WorldWideScience

Sample records for water purification plant

  1. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  2. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  3. Development of fuzzy logic algorithm for water purification plant

    OpenAIRE

    SUDESH SINGH RANA; SUDESH SINGH RANA

    2015-01-01

    This paper propose the design of FLC algorithm for industrial application such application is water purification plant. In the water purification plant raw water or ground water is promptly purified by injecting chemical at rates related to water quality. The feed of chemical rates judged and determined by the skilled operator. Yagishita et al.[1] structured a system based on fuzzy logic so that the feed rate of the coagulant can be judged automatically without any skilled operator. We perfor...

  4. Purification effects of five landscape plants on river landscape water

    Science.gov (United States)

    Ling, Sun; Lei, Zheng; Mao, Qinqing; Ji, Qingxin

    2017-12-01

    Five species of landscape plants which are scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens were used as experimental materials to study their removal effects on nitrogen, phosphorus, chemical oxygen demand (CODMn) and suspended solids (SS) in urban river water. The results show that the 5 landscape plants have good adaptability and vitality in water body, among them, water hyacinth had the best life signs than the other 4 plants, and its plant height and root length increased significantly. They have certain removal effects on the nitrogen, phosphorus, CODMn (Chemical Oxygen Demand) and SS (Suspended Substance) in the landscape water of Dalong Lake, Xuzhou. Scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens on the removal rate of total nitrogen were 76.69%, 78.57%, 71.42%, 69.64%, 67.86%; the ammonia nitrogen removal rate were 71.06%, 74.28%, 67.85%, 63.02%, 59.81%;the total phosphorus removal rate were 78.70%, 81.48%, 73.15%, 72.22%, 68.52%;the orthophosphate removal rates were 78.37%, 80.77%, 75.96%, 75.96%, 71.15%;the removal rate of CODMn was 52.5%, 55.35%, 46.02%, 45.42%, 44.19%; the removal rate of SS was 81.4%, 86%, 79.1%, 76.7%, 74.42%.The purification effect of 5 kinds of landscape plants of Dalong Lake in Xuzhou City: water hyacinth> scindapsus aureus>cockscomb>calendula officinalis>salvia splendens.

  5. Plant production and water purification efficiency by rice and umbrella plants grown in a floating culture system under various water environmental conditions

    OpenAIRE

    Miyazaki, Akira; Kubota, Fumitake; Agata, Waichi; Yamamoto, Yoshinori; Song, Xiangfu

    2000-01-01

    The floating culture system was originally designed with a purpose of developing a new cropping area by growing plants on the water surface; in addition, this system can also be used as a technique for water purification by allowing plants to absorb nutrients from the eutrophied water. We investigated here the specific differences in water purification effect and plant productivity of rice and umbrella plants both of which were grown on the surface of the waters with various levels of eutroph...

  6. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  7. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  8. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  9. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health.

    Science.gov (United States)

    Simazaki, Dai; Kubota, Reiji; Suzuki, Toshinari; Akiba, Michihiro; Nishimura, Tetsuji; Kunikane, Shoichi

    2015-06-01

    The present study was performed to determine the occurrence of 64 pharmaceuticals and metabolites in source water and finished water at 6 drinking water purification plants and 2 industrial water purification plants across Japan. The analytical methods employed were sample concentration using solid-phase extraction cartridges and instrumental analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), liquid chromatography with mass spectrometry (LC/MS), or trimethylsilyl derivatization followed by gas chromatography with mass spectrometry (GC/MS). Thirty-seven of the 64 target substances were detected in the source water samples. The maximum concentrations in the source water were mostly below 50 ng/L except for 13 substances. In particular, residual concentrations of iopamidol (contrast agent) exceeded 1000 ng/L at most facilities. Most of the residual pharmaceuticals and metabolites in the source water samples were removed in the course of conventional and/or advanced drinking water treatments, except for 7 pharmaceuticals and 1 metabolite, i.e., amantadine, carbamazepine, diclofenac, epinastine, fenofibrate, ibuprofen, iopamidol, and oseltamivir acid. The removal ratios of the advanced water treatment processes including ozonation and granular activated carbon filtration were typically much higher than those of the conventional treatment processes. The margins of exposure estimated by the ratio of daily minimum therapeutic dose to daily intake via drinking water were substantial, and therefore the pharmacological and physiological impacts of ingesting those residual substances via drinking water would be negligible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  11. [Purification effects of large-area planting water hyacinth on water environment of Zhushan Bay, Lake Taihu].

    Science.gov (United States)

    Liu, Guo-feng; Zhang, Zhi-yong; Yan, Shao-hua; Zhang, Ying-ying; Liu, Hai-qin; Fan, Cheng-xin

    2011-05-01

    Using water hyacinth and other fast-growing and high biomass of floating plants to purify polluted water has become an efficient and effective ecological restoration method at present. Effects of nutrients adsorption and water purification of planting water hyacinth on water quality in Zhushan Bay were studied. The results indicated that no anoxia was observed in water hyacinth planting areas because of wave disturbance and strong water exchange. Concentrations of TN and TP in water hyacinth planting areas were higher than that in the outside of stocking area (the content ranged 3.03-7.45 mg/L and 0.15-0.38 mg/L, respectively), and the content changes ranged 3.37-8.02 mg/L and 0.15-0.36 mg/L,respectively. The higher concentration of TN and TP in water indicated the water body was heavily polluted. Water hyacinth roots have a strong ability to adsorb suspended solids and algae cells, the concentration of Chl-a in stocking areas was higher than that in stocking fringe and outside, the maximum Chlorophyll in the stocking region in August was 177.01 mg/m3, and at the same time the concentrations in planting fringe and outside were 101.53 mg/m3 and 76.96 mg/m, respectively. Higher Chl-a content on water hyacinth roots indicated that water hyacinth had strong blocking effects on algae cells, and demonstrated it had a great purification effects on eutrophicated water, and it also provides a basis for the larger polluted water bodies purification in using water hyacinth.

  12. Water Purification

    Science.gov (United States)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  13. The perfection of systems for water-supply, sewerage, and the purification of waste water at oil-refining plant

    Energy Technology Data Exchange (ETDEWEB)

    Ioakimis, E.G.; Nurmukhametova, I.Z.

    1981-01-01

    A notable part of the management of a petroleum-processing plant is delegated to effective equipment cleaning and, the resultant costs waste water (SV) cleaning are large. This is why tasks were formulated for the improvement of the water-supply system, the sewerage system, and for the improvement of SV quantities and elimination of their pollution. The maximum use of cold air for local purification of the more polluted SV and for the intensification of existing purfication methods, is incoroporated into the tasks.

  14. Phytotechnological purification of water and bio energy utilization of plant biomass

    Science.gov (United States)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.

    2017-01-01

    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  15. Recovery of Alum Coagulant from Water Treatment Plant Sludge: A Greener Approach for Water Purification

    OpenAIRE

    Smita Joshi; Kriti Shrivastava

    2011-01-01

    The present work is based on Alum Recovery from the sludge obtained from Shyamala Water Treatment Plant by Acidic and Alkaline methods. In the acidic and alkaline method, the maximum recovery of alum coagulant is found to be 84.18% and 76.98% respectively. The recovered alum is as efficient as commercial alum and can be used again as coagulant for Water Treatment. This recovery can solve the vast problem of WTP (Water Treatment Plant) sludge management together with the problem of water pollu...

  16. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  17. Water purification in Borexino

    Science.gov (United States)

    Giammarchi, M.; Balata, M.; Goretti, A.; Ianni, A.; Ioannucci, L.; Miramonti, L.; Nisi, S.

    2013-08-01

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  18. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    Science.gov (United States)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  19. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration. Pilot Plant Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kullab, Alaa; Martin, Andrew

    2007-12-15

    Water treatment is an important auxiliary process in all thermal cogeneration plants. In this context membrane distillation (MD) is a novel technology that is potentially advantageous to technologies like reverse osmosis in the following ways: ability to utilize low-grade heat; reduced sensitivity to fluctuations in pH or salt concentrations; and lower capital and operation and maintenance costs (assumed in the case of fully-developed technology only). This research is a continuation of a Varmeforsk prestudy (report no. 909) and encompasses field trials at Idbaecken Combined Heat and Power (CHP) Facility (Nykoeping). Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. The test rig consisted of a five-module MD unit capable of producing 1-2 m3/day purified water. District heating supply was employed for heating; feed stocks include municipal water and flue gas condensate. Field trials can be divided into three phases: (1) parametric study of yield; (2) long term operation with municipal water as feed stock; and (3) evaluation of flue gas condensate as a feed stock. Testing commenced in the beginning of April 2006. The performance of MD concerning production rate is highly dependent on the feed stock temperature, flow rate and temperature difference across the membrane. Initial results for municipal water feed stocks showed that product water fluxes were in line with previous experiments, thus confirming the findings made in the prestudy. Connecting several MD modules in series has the advantage of reducing the electrical energy consumption needed for recirculation; the penalty comes in less efficient operation from flux point of view. This is more critical in the case of low flow rates, and hence much careful design studies are needed to optimize the system. Regarding the long term performance, the test period lasted for 13 days on a continuous operation basis before the first flux

  20. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  1. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  2. Design of a Prototype of Water Purification by Plasma Technology as the Foundation for an Industrial Wastewater Plant

    Science.gov (United States)

    Barillas, L.

    2015-03-01

    In order to mitigate the contamination of water sources due to the spill of sewage without any kind of treatment, mainly generated by the industrial sector; a prototype of water purification by plasma technology has been designed. The prototype will transform liquid water into plasma to eliminate the pathogens from the water, due to their exposure to ultraviolet radiation, electric fields and shock waves, which aid in the destruction of pollutants. The sewage will be accelerated at high speed to convert it into a liquid-gas mixture in order to transform it into plasma, which is achieved when the electrical discharge (of the type dielectric barrier discharge or DBD) is applied to the water by means of high voltage electrodes, from a source of alternating current (AC). Subsequently, the mixture slows down to be return into liquid phase and obtain clean water, all of these without a significantly rise of temperature. The device also has an automatic power control system. Finally, a short feasibility study was conducted in order to use this type of water cleaner in the future as a basis for a treatment plant of industrial waste water, so it comes to replace the current secondary and tertiary treatments used among the industry. It is intended that this new system will be more efficient and cheaper than the current waste water treatments.

  3. Purification of a water extract of Chinese sweet tea plant (Rubus suavissimus S. Lee) by alcohol precipitation.

    Science.gov (United States)

    Koh, Gar Yee; Chou, Guixin; Liu, Zhijun

    2009-06-10

    The aqueous extraction process of the leaves of Rubus suavissimus often brings in a large amount of nonactive polysaccharides as part of the constituents. To purify this water extract for potential elevated bioactivity, an alcohol precipitation (AP) consisting of gradient regimens was applied, and its resultants were examined through colorimetric and HPLC analyses. AP was effective in partitioning the aqueous crude extract into a soluble supernatant and an insoluble precipitant, and its effect varied significantly with alcohol regimens. Generally, the higher the alcohol concentration, the purer was the resultant extract. At its maximum, approximately 36% (w/w) of the crude extract, of which 23% was polysaccharides, was precipitated and removed, resulting in a purified extract consisting of over 20% bioactive marker compounds (gallic acid, ellagic acid, rutin, rubusoside, and steviol monoside). The removal of 11% polysaccharides from the crude water extract by using alcohol precipitation was complete at 70% alcohol regimen. Higher alcohol levels resulted in even purer extracts, possibly by removing some compounds of uncertain bioactivity. Alcohol precipitation is an effective way of removing polysaccharides from the water extract of the sweet tea plant and could be used as an initial simple purification tool for many water plant extracts that contain large amounts of polysaccharides.

  4. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  5. Nanomechanical Water Purification Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, proposes a lightweight, low-pressure water purification device that harnesses the unique properties of carbon nanotubes and will operate...

  6. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  7. A co-beneficial system using aquatic plants: bioethanol production from free-floating aquatic plants used for water purification.

    Science.gov (United States)

    Soda, S; Mishima, D; Inoue, D; Ike, M

    2013-01-01

    A co-beneficial system using constructed wetlands (CWs) planted with aquatic plants is proposed for bioethanol production and nutrient removal from wastewater. The potential for bioethanol production from aquatic plant biomass was experimentally evaluated. Water hyacinth and water lettuce were selected because of their high growth rates and easy harvestability attributable to their free-floating vegetation form. The alkaline/oxidative pretreatment was selected for improving enzymatic hydrolysis of the aquatic plants. Ethanol was produced with yields of 0.14-0.17 g-ethanol/ g-biomass in a simultaneous saccharification and fermentation mode using a recombinant Escherichia coli strain or a typical yeast strain Saccharomyces cerevisiae. Subsequently, the combined benefits of the CWs planted with the aquatic plants for bioethanol production and nutrient removal were theoretically estimated. For treating domestic wastewater at 1,100 m(3)/d, it was inferred that the anoxic-oxic activated sludge process consumes energy at 3,200 MJ/d, whereas the conventional activated sludge process followed by the CW consumes only 1,800 MJ/d with ethanol production at 115 MJ/d.

  8. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  9. Effect of water purification process in radioactive content: analysis on small scale purification plants; Efecto del proceso de purificacion de agua en el contenido radiactivo: analisis en plantas purificadoras a pequena escala

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000, Zacatecas (Mexico)], e-mail: hlopez@uaz.edu.mx

    2009-10-15

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  10. A comparative study of the radiological hazard in sediments samples from drinking water purification plants supplied from different sources

    Directory of Open Access Journals (Sweden)

    Shams A.M. Issa

    2014-01-01

    Full Text Available The natural radiation level has been determined for 135 sediment samples from forty-six drinking water purification plants supplied from different sources (Nile River, Ibrahimia Canal and Bahr Yousif Canal aiming to evaluate the radiation hazard. The concentration of natural radionuclides (226Ra, 232Th and 40K has been investigated by using gamma spectrometry (NaI (Tl 3″ × 3″ detector. The results showed that the concentrations of average activity in the sediment samples collected from Nile River, Ibrahimia Canal and Bahr Yousif Canal are (29 ± 2, 30 ± 2 and 240 ± 8 Bq kg−1, (47 ± 3, 46 ± 8 and 258 ± 12 Bq kg−1 and (28 ± 2, 27 ± 3 and 219 ± 18 Bq kg−1 for 226Ra, 232Th and 40K, respectively. The distributions of average activity concentrations of samples under investigation are within the world values although some extreme values have been determined. Radiological hazard effects such as: absorbed dose rate (D, outdoor and indoor annual effective dose equivalent (AEDE, radium equivalent activities (Raeq, hazard indices (Hex and Hin, gamma index (Iγ, excess lifetime cancer risk (ELCR and annual gonadal dose equivalent (AGDE for the corresponding samples were also estimated.

  11. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  12. Occurrence and formation of haloacetamides from chlorination at water purification plants across Japan.

    Science.gov (United States)

    Kosaka, Koji; Ohkubo, Keiko; Akiba, Michihiro

    2016-12-01

    The occurrence of six haloacetamides (HAcAms), which are a group of emerging nitrogenous disinfection byproducts, was investigated in drinking water across Japan in September 2015 and February 2016. At least one of the six HAcAms were found in all of the drinking water samples and their total concentrations ranged from 0.3 to 3.8 μg/L. The detection frequencies and concentrations of 2,2-dichloroacetamide (DCAcAm) and 2-bromo-2-chloroacetamide (BCAcAm) were the largest among the targeted HAcAm species. The total HAcAm concentrations in the raw water after chlorination ranged from 0.8 to 11 μg/L. The bromine incorporation factors (BIFs) of the targeted dihalogenated HAcAms (di-HAcAms) (DCAcAm, BCAcAm, and 2,2-dibromoacetamide) in the drinking water samples correlated well with those in the raw water after chlorination. The total HAcAm concentrations and the BIF of the di-HAcAms in the raw water after chlorination correlated with trihalomethane concentrations. HAcAm concentrations after chlorination increased with chlorination time. While the formation of di-HAcAms after chlorination was higher at higher pH, that of 2,2,2-trichloroacetamide remained unaffected by pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  14. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  15. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  16. Water purification in low background experiments

    Science.gov (United States)

    Giammarchi, Marco

    2017-10-01

    Water purification is an important technique in high-mass low radioactivity experiments in modern physics. Water is frequently used both as a shielding and as the sensitive part of a particle detector in underground arrangements, especially in the frame of Astroparticle Physics studies. In this paper, I will describe the main purification techniques and discuss some of its performances.

  17. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant

    Science.gov (United States)

    Bereschenko, L. A.; Heilig, G. H. J.; Nederlof, M. M.; van Loosdrecht, M. C. M.; Stams, A. J. M.; Euverink, G. J. W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and decreased production. The bacterial community of the RO membrane biofilm was clearly different from the bacterial community present at other locations in the RO plant, indicating the development of a specialized bacterial community on the RO membranes. The typical freshwater phylotypes in the RO membrane biofilm (i.e., Proteobacteria, Cytophaga-Flexibacter-Bacteroides group, and Firmicutes) were also present in the water sample fed to the plant, suggesting a feed water origin. However, the relative abundances of the different species in the mature biofilm were different from those in the feed water, indicating that the biofilm was actively formed on the RO membrane sheets and was not the result of a concentration of bacteria present in the feed water. The majority of the microorganisms (59% of the total number of clones) in the biofilm were related to the class Proteobacteria, with a dominance of Sphingomonas spp. (27% of all clones). Members of the genus Sphingomonas seem to be responsible for the biofouling of the membranes in the RO installation. PMID:18621875

  18. Purification treatment for underground water

    Energy Technology Data Exchange (ETDEWEB)

    Fonbershteyn, V.

    1985-08-01

    In order for underground water to be clean and to taste good, iron can be removed from it right underground, in the water-bearing stratum, before it is brought to the surface. G.M. Kommunar, V.S. Alekseyev, and V.T. Grebennikov, candidates of technical sciences and associates of the Moscow All-Union Hydrogeology Scientific Research Institute, developed the practical application of this beneficial technology, which makes it possible to do away with purification installations. With the new technology (Patent No. 985 214, 1 018 918) water saturated with oxygen is sent through an ejector and then pumped into a well. It passes through rocks that serve as a natural filter, and the filter is loaded with oxygen. The filter now becomes a barrier for mineral impurities contained in the artesian water. The amount of time needed to pump the oxidized water into the well is calculated beforehand, knowing the capacity of the water-bearing stratum, the porosity of the rocks, the expenditure of pumped oxidized water, and the radius of the zone of the filtering rocks. While the water is pumped out of the well, its properties are monitored periodically. If the concentration of iron exceeds the allowable norm-0.3 mg per liter-the extraction is halted, and oxidized water is once again pumped into the well. It is convenient and economical to combine several wells into one system, where each well will pump and accept water according to its own schedule. This new technology can also be used to remove manganese, heavy metals, and hydrogen sulfide from underground water.

  19. Submerged type water purification system using Hollow fiber Microfiltration membrane

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu-Young [Genix Engineering, Seoul (Korea); Kim, Hyung-Soo [Sung Kyun Kwan University, Suwon (Korea); Im, Jong-Sung [Kumho Industrial Company, Seoul (Korea)

    1999-06-30

    Membrane separation process is considered as an alternative of conventional water purification system using coagulation - sedimentation - sand filtration. In this study, it was examined that the application possibility of Hollowfiber Microfiltration membrane for water purification process. A 20 m{sup 3}/day scale pilot plant was used for studying the possibility of long-term operation and the stability of water quality under the optimum condition, 0.03 m/h permeate flux, filtration for 10 minutes, pause for 2 minutes (including air-scrubbing for 30 seconds), obtained by lab-scale experiment. As a result, it was proved stability of pilot plant over one year and filtrate quality(Turbidity, SS etc.). Therefore, it was proved that membrane separation process using Hollowfiber Microfiltration membrane can be applied for water purification system. (author). 13 refs., 3 tabs., 16 figs.

  20. Cleaning and reusing backwash water of water treatment plants

    Science.gov (United States)

    Skolubovich, Yury; Voytov, Evgeny; Skolubovich, Alexey; Ilyina, Lilia

    2017-10-01

    The article deals with the treatment of wash water of water treatment plants open water sources. The results of experimental studies on the choice of effective reagent, cleaning and disposal of wash water of filters. The paper proposed a new two-stage purification technology and multiple reuse of wash water of water purification stations from open surface sources

  1. A scintillator purification plant and fluid handling system for SNO+

    Science.gov (United States)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  2. A scintillator purification plant and fluid handling system for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Richard J., E-mail: ford@snolab.ca [SNOLAB, Creighton Mine #9, 1039 R.R.24, Lively, Ontario, Canada. (Canada)

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  3. Natural water purification and water management by artificial groundwater recharge.

    Science.gov (United States)

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  4. Water purification by electrical discharges

    Science.gov (United States)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  5. Nanomaterials and Water Purification: Opportunities and Challenges

    Science.gov (United States)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  6. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  7. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  8. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  9. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  10. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  11. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  12. Increase of the processing capacity through modification and enlargement of the assets areas preparation and waste water purification in the fermentation plant Kirchstockach; Durchsatzsteigerung der Vergaerungsanlage Kirchstockach durch Umbau und Erweiterung der Anlagenbereiche Aufbereitung und Prozesswasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kirschenhofer, M. [LRA Muenchen (Germany). Tiefbau, Verkehrsplanung, Abfallwirtschaft; Kroner, T. [ia GmbH - Wissensmanagement und Ingenieurleistungen, Muenchen (Germany). Bereich Kommunale Abfallwirtschaft und Energie; Niefnecker, U. [M. Ganser GmbH und Co. Entsorgungsbetriebe KG, Brunnthal/Kirchstockach (Germany)

    2006-04-15

    At the fermentation plant Kirchstockach the operations for the rectification of deficiencies and process optimisations were completed in 2004. Now process results of 2005 show the success of the performed actions. In the asset area of preparations the existing rake discharge system was removed and the use of the new discharge reservoir with a drainage coil conveyor system minimises deadlock times and rises preparations throughput. With the new set-up of the light material presses the process procedure was optimised, too. The installation of the new process water reservoir was conditional on the non-uniform hydraulic load of the waste-water purification, which results from the operation of the facility. With the higher buffer capacity, realised by the new process water reservoir, a uniform hydraulic load of the purification system and an optimised process control was implemented. With the optimised performance of the wastewater purification wastewater thresholds are guaranteed now and it is possible to realise the increased throughput of the preparation in the complete system of the fermentation plant Kirchstockach. (orig.)

  13. Purification of a water extract of Chinese sweet tea plant (Rubus suavissimus S. Lee) by alcohol precipitation

    OpenAIRE

    Koh, Gar Yee; Chou, Guixin; Liu, Zhijun

    2009-01-01

    The aqueous extraction process of the leaves of Rubus suavissimus often brings in a large amount of non-active polysaccharides as part of the constituents. To purify this water extract for potential elevated bioactivity, alcohol precipitation (AP) consisting of gradient regimens was applied, and its resultants were examined through colorimetric and HPLC analyses. AP was effective in partitioning the aqueous crude extract into a soluble supernatant and an insoluble precipitant, and its effect ...

  14. Nanomechanical Water Purification Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Seldon Laboratories, LLC, proposes a lightweight, low-pressure water filtration device that harnesses the unique properties of nanoparticles to destroy or remove...

  15. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  16. [Periphyton and its application in water purification].

    Science.gov (United States)

    Chen, Chong-Jun; Han, Zhi-Ying; Zhu, Yin-Mei; Wu, Wei-Xiang

    2009-11-01

    Periphyton widely exists in natural water bodies, with the characteristics of huge biomass generation, strong ecological function, and sensitive response to water quality. It removes the pollutants in water bodies mainly through the processes of absorption, metabolism, adsorption, and complexation, etc. Owing to its high tolerance against pollution and high removal efficiency for nitrogen and phosphorus, as well as the feasibility of recycling its cells at low cost, periphyton is a promising candidate for developing the treatment techniques of water purification. The newly-developed artificial periphyton systems, e.g., algal turf scrubbers, periphyton biofilm systems, periphyton aquaculture systems, have been successfully applied in treating livestock manure, aquaculture wastewater, and municipal sewage. However, further researches are needed to understand the growth patterns of periphyton, its physiological responses to pollutants concentration, and its molecular biological mechanisms in removing pollutants.

  17. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  18. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  19. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  20. Dense Medium Plasma Water Purification Reactor (DMP WaPR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  1. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    Science.gov (United States)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  2. Purification

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2017-01-01

    of categories can be understood as practices of purification. However, a purely technical grip on water is never possible. Unruly elements, like weather, contamination, urban dwellers, and competing interests, interfere and make processes of intervention unstable. Water is never completely cleaned, and, equally......In Arequipa, Peru’s second largest city, engineers work hard to control water flows and provide different sectors with clean and sufficient water. In 2011, only 10 percent of the totality of water used daily by Arequipa’s then close to 1 million people—in households, tourism, industry, and mining......—was treated before it was returned to the river where it continues its flow downstream towards cultivated fields and, finally, into the Pacific Ocean. It takes specialized knowledge and manifold technologies to manage water and sustain life in Arequipa, and engineers are central actors for making water flow...

  3. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  4. Carbon Nanotube Membranes for Water Purification

    Science.gov (United States)

    Bakajin, Olgica

    2009-03-01

    Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.

  5. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L

    2004-12-15

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  6. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  7. Indoor Air Purification by Potted Plants

    DEFF Research Database (Denmark)

    Dela Cruz, Majbrit

    Volatile organic compounds (VOC) are ubiquitous in the indoor environment and can affect human health negatively. Potted plants are a potential green technology solution for removal of VOCs. This PhD project aimed at reviewing current literature on VOC removal by potted plants, developing a dynamic...... on microorganisms in the soil of potted plants. The review of literature on indoor VOC removal by potted plants identified pathways for VOC removal to potentially be by aboveground and belowground plant parts as well microorganisms in the soil and the soil itself. The rate or efficiency of VOC removal by potted...... plants is dependent on plant species and can be affected by factors such as light intensity, temperature and VOC concentration. The literature review identified future research needs which led to the development of the dynamic chamber system. This system allows for an improved real-life simulation...

  8. Comparative proteomics exploring the molecular mechanism of eutrophic water purification using water hyacinth (Eichhornia crassipes).

    Science.gov (United States)

    Li, Xiong; Xi, Houcheng; Sun, Xudong; Yang, Yunqiang; Yang, Shihai; Zhou, Yanli; Zhou, Xinmao; Yang, Yongping

    2015-06-01

    Eutrophication is a serious threat to ecosystem stability and use of water resources worldwide. Accordingly, physical, chemical, and biological technologies have been developed to treat eutrophic water. Phytoremediation has attracted a great deal of attention, and water hyacinth (Eichhornia crassipes) is regarded as one of the best plants for purification of eutrophic water. Previous studies have shown that water hyacinths remove nitrogen (N) and phosphorus (P) via diverse processes and that they can inhibit the growth of algae. However, the molecular mechanisms responsible for these processes, especially the role of proteins, are unknown. In this study, we applied a proteomics approach to investigate the protein dynamics of water hyacinth under three eutrophication levels. The results suggested that proteins with various functions, including response to stress, N and P metabolic pathways, synthesis and secretion, photosynthesis, biosynthesis, and energy metabolism, were involved in regulating water hyacinth to endure the excess-nutrient environment, remove N and P, and inhibit algal growth. The results help us understand the mechanism of purification of eutrophic water by water hyacinth and supply a theoretical basis for improving techniques for phytoremediation of polluted water.

  9. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  10. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia

    Science.gov (United States)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.

    2010-04-01

    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  11. Reverse osmosis for water purification and reuse in the biotechnological industry: Process design, operation and economic guidelines

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; S.B.A. Udugama, Isuru; Mitic, Aleksandar

    2017-01-01

    load on a wastewater treatment plant (WWTP), thereby investigating opportunities for process water reuse. In this case, a recovery unitis studied, where purification and concentration generates large volumes of wastewater. Reverse osmosis (RO) could ensure that the desired drinking water quality could...... be achieved and would enable re-use of the water in the production site for different economic purposes....

  12. 24 CFR 203.52 - Acceptance of individual residential water purification equipment.

    Science.gov (United States)

    2010-04-01

    ... residential water purification equipment. 203.52 Section 203.52 Housing and Urban Development Regulations... water purification equipment. If a property otherwise eligible for insurance under this part does not have access to a continuing supply of safe and potable water without the use of a water purification...

  13. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  14. Evaluation of toxicological test in waste waters of the purification plants in the province of Ancona; Valutazione di test ecotossicologici su effulenti di impianti di depurazione della provincia di Ancona

    Energy Technology Data Exchange (ETDEWEB)

    Tombolesi, P. [S.M.S.P. Area Biotossicologica, Ancona (Italy). Settore Inquinamento delle Acque e del Suolo

    2000-05-01

    According to the law 319/76 and following changes, it has been identified in the PMP the technical organ of security and inspection for dumping going in to superficial waters, to protect them from pollution. During the last years, the bio toxicological area of the PMP in Ancona has controlled waste waters of the provincial purification plants, searching for foreseen parameters by table A in the law 319/76: total coliforms, faecal coliforms and faecal streptococci. In the last years these additional toxicological tests have been made in waste waters: test of acute toxicity with bioluminescent bacteria; test of acute toxicity with Daphnia magna; test of phytoxicity with Lepidium sativum. They have made to evaluate the negative effects of toxicants, not foreseen by table A, in different trophic levels in the ecosystem. In the same time it has been performed an accurate study of micro fauna in the oxidation tanks. [Italian] Con la legge 319/76 e successive modifiche veniva individuato nel PMP l'organo tecnico di vigilanza e controllo degli scarichi diretti in acque superficiali, cio' a tutela delle stesse dall'inquinamento. L'Area Biotossicologica del PMP di Ancona ha effettuato nel corso degli anni regolari controlli sugli effluenti degli impianti di depurazione della provincia, ricercando i paramentri previsti dalla tabella A della legge 319/76: coliformi totali, coliformi fecali e streptococchi fecali. Negli ultimi anni sono stati eseguiti sui reflui, in aggiunta ai precedenti, anche test tossicologici quali: test di tossicita' acuta con batteri bioluminescenti; test di tossicita' acuta con Daphnia magna; test di fitotossicita' con Lepidium sativum; cio' al fine di valutare eventuali effetti negativi di inquinanti, non previsti in tabella A, su differenti livelli della rete trofica. E' stato eseguito contemporaneamente lo studio della microfauna nella vasca di ossidazione. Si riportano di seguito i risultati ottenuti.

  15. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  16. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  17. The effect of water purification systems on fluoride content of drinking water.

    Science.gov (United States)

    Prabhakar, A R; Raju, O S; Kurthukoti, A J; Vishwas, T D

    2008-03-01

    The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  18. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  19. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  20. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  1. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  2. Iodine generator for reclaimed water purification

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H. (Inventor)

    1977-01-01

    The system disclosed is for controlling the iodine level in a water supply in a spacecraft. It includes an iodine accumulator which stores crystalline iodine, an electrochemical valve to control the input of iodine to the drinking water and an iodine dispenser. A pump dispenses fluid through the iodine dispenser and an iodine sensor to a potable water tank storage. The iodine sensor electronically detects the iodine level in the water, and through electronic means, produces a correction current control. The correction current control operates the electro-chemical iodine valve to release iodine from the iodine accumulator into the iodine dispenser.

  3. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    Directory of Open Access Journals (Sweden)

    Li Li

    2010-01-01

    Full Text Available Abstract Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1 DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2 Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3 Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4 High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research.

  4. Technical project for a new water purification solution

    Directory of Open Access Journals (Sweden)

    Toma Adina

    2018-01-01

    Full Text Available This research is part of the RO-BG Cross-Border Cooperation Program, project “CLEANDANUBE”, MIS-ETC 653, which has finalised by providing a common strategy to prevent the Danube’s pollution technological risks with oil and oil products. This paper presents a new sustainable water purification solution. A short introduction will be offered and an overview regarding the research and new methods to greening the waste is provided. The theoretical aspects of the centrifugal separation phenomenon are studied and the preliminary project bases were established. The paper conveys the possible constructive variations and the technological implications of those. Ultimately, the technical project for a new water purification solution and conclusions with critical points encountered during the designing phase are presented.

  5. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  6. Nanocellulose-Based Materials for Water Purification

    OpenAIRE

    Hugo Voisin; Lennart Bergström; Peng Liu; Mathew, Aji P.

    2017-01-01

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present?in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water pu...

  7. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  8. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur; Szelągowski, Adam

    2017-04-01

    In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller), and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of energy efficiency was

  9. Water Purification by Using Microplasma Treatment

    Science.gov (United States)

    Shimizu, K.; Masamura, N.; Blajan, M.

    2013-06-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  10. Influence of a water purification unit on the contamination level of salmonella in outcoming water and sludge

    OpenAIRE

    Jacob, Benoit; Korsak Koulagenko, Nicolas; Grooven, Bénédicte; Flament, Etienne; Daube, Georges

    2002-01-01

    Foodborne pathogens occasionally harboured in the gastro-intestinal tract of some domestic animals may be retrieved in slaughterhouses waste water and in sludge of water purification units. Salmonella, athogen common to man and Animals, is often used as a biological risk indicator. The aim of the present study was to assess effectiveness of a recent water purification unit by rapid and semi-quantitative detection of this micro-organism. The water purification unit collects waste water ...

  11. The role of a hybrid phytosystem in landscape water purification and herbicides removal.

    Science.gov (United States)

    Kirumba, George; Ge, Ling; Wei, Dongyang; Xu, Cong; He, Yiliang; Zhang, Bo; Jiang, Cheng; Mao, Feijian

    2015-01-01

    The performance of a hybrid phytosystem in landscape water purification and herbicides removal was investigated. The phytosystem operating in an arboretum is located in the Minhang Campus of Shanghai Jiao Tong University, China. The phytosystem is composed of two purification stages: sedimentation Stage 1 without external air supply; and Stage 2 with an external air supply. Stage 2 is also vegetated with three major kinds of plants, namely Pontederia cordata L., Typha latifolia L. and Cyperus alternifolius L. The system's hydraulic loading rate (HLR) was maintained at 1.632 m/day between December 2013 and November 2014. Sedimentation, filtration and adsorption by filter media, combined microbial processes in the rhizosphere (nitrification-denitrification) and plant uptake of the pollutants were all responsible for water purification in the phytosystem. The biological and physical parameters analyzed were total dissolved nitrogen (TDN), nitrate (NO3-N), nitrite (NO2-N), ammonia (NH3-N), total dissolved phosphorus (TDP), dissolved organic carbon (DOC), turbidity, chlorophyll-a and algal cells number. Highest removal efficiencies for TDN, TDP, turbidity, DOC, chlorophyll-a and algal cells were 56.9%, 73.3%, 92.4%, 29.9%, 94.3% and 91.0%, respectively. When the phytosystem was considered for herbicides removal, removal efficiencies of more than 25% were noted for all the herbicides.

  12. Reactive nanostructured membranes for water purification.

    Science.gov (United States)

    Lewis, Scott R; Datta, Saurav; Gui, Minghui; Coker, Eric L; Huggins, Frank E; Daunert, Sylvia; Bachas, Leonidas; Bhattacharyya, Dibakar

    2011-05-24

    Many current treatments for the reclamation of contaminated water sources are chemical-intensive, energy-intensive, and/or require posttreatment due to unwanted by-product formation. We demonstrate that through the integration of nanostructured materials, enzymatic catalysis, and iron-catalyzed free radical reactions within pore-functionalized synthetic membrane platforms, we are able to conduct environmentally important oxidative reactions for toxic organic degradation and detoxification from water without the addition of expensive or harmful chemicals. In contrast to conventional, passive membrane technologies, our approach utilizes two independently controlled, nanostructured membranes in a stacked configuration for the generation of the necessary oxidants. These include biocatalytic and organic/inorganic (polymer/iron) nanocomposite membranes. The bioactive (top) membrane contains an electrostatically immobilized enzyme for the catalytic production of one of the main reactants, hydrogen peroxide (H(2)O(2)), from glucose. The bottom membrane contains either immobilized iron ions or ferrihydrite/iron oxide nanoparticles for the decomposition of hydrogen peroxide to form powerful free radical oxidants. By permeating (at low pressure) a solution containing a model organic contaminant, such as trichlorophenol, with glucose in oxygen-saturated water through the membrane stack, significant contaminant degradation was realized. To illustrate the effectiveness of this membrane platform in real-world applications, membrane-immobilized ferrihydrite/iron oxide nanoparticles were reacted with hydrogen peroxide to form free radicals for the degradation of a chlorinated organic contaminant in actual groundwater. Although we establish the development of these nanostructured materials for environmental applications, the practical and methodological advances demonstrated here permit the extension of their use to applications including disinfection and/or virus inactivation.

  13. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    2011-11-24

    Nov 24, 2011 ... Therefore, the need to intensify research on point-of-use (POU) water purification techniques cannot be overemphasized. In this work, ... Guatemala, developed a low-cost clay pot water filter (CPWF). The goal was to make ... (Plappally et al., 2011). Recently, several water filtration technologies have been.

  14. Plasma-based water purification: Challenges and prospects for the future

    Science.gov (United States)

    Foster, John E.

    2017-05-01

    Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the

  15. Engineered graphite oxide materials for application in water purification.

    Science.gov (United States)

    Gao, Wei; Majumder, Mainak; Alemany, Lawrence B; Narayanan, Tharangattu N; Ibarra, Miguel A; Pradhan, Bhabendra K; Ajayan, Pulickel M

    2011-06-01

    Retaining the inherent hydrophilic character of GO (graphite-oxide) nanosheets, sp(2) domains on GO are covalently modified with thiol groups by diazonium chemistry. The surface modified GO adsorbs 6-fold higher concentration of aqueous mercuric ions than the unmodified GO. "Core-shell" adsorbent granules, readily useable in filtration columns, are synthesized by assembling aqueous GO over sand granules. The nanostructured GO-coated sand retains at least 5-fold higher concentration of heavy metal and organic dye than pure sand. The research results could open avenues for developing low-cost water purification materials for the developing economies. © 2011 American Chemical Society

  16. Purification of metal electroplating waste waters using zeolites.

    Science.gov (United States)

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2003-12-01

    The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. The batch method has been employed using metal concentrations in solution ranged from 10 to 200 mg/l and solid/liquid ratios ranged from 2.5 to 10 g/l. The Langmuir model was found to describe well all sorption processes, allowing to establish metal sorption sequences from which the main retention mechanism involved for each metal has been inferred. Synthetic zeolite exhibited about 10 times greater sorption capacities (b(Cr)=0.838 mmol/g, b(Ni)=0.342 mmol/g, b(Zn)=0.499 mmol/g, b(Cu)=0.795 mmol/g, b(Cd)=0.452 mmol/g) than natural zeolite (b(Cr)=0.079 mmol/g, b(Ni)=0.034 mmol/g, b(Zn)=0.053 mmol/g, b(Cu)=0.093 mmol/g, b(Cd)=0.041 mmol/g), appearing, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters.

  17. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Directory of Open Access Journals (Sweden)

    Nima Shahkaramipour

    2017-03-01

    Full Text Available Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol, polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted.

  18. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  19. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  20. NMR, water and plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  1. Water transport and purification in nanochannels controlled by asymmetric wettability.

    Science.gov (United States)

    Chen, Qinwen; Meng, Lingyi; Li, Qikai; Wang, Dong; Guo, Wei; Shuai, Zhigang; Jiang, Lei

    2011-08-08

    Biomimetic asymmetric nanochannels have recently attracted increasing attention from researchers, especially in the aspect of the asymmetric wettability (a hydrophilic-hydrophobic system), which can be utilized to control the wetting behavior of aqueous media and to offer a means for guiding water motion. By using molecular dynamics simulations, a design for a potentially efficient water filter is presented based on (n, n) single-walled carbon nanotubes, where n = 6, 8, 10 and 12, asymmetrically modified with hydrophilic groups (carboxyl, -COOH) at one tip and hydrophobic groups (trifluoromethyl, -CF(3) ) at the other. The reduced water density on the hydrophobic sides of the functionalized nanotubes are observed in both pure water and aqueous electrolyte solution, except for the functionalized (6, 6) tube, due to the change of dipole orientation of the single-file water wire within it. The functionalized (8, 8) tube can significantly maintain the low water density on the hydrophobic side. Both (6, 6) and (8, 8) tubes have relatively high energy barriers at their tips for ion permeation, which can be obtained by calculating the potential of mean force. Such tip functionalization of a nanotube therefore suggests the great possibilities of water transport and filtration, dominated by asymmetric wettability. The functionalized (8, 8) tube could act as a nanofluidic channel for water purification, not only for ion exclusion but also as a stable water column structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Science.gov (United States)

    EL-Rafei, A. M.; El-Kalliny, Amer S.; Gad-Allah, Tarek A.

    2017-04-01

    Three-dimensional random calcium ferrite, CaFe2O4, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe2O4 phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe2O4 NFs were fabricated with diameters in the range of 50-150 nm and each fiber was composed of 20-50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field.

  3. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  4. Study on the levels of activity of radionuclides in products solids of catalan water purification; Estudio sobre los niveles de actividad de radionuclidos en productos solidos de plants de potabilizacion de aguas catalanas

    Energy Technology Data Exchange (ETDEWEB)

    Montana, M.; Camacho, A.; Cespedes, R.; Devesa, R.; Serrano, I.; Duch, M. A.; Valles, I.

    2013-07-01

    In this work the results of radioactivity are presented in the sludge obtained part of the treatment process of 2 water treatment plants in Catalonia in which it is water from the rivers Ter and Llobregat. He has been also assessed the radiological impact of the sludge generated in these plants when used as raw material for the production of materials for the construction. (Author)

  5. A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants

    Directory of Open Access Journals (Sweden)

    Frank eSainsbury

    2016-02-01

    Full Text Available The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to rapidly purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues.

  6. Development and Performance Evaluation of a Ceramic Filter for Point-of-Use Water Purification

    National Research Council Canada - National Science Library

    Bukola Olalekan Bolaji; Olugbenga Oluseyi Akande

    2013-01-01

    In this work, a ceramic filter for point-of-use water purification was designed, fabricated and tested to evaluate its performance in filtering water to the World Health Organisation (WHO) standards...

  7. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    Science.gov (United States)

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Water treatment plants assessment at Talkha power plant.

    Science.gov (United States)

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  9. Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology.

    Science.gov (United States)

    Singh, Jagdeep; Saharan, Vicky; Kumar, Sanjay; Gulati, Pooja; Kapoor, Rajeev Kumar

    2017-12-27

    Conventional wastewater treatment technologies are not good enough to completely remove all endocrine disrupting compounds (EDCs) from the water. Membrane separation systems have emerged as an attractive alternative to conventional clarification processes for waste and drinking water. Coupling of a membrane separation process with an enzymatic reaction has opened up new avenues to further enhance the quality of water. This review article deliberates the feasibility of implementing enzymatic membrane reactors has been deliberated. A comprehensive study of conventional water treatment technologies was carried out and their shortcomings were pointed out. Research findings from the leading groups working on enzyme grafted membrane based water purification were summarized. This review also comprehends the patent documents pertinent to the technology of enzyme grafted membranes for water purification. Immobilization of an enzyme on a membrane improves the performance of membrane filtration, and processes for the treatment of polluted water. Research has started exploring the potential for laccase enzymes because it can catalyze the oxidation of a wide range of substrates, structurally comparable to EDCs, by a radical-catalyzed reaction mechanism, with corresponding reduction of oxygen to water in an electron transfer process. Further, in the presence of certain mediators, the substrate range of laccases can be further enhanced to non-aromatic substrates. Removal of EDCs by laccase cross-linked enzyme aggregates in fixed-bed reactors or fluidized-bed reactors and laccase immobilized ultrafiltration (LIUF) membranes are proving their worth in water purification technology. The major operational issues with the use of LIUF membranes are enzyme instability in real wastewater and membrane fouling. In view of the above-stated characteristics, laccases are considered as the most promising enzyme for a greener and less expensive water purification technology.

  10. Purification of the Drain Water and Distillation Residues from Organic Compounds, Transuranic Elements and Uranium at the Chernobyl NPP

    Directory of Open Access Journals (Sweden)

    Rudenko, L.I.

    2014-05-01

    Full Text Available Article examines the purification of drain water and distillation residue from organic (polymeric compounds, tran suranic elements and uranium. We propose the pretreatment method with the use of a type «Sizol» coagulant-flocculant and catalytic oxidation with hydrogen peroxide and ultrafiltration. This method prevents evaporator coking by dustsuppression and other organic substances, which are vulcanized by heating. Removing alpha-emitting radionuclides increases safety level at the nuclear power plant.

  11. Isolation and Purification of Water Soluble Proteins from Ginger Root (Zingiber officinale) by Two Dimensional Liquid Chromatography

    OpenAIRE

    Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M. I.; Ahmed, A.

    2014-01-01

    The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is ...

  12. Organic hydrogels as potential sorbent materials for water purification

    Science.gov (United States)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    Hydrogels are three-dimensional, hydrophilic, polymeric networks capable to adsorb large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers and are insoluble due to the presence of chemical or physical cross-links. Depending on the nature of the structural units, swelling or shrinking of these gels can be activated by several external stimuli, such as solvent, heat, pH, electric stimuli. As a consequence, these materials are attractive for several applications in a variety of fields: drug delivery, muscle mimetic soft linear actuators, hosts of nanoparticles and semiconductors, regenerative medicine etc. Of special interest is the application of hydrogels for water purification, since they can effectively adsorb several water soluble pollutants such as metal ions, inorganic or organic anions, organic dyestaff, etc. In the present work, anionic hydrogels bearing negatively charged -COO- groups were prepared and investigated. These are based on the anionic monomer sodium acrylate (ANa) and the nonionic one N,N-dimethylacrylamide (DMAM). A series of copolymeric hydrogels (P(DMAM-co-ANax) were synthesized. The molar content x of ANa units (expressing the molar charged content of the hydrogel) varies from 0 (nonionic poly(N,N-dimethylacrylamide), PDMAM, hydrogel) up to 1 (fully charged poly(sodium acrylate), PANa, hydrogel). The hydrogels were used to extract organic or inorganic solutes from water. Cationic and anionic model dyes, as well as multivalent inorganic ions, have been studied. It is found that cationic dyes are strongly adsorbed and retained by the hydrogels, while adsorbance of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant depend on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. In the case of metal cations, adsorption depends mostly on the charge of the cation. In addition, crucial factors controlling

  13. Relationship Between Growth of AIgae and Water Purification in a Slow Sand Filter in Summe

    OpenAIRE

    中本, 信忠; 池田, 大介; 田口, 香代; 山本, 満寿夫; 松田, 卓也

    1995-01-01

    The effects of water depth on the growth of algae and on the purification capacity of water in slow sand filters in summer were studied. Filamentous algae grew well in a shallow filter pond. The higher removal rates of available nutrients and dissolved organic carbon in a raw water were observed in the filteration of a shallow filter pond. Importance of algae as a nutrient assimilator and as an oxygen producer in the purification process was discussed.

  14. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.

    Science.gov (United States)

    Moreno, N; Querol, X; Ayora, C; Pereira, C F; Janssen-Jurkovicová, M

    2001-09-01

    Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and commercial synthetic zeolite. The results demonstrate that the zeolitic material could be employed for heavy metal uptake in the water purification process. Doses of 5-30 g of zeolite/L have been applied according on the zeolite species and the heavy metal levels. Moreover, the application of zeolites increases the pH. This causes metal-bearing solid phases to precipitate and enhances the efficiency of the decontamination process.

  15. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, N.; Querol, X.; Ayora, C.; Pereira, C.F.; Janssen-Jurkovicova, M. [CSIC, Barcelona (Spain). Inst. of Earth Sciences ' Jaume Almera'

    2001-09-01

    Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and commercial synthetic zeolite. The results demonstrate that the zeolitic material could be employed for heavy metal uptake in the water purification process. Doses of 5-30 g of zeolite/L have been applied according on the zeolite species and the heavy metal levels. Moreover, the application of zeolites increases the pH. This causes metal-bearing solid phases to precipitate and enhances the efficiency of the decontamination process. 31 refs., 4 figs., 5 tabs.

  16. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    Science.gov (United States)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  17. Forward osmosis :a new approach to water purification and desalination.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  18. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  19. WATER PURIFICATION BY COAGULATION UNDER THE INFLUENCE OF ULTRASONIC FIELD

    Directory of Open Access Journals (Sweden)

    Vikulina Vera Borisovna

    2016-03-01

    Full Text Available The authors carried out experiments on the in-fluence of ultrasound on the subsidence of suspended materials. The efficiency of coagulation process in wa-ter purification in ultrasound field is estimated. The influence of ultrasound on the water with suspended materials before introducing coagulant was a condition of the experiment. The magnetostriction method for obtaining ultrasound oscillations with the help of ultra-sound generator of batch production was applied. The samples were chosen and the coagulation process was controlled using standard procedures. The experimental data was obtained which estimate the efficiency in-crease in the subsidence of suspended materials de-pending on the duration of ultrasound processing. Dur-ing one minute of ultrasound processing the following results were obtained: the subsidence efficiency in-creased by 25.83 % in case of coagulant share Al2O3 2.5 mg/l; the subsidence efficiency increased by 23.70 % in case of coagulant share Al2O3 5.0 mg/l.

  20. Optimal plant water economy.

    Science.gov (United States)

    Buckley, Thomas N; Sack, Lawren; Farquhar, Graham D

    2017-06-01

    It was shown over 40 years ago that plants maximize carbon gain for a given rate of water loss if stomatal conductance, gs , varies in response to external and internal conditions such that the marginal carbon revenue of water, ∂A/∂E, remains constant over time. This theory has long held promise for understanding the physiological ecology of water use and for informing models of plant-atmosphere interactions. Full realization of this potential hinges on three questions: (i) Are analytical approximations adequate for applying the theory at diurnal time scales? (ii) At what time scale is it realistic and appropriate to apply the theory? (iii) How should gs vary to maximize growth over long time scales? We review the current state of understanding for each of these questions and describe future research frontiers. In particular, we show that analytical solutions represent the theory quite poorly, especially when boundary layer or mesophyll resistances are significant; that diurnal variations in hydraulic conductance may help or hinder maintenance of ∂A/∂E, and the matter requires further study; and that optimal diurnal responses are distinct from optimal long-term variations in gs , which emerge from optimal shifts in carbon partitioning at the whole-plant scale. © 2016 John Wiley & Sons Ltd.

  1. Purification of plant-derived antibodies through direct immobilization of affinity ligands on cellulose.

    Science.gov (United States)

    Hussack, Greg; Grohs, Brittany M; Almquist, Kurt C; McLean, Michael D; Ghosh, Raja; Hall, J Christopher

    2010-03-24

    Plants possess enormous potential as factories for the large scale production of therapeutic reagents such as recombinant proteins and antibodies. A major factor limiting commercial advances of plant-derived pharmaceuticals is the cost and inefficiency of purification. As a model system, we have developed a simple yet robust method for immobilizing affinity capture ligands onto solid supports by interfacing the secreted expression and coupling of a chimeric fusion protein in Pichia pastoris to microcrystalline cellulose in a single step. The fusion protein, which consisted of antibody-binding proteins L and G fused to a cellulose-binding domain (LG-CBD), was tethered directly onto cellulose resins added to P. pastoris cultures and subsequently used for antibody purification. Both the antibody-binding protein L and protein G domains were functional, as demonstrated by the ability of cellulose-immobilized LG-CBD to purify both a scFv antibody fragment from yeast and a human IgG1 monoclonal antibody from transgenic tobacco. Furthermore, combining two P. pastoris strains expressing LG-CBD and scFv with CP-102 cellulose in a single culture allowed for easy recovery of biologically active scFv. Direct immobilization of affinity purification ligands, such as LG-CBD, onto inexpensive support matrices such as cellulose is an effective method for the generation of functional, single-use antibody purification reagents. Straightforward preparation of purification reagents will help make antibody purification from genetically modified crop plants feasible and address one of the major bottlenecks facing commercialization of plant-derived pharmaceuticals.

  2. New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants.

    Science.gov (United States)

    Platis, D; Drossard, J; Fischer, R; Ma, J K-C; Labrou, N E

    2008-11-21

    Affinity chromatography on immobilized Protein A is the current method of choice for the purification of monoclonal antibodies (mAbs). Despite its widespread use it presents certain drawbacks, such as ligand instability, leaching, toxicity and high cost. In the present work, we report a new procedure for the purification of two human monoclonal anti-HIV (human immunodeficiency virus) antibodies (mAbs 2G12 and 4E10) from transgenic tobacco plants using stable and low cost chromatographic materials. The first step of the mAb 2G12 purification procedure is comprised of an aqueous two-phase partition system (ATPS) for the removal of polyphenols while providing an essential initial purification boost (2.01-fold purification). In the second step, mAb 2G12 was purified using cation-exchange chromatography (CEX) on S-Sepharose FF, by elution with 20mM sodium phosphate buffer pH 7.5, containing 0.1M NaCl. The eluted mAb was directly loaded onto an immobilized metal affinity chromatography column (IMAC, Zn(2+)-iminodiacetic acid-Sepharose 6B) and eluted by stepwise pH gradient. The proposed method offered 162-fold purification with 97.2% purity and 63% yield. Analysis of the antibody preparation by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), enzyme immunosorbent assay (ELISA) and western blot showed that the mAb 2G12 was fully active and free of degraded variants, polyphenols and alkaloids. The effectiveness of the present purification protocol was evaluated by using a second transgenic human monoclonal anti-HIV mAb 4E10. The results showed that the same procedure can be successfully used for the purification of mAb 4E10. In the case of mAb 4E10, the proposed method offered 148-fold purification with 96.2% purity and 36% yield. Therefore, the proposed protocol may be of generic use for the purification of mAbs from transgenic tobacco plants.

  3. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  4. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  5. Analysis of phosphate esters in plant material. Extraction and purification.

    Science.gov (United States)

    Isherwood, F A; Barrett, F C

    1967-09-01

    1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol-water-aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether-formic acid-2-methylpropan-2-ol-water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5'-triphosphate added to a trichloroacetic acid extract simulating that

  6. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties

    Directory of Open Access Journals (Sweden)

    Fabian Borghetti

    2013-03-01

    Full Text Available Most studies conducted to test the allelopathic activity of plant parts have made use of water as solvent. However, the presence of polar, water-soluble substances, such as proteins and carbohydrates, tends to hamper the purification of active compounds. In this study, we present a simple purification procedure that separates the active fraction of the extract from the undesirable substances, thus facilitating the search for active molecules through standard chromatographic methods. Aqueous leaf extracts of three Cerrado species (Caryocar brasiliense, Qualea parviflora and Eugenia dysenterica were prepared at 5% concentration (w/v and stored at 4ºC (crude extracts. After 24 h, these solutions were filtered and freeze-dried. The powder obtained was dissolved in methanol, filtered again, evaporated and dissolved in water for bioassays (purified extracts. For the bioassays, seedlings of Sesamum indicum were grown for five days in aqueous solutions prepared from crude and purified extracts at concentrations ranging from 0.1% to 1.0% (w/v. Seedling growth in distilled water was set as a control. In comparison with the control, we found that test solutions prepared from both crude and purified extracts significantly inhibited sesame seedling growth. However, solutions prepared from purified extracts were two to ten times more inhibitory to seedling growth than were those prepared from crude extracts. The inhibition of root growth ranged from 35% to 77%, depending on the plant species, at a concentration as low as 0.1%. Roots were more affected than were shoots. The effects of purified extracts on seedling morphology were similar to those observed when crude extracts were employed, indicating that the procedure of purification of crude extracts did not interfere with the mode of action of the active substances

  7. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    EL-Rafei, A.M., E-mail: am.amin@nrc.sci.eg [Refractories, Ceramics and Building Materials Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt); El-Kalliny, Amer S.; Gad-Allah, Tarek A. [Water Pollution Research Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt)

    2017-04-15

    Three-dimensional random calcium ferrite, CaFe{sub 2}O{sub 4}, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe{sub 2}O{sub 4} phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe{sub 2}O{sub 4} NFs were fabricated with diameters in the range of 50–150 nm and each fiber was composed of 20–50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field. - Highlights: • Three-dimensional porous random CaFe{sub 2}O{sub 4} NFs were successfully produced via electrospinning method. • These NFs exhibited typical superparamagnetic behavior for the ferromagnetic materials. • The low band-gap energy of these NFs (~1.6 eV) allows them to absorb a wide range of the solar spectrum. • These NFs can produce the active {sup •} OH under solar light and can be recovered easily by applying an external magnetic field. • These NFs can be used solely as magnetically separable photocatalyst or as magnetic additive for another photocatalyst.

  8. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    Science.gov (United States)

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  9. Purification of drinking water by low cost method in Ethiopia

    Science.gov (United States)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  10. Extraction and purification methods in downstream processing of plant-based recombinant proteins.

    Science.gov (United States)

    Łojewska, Ewelina; Kowalczyk, Tomasz; Olejniczak, Szymon; Sakowicz, Tomasz

    2016-04-01

    During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    Science.gov (United States)

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  12. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  13. Features of water purification from Vuoksa river during the summer period

    OpenAIRE

    N.I. Vatin; V.N. Chechevichkin; A. V. Chechevichkin

    2010-01-01

    Purification of water from the river Vuoksi of the Karelian Isthmus of Russia to drinking water quality is important and serious problem.Fluctuations in the composition of these waters in the summer, not only related to the hydrometeorological situation, but with increasing human influence on the ecosystem of the river Vuoksi greatly complicate usually adopted for such waters coagulation treatment.The instability of such indicators of these waters, as alkalinity, permanganate oxidation and co...

  14. ESTIMATION OF THE NATURAL WATER SELF-PURIFICATION CAPACITY FROM THE KINETIC STANDPOINT

    Directory of Open Access Journals (Sweden)

    Gheorghe Duca

    2008-06-01

    Full Text Available The current paper contains a synthesis of the processes of chemical auto-purification that take place in natural waters; examples of mechanisms of such processes occurring with participation of dissolved organic matter, oxidants of the biogeochemical cycle of oxygen and of transition metals including copper and iron are presented. The kinetic indicators of natural water quality are presented as well.

  15. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  16. The modified swirl sedimentation tanks for water purification.

    Science.gov (United States)

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10(-5) to 5.1⋅10(-4) [m(3)/s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Water Filtration Using Plant Xylem

    Science.gov (United States)

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  18. Purification to homogeneity and properties of plant glucosidase I.

    Science.gov (United States)

    Zeng, Y C; Elbein, A D

    1998-07-01

    Glucosidase I was purified about 3600-fold to apparent homogeneity from the microsomal fraction of mung bean seedlings. The purified enzyme removed the terminal alpha1,2-linked glucose from Glc3Man9GlcNAc2-peptide or the endoglucosaminidase H (Endo H)-released oligosaccharide. Glucosidase I activity was inhibited by kojibiose [Glc(alpha1-2)Glc], but not by other glucose disaccharides. Removal of up to four mannose residues from the N-linked oligosaccharide had little effect on its utilization as a substrate for glucosidase I. The enzyme had a subunit molecular weight of 97 kDa on SDS gels and this was shifted to 94 kDa after treatment with Endo H or Endo F, suggesting that glucosidase I is an N-glycoprotein having one oligomannose-type oligosaccharide. Amino acid sequences of this enzyme showed considerable identity to the enzyme cloned from a human hippocampus cDNA library. The enzyme was inhibited by castanospermine, deoxynojirimycin, MDL, and trehazolin, but not by australine or kifunensine. On the other hand, the other processing glucosidase, glucosidase II, is sensitive to inhibition by australine, but not by trehazolin. Thus, these two inhibitors are useful to distinguish glucosidase I from glucosidase II. The mung bean glucosidase I is quite sensitive to the histidine modifying reagent diethyl pyrocarbonate, whereas the pig liver glucosidase I is not. On the other hand, pig liver and pig brain glucosidase I preparations are sensitive to the sulfhydryl reagent NEM (N-ethylmaleimide), whereas the plant enzyme is not. These sensitivities to amino acid modifiers suggest significant differences between the plant and animal glucosidase I, in terms of catalytic site or protein conformation. Copyright 1998 Academic Press.

  19. Water Purification Using Functionalized Cellulosic Fibers with Nonleaching Bacteria Adsorbing Properties.

    Science.gov (United States)

    Ottenhall, Anna; Illergård, Josefin; Ek, Monica

    2017-07-05

    Portable purification systems are easy ways to obtain clean drinking water when there is no large-scale water treatment available. In this study, the potential to purify water using bacteria adsorbing cellulosic fibers, functionalized with polyelectrolytes according to the layer-by-layer method, is investigated. The adsorbed polyelectrolytes create a positive charge on the fiber surface that physically attracts and bonds with bacteria. Three types of cellulosic materials have been modified and tested for the bacterial removal capacity in water. The time, material-water ratio and bacterial concentration dependence, as well as the bacterial removal capacity in water from natural sources, have been evaluated. Freely dispersed bacteria adsorbing cellulosic fibers can remove greater than 99.9% of Escherichia coli from nonturbid water, with the most notable reduction occurring within the first hour. A filtering approach using modified cellulosic fibers is desirable for purification of natural water. An initial filtration test showed that polyelectrolyte multilayer modified cellulosic fibers can remove greater than 99% of bacteria from natural water. The bacteria adsorbing cellulosic fibers do not leach any biocides, and it is an environmentally sustainable and cheap option for disposable water purification devices.

  20. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  1. Efficiency of Traditional Water Treatment Plant and Compact Units in Removing Viruses

    OpenAIRE

    Yehia A. Osman; Waled M. El-Senousy; Adel A. El-Morsi; Mohammed K. Rashed

    2015-01-01

    The fecal bacteria have been taken as the gold standard for water industry. However, the spread of viral gastroenteritis due to drinking water have given a momentum to a recent push by microbiologists to consider viruses as important pollution indicator as fecal bacteria. Therefore, we designed a study to evaluate the efficiency of two types of water purification systems: the traditional water treatment plant and two types compact units. Both systems produced drinking waters free of bacteria,...

  2. Phytochrome from green plants: assay, purification, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Quail, P.H.

    1983-01-01

    Phytochrome from the chlorophyllous cells of light-grown higher plants and green algae has been isolated and characterized. We have developed a simple procedure that separates chlorophyll from phytochrome in crude extracts from green tissue thus permitting spectral measurement of the phytochrome in such extracts for the first time. Spectral and immunochemical analysis of phytochrome from green oat tissue indicates the presence of two distinct species of the molecule: a minority species (approx. 20%) that is recognized by antibodies directed against phytochrome from etiolated tissue and that has an apparent molecular mass of 124 kilodaltons (kD), the same as that of the native molecule from etiolated tissue; and a majority species (approx. 80%) that is not recognized by anti-etiolated tissue phytochrome Ig and has a Pr absorbance maximum some 14 nm shorter than its etiolated tissue counterpart. Mixing experiments have established that these different molecular species preexist in the green cell and are not the results of posthomogenization modifications. Attempts to purify the phytochrome from green tissue by immunoaffinity chromatography have been thwarted by the lack of immunological cross-reactivity referred to. We have begun to identify monoclonal antibodies specific for antigenic sites distributed throughout the length of the etiolated-tissue phytochrome polypeptide. Axenic cultures of the alga Mesotaenium have been established and preliminary spectral analysis of phytochrome isolated from these cells has been carried out.

  3. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  4. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  5. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  6. Vegetation characteristics and water purification by artificial floating ...

    African Journals Online (AJOL)

    The result shows that AFI with plants had a strong capacity for the removal of nitrogen and phosphorus. In particular, softstem bulrush (S. validus Vahl) and spiked loosestrlfe (L. salicaria Linn.) were excellent aquatic plants in Beijing wetland restoration. Key words: Artificial island, emergent plant, removal efficiency.

  7. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  8. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  9. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-04-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  10. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  11. Development of concept for concurrent biocide generation and water system purification. [with application to Skylab water tanks

    Science.gov (United States)

    1974-01-01

    An attempt was made to construct an electrochemical system, using iodine, for water purification in Skylab. Data cover measurements of iodine production rates, effect of electrode size and geometry on iodine production rates, and feasibility of using stainless steels as reference electrodes.

  12. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration - A Prestudy

    Energy Technology Data Exchange (ETDEWEB)

    Chuanfeng Liu; Martin, Andrew [Royal Inst. of Technology, Stockholm (Sweden)

    2005-02-01

    Cost-effective, reliable, and energy efficient water treatment systems are an integral part of modern cogeneration facilities. Demineralized water is required for make-up water in district heating networks and in boilers. In addition, increasing attention has been paid to the treatment of flue gas condensate for possible recycling. A number of membrane technologies like reverse osmosis (RO) and electrode ionization (EDI) have been developed for the above applications. Besides these methods, membrane distillation (MD) is promising technology in this context. MD utilizes differences in vapor pressure to purify water via a hydrophobic membrane. The process can utilize district heat supply temperatures or low-grade steam, thus making it attractive for cogeneration applications. This investigation consists of a pre-study to evaluate the viability of membrane distillation as a new water treatment technology in cogeneration plants. Results obtained from the study will be used as an input to follow-on research, which may include the construction of a pilot plant. Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. Specific elements of this work include a literature survey, theoretical considerations of heat and mass transfer, and scale-up of experimental results. Data obtained from the test facility owned by Xzero AB and located at Royal Inst. of Technology was employed for this purpose. Actual water production was found to be lower than the theoretical maximum, illustrating the potential for improvements in MD module design. A case study considering a 10 m{sup 3} pure water/hr system is explored to shed light on commercial-scale aspects. Results show that MD is a promising alternative to RO in existing or new treatment facilities. The most favorable results were obtained for alternatives where either the district heat supply line or low-grade steam (2-3 bar, 200 deg C) are available. Specific

  13. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  14. Purification of highly polluted tip seepage water using brown coal coke. Reinigung hochbelasteter Deponiesickerwaesser mit Braunkohlenkoks

    Energy Technology Data Exchange (ETDEWEB)

    Felgener, G. (Rheinbraun AG, Koeln (Germany)); Janitza, J.; Koscielski, S. (Inst. fuer Textil- und Verfahrenstechnik, Denkendorf (Germany))

    1993-03-01

    The purpose of tests conducted over a long period of time on actual seepage water from five different household refuse tips was to ascertain whether brown coal coke, which is available as a mass product and therefore cheap, is suitable for use as an adsorptive purification agent on highly polluted tip seepage water. The present paper discusses the concept, treatment costs and the findings obtained from the tests. On the strength of the purification results it is shown that the treatment of tip seepage water can be effected successfully with brown coal coke and that the values obtained are even much lower than those stipulated in Appendix 31 of the general administrative regulations. (orig.).

  15. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  16. Feasibility of water purification technology in rural areas of developing countries.

    Science.gov (United States)

    Johnson, Dana M; Hokanson, David R; Zhang, Qiong; Czupinski, Kevin D; Tang, Jinxian

    2008-08-01

    Water scarcity is threatening social and economic growth in rural areas of developing countries. There are potential markets for water purification technologies in these regions. The main focus of this article is to evaluate the social, economic and political feasibilities of providing water purification technologies to rural areas of developing countries. The findings of this research can serve as the basis for private investors interested in entering this market. Four representative regions were selected for the study. Economic, demographic, and environmental variables of each region were collected and analyzed along with domestic markets and political information. Rural areas of the developing world are populated with poor people unable to fulfill the basic needs for clean water and sanitation. These people represent an important group of potential users. Due to economic, social, and political risks in these areas, it is difficult to build a strong case for any business or organization focusing on immediate returns on capital investment. A plausible business strategy would be to approach the water purification market as a corporate responsibility and social investing in the short term. This would allow an organization to be well positioned once the economic ability of individuals, governments, and donor agencies are better aligned.

  17. [Selection and purification potential evaluation of woody plant in vertical flow constructed wetlands in the subtropical area].

    Science.gov (United States)

    Chen, Yong-Hua; Wu, Xiao-Fu; Hao, Jun; Chen, Ming-Li; Zhu, Guang-Yu

    2014-02-01

    In order to solve the problem that wetland herbaceous plants tend to die during winter in subtropics areas, selection and purification potential evaluation experiments were carried out by introducing into the constructed wetlands 16 species of woody wetland plants. Cluster analysis was performed by including the morphological characteristics, physiological characteristics, as well as nitrogen and phosphorus accumulation of the woody wetland plants. The results indicated that there were significant differences among the tested woody plants in their survival rate, height increase, root length increase and vigor, Chlorophyll content, Superoxide dismutase, Malonaldehyde, Proline, Peroxidase, biomass, average concentration and accumulation of nitrogen and phosphorus. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Nerium oleander and Hibiscus syriacus. Those in the 2nd group possessing moderate purification potentials are Trachycarpus fortune, Llex latifolia Thunb., Gardenia jasminoides, Serissa foetida and Ilex crenatacv Convexa. And those in the 3rd group with low purification potentials are Jasminum udiflorum, Hedera helix, Ligustrum vicaryi, Ligustrum lucidum, Buxus sempervives, Murraya paniculata, Osmanthus fragrans, Mahoniafortune and Photinia serrulata.

  18. [Selection of winter plant species for wetlands constructed as sewage treatment systems and evaluation of their wastewater purification potentials].

    Science.gov (United States)

    Chen, Yong-hua; Wu, Xiao-fu; Chen, Ming-li; Jiang, Li-juan; Li, Ke-lin; Lei, Dian; Wang, Hai-bin

    2010-08-01

    In order to establish an evaluation system for selection of winter wetland plants possessing high wastewater purification potentials in subtropics areas, designed sewage treatment experiments were carried out by introducing into the constructed wetlands 25 species of winter wetland plants. Cluster analysis was performed by including harmful environment-resistant enzyme and substrate enzyme activities into the commonly applied plant screening and assessment indexes system. The obtained results indicated that there were significant differences among the tested winter plants in their root length and vigor, leaf malonaldehyde (MDA), biomass, average nitrogen and phosphorus concentration and uptake, and urease and phosphoric acid enzyme activities in the root areas. Based on the established evaluation system, the tested plants were clustered into 3 groups. The plants in the 1st group possessing high purification potentials are Oenanthe javanica, Brassicacapestris, Juncus effusu, Saxifragaceae, Iris pseudoacorus, Osmanthus fragrans and Iris ensata; those in the 2nd group possessing moderate purification potentials are Brassica oleracea var acephala, Calendula officinalis, Aucuba japonica, Ligustrum lucidu, Beta vulgaris, Rhododendron simsii and Ilex latifolia; and those in the 3rd group with low purification potentials are Brassica oleracea var acephala, Calistephus chinensis, Rosa chinensis, Antirrhinums, Liriope palatyphylla, Zephyranthes candida, Fatshedera lizei, Petunia hybrida, Ilex quihoui, Dianthus caryophyllus and Loropetalum chinensis.

  19. Development of functional geopolymers for water purification, and construction purposes

    National Research Council Canada - National Science Library

    Alshaaer, M; El-Eswed, B; Yousef, R.I; Khalili, F; Rahier, H

    2016-01-01

    This paper deals with the development of functional geopolymers based on local resources such as kaolinitic soil and zeolitic tuff for the construction of water storage containers and water transfer channels...

  20. Development of functional geopolymers for water purification, and construction purposes

    OpenAIRE

    M. Alshaaer; El-Eswed, B.; Yousef, R.I.; Khalili, F.; Rahier, H

    2016-01-01

    This paper deals with the development of functional geopolymers based on local resources such as kaolinitic soil and zeolitic tuff for the construction of water storage containers and water transfer channels. The effect of water content on the mechanical performance and physical properties of synthesized geopolymers was evaluated. The results confirmed that the optimum ratio of water is 28% of clay fraction, which revealed observable improvements of physical, mechanical, and adsorption proper...

  1. Purification of contaminated water by filtration through porous glass

    Science.gov (United States)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  2. Specifications for coke fines as potential adsorbents for coking plant waste water

    Energy Technology Data Exchange (ETDEWEB)

    Karcz, A.; Czepirska-Komorowska, E.; Burmistrz, P. (Akademia Gorniczo-Hutnicza, Cracow (Poland). Wydzial Energochemii Wegla i Fizykochemii Sorbentow)

    1993-01-01

    Proposes utilization of coke dust from coke dry quenching and from dedusting facilities for the purification of coking plant waste water. A process flowsheet is presented for waste water treatment at the Przyjazn coking plant, the only Polish coking plant employing coke dry quenching. The proposal for coke dust use is explained; properties of 4 types of coke dust available at the plant are compared to those of Carbopol Z-4 activated carbon. Adsorption isotherms were determined for the coke dust, as well as pore structures and pore size distribution. A high share of micropores was found in Carbopol Z-4, while coke dust had a higher amount of mesopores. Substantial differences were expected in adsorption performance of dusts compared to activated carbon, but this was not confirmed in laboratory purification of waste water. 19 refs.

  3. Filtration in the Use of Individual Water Purification Devices

    National Research Council Canada - National Science Library

    Lundquist, Arthur; Clarke, Steven; Bettin, William

    2006-01-01

    .... Understanding the ability of filtration to reduce disease-causing microorganisms in water is important in protecting Soldiers, who are considering using this technology, from acute health threats...

  4. Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification.

    Science.gov (United States)

    Lee, Jong-Gun; Kim, Do-Yeon; Mali, Mukund G; Al-Deyab, Salem S; Swihart, Mark T; Yoon, Sam S

    2015-12-07

    Water purification membranes, capable of purifying a few to tens of milliliters of aqueous methylene blue solution in a minute, were produced by supersonically blowing graphene flakes with a nylon-6 polymeric solution. The solution-blown nylon-6 nanofibers became entangled with graphene flakes thereby locking the graphene flakes within the frame of the bendable two-dimensional film structure. This method, which yielded a 5 × 7 cm(2)-sized membrane in less than 10 seconds, is commercially viable owing to fast fabrication and scalability. We show that our water purification device allows a flow rate range of 0.3-4 L h(-1) with a membrane area of just 5 cm(2), under a pressure difference of 0.5-3.5 bar. If the membrane were scaled up to 0.5 m(2), it could provide 300-4000 L h(-1) flow rate, an ample supply for home use.

  5. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h-1 m-2 g-1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (<1 sun). This scalable sheet-like material was used to obtain pure drinkable water from both seawater and sewage water under ambient conditions. Our results demonstrate a competent monolithic material platform providing a paradigm change in water purification by using a simple, point of use, reusable, and low-cost solar thermal water purification system for a variety of environmental conditions.

  6. Development of functional geopolymers for water purification, and construction purposes

    Directory of Open Access Journals (Sweden)

    M. Alshaaer

    2016-09-01

    Full Text Available This paper deals with the development of functional geopolymers based on local resources such as kaolinitic soil and zeolitic tuff for the construction of water storage containers and water transfer channels. The effect of water content on the mechanical performance and physical properties of synthesized geopolymers was evaluated. The results confirmed that the optimum ratio of water is 28% of clay fraction, which revealed observable improvements of physical, mechanical, and adsorption properties of the geopolymeric products. Such geopolymers showed the highest compressive strength, density, and maximum adsorption capacity toward cadmium among the products and precursors tested. The residual soluble salts in produced geopolymers were markedly reduced by using this optimum water content.

  7. Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers

    Directory of Open Access Journals (Sweden)

    Sébastien Bidault

    2012-01-01

    Full Text Available We describe a simple one-pot water-based scheme to produce gold nanoparticle groupings with short interparticle spacings. This approach combines a cross-linking molecule and a hydrophilic passivation layer to control the level of induced aggregation. Suspensions of dimers and trimers are readily obtained using a single electrophoretic purification step. The final interparticle spacings allow efficient coupling of the particle plasmon modes as verified in extinction spectroscopy.

  8. Military Land-Based Water Purification and Distribution Program (Preprint)

    National Research Council Canada - National Science Library

    Dusenbury, James S

    2003-01-01

    .... During World War II, it became increasingly apparent that this technology was only partially effective in providing potable and uncontaminated water for drinking, washing, culinary, bathing and laundering purposes...

  9. Electrochemical Oxidation of PAHs in Water from Harbor Sediment Purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    to contamination by PAH, heavy metals, TBT etc. In Denmark, contaminated harbor sediment is pumped ashore to inland lakes or upland sites where treatment of the runoff water is required before discharge to the recipient. In this study, electrochemical oxidation (EO) has been investigated as a method for treatment...... of the discharge water addressing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs are by-products of incomplete combustion of organic materials with recalcitrant and strong mutagenic/carcinogenic properties, due to their benzene analogue structures. PAHs are hydrophobic compounds and their persistence...... in the environment is mainly due to their low water solubility. The experimental study was performed in laboratory scale with volumes of water from 3 to 10 L in a batch recirculation experimental setup at constant temperature with a commercial one-compartment cell of tubular design with Ti/Pt90-Ir10 anode (60 cm2...

  10. Advanced Water Purification System For In Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prior to electrolysis, the water generated as an intermediate product must be treated to remove absorbed hydrochloric and hydrofluoric acids, byproducts derived from...

  11. Advanced Electrochemical Oxidation Cell for Purification of Water Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vesitech, Inc. has developed a totally new class of water treatment technology utilizing novel carbon based electrodes that have been shown to electrochemically...

  12. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  13. Advances in Membrane Distillation for Water Desalination and Purification Applications

    Directory of Open Access Journals (Sweden)

    Juan Gomez

    2013-01-01

    Full Text Available Membrane distillation is a process that utilizes differences in vapor pressure to permeate water through a macro-porous membrane and reject other non-volatile constituents present in the influent water. This review considers the fundamental heat and mass transfer processes in membrane distillation, recent advances in membrane technology, module configurations, and the applications and economics of membrane distillation, and identifies areas that may lead to technological improvements in membrane distillation as well as the application characteristics required for commercial deployment.

  14. Filtration in the Use of Individual Water Purification Devices

    Science.gov (United States)

    2006-03-01

    occur. Three commonly used commercial adsorbents include zeolites (aluminosilicates), synthetic polymeric adsorbents, and activated carbon. A notable...performance. In general, increasing hydrophilicity (contact angle less than 90 degrees, e.g., does not repel water molecules) will decrease fouling...are usually made of hydrophilic cellulose acetate materials, cellulose ester plastics, or composites such as a cross- linked polyamide on a polysulfone

  15. Chlorine Disinfection in the Use of Individual Water Purification Devices

    Science.gov (United States)

    2006-03-01

    Salmonella typhi, and Shigella dysenteriae showed that HOCl is more effective than OCl- for inactivation of these bacteria (reference 21). Further...Protection Agency (EPA), Registration Division Office of Pesticide Program, Criteria and Standards Division Office of Drinking Water, 1987. Guide

  16. Biomimetic Membranes for Water Purification and Wastewater Treatment

    DEFF Research Database (Denmark)

    Tang, Chuyang Y.; Wang, Zhining; Hélix-Nielsen, Claus

    2016-01-01

    Reverse osmosis (RO)-based desalination and wastewater reclamation are gaining increasing popularity driven by water shortages and population growth. Advances in membrane technology in the past few decades have resulted in great savings in energy consumption of RO processes. Further reduction...

  17. Differentiation between different kinds of mixing in water purification ...

    African Journals Online (AJOL)

    The term mixing is confusing because it is used to describe transport mechanisms for both flash mixing (reagent dispersion and homogenisation with water mixing) and agitation (flocculation mixing) because each of these mechanisms requires different flow characteristics in order to take place with maximum efficiency.

  18. Progress in lignin hydrogels and nanocomposites for water purification

    DEFF Research Database (Denmark)

    Tamulevicius, Sigitas; Thakur, Sourbh; Govender, Penny P.

    2017-01-01

    -based hydrogels have shown excellent performance for removal of various pollutants from water. The adsorption properties of lignin based hydrogels can further be improved by using a combination of nanomaterials and lignin that results in promising hydrogel nanocomposites. In nature, the most abundant structures...

  19. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations.

    Science.gov (United States)

    Chiellini, Carolina; Iannelli, Renato; Modeo, Letizia; Bianchi, Veronica; Petroni, Giulio

    2012-01-01

    Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.

  20. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  1. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  2. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    Science.gov (United States)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  3. Purification of waters and elimination of organochloric insecticides by means of active coal

    Directory of Open Access Journals (Sweden)

    DRAGAN MARINOVIĆ

    2010-04-01

    Full Text Available Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI: a-hexachlorocyclohexane (a-HCH, γ-hexachlorocyclohexane (lindane, heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT were investigated. OCI are highly toxic substances for the human population and their effective elimination from the environment is of paramount interest. To determine the OCI concentration in water samples, the EPA–608 method and the liquid–liquid extraction principle were applied. A procedure for OCI elimination was realized by passing the water over four columns filled with various active coals: KRF, K-81/B, NORIT ROW-0.8 and AQUA SORB CS. These active coals are carbonized coconut shells activated by different procedures. The obtained results indicated that best purification of potable and waste water achieved using a column with Norit Row-0.8 filling. Research proved that small quantities of OCI can also be effectively removed using a Norit Row-0.8 active coal filled column, without altering the organoleptic properties of the water, which meets the requirements of water purification processes.

  4. Advanced water purification technology. Kodo josui shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.; Koseki, M.; Sekizawa, K. (Sumitomo Heavy Industries, Ltd., Tokyo (Japan))

    1993-12-10

    This paper describes the result of a pilot experiment on biological treatment, ozonization, and activated carbon treatment as high-level water supply treating technologies. In biological treatment using a biological contact filtration method, the nitration rate of NH4-N was maintained at 90% or higher even during the low water temperature period, the chlorine demand in the treated water remained at near 2 mg/l or less, and the average removal rate reached 87%. In preozonization, general bacteria were removed at a rate of 99.5% at an ozone injection rate of 2.0 mg/l. Attaining a removal rate of 80% in Geosmin and 2-methyl isoborneol (2MIB), the musty odor substances, required the ozone injection rate of 1.6 mg/l and 1.8 mg/l, respectively. The activated carbon treatment used the coal-based activated carbon (AC-1) and the charcoal-based activated carbon (AC-2). Both activated carbons removed Geosmin at more than 98% and 2MIB at more than 94%. The removal rate for trihalomethane formation potential was 62% in the AC-1, and 46% in the AC-2. The AC-1 was superior to the AC-2 also in removing organic matters and totally organic chlorine compounds. 8 refs., 7 figs., 1 tab.

  5. Water purification through vacuum system; Purificacion de agua bajo vacio

    Energy Technology Data Exchange (ETDEWEB)

    Armenta-Deu, C.

    2004-07-01

    Fresh water production through vacuum systems are today a reasonable option at a much lower cost than tray conventional units, also based on evaporation-condensation process. The use of simple devices such as vacuum ejectors allows to reduce pressure down to 5 kPa at a very low cost, only 7. The requirement of having a constant water flow to reduce pressure has been easily solved using a close circuit and a low power pump which is powered by solar energy. The energy cost has been reduced dramatically, as the system operates at a very reduced temperature, 45 degree Celsius, and even as low as 35 degree Celsius, what causes a much lower energy requirement. The results obtained during the tests have shown that is possible to save up to 230 kJ per litre of fresh water, and up to 40 W per l/h. The system is fully compatible with thermal solar collectors of low temperature, and can be electrically powered by a solar panel of low power. (Author)

  6. Enhanced water purification: a single atom makes a difference.

    Science.gov (United States)

    Stewart, Tom A; Trudell, Daniel E; Alam, Todd M; Ohlin, C André; Lawler, Christian; Casey, William H; Jett, Stephen; Nyman, May

    2009-07-15

    The aluminum Keggin polycation (Al13) has been identified as an effective specie for neutralization and coagulation of anionic contaminants in water. In this study, we compare efficacy of the aluminum Keggin-ion to the analogues containing a single Ga-atom or single Ge-atom (GaAl12 and GeAl12, respectively) substituted into the center of the polycation in water-treatment studies. We investigated removal of bacteriophage (model viruses), Cryptosporidium, dissolved organic carbon (DOC), and turbidity. In every study, the order of contaminant removal efficacy trends GaAl12 > Al13 > GeAl12. By ESI MS (electrospray ionization mass spectrometry), we noted the GaAl12 deprotonates least of the three aluminum polycations, and thus probably carries the highest charge, and also optimal contaminant-neutralization ability. The ESI MS studies of the aluminum polycation solutions, as well as solid-state characterization of their resulting precipitates both reveal some conversion of Al13 to larger polycations, Al30 for instance. The GaAl12 does not show any evidence for this alteration that is responsible for poor shelf life of commercial prehydrolyzed aluminum coagulants such as polyaluminum chloride. Based on these studies, we conclude that substitution of a single Ga-atom in the center of the aluminum Keggin polycation produces an optimal water-treatment product due to enhanced shelf life and efficacy in neutralization of anionic contaminants.

  7. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification

    Science.gov (United States)

    Lin, Shangchao; Buehler, Markus J.

    2013-11-01

    Two-dimensional carbon materials such as the 2D nanoweb-like graphyne membrane are promising as molecular sieves for energy and environmental applications. Based on the application of water purification - the removal of contaminants from wastewater and seawater - here we use molecular dynamics (MD) simulations to investigate the interplay between mechanical forces, filtration mechanisms, and overall performance for graphyne membranes with different pore sizes. We carry out biaxial tensile tests and verify the superior mechanical robustness and tolerance of graphyne membranes against possible deformations from the membrane installation process. A possible ultimate stress in excess of 15 GPa and an ultimate strain of 1.2-2.7% are determined. We also demonstrate their excellent filtration performance with barrier-free water permeation and perfect rejection of the representative contaminants considered here, including divalent heavy metal salts (copper sulfate), hydrophobic organic chemicals (benzene and carbon tetrachloride), and inorganic monovalent salts (sodium chloride). We find that graphtriyne, with an effective pore diameter of 3.8 Å, exhibits an optimal purification performance, because the contaminant rejection rate is more sensitive to pore size than water permeability. In addition, we find that the hydrophobic graphyne membranes exhibit higher rejection rates for hydrophilic contaminants compared to the hydrophobic ones. This size exclusion effect is a result of the larger hydrated radii of hydrophilic species due to stronger interactions between them and water molecules. Finally, we find that the maximum deformation of graphtriyne at the ultimate strain before material failure has only a minor impact on its filtration performance. One of the advantages of using graphyne for water purification is that no chemical functionalization or defects need to be introduced, which maintains the structural integrity of the membrane, and possibly, the long-term device

  8. A NEW TECHNIQUE FOR PURIFICATION OF WATER USING NATURAL COAGULANT

    OpenAIRE

    C. P. Pise; Dr. S. A. Halkude

    2014-01-01

    The use of chemical coagulants is not suitable due to health and economic considerations. Studies are carried out in laboratory scale on deionized and river water containing synthetic turbidity of kaolinite. Experiments are carried out in three turbidity ranges: 150, 450, 1000 (NTU) and the pH range 6-8. The efficiency of Moringa oleifera (MO) seed extract and alum is examined with jar test, settling column and pilot test. The aim of this study is to find out the optimum combination of MO ...

  9. Adsorption of phenol onto rice straw biowaste for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M.N.; Mustafa, A.I.; Khalil, M.I.; Rahman, M.; Nahid, I. [University of Dhaka, Dhaka, Faculty of Engineering and Technology, Department of Applied Chemistry and Chemical Engineering, Dhaka (Bangladesh)

    2012-10-15

    The adsorption technique has been studied using waste rice straw to adsorb phenol from aqueous solutions at room temperature. Batch adsorption studies were carried out under varying experimental conditions of contact time, operational temperature, pH of phenol solution, initial phenol concentration, adsorbent dose, and particle size. The time to reach equilibrium was found to be 3 h. Results showed that the equilibrium data for phenol-sorbent systems fitted the Freundlich model and Langmuir model within the concentration range studied. Adsorbed phenol could be regenerated by desorption with the help of 1M NaOH. The studies showed that the rice straw can be used as an efficient adsorbent material for removal of phenol and phenolic compounds from water and wastewater. (orig.)

  10. Apple peels--a versatile biomass for water purification?

    Science.gov (United States)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-05-22

    The presence of anions such as chromate, arsenate, and arsenite in drinking water is a major health concern in many parts of the world due to their high toxicity. Removal of such anions from water using low cost biomass is an efficient and affordable treatment process. Owing to the easy availability and biodegradability, we chose to use apple peel as a substrate for our investigations. Zirconium cations were immobilized onto the apple peel surface and used for the extraction of anions. Zirconium loaded apple peels were used to extract anions such as phosphate, arsenate, arsenite, and chromate ions from aqueous solutions. The presence of Zr cations on the apple peel surface was characterized using XPS. The modified adsorbent was characterized using SEM, EDS, and FT-IR. Zr treated apple peels showed efficient adsorption toward AsO2(-) (15.64 mg/g), AsO4(3-) (15.68 mg/g), Cr2O7(2-) (25.28 mg/g), and PO4(3-) (20.35 mg/g) anions. The adsorption and desorption studies revealed the adsorption mechanism involves electrostatic interactions. Anion removal efficiency was estimated by batch adsorption studies. Adsorption kinetic parameters for all anions at different concentrations were described using pseudo-first-order and pseudo-second-order rate equations. Langumir and Freundlich isotherms were used to validate our adsorption data. Arsenate and chromate anions were strongly adsorbed at the pH range from 2 to 6, while arsenite was extracted efficiently between pH 9 and 10. Overall, the Zr immobilized apple peel is an efficient adsorbent for common anionic pollutants.

  11. Purification of the therapeutic antibody trastuzumab from genetically modified plants using safflower Protein A-oleosin oilbody technology.

    Science.gov (United States)

    McLean, Michael D; Chen, Rongji; Yu, Deqiang; Mah, Kor-Zheng; Teat, John; Wang, Haifeng; Zaplachinski, Steve; Boothe, Joseph; Hall, J Christopher

    2012-12-01

    Production of therapeutic monoclonal antibodies using genetically modified plants may provide low cost, high scalability and product safety; however, antibody purification from plants presents a challenge due to the large quantities of biomass that need to be processed. Protein A column chromatography is widely used in the pharmaceutical industry for antibody purification, but its application is limited by cost, scalability and column fouling problems when purifying plant-derived antibodies. Protein A-oleosin oilbodies (Protein A-OB), expressed in transgenic safflower seeds, are relatively inexpensive to produce and provide a new approach for the capture of monoclonal antibodies from plants. When Protein A-OB is mixed with crude extracts from plants engineered to express therapeutic antibodies, the Protein A-OB captures the antibody in the oilbody phase while impurities remain in the aqueous phase. This is followed by repeated partitioning of oilbody phase against an aqueous phase via centrifugation to remove impurities before purified antibody is eluted from the oilbodies. We have developed this purification process to recover trastuzumab, an anti-HER2 monoclonal antibody used for therapy against specific breast-cancers that over express HER2 (human epidermal growth factor receptor 2), from transiently infected Nicotiana benthamiana. Protein A-OB overcomes the fouling problem associated with traditional Protein A chromatography, allowing for the development of an inexpensive, scalable and novel high-resolution method for the capture of antibodies based on simple mixing and phase separation.

  12. Study of Water Purification with Pulsed Power Supply using MOSFET Switches

    Science.gov (United States)

    Shimizu, Kazuo; Blajan, Marius; Muramatsu, Shuichi

    A Marx generator using MOSFET switches was built and studied in this paper for water purification. In order to replace the spark gap type of pulse power sources, with miss fire problems and short mechanical lifetime. In case of Marx Generator which generates negative pulses, a maximum output voltage of 3.6 kV, rise time of 40 ns and pulse width of 600 ns, was obtained. Discharge energy of one pulse was about 801 μJ for negative polarity at -2.4 kV. In case of positive pulses, a maximum output voltage of 3.6 kV, rise time of 75 ns and pulse width of 750 ns, was obtained. Discharge energy of one pulse was about 1120 μJ at 2.4 kV. The discharge was generated in bubbling water using a Marx Generator with MOSFET switches. The discoloration of indigo carmine solution was carried out to investigate the feasibility of low voltage discharge in bubbling water. As a result, indigo carmine solution was decolorized, although the discharge voltage was about -2.4 kV. The treatment performance was improved when oxygen was fed in the solution. The discoloration rate was 100 % after treatment time of 15 min with oxygen used as carrier gas. Emission of OH was confirmed and considered to play a role for water purification.

  13. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco.

    Science.gov (United States)

    Di Maro, Antimo; Terracciano, Irma; Sticco, Lucia; Fiandra, Luisa; Ruocco, Michelina; Corrado, Giandomenico; Parente, Augusto; Rao, Rosa

    2010-05-03

    The Autographa californica nucleopolyhedrovirus chitinase A (AcMNPV ChiA) is a chitinolytic enzyme with fungicidal and insecticidal properties. Its expression in transgenic plants enhances resistance against pests and fungal pathogens. We exploited tobacco for the production of a biologically active recombinant AcMNPV ChiA (rChiA), as such species is an alternative to traditional biological systems for large-scale enzyme production. The protein was purified from leaves using ammonium sulfate precipitation followed by anion exchange and gel-filtration chromatography. Transgenic plants produced an estimated 14 mg kg(-1) fresh leaf weight, which represents 0.2% of total soluble proteins. The yield of the purification was about 14% (2 mg kg(-1) fresh leaf weight). The comparison between the biochemical and kinetic properties of the rChiA with those of a commercial Serratia marcescens chitinase A indicated that the rChiA was thermostable and more resistant at basic pH, two positive features for agricultural and industrial applications. Finally, we showed that the purified rChiA enhanced the permeability of the peritrophic membrane of larvae of two Lepidoptera (Bombyx mori and Heliothis virescens) and inhibited spore germination and growth of the phytopatogenic fungus Alternaria alternata. The data indicated that tobacco represents a suitable platform for the production of rChiA, an enzyme with interesting features for future applications as "eco-friendly" control agent in agriculture. Published by Elsevier B.V.

  14. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  15. Evaluation of possibilities for use of green technology for purification of waste water in Denmark. [Energy conservation]. Vurdering af mulighederne for anvendelse af groen teknologi til rensning af spildevand i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Boisen, T.

    1991-08-15

    Government demands for a higher level of purification of waste water have been fulfilled upto now by increasing the number of water purifying systems based on conventional technology. But it is currently reckoned that this strategy could significantly increase total energy consumption in the future. Green'' technolgy, systems based on plants which purify the water through natural biological processes, could contribute to energy conservation. The report presents a measuring programme which should show to which extent the stable operation of various green water purifying systems which suffer the Danish climate depends on the maintenance of optimal conditions for plant growth. (AB).

  16. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Feng [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Truong, Quang Duc, E-mail: tqduc@mail.tagen.tohoku.ac.jp [Department of Chemistry, Vietnam National University, Hanoi (Viet Nam); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chen, Jiann-Ruey [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Graphene sheets have been successfully synthesized by ionic-liquid-assisted electrolysis. Black-Right-Pointing-Pointer Graphene sheets are superior adsorbents for heavy metal removal. Black-Right-Pointing-Pointer Graphene sheets are highly efficient for water purification for the developing economies. - Abstract: A facile and green synthesis of graphene sheets by ionic-liquid-assisted electrolysis was investigated in this work. The synthesized graphene sheets have been studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray powder diffraction (XRD), Raman spectroscopy (Raman) and Fourier transform infrared (FTIR) analysis. The obtained graphene was used for the adsorption of Fe{sup 2+} whose presence in the drinking water in wide areas of South Asia has been widely known. The result shows that the graphene could absorb Fe{sup 2+} with a capacity of 299.3 mg/g which is 6 times higher than that of graphite oxide. The adsorption properties of metal ions on graphene and the effects of various factors on the adsorption capacity were also investigated in detail. The research results suggest a novel material for developing highly efficient water purification materials for the developing economies.

  17. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    Science.gov (United States)

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  18. US drinking water: fluoridation knowledge level of water plant operators.

    Science.gov (United States)

    Lalumandier, J A; Hernandez, L C; Locci, A B; Reeves, T G

    2001-01-01

    We determined the knowledge level of water plant operators who fluoridate drinking water, and we compared small and large water plants. A pretested survey was sent to 2,381 water plant operators in 12 states that adjust the fluoride concentration of drinking water. A z-test for proportion was used to test for statistical difference between small and large plants at alpha = 0.05. Small water plants were those treating less than 1 million gallons of water daily. Eight hundred small and 480 large water plant operators responded, resulting in a response rate of 54 percent. Two-thirds of water plant operators correctly identified the optimal fluoride level, but more than 20 percent used a poor source for choosing the optimal level. Only one-fourth of operators were able to maintain the fluoride concentration to within 0.1 mg/L of the optimal concentration. A significantly greater proportion of operators at large water plants than at small water plants reported that they were able to maintain a fluoride concentration to within 0.1 mg/L of the optimal concentration (33.5% vs 21.3%, z = 4.74, P fluoride level, small water plant operators were less likely to use accurate reasoning for choosing that level and in maintaining fluoride concentrations within 0.1 mg/L of that level than large water plant operators.

  19. Water-Conserving Plant-Growth System

    Science.gov (United States)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  20. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Performance of microbiological control by a point-of-use filter system for drinking water purification.

    Science.gov (United States)

    Su, Fengyi; Luo, Mingfang; Zhang, Fei; Li, Peng; Lou, Kai; Xing, Xinhui

    2009-01-01

    Purification capacity of a faucet mounted type water filter for home use was evaluated, particularly with regard to microbiological performance under different running conditions. Biofilms were formed inside the filter, affecting the bacterial quality of the effluent water. Low flow rate, long stagnation period and high filter temperature were found favorable for bacterial growth inside. By commercial analytical profile index (API) kits, ten different bacterial species were identified in drinking water, four of which were probably contributed to the biofilm formation since they were also present in the biofilm. Fluorescence in situ hybridization (FISH) was used to confirm the API identification results, and direct viable count (DVC) method was employed to improve the sensitivity of FISH for the isolated Acinetobacter spp. and Pseudomonas putida as models. Relationship between the filter operating condition and the bacterial community alteration was partly revealed, which could provide the basic knowledge for the filter design and its practical use.

  2. Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant

    OpenAIRE

    Nanninga, Henk J.; Gottschal, Jan C.

    1987-01-01

    Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-β-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates,...

  3. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Utility of adsorbents in the purification of drinking water: a review of characterization, efficiency and safety evaluation of various adsorbents.

    Science.gov (United States)

    Dubey, Shashi Prabha; Gopal, Krishna; Bersillon, J L

    2009-05-01

    Clean drinking water is one of the implicit requisites fora healthy human population. However the growing industrialization and extensive use of chemicals for various concerns, has increased the burden of unwanted pollutants in the drinking water of developing countries like India. The entry of potentially hazardous substances into the biota has been magnifying day by day. In the absence of a possible stoppage of these, otherwise, useful chemicals, the only way to maintain safer water bodies is to develop efficient purifying technologies. One such immensely beneficial procedure that has been in use is that of purification of water using 'adsorbents'. Indigenous minerals and natural plants products have potential for removing many pollutants viz. fluoride, arsenic, nitrate, heavy metals, pesticides as well as trihalomethanes. Adsorbents which are derived from carbon, alumina, zeolite, clay minerals, iron ores, industrial by products, and natural products viz. parts of the plants, herbs and algal biomass offer promising potential of removal. In the recent years attention has been paid to develop process involving screening/pretreatment/activation/impregnation using alkalies, acids, alum, lime, manganese dioxide, ferric chloride and other chemicals which are found to enhance their adsorbing efficiency. Chemical characterization of these adsorbents recapitulates the mechanism of the process. It is imperative to observe that capacities of the adsorbents may vary depending on the characteristics, chemical modifications and concentration of the individual adsorbent. Removal kinetics is found to be based on the experimental conditions viz. pH, concentration of the adsorbate, quantity of the adsorbent and temperature. It is suggested that isotherm model is suitable tool to assess the adsorption capacities in batch and column modes. Safety evaluation and risk assessment of the process/products may be useful to provide guidelines for its sustainable disposal.

  5. Using problem-based learning to improve students' creative thinking skills on water purification

    Science.gov (United States)

    Wahyu, Wawan; Kurnia, Eli, Rohaeni Nur

    2016-02-01

    The aim of this study is to obtain information about the using Problem-based Learning (PBL) to improve students' creative thinking skills on water purification. The research adopted quasi-experimental method with one group pre-test-post-test design, involving 31students of class XI in one SMK in Cimahi as the subjects of study. The students were divided into three groups categories: high, medium, and low based on the average grades of daily tests. The used instruments in this study were essay, observation sheet, questionnaire (Likert scale), and interview sheet Aspects of creative thinking skills are developed including: fluency, flexibility, originality, detailing (elaborative), and judging (evaluative). To identify the improvement of students' creative thinking skills on water purification, "normalized gain" or of the pre-test and post-test scores was calculated. The results showed that PBL can enhance students' creative thinking skills by means high category (percentage of = 70.12%). This nformation can be used as an input to teachers in the school and teacher education programs.

  6. Future market decentralized water purification and rain water management; Zukunftsmarkt Dezentrale Wasseraufbereitung und Regenwassermanagement

    Energy Technology Data Exchange (ETDEWEB)

    Sartorius, Christian [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    intensified competition between the operators of (waste) water treatment plants (e.g. by means of real cost-oriented pricing). Additionally, small and medium-sized firms should be supported in establishing contacts and raising demonstration projects in the target countries of their export activities. The higher risk associated with their engagement in developing and threshold countries should be offset by means of guaranteed loans. On the part of the exporting firms, the lack of infrastructure and financial capacity in those target countries with the most pressing need for technical improvements implies the adoption of better adapted technologies that also take into account the institutional and cultural circumstances in the respective countries. (orig.)

  7. Ammonia nitrogen removal from acetylene purification wastewater from a PVC plant by struvite precipitation.

    Science.gov (United States)

    Zhu, Lei; Dong, DeMing; Hua, XiuYi; Guo, ZhiYong; Liang, DaPeng

    Acetylene purification wastewater (APW) usually contains high concentrations of ammonia nitrogen (NH4-N), which is generated during the production of acetylene in a polyvinylchloride manufacturing plant. In this study, a struvite precipitation method was selected to remove NH4-N from the APW. Laboratory-scale batch experiments were performed to investigate the effects of the initial APW pH, phosphate (PO4(3-)) concentration, magnesium (Mg(2+)) concentration, and sources of PO4(3-) and Mg(2+) on NH4-N removal. The results indicated that the initial APW pH had a significant effect on the removal of NH4-N, while the other factors had relatively minor effect. The NH4-N could be effectively removed at an optimum initial APW pH of 9.5, when Na2HPO4·12H2O and MgSO4·7H2O were both applied to NH4-N at a ratio of 1.2. Under these conditions, the efficiency of removal of NH4-N, total nitrogen and chemical oxygen demand were 85%, 84% and 18%, respectively. The X-ray diffraction analysis indicated that the precipitates were dominated by struvite. The scanning electron microscopy analysis of the precipitates showed a typical morphology of stick-like and prismatic crystals with coarse surface. The energy dispersive spectroscopy analysis indicated that the precipitates contained P, O, Mg and Ca.

  8. Nucleic acid purification from plants, animals and microbes in under 30 seconds.

    Directory of Open Access Journals (Sweden)

    Yiping Zou

    2017-11-01

    Full Text Available Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling, means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.

  9. Electrically-charged recyclable graphene flakes entangled with electrospun nanofibers for the adsorption of organics for water purification.

    Science.gov (United States)

    An, Seongpil; Jo, Hong Seok; Song, Kyo Yong; Mali, Mukund G; Al-Deyab, Salem S; Yoon, Sam S

    2015-12-07

    Graphene flakes were entrapped between nylon 6 nanofiber layers and the resulting assembly was used as a recyclable water purification membrane. Water purification was achieved via adsorption of the model organic pollutant (methylene blue; MB) on the surface of the graphene component. Desorption of these MB molecules was achieved by applying high voltage, which increased the removal efficiency of the recycled membrane. The adsorption and desorption mechanisms were evaluated in detail. The material characteristics of the membrane were analyzed by scanning electron microscopy, Raman, UV-visible, and Fourier transform infrared analyses.

  10. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    Science.gov (United States)

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  11. Local treatment of coal-water slurries from thermal power plants with the use of coagulants

    Science.gov (United States)

    Sarapulova, G. I.; Logunova, N. I.

    2015-04-01

    The coagulation of coal particles in a coal-water slurry from the Novo-Irkutsk thermal power plant was studied. The advisability of the application of highly basic aluminum hydroxochloride of grade B for the treatment of contaminated water with a concentration of suspended particles of 30 g/dm3 was shown. The granulometric analysis of coal particles was performed. The application of the reagent was revealed to be efficient for the coagulation of both coarse particles and a finely dispersed fraction. Carbonate hardness values of up to 1.5 mmol-equiv/dm3 and pH ≤ 7.8 were shown to be typical for the contaminated water from the fuel supply shop. They were the most optimal parameters for hydrolysis and efficient flocculation and did not require the addition of sodium bicarbonate and flocculants. The process flowsheet of the separate purification of a coal-water slurry was developed for the fuel supply shop. Among the advantages of this purification method are the return of rather highly purified water for thermal power plant needs, and also the production of additional fuel in the form of recovered coal particles. The product was characterized by improved engineering parameters in comparison with the initial fuel, i.e., had a higher calorific value and a lower sulfur content. The purified water corresponded to the normative requirements to the content of residual aluminum. This technology of purification was resource-saving, environmental-friendly, and economically profitable.

  12. Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification.

    Science.gov (United States)

    Fernández, Jorge G; Almeida, César A; Fernández-Baldo, Martín A; Felici, Emiliano; Raba, Julio; Sanz, María I

    2016-01-01

    Bactericidal water filters were developed. For this purpose, nitrocellulose membrane filters were impregnated with different biosynthesized silver nanoparticles. Silver nanoparticles (AgNPs) from Aspergillus niger (AgNPs-Asp), Cryptococcus laurentii (AgNPs-Cry) and Rhodotorula glutinis (AgNPs-Rho) were used for impregnating nitrocellulose filters. The bactericidal properties of these nanoparticles against Escherichia coli, Enterococcus faecalis and Pseudomona aeruginosa were successfully demonstrated. The higher antimicrobial effect was observed for AgNPs-Rho. This fact would be related not only to the smallest particles, but also to polysaccharides groups that surrounding these particles. Moreover, in this study, complete inhibition of bacterial growth was observed on nitrocellulose membrane filters impregnated with 1 mg L(-1) of biosynthesized AgNPs. This concentration was able to reduce the bacteria colony count by over 5 orders of magnitude, doing suitable for a water purification device. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  14. Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Maliyekkal, Shihabudheen Mundampra [School of Mechanical and Building Sciences, VIT University, Chennai Campus, Chennai 600048 (India); Pradeep, Thalappil, E-mail: pradeep@iitm.ac.in [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-02-15

    Highlights: ► Facile strategy to make graphenic materials from cheaper precursor such as asphalt. ► Material can be made in solution; also as anchored on solid substrates. ► The synthesized material, GSC, was found to be excellent for water purification. ► The applicability was demonstrated through batch and laboratory columns experiments. ► The capacity was compared to other similar adsorbents and was found to be superior. -- Abstract: An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm{sup −1} and 1345 cm{sup −1} in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

  15. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  16. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  17. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification.

    Science.gov (United States)

    Paneysar, Joginder Singh; Barton, Stephen; Chandra, Sudeshna; Ambre, Premlata; Coutinho, Evans

    2017-03-01

    Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu+2, Co+2 and Cd+2) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.

  18. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, van E.A.; Bruins, M.A.; Beerling, E.A.M.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recircula-tion that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of

  19. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, E.A. van; Bruins, M.; Beerling, E.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recirculation that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of

  20. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  1. [Combined use of active chlorine and coagulants for drinking water purification and disinfection].

    Science.gov (United States)

    Rakhmanin, Iu A; Zholdakova, Z I; Poliakova, E E; Kir'ianova, L F; Miasnikov, I N; Tul'skaia, E A; Artemova, T Z; Ivanova, L V; Dmitrieva, R A; Doskina, T V

    2004-01-01

    The authors made an experimental study of the efficiency of water purification procedures based on the combined use of active chlorine and coagulants and hygienically evaluated the procedures. The study included the evaluation of water disinfection with various coagulants and active chlorine; the investigation of the processes of production of deleterious organic chlorine compounds; the assessment of the quality of water after its treatment. The coagulants representing aluminum polyoxychloride: RAX-10 (AQUA-AURATE 10) and RAX-18 (AQUA-AURATE 18), and aluminum sulfate, technically pure grade were tested. The treatment of river water with the coagulants RAX-10 and RAX-18, followed by precipitation, filtration, and chlorination under laboratory conditions, was shown to result in water disinfection to the levels complying with the requirements described in SanPiN 2.1.4.1074-01. RAX-18 showed the best disinfecting activity against total and heat-tolerant coliform bacteria, but also to the highly chlorine-resistant microrganisms--the spores of sulfite-reducing Clostridia, phages, and viruses. Since the coagulants have an increased sorptive capacity relative to humus and other organic substances, substitution of primary chlorination for coagulant treatment may induce a reduction in the risk of formation of oncogenically and mutagenically hazardous chlorinated hydrocarbons.

  2. Floating bioplato for purification of waste quarry waters from mineral nitrogen compounds in the Arctic.

    Science.gov (United States)

    Evdokimova, Galina A; Ivanova, Lyubov A; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadezhda V

    2016-08-23

    A bioplato was organized at Kirovogorskiy pond-settling of OLKON Company (the city of Olenegorsk, in Murmansk region) to reduce the content of nitrogen mineral compounds in water which come into the pond with the quarry waters after blasting operations using nitrogen compounds. The assortment of aboriginal plants was selected, a method of fixing and growing them on the water surface was developed, and observations of their vegetation were carried out. The dynamics of nitrogen compounds was determined in the laboratory and with full-scale tests. The coverage area pond by plants for the effective reduction of mineral nitrogen compounds was calculated. The use of floating bioplato helped to reduce content of ammonium and nitrite to maximum permissible levels or even lower in pond water. Also there was a tendency towards reduction of nitrate concentrations in water. The developmental technology can be used in any climatic zone with a specific assortment of plants-ameliorants.

  3. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  4. Conductive 3D sponges for affordable and highly-efficient water purification.

    Science.gov (United States)

    Liu, Yanbiao; Li, Fang; Xia, Qin; Wu, Jiawei; Liu, Jianshe; Huang, Mingzhi; Xie, Jianping

    2018-02-22

    Effective, affordable and low energy water purification technologies are highly desirable to address the current environmental issues. In this study, we developed a low-cost method to achieve efficient organic pollutants degradation by incorporating conductive nanomaterials (i.e., carbon nanotubes, CNTs) to assist electro-oxidation, leading to an efficient conductive nano-sponge filtration device. The integration of electrochemistry has significantly improved the performance of the sponge-based device to adsorb and oxidize organic compounds in aqueous solution. In particular, CNT materials could serve as both high-performance electro-catalysts for pollutant degradation and conductive additives that make polyurethane sponges highly conductive. On the other hand, the polyurethane sponge could work as a low-cost and highly porous matrix that could effectively host these CNT conductors. The conductive sponge can be easily fabricated by a simple dying based approach. The as-fabricated gravity fed device could effectively oxidize two model organic compounds (i.e., >92% antibiotic tetracycline and >94% methyl orange) via a single pass through the conductive sponge under the optimized experimental conditions (e.g., [Na 2 SO 4 ] = 10 mmol L -1 , [CNT] = 0.3 mg mL -1 , and [SDBS] = 2.0 mg mL -1 ). We have achieved >88% degradation efficiency for the antibiotic tetracycline within 6 h of continuous operation with an average electro-oxidation flux of 0.82 ± 0.05 mol h -1 m -2 and an energy requirement of 1.0 kW h kg -1 COD or <0.02 kW h m -3 . These promising data make our CNT-sponge filtration device attractive for affordable and effective water purification.

  5. Purification and recycling of the waste water of a paper mill using mechanical pulp; Mekaanista massaa kaeyttaevaen paperitehtaan jaeteveden puhdistus ja uudelleenkaeyttoe - EKY 07

    Energy Technology Data Exchange (ETDEWEB)

    Mattelemaeki, R. [Enso Oyj, Imatra (Finland)

    1998-12-31

    The objective of the project was to study which levels of organic and inorganic substances could be obtained by treatment of waste waters of mechanical pulper and paper machine biologically and after that with solid matter removal. Another target was also to test the utilisation of the purified water in pulp and paper manufacture, and to study the properties of purified water. The three months test runs with PK 4 and TMP plant clarified waters were carried out using a pilot-scale plant, which also consisted of two serial aerobic bioreactors and a parallel anaerobic line as a reference. The solid matter was removed by chemical flocculation, flotation and sand filtration. The purification efficiencies of both waters were similar both in aerobic and anaerobic lines. The reduction of soluble COD in biological stage was about 75 % and that of the whole line about 85 %. The solid matter reduction was 60-70 %. Solid fines, including bacteria, could not be removed sufficiently from the water by flotation and sand filtration so the water cannot be recommended to be used to replace fresh water. Circulating water sheets were produced, and pulp washing tests, retention tests and microbiological tests were carried out in order to estimate the recyclability of the water. Minor lowering of whiteness of the sheets were observed when a part of the fresh water was replaced with recycled water. Microscopic analysis shoved that after the sand filter there were a lot of free bacteria in the water. Further research will be concentrated to recycling of purified water, e.g. To research on how the colour of the water effects on the quality of the product. (orig.)

  6. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  7. Development and assessment of photo-catalytic membranes for water purification using solar radiation

    Science.gov (United States)

    Coto, M.; Troughton, S. C.; Duan, J.; Kumar, R. V.; Clyne, T. W.

    2018-03-01

    This paper describes a novel set-up for characterization of the performance of membranes designed for purification of water. It involves a recirculatory system, with continuous monitoring of the concentration in the water of a representative pollutant (Methylene Blue). Pressures, flow rates and temperatures are also measured. Results, in the form of rate constants for reduction in pollutant concentration, are presented for three different types of membrane, all of which incorporate relatively high surface areas of titania and have permeability values in a range making them suitable for this type of processing (∼10-11 m2). These results are rationalized in terms of the surface areas of the membranes, and the likely water flow characteristics within them. It is concluded that all of the titania surfaces within them have similar efficiencies for photo-catalytic oxidation of pollutants, but there are significant differences in the ways that the water is exposed to these surfaces, and hence in the pollutant oxidation rates. These points are relevant to the optimization of membrane design for this purpose.

  8. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  9. Combined electron-beam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents

    Science.gov (United States)

    Ponomarev, A. V.; Bludenko, A. V.; Makarov, I. E.; Pikaev, A. K.; Kyung Kim, Duk; Kim, Yuri; Han, Bumsoo

    1997-04-01

    Combined electron-beam and adsorption method of purification of water from Hg(II) and Cr(VI) using materials of vegetable origin as sorbents was developed. It consists in the addition of materials of vegetable origin (e.g. cellulose, carboxymethyl cellulose, starch, and wheat flour) into water, subsequent electron-beam irradiation, sedimentation and filtration of additives with captured Hg(II) or Cr(VI). The method is based on the synergistic effect of the combined action of irradiation and sorbent. The best results were obtained with the wheat flour. For example, the addition of 25 mg/I of the flour to the water containing 1 mg/I Hg(II) and irradiation with dose 1.1 kGy upon bubbling inert gas through the system led to the 98% removal of the pollutant. The possible mechanism of the processes causing the purification of water is discussed.

  10. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  11. Preparation and characterization of novel polytitanium tetrachloride coagulant for water purification.

    Science.gov (United States)

    Zhao, Y X; Phuntsho, S; Gao, B Y; Huang, X; Qi, Q B; Yue, Q Y; Wang, Y; Kim, J-H; Shon, H K

    2013-11-19

    Polymeric metal coagulants are increasingly being used to improve coagulation efficiency, yet the research on the development of titanium and particularly polytitanium salts remains limited. This study is the first attempt in the synthesis, characterization, and application of polytitanium salts as coagulants. Polytitanium tetrachloride (PTC) solutions with different basicity values B (OH/Ti molar ratio) were prepared using a slow alkaline titration method. Jar tests were conducted to assess coagulation performance using both synthetic and real raw water samples, and the floc characteristics were monitored online using a laser diffraction particle size analyzer. Electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) was utilized to identify various Ti species, with the results providing strong evidence of the presence of various hydrolyzed Ti species in the titanium aqueous phase. Compared to titanium tetrachloride (TiCl4), higher or comparable turbidity and organic matter removal efficiency could be achieved by PTC with improved floc characteristics in terms of size, growth rate, and structure. Besides, the water pH after PTC coagulation was significantly improved toward neutral pH. This study indicates that PTC is an effective and promising coagulant for water purification. Besides, the PTC flocculated sludge was able to recycle and produce functional TiO2 photocatalyst.

  12. Immobilized graphene-based composite from asphalt: facile synthesis and application in water purification.

    Science.gov (United States)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen; Maliyekkal, Shihabudheen Mundampra; Pradeep, Thalappil

    2013-02-15

    An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm(-1) and 1345 cm(-1) in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Incorporation of copper nanoparticles into paper for point-of-use water purification.

    Science.gov (United States)

    Dankovich, Theresa A; Smith, James A

    2014-10-15

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  16. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  18. Comparison of bioindicator eukaryotes of activated sludge biocenoses on two water-treatment plants: a case study

    Directory of Open Access Journals (Sweden)

    Achmadulina Farida Y.

    2017-06-01

    Full Text Available Activated sludge biocenoses were compared on waste-water treatment plants in the city of Kazan, Russian Federation and the city of Teplice, Czech Republic. Based on Palia-Kovnatski index, Acanthamoeba in Kazan, Epistylis in Teplice, and Acanthamoeba and Centropyxis were dominant genera in both plants. The major subdominant generas identified were Arcella, Opercularia and Aspidisca. This indicates high nitrification ability, high water purification potential and matured activated sludge. Chemical composition of the waste-water was identified as the main factor determining the sludge biocenoses diversity. Higher sludge biodiversity (Shannon, Margalef, and Sorensen indexes was found in Kazan corresponding to more concentrated inflow water.

  19. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  20. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Directory of Open Access Journals (Sweden)

    Penna Thereza CV

    2006-08-01

    Full Text Available Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value necessary to inactivate 90% of the initial bioburden (decimal reduction time was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2 and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10 population (n cycles. To kill 90% of the initial population (or one log10 cycle, the necessary time (D-value was for P. aeruginosa into: (i 0.5% citric acid, D = 3.8 min; (ii 0.5% hydrochloric acid, D = 6.9 min; (iii 70% ethanol, D = 9.7 min; (iv 0.5% sodium bisulfite, D = 5.3 min; (v 0.4% sodium hydroxide, D = 14.2 min; (vi 0.5% sodium

  1. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification

    Directory of Open Access Journals (Sweden)

    Jin-Ho Park

    2017-03-01

    Full Text Available We evaluated the applicability of metal spray coating as a waterproofing/corrosion protection method for a concrete structure used for water purification. We carried out an ozone resistance test on four metal sprays and evaluated the water permeability and bond strength of the metals with superior ozone resistance, depending on the surface treatment method. In the ozone resistance test, four metal sprays and an existing ozone-proof paint were considered. In the experiment on the water permeability and bond strength depending on the surface treatment method, the methods of no treatment, surface polishing, and two types of pore sealing agents were considered. The results showed that the sprayed titanium had the best ozone resistance. Applying a pore sealing agent provided the best adhesion performance, of about 3.2 MPa. Applying a pore sealing agent also provided the best waterproofing performance. Scanning electron microscope analysis showed that applying a pore sealing agent resulted in an excellent waterproofing performance because a coating film formed on top of the metal spray coating. Thus, when using a metal spray as waterproofing/corrosion protection for a water treatment concrete structure, applying a pore sealing agent on top of a film formed by spraying titanium was concluded to be the most appropriate method.

  2. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    OpenAIRE

    Mariina Hiiob; Enn Karro

    2012-01-01

    Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight diffe...

  3. Risk perception and water purification practices for water-borne parasitic infections in remote Nepal.

    Science.gov (United States)

    Kovalsky, Adrienne N; Lacey, Steven E; Kaphle, Upendra Raj; Vaughn, James M

    2008-10-01

    This study assesses water-borne infection risk perception and water boiling habits in a remote Sankhuwasava region of Nepal using a brief interview-style questionnaire. All subjects were aware of the risks associated with drinking unpurified water, but a majority (65%) reported they did not boil water regularly, and almost 60% of villagers interviewed had history of infection despite their boiling practices. In contrast to reports from other communities in Nepal, risk awareness was sufficient in this region. Water boiling alone did not confer protection. Future efforts should target sanitation, screening, and other sources of contamination.

  4. Simultaneous separation and purification of five bioactive coumarins from the Chinese medicinal plant Cnidium monnieri by high-speed counter-current chromatography.

    Science.gov (United States)

    Li, Hua-Bin; Chen, Feng

    2005-02-01

    Cnidium monnieri (L.) Cusson is a well-known Chinese medicinal plant, which has been used for the treatment of impotence, frigidity, and skin-related diseases, and exhibits strong antipruritic, antiallergic, antidermatophytic, antibacterial, antifungal, and antiosteoporotic activities. A high-speed counter-current chromatography method was developed for the separation and purification of five bioactive coumarins from this plant. The crude coumarins were obtained by ethanol extraction from the dried fruits of Cnidium monnieri (L.) Cusson under sonication. High-speed counter-current chromatography with the two-phase solvent systems n-hexane-ethyl acetate-ethanol-water (5:5:4:6, v/v) and n-hexane-ethyl acetate-ethanol-water (5:5:6:4, v/v) was successfully performed with stepwise elution. The five relatively pure coumarins were obtained from 500 mg of the crude extract in a single run. Their purities were 90.6-98.9%, and the recoveries were 85.7-94.2%.

  5. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  6. Crow Nation Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  7. Water purification using porous ceramics prepared by recycling volcanic ash and waste glass

    Science.gov (United States)

    Ando, Tomohiro; Fujita, Yuki; Kakinaga, Mayu; Oka, Nobuto; Nishida, Tetsuaki

    2017-11-01

    Water purification was examined using porous ceramics prepared by sintering a powder mixture of volcanic ash, waste glass and a small amount of wood charcoal. The porous ceramics had cross-linked 3D-channels of which the diameter ranged from several nm to several μm. Three kilograms of porous ceramics placed in 90 L of circulating artificial seawater, in which several tropical fishes were actually living under aeration, caused a decrease in COD from 23.8 to 13.1 mg L-1 in a week. The number of coliform bacteria was almost constant in a range of 52-65 mL-1 despite that a lot of excrements were discharged frequently. The number of the coliform bacteria in the seawater examined "without the tropical fishes" decreased from 900 to 1 mL-1 in 2 weeks, and COD decreased from 37.9 to 7.9 mg L-1. It proved that several aerobic bacteria proliferating in the macropores inside the porous ceramics could effectively decompose several organic materials.

  8. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  9. A method to determine plant water source using transpired water

    Science.gov (United States)

    Menchaca, L. B.; Smith, B. M.; Connolly, J.; Conrad, M.; Emmett, B.

    2007-04-01

    A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree) and Genista monspessulana (shrub) using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris) switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  10. Water retention capacity of tissue cultured plants

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Wijnhoven, F.

    2005-01-01

    Leaves rapidly close their stomata after detachment resulting in a strong reduction of water loss. It has been reported that detached leaves of in vitro produced plants show continuous water loss indicating that they are unable to close the stomata properly and/or that their cuticle is

  11. Active condensation of water by plants

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2013-10-01

    Full Text Available This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomenon in question is found everywhere, but it is particularly important for plants in arid ecosystems.

  12. Point-of-use water purification using clay pot water filters and copper ...

    African Journals Online (AJOL)

    The raw and filtered water samples were then tested for E. coli, total coliforms, total hardness, turbidity, electrical conductivity, cations and anions. The 600 μm pot had the capacity to destroy E. coli completely from the raw water, whereas the 900 μm pot reduced it by 99.4%. The 600 μm and 900 μm pots could reduce the ...

  13. Continuous monitoring of plant water potential.

    Science.gov (United States)

    Schaefer, N L; Trickett, E S; Ceresa, A; Barrs, H D

    1986-05-01

    Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.

  14. for the Waste Water Cleaning Plant

    Directory of Open Access Journals (Sweden)

    E. V. Grigorieva

    2010-01-01

    Full Text Available A model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water on the given time interval is stated and solved analytically with the use of the Pontryagin Maximum Principle and Green's Theorem. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  15. One-step non-chromatography purification of a low abundant fucosylated protein from complex plant crude extract

    Directory of Open Access Journals (Sweden)

    Lindsay Arnold

    2015-08-01

    Full Text Available Effective methods for isolation and purification of glycoproteins and other glycoconjugates are important to biopharmaceutical industry and diagnostic industry. They are also critical to an emerging field of glycoproteomics. In this work, we applied the newly-developed affinity ligand, a fusion protein of elastic like polymer (ELP and a bacterial lectin, in an affinity precipitation process to purify soybean peroxidase (SBP based on the presence of fucoseon the protein surface. We addressed, in particular, the challenge of purifying a low abundant protein from a complex dilute crude plant extract. The novel affinity precipitation developed in this work was very promising. One step binding and precipitation resulted in >95% recovery yield directly from crude extract and a 22.7 fold purification, giving a specific activity of 420 U/mg. The SBP isolated using this affinity precipitation meets or exceeds the quality specifications of reagent grade products by Sigma. We showed that the recovery yield had a strong dependence on the molar ratio of ligand to target fucosylated protein, with a ratio of three giving nearly full recovery, which could be predicted based on the total fucose content per protein molecule and the number of binding site per ligand molecule. We additionally developed a method of ligand regeneration and investigated its reuse. A simple wash with pH buffer was shown to be effective to regenerate the binding capacity for the ligand, and the ligand could be used for 10 times, giving an averaged 80% isolation yield based on initial input of soybean peroxidase. Taken together, an effective method of affinity precipitation was developed, which could be used to enrich a low abundant target glycoprotein from a complex mixture with a high recovery yield. The high selectivity for fucosylated protein and its ease of operation make this method particularly useful for purification of low abundant glycoprotein from natural sources. This work

  16. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    Science.gov (United States)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (seeds, up to 18 months

  17. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  18. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    Commission 40-Year Celebration Conference, Kempton Park,. 31 August - 1 September 2011. * To whom all correspondence should be addressed. ☎ +27 51 401-2957; fax: +27 51 401-2212; e-mail: vrensbl@ufs.ac.za. Review of 'plant available water' aspects of water use efficiency under irrigated and dryland conditions.

  19. [A new type water supplement mode of urban wetland park and its effects in purification and ecology].

    Science.gov (United States)

    Zhang, Li; Zhu, Xiao-dong; Chen, Jie; Zhu, Zhao-li; Pan, Tao; Li, Yang-fan

    2008-12-01

    With the Rosebush Wetland Park in Changzhou as a case, a new type water supplement mode for urban wetland park, i.e., "vertical-flow plus horizontal-flow", was constructed, and its effects in water purification, ecology, and economic advantages were evaluated. The results showed that this water supplement mode could not only improve the landscape of the water bodies in urban wetland park, but also enhance their quality, making it satisfy the requirement for human full-body exposure. Furthermore, the operation cost of the mode was as lower as 5%-25% of direct municipal pipe-water supply and other routine technique solutions, suggesting that this water supplement mode had potential positive ecological effects and economic advantages.

  20. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    Science.gov (United States)

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  1. Purification of the subterranean waters. Application of new technologies of treatment in the ETAPs; Potabilizacion de las aguas subterraneas. Aplicaciones de nuevas tecnologias de tratamiento en las ETAPs

    Energy Technology Data Exchange (ETDEWEB)

    Canto Janer, J.; Luque Montilla, F. F.

    2002-07-01

    The wells of the SGAB for the caption of underground waters placed in the aquifer of delta of the Besos River were stopped exploiting progressively throughout the eighties, for effect of its pollution. When the groundwater level rose, there were flooded parking and the underground line, installing the corresponding equipments of pumping to relieve this effect. It presents the characteristics of this pollution (in comparison of the superficial waters). the diverse technologies being related of purification. The future water-treatment plant, from the tests in a plant pilot, it will consist of three lines in parallel of inverse osmosis, for 150 L/s each one and to 10 bar (low pressure), the membranes are of poliamida and placed in two stages of 40 and 20 modules respectively, with a maximum conversion of 77%. The high investment of 6.600.000 Euros justifies itself for the proximity to the net of supply, being the costs of functioning of 0,115 Euros/m''3 that include the membrane reinstatement (12%) and two washes a year. (Author)

  2. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor.

    Science.gov (United States)

    Chalfoun, Nadia R; Grellet-Bournonville, Carlos F; Martínez-Zamora, Martín G; Díaz-Perales, Araceli; Castagnaro, Atilio P; Díaz-Ricci, Juan C

    2013-05-17

    In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.

  3. MENEKAN LAJU PENYEBARAN KOLERA DI ASIA DENGAN 3SW (STERILIZATION, SEWAGE, SOURCES, AND WATER PURIFICATION

    Directory of Open Access Journals (Sweden)

    Bagus Anggaraditya Anggaraditya

    2015-08-01

    Full Text Available ABSTRAK Penyakit taun atau kolera (juga disebut Asiatic cholera adalah penyakit menular di saluran pencernaan yang disebabkan oleh bakterium Vibrio cholerae. Kolera ditemukan pada tahun 1883 karena infeksi Vibrio cholerae, bakteri berbentuk koma. Penemuan ini ditemukan oleh bakteriologi Robert Koch (Jerman, 1843-1910.Penyebab kolera, adalah bakteri Vibrio cholerae, yang merupakan bakteri gram negatif, berbentuk basil (batang dan bersifat motil (dapat bergerak, memiliki struktur antogenik dari antigen flagelar H dan antigen somatik O, gamma-proteobacteria, mesofilik dan kemoorganotrof, berhabitat alami di lingkungan akuatik dan umumnya berasosiasi dengan eukariot. Pada orang yang feacesnya ditemukan bakteri kolera mungkin selama 1-2 minggu belum merasakan keluhan berarti, Tetapi saat terjadinya serangan infeksi maka tiba-tiba terjadi diare dan muntah dengan kondisi cukup serius sebagai serangan akut yang menyebabkan samarnya jenis diare yg dialamiCara pencegahan dan memutuskan tali penularan penyakit kolera adalah dengan prinsip sanitasi lingkungan, terutama kebersihan air dan pembuangan kotoran (feaces pada tempatnya yang memenuhi standar lingkungan. Lainnya ialah meminum air yang sudah dimasak terlebih dahulu, cuci tangan dengan bersih sebelum makan memakai sabun/antiseptik, cuci sayuran dangan air bersih terutama sayuran yang dimakan mentah (lalapan, hindari memakan ikan dan kerang yang dimasak setengah matang. Kolera memang sudah menjadi momok yang menakutkan di dunia, dan belajar dari negara-negara di Asia yang sudah pernah mengalami wabah kolera, dapat diambil kesimpulan bahwa pengobatan dengan vaksin tidak memiliki pengaruh yang signifikan.Selain karena tidak menjangkau seluruh warga miskin di sebuah negara, harga vaksin kolera juga dirasa cukup memberatkan anggaran negara-negara yang sedang berkembang di Asia.Cara yang dirasa paling tepat dalam menekan laju penyebara kolera adalah 3SW (Sterilization, Sewage, Sources, and Water

  4. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    Science.gov (United States)

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  5. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology.

    Science.gov (United States)

    Akarsu, Ceyhun; Ozay, Yasin; Dizge, Nadir; Elif Gulsen, H; Ates, Hasan; Gozmen, Belgin; Turabik, Meral

    Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box-Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5-15 V), initial pH (4.5-8.0) and time (30-90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R(2) and Radj(2) values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R(2) values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage-time and pH-time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic

  6. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals

    Science.gov (United States)

    Drewniak, Lukasz; Krawczyk, Pawel S.; Mielnicki, Sebastian; Adamska, Dorota; Sobczak, Adam; Lipinski, Leszek; Burec-Drewniak, Weronika; Sklodowska, Aleksandra

    2016-01-01

    Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals. PMID:27559332

  7. Pentachlorophenol reduction in raw Cauca river water through activated carbon adsorption in water purification

    Directory of Open Access Journals (Sweden)

    Camilo Hernán Cruz Vélez

    2008-09-01

    Full Text Available Reducing chemical risk in raw water from the River Cauca (caused by the presence of pentachlorophenol and organic matter (real color, UV254 absorbance was evaluated at bench scale by using three treatment sequences: adsorption with powdered ac-tivated coal (PAC; adsorption – coagulation; and, adsorption – disinfection – coagulation. The results showed that although PAC is appropriate for pentachlorophenol removal, and its use together with the coagulant (aluminium sulphate significantly impro-ved phenolic compound and organic matter removal (promoting enhanced coagulation, the most efficient treatment sequence was adsorption – disinfection - coagulation, achieving minor pentachlorophenol levels than detection (1.56 μg/l and WHO li-mits (9μg/l due to the effect of chloride on PAC.

  8. Isolation and Purification of Oridonin from the Whole Plant of Isodon rubescens by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    ChunYue Yu

    2011-09-01

    Full Text Available Semi-preparative high-speed counter-current chromatography (HSCCC was successfully used for isolation and purification of oridonin from Isodon rubescens by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (2.8:5:2.8:5, v/v/v/v. The targeted compound isolated, collected and purified by HSCCC was analyzed by high performance liquid chromatography (HPLC. A total of 40.6 mg of oridonin with the purity of 73.5% was obtained in less than 100 min from 100 mg of crude Isodon rubescens extract. The chemical structure of the compound was identified by IR, 1H-NMR and 13C-NMR.

  9. Multivariate statistical analysis of temporal-spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China.

    Science.gov (United States)

    Li, Dongqing; Huang, Di; Guo, Chaofan; Guo, Xiaoyu

    2015-01-01

    Using discriminant analysis (DA) and principal component analysis/factor analysis (PCA/FA), we described the variations in the water quality of a constructed wetland (CW) purification system in Olympic Park supplied with reclaimed water (RW). The analyses were conducted across three seasons (spring, summer, and autumn) and four functional zones (composite vertical flow constructed wetland [CVW], plant oxidation pond [POP], mixed oxidation pond [MOP], and main lake [ML]). The results demonstrated the relatively high water quality of the CW, which was suitable for landscape reuse. The most severe contamination occurred in autumn and in the ML/MOP. Chemical oxygen demand (CODMn), NO₃(-)-N, oxidation-reduction potential (ORP), and total nitrogen (TN) caused 91.8% of the temporal variations while DO, cyanobacteria (PCY), and pH caused 70.8% of the spatial variations. The low accuracy of the DA indicated that the four functional areas exhibited similar pollution characteristics. Internal pollution was the major pollutant source in all selected seasons/functional zones. In spring, the CW was largely affected by organic matters. In summer, the CW was contaminated chiefly by nutrient pollutants (N and P), particularly in the CVW and POP. In autumn, the major threat became eutrophication. Enhancing water circulation and shortening hydraulic retention time can effectively weaken the effect of nutrient salts and organic pollutants.

  10. Water Movement in Vascular Plants: A Primer

    CERN Document Server

    Sane, Sanjay P

    2011-01-01

    The origin of land plants was one of the most important events in evolutionary history of earth in terms of its broad impact on metazoan life and the biotic environment. Because vascular tissues enabled land plants to meet the challenges of terrestrial life, it is important to understand the mechanistic basis of water transport through these tissues from soil to the canopy of trees, in some cases almost 100 meters high. The answers to these questions involve not only the biology of plant vasculature, but also the physical properties of water that enable such transport. Although early researchers proposed the hypothesis of cohesion-tension of water as the likely mechanism for sap ascent, the exact mechanism of transport continues to be a hotly debated topic in the field of plant physiology. This debate continues to be enriched with several sophisticated studies on plants of various morphologies growing in diverse habitats. Although a wealth of evidence has upheld the cohesion-tension theory as being fundamenta...

  11. Parameterizing the soil - water - plant root system

    NARCIS (Netherlands)

    Feddes, R.A.; Raats, P.A.C.

    2004-01-01

    Root water uptake is described from the local scale, to the field scale and to the regional and global scales. The local macroscopic model can be incorporated in Soil-Plant-Atmosphere Continuum (SPAC) numerical models, like the SWAP, HYSWASOR, HYDRUS, ENVIRO-GRO and FUSSIM models. These SPAC models

  12. [Residence time distributions and spatial variation of N, P in the subsurface-flow constructed wetlands for purification of eutrophic aquaculture water].

    Science.gov (United States)

    Yang, Chang-Ming; Gu, Guo-Quan; Li, Jian-Hua; Deng, Huan-Huan

    2008-11-01

    Hydraulic residence time distributions (RTD) and spatial variations of N, P were studied in a small-scale horizontal subsurface-flow constructed wetlands (HSFCWs) planted with Cyperous alternifolius and Typha angustifolia respectively for purification of eutrophic aquaculture water. The results show that the residence time distribution curves of the investigated HSFCWs lie between plug-flow and completely mixed model with characteristic values (sigma2) of 0.3246 and 0.4108, respectively. Compared with Typha angustifolia, Cyperous alternifolius wetland shows fine flow pattern with characteristics of smoother RTD curve and weaker vertical mixed flow. Total nitrogen (TN) and ammonia nitrogen (NH4+-N) show stratified distributions in the two HSFCWs, especially in the front end of the wetland beds. TN in the lower layer is higher than that in the upper, while NH4+-N in the middle layer is the lowest in all the sampling layers. Total phosphorus (TP) and phosphate (PO4(3-)-P) increases with sampling depth. Differences in TP and PO4(3-)-P between the layers decrease gradually along distance. Cyperous alternifolius wetland shows better stratification distributions of N, P, as compared with Typha angustifolia, which is mainly contributed to the difference in flow patterns between the two HSFCWs. On average, concentrations of TN and TP in the rear end of the Cyperous alternifolius wetland are 19.3% and 12.5% lower, respectively, as compared to the Typha angustifolia wetland, suggesting that removal efficiencies of the Cyperous alternifolius wetland for purification of eutrophic aquaculture water is higher than those of the Typha angustifolia.

  13. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  14. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride Hybrid Material as an Adsorbent for Water Purification

    Directory of Open Access Journals (Sweden)

    Guido Panzarasa

    2018-01-01

    Full Text Available Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride (P(E-alt-MA. Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye for a wide pH range (from pH 2 to 12 and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA, the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  15. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride) Hybrid Material as an Adsorbent for Water Purification.

    Science.gov (United States)

    Panzarasa, Guido; Osypova, Alina; Consolati, Giovanni; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W M R

    2018-01-23

    Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene- alt -maleic anhydride) (P(E- alt -MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E- alt -MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  16. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    Science.gov (United States)

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  17. Simultaneous column chromatographic extraction and purification of abscisic acid in peanut plants for direct HPLC analysis.

    Science.gov (United States)

    Zhang, Ya-Wen; Fan, Wei-Wei; Li, Hui; Ni, He; Han, Han-Bing; Li, Hai-Hang

    2015-10-01

    Abscisic acid (ABA), a universal signaling molecule, plays important roles in regulating plant growth, development and stress responses. The low contents and complex components in plants make it difficult to be accurately analyzed. A novel one-step sample preparation method for ABA in plants was developed. Fresh peanut (Arachis hypogaea) plant materials were fixed by oven-drying, microwave drying, boiling or Carnoy's fixative, and loaded onto a mini-preparing column. After washed the impurities, ABA was eluted with a small amount of solvent. ABA in plant materials was completely extracted and purified in 2mL solution and directly analyzed by HPLC, with a 99.3% recovery rate. Multiple samples can be simultaneously prepared. Analyses using this method indicated that the endogenous ABA in oven-dried peanut leaves increased 20.2-fold from 1.01 to 20.37μgg(-1) dry weight within 12h and then decreased in 30% polyethylene glycol 6000 treated plants, and increased 3.34-fold from 0.85 to 2.84μgg(-1) dry weight in 5 days and then decreased in soil drought treated plants. The method combined the column chromatographic extraction and solid-phase separation technologies in one step and can completely extracted plant endogenous ABA in a purified and highly concentrated form for direct HPLC analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  19. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  20. Desalination plant aids Australian water shortage

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, A.W.

    2010-09-15

    This article described a reverse-osmosis desalination plant that was commissioned for Adelaide, South Australia, which operates under permanent water restrictions. The plant will supplement the freshwater supply, reduce the pressure on the existing rainwater catchment system, and allow water levels to regenerate. The company that won the bid on the project used 3-dimensional modelling to get accurate cost estimates and visualize the plant impact on the environment, the community, and a culturally important site. A detailed diffusion plan was devised to mitigate the effects of saline concentrate release. As reverse osmosis is so energy intensive that it can be difficult to justify a plant on sustainability grounds. Energy recovery devices were included in the process building and outfall shaft, and solar energy panels will be installed on the process building roof. The energy recovery devices use energy stored in the brine to increase the output of the high-pressure pumps that feed the reverse osmosis units. Energy recovery units in the outfall shaft will produce electricity and provide power to the grid for the process plant to use. The 3-dimensional model was credited as a key factor in winning the bid, and the many advantages of 3-dimensional modelling were described. 3 figs.

  1. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  2. Water chemistry practice at German BWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B. [Framatome ANP GmbH, Erlangen (Germany); Staudt, U. [VGB PowerTech e.V., Essen (Germany)

    2005-02-01

    As visual examinations carried out in 1994 detected cracks in a German boiling water reactor (BWR) plant due to intergranular stress corrosion cracking in core shroud components manufactured from Nb-stabilized CrNi steel 1.4550, safety-related assessments and in-service inspections were subsequently performed for the other six German BWRs. No cracks were found in the core shrouds of these plants. The second major event in the early 1990s was the detection of cracks at various German BWRs in piping systems made of Ti-stabilized CrNi steel 1.4541 caused by thermal sensitization in the heat-affected zone of welds. Comprehensive investigations resulted in a number of remedial measures (repair, replacement) implemented at piping in contact with reactor coolant of temperatures above 200 C. Thanks to the remedial measures and according to the analyses performed, cracking in the components in question due to the considered damage mechanisms need not be expected. German operators have therefore continued operating their BWR plants on normal water chemistry with an oxidizing environment. As a precaution, more stringent reactor coolant quality requirements have been specified and the limiting values of VGB Guideline R 401 J revised. This paper gives an overview of the trends in chemistry parameters at German BWR plants in the past 10 years. In addition, other relevant experience gained from the German BWR plants operating under normal water chemistry conditions is outlined: dose rates and collective doses, fuel performance, and results of periodic in-service inspections of major components of the reactor system. In the nearly 10 years of plant operation since implementation of the remedial measures, no cracks or other indications have been detected in any of the systems and components concerned. (orig.)

  3. SNO+ Scintillator Purification and Assay

    Science.gov (United States)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  4. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    Science.gov (United States)

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymeras...

  5. House-plant placement for indoor air purification and health benefits on asthmatics

    OpenAIRE

    Ho-Hyun Kim; Ji-Yeon Yang; Jae-Young Lee; Jung-Won Park; Kwang-Jin Kim; Byung-Seo Lim; Geon-Woo Lee; Si-Eun Lee; Dong-Chun Shin; Young-Wook Lim

    2014-01-01

    Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with ind...

  6. The Borexino purification system

    Science.gov (United States)

    Benziger, Jay

    2014-05-01

    Purification of 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system of combined distillation, water extraction, gas stripping and filtration. The purification system removed K, U and Th by distillation of the pseudocumene solvent and the PPO fluor. Noble gases, Rn, Kr and Ar were removed by gas stripping. Distillation was also employed to remove optical impurities and reduce the attenuation of scintillation light. The success of the purification system has facilitated the first time real time detection of low energy solar neutrinos.

  7. Monitoring cycle water chemistry in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Sopocy, D.M.; Eglar, D.T. (Sargent and Lundy, Chicago, IL (United States)); Jonas, O. (Jonas, Inc., Wilmington, DE (United States)); Rice, J.K. (Rice (James K.), Chartered (United States)); Stauffer, C.C.; Allmon, W.E. (Babcock and Wilcox Co., Alliance, OH (United States))

    1991-10-01

    EPRI report CS-4629, published in 1986, contains operating cycle chemistry guidelines to assist utilities in reducing water and steam contamination and resulting corrosion, scaling, and deposition. These guidelines were based on consensus opinion utilizing information then available and were not validated through actual plant testing. The objectives of this project are: to monitor the major parameters of cycle chemistry in a range of fossil-fired plants; to compare the monitored parameters with the interim guidelines. The project team designed and constructed state-of-the-art instrumentation and data acquisition systems to measure and record continuously the chemical parameters specified in the interim consensus guidelines (ICG). The team then installed and operated these systems at four utility power plants. Nine international organizations conducted parallel monitoring efforts on 29 generating units. An industrial fossil plant group of 14 utilities and boiler and turbine manufacturers reviewed the monitoring results from each of the plants as did the participating international organizations. 137 figs., 43 tabs.

  8. Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant.

    Science.gov (United States)

    Nanninga, H J; Gottschal, J C

    1987-04-01

    Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-beta-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h.

  9. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant

    Energy Technology Data Exchange (ETDEWEB)

    Nanninga, H.J.; Gottschal, J.C.

    1987-04-01

    Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-..beta..-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h.

  10. A phosphorylethanolamine-functionalized super-hydrophilic 3D graphene-based foam filter for water purification.

    Science.gov (United States)

    Chen, Yiying; Song, Xinhong; Zhao, Tingting; Xiao, Yujuan; Wang, Yiru; Chen, Xi

    2018-02-05

    A phosphorylethanolamine-functionalized graphene foam (PNGF) has been proposed as an active filtration material for the capture and removal of heavy metal ions in water. Benefiting from its abundant hydrophilic portion of oxygen, nitrogen and phosphorus groups, the PNGF is super-hydrophilic. The selected heavy metal ions, Pb(II) and Cd(II), could be rapidly and efficiently absorbed within 10min using the PNGF through a filtration model, which is obviously less time compared with the several hours or even longer time when employing the traditional shaking or stirring model. In addition, the used PNGF filters can be easily reused after a simple, low-cost detachment using HCl to remove the heavy metals, providing a new approach for water purification. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    Science.gov (United States)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements

  12. Efficient ASK-assisted system for expression and purification of plant F-box proteins.

    Science.gov (United States)

    Li, Haiou; Yao, Ruifeng; Ma, Sui; Hu, Shuai; Li, Suhua; Wang, Yupei; Yan, Chun; Xie, Daoxin; Yan, Jianbin

    2017-09-05

    Ubiquitin-mediated protein degradation plays an essential role in plant growth and development as well as responses to environmental and endogenous signals. F-box protein is one of the key components of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which recruit specific substrate proteins for subsequent ubiquitination and 26S proteasome-mediated degradation to regulate developmental processes and signaling networks. However, it is not easy to obtain purified F-box proteins with high activity due to their unstable protein structures. Here, we found that Arabidopsis SKP-like proteins (ASKs) can significantly improve soluble expression of F-box proteins and maintain their bioactivity. We established an efficient ASK-assisted method to express and purify plant F-box proteins. The method meets a broad range of criteria required for the biochemical analysis or protein crystallization of plant F-box proteins. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status.

    Science.gov (United States)

    Romero-Aranda, Mercedes R; Jurado, Oliva; Cuartero, Jesús

    2006-07-01

    In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects.

  14. The Use of Water Plants for Storm Water Runoff Treatment

    Directory of Open Access Journals (Sweden)

    Lina Varneckaitė

    2011-04-01

    Full Text Available The popularity of using water plants for storm water runoff treatment has been largely due to the fact that pond and wetland based systems offer the advantages of providing a relatively passive, natural, low-maintenance and operationally simple treatment solution while enhancing habitat and aesthetic values at the same time. While ponds are generally effective at removing coarse suspended sediments, they are less effective at removing finer particulates and dissolved contaminants. To provide enhanced treatment, a wetland can be placed downstream of a pond.Article in Lithuanian

  15. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties

    OpenAIRE

    Fabian Borghetti; Elisa Coutinho de Lima; Lucas de Carvalho Ramos Silva

    2013-01-01

    Most studies conducted to test the allelopathic activity of plant parts have made use of water as solvent. However, the presence of polar, water-soluble substances, such as proteins and carbohydrates, tends to hamper the purifi cation of active compounds. In this study, we present a simple purifi cation procedure that separates the active fraction of the extract from the undesirable substances, thus facilitating the search for active molecules through standard chromatographic meth...

  16. House-plant placement for indoor air purification and health benefits on asthmatics

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Kim

    2014-10-01

    Full Text Available Objectives Some plants were placed in indoor locations frequented by asthmatics in order to evaluate the quality of indoor air and examine the health benefits to asthmatics. Methods The present study classified the participants into two groups: households of continuation and households of withdrawal by a quasi-experimental design. The households of continuation spent the two observation terms with indoor plants, whereas the households of withdrawal passed the former observation terms with indoor plants and went through the latter observation term without any indoor plants. Results The household of continuation showed a continual decrease in the indoor concentrations of volatile organic compounds (VOCs during the entire observation period, but the household of withdrawal performed an increase in the indoor concentrations of VOCs, except formaldehyde and toluene during the latter observation term after the decrease during the former observation term. Peak expiratory flow rate (PEFR increased in the households of continuation with the value of 13.9 L/min in the morning and 20.6 L/ min in the evening, but decreased in the households of withdrawal with the value of -24.7 L/min in the morning and -30.2 L/min in the evening in the first experimental season. All of the households exhibited a decrease in the value of PEFR in the second experimental season. Conclusions Limitations to the generalizability of findings regarding the presence of plants indoors can be seen as a more general expression of such a benefit of human-environment relations.

  17. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water.

    Science.gov (United States)

    Wang, Wen-Huai; Wang, Yi; Li, Zhi; Wei, Cun-Zhi; Zhao, Jing-Chan; Sun, Lu-Qin

    2018-05-01

    A floating bed (FB) system vegetated with calamus, iris, lythrum, and Hydrocotyle vulgaris, and a strengthened FB (SFB) system with zeolite and sponge iron as fillers were simultaneously applied to purify urban landscape water in different zones. The urban landscape water, an artificial lake of approximately 326m 2 , was supplied with reclaimed water during a six-month experiment. Results indicated that the concentrations of nitrogen (N) and phosphorus (P) in the SFB zone (SFBZ) were significantly lower than those in the control zone (CZ) and the FB zone (FBZ) after six months of operation. The average removal efficiencies (AREs) in the SFBZ, FBZ and CZ were 89.98%, 77.39% and 56.37%, respectively, for ammonia nitrogen (NH 4 + -N); 92.49%, 79.55% and 47.85%, respectively, for phosphate (PO 4 3- -P). Meanwhile, the average concentration of Chlorophyll a and the algae density in SFBZ during the experiment were 12.54μg/L and 1.31×10 4 cells/mL, which were lower, obviously, than those in the FBZ and CZ. Moreover, the contribution rates analysis of nutrient removal exhibited that the plant absorption in the removal of N and P occupied 27.85% and 26.36%, whereas the filler adsorption occupied 7.93% and 11.93%, respectively, in the SFB. Thus, the water quality of the artificial lake was improved greatly by the SFB which hybridized fillers and FB together. Finally, it was found that the AREs of NH 4 + -N and PO 4 3- -P in the SFBZ could reach 73.93% and 84.56%, approximately 1.39 and 1.41 times that of the FBZ during the winter. Therefore, the application of an SFB can keep a stable water quality in urban landscape water and avoid the lower removal rate of an FB at low-temperature. In summary, the SFB could effectively improve the water quality of urban landscape water supplied with reclaimed water even in winter. Copyright © 2017. Published by Elsevier B.V.

  18. Surface-Modified Cobalt Ferrite Nanoparticles for Rapid Capture, Detection, and Removal of Pathogens: a Potential Material for Water Purification.

    Science.gov (United States)

    Bohara, Raghvendra A; Throat, Nanasaheb D; Mulla, Nayeem A; Pawar, Shivaji H

    2017-06-01

    Enteric infections resulting from the consumption of contaminated drinking water, inadequate supply of water for personal hygiene, and poor sanitation take a heavy toll worldwide, and developing countries are the major sufferers. Consumption of microbiologically contaminated water leads to diseases such as amoebiasis, cholera, shigellosis, typhoid, and viral infections leading to gastroenteritis and hepatitis B. The present investigation deals with the development of effective method to capture and eliminate microbial contamination of water and improve the quality of water and thus decreasing the contaminated waterborne infections. Over the last decade, numerous biomedical applications have emerged for magnetic nanoparticles (MNPs) specifically iron oxide nanoparticles. For the first time, we have explored functionalized cobalt ferrite nanoparticles (NPs) for capture and detection of pathogens. The captured bacterial were separated by using simple magnet. To begin with, the prepared NPs were confirmed for biocompatibility study and further used for their ability to detect the bacteria in solution. For this, standard bacterial concentrations were prepared and used to confirm the ability of these particles to capture and detect the bacteria. The effect of particle concentration, time, and pH has been studied, and the respective results have been discussed. It is observed that the presence of amine group on the surface of NPs shows nonspecific affinity and capability to capture Escherichia coli and Staphylococcus aureus. The possible underlying mechanism is discussed in the present manuscript. Based upon this, the present material can be considered for large-scale bacteria capture in water purification application.

  19. Screening and purification of catechins from underutilized tea plant parts and their bioactivity studies.

    Science.gov (United States)

    Rana, Ajay; Sharma, Eshita; Rawat, Kiran; Sharma, Ranjana; Verma, Sarika; Padwad, Yogendra; Gulati, Ashu

    2016-11-01

    Comparative investigation of major phytoconstituents was performed from various parts of tea plant viz. apical bud, subtending 1st-5th leaf, stem, coarse leaves, flowers, fruits and roots. From the results of comparative RP-HPLC-DAD analysis it was found that underutilized tea parts especially coarse leaves, flowers and fruits contains abundant amount of phenolics (17.5%) and catechins (4-5%). From these underutilized tea plant parts the catechins were extracted and purified and then screened for their anticancer, immunomodulatory effect and antimicrobial activity against food borne pathogens. The results showed that tea fruit extract exhibited higher toxicity against oral cancer cells and also promotes proliferation of mice splenocytes. The results of antimicrobial studies revealed the inhibitory effect of these extracts against both gram positive and gram negative bacteria. These investigations clearly demonstrated that the underutilized tea plant parts could act as economical and sustainable bioresource of functionally active constituents which further lead to the development of new cost-effective nutraceuticals and other formulations.

  20. Monitoring cycle water chemistry in fossil plants

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Sopocy, D.M.; Eglar, D.T. (Sargent and Lundy, Chicago, IL (United States)); Jonas, O. (Jonas, Inc., Wilmington, DE (United States)); Rice, J.K. (Rice (James K.), Chartered (United States)); Stauffer, C.C.; Allmon, W.E. (Babcock and Wilcox Co., Alliance, OH (United States))

    1991-10-01

    In June 1986, EPRI published the Interim Consensus Guidelines on Fossil Plant Cycle Chemistry.'' Previously published Volume 1 of the final report presents information obtained during a field monitoring program, using state-of-the-art monitoring and data acquisition systems, at four utility units representing different types of design, operation, metallurgy, and chemical treatment. A separate report, Volume 2, will be published giving the results of a parallel monitoring effort conducted by nine international organizations representing 29 generating units of various types. The present Volume 3 presents the conclusions and recommendations of the water chemistry monitoring project at four fossil-fired stations. The three volumes comprising this final report for this project will furnish the basis for subsequent modification and reissue of guidelines on fossil plant cycle chemistry. (VC)

  1. Optimized Reaction Conditions for Removal of Cellular Organic Matter of Microcystis aeruginosa During the Destabilization and Aggregation Process Using Ferric Sulfate in Water Purification

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Polášek, Pavel; Pivokonská, Lenka; Tomášková, Hana

    2009-01-01

    Roč. 81, č. 5 (2009), s. 514-522 ISSN 1061-4303 R&D Projects: GA ČR GA103/07/0295 Institutional research plan: CEZ:AV0Z20600510 Keywords : Microcystis aeruginosa * cellular organic matter * destabilization * aggregation * optimized reaction conditions * water purification Subject RIV: BK - Fluid Dynamics Impact factor: 0.965, year: 2009

  2. Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus leaf extracts against the mosquito vectors.

    Science.gov (United States)

    Arjunan, Nareshkumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Prasannakumar, Kanagarajan; Thangamani, Sundaram; Barnard, Donald R

    2012-04-01

    Ethanolic extracts of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus were tested for their toxicity effect on the third-instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The leaves of C. dactylon, A. vera, H. indicus and C. amboinicus were collected from natural habitats (forests) in Western Ghats, Tamil Nadu, India. A total of 250 g of fresh, mature leaves were rinsed with distilled water and dried in shade. The dried leaves were put in Soxhlet apparatus and extract prepared using 100% ethanol for 72 h at 30-40°C. Dried residues were obtained from 100 g of extract evaporated to dryness in rotary vacuum evaporator. Larvicidal properties of ethanolic leaf extracts showed that the extracts are effective as mosquito control agents. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The median lethal concentration (LC(50)) values observed for the larvicidal activities are 0.44%, 0.51%, 0.59% and 0.68% for extracts of C. dactylon, A. vera, H. indicus and C. amboinicus, respectively. The observed mortality were statistically significant at P < 0.05 level. C. dactylon showed the highest mortality rate against the three species of mosquito larvae in laboratory and field. The selected plants were shown to exhibit water purification properties. Water quality parameters such as turbidity, pH and water clarity were analyzed in the water samples (pre-treatment and post-treatment of plant extracts) taken from the different breeding sites of mosquitoes. Water colour, turbidity and pH were reduced significantly after treatment with C. dactylon (13 HU, 31.5 mg/l and 6.9), H. indicus (13.8 HU, 33 mg/l and 7.1), A. vera (16 HU, 33.8 mg/l and 7.4) and C. amboinicus (21 HU, 35 mg/l and 7.5) extracts. The study proved that the extracts of C. dactylon, A. vera, H. indicus and C. amboinicus have both mosquitocidal and water sedimentation properties.

  3. [Environmental Effects of Algae Bloom Cluster: Impact on the Floating Plant Water Hyacinth Photosynthesis].

    Science.gov (United States)

    Bao, Xian-ming; Gu, Dong-xiang; Wu, Ting-ting; Shi, Zu-liang; Liu, Guo-feng; Han Shi-qun; Zhou, Shi-qun; Zhou, Qing

    2015-06-01

    It is an efficient and effective ecological restoration method by using the adaptability, large biomass of aquatic plants to purify the polluted water at present. However, there is a lack of systematic research on the impact on the physiological ecology of aquatic plants and its environmental effects of algae blooms cluster in summer. The aim of this paper is to reveal the mechanism of macrophytes demise in a shallow ecosystem by studying the influence on photosynthesis of water hyacinth caused by the cynaobacterial blooms gathered, and also to provide the theoretical basis for full effects of purification function of macrophytes to reduce the negative effects on the aquatic plants after algae blooms gathered during the higher temperature (not lower 25 degrees C) through simulating experiments. Results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed a lack of oxygen (DO water after the algae cell died and the NH4+ -N concentration was 102 times higher than that of the control group root zone. And the macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate were 0.6 times, 0.55 times of the control group, and they reduced to 3.96 micromol x (m2 x s)(-1), 1.38 mmol x (m2 x s)(-1), respectively. At the end of the experiment, they were 22.0 micromol x (m2 x s)(-1) and 7.61 mmol x (m2 x s)(-1) for the control group. Results also showed the algae bloom together had the irreversible damage to the aquatic plants. So in the practice of ecological restoration, it should avoid the harm to the plant after the algae bloom cells gathered and decomposed so as to play the purification function of the plant in the ecological rehabilitation project.

  4. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  5. Urban Water-Quality Management. Purchasing Aquatic Plants

    OpenAIRE

    French, Sue (Sue C.); Fox, Laurie; Andruczyk, Mike; Gilland, Traci; Swanson, Lynette

    2009-01-01

    Aquatic plants are essential for a healthy and environmentally balanced water garden. Whether you are installing a new water feature or renovating an existing one, proper plant selection is critical. The following steps will help you select and purchase aquatic plants.

  6. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  7. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  8. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  9. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification.

    Science.gov (United States)

    Romanos, G Em; Athanasekou, C P; Katsaros, F K; Kanellopoulos, N K; Dionysiou, D D; Likodimos, V; Falaras, P

    2012-04-15

    A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO(2) photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO(2) nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO(2) deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  11. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  12. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  13. Diversity and dynamics of microbial communities at each step of treatment plant for potable water generation.

    Science.gov (United States)

    Lin, Wenfang; Yu, Zhisheng; Zhang, Hongxun; Thompson, Ian P

    2014-04-01

    The dynamics of bacterial and eukaryotic community associated with each step of a water purification plant in China was investigated using 454 pyrosequencing and qPCR based approaches. Analysis of pyrosequencing revealed that a high degree diversity of bacterial and eukaryotic communities is present in the drinking water treatment process before sand filtration. In addition, the microbial compositions of the biofilm in the sand filters and those of the water of the putatively clear tanks were distinct, suggesting that sand filtration and chlorination treatments played primary roles in removing exposed microbial communities. Potential pathogens including Acinetobacter, Clostridium, Legionella, and Mycobacterium, co-occurred with protozoa such as Rhizopoda (Hartmannellidae), and fungi such as Penicillium and Aspergillus. Furthermore, this study supported the ideas based on molecular level that biofilm communities were different from those in corresponding water samples, and that the concentrations of Mycobacterium spp., Legionella spp., and Naegleria spp. in the water samples declined with each step of the water treatment process by qPCR. Overall, this study provides the first detailed evaluation of bacterial and eukaryotic diversity at each step of an individual potable water treatment process located in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  15. Water Purification, Distribution and Sewage Disposal. Appropriate Technologies for Development. Reprint R-29.

    Science.gov (United States)

    1979

    This document, designed to serve as a training manual for technical instructors and as a field resource reference for Peace Corps volunteers, consists of nine units. Unit topics focus on: (1) water supply sources; (2) water treatment; (3) planning water distribution systems; (4) characteristics of an adequate system; (5) construction techniques;…

  16. Design and Commissioning of a Community Scale Solar Powered Membrane-Based Water Purification System in Haiti

    Directory of Open Access Journals (Sweden)

    Shavin Pinto

    2016-03-01

    Full Text Available This paper presents the design and commissioning of a solar powered water purification system at the Ryan Epps Home for Children (REHC in Michaud, Haiti. This systemsupplies clean drinking water to the 200 children who live and go to school at REHC and also tothe community in the form of a micro-business. This micro-business is the mechanism for incomegeneration for sustainable system operation. The purifier uses a three stage filtration system witha disc-type sediment filter, a 0.1 micron ultrafiltration membrane, and an ultraviolet light fordisinfection. The backwash cycle extends the life of the ultrafiltration membrane to 4 – 7 yearsbefore a new filter is required. Simplicity in operation was an important design considerationbecause it facilitates local operator training, and understanding. To further ensure completeunderstanding of operation, a pictorial quick-start manual was developed so that operators onlyneed to follow the diagrams laid out on the manual. The design folder with CAD drawings,schematics, datasheets, and troubleshooting guide are left with the local operators. Testingbefore shipping and after installation to ensure proper operation upon installation and on-sitewater quality testing ensures it will promote improved community health.

  17. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    National Research Council Canada - National Science Library

    Anca FARKAS; Brînduşa BOCOS; Stefan TIGAN; Corina MURESAN; Romeo CHIRA

    2009-01-01

    .... If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water...

  18. Improvised purification methods for obtaining individual drinking water supply under war and extreme shortage conditions.

    Science.gov (United States)

    Kozlicic, A; Hadzic, A; Bevanda, H

    1994-01-01

    Supplying an adequate amount of drinking water to a population is a complex problem that becomes an extremely difficult task in war conditions. In this paper, several simple methods for obtaining individual supplies of drinking water by filtration of atmospheric water with common household items are reported. Samples of atmospheric water (rain and snow) were collected, filtered, and analyzed for bacteriological and chemical content. The ability of commonly available household materials (newspaper, filter paper, gauze, cotton, and white cotton cloth) to filter water from the environmental sources was compared. According to chemical and biological analysis, the best results were obtained by filtering melted snow from the ground through white cotton cloth. Atmospheric water collected during war or in extreme shortage conditions can be purified with simple improvised filtering techniques and, if chlorinated, used as an emergency potable water source.

  19. Preliminary Studies of New Water Removal Element in Purification Applications of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Ruijun Chen

    2014-01-01

    Full Text Available To effectively and efficiently remove water contamination dispersed in petrodiesel fuels, a new water removal element with both coalescence and separation features is studied in this paper. The unique droplet coalescence and separation mechanism occurring in the new water removal element is proposed. The conceptual design of this filter element is presented and the basic features of FCP filtration systems are briefly introduced. A laboratory test stand and fuel analysis procedure are described. The results from preliminary water removal tests with number 2 petrodiesel fuel demonstrate the filtration performance of the new water removal element. For example, within one single fuel flow pass through FCP filtration system equipped with the new water removal element and running at 2 GPM flow rate, the water content in 80°F, number 2 petrodiesel fuel stream can be reduced from up to 40,000 ppm upstream to 64.8 ppm or less downstream.

  20. Potential Study of Water Extraction from Selected Plants

    Directory of Open Access Journals (Sweden)

    Musa S.

    2017-01-01

    Full Text Available Water is absorbed by the roots of a plant and transported subsequently as a liquid to all parts of the plant before being released into the atmosphere as transpiration. In this study, seven(7selected plant species collected from urban, rural and forested areas were studied and characterized. The water was collected using transparent plastic bag that being tied to the tree branches. Then, the vapouris water trapped inside the plastic bag and through the condensation process, it become water droplets. Water quality parameters such as temperature, pH value, DO, turbidity, colour, magnesium, calcium, nitrate and chloride were analyzed. The analysis was compared to drinking water quality standard set by the Ministry of Health Malaysia. Based on the results, it shows that banana leaf has a higher rate of water extraction compared to others. Thus, the plant can be categorised as a helpful guide for emergency use of water or as an alternative source to survival.

  1. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  2. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  3. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  4. Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H.

    1973-01-01

    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated.

  5. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  6. Investigating the Bacterial Inactivation Potential of Purified Okra (Hibiscus esculentus Seed Proteins in Water Purification

    Directory of Open Access Journals (Sweden)

    Alfred N. Jones

    2017-02-01

    Full Text Available The ability of purified okra protein (POP as coagulant and as disinfectant material in comparison with aluminium sulphate (AS in water treatment was assessed. A laboratory jar test experiments and Colilert-18/Quanti-Tray method of bacterial analysis were conducted using POP as coagulant in treating river water. The results show an excellent dual performance function of POP against the conventional coagulant, AS in drinking water treatment. It was observed that a marked inactivation of approximately 100% of faecal and E-coli count in raw water was achieved with POP and zero regrowth of bacteria after 72-hour post treatment. However, there was regrowth in total coliform count as a result of the presence of other microbes other than E-coli and faecal coliform in the system. In all cases AS showed a reduced performance against the two indicator organisms achieving only 93% with remarkable regrowth of E-coli and faecal coliform after prolonged storage time in the clarified water. Turbidity removal was also noted to be approximately similar, 92% across all coagulants tested. Therefore, the use of POP in water treatment could improve access to clean water in developing countries and could help in reducing the import of water treatment chemicals.

  7. Hybridized reactive iron-containing nano-materials for water purification

    DEFF Research Database (Denmark)

    Mines, Paul D.

    Groundwater is an important source for drinking water in all corners of the globe, and in places like Denmark, it is the primary source for drinking water. Climate change and population growth will only lead to further dependence on groundwater as the supply for drinking water. However......, the expanding population and industrialization of human civilization also leads to environmental consequences affecting groundwater sources. Storm-water and agricultural runoff, industrial spillage and dumping, acid mine drainage, and leakage from landfills are a few prime examples of routes of contamination...... for pollutants to enter groundwater systems. In order to make these contaminated water sources viable for human consumption, the use of reactive iron (i.e. Fe0 or zero-valent iron), and in particular nanoscale zero-valent iron (nZVI), is being employed to reductively degrade and/or adsorb many...

  8. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  9. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  10. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... production of antioxidants in cells exposed to heat stress. EFFECTS OF REGULATING HYDROPONIC WATER. TEMPERATURE ON NUTRIENT UPTAKE AND. ACCUMULATION IN PLANT TISSUES. Plant nutrients have a great potential for increasing yield and are capable of promoting plant growth ( ...

  11. An Update on Modifications to Water Treatment Plant Model

    Science.gov (United States)

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  12. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Hem Raj, E-mail: hempant@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Kim, Han Joo [Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-01-15

    Highlights: • A single mat having varieties of performance for water treatment is simply introduced. • Cost effective Ag-doped fly ash/PU nanofibers are fabricated in one-step. • Solvent reduction of AgNO{sub 3} could produce Ag-loaded spider-web nets. • Size of Ag NPs on fiber surface can be controlled by controlling stirring time. • Fabrication of nanocomposite using pollutant material to control other pollutents. -- Abstract: A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways.

  13. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  14. A nuclear magnetic resonance study of plant-water relationships

    NARCIS (Netherlands)

    Reinders, J.E.A.

    1987-01-01

    Water is one of the most important constituents of a plant. It is the medium in which many biological reactions take place and nutrients are transported throughout the plant in aqueous solutions. Because it serves as a hydrogen donor In photosynthesis water can be considered as one of the

  15. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  16. Fungal Contaminants in Drinking Water Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance

    Science.gov (United States)

    Novak Babič, Monika; Gunde-Cimerman, Nina; Vargha, Márta; Tischner, Zsófia; Magyar, Donát; Veríssimo, Cristina; Sabino, Raquel; Viegas, Carla; Meyer, Wieland; Brandão, João

    2017-01-01

    Microbiological drinking water safety is traditionally monitored mainly by bacterial parameters that indicate faecal contamination. These parameters correlate with gastro-intestinal illness, despite the fact that viral agents, resulting from faecal contamination, are usually the cause. This leaves behind microbes that can cause illness other than gastro-intestinal and several emerging pathogens, disregarding non-endemic microbial contaminants and those with recent pathogenic activity reported. This white paper focuses on one group of contaminants known to cause allergies, opportunistic infections and intoxications: Fungi. It presents a review on their occurrence, ecology and physiology. Additionally, factors contributing to their presence in water distribution systems, as well as their effect on water quality are discussed. Presence of opportunistic and pathogenic fungi in drinking water can pose a health risk to consumers due to daily contact with water, via several exposure points, such as drinking and showering. The clinical relevance and influence on human health of the most common fungal contaminants in drinking water is discussed. Our goal with this paper is to place fungal contaminants on the roadmap of evidence based and emerging threats for drinking water quality safety regulations.

  17. Modelling of water potential and water uptake rate of tomato plants in the greenhouse: preliminary results.

    NARCIS (Netherlands)

    Bruggink, G.T.; Schouwink, H.E.; Gieling, Th.H.

    1988-01-01

    A dynamic model is presented which predicts water potential and water uptake rate of greenhouse tomato plants using transpiration rate as input. The model assumes that water uptake is the resultant of water potential and hydraulic resistance, and that water potential is linearly related to water

  18. ZnO-PLLA nanofiber nanocomposite for continuous flow mode purification of water from Cr(VI).

    Science.gov (United States)

    Burks, T; Akthar, F; Saleemi, M; Avila, M; Kiros, Y

    2015-01-01

    Nanomaterials of ZnO-PLLA nanofibers have been used for the adsorption of Cr(VI) as a prime step for the purification of water. The fabrication and application of the flexible ZnO-PLLA nanofiber nanocomposite as functional materials in this well-developed architecture have been achieved by growing ZnO nanorod arrays by chemical bath deposition on synthesized electrospun poly-L-lactide nanofibers. The nanocomposite material has been tested for the removal and regeneration of Cr(IV) in aqueous solution under a "continuous flow mode" by studying the effects of pH, contact time, and desorption steps. The adsorption of Cr(VI) species in solution was greatly dependent upon pH. SEM micrographs confirmed the successful fabrication of the ZnO-PLLA nanofiber nanocomposite. The adsorption and desorption of Cr(VI) species were more likely due to the electrostatic interaction between ZnO and Cr(VI) ions as a function of pH. The adsorption and desorption experiments utilizing the ZnO-PLLA nanofiber nanocomposite have appeared to be an effective nanocomposite in the removal and regeneration of Cr(VI) species.

  19. ZnO-PLLA Nanofiber Nanocomposite for Continuous Flow Mode Purification of Water from Cr(VI

    Directory of Open Access Journals (Sweden)

    T. Burks

    2015-01-01

    Full Text Available Nanomaterials of ZnO-PLLA nanofibers have been used for the adsorption of Cr(VI as a prime step for the purification of water. The fabrication and application of the flexible ZnO-PLLA nanofiber nanocomposite as functional materials in this well-developed architecture have been achieved by growing ZnO nanorod arrays by chemical bath deposition on synthesized electrospun poly-L-lactide nanofibers. The nanocomposite material has been tested for the removal and regeneration of Cr(IV in aqueous solution under a “continuous flow mode” by studying the effects of pH, contact time, and desorption steps. The adsorption of Cr(VI species in solution was greatly dependent upon pH. SEM micrographs confirmed the successful fabrication of the ZnO-PLLA nanofiber nanocomposite. The adsorption and desorption of Cr(VI species were more likely due to the electrostatic interaction between ZnO and Cr(VI ions as a function of pH. The adsorption and desorption experiments utilizing the ZnO-PLLA nanofiber nanocomposite have appeared to be an effective nanocomposite in the removal and regeneration of Cr(VI species.

  20. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification

    Directory of Open Access Journals (Sweden)

    Somnath Ghosh

    2011-01-01

    Full Text Available Antibacterial efficacy of silver nanoparticles (Ag NPs deposited alternatively layer by layer (LBL on chitosan polymer in the form of a thin film over a quartz plate and stainless steel strip has been studied. An eight-bilayer chitosan/silver (Cs/Ag8 hybrid was prepared having a known concentration of silver. Techniques such as UV-visible spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES, and atomic force microscopy (AFM were carried out to understand and elucidate the physical nature of the film. Gram-negative bacteria, Escherichia coli (E. coli, were used as a test sample in saline solution for antibacterial studies. The growth inhibition at different intervals of contact time and, more importantly, the antibacterial properties of the hybrid film on repeated cycling in saline solution have been demonstrated. AFM studies are carried out for the first time on the microbe to know the morphological changes affected by the hybrid film. The hybrid films on aging (3 months are found to be as bioactive as before. Cytotoxicity experiments indicated good biocompatibility. The hybrid can be a promising bioactive material for the prevention of biofilms specific to E. coli and in purification of water for safe drinking.

  1. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  2. Removal of cationic pollutants from water by xanthated corn cob: optimization, kinetics, thermodynamics, and prediction of purification process.

    Science.gov (United States)

    Kostić, Miloš; Đorđević, Miloš; Mitrović, Jelena; Velinov, Nena; Bojić, Danijela; Antonijević, Milan; Bojić, Aleksandar

    2017-07-01

    The removal of Cr(III) ions and methylene blue (MB) from aqueous solutions by xanthated corn cob (xCC) in batch conditions was investigated. The sorption capacity of xCC strongly depended of the pH, and increase when the pH rises. The kinetics was well fitted by pseudo-second-order and Chrastil's model. Sorption of Cr(III) ions and MB on xCC was rapid during the first 20 min of contact time and, thereafter, the biosorption rate decrease gradually until reaching equilibrium. The maximum sorption capacity of 17.13 and 83.89 mg g-1 for Cr(III) ions and MB, respectively, was obtained at 40 °C, pH 5, and sorbent dose 4 g dm-3 for removal of Cr(III) ions and 1 g dm-3 for removal of MB. The prediction of purification process was successfully carried out, and the verification of theoretically calculated amounts of sorbent was confirmed by using packed-bed column laboratory system with recirculation of the aqueous phase. The wastewater from chrome plating industry was successfully purified, i.e., after 40 min concentration of Cr(III) ions was decreased lower than 0.1 mg dm-3. Also, removal of MB from the river water was successfully carried out and after 40 min, removal efficiency was about 94%.

  3. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  4. Research of efficiency of water purification-exchange resin from iron compounds using modified filter media

    OpenAIRE

    Gomel, Nikolai; Tverdokhlib, Mariia

    2016-01-01

    Recently, the modified media have become widely used in the processes of iron removal from water. These media are based on the natural granular material with a catalytically-active surface layer, which promotes a more efficient oxidation of iron ions. However, their application raises some problems associated with restoring their oxidative capacity, reliability and duration of use.The paper presents the results of removal of iron ions from water by catalytic oxidation. The method of modifying...

  5. Optimization of water treatment methods for the purification of peat extraction derived runoff: Evaluation of chemical treatment response to variations in incoming water quality using a 2k factorial test design

    Science.gov (United States)

    Heiderscheidt, Elisangela; Ronkanen, Anna-Kaisa; Klöve, Björn

    2013-04-01

    The sustainable use of peatland areas requires measures to minimize and when possible eradicate the identified environmental impacts. The drainage of peatlands and other peat extraction, agriculture and forestry activities are known to increase the leaching of pollutant substances resulting in the eutrophication and siltation of receiving water bodies, causing water quality deterioration. Due to the geochemistry characteristics of peat soils the quality of peatland derived runoff water is known to oscillate with location and also with variations in runoff and peak discharge occurrences. Affordable, simple and reliable purification methods that can purify waters rich in particulates, nutrients and dissolved organic carbon while capable of coping with incoming water quality variations are therefore required. Chemical treatment is considered one of the best available technologies for the purification of peat extraction runoff water in Finland; however, until recently little research had been applied on the development of this treatment method for the purification of non-point source pollution. Chemical purification, using metal salts as coagulant agents, is currently applied in several treatment facilities in Finnish peat extraction sites. Nevertheless, variations in runoff water quality and the lack of development of field process parameters has led to the application of high chemical dosages, significant and undesirable fluctuations in purification efficiency and high metal concentration in the discharging waters. This work aims to develop and optimize the chemical purification method by using high level scientific methods to evaluate the response of the purification process to variations in water quality which are typical of peatland derived runoff. The evaluation of how the purification process responds to these variations is a critical step which will enable the development of preventive measures and optimization of relevant process parameters and thus reduce the

  6. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    Science.gov (United States)

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis And Design Of A Water Purification System For The West African Area Of Operation

    Science.gov (United States)

    2016-12-01

    2011), the “point- of-use water filtration technologies are cloth, fiber filters , membrane filters , porous ceramic filters , carbon filters , and...59  3.  Pump Systems...............................................................................60  4.  Pre- Filter ...62  6.  Post- Filter Subsystem ..................................................................64  7.  Tank Subsystem

  9. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    DEFF Research Database (Denmark)

    Homaeigohar, Shahin; Zillohu, Ahnaf; Abdelaziz, Ramzy

    2016-01-01

    In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES) for removal of methylene blue (MB) dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption...

  10. Improving the efficiency of water purification from dissolved gases at TPP

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.; Shagieva, G. K.

    2017-01-01

    The method for increasing the efficiency of thermal deaerators and calciners of a TPP is considered; it consists of the use of a turbulent mass transfer device with random small packing. Before entering the packed bed in water, air (decarbonization) or water vapor (deaeration) is supplied. Chaotic nozzle creates intense turbulent interaction mode of air (vapor) with water and splitting it into small bubbles; thus the specific surface area of the contact of phases significantly increases, and high efficiency of mass transfer (extraction of dissolved gases) is ensured. A turbulent mass transfer device is a circular channel with connections for connecting of the source water to a pipeline. Inzhekhim chaotic nozzle is used with large free volume (95%) and the specific surface area of 150-300 m2/m3. The nozzle is made of a thin metal strip that may have a rough surface and is retained in the channel by means of two grids. For the calculation of turbulent mixer, mathematical model of the flow structure is presented, which is built with the use of a one-parameter diffusion model and a semiempirical reverse mixing ratio. Accounting of interphase transfer of dissolved gases is carried out via volume source of weight. The equation to determine the weight source and calculation of its parameters is presented. In the particular case, transition to the cell model is made and an expression for calculating the profile of concentrations of dissolved gas is obtained along the channel with a nozzle. An example of calculating the efficiency of turbulent mixer upon removing dissolved carbon dioxide from water at a TPP is shown. Recommendations on the use of the considered technical device are given.

  11. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  12. Organisms in rock bed contact-purification channel for improvement of eutrophic coastal water; Kaisui joka no rekikan sesshoku suironai no fuchaku teisei seibutsuso

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M. [Shimizu Corp., Tokyo (Japan); Kadokura, N. [Kumagai Gumi Co. Ltd., Tokyo (Japan); Suda, Y. [Shimonoseki University of Fisheries, Yamaguchi (Japan); Tanaka, Y. [Toyo Construction Co. Ltd., Tokyo (Japan); Hosokawa, Y. [Port and Harbor Research Institute, Kanagawa (Japan)

    1996-08-10

    In order to identify living organism phases in a water purification channel for eutrophic coastal water, investigations were carried out on fouling and benthic organisms by using an experimental channel installed along a canal in the innermost part of Tokyo Bay. Phytoplanktons in influent are such algae as Skeletonema costatum, Navicula and Nitzschia which are often observed in coastal areas. Rock bed benthic organisms were Carchesium, Vorticella and Zoothamnium predominant in that order. The most predominant species in periphytons was Skeletonema costatum, an alga. In nine months after the water was first flown into the channel, seventeen kinds of large-size fouling and benthic animals were found living in the channel. Mollusca and Annelida contribute to purifying water and reducing water bottom mud, but reduce inter-rock spaces as individuals grow in size and number of individuals increases, causing clogging in the channel. When a rock bed contact-purification facility is operated in a water area, both of fouling and benthic animals living in that area appear in the channel. Species appeared in the present experimental channel were found similar to combination species appeared in the pier No. 13 and the artificial tideland off the Kasai coast. 41 refs., 3 figs., 3 tabs.

  13. Physical and chemical quality, biodiversity, and thermodynamic prediction of adhesion of bacterial isolates from a water purification system: a case study

    Directory of Open Access Journals (Sweden)

    Roberta Barbosa Teodoro Alves

    2017-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the quality of water purification system and identify the bacteria this system, predict bacterial adherence according to the hydrophobicity of these microorganisms and of the polypropylene distribution loop for purified water. The assessment of drinking water that supplies the purification system allowed good-quality physical, chemical, and microbiological specifications. The physicochemical specifications of the distributed purified water were approved, but the heterotrophic bacteria count was higher than allowed (>2 log CFU mL-1.The sanitation of the storage tank with chlorine decreased the number of bacteria adhered to the surface (4.34 cycles log. By sequencing of the 16SrDNA genes, six species of bacteria were identified. The contact angle was determined and polypropylene surface and all bacteria were considered to be hydrophilic, and adhesion was thermodynamically unfavorable. This case study showed the importance of monitoring the water quality in the purified water systems and the importance of sanitization with chemical agents. The count of heterotrophic bacteria on the polypropylene surface was consistent with the predicted thermodynamics results because the number of adhered cells reached approximate values of 5 log CFU cm-2.

  14. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification

    Science.gov (United States)

    Lee, Byeongho; Lee, Sangil; Lee, Minwoo; Jeong, Dae Hong; Baek, Youngbin; Yoon, Jeyong; Kim, Yong Hyup

    2015-04-01

    We present carbon nanotube (CNT)-bonded graphene hybrid aerogels that are prepared by growing CNTs on a graphene aerogel surface with nickel catalyst. The presence of bonded CNTs in the graphene aerogel results in vastly improved mechanical and electrical properties. A significant increase in specific surface area is also realized. The presence of the CNTs transforms the hybrid aerogels into a mesoporous material. The viscoelasticity of the hybrid aerogels is found to be invariant with respect to temperature over a range of between -150 °C and 450 °C. These characteristics along with the improved properties make the hybrid aerogels an entirely different class of material with applications in the fields of biotechnology and electrochemistry. The mesoporous nature of the material along with its high specific surface area also makes the hybrid aerogel attractive for application in water treatment. Both anionic and cationic dyes can be effectively removed from water by the hybrid aerogel. A number of organics and oils can be selectively separated from water by the hybrid aerogel. The hybrid aerogel is easy to handle and separate from water due to its magnetic nature, and can readily be recycled and reused.We present carbon nanotube (CNT)-bonded graphene hybrid aerogels that are prepared by growing CNTs on a graphene aerogel surface with nickel catalyst. The presence of bonded CNTs in the graphene aerogel results in vastly improved mechanical and electrical properties. A significant increase in specific surface area is also realized. The presence of the CNTs transforms the hybrid aerogels into a mesoporous material. The viscoelasticity of the hybrid aerogels is found to be invariant with respect to temperature over a range of between -150 °C and 450 °C. These characteristics along with the improved properties make the hybrid aerogels an entirely different class of material with applications in the fields of biotechnology and electrochemistry. The mesoporous nature

  15. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... source of energy. Future effort will be focus on improving the efficiency of energy used in the waste water [3]. Aim. The aim of this project is to bring into existence a Small Scale Waste Water. Treatment Plant that can convert a waste water with high Chemical Oxygen Demand (COD) and high Biological ...

  16. Purification of waters and elimination of organochloric insecticides by means of active coal

    OpenAIRE

    DRAGAN MARINOVIĆ; MARINA STOJANOVIĆ; DANILO POPOVIĆ

    2010-01-01

    Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI): a-hexachlorocyclohexane (a-HCH), γ-hexachlorocyclohexane (lindane), heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT) were investigated. OCI are highly toxic substance...

  17. The effect of cellular organic matter produced by cyanobacteria Microcystis aeruginosa on water purification

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Pivokonská, Lenka; Bäumeltová, Jitka; Bubáková, Petra

    2009-01-01

    Roč. 57, č. 2 (2009), s. 121-129 ISSN 0042-790X R&D Projects: GA ČR GA103/07/0295 Institutional research plan: CEZ:AV0Z20600510 Keywords : AOM (Algal Organic Matter) * COM (Cellular Organic Matter) * Destabilisation * Aggregation * Reaction conditions * Water treatment Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009 http://versita.metapress.com/content/808770041t311071/fulltext.pdf

  18. Hamiltonian purification

    Energy Technology Data Exchange (ETDEWEB)

    Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)

    2015-12-15

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.

  19. Preparation and characterization of glass hollow fiber membrane for water purification applications.

    Science.gov (United States)

    Makhtar, Siti Nurfatin Nadhirah Mohd; Rahman, Mukhlis A; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana

    2017-07-01

    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min -1 flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m -2  h -1  bar -1 . The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.

  20. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    Science.gov (United States)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  1. An extracellular antifungal chitinase from Lecanicillium lecanii: purification, properties, and application in biocontrol against plant pathogenic fungi

    OpenAIRE

    NGUYEN, Huu Quan; Quyen, Dinh Thi; Nguyen, Sy Le Thanh; Vu, Hanh

    2015-01-01

    An extracellular antifungal chitinase from L. lecanii strain 43H was purified by ammonium sulfate precipitation and DEAE-Sephadex A-50 ion exchange chromatography; it showed a molecular mass of approximately 33 kDa with a specific activity of 167.5 U/mg protein and purification factor of 2.5. Optimum temperature and pH were observed at 40 °C and pH 6.0, respectively. This enzyme was stable at up to 40 °C and at pH 5.0-6.0. The kinetic constants Km and Vmax determined for the chitinase with co...

  2. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification.

    Science.gov (United States)

    Ntim, Susana Addo; Mitra, Somenath

    2012-06-01

    The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO(2)) is presented. The MWCNT-ZrO(2) with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L(-1). The absorption capacity of the composite were 2000 μg g(-1) and 5000 μg g(-1) for As(III) and As(V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As(V) on MWCNT-ZrO(2) was faster than that of As(III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO(2) was that the adsorption capacity was not a function of pH. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A calibrated UV-LED based light source for water purification and characterisation of photocatalysis.

    Science.gov (United States)

    Sergejevs, A; Clarke, C T; Allsopp, D W E; Marugan, J; Jaroenworaluck, A; Singhapong, W; Manpetch, P; Timmers, R; Casado, C; Bowen, C R

    2017-11-08

    Photocatalysis has a potential to become a cost effective industrial process for water cleaning. One of the most studied photocatalysts is titanium dioxide which, as a wide band gap semiconductor, requires ultraviolet (UV) light for its photoactivation. This is at the wavelengths where the efficiency of present-day light emitting diodes (LEDs) decreases rapidly, which presents a challenge in the use of UV-LEDs for commercially viable photocatalysis. There is also a need for accurate photocatalysis measurement of remediation rates of water-borne contaminants for determining optimum exposure doses in industrial applications. In response to these challenges, this paper describes a UV-LED based photocatalytic test reactor that provides a calibrated adjustable light source and pre-defined test conditions to remove as many sources of uncertainty in photocatalytic analysis as possible and thereby improve data reliability. The test reactor provides a selectable intensity of up to 1.9 kW m -2 at the photocatalyst surface. The comparability of the results is achieved through the use of pre-calibration and control electronics that minimize the largest sources of uncertainty; most notably variations in the intensity and directionality of the UV light emission of LEDs and in LED device heating.

  4. Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications

    Directory of Open Access Journals (Sweden)

    Daniel Woldemariam

    2017-03-01

    Full Text Available Exergy analyses are essential tools for the performance evaluation of water desalination and other separation systems, including those featuring membrane distillation (MD. One of the challenges in the commercialization of MD technologies is its substantial heat demand, especially for large scale applications. Identifying such heat flows in the system plays a crucial role in pinpointing the heat loss and thermal integration potential by the help of exergy analysis. This study presents an exergetic evaluation of air-gap membrane distillation (AGMD systems at a laboratory and pilot scale. A series of experiments were conducted to obtain thermodynamic data for the water streams included in the calculations. Exergy efficiency and destruction for two different types of flat-plate AGMD were analyzed for a range of feed and coolant temperatures. The bench scale AGMD system incorporating condensation plate with more favorable heat conductivity contributed to improved performance parameters including permeate flux, specific heat demand, and exergy efficiency. For both types of AGMD systems, the contributions of the major components involved in exergy destruction were identified. The result suggested that the MD modules caused the highest fraction of destructions followed by re-concentrating tanks.

  5. Purification of trona ores by conditioning with an oil-in-water emulsion

    Science.gov (United States)

    Miller, J. D.; Wang, Xuming; Li, Minhua

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  6. A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification

    Directory of Open Access Journals (Sweden)

    Mohammed Kadhom

    2016-12-01

    Full Text Available Thin film nanocomposite (TFN membranes containing MCM-41 silica nanoparticles (NPs were synthesized by the interfacial polymerization (IP process. An m-phenylenediamine (MPD aqueous solution and an organic phase with trimesoyl chloride (TMC dissolved in isooctane were used in the IP reaction, occurring on a nanoporous polysulfone (PSU support layer. Isooctane was introduced as the organic solvent for TMC in this work due to its intermediate boiling point. MCM-41 silica NPs were loaded in MPD and TMC solutions in separate experiments, in a concentration range from 0 to 0.04 wt %, and the membrane performance was assessed and compared based on salt rejection and water flux. The prepared membranes were characterized via scanning electron microscopy (SEM, transmission electron microscopy (TEM, contact angle measurement, and attenuated total reflection Fourier transform infrared (ATR FT-IR analysis. The results show that adding MCM-41 silica NPs into an MPD solution yields slightly improved and more stable results than adding them to a TMC solution. With 0.02% MCM-41 silica NPs in the MPD solution, the water flux was increased from 44.0 to 64.1 L/m2·h, while the rejection virtually remained the same at 95% (2000 ppm NaCl saline solution, 25 °C, 2068 kPa (300 psi.

  7. Optimization of a dual capture element magnetic separator for the purification of high velocity water flow

    Science.gov (United States)

    Belounis, Abdallah; Mehasni, Rabia; Ouili, Mehdi; Feliachi, Mouloud; El-Hadi Latreche, Mohamed

    2016-02-01

    In this paper a magnetic separator based on the use of a cascade arrangement of two identical capture elements has been optimized and verified. Such a separator is intended for the separation of fine particles of iron from flowing water at high velocity. The optimization has concerned the search for the excitation current and the distance between the capture elements that permit the extraction of the particles from a water flow in a circular channel at an average velocity ufav = 1.05 m/s. For such optimization we have minimized the objective function that is the distance between the capture position of a particle initially situated at a specific position and the central point of the last capture element of the arrangement. To perform the minimization, we have applied the Tabu search method. To validate the obtained results experimental verification based on the control of the evolution of the captured particle buildup and the quantifying of the separated volume of particles was achieved. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  8. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  9. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  10. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    Science.gov (United States)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  11. Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification

    Science.gov (United States)

    Li, Wenyu; Wu, Haoyi

    2017-10-01

    Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.

  12. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification.

    Science.gov (United States)

    Gao, Hongcai; Sun, Yimin; Zhou, Jiajing; Xu, Rong; Duan, Hongwei

    2013-01-23

    We present a one-step approach to polydopamine-modified graphene hydrogel, with dopamine serving as both reductant and surface functionalization agents. The synthetic method is based on the spontaneous polymerization of dopamine and the self-assembly of graphene nanosheets into porous hydrogel structures. Benefiting from the abundant functional groups of polydopamine and the high specific surface areas of graphene hydrogel with three-dimensional interconnected pores, the prepared material exhibits high adsorption capacities toward a wide spectrum of contaminants, including heavy metals, synthetic dyes, and aromatic pollutants. Importantly, the free-standing graphene hydrogel can be easily removed from water after adsorption process, and can be regenerated by altering the pH values of the solution for adsorbed heavy metals or using low-cost alcohols for synthetic dyes and aromatic molecules.

  13. Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification

    Directory of Open Access Journals (Sweden)

    B. E. CONWAY

    2001-12-01

    Full Text Available Removal or modification of noxious organic impurities in waste-waters is a major challenge for environmental science. Pollutants such as phenols and their derivatives, as well as PCBs, have attracted special attention. In recent years, the possibilities of effecting direct electrocatalytic oxidations at high-area electrodes such as supported Pt or RuO2 have been investigated. However, in a number of cases, especially with phenolic impurities, application of anodic oxidation fails to lead to continuous Faradaic oxidation currents owing to the electrode surfaces becoming blocked with polymeric oxidation products leading to auto-inhibition (“passivation” of the desired electrode process. Examples of such effects with phenols and related compounds are examined comparatively in the present paper by means of cyclic volatammetry and chronoamperometry.

  14. Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification

    Science.gov (United States)

    Sawana, Radha; Somasundar, Yogesh; Iyer, Venkatesh Shankar; Baruwati, Babita

    2017-06-01

    Ceria (CeO2) coated powdered activated carbon was synthesized by a single step chemical process and demonstrated to be a highly efficient adsorbent for the removal of both As(III) and As(V) from water without any pre-oxidation process. The formation of CeO2 on the surface of powdered activated carbon was confirmed by X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The percentage of Ce in the adsorbent was confirmed to be 3.5 % by ICP-OES. The maximum removal capacity for As(III) and As(V) was found to be 10.3 and 12.2 mg/g, respectively. These values are comparable to most of the commercially available adsorbents. 80 % of the removal process was completed within 15 min of contact time in a batch process. More than 95 % removal of both As(III) and As(V) was achieved within an hour. The efficiency of removal was not affected by change in pH (5-9), salinity, hardness, organic (1-4 ppm of humic acid) and inorganic anions (sulphate, nitrate, chloride, bicarbonate and fluoride) excluding phosphate. Presence of 100 ppm phosphate reduced the removal significantly from 90 to 18 %. The equilibrium adsorption pattern of both As(III) and As(V) fitted well with the Freundlich model with R 2 values 0.99 and 0.97, respectively. The material shows reusability greater than three times in a batch process (arsenic concentration reduced below 10 ppb from 330 ppb) and a life of at least 100 L in a column study with 80 g material when tested under natural hard water (TDS 1000 ppm, pH 7.8, hardness 600 ppm as CaCO3) spiked with 330 ppb of arsenic.

  15. Use of reclaimed water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort

  16. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  17. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  18. Crow Municipal Rural & Industrial Pilot Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  19. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  20. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  1. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency.

    Science.gov (United States)

    Rajendran, Ranjiitkumar; Soora, Maya; Dananjeyan, Balachandar; Ratering, Stefan; Krishnamurthy, Kumar; Benckiser, Gero

    2012-12-15

    Water shortage necessitated South Indian sago factory owners, extracting starch out of cassava tubers, to install biogas plants where a starch utilizing microbial community multiplies and reduces the biological oxygen demand (BOD) of the waste waters by presently about 30%. The purification efficiency of sago factory waste waters, rich in solid particles and having wide C/N ratios, around 250, through unstirred biogas plants needs to be improved. Our approach was to apply instead of animal slurry nitrate (NO3(-)) and nitrous oxide (N2O) as external N-sources anticipating a better N-distribution in the unstirred biogas plants. Estimated cell numbers, bacterial community changes, on the basis of 16S rRNA gene clone libraries and changing CO2-, CH4-, N2O releases due to the presence of nitrate or N2O suggest that acid tolerant Lactobacillus spp. dominate the biogas plant inflows (pH 3.5). They were very less or not found in the outflows (pH 7.3). Assumingly, the phyla Bacteroidetes (Prevotella spp.), Proteobacteria (Rhizobium spp., Defluvibacter sp.), Firmicutes (Megasphaera spp., Dialister spp., Clostridium spp.) and Synergistetes (Thermanaerovibrio spp.), not-detectable in the biogas plant inflows, replaced them. Anaerobes, about 400cellsml(-1) in the inflows, increased to about 10(6)cellsml(-1) in the outflows. The methane formation, as confirmed by the incubation experiments, suggests that methanogens must have been present among the anaerobes. In the biogas plant in- and outflows also about 300cellsml(-1) denitrifying bacteria and up to 10(4)cfu fungi were found. Despite the low number of denitrifying bacteria nitrate added to the biogas plant in- and outflows was widely consumed and added N2O decreased considerably. Thus, wide C/N ratios substrates like sago factory waste waters keep the N2O emissions low by using N2O either as electron acceptor or by incorporating it into the growing biomass what needs to be confirmed. The biogas plant inflow samples have

  2. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    SPAC), with particular emphasis on processes in the soil, has greatly enhanced understanding of the system, thereby enabling the formulation of a quantitative model relating the water supply from a layered soil profile to water demand; the ...

  3. Topographic, edaphic, and vegetative controls on plant-available water

    Science.gov (United States)

    Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p effects, we found that cover type, soil texture, and time were related to plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.

  4. Impacts of invasive alien plants on water quality, with particular ...

    African Journals Online (AJOL)

    We review the current state of knowledge of quantified impacts of invasive alien plants on water quality, with a focus on South Africa. In South Africa, over 200 introduced plant species are regarded as invasive. Many of these species are particularly prominent in riparian ecosystems and their spread results in native species ...

  5. Impacts of invasive alien plants on water quality, with particular ...

    African Journals Online (AJOL)

    2012-04-18

    Apr 18, 2012 ... Eutrophication leads to gradual changes in the plant and animal populations, the development of potentially toxic algal blooms and therefore a slow decline in water and habitat quality (Kalff,. 2002). The level of impact that litter from invasive alien plants has on nutrient cycles is determined by vegetative ...

  6. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP ...

    African Journals Online (AJOL)

    One of the most important environmental problems faced by the world today is waste handling and due to variation in waste water with respect to homes. The two main treatment used here are the aerobic and the anaerobic treatment process. The processes are brought to increase the efficiency of the plant. The plant has ...

  7. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    Science.gov (United States)

    Zhang, Yongrui; Zhang, Ruobing; Ma, Wenchang; Zhang, Xian; Wang, Liming; Guan, Zhicheng

    2013-03-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m3 h-1.

  8. Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    KAUST Repository

    Yu, Yanjie

    2012-05-01

    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.

  9. Up-conversion nanoparticles sensitized inverse opal photonic crystals enable efficient water purification under NIR irradiation

    Science.gov (United States)

    Zhang, Yuanyuan; Wang, Lili; Ma, Xiumei; Ren, Junfeng; Sun, Qinxing; Shi, Yongsheng; Li, Lin; Shi, Jinsheng

    2018-03-01

    A novel porous monolayer inverse opal (IO) structure was prepared by a simple sol-gel method combined with a self-assembly PS photonic crystal (PC) as template. By prolonging deposition time of PS spheres, three-dimensional multilayer TiO2 IOPC was also fabricated. Up-conversion nanoparticles (UCNPs) were selected to sensitize TiO2 IOPCs. Photocatalytic activity of as-prepared materials was investigated by disinfection of bacteria and organic pollutant degradation. Under NIR light irradiation, a large improvement in bacterial inactivation and photodegradation efficiency could be seen for NYF/TiO2 composites in comparison with other samples. As for monolayer NYF/TiO2, water disinfection of 100% inactivation of bacteria is realized within 11 h and kinetic constant of RhB degradation is 0.133 h-1, which is about 10 times higher than that of pure TiO2 IOPCs. Reasons of enhanced photocatalytic activity were systematically investigated and a possible mechanism for NIR-driven photocatalysis was reasonably proposed.

  10. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2016-10-01

    Full Text Available In this study, we devised a novel nanofibrous adsorbent made of polyethersulfone (PES for removal of methylene blue (MB dye pollutant from water. The polymer shows a low isoelectric point thus at elevated pHs and, being nanofibrous, can offer a huge highly hydroxylated surface area for adsorption of cationic MB molecules. As an extra challenge, to augment the adsorbent’s properties in terms of adsorption capacity in neutral and acidic conditions and thermal stability, vanadium pentoxide (V2O5 nanoparticles were added to the nanofibers. Adsorption data were analyzed according to the Freundlich adsorption model. The thermodynamic parameters verified that only at basic pH is the adsorption spontaneous and in general the process is entropy-driven and endothermic. The kinetics of the adsorption process was evaluated by the pseudo-first- and pseudo-second-order models. The latter model exhibited the highest correlation with data. In sum, the adsorbent showed a promising potential for dye removal from industrial dyeing wastewater systems, especially when envisaging their alkaline and hot conditions.

  11. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  12. Power plant intakes performance in low flow water bodies

    Directory of Open Access Journals (Sweden)

    Yasser M. Shawky

    2015-04-01

    Full Text Available This research aims to study the hot water recirculation at the power plants intakes due to the discharge from the plant cooling system into a low flow receiving water body. To achieve this objective, a 3Dnumerical model was employed to study the effect of the main parameters in this phenomena such as the plant intake length (L, the distance between the plant intake and outfall (S, the water depth under the intake skimmer wall (h and the water depth just upstream the intake (D on the recirculation of hot water to the plant intake. Eight scenarios were tested and two mathematical formulas accounting for the effect of these parameters on the hot water concentration at the plant intake were deduced. Physical model tests were carried out to verify the accuracy of the two deduced formulas. The study results indicated that the measured thermal concentrations in the physical model tests coincide with those calculated by the two above-mentioned mathematical formulas.

  13. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... of plant biomass under both water regimes, most likely due to reduced mechanical impedance to root growth. No positive effects on plant growth were achieved by addition of WGB. Our results suggest that SGB has a great global potential to increase crop productivity on coarser soil types changing...

  14. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  15. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  16. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...... but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken...

  17. THMs assessment in Khuzestan rural water treatment plants

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadi

    2012-01-01

    Full Text Available Aims: The trihalomethanes (THMs concentration was investigated in some of rural water treatment plants in Khuzestan. Materials and Methods: Fifteen of the water treatment plants with the same drinking water source (Karoon river were selected for analysis of THMs to assess the levels and the relationship between THMs and total organic carbon (TOC, pH, temperature, chlorination dose, and free chlorine residue. Results: THMs ranged from 1.8 to 219 mg/l in winter and 1.7 to 98 in summer, where the level in some treatment plants is higher than the Maximum Concentration Level (MCL. The ratio of total THMs levels was significantly correlated with temperature, pH, chlorination dose, and free chlorine residue, but negative correlation with TOC. Conclusion: Epidemiological studies using total THMs levels should be considered in the analysis of water treatment plant′s results, and regulatory check of this parameter with drinking water guidelines.

  18. Combustion plants and the Water Framework Directive. Methodology for consequence assessment; Vaermeanlaeggningar och Vattendirektivet. Metodik foer konsekvensbedoemning

    Energy Technology Data Exchange (ETDEWEB)

    Rossander, Annelie; Andersson, Jonas; Axby, Fredrik; Schultz, Emma; Persson, Maarten; Svaerd, Sara [Carl Bro AB, Kristianstad (Sweden)

    2007-04-15

    from the Water Framework Directive. The method was created for and in cooperation with plant owners. The result is a model to analyze the stress on the recipient caused by the discharges from the plant. Within the project samples of water from the plants and the recipient have been taken out and analyzed. In the evaluation step of the project a comparison has also been made between results from the analyzes and values measured according to the ordinary control program of the plants. The current test procedures at the plants are considered as sufficient regarding metals, but should be extended with PAH analysis. Through an ecotoxicological risk assessment of the discharged water from a plant the plants real influence on the recipient can be mapped. Based on this risk assessment an estimation of the possible future water fees which the plant could be ordered to pay can also be made. The preparation of the Frame Water Directive is an ongoing process, which will continue until year 2015. The Frame Water Directive of today does not constitute any hindrance to the activities pursued at the examined plants. If the further development of the directive involves stricter discharge limits, most of the plants will manage this with their current production and water purification equipment, at least regarding their discharge of metals. When it comes to a possible PAH occurrence in the discharged water, it is uncertain what the ecotoxicological consequences are.

  19. Treatment plant design using natural products for the purification of surface waters in Burkina Faso

    OpenAIRE

    López Grimau, Víctor; Smith, Tarik; Amante García, Beatriz; Heras, Francisco

    2013-01-01

    La climatología semi-árida de Burkina Faso (África occidental) es propensa a variaciones estacionales extremas, encadenando largos periodos de sequía con fuertes lluvias concentradas entre los meses de mayo y octubre. Las deficiencias tanto en el suministro de agua como en su calidad, especialmente en zonas rurales, supone la principal causa de enfermedades causadas por parásitos intestinales, con particular incidencia en la población infantil. Este estudio está locali...

  20. Uptake of water from soils by plant roots

    NARCIS (Netherlands)

    Raats, P.A.C.

    2007-01-01

    Uptake of water by plant roots can be considered at two different Darcian scales, referred to as the mesoscopic and macroscopic scales. At the mesoscopic scale, uptake of water is represented by a flux at the soil¿root interface, while at the macroscopic scale it is represented by a sink term in the

  1. The role of plant cuticle in water loss protection

    OpenAIRE

    MACKOVÁ, Jana

    2010-01-01

    A central aim of this thesis was studying plant regulation of transpiration water loss. I focused first on changes in cuticular water permeability and second, on changes in cuticular chemical composition under simulated drought stress. Finally, the obtained findings were capitalized on in a case study of altitudinal distribution of congeneric treeline species.

  2. White root tips supply plants with oxygen, water and nutrients

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2016-01-01

    The main, most important function of roots belonging to horticultural crops is the uptake of water and nutrients. Healthy roots are essential for a healthy plant. After all, if the uptake of water and nutrients is not functioning properly, then other aspects also leave a lot to be desired

  3. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  4. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  5. SIMULATION OF SOME PARAMETERS OF PLANT WATER RELATION IN MAIZE

    Directory of Open Access Journals (Sweden)

    A ANDA

    2002-11-01

    Full Text Available Investigations on simulation of plant temperature and stomatal resistance in maize by using the microclimate simulation model of Goudriaan (1977 were carried out at Keszthely Agrometeorological Research Station, during the growing season of 2001. The size of plot was 0.5 ha, because of parallel investigations done on the elements of microclimate. To facilitate the validation of the model field observations were measured. Two watering levels, rainfed plots with natural rainfall only, and irrigated plant stand were applied in simulation study. We irrigated the plants by using the amounts of crop water stress index with +drop irrigation system. The limit value for watering was the CWSI >0,25. In summer of 2001 the weather was dry and hot. The lack of water was substituted by 170 mm irrigation water on 4 occasions. To validate the model the root mean square deviation (RMSD between a number of pairs of simulated and measured microclimate elements was applied. The estimation of plant temperature was very accurate, the error of simulation was below 0.5 degree for noon irrigated plots and 0.3 degree for irrigated ones. The accuracy in stomatal resistance simulation was weaker than that of plant temperature, the error was 5.9 % for nonirrigated, and 21 % for irrigated plots. The estimation of stomatal resistance for irrigated plants need further refinement, but this requires changes in the basic equations of the model.

  6. System configuration for advanced water management in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Queirazza, G.; Sigon, F.; Zagano, C. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Water ie required for power plant operation and electricity generation. The water demand is steadily increasing depending on the enrgy pro-capite demand, the available or innovative technologies for power generation and the need for emissions control. Water management is also required to comply with the regulatory trends and it agrees with the guidelines for the sustainable development, as recommended at the Rio conference (Agenda 21). In order to assess the design and the operating alternatives for the water system of power plants and the impact of innovative technologies, a simulation code has been developed. The ENEL proprietary WATERSOFT code is presented in this paper. Some significant results will be presented and discussed, within the frame of improving the water management and optimizing the overall performances of the actual water systems.

  7. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  8. Naegleria fowleri in cooling waters of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cerva, L.; Kasprzak, W.; Mazur, T.

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  9. Naegleria fowleri in cooling waters of power plants.

    Science.gov (United States)

    Cerva, L; Kasprzak, W; Mazur, T

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  10. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    tions for crop-ecotope specific upper and lower limits of available water; the identification of the harmful rootzone devel- opment effects of compacted layers in fine sandy soils caused by cultivation, and amelioration procedures to prevent these effects; and management strategies to combat excessive water losses by deep ...

  11. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  12. Importance of water quality in container plant production

    Science.gov (United States)

    John M. Ruter

    2013-01-01

    High substrate pH is a major problem for producers of container-grown plants and seedlings. The primary cause of high substrate pH is irrigation water with high alkalinity. Alkalinity is defined as the capacity of water to neutralize acids. Some alkalinity in irrigation water is beneficial as it serves as a buffer to large swings in pH levels, but high alkalinity in...

  13. USE of mine pool water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  14. Polonium purification

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.D.

    1996-09-01

    Three processes for the purification of {sup 210}Po from irradiated bismuth targets are described. Safety equipment includes shielded hotcells for the initial separation from other activation products, gloveboxes for handling the volatile and highly toxic materials, and provisions for ventilation. All chemical separations must be performed under vacuum or in inerted systems. Two of the processes require large amounts of electricity; the third requires vessels made from exotic materials.

  15. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    Directory of Open Access Journals (Sweden)

    Ahmad-Faris Seman-Kamarulzaman

    Full Text Available Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate

  16. Book of Abstracts of the XII Portuguese-Spanish Symposium on Plant Water Relations (2014)

    OpenAIRE

    Coelho, Renato R. P.; Vaz, Margarida M.

    2014-01-01

    Contents PLENARY CONFERENCES AND THEMATIC CONFERENCES Molecular Mechanisms of Plant Adaptation to Drought Water Relations in the Irrigation Scheduling of Olive Orchards Physiological Limits for Plant-Based Water Stress Indicators Water Use in Montado Ecosystems Hydrological, Engineering and Physiological Approaches to Water Conservation From Leaf to Whole Plant Water Use Efficiency: Solving the Gaps Efficient Use of Water Under Mediterranean Conditions: Agronomic Too...

  17. Wetlands: Water, Wildlife, Plants, and People.

    Science.gov (United States)

    Vandas, Steve

    1992-01-01

    Describes wetlands and explains their importance to man and ecology. Delineates the role of water in wetlands. Describes how wetlands are classified: estuarine, riverine, lacustrine, palustrine, and marine. Accompanying article is a large, color poster on wetlands. Describes an activity where metaphors are used to explore the functions of…

  18. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  19. Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status?

    Science.gov (United States)

    Sellin, Arne

    1999-02-01

    Variation in base water potential ( Ψb, a daily maximum level of plant water potential, which is presumed to correspond to the equilibrium between soil and plant water potentials) was examined in shoots of Picea abies and Vaccinium myrtillus with respect to soil (available water storage, water potential, temperature) and atmospheric (temperature, relative humidity, vapour pressure deficit) conditions. The available soil water storage (W tr) accounted for 77% of the dynamics of Ψb, while the influence of atmospheric factors became evident under high evaporative demand. Ψb was not always observable immediately before dawn, but on 30% of observation days, the recovery continued up to an hour or two after dawn. Full equilibrium between soil and plant water potentials in P. abies in northern conditions is rather improbable by dawn in summer-time, because of the shortness of the dark period and probable night-time transpiration in the case of high atmospheric vapour pressure deficit.

  20. Preparative isolation and purification of bergapten and imperatorin from the medicinal plant Cnidium monnieri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase.

    Science.gov (United States)

    Lia, Hua-Bin; Chen, Feng

    2004-12-17

    A high-speed counter-current chromatography (HSCCC) method was developed for the preparative separation and purification of bergapten and imperatorin from the Chinese medicinal plant Cnidium monnieri (L.) Cusson. The crude extract was obtained by extraction with ethanol from the dried fruits of Cnidium monnieri (L.) Cusson under sonication. Preparative HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-ethanol-water (5:5:5:5, v/v/v/v) was successfully performed by increasing the flow-rate of the mobile phase stepwise from 1.0 to 2.0 ml min(-1) after 180 min. The components purified and collected were analyzed by high-performance liquid chromatography. The method yielded 45.8 mg of bergapten at 96.5% purity and 118.3 mg of imperatorin at 98.2% purity from 500 mg of the crude extract in a single run. The recoveries of bergapten and imperatorin were 92.1 and 93.7%, respectively.

  1. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  2. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  3. An organic profile of a pressurised water reactor secondary plant

    Energy Technology Data Exchange (ETDEWEB)

    Eeden, Nestor van; Stwayi, Mandisibuntu; Gericke, Gerhard [Eskom Holdings SOC Ltd., Western Cape (South Africa). Koeberg Power Station

    2012-07-15

    Make-up water addition to the steam/water cycle at Koeberg Nuclear Power Station usually results in a corresponding increase of the chloride concentration in the steam generator blowdown system. During plant transients, when higher than normal make-up is required to the secondary plant, the concentration of chloride occasionally exceeds the limiting value for the station chemistry performance indicator. Irrespective of this, the demineralised water make-up supply tanks, which are routinely analysed for chloride, are within all recognised acceptable standards for secondary water make-up and therefore these tanks do not initially appear to be the source of chloride contamination. Water treatment at the plant relies essentially on ion exchange, which has been proven to be very effective in removing inorganic ionic species such as chloride. Organic compounds are less effectively removed by ion exchange and may pass through the treatment system, and these organics can reside undetected in the make-up water tanks. Historically, the elevated chloride concentration following high system make-up has been attributed to chlorinated organic compounds known as trihalomethanes being present in the make-up water tanks, but no rigorous study had been undertaken. As it has been assumed that the majority of chloride in the secondary system originates from the make-up water organic impurities, it was considered important to confirm this by compiling an organic profile of the secondary plant. The use of organic additives was also taken into account in the profile. This work has confirmed the contribution from trihalomethanes and has also found that other organochlorides contribute even more significantly to the overall chloride inventory of the secondary plant. (orig.)

  4. Integrated flue gas cleaning system for a CO{sub 2} purification process applicable in an oxyfuel power plant; Integration der Rauchgasreinigung in den CO{sub 2}-Aufbereitungsprozess eines Oxyfuel-Kraftwerks

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, Stephanie [Vattenfall Europe Generation AG, Cottbus (Germany); Yan, Jinying [Vattenfall Research and Development AB, Stockholm (Sweden); Kass, Helge [Vattenfall Power Consult GmbH, Vetschau (Germany); White, Vince; Wright, Andrew [Air Products PLC, Walton-on-Thames (United Kingdom)

    2013-04-01

    Since 2009 Vattenfall has been operating a 30 MWth research plant at the Schwarze Pumpe site in order to perform comprehensive investigations focussing on new power plant components as well as process related aspects like the oxyfuel technology. In addition, a further pilot plant was erected in 2010 by the international gas supplier Air Products for the investigation of an alternative CO{sub 2} purification process. Within a common research agreement, numerous tests have been performed focussing on the characterisation of the integrated flue gas cleaning process. (orig.)

  5. Macroscopic modeling of plant water uptake: soil and root resistances

    Science.gov (United States)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  6. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  7. AM-DMC-AMPS Multi-Functionalized Magnetic Nanoparticles for Efficient Purification of Complex Multiphase Water System.

    Science.gov (United States)

    Ge, Yuru; Li, Yushu; Zu, Baiyi; Zhou, Chaoyu; Dou, Xincun

    2016-12-01

    Complex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants. Excellent overall removal efficiencies for both cations, including K(+), Ca(2+), Na(+), and Mg(2+) of 80.68 %, and anions, namely Cl(-) and SO4 (2-), of 85.18 % along with oil of 97.4 % were shown. The high removal efficiencies are attributed to the effective binding of the functional groups from the selected monomers with cations, anions, and oil emulsions.

  8. AM-DMC-AMPS Multi-Functionalized Magnetic Nanoparticles for Efficient Purification of Complex Multiphase Water System

    Science.gov (United States)

    Ge, Yuru; Li, Yushu; Zu, Baiyi; Zhou, Chaoyu; Dou, Xincun

    2016-04-01

    Complex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants. Excellent overall removal efficiencies for both cations, including K+, Ca2+, Na+, and Mg2+ of 80.68 %, and anions, namely Cl- and SO4 2-, of 85.18 % along with oil of 97.4 % were shown. The high removal efficiencies are attributed to the effective binding of the functional groups from the selected monomers with cations, anions, and oil emulsions.

  9. Do rock fragments participate to plant water and mineral nutrition?

    Science.gov (United States)

    Korboulewsky, Nathalie; Tétégan, Marion; Besnault, Adeline; Cousin, Isabelle

    2010-05-01

    Rock fragments modify soil properties, and can be a potential reservoir of water. Besides, recent studies showed that this coarse soil fraction is chemically active, release nutrients, and could therefore be involved in biogeochemical nutrient cycles. However, these studies carried out on rock fragments, crushed pebbles or mineral particles do not answer the question whether the coarse soil fraction has significant nutritive functions. Only a couple of studies were conducted on plants, one on grass and the other on coniferous seedlings. This present work attempted to assess if pebbles may act as water and nutrient sources for poplar saplings, a deciduous species. Remoulded soils were set up in 5 L-pots with three percentages of pebbles: 0, 20, and 40% in volume. We used, as substrate either fine earth or sand (quartz), and as rock fragments either calcareous or inert pebbles (quartz). Additional modalities were settled with sand mixed with 20 and 40% pebbles enriched with nutrients. Both fine earth and calcareous pebbles were collected from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. After cleaning, all pebbles were mixed to reach a bulk density in pots of 1.1 g/cm3 for the fine earth and 1.5 g/cm3 for the sand. Ten replicates were settled per modality, and one cutting of Populus robusta was planted in each. The experiment was conducted under controlled conditions. All pots were saturated at the beginning of the experiment, then irrigated by capillarity and controlled to maintain a moderate water stress. Growth and evapotranspiration were followed regularly, while water stress status was measured by stomatal conductivity every day during two drying periods of 10 days. After three months, plants were collected, separated in below- and above-ground parts for biomass and cation analysis (Ca, Mg, K). Results showed that pebbles can participate to plant nutrition, but no reduction of water stress was observed

  10. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    Nielsen, Joan Maj; Dahi, Elian

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  11. Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense)

    National Research Council Canada - National Science Library

    Inamine, Saki; Onaga, Shoko; Ohnuma, Takayuki; Fukamizo, Tamo; Taira, Toki

    2015-01-01

    .... The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family...

  12. The radiochemistry of nuclear power plants with light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neeb, K.H.

    1997-12-31

    In this book, radioactivity and the chemical reactions of radionuclides within the different areas of a nucler power plant are discussed. The text concentrates on commercially operated light water reactors which currently represent the greatest fraction by far of the world`s nuclear power capacity. This book is not only intended for experts working in the various fields of radiochemistry in nuclear power plants. It also provides an overview of the topics dealt with for the operators of nuclear power plants, for people working in design and development and safety-related areas, as well as for those working in licensing and supervision. (orig.)

  13. Plant hydraulic traits govern forest water use and growth

    Science.gov (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  14. In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system.

    Science.gov (United States)

    Chang, Hui-qing; Yang, Xiao-e; Fang, Yun-ying; Pu, Pei-min; Li, Zheng-kui; Rengel, Zed

    2006-07-01

    This study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal. The aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons. Eichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment) and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system, the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, COD(Mn), and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 3 orders of

  15. In-situ nitrogen removal from the eutrophic water by microbial-plant integrated system*

    Science.gov (United States)

    Chang, Hui-qing; Yang, Xiao-e; Fang, Yun-ying; Pu, Pei-min; Li, Zheng-kui; Rengel, Zed

    2006-01-01

    Objective: This study was to assess the influence of interaction of combination of immobilized nitrogen cycling bacteria (INCB) with aquatic macrophytes on nitrogen removal from the eutrophic waterbody, and to get insight into different mechanisms involved in nitrogen removal. Methods: The aquatic macrophytes used include Eichhornia crassipes (summer-autumn floating macrophyte), Elodea nuttallii (winter-growing submerged macrophyte), and nitrogen cycling bacteria including ammonifying, nitrosating, nitrifying and denitrifying bacteria isolated from Taihu Lake. The immobilization carriers materials were made from hydrophilic monomers 2-hydroxyethyl acrylate (HEA) and hydrophobic 2-hydroxyethyl methylacrylate (HEMA). Two experiments were conducted to evaluate the roles of macrophytes combined with INCB on nitrogen removal from eutrophic water during different seasons. Results: Eichhornia crassipes and Elodea nuttallii had different potentials in purification of eutrophic water. Floating macrophyte+bacteria (INCB) performed best in improving water quality (during the first experiment) and decreased total nitrogen (TN) by 70.2%, nitrite and ammonium by 92.2% and 50.9%, respectively, during the experimental period, when water transparency increased from 0.5 m to 1.8 m. When INCB was inoculated into the floating macrophyte system, the populations of nitrosating, nitrifying, and denitrifying bacteria increased by 1 to 2 orders of magnitude compared to the un-inoculated treatments, but ammonifying bacteria showed no obvious difference between different treatments. Lower values of chlorophyll a, CODMn, and pH were found in the microbial-plant integrated system, as compared to the control. Highest reduction in N was noted during the treatment with submerged macrophyte+INCB, being 26.1% for TN, 85.2% for nitrite, and 85.2% for ammonium at the end of 2nd experiment. And in the treatment, the populations of ammonifying, nitrosating, nitrifying, and denitrifying bacteria

  16. Measurements and simulations of water transport in maize plants

    Science.gov (United States)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  17. Invasive alien plants and water resources in South Africa: current understanding, predictive ability and research challenges

    CSIR Research Space (South Africa)

    Gorgens, AHM

    2004-01-01

    Full Text Available Predictions that invasive alien Plants would use significant amounts of water were a major factor in the establishment of South Africa's Working for Water programme, which aims to protect water resources by clearing these plants. The predictions...

  18. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  19. Waste Water Treatment Plants and the Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Tychsen, Peter; Munk-Nielsen, Thomas

    2014-01-01

    power production. The energy-heavy processes for waste water transport and treatment could potentially provide a flexible operation with storage capabilities and be a valuable asset to a Smart Grid. In order to enable Waste Water Treatment Plants (WWTPs) as flexible prosumers in the future Smart Grid......, we must update their process control system to model based predictive control that monitors the changed flexible operation and plans ahead. The primary aim of a WWTP is to treat the incoming waste water as much as possible to ensure a sufficient effluent water quality and protect the environment...... of the recipient. The secondary aim is to treat the waste water using as little energy as possible. In the future waste water will be considered an energy resource, that contains valuable nutrients convertible to green biogas and in turn electricity and heat. In a Smart Grid consuming or producing energy...

  20. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  1. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants.

    Science.gov (United States)

    Li, Gaojie; Hu, Shiqi; Yang, Jingjing; Schultz, Elizabeth A; Clarke, Kurtis; Hou, Hongwei

    2017-08-01

    The semi-aquatic plant Water-Wisteria is suggested as a new model to study heterophylly due to its many advantages and typical leaf phenotypic plasticity in response to environmental factors and phytohormones. Water-Wisteria, Hygrophila difformis (Acanthaceae), is a fast growing semi-aquatic plant that exhibits a variety of leaf shapes, from simple leaves to highly branched compound leaves, depending on the environment. The phenomenon by which leaves change their morphology in response to environmental conditions is called heterophylly. In order to investigate the characteristics of heterophylly, we assessed the morphology and anatomy of Hygrophila difformis in different conditions. Subsequently, we verified that phytohormones and environmental factors can induce heterophylly and found that Hygrophila difformis is easily propagated vegetatively through either leaf cuttings or callus induction, and the callus can be easily transformed by Agrobacterium tumefaciens. These results suggested that Hygrophila difformis is a good model plant to study heterophylly in higher aquatic plants.

  2. Modelling total sewage water discharge to a regional treatment plant.

    NARCIS (Netherlands)

    Witter, J.V.; Stricker, H.

    1986-01-01

    In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in

  3. Growing under water - how plants cope with low CO2

    DEFF Research Database (Denmark)

    Pedersen, Ole; Hinke, Anne Bækbo; Konnerup, Dennis

    2017-01-01

    Aquatic plants are never short of water but instead they are challenged with low light and slow movement of oxygen (O₂) and carbon dioxide (CO₂). In the present paper, we focus on CO₂ limitation of underwater photosynthesis and the various strategies to overcome the limitation resulting from evol...

  4. Teaching about Water Relations in Plant Cells: An Uneasy Struggle

    Science.gov (United States)

    Malinska, Lilianna; Rybska, Eliza; Sobieszczuk-Nowicka, Ewa; Adamiec, Malgorzata

    2016-01-01

    University students often struggle to understand the role of water in plant cells. In particular, osmosis and plasmolysis appear to be challenging topics. This study attempted to identify student difficulties (including misconceptions) concerning osmosis and plasmolysis and examined to what extent the difficulties could be revised during a plant…

  5. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  6. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...

  7. Balancing Waste Water Treatment Plant Load Using Branch and Bound

    NARCIS (Netherlands)

    van Nooijen, R.R.P.; Kolechkina, A.G.

    2016-01-01

    The problem of smoothing dry weather inflow variations for
    a Waste Water Treatment Plant (WWTP) that receives sewage from
    multiple mixed sewer systems is presented, together with a first rough
    solution algorithm. A simplification followed by a naive translation into
    a zero-one linear

  8. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Directory of Open Access Journals (Sweden)

    Tomas Gómez Álvarez-Arenas

    2016-07-01

    Full Text Available Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70% corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively, These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  9. [Purification of eutrophic wastewater by Cyperus alternifolius, Coleus blumei and Jasminum sambac planted in a floating phytoremediation system].

    Science.gov (United States)

    Liu, Shizhe; Lin, Dongjiao; Tang, Shujun; Luo, Jian

    2004-07-01

    In a greenhouse study, Cyperus alternifolius, Coleus blumei and Jasminum sambac were cultured in a floating phytoremediation system with plantation cups inserted into a polyfoam plate that floated in the upper part of a tank filled with 100 L domestic wastewater. The contents of chemical oxygen demand (CODCr), total P (T-P), total N (T-N), soluble P(S-P), ammonia-nitrogen (NH4+ -N) and nitrate-nitrogen (NO3- -N) in the domestic wastewater were tested during the growth of these three plants. The results showed that Cyperus alternifolius and Coleus blumei could grow well in the floating phytoremediation system, their dry weight being 285.8% and 371.4% of the initial weight of planting, respectively, but Jasminum sambac could not grow well, being 125.0% of the initial weight of planting. The removal rate of TN by these 3 plants was 68.0%, 62.0% and 45.0%, and that of NO3- -N, CODCr and TP was 98.0%, 80.0% and 92.0%, 78.0%, 66.0% and 55.0%, and 90.6%, 90.5% and 88.0% respectively. Cyperus alternifolius and Coleus blumei had good effects on the removal of pollutants in the floating phytoremediation system.

  10. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  11. Plant aquaporins: multifunctional water and solute channels with expanding roles.

    Science.gov (United States)

    Tyerman, S. D.; Niemietz, C. M.; Bramley, H.

    2002-02-01

    There is strong evidence that aquaporins are central components in plant water relations. Plant species possess more aquaporin genes than species from other kingdoms. According to sequence similarities, four major groups have been identified, which can be further divided into subgroups that may correspond to localization and transport selectivity. They may be involved in compatible solute distribution, gas-transfer (CO2, NH3) as well as in micronutrient uptake (boric acid). Recent advances in determining the structure of some aquaporins gives further details on the mechanism of selectivity. Gating behaviour of aquaporins is poorly understood but evidence is mounting that phosphorylation, pH, pCa and osmotic gradients can affect water channel activity. Aquaporins are enriched in zones of fast cell division and expansion, or in areas where water flow or solute flux density would be expected to be high. This includes biotrophic interfaces between plants and parasites, between plants and symbiotic bacteria or fungi, and between germinating pollen and stigma. On a cellular level aquaporin clusters have been identified in some membranes. There is also a possibility that aquaporins in the endoplasmic reticulum may function in symplasmic transport if water can flow from cell to cell via the desmotubules in plasmodesmata. Functional characterization of aquaporins in the native membrane has raised doubt about the conclusiveness of expression patterns alone and need to be conducted in parallel. The challenge will be to elucidate gating on a molecular level and cellular level and to tie those findings into plant water relations on a macroscopic scale where various flow pathways need to be considered.

  12. Radiation safety issues in the water treatment plant - Indoor radon and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jantsikene, A.; Kiisk, M.; Suursoo, S.; Koch, R. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology, Department of Chemical Engineering (Estonia)

    2014-07-01

    In order to reduce the indicative dose from drinking water consumption in Viimsi parish, Estonia, a new water treatment plant was launched in 2012 serving about 15 000 consumers. The promising new technology for groundwater purification consists of air injector, oxidation tank, patented venturi-type centrifugal degassing separation unit GDT and two-stage filtration in open filter columns. In each of the five parallel lines, approximately 95 tons of catalytic (FMH and sand) and 45 tons of non-catalytic (zeolite) filter materials were used. These filter materials proved to be very effective adsorbents of incoming radium isotopes. As a result, the columns emit direct gamma radiation. Moreover, columns' exposure to indoor air makes them radon generators that affect all rooms in the building. During the study period of two years the filter materials were not replaced and their lifespan has not been estimated yet. In order to minimize radiation risks for the workers inside the water treatment plant, a complex study and a long-term monitoring is needed. For the measurements of {sup 226}Ra and {sup 228}Ra concentrations in water and in solid filter materials gamma-ray spectroscopy was used. According to the results, the annual input of {sup 226}Ra and {sup 228}Ra is 325 MBq and 420 MBq, respectively. The average incoming concentration of {sup 226}Ra and {sup 228}Ra isotopes is 0.5 Bq/L and 0.6 Bq/L, respectively, and the radium content in the output water is below the limit of detection (about 10-15 mBq/L). This means strong accumulation of radium isotopes in the filter materials, thus causing an increase of {sup 222}Rn concentrations in the outgoing treated water. External dose rates throughout the length of the filter columns were measured with the portable dosimeter to estimate the {sup 226}Ra and {sup 228}Ra depth distribution. The results showed that distribution of these radionuclides is uneven with the maximum of 0.5 μSv/h for the first stage and 3 μSv/h for

  13. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  14. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  15. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  16. Impacts of fresh and aged biochars on plant available water and water use efficiency

    Science.gov (United States)

    The ability of soils to hold sufficient plant available water (PAW) between rainfall events is critical to crop productivity. Most studies indicate that biochar amendments decrease soil bulk density and increase soil water retention. However, limited knowledge exists regarding biochars ability to in...

  17. Lead uptake of water plants in water stream at Kiteezi landfill site ...

    African Journals Online (AJOL)

    The purpose of this study was twofold: (i) to quantify the lead (Pb) uptake by two water plants reeds (Phragmites australis) and papyrus (Cyperus papyrus) in water stream at Kiteezi landfill site, Kampala (Uganda) and (ii) to compare the two species in Pb uptake downstream. As such, leachate samples were collected at the ...

  18. Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense).

    Science.gov (United States)

    Inamine, Saki; Onaga, Shoko; Ohnuma, Takayuki; Fukamizo, Tamo; Taira, Toki

    2015-01-01

    Chitinase-A (EaChiA), molecular mass 36 kDa, was purified from the vegetative stems of a horsetail (Equisetum arvense) using a series of column chromatography. The N-terminal amino acid sequence of EaChiA was similar to the lysin motif (LysM). A cDNA encoding EaChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1320 nucleotides and encoded an open reading frame of 361 amino acid residues. The deduced amino acid sequence indicated that EaChiA is composed of a N-terminal LysM domain and a C-terminal plant class IIIb chitinase catalytic domain, belonging to the glycoside hydrolase family 18, linked by proline-rich regions. EaChiA has strong chitin-binding activity, however, no antifungal activity. This is the first report of a chitinase from Equisetopsida, a class of fern plants, and the second report of a LysM-containing chitinase from a plant.

  19. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    Science.gov (United States)

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  20. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Ho-Hyun Lee

    2015-10-01

    Full Text Available Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  1. Pilot plant comparison study of two commercial nanofiltration membranes in a drinking water treatment plant

    OpenAIRE

    Ribera, Gemma; Llenas Argelaguet, Laia; Rovira, Miquel; Pablo Ribas, Joan de; Martínez Lladó, Xavier

    2012-01-01

    A wide range of commercial membranes were tested and compared at laboratory scale in order to select the most appropriate for improving the final water quality of a real drinking water treatment plant (DWTP). Most of the membranes tested showed a reduction of trihalomethanes formation potential (THMFP) higher than 90%. In this work, several NF membranes were tested at laboratory scale in order to evaluate the most suitable NF membrane to reduce THMFP. NF270 (Dow Chemical) and ESNA1LF2 (Hydran...

  2. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  3. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  4. Design of an integrated piggery system with recycled water, biomass production and water purification by vermiculture, macrophyte ponds and constructed wetlands.

    Science.gov (United States)

    Morand, Philippe; Robin, Paul; Pourcher, Anne-Marie; Oudart, Didier; Fievet, Sebastien; Luth, Daniel; Cluzeau, Daniel; Picot, Bernadette; Landrain, Brigitte

    2011-01-01

    Since 2001 the swine experimental station of Guernévez has studied biological treatment plants for nutrient recovery and water recycling, suited to the fresh liquid manure coming out of flushing systems. An integrated system with continuous recycling was set up in 2007, associated with a piggery of 30 pregnant sows. It includes a screen, a vermifilter, and macrophyte ponds alternating with constructed wetlands. The screen and the vermifilter had a lower removal efficiency than in previous studies on finishing pigs. A settling tank was then added between the vermifilter and the first lagoon to collect the worm casts. A second vermifilter was added to recover this particulate organic matter. A storage lagoon was added to compensate for evaporative losses and complete pollution abatement, with goldfish as a bioindicator of water quality. The removal efficiency of the whole system was over 90% for COD and nitrogen, over 70% for phosphorus and potassium, and more than 4 logarithmic units for pathogens (E. coli, enterococci, C perfringens). Plant production was about 20 T DM ha(-1) y(-1). Floating macrophytes (Azolla caroliniana, Eichhornia crassipes, Hydrocotyle vulgaris) were more concentrated in nutrients than helophytes (Phragmites australis, Glyceria aquatica,…). Azolla caroliniana was successfully added to feed finishing pigs.

  5. STUDY OF HIGH RATE SEDIMENTATION TANK IN WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    M.R SHA MANSOURI

    2001-06-01

    Full Text Available Introduction: Sedimentation is considered as an important process in removing turbidity produced in water and wastewater plants. Gravity sedimentation is usually the first method considered in water treatment system. However, required overflow rates (OFRs to remove turbidity in the conventional clarifiers are too low. Therefore, the shallow depth sedimentation concept was studied remove turbidity in order to increase OFRs of gravity setting equipment. Methods: Using a pilot with parallel plates with effect area 1.5 m2 and 1.5 m depth. The independent parameters such as OFRs, sludge concentration and turbidity were evaluated for turbidity removal. The pilot is located in Isfahan Water Treatment Plant. Results: The efficacy of pilot for turbidity 10-50 NTU is equal to 50 percent (P<0.01. The maximum removal efficiency at sludge concentration 270 ml/lit was obtained (P<0.01. A nonlinear relationship exists between removal efficiency (TR%, sludge concentration (Sc over flowrates (OFR and influent turbidity (Tu in pilot. Discussion: By using high rate sedimentation tank in water treatment plant, detection time reduced from 3 hours to 20-30 minute, turbidity removal increased up to 30 percent in compare with conventional sedimentation. Also, it has economic benefits and high efficiency.

  6. Scaling up the chemical treatment of spent oil-in-water emulsions from a non-ferrous metal-processing plant

    Directory of Open Access Journals (Sweden)

    Lazarević Vesna B.

    2013-01-01

    Full Text Available The treatment of spent oil-in-water emulsion (SOWE from a non-ferrous metal-processing plant by using aluminum sulfate and hydrated lime was studied to determine the purification efficiency, to optimize the operating conditions and to scale up the treatment process. The purification efficiency was estimated by comparing the compositions of the SOWE and the processed wastewater. The treatment efficiency does not depend on the type of mineral oil and filter aid. The optimum doses of aluminum sulfate and hydrated lime must be experimentally determined for each batch of SOWEs, but the results obtained at laboratory level are applicable at pilot level. The processed wastewater and the filter cake from the process can be safely disposed into public sewage systems and at municipal waste landfills, respectively. The purification efficiency was higher than 98% with respect to total suspended solids, chemical oxygen demand and oil and grease, and was comparable to the known treatment processes based on coagulation/flocculation followed by sedimentation.

  7. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  8. Planting stress in newly planted jack pine and white spruce. 1. Factors influencing water uptake.

    Science.gov (United States)

    Grossnickle, S C

    1988-03-01

    Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in

  9. A Single-Step Purification of Cauliflower Lysozyme and Its Dual Role Against Bacterial and Fungal Plant Pathogens.

    Science.gov (United States)

    Manikandan, Muthu; Balasubramaniam, R; Chun, Se-Chul

    2015-09-01

    A novel lysozyme from cauliflower was purified in a single step, for the first time, using Sephadex G100 column chromatography. The purified lysozyme exhibited a homogenized single band in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular mass was calculated to be 22.0 kDa. The purified lysozyme showed activity between 30 to 60 °C with 40 °C as the optimum temperature for its maximal activity. Although the purified lysozyme was functional at pH ranges between 3.0 and 9.0, the optimum pH for the enzyme activity was 8.0. By Michaelis-Menten equation, the threshold substrate concentration for the optimal enzyme activity was calculated to be 133.0 μg. The purified lysozyme showed extraordinary activity against plant pathogenic bacteria and fungi. At 10-μg concentrations, it inhibited the growth of plant pathogenic bacteria such as Pseudomonas syringae, Xanthomonas campestris, and Erwinia carotovora exhibiting 4.28, 5.90, and 3.88-fold inhibition, respectively. Further, it also completely inhibited the conidial germination of Archemonium obclavatum and, to a very large extent, other fungal species such as Fusarium solani (79.3 %), Leptosphaeria maculans (88.6 %), Botrytis cinera (73.3 %), Curvularia lunata (68 %), Rhizoctonia solani (79.6 %), and Alternaria alternata (83.6 %).

  10. Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua.

    Science.gov (United States)

    Denslow, Sheri A; Edwards, Jess; Horney, Jennifer; Peña, Rodolfo; Wurzelmann, Daniel; Morgan, Douglas

    2010-12-08

    The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region. A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance. There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36)]. Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America.

  11. Improvements to water purification and sanitation infrastructure may reduce the diarrheal burden in a marginalized and flood prone population in remote Nicaragua

    Directory of Open Access Journals (Sweden)

    Wurzelmann Daniel

    2010-12-01

    Full Text Available Abstract Background The isolated northern region of Nicaragua has one of the highest rates of diarrheal disease in Central America. Political and environmental hardships faced by inhabitants of this region are contributing factors to this health inequity. The aim of this study was to assess the relationship between water and latrine infrastructure and the prevalence of diarrhea in this region. Methods A population-based, cross-sectional survey of women of reproductive age was conducted in the Sahsa region of northern Nicaragua in July, 2009. Households were selected by two stage cluster sampling methodology. A questionnaire was administered in Spanish and Miskito with assessment of household and socioeconomic conditions, sanitation practices, and health care access. Diarrhea prevalence differences at the household level over a two week reporting period were estimated with a standardized instrument which included assessment of water treatment and latrine use and maintenance. Results There were 189 women enrolled in the current study. The use of water purification methods, such as chlorine and filters, and latrine ownership were not associated with reduced prevalence of household diarrhea in the two week reporting period. Latrine overflow, however, was associated with an increased prevalence of diarrhea during the same two week period [adjusted prevalence difference and 95% CI: 0.19 (0.03, 0.36]. Conclusions Simple, low cost interventions that improve water and latrine infrastructure may reduce the prevalence of diarrheal disease in the isolated regions of Nicaragua and Central America.

  12. Commissioning of the water demineralization plant of Atucha II Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schonbrod, B.; Grasso, G.; Ormando, M., E-mail: bschonbrod@na-sa.com.ar, E-mail: ggrasso@na-sa.com.ar, E-mail: mormando@na-sa.com.ar [Nucleoelectrica Argentina S.A., Central Nuclear Atucha II, Lima/Zarate, Provincia de Buenos Aires (Argentina); Chocron, M.; Rodriguez, I.; Lagamma, A.M., E-mail: chocron@cnea.gov.ar, E-mail: irodriguez@cnea.gov.ar, E-mail: lagamma@cnea.gov.ar [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2010-07-01

    In Argentina there are two operating Nuclear Power Reactors and a third one is being constructed. Embalse NPP is a 648 Mwe CANDU®-600 type pressurized heavy water reactor (PHWR), designed and built by Atomic Energy of Canada (AECL) and in commercial operation since 1984. Atucha I is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 340 Mwe, in operation since 1974, and Atucha II (also PHWR) of 740 Mwe is in advanced construction state, both of them designed by SIEMENS-KWU. All of these Nuclear Power Plants are operated by Nucleoelectrica Argentina (N.A.S.A.). The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the plants. Although the Atucha II project has suffered some years of delay, pressure tests are expected to be carried out by the end of the year 2010 and in that sense, water chemistry related activities, specifications, chemistry manuals, laboratories organization and personnel training are acquiring importance. The demineralized water needed for the secondary and auxiliary systems is obtained by means of a demineralization plant, which purifies water from Parana River up to nuclear grade. This plant was designed by Degremont in 1979 and consists of a preliminary treatment by coagulation - flocculation and gravel filters, and subsequent demineralization with ion exchange resins. For the commissioning of the demineralization plant, preliminary tests in the chemical laboratory are performed. The flocculator is simulated using a Jar-Test, different coagulants and coagulation aids are tested with the objective of selecting the best product and defining its optimum dosage. The coagulated water is filtered by means of a funnel with filtration paper and sand. The clarified water thus obtained is treated by ion exchange resins, the train consisting of a cationic, an anionic and a mixed bed. The purpose of the laboratory experiments is to test the resins

  13. Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli.

    Science.gov (United States)

    Ermolova, Natalia V; Ann Cushman, Mary; Taybi, Tahar; Condon, Shirley A; Cushman, John C; Chollet, Raymond

    2003-05-01

    Plant phosphoenolpyruvate-carboxylase kinase (PEPC-kinase [PpcK]) is the smallest Ser/Thr kinase identified to date, having a molecular mass of approximately 32,000. This novel, monomeric kinase is dedicated to the phosphorylation of plant PEPC, thereby regulating this target enzyme's activity and allosteric properties. Although several recombinant, non-fusion PpcK proteins have been produced recently in Escherichia coli, these are plagued by their high degree of insolubility. Here, we report the use of the native, E. coli NusA protein and a related E. coli expression vector (pET-43a(+) [Novagen]) for enhancing the solubility of this recalcitrant Ser/Thr kinase at least 10-fold by its production as a dual 6xHis-tagged NusA/McPpcK1 fusion protein, which accounts for approximately 10% of the soluble protein fraction from induced cells. Capture of this fusion protein from the centrifuged cell extract by immobilized metal (Ni(2+)) affinity-chromatography, its "on-bead" cleavage by thrombin, and subsequent elution yielded milligram quantities of a "free," approximately 36-kDa form of PpcK for further purification by fast-protein liquid chromatography on blue dextran-agarose or preparative SDS-PAGE. Steady-state kinetic analysis of the former, active preparation revealed that this dedicated kinase discriminates against neither various isoforms of plant PEPC nor certain mutant forms of recombinant C(4) PEPC. Alternatively, the latter, electrophoretically homogeneous sample of the approximately 36-kDa polypeptide was used as antigen for polyclonal-antibody production in rabbits. The antibodies against the recombinant McPpcK1 from Mesembryanthemum crystallinum cross-reacted on Western blots with an enriched preparation of the maize-leaf kinase, but not with the parent crude extract, thus directly documenting this protein's extremely low abundance in vivo. However, these antibodies were effective in immunoprecipitating 32P-based PpcK activity from crude, desalted extracts of

  14. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    Science.gov (United States)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  15. Changes in water quality in the Owabi water treatment plant in Ghana

    Science.gov (United States)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2017-03-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  16. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  17. Plant-wide control strategy for improving produced water treatment

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Durdevic, Petar

    2016-01-01

    This work focuses on investigation and development of an innovative Produced Water Treatment (PWT) technology for offshore oil & gas production by employing the model-based plant-wide control strategy. The key contributions lie in two folds: (i) the advanced anti-slug analysis and control...... quality in a continuous and real-time manner. However, this new solution relies on the availability of reliable Oilin-Water (OiW) real-time measuring technologies, which apparently are still quite challenging and un-matured....

  18. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  19. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  20. Role of chromatin in water stress responses in plants.

    Science.gov (United States)

    Han, Soon-Ki; Wagner, Doris

    2014-06-01

    As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Removal of fluoride contamination in water by three aquatic plants.

    Science.gov (United States)

    Karmakar, Sukalpa; Mukherjee, Joydeep; Mukherjee, Somnath

    2016-01-01

    Phytoremediation, popularly known as 'green technology' has been employed in the present investigation to examine the potential of fluoride removal from water by some aquatic plants. Fluoride contamination in drinking water is very much prevalent in different parts of the world including India. Batch studies were conducted using some aquatic plants e.g., Pistia stratiotes, Eichhornia crassipes, and Spirodela polyrhiza which profusely grow in natural water bodies. The experimental data exhibited that all the above three aquatic floating macrophytes could remove fluoride to some relative degree of efficiency corresponding to initial concentration of fluoride 3, 5, 10, 20 mg/l after 10 days exposure time. Result showed that at lower concentration level i.e., 3 mg/L removal efficiency of Pistia stratiotes (19.87%) and Spirodela polyrhiza (19.23%) was found to be better as compared to Eichhornia crassipes (12.71%). Some of the physiological stress induced parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, total protein, catalase, and peroxidase were also studied to explore relative damage within the cell. A marginal stress was imparted among all the plants for lower concentration values (3 mg/L), whereas at 20 mg/l, maximum damage was observed.

  2. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  3. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES...

  4. Purification by ozonolysis of {sup 18}O enriched water after cyclotron irradiation and the utilization of the purified water for the production of [{sup 18}F]-FDG (2-deoxy-2-[{sup 18}F]-fluoro-D-glucose)

    Energy Technology Data Exchange (ETDEWEB)

    Asti, M. [Nuclear Medicine Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Grassi, E. [Medical Physics Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Sghedoni, R. [Medical Physics Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy)]. E-mail: roberto.sghedoni@asmn.re.it; De Pietri, G. [Nuclear Medicine Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Fioroni, F. [Medical Physics Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Versari, A. [Nuclear Medicine Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Borasi, G. [Medical Physics Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy); Salvo, D. [Nuclear Medicine Department, Santa Maria Nuova Hospital via Risorgimento 80, 42100 Reggio Emilia (Italy)

    2007-07-15

    The high cost of virgin {sup 18}O-enriched water has forced many researchers to study methods to purify and recycle enriched water after the first irradiation for the production of radiopharmaceuticals. In our study, [{sup 18}O]H{sub 2}O was purified by ozonolysis and distillation. Analyses showed a large decrease in impurities after this treatment. The purification procedure was carried out after the production of 94 batches of [{sup 18}F]-FDG, which were manufactured using a GE Minitrace cyclotron and a GE Mx TracerLab synthesizer. Saturation yields after bombardment, using virgin and re-purified water were, respectively, 2864{+-}204 MBq/{mu}A and 2727{+-}167 MBq/{mu}A, a decrease of 5.5%. The decrease in [{sup 18}F]-FDG yield, from 67.2{+-}0.7% to 65.5{+-}0.9%, can be ascribed to the irradiation step only.

  5. Self-supporting power plant. Capturing evaporated water and save energy a new source of water

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin; Vos, Frank de [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; KEMA Energy Consulting Co.Ltd, Beijing (China); Wageningen Univ. (Netherlands). Environmental Systems Analysis; Heijboer, Rob [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; Bekker, Bert [KEMA Energy Consulting Co.Ltd, Beijing (China); Gao, Xiu Xiu [Wageningen Univ. (Netherlands). Environmental Systems Analysis

    2013-07-01

    One of the major challenges of this century is the provision of water for a growing population and industry. The shortage in water resources in arid areas requires the availability of more efficient and cheaper water production processes. In some arid regions water is even more important than electricity. A large source of water is found in the form of evaporated water emitted from different industrial processes. If for example 20% of the evaporated water from the flue gas stream of a coal fired power plant would be captured, the plant would be self-supporting from a process water point of view. This is about 30m{sup 3} of water per hour. The results of the proof of principle project (2001-2008) show that >40% recovery can be achieved. Also an overall energy efficiency improvement can be achieved for industrial plants that reheat their flue gases. Calculations show that this can be about 1% overall efficiency for a coal fired power plant utilizing flue gas reheating. With an installed capacity of more than 600GWe in China, this energy saving results in a very large economic and fuel (coal) impact. This energy efficiency will most likely be the driving force to implement the technology in both water rich and water poor regions. For the capture of evaporated water no chemicals are used, there is no waste water formed and corrosion attack in stacks is mitigated. These results have led to the set up of a large international project named CapWa which aims to produce a membrane modular system suitable for industrial applications within 2-3years. The produced demin water from this system should be competitive with existing demin water technologies. The starting point will be the water vapour selective composite membranes that are developed in the proof of principle project. The CapWa project started in 2010 and consists of 14 partners of which 9 from the EU, 3 from the African continent and 2 from the Middle East.

  6. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  7. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  8. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  9. Analysis of selected elements in water in the drinking water preparation plants in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Antanasijević Davor Z.

    2011-01-01

    Full Text Available Belgrade's water supply relies mainly on the River Sava and groundwater supply wells, which are located in the vicinity of the river and Ada Ciganlija. In this paper, the content of aluminum, boron, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, cadmium, barium and lead was analyzed in raw water as well as drinking water distributed by the Water Supply and Sewage of Belgrade. A total of 14 samples were examined from all water treatment plants that are part of the distribution system. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. The aim of this research was to examine the effectiveness of drinking water preparation process in the plants belonging to the Water Supply and Sewage of Belgrade. The content of certain elements varies considerably in raw water (river and groundwater: the concentration of boron in river water is two to three times lower than the concentration in groundwater; the concentration of arsenic in river water is ten to twenty five times lower than the concentration in groundwater; the concentration of aluminum in all groundwater samples was below the detection limit of the instrument (0.50 μg/dm3, whilst in the river water the content of aluminum was about 50 μg/dm3 and the concentration of manganese in the river water was up to 10 times lower than the concentrations in groundwater. In all drinking water samples the concentration of the elements were bellow the maximum allowed levels according to the Serbian regulations. Correlation coefficients determined for boron, manganese, cobalt, nickel, copper, zinc, arsenic, barium and lead, which were analyzed in raw waters, show that four groups of elements can be distinguished. Boron, manganese, arsenic and barium are related to each other and probably have a common natural origin; copper and lead probably have a common anthropogenic origin; correlation of nickel and cobalt was observed, while zinc was not in

  10. A newly isolated lectin from the plant pathogenic fungus Sclerotium rolfsii: purification, characterization and role in mycoparasitism.

    Science.gov (United States)

    Inbar, J; Chet, I

    1994-03-01

    A novel lectin was isolated and purified from the culture filtrate of the soilborne plant pathogenic fungus Sclerotium rolfsii by anion-exchange chromatography using a DEAE-Sepharose column. The lectin came through the column with the flow-through, whereas all the non-agglutinating proteins present in the crude preparation remained bound to the column until elution in a NaCl gradient. SDS-PAGE analysis of the agglutinating fraction revealed a single band corresponding to a protein with a molecular mass of approximately 45 kDa. Agglutination of Escherichia coli cells by the purified lectin was not inhibited by any of the mono- or disaccharides tested, whereas the glycoproteins mucin and asialomucin did inhibit agglutination. Proteases, as well as 1,3-beta-glucanase, were found to be totally destructive to agglutination activity, indicating that both protein and 1,3-beta-glucan are necessary for agglutination. Using a biomimetic system based on binding of the lectin to the surface of inert nylon fibres revealed that the presence of the purified agglutinin on the surface of the fibres specifically induced mycoparasitic behaviour in Trichoderma harzianum. Trichoderma formed tightly adhering coils, which were significantly more frequent with the purified agglutinin-treated fibres than with untreated ones or with those treated with non-agglutinating extracellular proteins from S. rolfsil. Other mycoparasite-related structures, such as appressorium-like bodies and hyphal loops, were only observed in the interaction between T. harzianum and the purified agglutinin-treated fibres.

  11. Computational Analysis of Sedimentation Process in the Water Treatment Plant

    Science.gov (United States)

    Tulus; Suriati; Situmorang, M.; Zain, D. M.

    2017-09-01

    This study aims to determine how the distribution of sludge concentration and velocity of water flow in the water treatment plant in equilibrium state. The problems are solved by implementing the finite element method to a momentum transport equation which is a basic differential equation that is used for liquid-solid mixtures with high solid concentrations. In the finite element method, the flow field is broken down into a set of smaller fluid elements. The domain is considered as a container in the space of three-dimensional (3D). The sludge concentration distribution as well as the water flow velocity distribution in the inlet, central and outlet are different. The results of numerical computation are similar compared to the measurement results.

  12. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  13. Results from four Pinus patula water planting trials in the summer ...

    African Journals Online (AJOL)

    Planting with water is used by some forestry companies in South Africa to reduce post-planting water stress. Four trials were implemented to test the response in survival of Pinus patula to water applied at planting. Two trials each were situated in the KwaZulu-Natal Midlands and Mpumalanga escarpment. The first trial at ...

  14. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer to...

  15. Geochemistry of ground water at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marine, I.W.

    1976-09-01

    Subsurface hydrogeologic systems underlying the Savannah River Plant (SRP) were studied to determine the origin and age of the contained fluids. Three distinct systems exist beneath SRP: the Coastal Plain sediments, crystalline metamorphic basement rock, and a Triassic rock basin surrounded by the crystalline rock. The water in the Coastal Plain sediments is low in dissolved solids (approximately 30 mg/l), acidic (pH approximately 5.5), and comparatively recent. Water in the crystalline rock is high in dissolved solids (approximately 6000 mg/l), alkaline (pH approximately 8), and approximately 840,000 years old as determined by helium dating techniques. Water in the Triassic rock is highest in dissolved solids (approximately 18,000 mg/l) and is probably older than the water in the surrounding crystalline rock; a quantitative age was not determined. The origin of the water in the crystalline and Triassic rock could not be determined with certainty; however, it is not relic sea water. A detailed geologic-hydrologic history of the SRP region is presented.

  16. Plant-available soil water capacity: estimation methods and implications

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva

    2014-04-01

    Full Text Available The plant-available water capacity of the soil is defined as the water content between field capacity and wilting point, and has wide practical application in planning the land use. In a representative profile of the Cerrado Oxisol, methods for estimating the wilting point were studied and compared, using a WP4-T psychrometer and Richards chamber for undisturbed and disturbed samples. In addition, the field capacity was estimated by the water content at 6, 10, 33 kPa and by the inflection point of the water retention curve, calculated by the van Genuchten and cubic polynomial models. We found that the field capacity moisture determined at the inflection point was higher than by the other methods, and that even at the inflection point the estimates differed, according to the model used. By the WP4-T psychrometer, the water content was significantly lower found the estimate of the permanent wilting point. We concluded that the estimation of the available water holding capacity is markedly influenced by the estimation methods, which has to be taken into consideration because of the practical importance of this parameter.

  17. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  18. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Directory of Open Access Journals (Sweden)

    Xu Ping

    2015-01-01

    Full Text Available Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS, protein (PN, and polysaccharide (PS in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  19. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  20. Hydraulic optimization and modeling of hydro-cyclone-systems for treatment and purification of any kind of waters

    Science.gov (United States)

    Spangemacher, Lars; Fröhlich, Siegmund; Buse, Hauke

    2017-11-01

    Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.