, Mononita; Wheeler, Richard R., Jr.; Preston, Joshua; Molter, Trent

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approx.54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Pyrolysis Assembly (PPA) technology, developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is the need to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations to-date, discuss potential architecture options, and propose future work.

  13. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  14. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    Science.gov (United States)

    Gucker, Sarah N.; Foster, John E.; Garcia, Maria C.

    2015-10-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L-1). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date.

  15. Immobilized graphene-based composite from asphalt: facile synthesis and application in water purification.

    Science.gov (United States)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen; Maliyekkal, Shihabudheen Mundampra; Pradeep, Thalappil

    2013-02-15

    An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm(-1) and 1345 cm(-1) in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

  16. Report for fiscal 1995 on commissioned operation for research cooperation related to simplified purification system for industrial waste water; 1995 nendo sangyo haisui nado no kan'i joka system ni kansuru kenkyu kyoryoku hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With an objective to serve for environmental preservation in developing countries, joint researches have been performed on anaerobic waste water treatment systems utilizing bio-technology. This paper summarizes the achievements in fiscal 1995. In the research cooperation with Thailand, a bench scale testing equipment was used to verify activity of granules, and granulation tests were performed. In the operation research by using a pilot plant, abrupt variation in quality of the feed waste water was encountered, whereas both of the fixed bed system and the UASB system have not reached the stage of tests at the targeted load. In the research cooperation with Indonesia, the actual waste water test in the laboratory scale verified that Tofu manufacturing waste water may be easily decomposed anaerobically, and the kitchen waste water aerobically. The bench scale test is in continuation on actual waste waters by experimenting the applicability of the fixed bed and UASB reactors. In the research cooperation with Malaysia, analysis was performed on chemical factory waste water properties, and so was the anaerobic treatment characteristics test in the laboratory scale. In addition, a preliminary experiment using the bench scale testing device was begun. (NEDO)

  17. Circulation and Purification in the LUX-ZEPLIN System Test

    Science.gov (United States)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  18. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  19. Water purification with sintered porous materials fabricated at 400℃ from sea bottom sediments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A sintering technology for preparing porous materials from sea bottom sediments was developed for use in water purification. The purpose of the present study was to develop methods for converting the sea bottom sediments dredged from Ago Bay into value-added recycled products. The sintered products fabricated at 400℃ were found to be very effective adsorbents for the removal of heavy metals.

  20. Valorization technics by means of vermiculture for fatty wastes resulting from wastes water purification plants

    Energy Technology Data Exchange (ETDEWEB)

    Vignoles, C. (Service Assainissement, 31 - Toulouse (France))

    Fats, scums and other floating organic wastes extracted from waste water purification plants have always caused important problems of treatment to specialists. Municipal and technical services of Toulouse have elaborated an original valorization process. Results are simultaneously spectacular for environment and economically reasonable. One may think that this natural method is bound to experience interesting developments in the future.

  1. A study of naturally occurring radon in Swedish water purification plants.

    OpenAIRE

    2016-01-01

    Radon dissolved in drinking-water can be transferred into the indoor air and is one of the main transfer pathways for radon. At water purification plants, large quantities of water are treated and there is a risk that radon degasses from the water and enters into the indoor air. Hence, there is a risk for elevated radon levels in the indoor air at these facilities. This study aims to investigate the general impact of water treatment processes on the radon concentration in water and its transf...

  2. Development of an automated system for isolation and purification of humic substances

    NARCIS (Netherlands)

    Zomeren, van A.; Weij-Zuiver, van der E.; Comans, R.N.J.

    2008-01-01

    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system li

  3. Development of an automated system for isolation and purification of humic substances

    NARCIS (Netherlands)

    Zomeren, van A.; Weij-Zuiver, van der E.; Comans, R.N.J.

    2008-01-01

    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system

  4. Multi-Component Remediation System for Generating Potable Water Onboard Spacecrafts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractal Systems Inc. proposes to develop an innovative, energy-efficient water purification system to enable humans to live and work permanently in space. Water...

  5. Report for fiscal 1994 on commissioned operation for research cooperation related to simplified purification system for industrial waste water; 1994 nendo sangyo haisui nado no kan'i joka system ni kansuru kenkyu kyoryoku hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    With an objective to serve for environmental preservation in developing countries, joint researches have been performed on anaerobic waste water treatment systems utilizing bio-technology. This paper summarizes the achievements in fiscal 1994. In the research cooperation with Thailand, a reactor applicability test was performed by using a pilot plant to determine the operating conditions, and necessary data were obtained. The pilot plant was completed of installation in November. In the research cooperation with Indonesia, Tofu manufacturing waste water was selected as the object of pilot plant research. In the detailed design the Tofu manufacturing waste water shall be treated anaerobically, and the kitchen waste water shall be treated aerobically to acquire the intended water quality. In the research cooperation with Malaysia, as a result of visiting six industries and 22 factories for investigation, waste waters from chemical and foodstuff factories were selected as the object waste waters for the research. Three researchers from Thailand and Indonesia respectively were received in Japan to provide education including experimental training and visits to waste water treatment facilities. (NEDO)

  6. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  7. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-04-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  8. Advanced purification of filtered water by aerobic IBAC

    Institute of Scientific and Technical Information of China (English)

    MA Fang; QIN Song-yan; HUANG Peng; S.N. Sin

    2007-01-01

    Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated.Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.

  9. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  10. Adsorption of phenol onto rice straw biowaste for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M.N.; Mustafa, A.I.; Khalil, M.I.; Rahman, M.; Nahid, I. [University of Dhaka, Dhaka, Faculty of Engineering and Technology, Department of Applied Chemistry and Chemical Engineering, Dhaka (Bangladesh)

    2012-10-15

    The adsorption technique has been studied using waste rice straw to adsorb phenol from aqueous solutions at room temperature. Batch adsorption studies were carried out under varying experimental conditions of contact time, operational temperature, pH of phenol solution, initial phenol concentration, adsorbent dose, and particle size. The time to reach equilibrium was found to be 3 h. Results showed that the equilibrium data for phenol-sorbent systems fitted the Freundlich model and Langmuir model within the concentration range studied. Adsorbed phenol could be regenerated by desorption with the help of 1M NaOH. The studies showed that the rice straw can be used as an efficient adsorbent material for removal of phenol and phenolic compounds from water and wastewater. (orig.)

  11. Effect of water purification process in radioactive content: analysis on small scale purification plants; Efecto del proceso de purificacion de agua en el contenido radiactivo: analisis en plantas purificadoras a pequena escala

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000, Zacatecas (Mexico)], e-mail: hlopez@uaz.edu.mx

    2009-10-15

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  12. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    Science.gov (United States)

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification.

  13. Feasibility of water purification technology in rural areas of developing countries.

    Science.gov (United States)

    Johnson, Dana M; Hokanson, David R; Zhang, Qiong; Czupinski, Kevin D; Tang, Jinxian

    2008-08-01

    Water scarcity is threatening social and economic growth in rural areas of developing countries. There are potential markets for water purification technologies in these regions. The main focus of this article is to evaluate the social, economic and political feasibilities of providing water purification technologies to rural areas of developing countries. The findings of this research can serve as the basis for private investors interested in entering this market. Four representative regions were selected for the study. Economic, demographic, and environmental variables of each region were collected and analyzed along with domestic markets and political information. Rural areas of the developing world are populated with poor people unable to fulfill the basic needs for clean water and sanitation. These people represent an important group of potential users. Due to economic, social, and political risks in these areas, it is difficult to build a strong case for any business or organization focusing on immediate returns on capital investment. A plausible business strategy would be to approach the water purification market as a corporate responsibility and social investing in the short term. This would allow an organization to be well positioned once the economic ability of individuals, governments, and donor agencies are better aligned.

  14. Photo Induced Membrane Separation for Water Purification and Desalination Using Azobenzene Modified Anodized Alumina Membranes.

    Science.gov (United States)

    Fujiwara, Masahiro; Imura, Tatsuki

    2015-06-23

    Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies. We have reported before that the repetitive photo isomerization of azobenzene groups between the trans and cis isomers induced by the simultaneous irradiation of UV and visible lights accelerates the molecular movement of nearby molecules in nanoporous materials. After further studies, we recently found that the permeation of water through azobenzene modified anodized alumina membranes as a photo responsive nanoporous membrane was achieved by the simultaneous irradiation of UV and visible lights, while no water penetration occurred under no light, only single UV or visible light. The photo induced permeation of water was promoted by the vaporization of water with the repetitive photo isomerization of azobenzene. This membrane permeation achieved the purification of water solutions, because dye molecules and a protein dissolved in aqueous solutions were not involved in the photo induced penetrated water. When 3.5% of sodium chloride solution as model seawater was employed for this membrane separation, the salt content of the permeated water was less than 0.01% to accomplish the complete desalination of seawater.

  15. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health.

    Science.gov (United States)

    Simazaki, Dai; Kubota, Reiji; Suzuki, Toshinari; Akiba, Michihiro; Nishimura, Tetsuji; Kunikane, Shoichi

    2015-06-01

    The present study was performed to determine the occurrence of 64 pharmaceuticals and metabolites in source water and finished water at 6 drinking water purification plants and 2 industrial water purification plants across Japan. The analytical methods employed were sample concentration using solid-phase extraction cartridges and instrumental analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), liquid chromatography with mass spectrometry (LC/MS), or trimethylsilyl derivatization followed by gas chromatography with mass spectrometry (GC/MS). Thirty-seven of the 64 target substances were detected in the source water samples. The maximum concentrations in the source water were mostly below 50 ng/L except for 13 substances. In particular, residual concentrations of iopamidol (contrast agent) exceeded 1000 ng/L at most facilities. Most of the residual pharmaceuticals and metabolites in the source water samples were removed in the course of conventional and/or advanced drinking water treatments, except for 7 pharmaceuticals and 1 metabolite, i.e., amantadine, carbamazepine, diclofenac, epinastine, fenofibrate, ibuprofen, iopamidol, and oseltamivir acid. The removal ratios of the advanced water treatment processes including ozonation and granular activated carbon filtration were typically much higher than those of the conventional treatment processes. The margins of exposure estimated by the ratio of daily minimum therapeutic dose to daily intake via drinking water were substantial, and therefore the pharmacological and physiological impacts of ingesting those residual substances via drinking water would be negligible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of functional geopolymers for water purification, and construction purposes

    OpenAIRE

    M. Alshaaer; B. El-Eswed; R.I. Yousef; Khalili, F.; Rahier, H

    2016-01-01

    This paper deals with the development of functional geopolymers based on local resources such as kaolinitic soil and zeolitic tuff for the construction of water storage containers and water transfer channels. The effect of water content on the mechanical performance and physical properties of synthesized geopolymers was evaluated. The results confirmed that the optimum ratio of water is 28% of clay fraction, which revealed observable improvements of physical, mechanical, and adsorption proper...

  17. Purification of contaminated water by filtration through porous glass

    Science.gov (United States)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  18. Physiological and metagenomic analyses of microbial mats involved in self-purification of mine waters contaminated with heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz Drewniak

    2016-08-01

    Full Text Available Two microbial mats found inside two old (gold and uranium mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based and metagenome (sequence-based analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction. These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals

  19. Water purification by bio-function; Seibutsu kino niyoru suishitsu joka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H. [Yamagata University, Yamagata (Japan)

    1999-11-30

    The author has been studying aquifer heat reservation method as a main theme, and from this water quality purification by bio-function has been derived as a separated theme. The aquifer heat reservation method is a method to reduce a large amount of warm water (or cold water) to underground, to reserve the heat energy for 6 months, and to utilize the hot heat in winter for warming and cold heat in summer for cooling. It was discovered during a field experiment that a doughnut-shaped iron colloid dam was formed around a heat reserving well and improved the heat recovery rate to over 60% by interfering natural convection as well as contributed to the purification of reserved water. As a result of the investigation of anaerobe contained in a peat layer for the purpose of the utilization of the purification effect, bacillus was proven to be most excellent. This paper describes experiences of the author throughout this research by dividing chapters to (1) iron bacteria, (2) bio-filter including algae, (3) peat layer, (4) bacillus. (NEDO)

  20. Influence of fermentation by-products on the purification of ethanol from water using pervaporation.

    Science.gov (United States)

    Chovau, S; Gaykawad, S; Straathof, A J J; Van der Bruggen, B

    2011-01-01

    Pervaporation is claimed to be a promising separation technique for the purification of ethanol from fermentation broths during bio-ethanol production. In this study, influence of fermentation by-products on the purification of ethanol from water during hydrophobic pervaporation was investigated. Sugars and salts were found to increase the membrane performance. Reason for this was a change in vapor/liquid equilibrium. 2,3-butanediol decreased the ethanol flux and selectivity factor, while glycerol exhibited no effect. This was explained by a strong sorption of butanediol into PDMS and no sorption of glycerol. Due to the presence of carboxylic acids, hydrophobicity degree of the Pervap 4060 membrane decreased, which resulted in an irreversible increase in water flux and decrease in separation performance. These observations suggested the presence of silicalite-based fillers in the membrane. When the pH was raised to a value above the dissociation constant, no changes in hydrophobicity degree and membrane performance were found.

  1. Technology of Water Purification With Chlorinated Derivatives and Assessment of Risk Associated With Human Exposure to These Substances

    Science.gov (United States)

    Timofeeva, S. S.; Khamidullina, Ye A.; Davydkina, O. A.; Lugovtsova, N. Yu

    2016-04-01

    In the given paper the authors consider the technology of water purification with consideration to the recommendations of the World Health Organization (WHO), European Union (EU) and standards of developed countries. Carcinogenic Unit Risk (UR) magnitude for people constantly exposed to the analyzed carcinogens in the course of a lifetime is estimated. The authors calculate and evaluate unique carcinogenic risk as a complementary probability of cancer development during the whole life of CR when introducing EU standards into water purification technology.

  2. Plasma-based water purification: Challenges and prospects for the future

    Science.gov (United States)

    Foster, John E.

    2017-05-01

    Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the

  3. Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification

    Science.gov (United States)

    Lee, Jong-Gun; Kim, Do-Yeon; Mali, Mukund G.; Al-Deyab, Salem S.; Swihart, Mark T.; Yoon, Sam S.

    2015-11-01

    Water purification membranes, capable of purifying a few to tens of milliliters of aqueous methylene blue solution in a minute, were produced by supersonically blowing graphene flakes with a nylon-6 polymeric solution. The solution-blown nylon-6 nanofibers became entangled with graphene flakes thereby locking the graphene flakes within the frame of the bendable two-dimensional film structure. This method, which yielded a 5 × 7 cm2-sized membrane in less than 10 seconds, is commercially viable owing to fast fabrication and scalability. We show that our water purification device allows a flow rate range of 0.3-4 L h-1 with a membrane area of just 5 cm2, under a pressure difference of 0.5-3.5 bar. If the membrane were scaled up to 0.5 m2, it could provide 300-4000 L h-1 flow rate, an ample supply for home use.Water purification membranes, capable of purifying a few to tens of milliliters of aqueous methylene blue solution in a minute, were produced by supersonically blowing graphene flakes with a nylon-6 polymeric solution. The solution-blown nylon-6 nanofibers became entangled with graphene flakes thereby locking the graphene flakes within the frame of the bendable two-dimensional film structure. This method, which yielded a 5 × 7 cm2-sized membrane in less than 10 seconds, is commercially viable owing to fast fabrication and scalability. We show that our water purification device allows a flow rate range of 0.3-4 L h-1 with a membrane area of just 5 cm2, under a pressure difference of 0.5-3.5 bar. If the membrane were scaled up to 0.5 m2, it could provide 300-4000 L h-1 flow rate, an ample supply for home use. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06549f

  4. RESEARCH METHODS OF WATER PURIFICATION FROM POLLUTION WITH PETROLEUM AND PETROLEUM PRODUCTS

    OpenAIRE

    Privalova N. M.; Dvadnenko M. V.; Nekrasova A. A.; Popova O. S.; Privalov D. M.

    2015-01-01

    This article provides an overview of the currently existing methods of purification of waters from pollution with petroleum and petroleum products. The most popular cleaning ways and new emerging technologies are considered. For each method of combating with petroleum pollution the circumstances and the factors are given, under which the application of this method is the most efficient and cost-effective. The article briefly describes the technology of each method, and its main strengths and ...

  5. Development of functional geopolymers for water purification, and construction purposes

    Directory of Open Access Journals (Sweden)

    M. Alshaaer

    2016-09-01

    Full Text Available This paper deals with the development of functional geopolymers based on local resources such as kaolinitic soil and zeolitic tuff for the construction of water storage containers and water transfer channels. The effect of water content on the mechanical performance and physical properties of synthesized geopolymers was evaluated. The results confirmed that the optimum ratio of water is 28% of clay fraction, which revealed observable improvements of physical, mechanical, and adsorption properties of the geopolymeric products. Such geopolymers showed the highest compressive strength, density, and maximum adsorption capacity toward cadmium among the products and precursors tested. The residual soluble salts in produced geopolymers were markedly reduced by using this optimum water content.

  6. Pollution of Municipal Water Supply System by Phthalates and Evaluation on Purification Effects of Current Water Treatment Process%邻苯二甲酸脂对城镇供水的污染及现行水处理工艺净化效果的评价

    Institute of Scientific and Technical Information of China (English)

    韩关根; 吴平谷; 王惠华; 方跃强; 马冰洁; 赵莹

    2001-01-01

    Objective To understand the pollution of municipal water supply system by phthalates and the purification effects of current water treatment process on phthalates were carried out.Methods The water samples of source water and finished water were determined for phthalate by comparative method.5 kinds of isomers of phthalate in water samples were detected by gas chromatography technique.Results In treated water samples the detectable rate and maximum contents in water samples were 100% and 76μg/L for di-n-butyl phthalate,50% and 17 μg/L for di(2-ethylhexyl) phthalate respectively.Di-methyl phthalate,di-ethyl phthalate and butyl benzyl phthalate were not found in water samples.There was no significant difference in geometric means of the contents of phthalates between source water (19.74μg/L) and finished water (18.35 μg/L),P>0.05.Conclusion The main pollutants of phthalates were di-nbulyl phthalate and di(2-ethylhexyl) phthalate in municipal water supply system.The effectiveness of removing phthalates from drinking water by current water treatment process in city and town was not satisfied.The water treatment process special for removing phthatates from drinking water should be studied and explored in further.%目的了解邻苯二甲酸酯类化合物对城镇供水的污染情况以及现行水处理工艺对该类物质的净化效果。方法采用处理前、后对照的方法,对源水和出厂水进行检测。色谱分析测试邻苯二甲酸酯类化合物五只异构体。结果出厂水中邻苯二甲酸二丁酯检出率100%,最高含量达76 μg/L。邻苯二甲酸二(2-乙基己基)酯检出率50%,最高含量17μg/L;邻苯二甲酸二甲酯、邻苯二甲酸二乙酯和邻苯二甲酸丁基苄酯三只异构体均未测出。源水中邻苯二甲酸酯类化合物的平均含量(G)为19.74 μ/L,出厂水18.35μ/L,两者差别无显著意义(P>0.05)。结论城镇供水中的邻苯二甲酸酯类化合物污染以邻苯

  7. Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.L.; Chong, M.L.; Wong, M.T.; Ong, S.L.; Ng, W.J. [Dept. of Civil Engineering, National Univ. of Singapore (Singapore); Liu, W.T. [Dept. of Civil Engineering, National Univ. of Singapore (Singapore); Nanoscience and Nanotechnology Initiative, National Univ. of Singapore (Singapore); Seah, H. [Public Utilities Board (Singapore)

    2004-07-01

    The microbial communities of membrane biofilms occurring in two full-scale water purification processes employing microfiltration (MF) and reverse osmosis (RO) membranes were characterized using a polyphasic approach that employed bacterial cultivation, 16S rDNA clone library and fluorescence in situ hybridization techniques. All methods showed that the {alpha}-proteobacteria was the largest microbial fraction in the samples, followed by the {gamma}-proteobacteria. This suggested that members of these two groups could be responsible for the biofouling on the membranes studied. Furthermore, the microbial community structures between the MF and RO samples were considerably different in composition of the most predominant 16S rDNA clones and bacterial isolates from the {alpha}-proteobacteria and only shared two common groups (Bradyrhizobium, Bosea) out of more than 17 different bacterial groups observed. The MF and RO samples further contained Planctomycetes and Fibroacter/Acidobacteria as the second predominant bacterial clones, respectively, and differed in minor bacterial clones and isolates. The community structure differences were mainly attributed to differences in feed water, process configurations and operating environments, such as the pressure and hydrodynamic conditions present in the water purification systems. (orig.)

  8. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  9. Advanced Electrochemical Oxidation Cell for Purification of Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vesitech, Inc. has developed a totally new class of water treatment technology utilizing novel carbon based electrodes that have been shown to electrochemically...

  10. Purification of drinking water by low cost method in Ethiopia

    Science.gov (United States)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  11. Electrochemical Oxidation of PAHs in Water from Harbor Sediment Purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    to contamination by PAH, heavy metals, TBT etc. In Denmark, contaminated harbor sediment is pumped ashore to inland lakes or upland sites where treatment of the runoff water is required before discharge to the recipient. In this study, electrochemical oxidation (EO) has been investigated as a method for treatment...... of the discharge water addressing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs are by-products of incomplete combustion of organic materials with recalcitrant and strong mutagenic/carcinogenic properties, due to their benzene analogue structures. PAHs are hydrophobic compounds and their persistence...... in the environment is mainly due to their low water solubility. The experimental study was performed in laboratory scale with volumes of water from 3 to 10 L in a batch recirculation experimental setup at constant temperature with a commercial one-compartment cell of tubular design with Ti/Pt90-Ir10 anode (60 cm2...

  12. Biocidal Efficacy of a Flocculating Emergency Water Purification Tablet

    Science.gov (United States)

    1994-07-01

    the manufac- Bacterial challenge. (i) Bacteria. The bacteria used were turer. Except for sample 4, particles were kept in suspension by Klebsiella ...and uninjured in Eagle’s minimal essential medium (MEM) (modified with coliforms ( Klebsiella and Eschenichia spp.) after treatment, glutamine) with 10...8217°/liter. Similar results were also obtained with K terrigena in EPA no. 2 test water. The flocculation process in turbid waters (NTU, 150 to 1,400

  13. Counterflow co-flocculation flotation for water purification.

    Science.gov (United States)

    Guo, Jinlong; Wang, Yil; Li, Dapeng; Tang, Hongxiao

    2003-05-01

    A new method for potable water treatment was brought forward and studied in this research. The treatment process was named as counterflow co-flocculation flotation (CC-FF). Pilot experiment was conducted and the operational parameters were presented. The optimized operational conditions are as follows: the detention time is 6-11 min with hydraulic load of 9-16 m3/(m2 h); the recycle ratio should be no less than 8% while the distance between the inlet of source water and recycle water should be greater than 1200 mm. If the source water turbidity was lower than 100 NTU, 0.12-0.35 mmol/L Al dosage is enough to maintain efficient turbidity removal. Since the flocculation and flotation processes were carried out in the same tank, this new technique has some advantages than the conventional flocculation-flotation methods. Firstly, the microbubbles released from recycle water will participate in the flocculation of suspended particles, hence the low-density but high shear-force-resistance flocci could be formed. Secondly, the microflocci or suspended particles will be functioned as 'nucleus' during the bubble formation from air-dissolved recycle water. Thirdly, in the midsection of the tank a blanket of bubble-microfloc aggregates could be formed, which will intercept the downward-flow flocci and upward-flow bubbles efficiently, thus keep the renovation and stability of the blanket.

  14. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    Science.gov (United States)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  15. Soils and waste water purification from oil products using combined methods under the North conditions.

    Science.gov (United States)

    Evdokimova, Galina A; Gershenkop, Alexander Sh; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadejda V

    2012-01-01

    Oil and gas production and transportation in Russia is increasingly moving to the north regions. Such regions are characterized by relatively low self-purification capacity of the natural environments from the contaminants due to slow character of the energy exchange and mass transfer processes. Off-shore field development in the Barents Sea and oil product transportation can result in contamination, as confirmed by the national and international practice of the developed oil and gas regions. The research aims at development of the soil bioremediation methods and industrial waste water purification contaminated by oil products in the north-western region of Russia. The dynamics of oil products carry-over have been investigated under the field model experiments in podzolic soils: gas condensate, diesel fuel and mazut from oil and the plants were selected for phyto-remediation of contaminated soils under high north latitudes. It is shown that soil purification from light hydrocarbons takes place during one vegetation period. In three months of the vegetation period the gas condensate was completely removed from the soil, diesel fuel - almost completely (more than 90%). Residual amounts of heavy hydrocarbons were traced, even 1.5 later. The following plants that were highly resistant to the oil product contamination were recommended for bioremediation: Phalaroides arundinacea, Festuca pratensis, Phleum pratense, Leymus arenarius. There has been developed and patented the combined method of treatment of waste water contaminated with hydrocarbons based on inorganic coagulants and local oil-oxidizing bacteria.

  16. Advances in Membrane Distillation for Water Desalination and Purification Applications

    Directory of Open Access Journals (Sweden)

    Juan Gomez

    2013-01-01

    Full Text Available Membrane distillation is a process that utilizes differences in vapor pressure to permeate water through a macro-porous membrane and reject other non-volatile constituents present in the influent water. This review considers the fundamental heat and mass transfer processes in membrane distillation, recent advances in membrane technology, module configurations, and the applications and economics of membrane distillation, and identifies areas that may lead to technological improvements in membrane distillation as well as the application characteristics required for commercial deployment.

  17. Purification of replication factors using insect and mammalian cell expression systems.

    Science.gov (United States)

    Uno, Shuji; You, Zhiying; Masai, Hisao

    2012-06-01

    Purification of factors for DNA replication in an amount sufficient for detailed biochemical characterization is essential to elucidating its mechanisms. Insect cell expression systems are commonly used for purification of the factors proven to be difficult to deal with in bacteria. We describe first the detailed protocols for purification of mammalian Mcm complexes including the Mcm2/3/4/5/6/7 heterohexamer expressed in insect cells. We then describe a convenient and economical system in which large-sized proteins and multi-factor complexes can be transiently overexpressed in human 293T cells and be rapidly purified in a large quantity. We describe various expression vectors and detailed methods for transfection and purification of various replication factors which have been difficult to obtain in a sufficient amount in other systems. Availability of efficient methods to overproduce and purify the proteins that have been challenging would facilitate the enzymatic analyses of the processes of DNA replication.

  18. Purification of waters and elimination of organochloric insecticides by means of active coal

    Directory of Open Access Journals (Sweden)

    DRAGAN MARINOVIĆ

    2010-04-01

    Full Text Available Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI: a-hexachlorocyclohexane (a-HCH, γ-hexachlorocyclohexane (lindane, heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT were investigated. OCI are highly toxic substances for the human population and their effective elimination from the environment is of paramount interest. To determine the OCI concentration in water samples, the EPA–608 method and the liquid–liquid extraction principle were applied. A procedure for OCI elimination was realized by passing the water over four columns filled with various active coals: KRF, K-81/B, NORIT ROW-0.8 and AQUA SORB CS. These active coals are carbonized coconut shells activated by different procedures. The obtained results indicated that best purification of potable and waste water achieved using a column with Norit Row-0.8 filling. Research proved that small quantities of OCI can also be effectively removed using a Norit Row-0.8 active coal filled column, without altering the organoleptic properties of the water, which meets the requirements of water purification processes.

  19. Practice and design of the self-purification system for heavy metals-bearing contaminants

    Institute of Scientific and Technical Information of China (English)

    Qian Guangren

    2008-01-01

    Many minerals in nature have self-purification capacity to hold and stabilize deleterious contaminants into their lattice structures,which can be used for treatment of heavy metals-bearing contaminants.Hydrotalcite Layer Double Hy-droxide(LDH),tobermorite Calcium Silicate Hydrate(CSH)and apatite are ubiquitous minerals in nature,having higher geochemical stability and potential for binding and stabilizing heavy metals.Based on the elucidation of crystal structure property and self-purification principles of the three minerals above,this article discussed how to design the self-purification system of heavy metal-bearing contaminants.

  20. Water Purification Unit Development for Field Army Medical Facilities.

    Science.gov (United States)

    1978-04-01

    designed to operate in one of several process configurations , i.e., semibatch , once-through continuous , recycle-and-bleed continuous , stages in... Reactor Module ,” Memorandum to W. P. Lambert , May 17 , 1977. 9. See , C. C. and Yang, P. Y . , “Water Processing Element Operation Manual , ” Contract

  1. A NEW TECHNIQUE FOR PURIFICATION OF WATER USING NATURAL COAGULANT

    Directory of Open Access Journals (Sweden)

    C. P. Pise

    2014-12-01

    Full Text Available The use of chemical coagulants is not suitable due to health and economic considerations. Studies are carried out in laboratory scale on deionized and river water containing synthetic turbidity of kaolinite. Experiments are carried out in three turbidity ranges: 150, 450, 1000 (NTU and the pH range 6-8. The efficiency of Moringa oleifera (MO seed extract and alum is examined with jar test, settling column and pilot test. The aim of this study is to find out the optimum combination of MO and alum using alum as a coagulant aid in household treatment of natural river surface water for domestic use. The various coagulant combinations with which the raw water from the river is treated include Moringa oleifera seed powder only, Alum coagulant only and blended Moringa oleifera seeds and alum in different combinations. When Moringa oleifera seed powder is used as the sole coagulant, a filter was needed to obtain an acceptable turbidity value but there was no need for pH adjustment or correction. Moringa oleifera seed powder can be used in treating household drinking water either as a sole coagulant or in combination with alum as a coagulant aid. The recommended ratio for the combined coagulant dose is 60% MO seed powder and 40% alum.

  2. Functional polyelectrolyte multilayer membranes for water purification applications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Bijay P., E-mail: bijayptripathi@yahoo.com [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Dubey, Nidhi C. [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany); Stamm, M., E-mail: stamm@ipfdd.de [Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany); Technische Universität Dresden, Department of Chemistry, 01069 Dresden (Germany)

    2013-05-15

    Highlights: ► LBL film on the surface and in to the pores was prepared via flow through method. ► The membranes showed high rejection of Congo Red with sufficiently high flux. ► High antifouling ability in terms of both organic and bio fouling was observed. -- Abstract: A diverse set of supported multilayer assemblies with controllable surface charge, hydrophilicity, and permeability to water and solute was fabricated by pressure driven permeation of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) solution through poly(ethylene terephthalate) (PET) track-etched membranes. The polyelectrolyte multilayer fabrication was confirmed by means of FTIR, SEM, AFM, ellipsometry, zetapotential, and contact angle characterization. The prepared membranes were characterized in terms of their pure water permeability, flux recovery, and resistance to organic and biofouling properties. The antifouling behavior of the membranes was assessed in terms of protein adsorption and antibacterial behavior. Finally, the membranes were tested for rejection of selected water soluble dyes to establish their usefulness for organic contaminant removal from water. The membranes were highly selective and capable of nearly complete rejection of congo red with sufficiently high fluxes. The feasibility of regenerating the prepared membranes fouled by protein was also demonstrated and good flux recovery was obtained. In summary, the multilayer approach to surface and pore modification was shown to enable the design of membranes with the unique combination of desirable separation characteristics, regenerability of the separation layer, and antifouling behavior.

  3. Research of Diatomite’s Purification Capacity to Organic Pollutants in Water

    OpenAIRE

    Peilong Xu; Juan Zhang

    2014-01-01

    The experimental study is conducted for diatomite’s purification capacity to and effects on organic pollutants. In the aspects of different dosage of diatomite, different adsorption time, etc., explore diatomite’s removal capacity to COD and nitrogen oxide in water. When 500 g diatomite and 2 L water are mixed into the precoating liquid, the pH value of the wastewater is 7, the mixed adsorption time of the wastewater and diatomite is 30 min and the dosage of aluminum chloride flocculant in 1 ...

  4. Method of water purification from chromium (VI with the presence of microorganisms

    Directory of Open Access Journals (Sweden)

    Олена Георгіївна Горшкова

    2015-09-01

    Full Text Available The high efficiency of water purification from chromium (VI by the polyfunctional bacterial suspension consisted of the association of non-pathogenic bacteria strains of the genus Pseudomonas: P. fluorescens ONU328, P. maltophilia ONU329, P. cepacia ONU327 in a volume ratio of 1:1:1 is experimentally confirmed. The method allows in the presence of hydrogen peroxide and calcium chloride to purify contaminated water from chromium (VI with concentration up to 70 mg/dm3 to values of concentration smaller than the maximum allowable concentration

  5. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration - A Prestudy

    Energy Technology Data Exchange (ETDEWEB)

    Chuanfeng Liu; Martin, Andrew [Royal Inst. of Technology, Stockholm (Sweden)

    2005-02-01

    Cost-effective, reliable, and energy efficient water treatment systems are an integral part of modern cogeneration facilities. Demineralized water is required for make-up water in district heating networks and in boilers. In addition, increasing attention has been paid to the treatment of flue gas condensate for possible recycling. A number of membrane technologies like reverse osmosis (RO) and electrode ionization (EDI) have been developed for the above applications. Besides these methods, membrane distillation (MD) is promising technology in this context. MD utilizes differences in vapor pressure to purify water via a hydrophobic membrane. The process can utilize district heat supply temperatures or low-grade steam, thus making it attractive for cogeneration applications. This investigation consists of a pre-study to evaluate the viability of membrane distillation as a new water treatment technology in cogeneration plants. Results obtained from the study will be used as an input to follow-on research, which may include the construction of a pilot plant. Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. Specific elements of this work include a literature survey, theoretical considerations of heat and mass transfer, and scale-up of experimental results. Data obtained from the test facility owned by Xzero AB and located at Royal Inst. of Technology was employed for this purpose. Actual water production was found to be lower than the theoretical maximum, illustrating the potential for improvements in MD module design. A case study considering a 10 m{sup 3} pure water/hr system is explored to shed light on commercial-scale aspects. Results show that MD is a promising alternative to RO in existing or new treatment facilities. The most favorable results were obtained for alternatives where either the district heat supply line or low-grade steam (2-3 bar, 200 deg C) are available. Specific

  6. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification

    Science.gov (United States)

    Lin, Shangchao; Buehler, Markus J.

    2013-11-01

    Two-dimensional carbon materials such as the 2D nanoweb-like graphyne membrane are promising as molecular sieves for energy and environmental applications. Based on the application of water purification - the removal of contaminants from wastewater and seawater - here we use molecular dynamics (MD) simulations to investigate the interplay between mechanical forces, filtration mechanisms, and overall performance for graphyne membranes with different pore sizes. We carry out biaxial tensile tests and verify the superior mechanical robustness and tolerance of graphyne membranes against possible deformations from the membrane installation process. A possible ultimate stress in excess of 15 GPa and an ultimate strain of 1.2-2.7% are determined. We also demonstrate their excellent filtration performance with barrier-free water permeation and perfect rejection of the representative contaminants considered here, including divalent heavy metal salts (copper sulfate), hydrophobic organic chemicals (benzene and carbon tetrachloride), and inorganic monovalent salts (sodium chloride). We find that graphtriyne, with an effective pore diameter of 3.8 Å, exhibits an optimal purification performance, because the contaminant rejection rate is more sensitive to pore size than water permeability. In addition, we find that the hydrophobic graphyne membranes exhibit higher rejection rates for hydrophilic contaminants compared to the hydrophobic ones. This size exclusion effect is a result of the larger hydrated radii of hydrophilic species due to stronger interactions between them and water molecules. Finally, we find that the maximum deformation of graphtriyne at the ultimate strain before material failure has only a minor impact on its filtration performance. One of the advantages of using graphyne for water purification is that no chemical functionalization or defects need to be introduced, which maintains the structural integrity of the membrane, and possibly, the long-term device

  7. THE USE OF MORINGA SEED EXTRACT IN WATER PURIFICATION

    Directory of Open Access Journals (Sweden)

    Daniyan Safiya Yahaya

    2011-04-01

    Full Text Available The high cost of treated water makes most people in the rural communities to resort to readily available sources which are normally of low quality exposing them to waterborne diseases. It is in this light that this research was carried out to confirm the effectiveness of powder extracted from mature-dried Moringa oleifera seeds which is commonly available in most rural communities of Africa. This was done using Completely Randomised Design with loading doses of 1, 2, 3, 4, and 6 g/l of the powder processed from Moringa seeds, and potash aluminium sulphate (alum as coagulant. A control (water from the pond with only distilled water without alum and Moringa treatments was also included. The turbidity, pH, and conductivity and total coliform were determined for all the samples. The turbidity for the samples ranged from log100.37 to log101.00NTU while the conductivity ranged from log101.56 to log102.86µS/cm. The 6 g/l treatment of Moringa and 4 and 6 g/l potash alum treatments gave values that are acceptable according to the World Health Organization (WHO guidelines for safe drinking water. The control sample gave the higher extremes values which are unacceptable. The pH values (7.29 to 7.89 obtained for the treatments were in the recommended range set by World Health Organization (WHO. Comparative studies with potash alum showed that the seed was effective in the sedimentation of inorganic and organic matter in raw water. It reduced the total microbial and coliform counts by 55% and 65%, respectively, after 24 hours whereas potash alum achieved 65% and 85% reduction under similar condition. The Most Probable Number per 100 ml for total coliform counts had values from 3 to 23 at 95% confidence limits. The Moringa treatment gave lower counts. Findings of this research lend support to earlier works recommending the use of Moringa for water treatment.

  8. The Military Efficacy of Individual Water Purification Filters.

    Science.gov (United States)

    1990-12-01

    enteric bacteria ( Klebsiella terrigena ), protozoan cysts (Cryptosporidium -arvum), 3nd cyst simulants. Studies used the U.S. Environmental Protection...cel s needed to achieve a seed concentration of 1.0 X 10 /ml. Klebsiella terrigena bacteria were grown in nutrient broth for 24 hours in a 35°C...FIELD GROUP -SUB-GROUP Water, Point of Use, Filtration, Ceramic Candle, 06 09 Microorganisms, Cryptosporidium, Klebsiella 24 04 19. ABSTRACT (Continue on

  9. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material

    Energy Technology Data Exchange (ETDEWEB)

    Giunta, Pablo; Amadeo, Norma; Laborde, Miguel [Facultad de Ingenieria, Universidad de Buenos Aires, Laboratorio de Procesos Cataliticos, Pabellon de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mosquera, Carlos [Facultad de Ingenieria, Universidad de Buenos Aires, Departamento de Fisica, 1063 Buenos Aires (Argentina)

    2007-01-10

    A process to produce 'fuel-cell grade' hydrogen from ethanol steam reforming is analyzed from a thermodynamic point of view. The hydrogen purification process consists of WGS and COPROX reactors. Equations to evaluate the efficiency of the system, including the fuel cell, are presented. A heat exchange network is proposed in order to improve the exploitation of the available power. The effect of key variables such as the reformer temperature and the ethanol/water molar feed ratio on the fuel-cell efficiency is discussed. Results show that it is feasible to carry out the energy integration of the hydrogen catalytic production and purification-PEM fuel-cell system, using ethanol as raw material. The technology of 'fuel-cell grade' hydrogen production using ethanol as raw material is a very attractive alternative to those technologies based in fossil fuels. (author)

  10. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    2011-11-24

    Nov 24, 2011 ... causes water-borne diseases such as diarrhoea, which often lead to deaths, children being the most vulnerable. Therefore ... The 600 µm and 900 µm pots could reduce the total coliform ... disinfection systems; sunlight exposure techniques such ... arsenic contaminants from water and its potential for use in.

  11. Purification of liquid metal systems with sodium coolant from oxygen using getters

    Science.gov (United States)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  12. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration. Pilot Plant Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kullab, Alaa; Martin, Andrew

    2007-12-15

    Water treatment is an important auxiliary process in all thermal cogeneration plants. In this context membrane distillation (MD) is a novel technology that is potentially advantageous to technologies like reverse osmosis in the following ways: ability to utilize low-grade heat; reduced sensitivity to fluctuations in pH or salt concentrations; and lower capital and operation and maintenance costs (assumed in the case of fully-developed technology only). This research is a continuation of a Varmeforsk prestudy (report no. 909) and encompasses field trials at Idbaecken Combined Heat and Power (CHP) Facility (Nykoeping). Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. The test rig consisted of a five-module MD unit capable of producing 1-2 m3/day purified water. District heating supply was employed for heating; feed stocks include municipal water and flue gas condensate. Field trials can be divided into three phases: (1) parametric study of yield; (2) long term operation with municipal water as feed stock; and (3) evaluation of flue gas condensate as a feed stock. Testing commenced in the beginning of April 2006. The performance of MD concerning production rate is highly dependent on the feed stock temperature, flow rate and temperature difference across the membrane. Initial results for municipal water feed stocks showed that product water fluxes were in line with previous experiments, thus confirming the findings made in the prestudy. Connecting several MD modules in series has the advantage of reducing the electrical energy consumption needed for recirculation; the penalty comes in less efficient operation from flux point of view. This is more critical in the case of low flow rates, and hence much careful design studies are needed to optimize the system. Regarding the long term performance, the test period lasted for 13 days on a continuous operation basis before the first flux

  13. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration. Pilot Plant Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kullab, Alaa; Martin, Andrew

    2007-12-15

    Water treatment is an important auxiliary process in all thermal cogeneration plants. In this context membrane distillation (MD) is a novel technology that is potentially advantageous to technologies like reverse osmosis in the following ways: ability to utilize low-grade heat; reduced sensitivity to fluctuations in pH or salt concentrations; and lower capital and operation and maintenance costs (assumed in the case of fully-developed technology only). This research is a continuation of a Varmeforsk prestudy (report no. 909) and encompasses field trials at Idbaecken Combined Heat and Power (CHP) Facility (Nykoeping). Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. The test rig consisted of a five-module MD unit capable of producing 1-2 m3/day purified water. District heating supply was employed for heating; feed stocks include municipal water and flue gas condensate. Field trials can be divided into three phases: (1) parametric study of yield; (2) long term operation with municipal water as feed stock; and (3) evaluation of flue gas condensate as a feed stock. Testing commenced in the beginning of April 2006. The performance of MD concerning production rate is highly dependent on the feed stock temperature, flow rate and temperature difference across the membrane. Initial results for municipal water feed stocks showed that product water fluxes were in line with previous experiments, thus confirming the findings made in the prestudy. Connecting several MD modules in series has the advantage of reducing the electrical energy consumption needed for recirculation; the penalty comes in less efficient operation from flux point of view. This is more critical in the case of low flow rates, and hence much careful design studies are needed to optimize the system. Regarding the long term performance, the test period lasted for 13 days on a continuous operation basis before the first flux

  14. Amyloid-carbon hybrid membranes for universal water purification

    Science.gov (United States)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  15. Amyloid-carbon hybrid membranes for universal water purification.

    Science.gov (United States)

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.

  16. The study of recirculating aquaculture system in pond and its purification effect

    Science.gov (United States)

    Qu, Jiangqi; Zhang, Qingjing; Jia, Chengxia; Liu, Pan; Yang, Mu

    2017-05-01

    In this paper, a recirculating aquaculture purification system (RAPS) was designed to solve the problems of aquaculture pollution and shortage of freshwater resource according to the characteristic of northern freshwater ponds of China. The system were arranged in series and composed of high density culture pond, deposit pond, floating and submerged plant pond, ecological floating bed pond and biofilm filtrate pond. At the fish density of 20~30kg/m3 in the high density culture pond, the water quality parameters were monitored seasonally. The results indicated that the removal rate of total nitrogen, total phosphorus, ammonia nitrogen and nitrite nitrogen in the recirculating aquaculture system were 69.59%, 77.89%, 72.54% and 68.68%, respectively. The floating and submerged plant pond and ecological floating bed pond can remove TN and TP obviously, and increase dissolved oxygen and transparency significantly. And the biofilm filtrate pond has good effect of removing ammonium nitrogen and nitrite nitrogen, meanwhile, the microbial communities in the recirculating aquaculture system regulate on the water quality. Therefore, the RAPS show significant effects on water saving and pollution emission reducing.

  17. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications

    Science.gov (United States)

    Yeo, J.; Kim, S. Y.; Kim, S.; Ryu, D. Y.; Kim, T.-H.; Park, M. J.

    2012-06-01

    The effective removal of ionic pollutants from contaminated water using negatively charged nanofiltration membranes is demonstrated. Block copolymers comprising polystyrene (PS) and partially hydrogenated polyisoprene (hPI) were synthesized by varying chain architectures. A one step procedure of cross-linking (hPI blocks) and sulfonation reactions (PS chains) was then carried out, which was revealed as an effective method to enhance mechanical integrity of membranes while hydrophilic sulfonated chains remain intact. In particular, the control of chain architecture allows us to create a synergetic effect on optimizing charge densities of the membrane, water permeability, and mechanical integrity under water purification conditions. The best performing membrane can almost completely (>99%) reject various divalent cations and also show NO3- rejection > 85% and Na+ rejection > 87%. Well defined nanostructures (tens of nanometers) as well as the periodically arranged water domains (a few nanometers) within hydrophilic phases of the hydrated membranes were confirmed by in situ neutron scattering experiments.

  18. Evaluation of systems for purification of fuel gas from anaerobic digestion. Engineering report

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Augenstein, D. C.; Yeung, J. C.; Hossan, R. J.; Duret, G. L.

    1978-07-30

    Fuel gas obtained from the anaerobic digestion of waste materials usually needs to be treated before being transmitted in existing pipeline systems. The purification scheme involves the removal of carbon dioxide, hydrogen sulfide, and moisture from the digester gas to meet pipeline specifications. Gas treatment systems for the handling of 0.1, 1.0, and 3.0 MM Scfd of raw feed gas and product delivery pressures of 125 and 1000 psia were considered in this study. From the results of an economic and technical analysis of these systems, physical absorption systems, particularly water scrubbing, were found to be the most economical system for the treatment of digester gas with the flow streams considered. The Fluor Solvent process was economically comparable with the water scrubbing process for high pressure applications, but the value presented had a large uncertainty. The commercial chemical absorption systems were less economical due to high heat requirements for solvent regeneration. Among the chemical absorption processes, the hot potassium systems were found to be more economical than the amine system. The molecular sieve adsorption process was economically similar to the chemical absorption process. The GE membrane separation process was economically comparable for both high and low pressure apllications, but this system has not been evaluated in real-life conditions. Since no kinetic and equilibrium data were available for the phosphate buffer system, estimates had to be assumed. Using what were believed to be very conservative estimates, this chemical absorption process was found to be economically competitive with the water scrubbing process for treating gas with a delivery pressure of 125 psia.The cost analyses in this study were based on the assumption of no recovery of the CO/sub 2/ by-product. It was found that credits for the recovery of the CO/sub 2/ could be significant.

  19. TiO2-Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available Recent years have witnessed a rapid accumulation of investigations on TiO2-based photocatalysis, which poses as a greatly promising advanced oxidation technology for water purification. As the ability of this advanced oxidation process is well demonstrated in lab and pilot scales to decompose numerous recalcitrant organic compounds and microorganism as well in water, further overpass of the hurdles that stand before the real application has become increasingly important. This review focuses on the fundamentals that govern the actual water purification process, including the fabrication of engineered TiO2-based photocatalysts, process optimization, reactor design, and economic consideration. The state of the art of photocatalyst preparation, strategies for process optimization, and reactor design determines the enhanced separation of photo-excited electron-hole (e-h pairs on the TiO2 surface. For the process optimization, the kinetic analysis including the rate-determining steps is in need. For large-scale application of the TiO2-based photocatalysis, economics is vital to balance the fundamentals and the applied factors. The fundamentals in this review are addressed from the perspective of a bridge to the real applications. This review would bring valuably alternative paradigm to the scientists and engineers for their associated research and development activities with an attempt to push the TiO2-based photocatalysis towards industrially feasible applications.

  20. Effect of gelatin on the water dispersion and centrifugal purification of single-walled carbon nanotubes

    Science.gov (United States)

    Hanium Maria, Kazi; Mieno, Tetsu

    2016-01-01

    We report a convenient and effective procedure for the water dispersion and purification of single-walled carbon nanotubes (SWNTs). The purification procedure involves a combination of dispersion and centrifugation, in which gelatin; an environmentally friendly material is used as a dispersing agent. It has been found that an aqueous solution of gelatin effectively disperses SWNTs for more than a month. Another advantage of using gelatin as a dispersing agent is that it can be easily removed by washing with water and filtration. The centrifugation procedure employs a centrifugal force of about 2500 times the gravitational force to separate the particles. Although carbonaceous and metallic impurities usually have higher density than SWNTs in arc-produced carbon soot, the centrifugation can easily remove impurities leaving undamaged SWNTs in solution when appropriate centrifugal force and a centrifugation time are used. Centrifugation is carried out for three times to sufficiently remove impurities. Finally, the SWNTs are separated from the gelatin by heating in water and filtering.

  1. The Relationship between the Area of Aquaculture Pond and Purification Pond in Water Circulation Aquaculture System%池塘循环水养殖模式下养殖面积与净化面积的配比关系研究

    Institute of Scientific and Technical Information of China (English)

    宋超; 陈家长; 戈贤平; 孟顺龙; 范立民; 胡庚东

    2013-01-01

    The establishment of water circulation aquaculture system realized the hierarchical use of nitrogen,phosphorus and other eutrophic substances in aquaculture wastewater and the recirculation use of water resource.However,no research has been reported on the detailed calculation of the relationship between the area of aquaculture pond and purification pond.In this study,referring to the absorption ability of aquatic plants to pollutants in aquaculture wastewater and pollutant generation and discharge coefficient in aquaculture pond,based on the general rules of water quality management in freshwater aquaculture system,a calculation mode was established to investigate the relationship between the area of aquaculture pond and purification pond in freshwater recirculation aquaculture system,which was feasible to explain related cases and would provide theoretical basis to reduce the economic costs in the construction of water circulation aquaculture system and realize the balance between the ecological benefits and the economic benefits.%池塘循环水养殖模式的构建实现了养殖废水中氮、磷等富营养化物质的分级利用和水资源的循环使用,但此前的研究并没有详细计算养殖面积和净化面积合理的配比关系.通过参照水生植物对养殖尾水中污染物的吸收能力和养殖鱼类的产排污系数,再结合淡水池塘养殖过程中的水质管理的一般规律,给出了淡水池塘循环水养殖模式中养殖池塘面积和净化池塘面积之间配比关系的计算方法.利用该计算方法来解释此前相关的研究实例,也证明是可行的.该计算模型的构建为今后在池塘循环水养殖模式构建中降低经济成本,为最终实现生态效益对经济效益的补偿提供了理论基础.

  2. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    Science.gov (United States)

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  3. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst.

  4. Using problem-based learning to improve students' creative thinking skills on water purification

    Science.gov (United States)

    Wahyu, Wawan; Kurnia, Eli, Rohaeni Nur

    2016-02-01

    The aim of this study is to obtain information about the using Problem-based Learning (PBL) to improve students' creative thinking skills on water purification. The research adopted quasi-experimental method with one group pre-test-post-test design, involving 31students of class XI in one SMK in Cimahi as the subjects of study. The students were divided into three groups categories: high, medium, and low based on the average grades of daily tests. The used instruments in this study were essay, observation sheet, questionnaire (Likert scale), and interview sheet Aspects of creative thinking skills are developed including: fluency, flexibility, originality, detailing (elaborative), and judging (evaluative). To identify the improvement of students' creative thinking skills on water purification, "normalized gain" or of the pre-test and post-test scores was calculated. The results showed that PBL can enhance students' creative thinking skills by means high category (percentage of = 70.12%). This nformation can be used as an input to teachers in the school and teacher education programs.

  5. Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification.

    Science.gov (United States)

    Sankar, Mohan Udhaya; Aigal, Sahaja; Maliyekkal, Shihabudheen M; Chaudhary, Amrita; Anshup; Kumar, Avula Anil; Chaudhari, Kamalesh; Pradeep, Thalappil

    2013-05-21

    Creation of affordable materials for constant release of silver ions in water is one of the most promising ways to provide microbially safe drinking water for all. Combining the capacity of diverse nanocomposites to scavenge toxic species such as arsenic, lead, and other contaminants along with the above capability can result in affordable, all-inclusive drinking water purifiers that can function without electricity. The critical problem in achieving this is the synthesis of stable materials that can release silver ions continuously in the presence of complex species usually present in drinking water that deposit and cause scaling on nanomaterial surfaces. Here we show that such constant release materials can be synthesized in a simple and effective fashion in water itself without the use of electrical power. The nanocomposite exhibits river sand-like properties, such as higher shear strength in loose and wet forms. These materials have been used to develop an affordable water purifier to deliver clean drinking water at US $2.5/y per family. The ability to prepare nanostructured compositions at near ambient temperature has wide relevance for adsorption-based water purification.

  6. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    CERN Document Server

    Jianqin, Zhang; Zhuo, Zhang; Rui, Ge

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders. After purification, the purified helium has an impurity content of less than 5ppm.

  7. Determination of optimal parameters of purification water surface from oil and oil products by sorbent on the basis of worn automobile tires

    OpenAIRE

    YUSUBOV FAXRADDIN VALI; SHIXALIYEV КARAM SEYFI; ABDULLAYEVA МAYA YADIGAR

    2016-01-01

    The article describes an identification of optimal parameters for surface water purification from oil and oil products by sorbent based on worn automotive tires. In thus Optimal parameters for water surface purification from oil and oil products by sorbent have been found out on the basis of constructed regression model of the process.

  8. Purification Performance and Production of a Re-circulating Pond Aquaculture System Based on Paddy Field

    Directory of Open Access Journals (Sweden)

    Gu Li

    2012-10-01

    Full Text Available Developing improved aquaculture systems with a more efficient use of water and less environmental impact is becoming a crying need. A re-circulating aquaculture system consisting of paddy field and fish pond is a new culture mode due to aquaculture combing with agriculture. The present study focused on the purification capacity of the paddy field on nitrogen, phosphorus and organic matter, the fluctuation trend of water quality conditions during the whole rearing process and the culture efficacy of the main culture species of grass carp (Ctenopharyngodon idella. The results were as follows: under a flow rate of 1.4-5.5 m3/h for the recirculation treatment, the average removal rate of ammonia nitrogen, nitrate nitrogen, total nitrogen, total phosphorus and biochemical oxygen demand for the aquaculture effluent amounted to 40.5, 43.5, 31.9, 23.9, 20.7 and 52.4%, respectively, But the dissolved oxygen content in the rice fields increased obviously. During the whole process of fish rearing, the main physicochemical parameters of water quality for the experimental ponds were all maintained at a suitable level for the growth of the grass carp. In addition, there were significant differences (p<0.05 in DO, TSS, NH4+ -N, NO--N, BOD5 and Chl-&alpha between the experimental and control ponds. As far as the yield per unit and survival rate was concerned, the level of the experimental ponds was obviously higher than that of the control, while the feed conversion ratio displayed the opposite trend. Overall, the new aquaculture system realized the double aims of water reuse and the reduction of waste water discharge.

  9. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    Science.gov (United States)

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  10. Features of water purification from Vuoksa river during the summer period

    Directory of Open Access Journals (Sweden)

    N.I. Vatin

    2010-03-01

    Full Text Available Purification of water from the river Vuoksi of the Karelian Isthmus of Russia to drinking water quality is important and serious problem.Fluctuations in the composition of these waters in the summer, not only related to the hydrometeorological situation, but with increasing human influence on the ecosystem of the river Vuoksi greatly complicate usually adopted for such waters coagulation treatment.The instability of such indicators of these waters, as alkalinity, permanganate oxidation and content of hydrocarbons led to the application in the standard scheme of the coagulation treatment by aluminum sulfate, the second correction batcher solution of alkali.Such approach has allowed to ensure optimum coagulation, however, demanded constant monitoring the water parameters, which is associated with considerable costs.The scheme of two batchers made it possible to use a aluminum oxychloride as a coagulant, which did not give satisfactory coagulation in these conditions without adjustment.Treatment plant has also been supplemented by sorption filters (activated carbon and natural zeolite, which allowed to eliminate odors and flavors, as well as impurities Fe2 +, Mn2 + and Zn2 +, admitted to the source water from corroding steel (Zn pipeline in significant amounts (0.6 - 3.6 mg / L, which were not eliminated by conventional coagulation scheme.

  11. Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems

    OpenAIRE

    2002-01-01

    Penicillin acylase purification from an Escherichia coli crude extract using PEG 3350 – sodium citrate aqueous two phase systems was optimized. An experimental design was used to evaluate the influence of PEG, sodium citrate and sodium chloride on the purification parameters. A central composite design was defined centred on the previously found conditions for highest purification from an osmotic shock extract. Mathematical models for the partition coefficient of protein and enzyme, balance o...

  12. 关于人工湿地水质净化技术分析%Analysis on Artificial Wetland Water Purification Technology

    Institute of Scientific and Technical Information of China (English)

    刘继凯; 陈玉涛

    2016-01-01

    The wetland is the humid area of land and water, artificial wetland sewage purification function, with its unique increasingly attention from all walks of life� Papers on the related concepts of artificial wetland and characteristics are analyzed, and water quality purification of artificial wetland system was analyzed, and the artificial wetland water purification technology in sewage treatment has a very broad application prospects.%湿地是陆地的潮湿地带和水体,人工湿地以其独有的污水净化功能,日益受到各界的关注。本文对人工湿地的相关概念和特点进行了分析,并对人工湿地系统水质净化技术进行了分析,人工湿地水质净化技术在污水深度处理中具有非常广阔的应用前景。

  13. A review of iron species for visible-light photocatalytic water purification.

    Science.gov (United States)

    Jack, Russell S; Ayoko, Godwin A; Adebajo, Moses O; Frost, Ray L

    2015-05-01

    Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H₂O₂. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.

  14. 池塘循环水养殖模式下养殖面积与净化面积的配比关系研究%The Relationship between the Area of Fish Pond and Purification Pond in the Model of the Water Circulation Pond Aquaculture System

    Institute of Scientific and Technical Information of China (English)

    宋超; 裘丽萍; 瞿建宏; 范立民; 孟顺龙; 胡庚东

    2012-01-01

    To provide a detailed computational mode on the relationship between the area of fish pond and purification pond, and realize the hierarchical use of nitrogen/phosphorus, and the recirculation use of water resource. In this paper, referred to the absorption ability of aquatic plants to waste water, the ratio of produce to discharge of the pollutants in fish pond, and the water quality management in freshwater aquaculture, a mode was provided to explain that the construction of the water circulation pond aquaculture system was feasible. Taken the nitrogen in Grass carp aquaculture for example, the results computed by this mode, showed that the basic area ratio between fish pond and purification pond was 15:1; in the term of the absorption ability of aquatic plants to waste water, the area ratio was 7.5:1; and in the term of the ratio of produce to discharge of the pollutants in fish pond, the area ratio was 27.8:1. Different aquaculture yield and variety would influence that ratio. It was feasible to reduce the area of purification pond by increase the absorption ability of aquatic plants to waste water. This computational model could also reduced the cost to construction of the model, and realized the balance of the ecological benefit and the economic benefit.%为了详细计算池塘循环水养殖模式养殖面积和净化面积合理的配比关系,使养殖废水中氮、磷等富营养化物质的分级利用和水资源的循环使用更加合理.通过参照水生植物对养殖尾水中污染物的吸收能力和养殖鱼类的产排污系数,再结合淡水池塘养殖过程中水质管理的一般规律,给出了淡水池塘循环水养殖模式中养殖池塘面积和净化池塘面积之间配比关系的计算方法.以养殖草鱼为例,通过该计算方法,结果表明:以总氮的去除为例,养殖池塘和净化池塘的基本面积比为15∶1;按养殖池塘所排放的污染物浓度计算,一亩净化池塘可以净化7.5亩养殖池塘;按

  15. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  16. Preparation and Purification of 125I With Neutron Irradiated Xenon in a Vacuum Circular system

    Institute of Scientific and Technical Information of China (English)

    MIAOZeng-xing; LIYu-cheng; YUNing-wen; WUJie; XIANGXue-qin; ZHAOXiu-yan

    2003-01-01

    This paper describes the preparation and purification of 125I with neutron irradiated xenon in a vacuum circular system, which is specially designed with an irradiate chamber set inside of the reactor and three decay chambers set outside of the reactor. The xenon is filled in this system and recurrently circulates between the irradiate chamber and the decay chambers during the reactor is operating.

  17. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).

    Science.gov (United States)

    Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B

    2013-02-01

    This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.

  18. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  19. Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil-water separation and water purification by graphene.

    Science.gov (United States)

    Yoon, Hyun; Na, Seung-Heon; Choi, Jae-Young; Latthe, Sanjay S; Swihart, Mark T; Al-Deyab, Salem S; Yoon, Sam S

    2014-10-07

    We prepared a simple, low-cost membrane suitable for gravity-driven oil-water separation and water purification. Composite membranes with selective wettability were fabricated from a mixture of aqueous poly(diallyldimethylammonium chloride) solution, sodium perfluorooctanoate, and silica nanoparticles. Simply dip-coating a stainless steel mesh using this mixture produced the oil-water separator. The contact angles (CAs) of hexadecane and water on the prepared composite membranes were 95 ± 2° and 0°, respectively, showing the oleophobicity and superhydrophilicity of the membrane. In addition, a graphene plug was stacked below the membrane to remove water-soluble organics by adsorption. As a result, this multifunctional device not only separates hexadecane from water, but also purifies water by the permeation of the separated water through the graphene plug. Here, methylene blue (MB) was removed as a demonstration. Membranes were characterized by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy to elucidate the origin of their selective wettability.

  20. Desorption of arsenic from exhaust activated carbons used for water purification.

    Science.gov (United States)

    Di Natale, F; Erto, A; Lancia, A

    2013-09-15

    This work aims to the analysis of arsenic desorption from an exhaust activated carbon used for the purification of a natural water. This last was used to mimic the properties of common groundwater or drinking water. Different low-cost and harmless eluting solutions were considered, including distilled water, natural water, saline (NaCl, CaCl₂ and NaNO₃) and basic (NaOH) solutions. Experimental results showed that, for 1g of activated carbon with arsenic loading close to the maximum value available for the model natural water (ω ≈ 0.1 mg/g), it is possible to recover more than 80% of the arsenic using 20 ml of 0.1 M sodium chloride solution. A temperature variation within 20 and 40 °C has scarce effect on desorption efficiency. A comparison between desorption data and adsorption isotherms data suggests that arsenic adsorption is actually a reversible process. Therefore, it is virtually possible to increase arsenic recovery efficiency close to 100% by increasing the NaCl concentration or the volume of the desorption solution, but a preliminary cost benefit analysis lead to consider a NaCl 0.1M solution as an optimal solution for practical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process

    Institute of Scientific and Technical Information of China (English)

    张荟钦; 仲兆祥; 李卫星; 邢卫红; 金万勤

    2014-01-01

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant in-fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m-2·h-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45%and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

  2. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  3. PERFORMANCE EVALUATION OF NATURAL HERBS FOR ANTIBACTERIAL ACTIVITY IN WATER PURIFICATION

    Directory of Open Access Journals (Sweden)

    SUNIL B. SOMANI

    2011-09-01

    Full Text Available The aim of this study was to evaluate the effectiveness of natural herbs for antibacterial activity in water purification. The antimicrobial activity of Tulsi (Ocimum Sanctum, Neem (Azadirachta indica, Wheatgrass (Triticum Aestivum, Amla (Phyllanthus Emblica and Katakphala (Strychnos Potatorum were tested by Disc Diffusion Method (Kirby –Bauer Method after extracting the dried material powder of natural herbs in 50% alcohol (ethanol. An antibacterial activity was observed in all herbs used. Most effective an antibacterial activity were observed in Tulsi, Neem and Wheat. In all herbs maximum removal of E.coli was found at 30 minutes contact time onwards. The percentage removal of E.coli were found 82.05% , 71.79% , 64.1% , 41.03% & 28.20% by using Tulsi, Neem , Wheatgrass , Amla and Katakphala herbs extract respectively, at 30 minute optimum contact time. The optimum removal of E.coli was observed at 1% concentration of extract of different herbs used.

  4. Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air

    Science.gov (United States)

    Bordunov, S. V.; Galtseva, O. V.; Natalinova, N. M.; Rogachev, A. A.; Zhang, Ruizhi

    2017-01-01

    A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals.

  5. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  6. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    Science.gov (United States)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  7. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  8. The Brookside Farm Wetland Ecosystem Treatment (WET System: A Low-Energy Methodology for Sewage Purification, Biomass Production (Yield, Flood Resilience and Biodiversity Enhancement

    Directory of Open Access Journals (Sweden)

    Julian C. Abrahams

    2017-01-01

    Full Text Available Wastewater from domestic developments, farms and agro-industrial processing can be sources of pollution in the environment; current wastewater management methods are usually machine-based, and thus energy consuming. When Permaculture Principles are used in the creation of water purification and harvesting systems, there can be multiple environmental and economic benefits. In the context of energy descent, it may be considered desirable to treat wastewater using minimal energy. The constructed wetland design presented here is a low-entropy system in which wastewater is harvested and transformed into lush and productive wetland, eliminating the requirement for non-renewable energy in water purification, and also maximising benefits: biodiversity, flood resilience and yield. In permaculture design, the high concentrations of nitrogen and phosphorous compounds in sewage are viewed as valuable nutrients, resources to be harvested by a constructed wetland ecosystem and converted into useful yield. Similarly, rainwater runoff is not viewed as a problem which can cause flooding, but as a potential resource to be harvested to provide a yield. This paper presents a case study, with both water quality and productivity data, from Brookside Farm UK, where the use of Permaculture Design Principles has created a combined wastewater management and purification system, accepting all site water.

  9. Incorporation of copper nanoparticles into paper for point-of-use water purification.

    Science.gov (United States)

    Dankovich, Theresa A; Smith, James A

    2014-10-15

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment.

  11. Diffusion bonded matrix of HGMF applied for BWR condensate water purification

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Fumitaka; Yukawa, Takao; Ito, Kazuyuki

    1984-03-01

    A high Gradient Magnetic Filter (HGMF) applied to the purification of power plant primary water has recently attracted much attention. In the application of HGMF to the water treatment of power plants, especially nuclear power plants, reliabillties of matrix (filtering medium) as well as removal performance for cruds (insoluble corrosion products) are considered to be important factors. To satisfy these factors, a new filtering medium named Diffision Bonded Matrix (DBM) has been developed and the test results are reported. Filtering efficiency and mechanical stiffness of DBM were examined using HGMF pilot test units consisting of 160 mm diameters x 240 mm length filter. The filtering velocity and the magnetic flux density used in this test were 800 m/h 5 kG, respectively. The filtering efficiencies and of 85-100% were obtained for artificial cruds for DBM. The DBM indicated slightly better filtering efficiency than for conventional wool matrix under the same filtering and matrix conditions. The DBM kept its original mechanical properties and very few pieces of fibers were broken off while the conventional wool matrix lost its volume elasticities and the considerable amount of fibers was broken off during the test operation. The results described here demonstrated the applicability of DBM for treatment of BWR primary water by High Gradient Magnetic Filter.

  12. Hamiltonian purification

    Energy Technology Data Exchange (ETDEWEB)

    Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  13. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  14. Total count of microorganisms contaminating water supply system of Ismailia City, Egypt.

    Science.gov (United States)

    Dewedar, A; Abdel Monem, M H; Hussein, M E; Mansour, S

    1990-12-01

    The efficiency of water purification in the French and the British systems of Ismailia city was evaluated concerning the contaminating microorganisms. Counting of microbial contaminants was based on the phenotypic characters of the colony type. Colony-types of eubacteria, eumycetes, Micromonospores and Streptomyces enumerated in the crude water and the different steps of purification. Total counts of microflora in both systems were higher than the counts in canal water. Meanwhile, microbial isolates were higher in the French system than that of the British one. The increased counts in tap water, compared with canal water, were recorded in winter for bacteria and in spring for fungi. These data showed variations in the microbial total counts according to: plant system, steps of purification, chlorination season and type of microbes.

  15. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  16. Water Purification, Distribution and Sewage Disposal. Appropriate Technologies for Development. Reprint R-29.

    Science.gov (United States)

    1979

    This document, designed to serve as a training manual for technical instructors and as a field resource reference for Peace Corps volunteers, consists of nine units. Unit topics focus on: (1) water supply sources; (2) water treatment; (3) planning water distribution systems; (4) characteristics of an adequate system; (5) construction techniques;…

  17. Purification of uranothorite solid solutions from polyphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, Nicolas, E-mail: nicolas.clavier@icsm.fr [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Szenknect, Stéphanie; Costin, Dan Tiberiu; Mesbah, Adel; Ravaux, Johann [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France); Poinssot, Christophe [CEA/DEN/DRCP/DIR, Site de Marcoule – Bât. 400, BP 17171, 30207 Bagnols/Cèze cedex (France); Dacheux, Nicolas [ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule – Bât. 426, BP 17171, 30207 Bagnols/Cèze cedex (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Purification of Th{sub 1−x}U{sub x}SiO{sub 4} uranothorites from oxide mixture was investigated. •Repetition of centrifugation steps was discarded due to poor recovery yields. •Successive washings in acid and basic media allowed the elimination of oxide secondary phases. •Structural and microstructural characterization of the purified samples was provided. -- Abstract: The mineral coffinite, nominally USiO{sub 4}, and associated Th{sub 1−x}U{sub x}SiO{sub 4} uranothorite solid solutions are of great interest from a geochemical point of view and in the case of the direct storage of spent nuclear fuels. Nevertheless, they clearly exhibit a lack in the evaluation of their thermodynamic data, mainly because of the difficulties linked with their preparation as pure phases. This paper thus presents physical and chemical methods aiming to separate uranothorite solid solutions from oxide additional phases such as amorphous SiO{sub 2} and nanometric crystallized Th{sub 1−y}U{sub y}O{sub 2}. The repetition of centrifugation steps envisaged in first place was rapidly dropped due to poor recovery yields, to the benefit of successive washings in acid then basic media. Under both static and dynamic flow rates (i.e. low or high rate of leachate renewal), ICP-AES (Inductively Coupled Plasma – Atomic Emission Spectroscopy) analyses revealed the systematic elimination of Th{sub 1−y}U{sub y}O{sub 2} in acid media and of SiO{sub 2} in basic media. Nevertheless, two successive steps were always needed to reach pure samples. On this basis, a first cycle performed in static conditions was chosen to eliminate the major part of the accessory phases while a second one, in dynamic conditions, allowed the elimination of the residual impurities. The complete purification of the samples was finally evidenced through the characterization of the samples by the means of PXRD (Powder X-Ray Diffraction), SEM (Scanning Electron

  18. Effect in water purification by airlift sand filter in aquaculture system%气提式砂滤器在水产养殖系统中的水质净化效果

    Institute of Scientific and Technical Information of China (English)

    于冬冬; 倪琦; 庄保陆; 张宇雷; 单建军; 管崇武; 张成林; 吴凡

    2014-01-01

    Traditional pressure sand filter after long time working intercepts large amounts of solid particles and leads to difficult backwash. In order to solve these problems, this study developed an airlift sand filter that can backwash itself while operating by optimizing a traditional filter. The airlift sand filter itself had filtration, separation, flotation, and self-cleaning functions, and could replace the traditional sand filters such as filter cell without valve, mechanical air flotation and other physical filtration device in aquaculture workshop. In the airlift sand filter, quartz sand (in diameter of 1-2 mm) was used as the filter medium, and the aquaculture sewage was flowed upward slowly from the bottom, thus quartz sand could intercept the suspended solids. Meanwhile, the fixed flow gas flowed from the bottom pushed dirt and quartz sand upwards simultaneously. During this process, sand and water were sufficiently contacted with each other. The interaction force between the sand and seawater resulted in production of a large number of bubbles. The suspended solids were then wrapped with the bubbles while quartz sand was cleaned by the sand washing device on the top of the system. The cleaned sand fallen back to the filter system by the gravity, and the suspended solids and waste water flowed out of the outfall. The airlift sand filter has the advantages of simple equipment, convenient operation, backwash without stopping the equipment, smooth and continuous system running, low energy consumption and easy to maintain and repair. The efficiency of the airlift sand filter used for marine recirculating aquaculture systems of the suspended solids (SS) and chemical oxygen demand (COD) was tested. Results showed that removal efficiency of SS and COD by this filter was 41.31%and 34.04%, respectively. Before the filtration, the number of large particles suspended solids (60 μm or higher) was 11.1%, its mass fraction was 71.77% and its mass concentration was 93.53 mg

  19. Purification of contaminated paddy fields by clean water irrigation over two decades.

    Science.gov (United States)

    Tai, Yiping; Lu, Huanping; Li, Zhian; Zhuang, Ping; Zou, Bi; Xia, Hanping; Wang, Faming; Wang, Gang; Duan, Jun; Zhang, Jianxia

    2013-10-01

    Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg−1 of Pb and 810.3 mg kg−1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg−1 of Pb and 525.4 mg kg−1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulting from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.

  20. Purge water management system

    Science.gov (United States)

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  1. Phytotechnological purification of water and bio energy utilization of plant biomass

    Science.gov (United States)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.

    2017-01-01

    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  2. Improvement of the Purification System of Scrubbing Tower%洗涤塔净化系统的改进

    Institute of Scientific and Technical Information of China (English)

    赵英群

    2013-01-01

    详细介绍了本钢5#高炉煤气净化系统的老洗涤工艺与生产中的不利因素,根据生产的需要对排水系统和液压控制系统进行了改进,新改进的系统在实际应用中相比原系统提高了工作效率。%The negative factors in the original scrubbing process and production of the gas purification system of Benxi Steel’s No.5 blast furnace are introduced. The water drainage and hydraulic control systems were renovated according to the requirement of production; and the improved systems performed more efficiently compared to the old ones.

  3. Membrane-based systems for carbon capture and hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Berchtold, Kathryn A [Los Alamos National Laboratory

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on

  4. Quantitative study on water purification capability of permeable breakwaters; Tokasei joka bohatei no suishitsu joka kino no teiryoteki chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, M.; Hatamochi, K. [The Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-01-31

    Purification of seawater by interstitial microorganisms and sessile organisms in breakwaters and seawalls made of gravel was investigated. For the experiment, water purification test was conducted using skim milk and phyto-plankton causing red tide by crushed stones having biological coatings formed with natural seawater. Continuous test of seawater near the intake of power generation plant was also conducted. As a result, the interstitial contact oxidation method provided an effect for lowering COD (chemical oxygen demand) levels and reducing SS (suspended solids) in the seawater. It was found that COD can be more easily purified with suspension than in dissolved state. It was considered that COD was caught on the gravel surface to be decomposed biologically. It was also considered that nitrogen was decomposed to nitric acid by nitration. For the simulated gravel breakwater with an area 200{times}400 m in the model sea, purification effect from 0.1 to 0.4 mg/liter was evaluated through biological decomposition near the breakwater, and purification capacity from 3 to 4.5 t/day was calculated. 3 refs., 13 figs., 4 tabs.

  5. A facile TiO{sub 2}/PVDF composite membrane synthesis and their application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wei.zhang@unisa.edu.au; Zhang, Yiming; Fan, Rong; Lewis, Rosmala [University of South Australia, Centre for Water Management and Reuse (Australia)

    2016-01-15

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO{sub 2}/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO{sub 2} nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO{sub 2} composite membranes were studied systematically. The TiO{sub 2}/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  6. Guide to the use of pond systems in South Africa for the purification of raw and partially treated sewage

    CSIR Research Space (South Africa)

    Meiring, PGJ

    1968-01-01

    Full Text Available Some of the effluents from the sewage purification systems covered by this report show quite marked seasonal variations. No assurance can be given that the effluents would meet promulgated standards from season to season. The effluent from...

  7. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    Science.gov (United States)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  8. Performance Assessment of SOFC Systems Integrated with Bio-Ethanol Production and Purification Processes

    Directory of Open Access Journals (Sweden)

    Sumittra Charojrochkul

    2010-03-01

    Full Text Available The overall electrical efficiencies of the integrated systems of solid oxide fuel cell (SOFC and bio-ethanol production with purification processes at different heat integration levels were investigated. The simulation studies were based on the condition with zero net energy. It was found that the most suitable operating voltage is between 0.7 and 0.85 V and the operating temperature is in the range from 973 to 1173 K. For the effect of percent ethanol recovery, the optimum percent ethanol recovery is at 95%. The most efficient case is the system with full heat integration between SOFC and bio-ethanol production and purification processes with biogas reformed for producing extra hydrogen feed for SOFC which has the overall electrical efficiency = 36.17%. However more equipment such as reformer and heat exchangers are required and this leads to increased investment cost.

  9. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  10. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-09-01

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM).

  11. Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis.

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun; Zhang, Xuming

    2014-09-01

    Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance.

  12. Self-propelled activated carbon Janus micromotors for efficient water purification.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Sattayasamitsathit, Sirilak; Gao, Wei; Santos, Luis; Fedorak, Yuri; Singh, Virendra V; Orozco, Jahir; Galarnyk, Michael; Wang, Joseph

    2015-01-27

    Self-propelled activated carbon-based Janus particle micromotors that display efficient locomotion in environmental matrices and offer effective 'on-the-fly' removal of wide range of organic and inorganic pollutants are described. The new bubble-propelled activated carbon Janus micromotors rely on the asymmetric deposition of a catalytic Pt patch on the surface of activated carbon microspheres. The rough surface of the activated carbon microsphere substrate results in a microporous Pt structure to provide a highly catalytic layer, which leads to an effective bubble evolution and propulsion at remarkable speeds of over 500 μm/s. Such coupling of the high adsorption capacity of carbon nanoadsorbents with the rapid movement of these catalytic Janus micromotors, along with the corresponding fluid dynamics and mixing, results in a highly efficient moving adsorption platform and a greatly accelerated water purification. The adsorption kinetics and adsorption isotherms have been investigated. The remarkable decontamination efficiency of self-propelled activated carbon-based Janus micromotors is illustrated towards the rapid removal of heavy metals, nitroaromatic explosives, organophosphorous nerve agents and azo-dye compounds, indicating considerable promise for diverse environmental, defense, and public health applications.

  13. Natural gas purification using a porous coordination polymer with water and chemical stability.

    Science.gov (United States)

    Duan, Jingui; Jin, Wanqin; Krishna, Rajamani

    2015-05-04

    Porous coordination polymers (PCPs), constructed by bridging the metals or clusters and organic linkers, can provide a functional pore environment for gas storage and separation. But the rational design for identifying PCPs with high efficiency and low energy cost remains a challenge. Here, we demonstrate a new PCP, [(Cu4Cl)(BTBA)8·(CH3)2NH2)·(H2O)12]·xGuest (PCP-33⊃guest), which shows high potential for purification of natural gas, separation of C2H2/CO2 mixtures, and selective removal of C2H2 from C2H2/C2H4 mixtures at ambient temperature. The lower binding energy of the framework toward these light hydrocarbons indicates the reduced net costs for material regeneration, and meanwhile, the good water and chemical stability of it, in particular at pH = 2 and 60 °C, shows high potential usage under some harsh conditions. In addition, the adsorption process and effective site for separation was unravelled by in situ infrared spectroscopy studies.

  14. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  15. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source.

    Science.gov (United States)

    Wang, Ning; Zhang, Xuming; Chen, Bolei; Song, Wuzhou; Chan, Ngai Yui; Chan, Helen L W

    2012-10-21

    This paper reports experimental studies using the photoelectrocatalytic effect to eliminate a fundamental limit of photocatalysis - the recombination of photo-excited electrons and holes. The fabricated reactor has a planar reaction chamber (10 × 10 × 0.1 mm(3)), formed by a blank indium tin oxide glass slide, an epoxy spacer and a BiVO(4)-coated indium tin oxide glass substrate. A blue light-emitting diode panel (emission area 10 × 10 mm(2)) is mounted on the cover for uniform illumination of the reaction chamber. In the experiment, positive and negative bias potentials were applied across the reaction chamber to suppress the electron/hole recombination and to select either the hole-driven or electron-driven oxidation pathway. The negative bias always exhibits higher performance. It is observed that under -1.8 V the degradation rate is independent of the residence time, showing that the accompanying electrolysis can solve the oxygen deficiency problem. The synergistic effect of photocatalysis and electrocatalysis is observed to reach its maximum under the bias potential of ± 1.5 V. The photoelectrocatalytic microreactor shows high stability and may be scaled up for high-performance water purification.

  16. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  17. Water Purification Mechanism of Zhalong Wetland%扎龙湿地水质净化机理分析

    Institute of Scientific and Technical Information of China (English)

    李红艳; 章光新; 李绪谦; 高蕊; 邓春暖

    2012-01-01

    降解污染和净化水质是湿地的重要功能。利用现场调查和水质监测资料,分析扎龙湿地水化学场特征,研究水质现状、净化机理及其与湿地水化学形成条件之间的关系。结果表明,扎龙湿地对TP、NIL4-N、CODcr和悬浮物的净化率达到90%以上,对TN和NO3-N净化率可达到75%以上。水质净化功能对生态环境的自然修复作用明显,主要的水质净化机理为吸附沉淀作用、植物吸收作用、生物降解作用、反硝化作用,净化能力大小与溶液化学条件的整体特征、湿地的地质背景、水文化学循环和生物作用过程有关。%Environmental pollution degradation and water purification are the major function of wetland. This article analyzes the water field characteristics and researches the water quality by field investigation and water quality monitoring, based on the theory of chemical thermodynamics and systematic analytic method, analyzes the re- lationship between water purification mechanism of Zhalong Wetland and the formation of water chemistry. The result indicates that the major mechanism of water purification of Zhalong Wetland is adsorption precipitation, plant uptake, biodegradation and denitrification, and the purification ability is highly related to chemical condition of solution, geological characteristics of wetland, chemical cycle and biological effect. And the NIL~ entered in the wetland was removed by the adsorption of clay, which reduced the concentration of TN and NO3 in the center of wetland. The concentration of Ca^2+, NIL+ in the peripheral of wetland decreased with the direction of runoff, while the concentration of Na^+ increased with the runoff direction. Carbonate balance play an important role in the formation and characteristics of pollutant migration. Stable pH value controlled the existence formation of pollutants and the direction and strength of its migration, and controlled the existence

  18. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  19. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  20. Preliminary Studies of New Water Removal Element in Purification Applications of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Ruijun Chen

    2014-01-01

    Full Text Available To effectively and efficiently remove water contamination dispersed in petrodiesel fuels, a new water removal element with both coalescence and separation features is studied in this paper. The unique droplet coalescence and separation mechanism occurring in the new water removal element is proposed. The conceptual design of this filter element is presented and the basic features of FCP filtration systems are briefly introduced. A laboratory test stand and fuel analysis procedure are described. The results from preliminary water removal tests with number 2 petrodiesel fuel demonstrate the filtration performance of the new water removal element. For example, within one single fuel flow pass through FCP filtration system equipped with the new water removal element and running at 2 GPM flow rate, the water content in 80°F, number 2 petrodiesel fuel stream can be reduced from up to 40,000 ppm upstream to 64.8 ppm or less downstream.

  1. Future market decentralized water purification and rain water management; Zukunftsmarkt Dezentrale Wasseraufbereitung und Regenwassermanagement

    Energy Technology Data Exchange (ETDEWEB)

    Sartorius, Christian [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    With regard to forthcoming climate and demographic changes, semi- and decentralised concepts of water supply and sewage disposal infrastructure are of crucial importance as they are more able to adapt to yet uncertain challenges than the established centrally structured infrastructure. Pivotal elements of such more decentralised infrastructures are the conditioning and re-use of rain and grey water. In this context, rainwater management is of special relevance as it reduces the impact of extreme precipitation on the environment and, at the same time, enables the replenishment of groundwater reservoirs. Another key technology for up-grading of all sorts of raw and wastewater is membrane filtration, which shows its superior potential whenever the conventional technology reaches its limits. With regard to technical capability and performance in foreign trade, the USA, Canada, United Kingdom and the Netherlands are the strongest competitors of the German water industry. Another important country is France, which, due to its colonial past and its high degree of privatisation, hosts the largest global players - Veolia and Suez. Compared with its competitors, the strength of the German water sector is based on the wide variety of innovative, small and medium-sized companies with strong international trade relations offsetting the power of big players by a high degree of flexibility. By contrast, the main weakness of the German water sector is the small-scale structure and local economic orientation of basically public owned utilities, which tends to hinder the formation of powerful water technology companies and the respective networks. While current exports of water-related technology are mainly focussed on central infrastructures, decentralised water supply and sewage disposal are increasingly relevant in Germany today. They may do so even more, if the development and diffusion of the latter technologies are enhanced by demand-oriented innovation policy and the

  2. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    Science.gov (United States)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to

  3. ECOLO-HOUSE in the heavy snow-fall region. Purification of sewerage water; Yukiguni ekoro house. Gesui shorisui no joka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H.; Kitamura, K. [Yamagata University, Yamagata (Japan)

    1997-11-25

    In a local town like Yonezawa city, a large city type sewerage system has not yet been spread. Most houses use septic tanks treating waste water from both toilet and kitchen/bath. The treated water from them is discharged directly into surface water of side ditches, etc., which produces environmental problems such as water pollution and eutrophication. Enhancement of purification effects was studied by putting walnut charcoal and bacilli into the aeration tank circulating air in the septic tank to secure bacteria and improve work of them in the aeration tank. The treated water is further reused as drinking water using peat layer. Walnut charcoal can be a nest of bacteria. By this, it became possible to cope also with environmental changes such as water quality and temperature in the septic tank. It is possible to always keep water quality in the purifying tank and quality of the treated water in a stabilized condition. Moreover, existence of bacteria can be confirmed even inside the pores of walnut charcoal can be confirmed. Porosity of walnut charcoal is made use of, and it is useful to use walnut charcoal as a nest of bacteria in the septic tank. 5 refs., 12 figs.

  4. Hygienic evaluation of effectiveness of drinking water purification facilities in Saratov institutions of social significance

    Directory of Open Access Journals (Sweden)

    Lavrentiev M. V.

    2011-06-01

    Full Text Available The purpose of the given work was studying of overall performance of the local equipments on water treating, both on superficial, and on underground sources of water supply. Material and metods. In research 60 assays of water from various superficial, underground reservoirs and planting system of water supply of the Saratov region have been selected and 900 definitions of the maintenance of chemical substances are spent. Results. Priority pollutants of underground waters in the Saratov and Fedorovsky districts of the Saratov region, it are established: rigidity salts, iron. For superficial sources of the same districts of area it: iron, manganese, Phenolum, Natrii phosphases. Water of open reservoirs also didn»t satisfy on organoleptic indicators and indicators of processes of self-cleaning. Efficiency of water-purifying constructions of Fedorovsky district, has appeared low. Water from underground sources got to the consumer without passage through water-purifying constructions. The conclusion: 1 water of underground and superficial reservoirs of rural settlements of the Saratov region has adverse organoleptic indicators and contains chemical pollution in the concentration exceeding maximum permissible; 2 efficiency of rural water-purifying constructions doesn»t allow to spend water treating according to SanPiN 2.1.4.1074-01; 3 application of the local equipments on potable water clearing has allowed to achieve reception on an exit from them the quality corresponding to demands SanPiN 2.1.4.1074-01.

  5. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    OpenAIRE

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders...

  6. Development of a new hydrogen purification system by using hydrogen absorbing alloy for generator cooling; Suiso kyuzo gokin riyo hatsudenkinai suiso jundo kojo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Haruki, N.; Sato, J.; Kogi, T.; Nishimura, Y. [Kansai Electric Power Co., Inc., Osaka (Japan); Takeda, H. [Japan Steel works Ltd., Tokyo (Japan)] Fujita, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1997-05-20

    Hydrogen absorbing alloys have a number of useful functions, such as energy conversion, hydrogen storage and purification. As an application to separation and purification of hydrogen, we have developed a new hydrogen purification system by using a hydrogen absorbing alloy for generator cooling. For demonstration testing with an actual machine, a hydrogen recovery and purification device using 120kg of alloy was manufactured and installed on No.5 turbine-synchronous generator at Himeji No.2 power station. This device is designed to improve the purity of the hydrogen gas in generator containing impurities such as nitrogen and oxygen. The test results tell that the purity of the hydrogen gas in the generator can be enhanced from 98% to 99.9% and maintained at this level under continuous operation. An application of the hydrogen purification system is expected to decrease the generator`s windage loss, resulting higher generator efficiency. 2 refs., 18 figs.

  7. Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H.

    1973-01-01

    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated.

  8. FF-Expert - an information system and computer program on inorganic coagulation/flocculation agents in waste water purification; FF-Expert - Ein Informationssystem und Rechenprogramm zum Einsatz anorganischer Faellungs-/Flockungschemikalien in der Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S. [Ingenieurgesellschaft Lahmeyer International, Bad Vilbel (Germany)

    1999-07-01

    The program permits analyses of the performance of inorganic coagulation/flocculation agents in communal sewage treatment. Calculation routines for the amount of chemical substances consumed, the sludge volume, the use of acid capacity etc. are implemented in the program. Its information part contains information from the ATV specification sheet 202, 'Processes for elimination of phosphorus from waste water'. The results of ATV WG 2.8.2 for different chemical products were integrated and utilized. [German] Das Programm erlaubt eine Analyse des Einsatzes von anorganischen Faellungs/Flockungschemikalien in der kommunalen Abwasserbehandlung. Berechnungsroutinen zum Chemikalienverbrauch, der Schlamm-Menge, dem Verbrauch an Saeurekapazitaet etc. wurden im Programm implementiert. Im Informationsteil enthaelt es wesentliche Inhalte aus dem ATV Arbeitsblatt 202 'Verfahren zur Elimination von Phosphor aus dem Abwasser'. Darueber hinaus wurden Erfahrungen von Mitgliedern der ATV-AG 2.8.2 mit diversen Chemikalienprodukten aufgearbeitet und im Programm verwendet. (orig.)

  9. System Aero-Accelator for the purification of biodegradable effluents; Sistema aero-accelator para la depuracion de efluentes biodegradables (I)

    Energy Technology Data Exchange (ETDEWEB)

    Bosque Hernandez, J. L. del; Martin Sanchez, J. L. [Universidad de Salamanca (Spain)

    2000-07-01

    The contamination of the waters is one of the factors that contributes to the deterioration of our environment and since it is a very limited one its treatment descontaminant it is one of the politic's main objectives and environmental administration at all the levels, being spread to the total purification of the generated residual effluents. To reach this objective, big technological efforts are required that allow next to the creation of new processes, the adaptation of the processes existent depuratives, increasing the effectiveness of the same ones. One of the techniques of purification of possible recovery is the Compact System of active mires Aero-Accelator. Presently work is designed and it builds a plant pilot with Aero-Accelator geometry to study its behavior in the treatment of effluents of urban type with different loads pollutants. (Author) 16 refs.

  10. MENEKAN LAJU PENYEBARAN KOLERA DI ASIA DENGAN 3SW (STERILIZATION, SEWAGE, SOURCES, AND WATER PURIFICATION

    Directory of Open Access Journals (Sweden)

    Bagus Anggaraditya Anggaraditya

    2015-08-01

    Full Text Available ABSTRAK Penyakit taun atau kolera (juga disebut Asiatic cholera adalah penyakit menular di saluran pencernaan yang disebabkan oleh bakterium Vibrio cholerae. Kolera ditemukan pada tahun 1883 karena infeksi Vibrio cholerae, bakteri berbentuk koma. Penemuan ini ditemukan oleh bakteriologi Robert Koch (Jerman, 1843-1910.Penyebab kolera, adalah bakteri Vibrio cholerae, yang merupakan bakteri gram negatif, berbentuk basil (batang dan bersifat motil (dapat bergerak, memiliki struktur antogenik dari antigen flagelar H dan antigen somatik O, gamma-proteobacteria, mesofilik dan kemoorganotrof, berhabitat alami di lingkungan akuatik dan umumnya berasosiasi dengan eukariot. Pada orang yang feacesnya ditemukan bakteri kolera mungkin selama 1-2 minggu belum merasakan keluhan berarti, Tetapi saat terjadinya serangan infeksi maka tiba-tiba terjadi diare dan muntah dengan kondisi cukup serius sebagai serangan akut yang menyebabkan samarnya jenis diare yg dialamiCara pencegahan dan memutuskan tali penularan penyakit kolera adalah dengan prinsip sanitasi lingkungan, terutama kebersihan air dan pembuangan kotoran (feaces pada tempatnya yang memenuhi standar lingkungan. Lainnya ialah meminum air yang sudah dimasak terlebih dahulu, cuci tangan dengan bersih sebelum makan memakai sabun/antiseptik, cuci sayuran dangan air bersih terutama sayuran yang dimakan mentah (lalapan, hindari memakan ikan dan kerang yang dimasak setengah matang. Kolera memang sudah menjadi momok yang menakutkan di dunia, dan belajar dari negara-negara di Asia yang sudah pernah mengalami wabah kolera, dapat diambil kesimpulan bahwa pengobatan dengan vaksin tidak memiliki pengaruh yang signifikan.Selain karena tidak menjangkau seluruh warga miskin di sebuah negara, harga vaksin kolera juga dirasa cukup memberatkan anggaran negara-negara yang sedang berkembang di Asia.Cara yang dirasa paling tepat dalam menekan laju penyebara kolera adalah 3SW (Sterilization, Sewage, Sources, and Water

  11. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  12. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Directory of Open Access Journals (Sweden)

    Camilo Hernán Cruz Vélez

    2010-05-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  13. Increase of the processing capacity through modification and enlargement of the assets areas preparation and waste water purification in the fermentation plant Kirchstockach; Durchsatzsteigerung der Vergaerungsanlage Kirchstockach durch Umbau und Erweiterung der Anlagenbereiche Aufbereitung und Prozesswasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenhofer, M. [LRA Muenchen (Germany). Tiefbau, Verkehrsplanung, Abfallwirtschaft; Kroner, T. [ia GmbH - Wissensmanagement und Ingenieurleistungen, Muenchen (Germany). Bereich Kommunale Abfallwirtschaft und Energie; Niefnecker, U. [M. Ganser GmbH und Co. Entsorgungsbetriebe KG, Brunnthal/Kirchstockach (Germany)

    2006-04-15

    At the fermentation plant Kirchstockach the operations for the rectification of deficiencies and process optimisations were completed in 2004. Now process results of 2005 show the success of the performed actions. In the asset area of preparations the existing rake discharge system was removed and the use of the new discharge reservoir with a drainage coil conveyor system minimises deadlock times and rises preparations throughput. With the new set-up of the light material presses the process procedure was optimised, too. The installation of the new process water reservoir was conditional on the non-uniform hydraulic load of the waste-water purification, which results from the operation of the facility. With the higher buffer capacity, realised by the new process water reservoir, a uniform hydraulic load of the purification system and an optimised process control was implemented. With the optimised performance of the wastewater purification wastewater thresholds are guaranteed now and it is possible to realise the increased throughput of the preparation in the complete system of the fermentation plant Kirchstockach. (orig.)

  14. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    Science.gov (United States)

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  15. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  16. Photocatalytic post-treatment in waste water reclamation systems

    Science.gov (United States)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  17. A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform.

    Directory of Open Access Journals (Sweden)

    Li Tian

    Full Text Available BACKGROUND: Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor. METHODOLOGY/PRINCIPAL FINDINGS: To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV. The in vivo uncleaved EiP protein was accumulated up to 2-4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein. CONCLUSION/SIGNIFICANCE: This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry.

  18. Polonium purification

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  19. PURIFICATION OF COBALT ANOLYTE USING THE NOVEL SOLVENT EXTRACTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Shen; W.Y. Xue; W. Y. Niu

    2003-01-01

    In present research, a novel extractant system (D2EHPA + naphthenic acid +pyridine-ester) was used to purify cobalt anolyte and a simulated industrial produc-tion were carried out. This novel extraction system can extract Cu and/or Ni againstCo from chloride medium solutions at pH range of 2.5-4.5. About 2g/l nickel and0.2g/l copper were removed from the cobalt chloride anolyte containing about 100g/lcobalt and 200g/l chloride ions respectively, the raffinate contains nickel and copperless than 0.03g/l and 0. 0003g/l respectively and can be used to electrolyze high-puritycobalt. About 5.5t cobalt anolyte was purified in the simulation industrial experimentand kilogram quantities of cobalt of 99.98% purity and about 95% recovery have beenproduced.

  20. DOMESTIC WASTEWATER PURIFICATION IN UPFLOW BIOFILM SYSTEM WITH DIFFUSED AERATION

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1984-08-01

    Full Text Available The objective of this research was to conduct a bench scale study of fixed activated sludge treating domestic sewage. Two different units employing diffused aeration with plastic and aluminum media were studied in four separate phases. Data indicated that the system could produce a high quality effluent without any requirements for sludge recycling through the system. Suspended solids concentrations of 3-6 mg/1, BOD5 concentrations of 4-12 mg/1 and COD concentrations of 35-45 mg/1 were found in the effluent with wastewater retentions ranging from 3-15 hours, whereas an indication of nitrification was observed in higher detention periods. As far as the type of media was concerned, the plastic and aluminum media did not differ significantly once the microbes had grown on the media.

  1. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  2. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  3. PARTIAL PURIFICATION OF LIPASE FROM STREPTOMYCES VARIABILIS NGP 3 AND ITS APPLICATION IN BIOREMEDIATION OF WASTE WATER

    OpenAIRE

    K. Selvam* and B. Vishnupriya

    2013-01-01

    Partial purification and bioremediation of waste water by lipase from the marine actinomycete Streptomyces variabilis NGP 3 (Accession no: (JX843530)) were carried out. The optimum incubation period, pH, temperature and agitation speed for enzyme production were fifth day (61.2 U/ml), 9.0 - 9.5 (105 U/ml), 35ºC (39.4 U/ml) and 120 rpm (38.7 U/ml) respectively. Lactose (2.0 g/l) and peptone (0.6 and 0.8 g/l) proved to the best carbon and nitrogen sources respectively for lipase production. The...

  4. Purification effect of two typical water source vegetation buffer zones on land-sourced pollutants

    Science.gov (United States)

    Li, Gang

    2017-03-01

    Two vegetation buffer zones (tree-shrub-grass pattern and tree-grass pattern) were selected as test objects around Siming reservoir in Yuyao City of China. The effect of the storm runoff intensity (low and high intensity) and the buffer zone width (1 m, 3 m, 5 m, 7 m, 9 m, 12 m, 16 m) on pollutants (suspended solids, ammonium nitrogen and total phosphorus) was studied by the artificial simulation runoff. The results showed that with the increase of the width of buffer zone, the pollutant concentration was decreased. The purification effect of the two buffer zones on suspended solids and total phosphorus was basically stable at 52-55% and 34-37%, respectively. But the purification effect on ammonium nitrogen was the tree-shrub-grass pattern (69.7%) significantly better than that of tree-grass pattern (52.1%). The purification rate at the low runoff intensity was 1.8-2.0 times that at the high runoff intensity. The relationship between the purification rate and buffer zone width can be expressed by the natural logarithm equation, and the model adjustment coefficient was greater than 0.92.

  5. Analysis and Comparison of Water Purification Processes and Finished Water Quality for 3 Water Treatment Plants%关于三个水厂净水工艺与供水水质的比较和分析

    Institute of Scientific and Technical Information of China (English)

    岳宇明; 陆茸; 毛丽娜; 沈元静; 何小清

    2014-01-01

    该文介绍了国内一自来水公司三个水厂的两个原水水质、净水工艺及出厂水水质。结果显示第一水厂的出厂水质较为理想,第二水厂次之,第三水厂为第三。第三水厂由于水源的问题导致出厂氨氮季节性超标,建议采取有效措施改进水源水质,以提高出厂水质。第二水厂需进行工艺改造,实施臭氧活性炭深度处理以进一步提高供水水质。第三水厂一期系统臭氧生物活性炭池置于砂滤池后较二期活性炭滤池置于砂滤池前出水有机物CODMn及TOC略低,但两者基本相近。建议第三水厂采取必要的措施改进水源水质,或再增加一道臭氧生物活性炭工序。%Water plants with two different raw water qualities,purification processes and their effluent water qualities were introduced in this paper. The finished water quality of NO. 1 plant is the best,and the NO. 2 is better. Due to raw water quality problem No. 3 water plant’s finished water ammonia nitrogen hardly meets the standard of GB 5749-2006 seasonally. Effective measures should be taken to improve the effluent water quality of No. 3 water plant No. 2 water plant need technological transformation to implement advanced treatment of O3 actived carbon to improve finished water quality. The organic indexes of effluent water of first-stage system in No. 3 water plant,of which O3 actived carbon filter is located behind the sand filter,is a little better than that of second-stage system, of which O3 actived carbon filter is located before the sand filter. But their finished water qualities are approximately same. Necessary measures to improve raw water quality for No. 3 water plant or to apply an additional ozone BAC process are recommended.

  6. Phytoremediation of Anaerobic Digester Effluent for Water Purification and Production of Animal Feed

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2007-01-01

    Full Text Available The application of phytoremediation for purification of an anaerobically treated dairy manure and production of forage crops was investigated. Four crops (two cereals and two grasses were examined for their ability to grow hydroponically and to remove pollutants (nutrients from dairy wastewater. The preliminary experiments showed that timothygrass and orchardgrass did not perform well as aquatic plants. Only 24 and 29% of the seeds germinated after 19-21 days giving a crop yield of 21 and 19 t haˉ1 for timotygrass and orchardgrass, respectively. Wheat and barley grow very well as aquatic plants with a seed germination of 83 and 73 (in 7 days and a crop yield of 106 and 86 t haˉ1 for wheat and barley, respectively. The effect of light duration, seeding rate, wastewater application rate and fungicidal treatment on the wheat crop yield and pollution potential reduction were studied. The results indicated that with this system, a wheat forage crop could be produced in 21 days from germination to harvest. A treatment combination of wastewater application rate of 900 mL dayˉ1, a seeding rate of 400 g and a light duration of 12 hrs gave the best results for crop yield (3.81 kg of wheat trayˉ1. Based on thirteen harvests per year, a total possible yield of 3300 t haˉ1 per year can be achieved with the system. This is more than 102 times grater than the yield obtainable from a filed grown conventional forage of 245 t haˉ1 per year. Wheat had a superior nutritional value (higher digestible energy, higher carbohydrates, fat, protein and mineral contents and less crude fiber compared to the other field forage crops. It also contained higher macro and micro nutrients (Sodium, Magnesium, Manganese, Iron, Copper, Boron, Selenium, Iodine and Cobalt than field forage crops. Removal efficiencies of 72.4, 88.6 and 60.8 % can be achieved for the total solids, Chemical Oxygen Demand (COD and ammonium nitrogen, respectively. A nitrate nitrogen concentration of

  7. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    Science.gov (United States)

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  8. Elimination of botulinum neurotoxin (BoNT) type B from drinking water by small-scale (personal-use) water purification devices and detection of BoNT in water samples.

    Science.gov (United States)

    Hörman, Ari; Nevas, Mari; Lindström, Miia; Hänninen, Marja-Liisa; Korkeala, Hannu

    2005-04-01

    Seven small-scale drinking water purification devices were evaluated for their capacity to eliminate botulinum neurotoxin (BoNT) type B from drinking water. Influent water inoculated with toxic Clostridium botulinum cultures and effluent purified water samples were tested for the presence of BoNT by using a standard mouse bioassay and two commercial rapid enzyme immunoassays (EIAs). The water purification devices based on filtration through ceramic or membrane filters with a pore size of 0.2 to 0.4 microm or irradiation from a low-pressure UV-lamp (254 nm) failed to remove BoNT from raw water (reduction of 2.3 log10 units). The rapid EIAs intended for the detection of BoNT from various types of samples failed to detect BoNT from aqueous samples containing an estimated concentration of BoNT of 396,000 ng/liter.

  9. Nanophotonics-enabled solar membrane distillation for off-grid water purification

    Science.gov (United States)

    Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.

    2017-01-01

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307

  10. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing

    Science.gov (United States)

    Lane, Rebecca E.; Korbie, Darren; Anderson, Will; Vaidyanathan, Ramanathan; Trau, Matt

    2015-01-01

    Exosomes are vesicles which have garnered interest due to their diagnostic and therapeutic potential. Isolation of pure yields of exosomes from complex biological fluids whilst preserving their physical characteristics is critical for downstream applications. In this study, we use 100 nm-liposomes from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol as a model system as a model system to assess the effect of exosome isolation protocols on vesicle recovery and size distribution using a single-particle analysis method. We demonstrate that liposome size distribution and ζ-potential are comparable to extracted exosomes, making them an ideal model for comparison studies. Four different purification protocols were evaluated, with liposomes robustly isolated by three of them. Recovered yields varied and liposome size distribution was unaltered during processing, suggesting that these protocols do not induce particle aggregation. This leads us to conclude that the size distribution profile and characteristics of vesicles are stably maintained during processing and purification, suggesting that reports detailing how exosomes derived from tumour cells differ in size to those from normal cells are reporting a real phenomenon. However, we hypothesize that larger particles present in most purified exosome samples represent co-purified contaminating non-exosome debris. These isolation techniques are therefore likely nonspecific and may co-isolate non-exosome material of similar physical properties.

  11. Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design

    Directory of Open Access Journals (Sweden)

    Francine Silva Antelo

    2015-02-01

    Full Text Available C-phycocyanin from Spirulina platensis was purified in aqueous two-phase systems (ATPS of polyethylene glycol (PEG/potassium phosphate, varying the molar mass of the PEG. Results using a full factorial design showed that an increase in the concentration of salt and decrease in the concentration of PEG caused an increment in the purification factor for all the ATPS studied. Optimization of the conditions of the purification was studied using a central composite rotatable design for each molar mass of PEG. The ATPS composed of 7% (w/w PEG 1500 or 4% (w/w PEG 8000 (g/gmol and 23 or 22.5% (w/w of phosphate resulted a purification factor of 1.6-fold for C-phycocyanin, with total and 57% recovery, respectively. Process conditions were optimized for the purification factor for the system with PEG 1500. The ATPS with 4% (w/w PEG 4000 or 4% (w/w PEG 6000 and 21% (w/w phosphate resulted purification factors of 2.1 and 2.2-fold, recovering 100% and 73.5%, respectively of C-phycocyanin in the top phase.

  12. A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species.

    Science.gov (United States)

    Ryu, Jaewook; Lee, Ukjin; Park, Jiye; Yoo, Do-Hyun; Ahn, Jung Hoon

    2015-03-01

    Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species.

  13. Early warning system for detection of protozoal contamination of source waters

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Mogensen, Claus; Berg, Tommy W.

    2012-01-01

    water contamination e.g. water plants/water distribution networks, filtration systems (water purification), commercial buildings, swimming pools, and industry in general. Data from on-going field tests as well as sensitivity and specificity testing of the system will be presented at the conference.......Ensuring water quality is an ever increasing important issue world-wide. Currently, detection of protozoa in drinking water is a costly and time consuming process. We have developed an online, real-time sensor for detection of Cryptosporidium and Giardia spp. in a range of source waters. The novel...

  14. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  15. The Quality Control of Blood Purification Center Dialysis Water%血液净化中心透析用水的质量控制

    Institute of Scientific and Technical Information of China (English)

    顾鸣燕; 刁占帅; 杨洁泉

    2015-01-01

    目的:探讨血液净化中心进行透析用水质量控制的方法。方法:按照透析用水的相关规范要求,建立质量控制小组,制定管理计划,按要求对血液净化中心的布局、安装流程、水处理系统的日常维护和监测、水处理系统的清洗消毒、透析用水的水质监控等方面进行管理,记录相关结果,对异常结果有分析、总结和持续改进。比较实施新的管理办法前后的相关数据。结果:新的管理办法实施前后,检测出水口的细菌菌落数和类毒素含量,结果使用校正字2检验进行比较,差异具有统计学意义(P<0.05)。结论:采用新的管理办法后,透析用水的水质有明显提高。%Objective: To explore the methods of dialysis water quality control in the blood purification center. Method: According to the requirements of related standard dialysis water, the quality control unit was established, a management plan was made. Manage the layout of blood purification center, the installation process, the daily maintenance and monitoring of water treatment system, the cleaning and disinfection of water treatment system and the monitoring of dialysis water quality etc by the requirements. Record the results, analyze the abnormal results and improve. To compare related data before and after the implementation of new management measures.Result:Test the bacterial colonies and toxoid at the water outlet place before and after the implementation of new management practices, compare the results to the corrected χ² inspection, the difference was statistically significant (P<0.05).Conclusion: The quality of dialysis water is obviously improved after using the new management method.

  16. Expression, purification, and bioactivity of GST-fused v-Src from a bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    GONG Xing-guo; JI Jing; XIE Jie; ZHOU Yuan; ZHANG Jun-yan; ZHONG Wen-tao

    2006-01-01

    v-Src is a non-receptor protein tyrosine kinase involved in many signal transduction pathways and closely related to the activation and development of cancers. We present herethe expression, purification, and bioactivity of a GST (glutathione S-transferase)-fused v-Src from a bacterial expression system. Different culture conditions were examined in an isopropyl β-D-thiogalactopyranoside (IPTG)-regulated expression, and the fused protein was purified using GSH (glutathione) affinity chromatography. ELISA (enzyme-linked immunosorbent assay) was employed to determine the phosphorylation kinase activity of the GST-fused v-Src. This strategy seems to be more promising than the insect cell system or other eukaryotic systems employed in earlier Src expression.

  17. Evaluating in-home water purification methods for communities in Texas on the border with Mexico.

    Science.gov (United States)

    Gurian, Patrick L; Camacho, Gema; Park, Jun-young; Cook, Steve R; Mena, Kristina D

    2006-12-01

    This study evaluated user preferences among three alternative in-home water treatment technologies suitable for households relying on trucked water in El Paso County, Texas, which is on the border with Mexico. The three technologies were: chlorination of household storage tanks, small-scale batch chlorination, and point-of-use ultraviolet disinfection. Fifteen households used each of the three technologies in succession for roughly four weeks each during April through June of 2004. Data were collected on treated water quality, and a face-valid survey was administered orally to assess user satisfaction with the technologies on a variety of attributes. Treatment with a counter-top ultraviolet disinfection system received statistically significantly higher ratings for taste and odor and likelihood of future use than the other two approaches. Ultraviolet disinfection and small-scale batch chlorination both received significantly higher ratings for ease of use than did storage tank chlorination. Over-chlorination was a common problem with both batch chlorination and storage tank chlorination. Water quality in the households using trucked water is now higher than was reported by a previous study, suggesting that water quality has improved over time.

  18. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  19. Phytoremediation of Anaerobic Digester Effluent for Water Purification and Production of Animal Feed

    OpenAIRE

    Abdel E. Ghaly; H. A. Farag

    2007-01-01

    The application of phytoremediation for purification of an anaerobically treated dairy manure and production of forage crops was investigated. Four crops (two cereals and two grasses) were examined for their ability to grow hydroponically and to remove pollutants (nutrients) from dairy wastewater. The preliminary experiments showed that timothygrass and orchardgrass did not perform well as aquatic plants. Only 24 and 29% of the seeds germinated after 19-21 days giving a crop yield of 21 and 1...

  20. Wide-area service water information management system; Koiki suido joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A wide-area service water system is required to be more resistant to emergency situations, e.g., drought and hazards, and meet consumers' diversifying needs in each area, while stably supplying water at ordinary times by utilizing purification plants located in places within its system and piping networks in the water area. Fuji Electric is providing information management systems for wide-area service water systems, developed based on the company's abundant system know-hows accumulated for a long time and latest techniques. They are characterized by (1) Web monitoring, aided by an intranet system, (2) high-speed data transmission by a digital transmission system, (3) open network environments, and (4) emergency calling of the staff, and management of stock materials. The system allows to monitor operating conditions within the area on real time, needless to say, and business administration with civil minimum taken into consideration, e.g., stabilizing water quality by coordinating the purification plants within the system. (translated by NEDO)

  1. Hyperentanglement purification for two-photon six-qubit quantum systems

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Deng, Fu-Guo

    2016-09-01

    Recently, two-photon six-qubit hyperentangled states were produced in experiment and they can improve the channel capacity of quantum communication largely. Here we present a scheme for the hyperentanglement purification of nonlocal two-photon systems in three degrees of freedom (DOFs), including the polarization, the first-longitudinal-momentum, and the second-longitudinal-momentum DOFs. Our hyperentanglement purification protocol (hyper-EPP) is constructed with two steps resorting to parity-check quantum nondemolition measurement on the three DOFs and swap gates, respectively. With these two steps, the bit-flip errors in the three DOFs can be corrected efficiently. Also, we show that using swap gates is a universal method for hyper-EPP in the polarization DOF and multiple-longitudinal-momentum DOFs. The implementation of our hyper-EPP is assisted by nitrogen-vacancy centers in optical microcavities, which could be achieved with current techniques. It is useful for long-distance high-capacity quantum communication with two-photon six-qubit hyperentanglement.

  2. Activated carbon enhancement with covalent organic polymers: An innovative material for application in water purification and carbon dioxide capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water.1–4 COPs exhibit many remarkable properties that other leading advanced...... solvent uptake in concentrated streams to metal and organic pollutant adsorption in contaminated waters.2 However, given the nanoscale structure of these COPs, real-world application has yet remained elusive for these materials. By creating a material large and robust enough to be used in a full...... of COPs onto a material large enough to be able to be used in a packed-bed column. These columns can then be applied in biogas purification to remove CO2 and up-concentrate methane, in the exhaust flue gas stream from a power plant. Furthermore, by impregnating nanoscale zero valent iron (nZVI) inside...

  3. Double catholyte electrochemical approach for preparing ferrate-aluminum: a compound dxidant-coagulant for water purification

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ferrate is an excellent water treatment agent for its multi-functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate-alum preparation were determined. In the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate-alum products was successfully prepared, which contained 0.0294 mol/L FeO42-, 0.0302 mol/L total soluble ferron with 2% Al2O3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.

  4. Smart Water: Energy-Water Optimization in Drinking Water Systems

    Science.gov (United States)

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  5. Optimized conditions for application of organic flocculant aids in water purification

    Directory of Open Access Journals (Sweden)

    P. Polasek

    2009-11-01

    Full Text Available The application of organic flocculant aid (OFA to a system undergoing aggregation has a direct effect on the quality of purified water as well as the settleability of resultant agglomerates. The optimum conditions for OFA application exist when the formation of aggregates by means of destabilisation (aggregation – CPE reagent reaches flocculation optimum, i.e. the measure of flocculation γ=1, prior to OFA addition. Such method of OFA application is called the Post-Orthokinetic Agglomeration (POA process. The POA process results in the formation of the fastest settleable agglomerates and the best quality of purified water matching that attainable without the use of OFA. Recirculation of the sludge conditioned by OFA back to the process of particle aggregation was found undesirable as it adversely affects the purified water quality as well as the settleability of produced agglomerates.

  6. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Surface-Modified Cobalt Ferrite Nanoparticles for Rapid Capture, Detection, and Removal of Pathogens: a Potential Material for Water Purification.

    Science.gov (United States)

    Bohara, Raghvendra A; Throat, Nanasaheb D; Mulla, Nayeem A; Pawar, Shivaji H

    2017-06-01

    Enteric infections resulting from the consumption of contaminated drinking water, inadequate supply of water for personal hygiene, and poor sanitation take a heavy toll worldwide, and developing countries are the major sufferers. Consumption of microbiologically contaminated water leads to diseases such as amoebiasis, cholera, shigellosis, typhoid, and viral infections leading to gastroenteritis and hepatitis B. The present investigation deals with the development of effective method to capture and eliminate microbial contamination of water and improve the quality of water and thus decreasing the contaminated waterborne infections. Over the last decade, numerous biomedical applications have emerged for magnetic nanoparticles (MNPs) specifically iron oxide nanoparticles. For the first time, we have explored functionalized cobalt ferrite nanoparticles (NPs) for capture and detection of pathogens. The captured bacterial were separated by using simple magnet. To begin with, the prepared NPs were confirmed for biocompatibility study and further used for their ability to detect the bacteria in solution. For this, standard bacterial concentrations were prepared and used to confirm the ability of these particles to capture and detect the bacteria. The effect of particle concentration, time, and pH has been studied, and the respective results have been discussed. It is observed that the presence of amine group on the surface of NPs shows nonspecific affinity and capability to capture Escherichia coli and Staphylococcus aureus. The possible underlying mechanism is discussed in the present manuscript. Based upon this, the present material can be considered for large-scale bacteria capture in water purification application.

  8. A Comparative Study of the Purification of Aquaculture Wastewater Using Water Hyacinth, Water Lettuce And Parrot's Feather

    Directory of Open Access Journals (Sweden)

    A. M. Snow

    2008-01-01

    Full Text Available Water hyacinth, water lettuce and parrot’s feather plants were examined for their ability to remove nutrients from aquaculture wastewater at two retention times. During the experiment, the aquatic plants grew rapidly and appeared healthy with green color. At hydraulic retention times (HRTs of 6 and 12 days, the average water hyacinth, water lettuce and parrot’s feather yields were 83, 51 and 51 g (dm m-2 and 49, 29 and 22 g (dm m-2, respectively. The aquatic plants were able to significantly reduce the pollution load of the aquaculture wastewater. The TS, COD, NH4+-N, NO2--N, NO3--N and PO43--P reductions ranged from 21.4 to 48.0%, from 71.1 to 89.5%, from 55.9 to 76.0%, from 49.6 to 90.6%, from 34.5 to 54.4% and from 64.5 to 76.8%, respectively. Generally, the reductions increased with longer retention times and were highest in compartments containing water hyacinth followed by compartments containing water lettuce and parrot’s feather. In terms of COD, NO3--N and PO43--P, the effluent leaving the hydroponics system was suitable for reuse in aquaculture. However, the effluent had slightly high levels of TS, NH3-N, NO2--N and pH after treatment.

  9. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system

    Directory of Open Access Journals (Sweden)

    Sofia eCosta

    2014-02-01

    Full Text Available Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell.With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally-used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.

  10. Application of mobile blood purification system in the treatment of acute renal failure dog model in the field environment

    Directory of Open Access Journals (Sweden)

    Zhi-min ZHANG

    2014-01-01

    Full Text Available Objective To evaluate the stability, safety and efficacy of mobile blood purification system in the treatment of acute renal failure dog model in the field environment. Methods The acute renal failure model was established in 4 dogs by bilateral nephrectomy, which was thereafter treated with the mobile blood purification system. The evaluation of functional index of the mobile blood purification system was performed after a short-time (2 hours and conventional (4 hours dialysis treatment. Results The mobile blood purification system ran stably in the field environment at a blood flow of 150-180ml/min, a dialysate velocity of 2000ml/h, a replacement fluid velocity of 2000ml/h, and ultrafiltration rate of 100-200ml/h. All the functions of alarming system worked well, including static upper limit alarm of ultrafiltration pressure (>100 mmHg, upper limit alarm of ambulatory arterial pressure (>400mmHg, upper limit alarm of ambulatory venous pressure (>400mmHg, bubble alarm of vascular access, bubble alarm during the infusion of solutions, pressure alarm at the substitution pump segment and blood leaking alarm. The vital signs of the 4 dogs with acute renal failure kept stable during the treatment. After the treatment, a remarkable decrease was seen in the levels of serum urea nitrogen, creatinine and serum potassium (P0.05. Conclusions The mobile blood purification system runs normally even in a field environment. It is a flexible and portable device with a great performance in safety and stability in the treatment of acute renal failure. DOI: 10.11855/j.issn.0577-7402.2013.12.15

  11. Advances on Aquaculture Water Purification Method%水产养殖水体处理方法研究进展

    Institute of Scientific and Technical Information of China (English)

    黄蔷; 刘松; 杨立群

    2014-01-01

    Purifying aquaculture water of ponds to improve water of breeding environment has become a research focus of breeding ecology and environmental.The research progress of the pond water quality purification methods were described, the handle principles and efficiency of a variety of water purification methods were focused on, and several recommendations of water treatment for aquaculture development direction were prospected.%如何净化养殖池塘水质、改善养殖水体环境质量已成为渔业养殖环境和生态研究的重点。阐述了池塘水质净化方法研究的进展,着重讨论了各种水质净化方法的处理原理和处理效率,并就水产养殖水体处理发展方向提出建议。

  12. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  13. Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdracht, van M.C.M.; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decre

  14. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdrecht, M.C.M. van; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decre

  15. Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems.

    Science.gov (United States)

    Jiang, Zhi-Guo; Zhang, Hai-De; Wang, Wei-Tao

    2015-05-01

    A simple and inexpensive aqueous two-phase affinity partitioning system using metal ligands was introduced to improve the selectivity of commercial papain extraction. Polyethylene glycol 4000 was first activated using epichlorohydrin, then it was covalently linked to iminodiacetic acid. Finally, the specific metal ligand Cu(2+) was attached to the polyethylene glycol-iminodiacetic acid. The chelated Cu(2+) content was measured by atomic absorption spectrometry as 0.88 mol/mol (polyethylene glycol). The effects on the purification at different conditions, including polyethylene glycol molecular weight (2000, 4000, and 6000), concentration of phase-forming components (polyethylene glycol 12-20% w/w and sodium sulfate 12-20%, w/w), metal ligand type, and concentration, system pH and the commercial papain loading on papain extraction, were systematically studied. Under optimum conditions of the system, i.e. 18% w/w sodium sulfate, 18% w/w polyethylene glycol 4000, 1% w/w polyethylene glycol-iminodiacetic acid-Cu(2+) and pH 7, a maximum yield of 90.3% and a degree of purification of 3.6-fold were obtained. Compared to aqueous two phase extraction without ligands, affinity partitioning was found to be an effective technique for the purification of commercial papain with higher extraction efficiency and degree of purification.

  16. [Selection of winter plant species for wetlands constructed as sewage treatment systems and evaluation of their wastewater purification potentials].

    Science.gov (United States)

    Chen, Yong-hua; Wu, Xiao-fu; Chen, Ming-li; Jiang, Li-juan; Li, Ke-lin; Lei, Dian; Wang, Hai-bin

    2010-08-01

    In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.

  17. Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems.

    Science.gov (United States)

    Ferreira, Ana M; Faustino, Vânia F M; Mondal, Dibyendu; Coutinho, João A P; Freire, Mara G

    2016-10-20

    Immunoglobulins G (IgG) could become widespread biopharmaceuticals if cost-efficient processes for their extraction and purification are available. In this work, aqueous biphasic systems (ABS) composed of polyethylene glycols and a buffered salt, and with ionic liquids (ILs) as adjuvants, have been studied as alternative extraction and purification platforms of IgG from a rabbit serum source. Eleven ILs were investigated to provide insights on the chemical features which maximize the IgG partitioning. It is shown that in polymer-salt systems pure IgG preferentially partitions to the polymer-rich phase; yet, the complete extraction was never attained. Remarkably, after the addition of 5wt% of adequate ILs to polymer-salt ABS, the complete extraction of pure IgG in a single-step was accomplished. The best systems and conditions were then applied to the extraction and purification of IgG directly from rabbit serum samples. The complete extraction of IgG in a single-step was maintained while its purity in the polymer-rich phase was enhanced by ca. 37% as compared to the IL-free ABS. The antibody stability was also evaluated revealing that appropriate ILs are able to maintain the IgG stability and can be used as phase-forming components of ABS when envisaging the purification of high-cost biopharmaceuticals.

  18. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    Science.gov (United States)

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  19. Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

    CERN Document Server

    Combes, Joshua; Jacobs, Kurt; O'Connor, Anthony J

    2010-01-01

    Rapid-purification by feedback --- specifically, reducing the mean impurity faster than by measurement alone --- can be achieved by making the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys.~Rev.~Lett.~{\\bf 96}, 010504 (2006)] involving continuous measurement of the observable $J_z$ for a $D$-dimensional system. We rigorously re-derive the lower bound $(2/3)(D+1)$ on the achievable speed-up factor, and also an upper bound, namely $D^2/2$, for all feedback protocols that use measurements in unbiased bases. Finally we extend our results to $n$ independent measurements on a register of $n$ qubits, and derive an upper bound on the achievable speed-up factor that scales linearly with $n$.

  20. Study on Purification Diatomite with nitric acid by Thermal Closed System

    Directory of Open Access Journals (Sweden)

    Kuang Meng

    2016-01-01

    Full Text Available In this research, a purification approach using nitric acid leaching at thermal closed system was developed to improve the porous structure of raw diatomite by removal of impurities from its surface and clogged pores. The feasibility and efficiency of this approach were determined by XRF for chemical constitution of diatomite, SEM for morphology and BET for specific surface area of purified diatomite. The investigations indicated that the content of SiO2 was in order of 85.14% for raw diatomite and 98% for purified diatomite, the content of Fe2O3 decreases after purified; the integrity of the porous structure was confirmed by SEM, and increase in specific surface area from 18m2·g-1 to 36m2·g-1.

  1. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems.

    Science.gov (United States)

    Pereira, Matheus M; Cruz, Rafaela A P; Almeida, Mafalda R; Lima, Álvaro S; Coutinho, João A P; Freire, Mara G

    2016-06-01

    The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.

  2. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    Science.gov (United States)

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  3. The use of wastes from a brick factory for the biological purification of waste water; La utilizacion de residuos de una fabrica de ladrillo en la depuracion biologica de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontoria, E.

    1997-09-01

    The purpose of this study was to investigate pulverized brick taken from brick factories used as support beds in submerged bio filters for the purification of residual water, which also permit the r-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The study of this landfills shows that the ceramic efficiency was 92% COD-removal and 91% SS-removal, with secondary clarification. Although the functioning of the system with this material has not improved 100%, this study has opened up a new field of investigation that will perfect the system and material. (Author)

  4. Purification of a water extract of Chinese sweet tea plant (Rubus suavissimus S. Lee) by alcohol precipitation.

    Science.gov (United States)

    Koh, Gar Yee; Chou, Guixin; Liu, Zhijun

    2009-06-10

    The aqueous extraction process of the leaves of Rubus suavissimus often brings in a large amount of nonactive polysaccharides as part of the constituents. To purify this water extract for potential elevated bioactivity, an alcohol precipitation (AP) consisting of gradient regimens was applied, and its resultants were examined through colorimetric and HPLC analyses. AP was effective in partitioning the aqueous crude extract into a soluble supernatant and an insoluble precipitant, and its effect varied significantly with alcohol regimens. Generally, the higher the alcohol concentration, the purer was the resultant extract. At its maximum, approximately 36% (w/w) of the crude extract, of which 23% was polysaccharides, was precipitated and removed, resulting in a purified extract consisting of over 20% bioactive marker compounds (gallic acid, ellagic acid, rutin, rubusoside, and steviol monoside). The removal of 11% polysaccharides from the crude water extract by using alcohol precipitation was complete at 70% alcohol regimen. Higher alcohol levels resulted in even purer extracts, possibly by removing some compounds of uncertain bioactivity. Alcohol precipitation is an effective way of removing polysaccharides from the water extract of the sweet tea plant and could be used as an initial simple purification tool for many water plant extracts that contain large amounts of polysaccharides.

  5. Purification of mine water: Meirama lignite. Depuracion de las aguas de minas: lignitos de Meirama

    Energy Technology Data Exchange (ETDEWEB)

    Herranz Villafruela, F. (Lignitos de Meirama (Spain))

    1992-04-01

    The Meirama hydrographic basin covers 33 square kilometres and has an average annual precipitation of between 1,100 and 1,900 mm. Since 1975 when measurements began, the annual average has been 1,500 mm. The area enclosed by water channels is 3.4 square kilometres. For the average annual rainfall of 1,500 mm, this gives nearly five million cubic metres of water per year. When this total is added to the 950,000 cubic metres of phreatic water measured to date, it creates the need for a pump capable of moving approximately 650 cubic metres per hour the whole year round, allowing a factor of 0.8 for evaporation and run-off. In order to facilitate drainage over the whole of the working area, the mine has been planned so as to give a rising 1% gradient toward the benches starting from an imaginary line which divides the mine into one third and two thirds of its total length where the settling ponds and pump are situated. Although this system made the mining project more complicated, it was very successful as it made it possible to keep the machinery on well-drained ground. 4 figs., 1 tab.

  6. Improvement and Progress of CARR Fluid Systems Design

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There are 18 fluid systems in CARR. They are respectively: the reactor coolant system(RCS); the secondary cooling water system; the heavy water cooling system; the secondary shutdown system; the helium system; the vacuum system; the warm-layer circulation system; the emergency core cooling system(ECCS); the isotope chamber water cooling system; the pool-water feed and drain system; the reactor coolant purification system; the reactor pool-water purification system; the heavy water purification system; the heavy water condense system; the intermediate-level waste

  7. Investigation of Pharmaceutical Residues in Hospital Effluents, in Ground- and Drinking Water from Bundeswehr Facilities, and their Removal During Drinking Water Purification (Arzneimittelrueckstaende in Trinkwasser(versorgungsanlagen) und Krankenhausabwaessern der Bundeswehr: Methodenentwicklung - Verkommen - Wasseraufbereitung)

    Science.gov (United States)

    1999-11-01

    Fluorchinolo- ne ( Ciprofloxacin , Norfloxacin , Enrofloxacin, Ofloxacin), Chloramphenicol, Lincomycin, Clindamycin und Trimethoprim mit Konzentrationen bis in den...water from Bundeswehr facilities, and their removal during drinking water purification) 6. AUTHOR(S) Th. Heberer, Dirk Feldmann, Marc Adam, Kirsten...occurrence and the removal of pharmaceutical residues was investigated In a scientific research project (InSan I 1299-V-7502) entitled "Investigation

  8. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  9. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  10. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein.

    Science.gov (United States)

    Ding, Xueqin; Wang, Yuzhi; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-07

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by (1)H nuclear magnetic resonance ((1)H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV-vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV-vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.

  11. Water Softeners: How Much Sodium Do They Add?

    Science.gov (United States)

    ... softened water, you may want to consider a water-purification system that uses potassium chloride instead. Another option is to soften only the hot water and use unsoftened cold water for drinking and ...

  12. Improvement of xenon purification system using a combination of a pulse tube refrigerator and a coaxial heat exchanger

    CERN Document Server

    Chen, Wan-Ting; Cussonneau, J -P; Donnard, J; Duval, S; Lemaire, O; Calloch, M Le; Ray, P Le; Mohamad-Hadi, A -F; Morteau, E; Oger, T; Scotto-Lavina, L; Stutzmann, J -S; Thers, D; Briend, P; Haruyama, T; Mihara, S; Tauchi, T

    2012-01-01

    We have developed a compact cryogenic system with a pulse tube refrigerator and a coaxial heat exchanger. This liquefaction-purification system not only saves the cooling power used to reach high gaseous recirculation rate, but also reduces the impurity level with high speed. The heat exchanger operates with an efficiency of 99%, which indicates the possibility for fast xenon gas recirculation in a highpressurized large-scale xenon storage with much less thermal losses.

  13. Expression and Purification of ZNF191(243-368) in Three Expression Systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dong-Xin; TENG Xin-Cheng; DING Zhi-Chun; HUANG Zhong-Xian

    2007-01-01

    ZNF191(243-368), a new human zinc finger protein, probably relates to some hereditary diseases and cancers.To obtain adequate amount of ZNF 191 (243-368) for the study of its property, structure and function, three different expression systems of inclusion-body, glutathione S-transferase (GST), and hexahistidine (6 × His) were used and compared. Among these systems, the expression level of ZNF191(243-368) was increased in inclusion body system under a higher isopropylthio-β-D-galactoside (IPTG) concentration, but the non-target proteins were also increased more, which made its purification more difficult and the yield lower. The expression of His-tag fusion protein was almost not affected by IPTG concentration, temperature and inducing time. At a high IPTG concentration the highest expression yield for GST fusion protein was obtained. And the fusion proteins can be partially purified by a single affinity chromatography step. The fusion protein systems show advantages for expression of these proteins.

  14. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification.

    Science.gov (United States)

    Romanos, G Em; Athanasekou, C P; Katsaros, F K; Kanellopoulos, N K; Dionysiou, D D; Likodimos, V; Falaras, P

    2012-04-15

    A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO(2) photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO(2) nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO(2) deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. 组合吸收塔在 VCM 净化系统中的应用%Application of combined absorption tower in VCM purification system

    Institute of Scientific and Technical Information of China (English)

    田长波; 邵海珑; 齐念先; 赵辉旭

    2013-01-01

    The reform of VCM purification system was performed .The falling film-water washing process was replaced by combined absorption tower process .After the reform ,the absorp-tion efficiency increased ,the water consumption and the caustic soda consumption decreased ,the device life prolonged ,and the cost was saved by 1 .464 4 million RMB ¥ per year .%  对 VCM 净化系统进行了改造,采用组合吸收塔工艺替代降膜水洗吸收工艺。改造后系统的吸收效率提高,水消耗量和烧碱用量减少,设备使用寿命延长,可节约成本146.44万元/a 。

  17. Hybridized reactive iron-containing nano-materials for water purification

    DEFF Research Database (Denmark)

    Mines, Paul D.

    for interaction with the aqueous pollutant. This study employed a synthetic organo-functionalized magnesium-based aminoclay (MgAC) for this exact purpose. By varying the ratio of MgAC to nZVI and monitoring the change in physical characteristics and reactivity, a composite material was formed that improved...... as extremely efficient carriers of nZVI for maintaining colloidal stability. In one case, the COP used (COP-19) increased the colloidal stability of nZVI by two orders of magnitude. Building on the application of these composite materials, investigating how best to handle the synthesized materials can prolong...... more difficult to analyze compounds in real-world sources. Ultimately, the primary goal of this PhD study was to develop a robust nanocomposite material containing nZVI for water treatment systems. Taking the lessons learned from initial composite work using MgAC and COPs, the final material combined...

  18. Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol.

    Science.gov (United States)

    Mohammadi, Mitra; Hassan, Mohd Ali; Phang, Lai-Yee; Ariffin, Hidayah; Shirai, Yoshihito; Ando, Yoshito

    2012-02-01

    A new halogen-free and environmental-friendly method using water and ethanol is developed as an alternative for the recovery of polyhydroxyalkanoates (PHA) from recombinant Cupriavidus necator in comparison to the established chloroform extraction method. After optimisation, our results showed that the halogen-free method produced a PHA with 81% purity and 96% recovery yield, in comparison to the chloroform extraction system which resulted in a highly pure PHA with 95% yield. Although the purity of the PHA using the new method is lower, the molecular weight of the extracted PHA is not compromised. This new method can be further developed as an alternative and more environmental-friendly method for industrial application.

  19. Purification of chlorogenic acid in Flos Lonicerae with system of polar ordered resins

    Institute of Scientific and Technical Information of China (English)

    XIANG Zhi-nan; ZHAN Yu; NING Zheng-xiang

    2007-01-01

    A system of polar ordered resins was established for purification of chlorogenic acid in Flos Lonicerae. It was composed of three reversed phase resins, AB-8, DM-130 and NKA-9, representative for their gradually increased polarity and selectivity. A method of RP-HPLC was used for determination of chlorogenic acid. And the performance of adsorption and desorption for chlorogenic acid with the system of polar ordered resins was studied. Furthermore, the effects of concentration, pH and flow rate of the adsorbate on adsorption ability were researched. It is indicated that the optimum parameters for chlorogenic acid are as follows:pH 3.5 with a flow rate of 2.5 BV/h, the concentration of extract solution at 0.50, 0.40, 0.30 g/L respectively for the adsorptive operation twice, and 6.93, 8.66, 10.39 mol/L ethanol used as gradient eluants. The purity of resulted product of chlorogenic acid arrives 70.20% with yield of 89.79%. With simple procedures, low costs and high purity product, the method of system of polar ordered resins followed by sequential reversed phase separations can be used to refine the chlorogenic acid in the extraction of Flos Lonicerae.

  20. Biocompatible water softening system using cationic protein from moringa oleifera extract

    Science.gov (United States)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-07-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  1. Sewage Purification Business Process Management

    Directory of Open Access Journals (Sweden)

    Esad Ahmetagić

    2011-09-01

    Full Text Available This paper presents the current level of drainage and sewage purification facilities built in the Autonomous Province of Vojvodina, a territorial unit of the Republic of Serbia. It also points out the issues related to organized business management in companies involved in this business.The management of business processes in sewage purification involves a comprehensive cycle: business organizing process, issues of standard, investments, workforce, and information system design as factors in establishing an effective organization of business processes. The definition of gap existing between the current approach to organizing business activities and the need to establish an approach based on knowledge, information technologies, and effective business process management points to the necessity for organization redesign and standard definition in business process management. Sewage purification business process management in Vojvodina, the Republic of Serbia has been elaborated through theoretical presentation and a practical example realized by electronic ISO 9001:2008 system of quality management in public water utility company JKP "Vodokanal" Sombor.

  2. Purification and assays of Rhodobacter capsulatus RegB-RegA two-component signal transduction system.

    Science.gov (United States)

    Swem, Lee R; Swem, Danielle L; Wu, Jiang; Bauer, Carl E

    2007-01-01

    Two-component signal-transduction systems, composed of a histidine-sensor kinase and a DNA-binding response regulator, allow bacteria to detect environmental changes and adjust cellular physiology to live more efficiently in a broad distribution of niches. Although many two-component signal-transduction systems are known, a limited number of signals that stimulate these systems have been discovered. This chapter describes the purification and characterization of the predominant two-component signal-transduction system utilized by Rhodobacter capsulatus, a nonsulfur purple photosynthetic bacterium. Specifically, we explain the overexpression, detergent solubilization, and purification of the full-length membrane-spanning histidine-sensor kinase RegB. We also provide a method to measure autophosphorylation of RegB and discern the effect of its signal molecule, ubiquinone, on autophosphorylation levels. In addition we describe the overexpression and purification of the cognate response regulator RegA and a technique used to visualize the phosphotransfer reaction from RegB to RegA.

  3. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  4. PARTIAL PURIFICATION OF LIPASE FROM STREPTOMYCES VARIABILIS NGP 3 AND ITS APPLICATION IN BIOREMEDIATION OF WASTE WATER

    Directory of Open Access Journals (Sweden)

    K. Selvam* and B. Vishnupriya

    2013-11-01

    Full Text Available Partial purification and bioremediation of waste water by lipase from the marine actinomycete Streptomyces variabilis NGP 3 (Accession no: (JX843530 were carried out. The optimum incubation period, pH, temperature and agitation speed for enzyme production were fifth day (61.2 U/ml, 9.0 - 9.5 (105 U/ml, 35ºC (39.4 U/ml and 120 rpm (38.7 U/ml respectively. Lactose (2.0 g/l and peptone (0.6 and 0.8 g/l proved to the best carbon and nitrogen sources respectively for lipase production. The partially purified lipase showed a specific activity of 1440.97 U/mg protein, 7.63 fold pure and yielded 3.19 per cent of protein. The enzyme activity was maximum at the pH and temperatures were 8.5 and 45ºC respectively. The molecular weight of the first and second isoenzymes was found to be 55.0 and 56.0 KDa respectively. Bioremediation of automobile effluent and slaughter house waste water were carried out by the isolated actinomycetes isolate S. variabilis NGP 3. The chemical oxygen demand (COD, total organic chloride (TOC and fat/oil content of the effluent were analyzed. The COD and fat/oil degradation rate were increased by the simultaneous reduction of TOC in the treated effluent.

  5. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations.

    Science.gov (United States)

    Chiellini, Carolina; Iannelli, Renato; Modeo, Letizia; Bianchi, Veronica; Petroni, Giulio

    2012-01-01

    Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.

  6. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    Science.gov (United States)

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process.

  7. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  8. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  9. Improvised purification methods for obtaining individual drinking water supply under war and extreme shortage conditions.

    Science.gov (United States)

    Kozlicic, A; Hadzic, A; Bevanda, H

    1994-01-01

    Supplying an adequate amount of drinking water to a population is a complex problem that becomes an extremely difficult task in war conditions. In this paper, several simple methods for obtaining individual supplies of drinking water by filtration of atmospheric water with common household items are reported. Samples of atmospheric water (rain and snow) were collected, filtered, and analyzed for bacteriological and chemical content. The ability of commonly available household materials (newspaper, filter paper, gauze, cotton, and white cotton cloth) to filter water from the environmental sources was compared. According to chemical and biological analysis, the best results were obtained by filtering melted snow from the ground through white cotton cloth. Atmospheric water collected during war or in extreme shortage conditions can be purified with simple improvised filtering techniques and, if chlorinated, used as an emergency potable water source.

  10. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L

    2004-12-15

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  11. Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances.

    Science.gov (United States)

    Falkenhagen, D; Strobl, W; Vogt, G; Schrefl, A; Linsberger, I; Gerner, F J; Schoenhofen, M

    1999-01-01

    The removal of albumin bound substances has gained increasing interest in different diseases, especially in acute and chronic liver disease. Therefore, a new system, the fractionated plasma separation and adsorption (FPSA) system, was developed based on combined membrane and adsorbent blood purification techniques. The most important contribution to the FPSA system was the development of a new polysulfone hollow-fiber filter, which is characterized by a sieving coefficient of 0.89 for human serum albumin (HSA) but only of 0.17 for fibrinogen, and 0 (zero) for IgM immunoglobulins. Using a closed filtrate circuit connected to the new polysulfone filter which integrates 1 or 2 adsorption columns and also a high flux dialyzer adapted to a dialysis machine, the FPSA system opens excellent possibilities for the relatively specific removal of albumin bound substances from the blood such as albumin bound bilirubin or even tryptophan. In comparison to other systems (for example, the Molecular Adsorbent Recirculating System [MARS] and albumin dialysis systems), the FPSA system enables much higher elimination of strongly bound albumin substances. The first clinical investigations have recently started based on a modified dialysis machine designed with all necessary safety measures.

  12. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  13. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2016-10-01

    Full Text Available In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES for removal of methylene blue (MB dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent’s properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5 nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  14. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  15. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  16. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on-going...

  17. Biologically Enhanced Filter/O3/BAC System for Purification of Micro-polluted River Water%生物强化滤池-O3-BAC系统对微污染河水的深度净化研究

    Institute of Scientific and Technical Information of China (English)

    廖日红; 申颖洁; 何绪文; 战楠; 刘操

    2012-01-01

    为提高生物滤池-臭氧氧化-生物活性炭滤池组合工艺系统对微污染地表水中主要污染物的去除效率,文章考察了生物强化条件下该组合系统的性能.利用PCR-DGGE技术进行各单元中微生物多样性对比分析,并采用生物毒性效应测试进行该项组合工艺出水水质的生态安全性考察.此外,通过显微镜和扫描电镜进行生物单元填料中微生物膜形态研究.结果表明:生物强化滤池单元中高效工程菌的添加有效改善了系统内微生物浓度低的问题并提高了系统对主要污染物的去除效率,生物强化滤池填料中微生物多样性指数和物种数均高于其他工艺单元.生物滤池中生物膜形态、颜色和厚度具有沿水流方向渐变的特点.原水经生物强化组合系统深度处理后可有效降低水中生物毒性,包括部分急性毒性特征物质和致癌风险值的削减.%Bio-augmentation technique was applied to the improvement of a biological filter/ozonation/biological activated carbon(BAC) process for enhancing micro-polluted river water purification. This paper describes a bench-scale experiment in which some sophisticated technologies and instruments are used such as PCR-DGGE for analyzing microbial and biological effects to evaluate biological toxicity, and SEM measurement to examine the bio -film formation on the filter and morphological patterns of the bio-film. The experiment clearly shows that addition of some engineering bacteria could improve water pollutants removal by increasing microorganism content and microbial diversity index, as well as microbial species number in the bio-film filter; additionally, biological toxicity, including acute toxic and carcinogenic, of the treated water is reduced effectively.

  18. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  19. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  20. Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt.

    Science.gov (United States)

    Jiang, Bin; Feng, Zhibiao; Liu, Chunhong; Xu, Yingcao; Li, Dongmei; Ji, Guo

    2015-05-01

    To explore a new and simple rapid extraction and purification technique for wheat-esterase, an ionic liquids (ILs)-based aqueous two-phase system (ATPS) was developed for the purification of wheat-esterase from wheat extracts. Effects of various process parameters such as the concentrations of [Bmim]BF4, the types and concentrations of phase-forming salt, the system pH and the temperature on partitioning of wheat-esterase were evaluated. The obtained data indicated that wheat-esterase was preferentially partitioned into the ILs-rich phase and the ATPS composed of 20 % [Bmim]BF4 (w/w) and 25 % (w/w) NaH2PO4(pH = 4.8) showed good selectivity on wheat-esterase. Under the optimum conditions, wheat-esterase was purified with an acceptable yield (88.93 %), but produced wheat-esterase was 4.23 times as pure. It was obvious that temperature shows little influence on the purification between 10 and 50 °C. Sephadex G-150FF revealed that the band intensity of contaminating proteins in ATPS fraction almost disappeared. Therefore, ILs-based ATPS was an effective method for partitioning and recovery of wheat-esterase from wheat crude extracts.

  1. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    Energy Technology Data Exchange (ETDEWEB)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production

  2. Floating bioplato for purification of waste quarry waters from mineral nitrogen compounds in the Arctic.

    Science.gov (United States)

    Evdokimova, Galina A; Ivanova, Lyubov A; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadezhda V

    2016-08-23

    A bioplato was organized at Kirovogorskiy pond-settling of OLKON Company (the city of Olenegorsk, in Murmansk region) to reduce the content of nitrogen mineral compounds in water which come into the pond with the quarry waters after blasting operations using nitrogen compounds. The assortment of aboriginal plants was selected, a method of fixing and growing them on the water surface was developed, and observations of their vegetation were carried out. The dynamics of nitrogen compounds was determined in the laboratory and with full-scale tests. The coverage area pond by plants for the effective reduction of mineral nitrogen compounds was calculated. The use of floating bioplato helped to reduce content of ammonium and nitrite to maximum permissible levels or even lower in pond water. Also there was a tendency towards reduction of nitrate concentrations in water. The developmental technology can be used in any climatic zone with a specific assortment of plants-ameliorants.

  3. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  4. A generic system for the expression and purification of soluble and stable influenza neuraminidase.

    Directory of Open Access Journals (Sweden)

    Peter M Schmidt

    Full Text Available The influenza surface glycoprotein neuraminidase (NA is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir and Relenza (zanamivir that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent 'swine flu' pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1 H(274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development.

  5. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Hem Raj, E-mail: hempant@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Kim, Han Joo [Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-01-15

    Highlights: • A single mat having varieties of performance for water treatment is simply introduced. • Cost effective Ag-doped fly ash/PU nanofibers are fabricated in one-step. • Solvent reduction of AgNO{sub 3} could produce Ag-loaded spider-web nets. • Size of Ag NPs on fiber surface can be controlled by controlling stirring time. • Fabrication of nanocomposite using pollutant material to control other pollutents. -- Abstract: A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways.

  6. Field solar photocatalytic purification of pesticides-containing rinse waters from tractor cisterns used for grapevine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, P. [Ecole Centrale de Lyon (France). Lab. Photocatalyse, Catalyse et Environnement; Vannier, S. [Chambre d' Agriculture de Vaucluse, Avignon (France); Dussaud, J. [Ahlstrom Research, Pont Eveque (France); Rubis, J.P. [Lycee Viticole, Orange (France)

    2004-11-01

    The objective was to assess in a vineyard the effect of purifying by solar photocatalysis the title rinse waters (presently rejected or, extremely rarely, cleaned in specific installations) in terms of efficacy and on-site ease-of-use for the wine grower. The on-site, self-functioning, solar purifying unit included a corrugated-steel inclined plate of area S=1 m{sup 2} onto which a TiO{sub 2}-coated thin material had been stuck, a 100-l tank, and an aquarium-type pump powered by a photovoltaic panel. For a vineyard of area A=0.15 km{sup 2}, the rinse water (about 80 l) corresponding to each of four typical vine treatments was analysed (major pesticides for each treatment, TOC, Microtox test and, in one case, BOD{sub 5}) by independent laboratories, before and after purification for 8 days. These analyses showed that the S/A ratio tested was insufficient. From the relatively low final organic content reached in one case, it is calculated that a three-time higher S/A ratio might suffice, but new trials are necessary to determine whether it is valid for the other typical cases. Inferred contribution of inorganic ions to the post-photocatalytic treatment toxicity points out to the need for an additional detoxification. However, even with a too small S, the photocatalytic treatment markedly improved the quality of the rinse waters. These field experiments have also demonstrated that the purifying prototype is robust, and easy to install and use on site by the wine grower. (Author)

  7. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  8. Water in the Solar System

    Science.gov (United States)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  9. Purification of landscape water by using an innovative application of subsurface flow constructed wetland.

    Science.gov (United States)

    Chyan, Jih Ming; Lu, Chien Chang; Shiu, Ruei Feng; Bellotindos, Luzvisminda M

    2016-01-01

    This study attempted to purify eutrophic landscape water under a low pollutant concentration and high hydraulic volume loading using an embedded subsurface flow (SSF) constructed wetland (CW). Three species of aquatic plants (i.e., Cyperus alternifolius subsp. flabelliformis, Canna indica, and Hydrocotyle verticillata) were found to be conducive to the requirements of purifying the low-polluted water. Field results of nearly 2 years of experiments showed that SSF CW purified the eutrophic water and maintained the landscape water in a visibly clear condition. In an environment approaching the SSF CW background concentration, pollutant removal processes were divided into modulation and optimum performance periods. Average concentrations of biochemical oxygen demand (BOD), ammonium-nitrogen (NH4 (+)-N), and total phosphorous (TP) in the optimum performance period were 0.69-1.00, 0.35-1.42, and 0.19-0.23 mg/L, respectively. Almost 500 days of BOD and NH4 (+)-N removals were necessary to perform optimally. A shorter period, 350 days, was required for TP optimum removal. This feature of two stage removals was not found in chlorophyll-a (Chl-a) and suspended solids (SS), whose averages were 11.86-17.98 and 13.30 μg/L, respectively. Filter cleaning and water replacement were unnecessary, while only water recharging was needed to compensate for the water lost by evapotranspiration. The field SSF CW has maintained its performance level for over 7 years.

  10. A comparative study of the radiological hazard in sediments samples from drinking water purification plants supplied from different sources

    Directory of Open Access Journals (Sweden)

    Shams A.M. Issa

    2014-01-01

    Full Text Available The natural radiation level has been determined for 135 sediment samples from forty-six drinking water purification plants supplied from different sources (Nile River, Ibrahimia Canal and Bahr Yousif Canal aiming to evaluate the radiation hazard. The concentration of natural radionuclides (226Ra, 232Th and 40K has been investigated by using gamma spectrometry (NaI (Tl 3″ × 3″ detector. The results showed that the concentrations of average activity in the sediment samples collected from Nile River, Ibrahimia Canal and Bahr Yousif Canal are (29 ± 2, 30 ± 2 and 240 ± 8 Bq kg−1, (47 ± 3, 46 ± 8 and 258 ± 12 Bq kg−1 and (28 ± 2, 27 ± 3 and 219 ± 18 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The distributions of average activity concentrations of samples under investigation are within the world values although some extreme values have been determined. Radiological hazard effects such as: absorbed dose rate (D, outdoor and indoor annual effective dose equivalent (AEDE, radium equivalent activities (Raeq, hazard indices (Hex and Hin, gamma index (Iγ, excess lifetime cancer risk (ELCR and annual gonadal dose equivalent (AGDE for the corresponding samples were also estimated.

  11. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  12. ZnO-PLLA Nanofiber Nanocomposite for Continuous Flow Mode Purification of Water from Cr(VI

    Directory of Open Access Journals (Sweden)

    T. Burks

    2015-01-01

    Full Text Available Nanomaterials of ZnO-PLLA nanofibers have been used for the adsorption of Cr(VI as a prime step for the purification of water. The fabrication and application of the flexible ZnO-PLLA nanofiber nanocomposite as functional materials in this well-developed architecture have been achieved by growing ZnO nanorod arrays by chemical bath deposition on synthesized electrospun poly-L-lactide nanofibers. The nanocomposite material has been tested for the removal and regeneration of Cr(IV in aqueous solution under a “continuous flow mode” by studying the effects of pH, contact time, and desorption steps. The adsorption of Cr(VI species in solution was greatly dependent upon pH. SEM micrographs confirmed the successful fabrication of the ZnO-PLLA nanofiber nanocomposite. The adsorption and desorption of Cr(VI species were more likely due to the electrostatic interaction between ZnO and Cr(VI ions as a function of pH. The adsorption and desorption experiments utilizing the ZnO-PLLA nanofiber nanocomposite have appeared to be an effective nanocomposite in the removal and regeneration of Cr(VI species.

  13. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  14. Purification of firefighting water containing a fluorinated surfactant by reverse osmosis coupled to electrocoagulation-filtration

    OpenAIRE

    Baudequin, Clement; Couallier, Estelle; Rakib, Mohammed; Deguerry, Isabelle; Severac, Romain; Pabon, Martial

    2011-01-01

    International audience; Extinguishments of large scale solvent fires produce large amounts of water that may contain various fluorinated surfactants depending on the type of fire fighting foam used. Due to their chemical nature, fluorinated parts of fl uorinated compounds are highly resistant to biochemical and advanced oxidation processes. Therefore the current treatment for the degradation of fluorinated surfactant from water used in fire extinguishment is high temperature incineration of t...

  15. INFLUENCE OF RECONSTRUCTION NANO-DIAMOND ON WATER PURIFICATION FROM ION Cu2+

    OpenAIRE

    Антоненко, Людмила Петрівна; Задніпрянець, Ю. М.; Дзюбак, О. М.; Бабич, А. Ю.; Трубійчук, Р. П.

    2015-01-01

    Pollution of fresh water with salts of heavy metals is a topical problem in many parts of the world. The demeanor of heavy metals in the tangible environments is complicated and poorly studied. So, their accumulation in wildlife causes a serious anxiety. Therefore the come out of heavy metals in the air, water and soil must be taken under control.Filtration is one of the most prevalent technologies for removing heavy metals from aqueous environment. Selection of the filter materials is extrem...

  16. Mosquitocidal and water purification properties of Ocimum sanctum and Phyllanthus emblica

    Directory of Open Access Journals (Sweden)

    Kadarkarai Murugan

    2012-12-01

    Full Text Available Ocimum sanctum was tested for its larvicidal and water sedimentation properties; the fruit ethanol and methanol extracts of Phyllanthus emblica were tested for phytochemical, larvicidal, oviposition-deterrent and ovicidal activities. Results emphasized that plant extracts have high toxicity against the egg and larvae of the malarial vector Anopheles stephensi and also have water sedimentation properties. LC50 of Phyllanthus emblica against Anopheles stephensi larvae ranged from 33.08 ppm to 81.26 ppm and from 23.44 to 54.19 ppm for ethanol and methanol extracts, respectively. Phyllanthus emblica also showed excellent ovipositional deterrent and ovicidal activities. The oviposition activity index value of ethanol and methanol extracts of Phyllanthus emblica at 500 ppm were -0.80 and -0.92, respectively. Ocimum sanctum includes both insecticidal secondary compounds, amino acids (glycine, lysine, vitamin C and other substances, that make treated water suitable for human consumption. Water quality parameters such as color, turbidity and pH were analyzed in the water samples (pre-treatment and post-treatment of plant extracts taken from the breeding sites of mosquitoes. Hence, the plant product can be used as both mosquitocidal and water purifier.

  17. Water Purification across MoS2 Nano-porous Membranes

    Science.gov (United States)

    Heiranian, Mohammad; Barati Farimani, Amir; Aluru, Narayana R.

    2015-11-01

    A 2D material, molybdenum disulfide (MoS2) , is proposed as a nano-porous membrane for water desalination. By performing detailed molecular dynamics simulations, we find that salt ions are rejected efficiently across a single-layer MoS2 while water permeates at high rates. Depending on the pore area, which ranges from 20 to 60 Å2, the nanopore allows less than 12% of ions to pass through even at theoretically high pressures of 350 MPa. Water permeation across the MoS2 membrane is found to be as high as 12 L/cm2/day/MPa which is at least two orders of magnitude higher than that of other existing nano-porous membranes. Pore chemistry is shown to be one of the important factors leading to large water fluxes. MoS2 pore edges terminated with only molybdenum atoms result in higher fluxes which are about 70% higher than that of graphene nanopores. These findings are explained and supported by the permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  18. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    Science.gov (United States)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  19. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    Science.gov (United States)

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water.

  20. Purification Process of Lake Water%湖水净化处理工艺

    Institute of Scientific and Technical Information of China (English)

    黄亮; 赵子玲

    2012-01-01

    某人工湖水由于富营养成分较多,致使水体透明度下降,甚至有臭味散发。利用“过滤+消毒”的湖水净化组合工艺,使湖水经处理后可以湖内循环回用。%A artificial lake due to the more nutritious ingredients, resulting in water transparency decreased, and even smell distributing. By the means of combination decontaminate process of filter and disinfection, the lake water will be 1oo13 back to the lake.

  1. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  2. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  3. Use of radionuclides at small water purification plants and in industrial waste water treatment by radiation adsorption method

    Energy Technology Data Exchange (ETDEWEB)

    Brusentseva, S.A.; Egorov, G.F.; Shubin, V.N. [and others

    1993-12-31

    An irradiation technique for potable water treatment is described. Use of radionuclides as a source of radiation allows for the automation of the process. The treatment is considered to be effective in waste water treatment to remove phenols, pesticides, and other toxic compounds.

  4. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  5. Organisms in rock bed contact-purification channel for improvement of eutrophic coastal water; Kaisui joka no rekikan sesshoku suironai no fuchaku teisei seibutsuso

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M. [Shimizu Corp., Tokyo (Japan); Kadokura, N. [Kumagai Gumi Co. Ltd., Tokyo (Japan); Suda, Y. [Shimonoseki University of Fisheries, Yamaguchi (Japan); Tanaka, Y. [Toyo Construction Co. Ltd., Tokyo (Japan); Hosokawa, Y. [Port and Harbor Research Institute, Kanagawa (Japan)

    1996-08-10

    In order to identify living organism phases in a water purification channel for eutrophic coastal water, investigations were carried out on fouling and benthic organisms by using an experimental channel installed along a canal in the innermost part of Tokyo Bay. Phytoplanktons in influent are such algae as Skeletonema costatum, Navicula and Nitzschia which are often observed in coastal areas. Rock bed benthic organisms were Carchesium, Vorticella and Zoothamnium predominant in that order. The most predominant species in periphytons was Skeletonema costatum, an alga. In nine months after the water was first flown into the channel, seventeen kinds of large-size fouling and benthic animals were found living in the channel. Mollusca and Annelida contribute to purifying water and reducing water bottom mud, but reduce inter-rock spaces as individuals grow in size and number of individuals increases, causing clogging in the channel. When a rock bed contact-purification facility is operated in a water area, both of fouling and benthic animals living in that area appear in the channel. Species appeared in the present experimental channel were found similar to combination species appeared in the pier No. 13 and the artificial tideland off the Kasai coast. 41 refs., 3 figs., 3 tabs.

  6. Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations.

    Science.gov (United States)

    González, S Oliva; Almeida, C A; Calderón, M; Mallea, M A; González, P

    2014-09-01

    Water pollution caused by organic matter is a major global problem which requires continuous evaluation. Multivariate statistical analysis was applied to assess spatial and temporal changes caused by natural and anthropogenic phenomena along Potrero de los Funes River. Cluster analysis (CA), principal component analysis (PCA) and analysis of variance (ANOVA) were applied to a data set collected throughout a period of 3 years (2010-2012), which monitored 22 physical, chemical and biological parameters. Content of dissolved oxygen in water and biochemical oxygen demand in a watercourse are indicators of pollution caused by organic matter. For this reason, the Streeter-Phelps model was used to evaluate the water self-purification capacity. Hierarchical cluster analysis grouped the sampling sites based on the similarity of water quality characteristics. PCA resulted in two latent factors explaining 75.2 and 17.6 % of the total variance in water quality data sets. Multidimensional ANOVA suggested that organic pollution is mainly due to domestic wastewater run-offs and anthropogenic influence as a consequence of increasing urbanization and tourist influx over the last years. Besides, Streeter-Phelps parameters showed a low reaeration capacity before dam with low concentration of dissolved oxygen. Furthermore, self-purification capacity loss was correlated with the decrease of the Benthic Index. This measurement suggested that biological samplings complement the physical-chemical analysis of water quality.

  7. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    DEFF Research Database (Denmark)

    Homaeigohar, Shahin; Zillohu, Ahnaf; Abdelaziz, Ramzy

    2016-01-01

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption...

  8. Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system

    NARCIS (Netherlands)

    Shirzad-Wasei, N.; Oostrum, J. van; Bovee-Geurts, P.H.M.; Wasserman, M.; Bosman, G.J.C.G.M.; Degrip, W.J.

    2013-01-01

    Melanopsin is the mammalian photopigment that primarily mediates non-visual photoregulated physiology. So far, this photopigment is poorly characterized with respect to structure and function. Here, we report large-scale production and purification of the intact long isoform of mouse melanopsin (mel

  9. Evaluation of a new preparative supercritical fluid chromatography system for compound library purification: the TharSFC SFC-MS Prep-100 system.

    Science.gov (United States)

    Ebinger, Katalin; Weller, Harold N; Kiplinger, Jeffrey; Lefebvre, Paul

    2011-06-01

    Preparative HPLC-MS is often the method of choice for purification of small amounts (<100mg) of diverse new molecules, such as compound libraries for drug discovery. The method is robust, well proven, and widely applicable. In contrast, preparative supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) has seen only slow acceptance for the same application--despite some potential scientific and economic advantages. One of the reasons for slow adoption of SFC-MS is the lack of well-proven, robust, and commercially available instrumentation. In early 2009, TharSFC (a Waters Company, Pittsburgh, PA) introduced a new fully integrated system for preparative SFC-MS: The SFC-MS Prep-100. We report herein an objective evaluation of the SFC-MS Prep-100, including tests for pump and autosampler performance, sample recovery, sample carryover, fraction triggering, detector/fraction collector synchronization, and overall robustness. Our results suggest that the SFC-MS Prep-100 represents a significant advance over previous generation instrumentation.

  10. 电去离子净水技术%Electrodeionization water purification technology

    Institute of Scientific and Technical Information of China (English)

    王方

    2001-01-01

    The electrodialysis membrane technology and the ion exchange technology are combined together to create a new kind of water desaltfication, which is called electrodeionization (EDI). The technology has some advantages: without chemicals so the water body and the environment cannot be polluted; the electrodeionizer run continuously and automatically without anybody on duty; widely suitability, low running cost, easy spread. In this paper, a practical analytical method of reaction superposition for EDI process is proposed. The method can explain application regimes at high content of salts and at low content of salts.%介绍了电去离子(EDI)净水技术,讨论了笔者建立的反应叠加实用分析方法,并用它分析说明低含盐量时和高含盐量时应用EDI净水的工况.

  11. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  12. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  13. Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing.

    Science.gov (United States)

    Ahmed, Farid; Santos, Catherine M; Mangadlao, Joey; Advincula, Rigoberto; Rodrigues, Debora F

    2013-08-01

    This study demonstrated that coated nitrocellulose membranes with a nanocomposite containing 97% (wt%) of polyvinyl-N-carbazole (PVK) and 3% (wt%) of single-walled carbon nanotubes (SWNTs) (97:3 wt% ratio PVK:SWNT) achieve similar or improved removal of bacteria when compared with 100% SWNTs coated membranes. Membranes coated with the nanocomposite exhibited significant antimicrobial activity toward Gram-positive and Gram-negative bacteria (≈ 80-90%); and presented a virus removal efficiency of ≈ 2.5 logs. Bacterial cell membrane damage was considered a possible mechanism of cellular inactivation since higher efflux of intracellular material (Deoxyribonucleic acid, DNA) was quantified in the filtrate of PVK-SWNT and SWNT membranes than in the filtrate of control membranes. To evaluate possible application of these membrane filters for drinking water treatment, toxicity of PVK-SWNT was tested against fibroblast cells. The results demonstrated that PVK-SWNT was non toxic to fibroblast cells as opposed to pure SWNT (100%). These results suggest that it is possible to synthesize antimicrobial nitrocellulose membranes coated with SWNT based nanocomposites for drinking water treatment. Furthermore, membrane filters coated with the nanocomposite PVK-SWNT (97:3 wt% ratio PVK:SWNT) will produce more suitable coated membranes for drinking water than pure SWNTs coated membranes (100%), since the reduced load of SWNT in the nanocomposite will reduce the use of costly and toxic SWNT nanomaterial on the membranes.

  14. Application of adsorption in water purification treatment; Kyuchaku no josui shori eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Sakoda, A. [Tokyo Univ. (Japan)

    1997-08-05

    It is necessary to know that how much the organic materials that are to be removed by adsorption can be adsorbed by active carbon when thinking of water treatment using active carbon adsorption. The adsorption equilibrium relation in general is strongly correlated with the pore distribution and specific surface area of active carbon, however, it is not related directly with the particle form, powder or fiber. Equilibrium adsorption amount against organic material concentration can be decided by the solution of adsorption equilibrium relation and by using this, maximum theoretical amount of water treated per unit amount of activated carbon can be obtained. Adsorption rate is also an important adsorption characteristic similar to adsorption equilibrium relation. In this report, fundamentals of liquid phase adsorption operation using active carbon are described and further, comparatively new type of water treatment using active carbon fiber, biological active carbon and so forth is given. Recently, new materials like virus, pesticides and so forth have been appeared one after another to be treated. In future, development of new process using new type of adsorbents along with the combination of film separation is predicted, however, demand of active carbon may not be reduced so far. 13 refs., 3 figs.

  15. FastTrack to supercritical fluid chromatographic purification: Implementation of a walk-up analytical supercritical fluid chromatography/mass spectrometry screening system in the medicinal chemistry laboratory.

    Science.gov (United States)

    Aurigemma, Christine; Farrell, William

    2010-09-24

    Medicinal chemists often depend on analytical instrumentation for reaction monitoring and product confirmation at all stages of pharmaceutical discovery and development. To obtain pure compounds for biological assays, the removal of side products and final compounds through purification is often necessary. Prior to purification, chemists often utilize open-access analytical LC/MS instruments because mass confirmation is fast and reliable, and the chromatographic separation of most sample constituents is sufficient. Supercritical fluid chromatography (SFC) is often used as an orthogonal technique to HPLC or when isolation of the free base of a compound is desired. In laboratories where SFC is the predominant technique for analysis and purification of compounds, a reasonable approach for quickly determining suitable purification conditions is to screen the sample against different columns. This can be a bottleneck to the purification process. To commission SFC for open-access use, a walk-up analytical SFC/MS screening system was implemented in the medicinal chemistry laboratory. Each sample is automatically screened through six column/method conditions, and on-demand data processing occurs for the chromatographers after each screening method is complete. This paper highlights the "FastTrack" approach to expediting samples through purification.

  16. Ultrapure Water System for Hemodialysis Therapy

    Science.gov (United States)

    2011-07-21

    The Change of Biomarkers CRP, CBC With the Use of Ultra Pure Water System for; Hemodialysis.; The Rate of Adverse Events Such as Hypotension During Hemodialysis Therapy With Ultra Pure Water; System as Compared to Conventional Water System.

  17. Control of crystal growth in water purification by directional freeze crystallization

    Science.gov (United States)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  18. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    Science.gov (United States)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  19. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi....../L and 95 and 400 mg F/L respectively in natural and synthetic solutions. The fluoride removal capacities observed were 4.6 mg F/g bone char for the column system and 2.7 mg F/g bone char for the batch system in case of synthetic magadi solution. It is however concluded that the batch system is the best...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  20. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  1. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  2. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    Science.gov (United States)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  3. WATER SUPPLY SYSTEMS OPERATIONAL PROGNOSIS

    Directory of Open Access Journals (Sweden)

    Bruno Santos Vieira

    2016-12-01

    Full Text Available The actions planning to minimize risks and ensure the effectiveness of water supply systems requires the use of appropriate forecasting models. In fact, forecasting the behavior and analysis of future scenarios can be supported with the use of techniques and simulation models. In this article, we propose a procedure to simulate the actions of decision-makers in planning the operation of this system type in order to obtain an operating and financial prognosis that consider dynamic influences. The applicability of the proposed procedure is demonstrated through an urban systems planning problem of water supply. As a result we obtained a system costs distribution odds, which improves decision making in the context of the analyzed system. Additionally, the proposed procedure is applicable to other types of complex systems subject to dynamic influences.

  4. Ammonia-water absorption refrigeration systems with flooded evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Vigo, Campus Lagoas-Marcosende No. 9, 36310 Vigo (Spain)

    2006-12-15

    The harmful effects of water accumulation in the evaporator in ammonia-water absorption refrigeration systems (AARS) with flooded evaporators are a crucial issue. In this paper, the effects of the ammonia purification and the liquid entrainment and blow-down from the evaporator in AARS are analyzed. A mathematical model based on a single stage system with complete condensation has been developed. The ammonia purification is evaluated by means of the Murphree efficiencies of the stripping and rectifying sections of the distillation column. The entrainment and blow-down are taking into account considering the corresponding flow rates as a fraction of the dry vapour at the evaporator outlet. The influence of the distillation column components efficiency on the attainable distillate concentration and the effects of the distillate concentration and the liquid entrainment and blow-down on the system operating conditions and performance are analyzed and quantified. If no liquid entrainment or blow-down is considered, very high efficiencies in the distillation column are required. Small values of liquid entrainment or blow-down fractions increase significantly the operating range of the absorption system. If high values of the blow-down fraction are required, then a heat exchanger should be added to the system in order to recover the refrigeration capacity of the blow-down by additional subcooling of the liquid from the condenser. For a fixed value of the distillation column efficiency, an optimum value of the liquid blow-down fraction exists. Moreover, an optimum combination of generation temperature, reflux ratio and blow-down fraction can be found, which should be considered in designing and controlling an AARS. (author)

  5. The Purification and Rapid Identification of Heavy Metal-binding Peptides of Water Hyacinth

    Institute of Scientific and Technical Information of China (English)

    丁翔; 王文清; 姜剑; 茹炳根; 王英彦

    1994-01-01

    This paper studies the rapid identification of heavy metal-binding peptides (phytochelatin) by taking Water Hyacinth as a model plant. Plants were cultured in water containing 2 μg/ml Cd2+ for 13 days. The Sephadex G-50 chromatography of root extract under low salt concentration (0. 01 mol/L PBS) gave a Cd-binding peak with MW of 10 ,000 determined by SEC HPLC. After oxidation with performic acid, its SEC HPLC molecular weight decreased to below 1300 and the reverse phase HPLC showed one peptide peak, whose amino acid composition is the same as that of the sample never undertaking oxidation, and (Glu/Gln):Cys:Gly=2:2:1. According to the general structure of phytochelatin (γ-Glu-Cys)n-Gly, n is 2 in this case. The protocol including the sequential steps of Sephadex G-50 chromatography→performic acid oxidation→reverse phase HPLC→amino acid analysis is a rapid and effective method to identify the existence of phytochelatin and determine its values of n.

  6. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  7. Study and Application of Flotation in Schemes for Waste Water Purification

    Directory of Open Access Journals (Sweden)

    Prof. dr. habil. Viktor Georgijevch Ponomarev

    2009-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The paper analyzes the factors influencing water treatment by means of flotation. Author has come to a conclusion that one of the indices revealing flotation efficiency is surface tension of the water phase. The paper presents dependencies of this index on some parameters. In addition, the paper analyzes applicable constructions of flotators. Preference is given to impeller flotation due to its suitability to application.

  8. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  9. Onsite Waste Water Treatment System

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public

  10. Assessment on reliability of water quality in water distribution systems

    Institute of Scientific and Technical Information of China (English)

    伍悦滨; 田海; 王龙岩

    2004-01-01

    Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.

  11. Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification

    Directory of Open Access Journals (Sweden)

    B. E. CONWAY

    2001-12-01

    Full Text Available Removal or modification of noxious organic impurities in waste-waters is a major challenge for environmental science. Pollutants such as phenols and their derivatives, as well as PCBs, have attracted special attention. In recent years, the possibilities of effecting direct electrocatalytic oxidations at high-area electrodes such as supported Pt or RuO2 have been investigated. However, in a number of cases, especially with phenolic impurities, application of anodic oxidation fails to lead to continuous Faradaic oxidation currents owing to the electrode surfaces becoming blocked with polymeric oxidation products leading to auto-inhibition (“passivation” of the desired electrode process. Examples of such effects with phenols and related compounds are examined comparatively in the present paper by means of cyclic volatammetry and chronoamperometry.

  12. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    Science.gov (United States)

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  13. Humic sorbent from sapropel for purification of waste waters from petroleum

    Science.gov (United States)

    Adeeva, L. N.; Platonova, D. S.

    2017-08-01

    A sorbent by thermal processing sapropel residue, after the extraction of humic acids, subsequent modification with polyhexamethyleneguanidine and pre-isolated humic acids was synthesized. The transformations of the carbon-mineral humic sorbent at a temperature of 20-1000°C in air have been studied by thermal analysis. The presence of various functional groups on the surface of a carbon-mineral humic sorbent from sapropel is confirmed with an IR-spectroscopy method. Sorption of petroleum from water solutions was studied. The static capacity value of the synthesized humic sorbent for petroleum is 85.5±0.3 mg/g. It is established that the process of sorption is described by the equation of Freundlich isotherm.

  14. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification.

    Science.gov (United States)

    Gao, Hongcai; Sun, Yimin; Zhou, Jiajing; Xu, Rong; Duan, Hongwei

    2013-01-23

    We present a one-step approach to polydopamine-modified graphene hydrogel, with dopamine serving as both reductant and surface functionalization agents. The synthetic method is based on the spontaneous polymerization of dopamine and the self-assembly of graphene nanosheets into porous hydrogel structures. Benefiting from the abundant functional groups of polydopamine and the high specific surface areas of graphene hydrogel with three-dimensional interconnected pores, the prepared material exhibits high adsorption capacities toward a wide spectrum of contaminants, including heavy metals, synthetic dyes, and aromatic pollutants. Importantly, the free-standing graphene hydrogel can be easily removed from water after adsorption process, and can be regenerated by altering the pH values of the solution for adsorbed heavy metals or using low-cost alcohols for synthetic dyes and aromatic molecules.

  15. Purification of empty fruit bunch (EFB) and kenaf soda lignin with acidified water

    Science.gov (United States)

    Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Hua, Chia Chin

    2014-09-01

    In this current study, the soda lignins from empty fruit bunch (EFB) and kenaf core were recovered by two step precipitation method. The objective of this research is to study the purity of lignin by washing the lignins with acidified water. The purified lignins were undergone characterization by FT-IR, Uv-Vis and XRD. The FT-IR analysis shows that kenaf core has Guaiacyl(G) and Syringyl(S) unit meanwhile EFB has Hydroxyphenyl(H), Guaiacyl(G) and Syringyl(S) unit of lignin. As for XRD analysis, the non-purified shows that the existence of impurities which is salt (NaCl). The UV analysis shows the higher absorbance which lead to the purity of lignin.

  16. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2016-03-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  17. Are TiO2 Nanotubes Worth Using in Photocatalytic Purification of Air and Water?

    Directory of Open Access Journals (Sweden)

    Pierre Pichat

    2014-09-01

    Full Text Available Titanium dioxide nanotubes (TNT have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene or acetaldehyde (ethanal in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  18. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy Joe [ORNL; Palumbo, Anthony Vito [ORNL; Fagan, Lisa Anne [ORNL; Bischoff, Brian L [ORNL; Miller, Curtis Jack [ORNL; Drake, Meghan M [ORNL; Judkins, Roddie Reagan [ORNL

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  19. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  20. The Study of Ability of Local Ninivite Rocks in Purification of Drinking Water

    Directory of Open Access Journals (Sweden)

    Muna Faiq Ali

    2010-01-01

    Full Text Available This study is conducted to verify the efficienecy of local Ninivite rock when used in the treatment of drinking water in plants operating currently in the country in order to develop the situation of these stations to cope with the increase in population. Also, this will limit the pollutian which are increasing in the country's rivers.(Euphrates and Tigris. These rivers are the sources to feed all water treatment plants in the country. The idea is the develop or the modify these stations by replacing part of top layer of sand filters used in these stations with Ninivite rock to operate as filters composed of two medium. The efficiency of this rock is compared with other materials used successfully worldwide in this area, such as activated carbon and anther cite. The comparison is made on the basis of percentage of the removal of turbidity levels, and on the possibility using high filtration rates that exceed the rates currently used in the treatment plants inside the country. A pilot plant in the laboratory scale was built to simulate the treatment plants within the country. It contains all the operating units of traditional basins. These basins are coagulation, floculation, sedimentation and filtration tanks. Filtration unit, in the present study, is formed of the four glass columns (filters, which worked in parallel and on same time. The 20 cm of Ninivite rock activated carbon, anthercite is placed in first, second, third column respectively, the layer is placed above 40 cm of sand layer, and consequently it worked a filter with two mediums. The fourth column contained only sand for a depth of 60 cm to work as filter with single medium. The same size grains of material used in the present study (0.82 mm and uniformity coefficient which is equal to 106.

  1. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  2. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  3. Partial purification of the 5-hydroxytryptophan-reuptake system from human blood platelets using a citalopram-derived affinity resin

    Energy Technology Data Exchange (ETDEWEB)

    Biessen, E.A.L; Horn, A.S.; Robillard, G.T. (Univ. of Groningen (Netherlands))

    1990-04-03

    This paper describes a procedure for the synthesis and application of a citalopram-derived affinity resin in purifying the 5HT-reuptake system from human blood platelets. A two-step scheme has been developed for partial purification, based on wheat germ agglutinin-lectin (WGA) affinity and citalopram affinity chromatographies. Upon solubilization of the carrier with 1% digitonin, a 50-70-fold increase in specific ({sup 3}H) imipramine binding activity with a 70% recovery could be accomplished through WGA-lectin chromatography. The WGA pool was then subjected to affinity chromatography on citalopram-agarose. At least 90% of the binding capacity adsorbed to the column. Specific elution using 10 {mu}M citalopram resulted in a 22% recovery of binding activity. A 10,000-fold overall purification was obtained by using this two-step procedure. Analysis of the fractions on SDS-PAGE after {sup 125}I labeling revealed specific elution of 78- and 55-kDa proteins concomitant with the appearance of ({sup 3}H) imipramine binding activity. The pharmacological profile of the partially purified reuptake system correlated well with that derived from the crude membrane-bound reuptake system, suggesting a copurification of the 5HT binding activity and ({sup 3}H)imipramine binding activity.

  4. Disposable on-chip microfluidic system for buccal cell lysis, DNA purification, and polymerase chain reaction.

    Science.gov (United States)

    Cho, Woong; Maeng, Joon-Ho; Ahn, Yoomin; Hwang, Seung Yong

    2013-09-01

    This paper reports the development of a disposable, integrated biochip for DNA sample preparation and PCR. The hybrid biochip (25 × 45 mm) is composed of a disposable PDMS layer with a microchannel chamber and reusable glass substrate integrated with a microheater and thermal microsensor. Lysis, purification, and PCR can be performed sequentially on this microfluidic device. Cell lysis is achieved by heat and purification is performed by mechanical filtration. Passive check valves are integrated to enable sample preparation and PCR in a fixed sequence. Reactor temperature is needed to lysis and PCR reaction is controlled within ±1°C by PID controller of LabVIEW software. Buccal epithelial cell lysis, DNA purification, and SY158 gene PCR amplification were successfully performed on this novel chip. Our experiments confirm that the entire process, except the off-chip gel electrophoresis, requires only approximately 1 h for completion. This disposable microfluidic chip for sample preparation and PCR can be easily united with other technologies to realize a fully integrated DNA chip.

  5. Control of health risks in drinking water through point-of-use systems

    Institute of Scientific and Technical Information of China (English)

    LIU RuiPing; QU JiuHui

    2009-01-01

    The control of health risks and the provision of safe drinking water have received great concern in the research field of the science and technologies of drinking water purification. The chemicals, microorganisms, and nano-materials in drinking water exhibit the basic characteristics of low-dosage, complexity, and hard-to-control, and promote potential health risks during the treatment, distribution, and storing of drinking water. The establishment of point-of-use (POU) systems is required for the control of health risks in drinking water according to these practical requirements. This study proposed the philosophy of point-of-use (POU) systems which aimed to control the health risks in drinking water, and introduced several key unit processes. Based on the idea above, the POU systems for health risks control have been developed and successfully used in the Olympic Village and its core areas during the period of 2008 Beijing Olympic Games.

  6. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  7. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  8. High-speed countercurrent chromatography for purification of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ying Cai; Zhi Hong Yan; Ying Chun Lv; Min Zi; Li Ming Yuan

    2008-01-01

    A new chromatographic purification of single-walled carbon nanotubes using high-speed countercurrent chromatography is reported.The purification was accomplished on the basis of experiment that dispersed the single-walled carbon nanotubes with sodium dodecyl sulfate,and the result mixture was separated using the two phase system composed of n-butanol/water=1/1 (v/v).The sizes of SWNTs separated were observed by scanning electron microscopy.The results demonstrated that the high-speed countercurrent chromatography possessed a good efficency for purification of single-walled carbon nanotubes.

  9. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Kobashigawa, Naoya; Ohkubo, Keiko; Terada, Hiroshi; Kishida, Naohiro; Akiba, Michihiro

    2012-09-15

    The presence of radionuclides at five water purification plants was investigated after an explosion at a nuclear power plant hit by the Great East Japan Earthquake on 11 March 2011. Radioactive iodine (¹³¹I) and cesium (¹³⁴Cs and ¹³⁷Cs) were detected in raw water in Fukushima and neighboring prefectures. ¹³¹I was not removed by coagulation-flocculation-sedimentation. ¹³¹I was removed by granular activated carbon (GAC) and powdered activated carbon (PAC) at a level of about 30%-40%, although ¹³¹I was not removed in some cases. This was also confirmed by laboratory-scale experiments using PAC. The removal percentages of ¹³¹I in river and pond waters by 25 mg dry/L of PAC increased from 36% to 59% and from 41% to 48%, respectively, with chlorine dosing before PAC. ¹³⁴Cs and ¹³⁷Cs were effectively removed by coagulation at both a water purification plant and in laboratory-scale experiments when turbidity was relatively high. In contrast, ¹³⁴Cs and ¹³⁷Cs in pond water with low turbidity were not removed by coagulation. This was because ¹³⁴Cs and ¹³⁷Cs in river water were present mainly in particulate form, while in pond water they were present mainly as cesium ions (¹³⁴Cs+ and ¹³⁷Cs+). However, the removal of ¹³⁴Cs and ¹³⁷Cs in pond water by coagulation increased markedly when ¹³⁴Cs and ¹³⁷Cs were mixed with sediment 24 h before coagulation.

  11. Smart membranes for nitrate removal, water purification, and selective ion transportation

    Science.gov (United States)

    Wilson, William D.; Schaldach, Charlene M.; Bourcier, William L.; Paul, Phillip H.

    2009-12-15

    A computer designed nanoengineered membrane for separation of dissolved species. One embodiment provides an apparatus for treatment of a fluid that includes ions comprising a microengineered porous membrane, a system for producing an electrical charge across the membrane, and a series of nanopores extending through the membrane. The nanopores have a pore size such that when the fluid contacts the membrane, the nanopores will be in a condition of double layer overlap and allow passage only of ions opposite to the electrical charge across the membrane.

  12. 池塘养殖水体净化修复技术研究进展%Review of Pond Water Purification and Repair Technology in Aquaculture

    Institute of Scientific and Technical Information of China (English)

    梁福权; 朱文聪

    2012-01-01

    概述了池塘水体净化修复技术的研究进展,重点介绍了物理修复、化学修复和生物修复在养殖水体净化等方面的应用情况,并对其发展和应用前景进行了阐述.%The research advance of pond water purification and restoration was reviewed. The application of physical repair, chemical remediation and bioremediation in pond aquaculture was introduced, the development and application prospect were elaborated.

  13. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate.

    Science.gov (United States)

    Luo, Jinghuan; Lu, Xueqin; Liu, Jianyong; Qian, Guangren; Lu, Yongsheng

    2014-12-01

    Biogas, generated from an expanded granular sludge bed (EGSB) reactor treating municipal solid waste (MSW) leachate, was recirculated for calcium removal from the leachate via a carbonation process with simultaneous biogas purification. Batch trials were performed to optimize the solution pH and imported biogas (CO2) for CaCO3 precipitation. With applicable pH of 10-11 obtained, continuous trials achieved final calcium concentrations of 181-375 mg/L (removal efficiencies≈92.8-96.5%) in the leachate and methane contents of 87.1-91.4% (purification efficiencies≈65.4-82.2%) in the biogas. Calcium-balance study indicates that 23-986 mg Ca/d was released from the bio-system under the carbonized condition where CaCO3 precipitating was moved outside the bioreactor, whereas 7918-9517 mg Ca/d was trapped into the system for the controlled one. These findings demonstrate that carbonation removal of calcium by biogas recirculation could be a promising alternative to pretreat calcium-rich MSW leachate and synergistically to improve methane content.

  14. A Hybrid MPC-PID Control System Design for the Continuous Purification and Processing of Active Pharmaceutical Ingredients

    Directory of Open Access Journals (Sweden)

    Maitraye Sen

    2014-05-01

    Full Text Available In this work, a hybrid MPC (model predictive control-PID (proportional-integral-derivative control system has been designed for the continuous purification and processing framework of active pharmaceutical ingredients (APIs. The specific unit operations associated with the purification and processing of API have been developed from first-principles and connected in a continuous framework in the form of a flowsheet model. These integrated unit operations are highly interactive along with the presence of process delays. Therefore, a hybrid MPC-PID is a promising alternative to achieve the desired control loop performance as mandated by the regulatory authorities. The integrated flowsheet model has been simulated in gPROMSTM (Process System Enterprise, London, UK. This flowsheet model has been linearized in order to design the control scheme. The ability to track the set point and reject disturbances has been evaluated. A comparative study between the performance of the hybrid MPC-PID and a PID-only control scheme has been presented. The results show that an enhanced control loop performance can be obtained under the hybrid control scheme and demonstrate that such a scheme has high potential in improving the efficiency of pharmaceutical manufacturing operations.

  15. Water Districts - MO 2010 Active Public Drinking Water Systems (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This point layer represents active public drinking water systems. Each public drinking water system's distribution or service area is represented by a single point.

  16. Water quality spatial and temporal evaluation and auto-purification simulation from the São Simão stream watershed, SP

    Directory of Open Access Journals (Sweden)

    Letícia Hirata Godoy

    2012-12-01

    Full Text Available This study evaluated the water of São Simão stream watershed. For this, six sampling points were established and twelve samples of water were collected during the months of March, May, June, July, August, September, October, November, and December of 2005 and January, February, and March of 2006. The following variables were analyzed: discharge, temperature, turbidity, pH, electrical conductivity (EC, dissolved oxygen (DO, alkalinity, chloride and TSS (total suspended solids. The Streter & Phelps model which correlates the variation of the deficit oxygen with the distance was applied to evaluate the São Simão stream auto-purification. The characteristics of the São Simão stream near its spring until it reaches São Simão city allowed concluding that there is low interference in its quality. However, the absence of treatment of domestic wastewater at São Simão city reduced the water quality and increased the degradation process of São Simão stream after passing through the city. The Streeter & Phelps model allowed identifying the auto-purification zones in this stream and indicated the need for primary wastewater treatment, with an efficiency of 30%.

  17. Engineering of a highly efficient Xe₂*-excilamp (xenon excimer lamp, λmax=172 nm, η=40%) and qualitative comparison to a low-pressure mercury lamp (LP-Hg, λ=185/254 nm) for water purification.

    Science.gov (United States)

    Al-Gharabli, Samer; Engeßer, Patrick; Gera, Diana; Klein, Sandra; Oppenländer, Thomas

    2016-02-01

    Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry. The efficiency in the 172 nm initiated bleaching of aqueous solutions of Rhodamine B is compared to that initiated by a common low-pressure mercury (LP-Hg) lamp (185 nm, TNN 15/32). The dependence of the pseudo zero order rate constant k´ of decolorization of RhB on the flow rate and on the initial concentration of RhB was investigated. Both lamps exhibited dependences of k´ on the initial concentration of RhB, which represents a typical saturation kinetical behavior. The saturation kinetics was very prominent in the case of the Xe2(*)-excilamp. Also, the Xe2(*)-excilamp treatment exhibited a significant influence on the flow rate of the RhB aqueous solution, which was not the case during the LP-Hg lamp initiated bleaching of RhB. The results of this paper demonstrate that Xe2(*)-excilamps can be used for VUV-initiated water purification. However, to reach the maximum efficacy of the Xe2(*)-excilamp for photo-initiated water purification further engineering optimization of the photoreactor concept is necessary.

  18. The use of carbon sorbents and sorption technologies for cleaning water systems of petroleum products

    Directory of Open Access Journals (Sweden)

    Л.І. Павлюх

    2008-01-01

    Full Text Available  Sorbtional properties of carbonic sorbents on the base of pine sawdust in the processes of purification of water mediums and complicated technological solution from petroleum products and phosphorus compounds are investigated. The possibility of carbonic sorbents modification by halogen organic compounds to increase the degree of purification of water ecosystems is analyzed.

  19. Early warning system for detection of protozoal contamination of source waters

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Mogensen, Claus; Berg, Tommy W.

    2012-01-01

    contamination of the source. Sample acquisition and analysis is performed real-time where objects in suspension are differentiated into e.g. Cryptosporidium spp., Giardia spp., organic and inorganic subgroups. An alarm system is activated by positive finds, and subsequently (oo-)cysts passing through the system...... water contamination e.g. water plants/water distribution networks, filtration systems (water purification), commercial buildings, swimming pools, and industry in general. Data from on-going field tests as well as sensitivity and specificity testing of the system will be presented at the conference....... optical technique, in combination with advanced data analysis, yields a measure for the protozoal content present in the sample. High sensitivity of the system is obtained through a combination of filtration and the use of ultrasound. This gives a fast and reliable detection capability of protozoal...

  20. Optimization of Purification Process of Polysaccharide in Compound Qianyu Water Decoction%复方前愈水煎液中多糖的纯化∗

    Institute of Scientific and Technical Information of China (English)

    李梓盟; 张柯达; 王晖; 吴金虎

    2016-01-01

    目的:优选复方前愈水煎液中纯化多糖最佳工艺条件。方法采用水提醇沉、复溶、Sevag法除蛋白、透析法进行纯化,以苯酚-硫酸分光光度法测定多糖纯度,在单因素实验基础上,通过正交实验考察复溶固液比、除蛋白次数、透析时间等条件对复方前愈多糖纯度的影响。结果复方前愈多糖最佳纯化工艺条件为:固液比为1∶40( g/mL,W/V)、脱蛋白10次、透析18 h,在此条件下纯化多糖纯度可达69.04%,转移率51.84%。结论优选的纯化工艺流程简便易行,可用于复方前愈水煎剂中多糖的纯化。%Objective To optimize the technological conditions of polysaccharide purification from compound Qianyu water decoction. Methods Water extraction and alcohol precipitation, resolution, Sevag method and dialysis method were used to purify polysaccharide.The purity of polysaccharide was measured with the phenol-sulfuric acid spectrophotometry.On the basis of single factor test, effects of redissolved solid-liquid ratio, number of protein removal, and dialytic time on polysaccharide purity of Qianyu were investigated by orthogonal test. Results The best conditions for purification of polysaccharide in Qianyu were as follows: liquid-solid ratio was 1:40(g/mL, W/V), remove protein for 10 times, and dialysis for 18 h.The content of polysaccharide could reach 69.04%, and the transfer rate was 51.84%. Conclusion The optimized purification process was simple and accurate.It can be used for polysaccharide purification in compound Qianyu water decoction.

  1. Effect of Three Hydroponic Vegetables on Water Purification%3种水培蔬菜对水质净化效果的研究

    Institute of Scientific and Technical Information of China (English)

    汪小将; 邓晓育; 刘飞; 刘旭昊

    2011-01-01

    [目的]研究3种水培蔬菜时富营养化水体的净化效果,以期为富营养化水体的植物生态修复提供理论依据.[方法]以生菜、包菜和油麦菜3种常见蔬菜为试验材料进行水培生长试验,通过对氨氮(NH-N)、活性磷(SOP)和高锰酸盐指数(I)等富营养化指标的测定研究3种蔬菜对富营养化水体的净化效果.[结果]在富营养化水体中,生菜的生长状况最佳,包菜次之,油麦菜最差,这表明生菜和包菜可以较好地适应富营养化水培生长;对富营养化水体中NH-N和I去除率最高的是生菜(92%和86%),对SOP 去除率最高的是包菜(92%),而油麦菜对这3个指标的去除率均最低.[结论]生菜和包菜对富营化水体的净化效果较好,具有一定的推广应用价值.%[ Objective] The purification effect of three hydroponic vegetables on eutrophic water was studied to provide theoretical basis for the plant ecological restoration of eutrophic water. [ Method] Hydroponics test was carried out using lettuce,cabbage and leaf lettuce as materials,and the purification effect of three hydroponic vegetables on eutrophic water was studied through determining ammonia nitrogen (NH4 +-N ), soluble organic phosphorus (SOP) and permanganate index (IMn). [ Result] In eutrophic water,lettuce grew beast,and next came cabbage,while leaf lettuce was the poorest,which showed that lettuce and cabbage could grow well in eutrophic water; lettuce had the highest removal rate of NH4 + -N and IMn in eutrophic water (92% and 86% ) ,and the removal rate of SOP by cabbage was highest,while leaf lettuce had the lowest removal rate of three indexes. [ Conclusion] The purification effect of lettuce and cabbage on eutrophic water was better with certain popularization value.

  2. Study on Biological Methods of Water Purification in Intensive Fishponds%精养池塘水质生物净化技术研究

    Institute of Scientific and Technical Information of China (English)

    敬小军; 袁新华

    2013-01-01

    In this trial, a water purification section which was separated from traditional intensive fishponds by planting water spinach, stocking clam and bio-filter brush, was studied to improve water quality of the intensive fishponds for the first time. The results showed that the integrated system of biological methods was very effective in removing total suspended solids (TSS ) , chemical oxygen demands ( COD Mn ) , total nitrogen (TN ) , ammonium nitrogen ( TAN), nitrite nitrogen ( NO2- -N ) , nitrate nitrogen ( NO-3-N) , orthophosphate phosphorus ( PO4 34-P) and total phosphorus (TP). In particular, the bio-system in pond No. 1 had the optimal effect on water improvement and the relative removal rates (the control standard was the pollutant value of control pond) of pollutants mentioned above were 49.58 % , 30.13 % , 38. 81 % , 37.31 % , 50.72 % , 56.13 % , 52.63 % and 40.96 % , respectively. In addition, there was no obvious difference between ammoni-fier and nitrifying bacteria in water of various ponds in terms of quantity. However, the ammonifier ratios of bio-brushes to water in pond No. 1 and pond No. 2 was 32:1 and 49:1, respectively, and the nitrifying bacterial ratios of bio-brushes to water in pond No. 1 and pond No. 2 was 4:1 and 4:1, respectively. It indicated that bio-brush provided a favorable medium for two bacteria above and help the decomposition of organic materials and nitrification of nitrogen.%本研究首次在传统精养鱼池中构建了功能净化区,采用在浮床中栽种水蕹菜、吊挂背角无齿蚌和生物滤料净化水质.结果表明,与对照池相比,由水培蕹菜、背角无齿蚌和生物滤料组成的集成生物净化系统对精养鱼池水中TSS、CODMn、TN、TAN、NO2--N、NO3--N、PO43--P和TP都有较好的去除效果,尤其是1号池净化区,以对照池水质指标为参照标准,其对上述各污染物相对去除率分别为49.58%,30.13%,38.81%,37.31%,50.72%,56.13%,52.63%和40.96%;此

  3. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  4. Investigation of acid red 88 oxidation in water by means of electro-Fenton method for water purification.

    Science.gov (United States)

    Özcan, Ali; Gençten, Metin

    2016-03-01

    In this study, electro-Fenton method was applied to acid red 88 (AR88) containing aqueous solutions for the removal of it from water. The mineralization of AR88 has been achieved by oxidation with hydroxyl radicals. These radicals were produced simultaneously by the electro-Fenton method using an electrochemical cell including a carbon felt cathode and a platinum anode. Applied current and concentrations of catalyst and supporting electrolyte were optimized to obtain the best effective parameters of 500 mA, 0.1 mM and 75 mM, respectively. The absolute rate constant for the oxidation reaction of AR88 with hydroxyl radical was determined as (1.57 ± 0.06) x 10(10) M(-1) s(-1). Total organic carbon (TOC) analysis was performed to determine whether the organics were converted to carbon dioxide or not. A two-hour electrolysis at 500 mA is enough to remove 87% of initial TOC values of 0.25 mM AR88 solution. Electro-Fenton treatment of AR88 led to the formation of five aromatic intermediates, five short-chain carboxylic acids and three inorganic ions. Identified intermediates and complete mineralization of AR88 allowed us to propose a mineralization pathway for first time in the literature.

  5. Purification and recycling of the waste water of a paper mill using mechanical pulp; Mekaanista massaa kaeyttaevaen paperitehtaan jaeteveden puhdistus ja uudelleenkaeyttoe - EKY 07

    Energy Technology Data Exchange (ETDEWEB)

    Mattelemaeki, R. [Enso Oyj, Imatra (Finland)

    1998-12-31

    The objective of the project was to study which levels of organic and inorganic substances could be obtained by treatment of waste waters of mechanical pulper and paper machine biologically and after that with solid matter removal. Another target was also to test the utilisation of the purified water in pulp and paper manufacture, and to study the properties of purified water. The three months test runs with PK 4 and TMP plant clarified waters were carried out using a pilot-scale plant, which also consisted of two serial aerobic bioreactors and a parallel anaerobic line as a reference. The solid matter was removed by chemical flocculation, flotation and sand filtration. The purification efficiencies of both waters were similar both in aerobic and anaerobic lines. The reduction of soluble COD in biological stage was about 75 % and that of the whole line about 85 %. The solid matter reduction was 60-70 %. Solid fines, including bacteria, could not be removed sufficiently from the water by flotation and sand filtration so the water cannot be recommended to be used to replace fresh water. Circulating water sheets were produced, and pulp washing tests, retention tests and microbiological tests were carried out in order to estimate the recyclability of the water. Minor lowering of whiteness of the sheets were observed when a part of the fresh water was replaced with recycled water. Microscopic analysis shoved that after the sand filter there were a lot of free bacteria in the water. Further research will be concentrated to recycling of purified water, e.g. To research on how the colour of the water effects on the quality of the product. (orig.)

  6. Telomerase repeat amplification protocol (TRAP) activity upon recombinant expression and purification of human telomerase in a bacterial system.

    Science.gov (United States)

    Hansen, Debra T; Thiyagarajan, Thirumagal; Larson, Amy C; Hansen, Jeffrey L

    2016-07-01

    Telomerase biogenesis is a highly regulated process that solves the DNA end-replication problem. Recombinant expression has so far been accomplished only within a eukaryotic background. Towards structural and functional analyses, we developed bacterial expression of human telomerase. Positive activity by the telomerase repeat amplification protocol (TRAP) was identified in cell extracts of Escherichia coli expressing a sequence-optimized hTERT gene, the full-length hTR RNA with a self-splicing hepatitis delta virus ribozyme, and the human heat shock complex of Hsp90, Hsp70, p60/Hop, Hsp40, and p23. The Hsp90 inhibitor geldanamycin did not affect post-assembly TRAP activity. By various purification methods, TRAP activity was also obtained upon expression of only hTERT and hTR. hTERT was confirmed by tandem mass spectrometry in a ∼120 kDa SDS-PAGE fragment from a TRAP-positive purification fraction. TRAP activity was also supported by hTR constructs lacking the box H/ACA small nucleolar RNA domain. End-point TRAP indicated expression levels within 3-fold of that from HeLa carcinoma cells, which is several orders of magnitude below detection by the direct assay. These results represent the first report of TRAP activity from a bacterium and provide a facile system for the investigation of assembly factors and anti-cancer therapeutics independently of a eukaryotic setting.

  7. Early warning system for detection of microbial contamination of source waters

    Science.gov (United States)

    Mogensen, Claus Tilsted; Bentien, Anders; Lau, Mogens; Højris, Bo; Iversen, Kåre; Klinting, Mette; Berg, Tommy Winter; Agersnap, Niels; Valvik, Martin

    2011-06-01

    Ensuring chemical and microbial water quality is an ever increasing important issue world-wide. Currently, determination of microbial water quality is a time (and money) consuming manual laboratory process. We have developed and field-tested an online and real-time sensor for measuring the microbial water quality of a wide range of source waters. The novel optical technique, in combination with advanced data analysis, yields a measure for the microbial content present in the sample. This gives a fast and reliable detection capability of microbial contamination of the source. Sample acquisition and analysis is performed real-time where objects in suspension are differentiated into e.g. organic/inorganic subgroups. The detection system is a compact, low power, reagentless device and thus ideal for applications where long service intervals and remote operations are desired. Due to the very large dynamic range in measured parameters, the system is able to monitor process water in industry and food production as well as monitor waste water, source water and water distribution systems. The applications envisioned for this system includes early warning of source water contamination and/or variation. This includes: water plants/water distribution networks, filtration systems (water purification), commercial buildings, swimming pools, waste water effluent, and industry in general.

  8. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  9. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  10. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    Science.gov (United States)

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  11. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  12. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    Science.gov (United States)

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.

  13. 凤眼莲净化富营养化水体效果影响因素的综述%Water Hyacinth Eutrophic Water Purification Effect of Influential Factors Review

    Institute of Scientific and Technical Information of China (English)

    黄露露; 马晓建

    2015-01-01

    A comprehensive list of some of the factors that influence water hyacinth purify water eutrophication, and described the influence of water on the effect of these factors purify eutrophic water hyacinth, water hyacinth purification in order to promote the industrial application of eutrophic water bodies.%全面列举了一些影响凤眼莲净化富营养化水体的因素,并阐述了这些因素对凤眼莲净化富营养化水体效果的影响,以期推动凤眼莲净化富营养化水体的工业化应用。

  14. The influence of molecular weight of polyethylene glycol on separation and purification of pectinases from Penicillium cyclopium in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Prodanović Jelena M.

    2008-01-01

    Full Text Available In this study the possibility of the partitioning and purification of pectinases from Penicillium cyclopium by their partitioning in polymer/polymer and polymer/salt aqueous two-phase systems was investigated. In the system with 10% (w/w polyethylene glycol 1500/5% (w/w dextran 500 000/85% (w/w crude enzyme, the highest values for partitioning parameters were achieved - the partition coefficient was 2.11, followed by the top phase yield of 85.68% and purification factor 1.28 for the endo-pectinase activity. The partition coefficient, yield in the top phase and purification factor for the exo-pectinase activity in the same system were 1.89, 84.28% and 3.82, respectively. In the system with 10% (w/w polyethylene glycol 6000/15% (w/w (NH42SO4/75% (w/w crude enzyme purification factor 37.85 for exo-pectinase, and 19.52 for endo-pectinase in the bottom phase were obtained.

  15. Direct Purification of Pectinase from Mango (Mangifera Indica Cv. Chokanan Peel Using a PEG/Salt-Based Aqueous Two Phase System

    Directory of Open Access Journals (Sweden)

    Abdul Manap Mohd Yazid

    2011-10-01

    Full Text Available An Aqueous Two-Phase System (ATPS was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000–10,000, potassium phosphate composition (12–20%, w/w, system pH (6–9, and addition of different concentrations of neutral salts (0–8%, w/w on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%. Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  16. Direct purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel using a PEG/salt-based Aqueous Two Phase System.

    Science.gov (United States)

    Mehrnoush, Amid; Sarker, Md Zaidul Islam; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2011-10-10

    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  17. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  18. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  19. The efficient role of aquatic plant (water hyacinth) in treating domestic wastewater in continuous system.

    Science.gov (United States)

    Rezania, Shahabaldin; Din, Mohd Fadhil Md; Taib, Shazwin Mat; Dahalan, Farrah Aini; Songip, Ahmad Rahman; Singh, Lakhweer; Kamyab, Hesam

    2016-01-01

    In this study, water hyacinth (Eichhornia crassipes) was used to treat domestic wastewater. Ten organic and inorganic parameters were monitored in three weeks for water purification. The six chemical, biological and physical parameters included Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Ammoniacal Nitrogen (NH3-N), Total Suspended Solids (TSS), and pH were compared with the Interim National Water Quality Standards, Malaysia River classification (INWQS) and Water Quality Index (WQI). Between 38% to 96% of reduction was observed and water quality has been improved from class III and IV to class II. Analyses for Electricity Conductivity (EC), Salinity, Total Dissolved Solids (TDS) and Ammonium (NH4) were also investigated. In all parameters, removal efficiency was in range of 13-17th day (optimum 14th day) which was higher than 3 weeks except DO. It reveals the optimum growth rate of water hyacinth has great effect on waste water purification efficiency in continuous system and nutrient removal was successfully achieved.

  20. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  1. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  2. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium sulphate precipitation gave 2.26 fold increase in purification with specific activity of 46.13 .... minutes in a water bath and were allowed to cool.

  3. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  4. Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system.

    Science.gov (United States)

    Ram, Senthoor K; Raval, Keyur; JagadeeshBabu, P E

    2015-01-01

    Uricase (urate: oxygen oxidoreductase, EC 1.7.3.3), an enzyme belonging to the class of oxidoreductases, catalyzes the enzymatic oxidation of uric acid to allantoin and finds a wide variety of application as therapeutic and clinical reagent. In this study, uricase production ability of the bacterial strains isolated from deep litter poultry soil is investigated. The strain with maximum extracellular uricase production capability was identified as Xanthomonas fuscans subsp. aurantifolii based on 16S rRNA sequencing. Effect of various carbon and nitrogen sources on uricase productivity was investigated. The uricase production for this strain was optimized using statistically based experimental designs and resulted in uricase activity of 306 U/L, which is 2 times higher than initial uricase activity. Two-step purification, such as ammonium sulfate precipitation and aqueous two-phase system, was carried out and a twofold increase in yield and specific activity was observed.

  5. Numerical studies of an eccentric tube-in-tube helically coiled heat exchanger for IHEP-ADS helium purification system

    CERN Document Server

    Zhang, Jianqin

    2014-01-01

    The tube-in-tube helically coiled (TTHC) heat exchanger is preferred in the purifier of IHEP-ADS helium purification system. The position of an internal tube is usually eccentric in a TTHC heat exchanger in practice, while most TTHC heat exchangers in the literature studied are concentric. In this paper, TTHC heat exchangers with different eccentricity ratios are numerically studied for turbulent flow and heat transfer characteristics under different flow rates. The fluid considered is helium at the pressure of 20Mpa, with temperature dependent thermo-physical properties for the inner tube and the annulus. The inner Nusselt number between the concentric and eccentric TTHC heat exchangers are compared, so is the annulus Nusselt number. The results show that with the eccentricity increasing, the annulus Nusselt number increases substantially. According to the numerical data, new empirical correlations of Nusselt number as a function of Reynolds number and eccentricity for the inner tube and the annulus are pres...

  6. Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides in embodiments a method for purification of inlet gas/liquid streams in a fuel cell or electrolysis cell, the fuel cell or electrolysis cell comprising at least a first electrode, an electrolyte and a second electrode, the method comprising the steps of: - providing...... at least one scrubber in the gas/liquid stream at the inlet side of the first electrode of the fuel cell or electrolysis cell; and/or providing at least one scrubber in the gas/liquid stream at the inlet side of the second electrode of the fuel cell or electrolysis cell; and - purifying the gas...... with the at least one scrubber, with the proviso that the fuel cell or electrolysis cell is not a solid oxide cell....

  7. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system.

    Science.gov (United States)

    Hu, Rui; Feng, Xiaojun; Chen, Pu; Fu, Meng; Chen, Hong; Guo, Lin; Liu, Bi-Feng

    2011-01-07

    Membrane proteins play essential roles in regulating various fundamental cellular functions. To investigate membrane proteins, extraction and purification are usually prerequisite steps. Here, we demonstrated a microfluidic aqueous PEG/detergent two-phase system for the purification of membrane proteins from crude cell extract, which replaced the conventional discontinuous agitation method with continuous extraction in laminar flows, resulting in significantly increased extraction speed and efficiency. To evaluate this system, different separation and detection methods were used to identify the purified proteins, such as capillary electrophoresis, SDS-PAGE and nano-HPLC-MS/MS. Swiss-Prot database with Mascot search engine was used to search for membrane proteins from random selected bands of SDS-PAGE. Results indicated that efficient purification of membrane proteins can be achieved within 5-7s and approximately 90% of the purified proteins were membrane proteins (the highest extraction efficiency reported up to date), including membrane-associated proteins and integral membrane proteins with multiple transmembrane domains. Compared to conventional approaches, this new method had advantages of greater specific surface area, minimal emulsification, reduced sample consumption and analysis time. We expect the developed method to be potentially useful in membrane protein purifications, facilitating the investigation of membrane proteomics.

  9. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  10. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  11. Electroporation System for Sterilizing Water

    Science.gov (United States)

    Schlager, Kenneth J.

    2005-01-01

    A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination. The transient changes that occur in micro-organisms at lower electric-field strengths include significantly increased uptake of ions and molecules. Such increased uptake makes it possible to achieve disinfection at lower doses of chemicals (e.g., chlorine or ozone) than would otherwise be needed. Lower doses translate to lower costs and reduced concentrations of such carcinogenic chemical byproducts as trichloromethane. Higher electric fields cause cell membranes to lose semipermeability and thereby become unable to function as selective osmotic barriers between the cells and the environment. This loss of function is the cause of the cell death at higher electric-field intensities. Experimental evidence does not indicate cell lysis but, rather, combined leaking of cell proteins out of the cells as well as invasion of foreign chemical compounds into the cells. The concept of electroporation is not new: it has been applied in molecular biology and genetic engineering for decades. However, the laboratory-scale electroporators used heretofore have been built around small (400-microliter) cuvettes, partly because the smallness facilitates the generation of electric fields of sufficient magnitude to cause electroporation. Moreover, most laboratory- scale electroporators have been designed for testing static water. In contrast, the treatment cell in the present system is much larger and features a flow

  12. Separation and purification of isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze by counter-current chromatography comparing two kinds of solvent systems.

    Science.gov (United States)

    Xie, Qianqian; Yin, Li; Zhang, Guoliang; Wei, Yun

    2012-01-01

    The first preparative separation of a flavonoid sulphate isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze by counter-current chromatography (CCC) was presented. Two kinds of solvent systems were used. A conventional organic/aqueous solvent system n-butanol-ethyl acetate-water (4:1:5, v/v) was used, yielding isorhamnetin 3-sulphate 2.0 mg with a purity of 93.4% from 83 mg of pre-enriched crude extract obtained from 553 mg ethanol extract by macroporous resin. A one-component organic/salt-containing system composed of n-butanol-0.25% sodium chloride aqueous solution (1:1, v/v) was also used, and the LC column packed with macroporous resin has been employed for desalination of the target compound purified from CCC. As a result, 2.1 mg of isorhamnetin 3-sulphate with a purity of over 97% has been isolated from 402 mg of crude extract without pre-enrichment. Compared with the conventional organic/aqueous system, the one-component organic/salt-containing aqueous system was more suitable for the separation of isorhamnetin 3-sulphate, and purer target compound was obtained from the crude extract without pre-enrichment using the new solvent system. The chemical structure was confirmed by ESI-MS and (1)H, (13)C NMR. In summary, our results indicated that CCC using one-component organic/salt-containing aqueous solution is very promising and powerful for high-throughput purification of isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze.

  13. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  14. Use of Barley for the Purification of Aquaculture Wastewater in a Hydroponics System

    Directory of Open Access Journals (Sweden)

    A. M. Snow

    2008-01-01

    Full Text Available Barley was examined for its ability to remove nutrients from aquaculture wastewater. The effects of seed sterilization using ethanol and bleach and seed density on germination and plant growth were investigated. Surface sterilization of barley seeds had a negative impact on germination. Increasing the ethanol concentration and/or the bleach concentration reduced the germination percentage. Barley seeds were first germinated in water in the hydroponics system. The seedlings then received wastewater from an aquaculture system stocked with Arctic charr. During the experiment, the crops grew rapidly and fairly uniformly and showed no signs of mineral deficiency or disease. The average crop height at harvest was 25.5 cm and the yield varied from 25 to 59 t haˉ1, depending on the seed density. The hydroponically grown barley was able to significantly reduce the pollution load of the aquaculture wastewater. The TS, COD, NH4+-N, NO2--N, NO3--N, and PO43--P reductions ranged from 52.7 to 60.5%, from 72.9 to 83.1%, from 76.0 to 76.0%, from 97.6 to 99.2%, from 76.9 to 81.6% and from 87.1 to 95.1%, respectively. However, the effluent produced from the hydroponics system had slightly higher levels of TS (420-485 mg Lˉ1 than the 480 mg Lˉ1 recommended for aquatic animals. A sedimentation/filtration unit should be added to the hydroponics system.

  15. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant ▿

    Science.gov (United States)

    Bereschenko, L. A.; Heilig, G. H. J.; Nederlof, M. M.; van Loosdrecht, M. C. M.; Stams, A. J. M.; Euverink, G. J. W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decreased production. The bacterial community of the RO membrane biofilm was clearly different from the bacterial community present at other locations in the RO plant, indicating the development of a specialized bacterial community on the RO membranes. The typical freshwater phylotypes in the RO membrane biofilm (i.e., Proteobacteria, Cytophaga-Flexibacter-Bacteroides group, and Firmicutes) were also present in the water sample fed to the plant, suggesting a feed water origin. However, the relative abundances of the different species in the mature biofilm were different from those in the feed water, indicating that the biofilm was actively formed on the RO membrane sheets and was not the result of a concentration of bacteria present in the feed water. The majority of the microorganisms (59% of the total number of clones) in the biofilm were related to the class Proteobacteria, with a dominance of Sphingomonas spp. (27% of all clones). Members of the genus Sphingomonas seem to be responsible for the biofouling of the membranes in the RO installation. PMID:18621875

  16. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System.

    Science.gov (United States)

    Tan, Zhi-Jian; Wang, Chao-Yun; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang

    2015-09-30

    In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid-solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na₂SO₄ at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  17. Method and system for purification of gas/liquid streams for fuel cells or electrolysis cells

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides in embodiments a method for purification of inlet gas/liquid streams in a fuel cell or electrolysis cell, the fuel cell or electrolysis cell comprising at least a first electrode, an electrolyte and a second electrode, the method comprising the steps of: - providing...... at least one scrubber in the gas/liquid stream at the inlet side of the first electrode of the fuel cell or electrolysis cell; and/or providing at least one scrubber in the gas/liquid stream at the inlet side of the second electrode of the fuel cell or electrolysis cell; and - purifying the gas/liquid...... streams towards the first and second electrode; wherein the at least one scrubber in the gas/liquid stream at the inlet side of the first electrode and/or the at least one scrubber in the gas/liquid stream at the inlet side of the second electrode comprises a material suitable as an electrolyte material...

  18. Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua

    Directory of Open Access Journals (Sweden)

    Wurzelmann Daniel

    2010-12-01

    Full Text Available Abstract Background The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region. Methods A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance. Results There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36]. Conclusions Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America.

  19. Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua.

    Science.gov (United States)

    Denslow, Sheri A; Edwards, Jess; Horney, Jennifer; Peña, Rodolfo; Wurzelmann, Daniel; Morgan, Douglas

    2010-12-08

    The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region. A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance. There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36)]. Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America.

  20. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.