WorldWideScience

Sample records for water purification plant

  1. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  2. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  3. Effect of water purification process in radioactive content: analysis on small scale purification plants

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F.

    2009-10-01

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  4. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  5. Waste water biological purification plants of dairy products industry and energy management

    Science.gov (United States)

    Stepanov, Sergey; Solkina, Olga; Stepanov, Alexander; Zhukova, Maria

    2017-10-01

    The paper presents results of engineering and economical comparison of waste water biological purification plants of dairy products industry. Three methods of purification are compared: traditional biological purification with the use of secondary clarifiers and afterpurification through granular-bed filters, biomembrane technology and physical-and-chemical treatment together with biomembrane technology for new construction conditions. The improvement of the biological purification technology using nitro-denitrification and membrane un-mixing of sludge mixture is a promising trend in this area. In these calculations, an energy management which is widely applied abroad was used. The descriptions of the three methods are illustrated with structural schemes. Costs of equipment and production areas are taken from manufacturers’ data. The research is aimed at an engineering and economical comparison of new constructions of waste water purification of dairy products industry. The experiment demonstrates advantages of biomembrane technology in waste water purification. This technology offers prospects of 122 million rubles cost saving during 25 years of operation when compared with of the technology of preparatory reagent flotation and of 13.7 million rubles cost saving compared to the option of traditional biological purification.

  6. Operating experiences of gas purification system of Heavy Water Plant Talcher (Paper No. 1.11)

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Mohanty, P.R.; Pandey, B.L.

    1992-01-01

    The operating experiences with the purification system installed at Heavy Water Plant, Talcher for purification of feed synthesis gas from fertilizer plant is described. The purification system has performed satisfactorily even with levels of impurities as much as 15 to 20 ppm of oxygen and carbon monoxide. The system could not however be tested at designed gas throughput and on a sustained basis. However, increase in gas throughput upto the design value is not expected to pose any problem on the performance of the purification system. (author). 5 figs

  7. Purification of power plant waters with high gradient magnetic filters

    International Nuclear Information System (INIS)

    Rosenberg, R.

    1993-04-01

    This is a report of a literature survey. Magnetic high gradient filtration is suitable for separations in difficult surroundings because it can be used in high pressure and temperature, the filtration can be automated and the filter does not contain components which have to be replaced. Magnetic separators for purification of power plant waters have been manufactured commercially for a long time, but they have not always worked satisfactorily especially when separating small particles. The corrosion products in power plant waters are usually ferrimagnetic or paramagnetic and are well suited for magnetic separation. The particle sizes varies considerable but at least in nuclear power plants they are mostly in the range 0.1-30 μ, some even smaller. According to different publications most 60 Co is in particles, while other publications indicate that more than 70 % is in solution. Similarly the data on the purification efficiency of 60 Co varies significantly. Even small magnetic fields are sufficient to separate large ferrimagnetic particles, but the separation of small and paramagnetic particles requires a field more than 20 kT and the high gradient. Presently available commercial separators are so efficient that its seems not to be economically worthwhile to develop them further to improve the filtration efficiency for small particles. Instead it might be worthwhile to investigate methods to increase the particle size by water chemistry methods. (Au). (25 refs., 2 figs.)

  8. Purification effects of five landscape plants on river landscape water

    Science.gov (United States)

    Ling, Sun; Lei, Zheng; Mao, Qinqing; Ji, Qingxin

    2017-12-01

    Five species of landscape plants which are scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens were used as experimental materials to study their removal effects on nitrogen, phosphorus, chemical oxygen demand (CODMn) and suspended solids (SS) in urban river water. The results show that the 5 landscape plants have good adaptability and vitality in water body, among them, water hyacinth had the best life signs than the other 4 plants, and its plant height and root length increased significantly. They have certain removal effects on the nitrogen, phosphorus, CODMn (Chemical Oxygen Demand) and SS (Suspended Substance) in the landscape water of Dalong Lake, Xuzhou. Scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens on the removal rate of total nitrogen were 76.69%, 78.57%, 71.42%, 69.64%, 67.86%; the ammonia nitrogen removal rate were 71.06%, 74.28%, 67.85%, 63.02%, 59.81%;the total phosphorus removal rate were 78.70%, 81.48%, 73.15%, 72.22%, 68.52%;the orthophosphate removal rates were 78.37%, 80.77%, 75.96%, 75.96%, 71.15%;the removal rate of CODMn was 52.5%, 55.35%, 46.02%, 45.42%, 44.19%; the removal rate of SS was 81.4%, 86%, 79.1%, 76.7%, 74.42%.The purification effect of 5 kinds of landscape plants of Dalong Lake in Xuzhou City: water hyacinth> scindapsus aureus>cockscomb>calendula officinalis>salvia splendens.

  9. Assessment of Trace Metal Ions on Raw and Treated Water in Dakahlia Drinking water Purification Stations .Behaviour of aluminium in water purification plants

    International Nuclear Information System (INIS)

    El-Defrawy, M.M.; El-Fadaly, H.; El-Zawawy, F.; Makia, D.

    1999-01-01

    The technology of improvement of water quality at water purification plants can be characterised by a large diversity of method and processes employed and by substantial differences in the design and process structure and equipment. The effect of operational parameters as ph, pre-, post- chlorination, coagulant index and mixing intensities on the level of some metal ions concentration in different sources of drinking water plants were studied. Results of the chemical analysis indicated that the dissolved and total AI 3+ concentration in treated water was much higher than raw water and sometimes with values over the international maximum limit. Much of the overall variation in aqua aluminium ion in treated water could be explained on the basis of ph, solubility, and filtration models efficiency, while ions as Fe 3+ and Mn 2+ were found within the acceptable limits. The data obtained indicated that relation between watershed inputs (CI 2 , H CI, alum dose) and output of soluble aluminium was not necessary simple and straightforward. The investigated water samples were collected from main stations and compact units in Dakahlia Governorate

  10. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  11. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    Science.gov (United States)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  12. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  13. Utilization of red mud for the purification of waste waters from nuclear power plants

    International Nuclear Information System (INIS)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic

    2006-01-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides 58 Co and 60 Co 100%, and over 60% for 134 Cs and 137 Cs. (authors)

  14. Modelling a water purification process for quality monitoring

    NARCIS (Netherlands)

    Meulen, van der F.H.; Luca, S.; Overal, G.; Dubbeldam, J.L.A.; Di Bucchianico, A.; Jongbloed, G.; Dubbeldam, J.; Groenevelt, W.; Heemink, A.W.; Lahaye, D.; Meerman, C.; Meulen, van der F.

    2014-01-01

    This paper deals with a quality engineering problem introduced by ‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-terest lies in determining an optimal sampling frequency that provides suÿcient information on the water quality in a drinking water purifica-tion plant. The water

  15. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health.

    Science.gov (United States)

    Simazaki, Dai; Kubota, Reiji; Suzuki, Toshinari; Akiba, Michihiro; Nishimura, Tetsuji; Kunikane, Shoichi

    2015-06-01

    The present study was performed to determine the occurrence of 64 pharmaceuticals and metabolites in source water and finished water at 6 drinking water purification plants and 2 industrial water purification plants across Japan. The analytical methods employed were sample concentration using solid-phase extraction cartridges and instrumental analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), liquid chromatography with mass spectrometry (LC/MS), or trimethylsilyl derivatization followed by gas chromatography with mass spectrometry (GC/MS). Thirty-seven of the 64 target substances were detected in the source water samples. The maximum concentrations in the source water were mostly below 50 ng/L except for 13 substances. In particular, residual concentrations of iopamidol (contrast agent) exceeded 1000 ng/L at most facilities. Most of the residual pharmaceuticals and metabolites in the source water samples were removed in the course of conventional and/or advanced drinking water treatments, except for 7 pharmaceuticals and 1 metabolite, i.e., amantadine, carbamazepine, diclofenac, epinastine, fenofibrate, ibuprofen, iopamidol, and oseltamivir acid. The removal ratios of the advanced water treatment processes including ozonation and granular activated carbon filtration were typically much higher than those of the conventional treatment processes. The margins of exposure estimated by the ratio of daily minimum therapeutic dose to daily intake via drinking water were substantial, and therefore the pharmacological and physiological impacts of ingesting those residual substances via drinking water would be negligible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  17. Effect of water purification process in radioactive content: analysis on small scale purification plants; Efecto del proceso de purificacion de agua en el contenido radiactivo: analisis en plantas purificadoras a pequena escala

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000, Zacatecas (Mexico)], e-mail: hlopez@uaz.edu.mx

    2009-10-15

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  18. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    Science.gov (United States)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  19. Development of a purification system at Dhruva to treat oil contaminated and chemically impure heavy water

    International Nuclear Information System (INIS)

    Suttraway, S.K.; Mishra, V.; Bitla, S.V.; Ghosh, S.K.

    2006-01-01

    Dhruva, a 100 MW (thermal) Research reactor uses Heavy Water as moderator, reflector and coolant. Normally during plant operation, the Heavy water from the system gets removed during operational and maintenance activities and this collected heavy water gets degraded and contaminated in the process. The degraded heavy water meeting the chemical specification requirement of the up gradation plant is sent for up gradation. Part of the Heavy water collected is contaminated with various organic and inorganic impurities and therefore cannot be sent for IP up gradation as it does not meet the chemical specification of the up gradation plant. This contaminated Heavy water was being stored in SS drums. Over the years of Reactor operation reasonable amount of contaminated Heavy water got collected in the plant. This Heavy water collected from leakages, during routine maintenance, operational activities and fuelling operation had tritium activity and variety of contamination including oil, chlorides, turbidity due to which the specific conductivity was very high. It was decided to purify this Heavy water in house to bring it up to up gradation plant chemical specification requirement. There were number of challenges in formulating a scheme to purify this Heavy water. The scheme needed to be simple and compact in design which could be set up in the plant itself. It should not pose radiological hazards due to radioactive Heavy water during its purification and handling. The contaminated Heavy water collected in drums had varying chemistry and IP. The purification plant should be able to do batch processing so that the different IP and chemical quality of Heavy water stored in different drums are not mixed during purification. It should be capable of removing the oil, chlorides, turbidity and decrease the conductivity to acceptable limits of the Up gradation plant. A purification plant was developed and commissioned after detail laboratory studies and trials. This paper explains

  20. The bubble method of water purification

    Science.gov (United States)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  1. Recent developments in water purification technology

    International Nuclear Information System (INIS)

    Shah, G.C.

    2000-01-01

    Water is source of life. More than 70% surface of earth is covered with water. Water is extensively used in industries for various purposes like cooling, rinsing, steam generation and as process fluid etc. Water as found in nature cannot be used directly in industries since it contains various types of impurities which can affect smooth operation of equipment/plants. Quality of water requirement for industry greatly differs from the quality requirement for domestic use. Some industrial plant such as nuclear and thermal power plants, pharmaceutical plants and electronic industries require water of quality approaching that of ultra pure water. To get water of required quality from available natural resources, selection of proper treatment methods and control of necessary water conditioning procedures are essential analysis of water for different types of impurities involving various analytical techniques is also of great importance to select proper processes for its purification. In this talk, a survey of various types of impurities present in water from different sources, their harmful effects and general methods than can be used for removal of these impurities are detailed. Various methods of removing suspended and colloidal impurities, organic and gaseous impurities from water are also described

  2. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    Energy Technology Data Exchange (ETDEWEB)

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  3. Vegetation characteristics and water purification by artificial floating ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... INTRODUCTION. Environmental pollution poses a grave menace to the ... major functions; 1) water purification, 2) providing habitats for certain animals ... areas. The aims were to; 1) select certain emerging plants effective at ...

  4. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  5. Molecular Characterization of the Bacterial Communities in the Different Compartments of a Full-Scale Reverse-Osmosis Water Purification Plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdrecht, M.C.M. van; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and

  6. Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant

    NARCIS (Netherlands)

    Bereschenko, L.A.; Heilig, G.H.J.; Nederlof, M.M.; Loosdracht, van M.C.M.; Stams, A.J.M.; Euverink, G.J.W.

    2008-01-01

    The origin, structure, and composition of biofilms in various compartments of an industrial full-scale reverse-osmosis (RO) membrane water purification plant were analyzed by molecular biological methods. Samples were taken when the RO installation suffered from a substantial pressure drop and

  7. Comparing Russian and Finnish standards of water purification

    OpenAIRE

    Maria, Pupkova

    2012-01-01

    The subject of this thesis is water purification. The first aim of this thesis is to consider different ways of water purification. The second aim is to compare Finnish and Russian standards of water purification. The third one is to show water purification methods on the pattern of Mikkeli water purification plan. Water purification methods of water intended for human consumption will be described.Combined tables will be done according to the quality requirement of drinking water of both,...

  8. Exergy costs analysis of water desalination and purification techniques by transfer functions

    International Nuclear Information System (INIS)

    Carrasquer, Beatriz; Martínez-Gracia, Amaya; Uche, Javier

    2016-01-01

    Highlights: • A procedure to estimate the unit exergy cost of water treatment techniques is provided. • Unit exergy costs of water purification and desalination are given as a function of design and operating parameters. • Unit exergy costs range from 3.3 to 6.8 in purification and from 2 to 26 in desalination. • They could be used in their preliminary design as good indicators of their energy efficiency. - Abstract: The unit exergy costs of desalination and purification, which are two alternatives commonly used for water supply and treatment, have been characterized as a function of the energy efficiency of the process by combining the Exergy Cost Analysis with Transfer Function Analysis. An equation to assess the exergy costs of these alternatives is then proposed as a quick guide to know the energy efficiency of any water treatment process under different design and operating conditions. This combination, was satisfactory applied to groundwaters and water transfers. After identifying the boundaries of the system, input and output flows are calculated in exergy values. Next, different examples are analyzed in order to propose a generic equation to assess the exergy cost of the water restoration technologies, attending to their main features. Recovery ratio, energy requirements and salts concentrations (for desalination), and plant capacity and organic matter recovery (for water purification) are introduced in the calculations as their main endogenous parameters. Values obtained for typical operation ranges of commercial plants showed that unit exergy costs of water purification ranged from 3.3 to 6.8; maximum values, as expected, were found at low plant capacities and high organic matter removal ratios. For water desalination, values varied from 2 to 7 in membrane technologies and from 10 to 26 in thermal processes. The recovery ratio and salts concentration in raw water increased the unit exergy costs in membrane techniques. In distillation processes

  9. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  10. Reverse osmosis based water treatment and purification systems for nuclear power installations

    International Nuclear Information System (INIS)

    Epimakhov, V.N.; Olejnik, M.S.; Moskvin, L.N.

    2004-01-01

    Experiments on the realization and service of specialized water treatment and purification plants based on the principle of reverse osmosis filtration of water at the NPU benches of the A.P. Aleksandrov Scientific Research Technological Institute (SRTI) are analyzed. Membrane-sorption unit including module of micro-, ultrafiltration, reverse osmosis and ion exchange with productivity to 0.5 m 3 /h is developed and operated at SRTI. It is demonstrated that reverse osmosis purification of manufacturing water significantly improves service conditions of NPU and decreases salinity [ru

  11. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  12. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  13. Discussion on runoff purification technology of highway bridge deck based on water quality safety

    Science.gov (United States)

    Tan, Sheng-guang; Liu, Xue-xin; Zou, Guo-ping; Xiong, Xin-zhu; Tao, Shuang-cheng

    2018-06-01

    Aiming at the actual problems existing, including a poor purification effect of highway bridge runoff collection and treatment system across sensitive water and necessary manual emergency operation, three kinds of technology, three pools system of bridge runoff purification, the integral pool of bridge runoff purification and ecological planting tank, are put forward by optimizing the structure of purification unit and system setting. At the same time, we come up with an emergency strategy for hazardous material leakage basing on automatic identification and remote control of traffic accidents. On the basis of combining these with the optimized pool structure, sensitive water safety can be guaranteed and water pollution, from directly discharging of bridge runoff, can be decreased. For making up for the shortages of green highway construction technology, the technique has important reference value.

  14. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  15. Water purification from radionuclides with using fibroid sorbents

    International Nuclear Information System (INIS)

    Khaydarov, R. A.; Gapurova, O.U.; Khaydarov, R.R.

    2005-01-01

    Full text: Purification waste water and drinking water from radionuclides, heavy metal ions, organic contamination is one of the important problems today. For solving this problem we have created three types of fibroid sorbents on the base of Polyester: cationic and anionic exchange and carbonic. Main properties of these sorbents are described in this article. For example characteristics of the sorbents for removing radionuclides Co-60,57, Zn-65, Sr-89,90, Cs-134,137, etc., radionuclides containing organic molecules M-P-32, M-I-131, M-Mo-99+Tc-99m, M-C-14, etc., heavy metal ions Zn, Ni, Cu, Sb, Pb, Cd, Cr, U, etc., organic molecules (pesticides, phenols, dioxin, benzene, toluene, etc.) were investigated. Influence of pH on percent removal, influence of K, Na and another ions concentrations in the liquid on the percent removal, decreasing of the saturation capacity from number of regeneration and another characteristics are described. Static exchange capacity of the cationic sorbents is 1-2 mg-equ/g and anionic - 0.5-1 mg-equ/g. Capacity of the carbonic sorbents for benzene is 100 mg/g. Time of chemical balance setting is 1-2 s. The sorbents are effective in removing the low concentrations of contamination from the water (lower than 100-200 mg/l) and the air (lower than 100 mg/m 3 ). The use of sorbents in drinking water filters and mini-systems is described. The industrial water purification system consists of coagulating unit, sorbent unit and disinfectant unit. The systems are used in atomic power stations, electroplating plants, matches plants, leather and skin treating plants, car-washing stations, etc

  16. Water protection in coke-plant design

    Energy Technology Data Exchange (ETDEWEB)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  17. Non-chemical water purification a Westinghouse/Wallenius product for nuclear power plant needs

    International Nuclear Information System (INIS)

    Goetberg, J.; Carlsson, M.

    2014-01-01

    Increasing demand for ecologically effective water treatment technologies has resulted in the development of several new oxidation methods. These technologies are generally labelled Advanced Oxidation Technologies (AOT) or Advanced Oxidation Processes (AOP) and currently represent the most widely recognized alternative for ecologically sound, high-tech water purification. Many years of intensive research have culminated in the innovative Wallenius-AOT technology, a patented method that is remarkable in several ways. It imitates nature's own water purification method. This means no chemical additives are needed. The technology utilizes the ability of light, together with photo-catalytic semiconductor surfaces, to produce free radicals, like nature does. These reactive radicals create an environment in which organic and inorganic substances oxidize, whereby a broad spectrum of organisms is rendered harmless more effectively than with conventional UV technology. The entire process takes just a few micro-seconds. A major advantage of the technology is that it can be adjusted according to the desired degree of purification. By altering the dynamics of the process, the purification can be designed for specific applications. In this way, AOT tackles precise problems, regardless of flow and whether the problem is chemical or biological. The product was originally introduced for ballast treatment in the shipping industry. Ballast water has created severe damages to the biology at many locations. By moving an organism from one ocean to another we have introduced a possible threat to the local ecosystem. This has been prevented by using the AOT water treatment units. During ballasting and de-ballasting, the units create radicals with the help of a catalyst and a light source. These radicals then destroy the cell membrane of microorganisms. The radicals, which never leave the unit, have a lifetime of only a few milliseconds and pose no risk to the environment or crew

  18. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  19. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  20. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    Dietrich, R.

    1993-01-01

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.) [de

  1. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  2. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  3. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  4. Drying and purification of natural gas by clinoptilolite on an experimental pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsishvili, G V; Urotadze, S L; Lukin, V D; Bagirov, R M

    1976-02-01

    The paper deals with the process of the drying and purification of natural gas from CO/sub 2/ on an experimental pilot plant using the natural zeolite clinoptilolite. On the basis of the obtained data the dynamic activity of clinoptilolite against water and CO/sub 2/ has been calculated.

  5. Microbiological and technical aspects of anaerobic waste water purification

    International Nuclear Information System (INIS)

    Aivasidis, A.

    1994-01-01

    Anaerobic waste water purification is likely to be another example of how innovations can result from the joint use of biological and technical concepts. No matter how far the optimization of oxygen input with aerobic waste water purification advances it will still be the less a real competitor for anaerobic techniques the more polluted the waste water is. The principle of carrier fixation to avoid their washing out, too, has often been observed in nature with sessile microorganisms. With highly polluted water, anaerobic purification does not only work at no expenditure of energy but it can also make excess energy available for use in other processes. Another important argument for anaerobic methods of waste water purification is probably the clearly reduced production of excess sludge. (orig.) [de

  6. Water Purification Product

    Science.gov (United States)

    2004-01-01

    Ecomaster, an affiliate of BioServe Space Technologies, this PentaPure technology has been used to purify water for our nation's Space Shuttle missions since 1981. WTC-Ecomaster of Mirneapolis, Minnesota manufactures water purification systems under the brand name PentaPure (TM). BioServe researcher Dr. George Marchin, of Kansas State University, first demonstrated the superiority of this technology and licensed it to WTC. Marchin continues to perform microgravity research in the development of new technologies for the benefit of life on Earth.

  7. Recent Advances in Nanoporous Membranes for Water Purification

    Directory of Open Access Journals (Sweden)

    Zhuqing Wang

    2018-01-01

    Full Text Available Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

  8. Filters for water purification from radionuclides

    International Nuclear Information System (INIS)

    Mironov, V.V.; Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.U.

    2006-01-01

    Full text: At present purification of waste water and drinking water from radionuclides, heavy metal ions, and organic contaminants is one of the most important problems. One of widely used methods for solving this problem is the ion exchange method based on using of different types of resins and fibroid sorbents. This paper deals with new chemically modified polyester fibroid filters having satisfactory adsorption characteristics. The process of the filter production includes their treatment by acrylonitrilic emulsion for improving mechanical characteristics. An advantage of the fibroid ion-exchange sorbents over resin is in their high sorption rate, effective regeneration and small value of pressure drop of the sorbent layer for purified water. The specific surface of the fibroid sorbents is (2 - 3). 10 4 m 2 / kg, i.e. about 10 2 times greater than that of the resin (10 2 m 2 / kg). Owing to that fact the rate of the sorption process on the developed fibroid sorbents is much greater than that on the resin. The developed cation- and anion-exchange filters can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds (M- 32 P, M- 131 I, M- 99 Mo+ 99m Tc, etc.) from water. Capacity of the cation-exchange sorbents is 0.25 meq/g (Cu 2+ ) and that of the anion - exchange is 0.45 meq/g (Cr 6+ ). The cation- and anion-exchange filters are also selective for removing radionuclides 134 , 137 Cs, 90 Sr, 60 Co and 129 I in presence of Na + , K + , Ca 2+ , Mg 2+ , Cl - ions in water at concentrations up to 500 mg/L. New developed ion-exchange sorbents have been used in drinking water filters and mini-systems for removing organic and inorganic contaminants, in the equipment for waste water purification from oil products (at atomic power stations, car-washing stations, etc), from heavy metal ions (in electronic industry, match fabrics, leather processing plants etc). (author)

  9. Rotating Reverse-Osmosis for Water Purification

    Science.gov (United States)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  10. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  11. Kinetic studies on purification capability of channel flow type wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S [Fukui Institute of Technology, Fukui (Japan); Furukawa, K; Kim, J [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1990-10-01

    In order to develop a wastewater treatment process of secondary effluent and a wastewater treatment process of a farm village, some experiments have been carried out using bench scale and full scale hydroponic type wastewater treatment plant. This wastewater treatment system mainly consists of water channels and hydroponic water tanks. The authors carried out of a kinetic study for purification capability of the water channels while assuring the growth of microorganism in the treatment scheme. It was shown experimentally that the channel flow type wastewater treatment plant had a high TOC removal capability regardless of the kind of contact material and treatment time. Activated sludge microorganism concentration in water channels was obtained by kinetic estimation from the measured effluent suspended solid concentration. Estimated amount of activated sludge in water channels comprised only 11.5-37.4 percent of the measured amounts of withdrawn sludge, indicating high photosynthesis production of algae in water channels. 8 refs., 4 figs., 5 tabs.

  12. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  13. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  14. Dense Medium Plasma Water Purification Reactor (DMP WaPR), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  15. Using of Mineral Recourses for Water Purification

    International Nuclear Information System (INIS)

    Tumanova, I.V.; Nazarenko, O.B.; Anna, Yu.

    2009-01-01

    Pollution of surface waters results in necessity of underground waters using for drinking. Underground waters are characterized by the high quantity of heavy metals salts. This led to development of methods reducing the concentration of the metal salts in water. Wide spread occurrence, cheapness and high sorption properties of nature minerals allow to consider them as perspective sorbents for different impurities extraction, including dissoluble compounds of heavy metals. Reachable purification efficiency with mineral resources use for the moment satisfies sanitary indexes and standards presenting to portable water in Russia. In given material there are presented the results of research of artificial sorbent and certain minerals sorption characteristics, which are typical for West Siberia. For purification quality improvement from Fe and Mn ions there are suggested to use the method of boiling bed.

  16. Design of a Prototype of Water Purification by Plasma Technology as the Foundation for an Industrial Wastewater Plant

    International Nuclear Information System (INIS)

    Barillas, L

    2015-01-01

    In order to mitigate the contamination of water sources due to the spill of sewage without any kind of treatment, mainly generated by the industrial sector; a prototype of water purification by plasma technology has been designed. The prototype will transform liquid water into plasma to eliminate the pathogens from the water, due to their exposure to ultraviolet radiation, electric fields and shock waves, which aid in the destruction of pollutants. The sewage will be accelerated at high speed to convert it into a liquid-gas mixture in order to transform it into plasma, which is achieved when the electrical discharge (of the type dielectric barrier discharge or DBD) is applied to the water by means of high voltage electrodes, from a source of alternating current (AC). Subsequently, the mixture slows down to be return into liquid phase and obtain clean water, all of these without a significantly rise of temperature. The device also has an automatic power control system. Finally, a short feasibility study was conducted in order to use this type of water cleaner in the future as a basis for a treatment plant of industrial waste water, so it comes to replace the current secondary and tertiary treatments used among the industry. It is intended that this new system will be more efficient and cheaper than the current waste water treatments. (paper)

  17. Design of a Prototype of Water Purification by Plasma Technology as the Foundation for an Industrial Wastewater Plant

    Science.gov (United States)

    Barillas, L.

    2015-03-01

    In order to mitigate the contamination of water sources due to the spill of sewage without any kind of treatment, mainly generated by the industrial sector; a prototype of water purification by plasma technology has been designed. The prototype will transform liquid water into plasma to eliminate the pathogens from the water, due to their exposure to ultraviolet radiation, electric fields and shock waves, which aid in the destruction of pollutants. The sewage will be accelerated at high speed to convert it into a liquid-gas mixture in order to transform it into plasma, which is achieved when the electrical discharge (of the type dielectric barrier discharge or DBD) is applied to the water by means of high voltage electrodes, from a source of alternating current (AC). Subsequently, the mixture slows down to be return into liquid phase and obtain clean water, all of these without a significantly rise of temperature. The device also has an automatic power control system. Finally, a short feasibility study was conducted in order to use this type of water cleaner in the future as a basis for a treatment plant of industrial waste water, so it comes to replace the current secondary and tertiary treatments used among the industry. It is intended that this new system will be more efficient and cheaper than the current waste water treatments.

  18. Nanomaterials and Water Purification: Opportunities and Challenges

    Science.gov (United States)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  19. Nanomaterials and Water Purification: Opportunities and Challenges

    International Nuclear Information System (INIS)

    Savage, Nora; Diallo, Mamadou S.

    2005-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification

  20. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  1. Purification of tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Ground water which has been out of contact with the atmosphere for a long time as compared to the half life of tritium (12.43 years) does not contain any measureable amount of tritium. Such water is called tritium-free water. It may contain dissolved and suspended impurities and has to be purified before it can be used for the preparation of blanks and standards required in the routine measurement of low level tritium in water samples. The purification of tritium-free water by distillation in a closed system has been described. The quality of processed tritium-free water was precisely checked at International Atomic Energy Agency (IAEA) Vienna and found satisfactory. (authors)

  2. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    International Nuclear Information System (INIS)

    Aji, Mahardika Prasetya; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi

    2016-01-01

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  3. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,; Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi [Department of Physics, Faculty of Mathematics and Natural Science Universitas Negeri Semarang, Jalan Raya Sekaran Gunungpati 50229 Indonesia (Indonesia)

    2016-04-19

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  4. Drinking water purification in the Czech Republic and worldwide

    International Nuclear Information System (INIS)

    Krmela, Jan; Beckova, Vera; Vlcek, Jaroslav; Marhol, Milan

    2012-06-01

    The report is structured as follows: (i) Legislative (hygienic) requirements for technologies applied to drinking water purification with focus on uranium elimination; (ii) Technological drinking water treatment processes (settling, filtration, precipitation, acidification, iron and manganese removal) ; (iii) State Office for Nuclear Safety requirements for the operation of facilities to separate uranium from drinking water and for the handling of saturated ionexes from such facilities; (iv) Material requirements for the operation of ionex filters serving to separate uranium from drinking water; (v) Effect of enhanced uranium concentrations in drinking waters on human body; (vi) Uranium speciation in ground waters; (vii) Brief description of technologies which are used worldwide for uranium removal; (viii) Technologies which are usable and are used in the Czech Republic for drinking water purification from uranium; (ix) Inorganic and organic ion exchangers and sorbents. (P.A.)

  5. Direct osmosis method of purification and desalination of drinking water

    International Nuclear Information System (INIS)

    Khaydarov, R.A.; Khaydarov, R.R.

    2005-01-01

    Full text: Drinking water quality is one of the general factors influencing people's health. The human activity in industry and agriculture has led to pollution of the environment: soil, air, both surface and ground waters that are polluted with chemical substances. It has a disastrous effect on the health of the population, especially of children. At present, the known equipment, based on ion exchange, electrodialysis and reverse osmosis, require great expense, energy expenditures, and highly qualified personnel that are inaccessible to the population especially living in remote regions. Methods, which are usually used in water supplying plants, cannot remove spore forms of bacteria and many types of chemical substances. The purpose of this Project is to create an absolutely new method for purification of drinking water from chemical and biological agents. The method is based on using direct osmosis process that removes all contaminants except one and removing last contaminant. This method will be used for making new low energy-consuming and cheap mini-systems for individual and collective use for desalination of drinking water and purification from bacteria, radionuclides, heavy metal ions, and organic contaminants. Preliminary experiments and calculations conducted in Uzbekistan show that the energy consumption is 0.8 MW per 1 m 3 of water. Advantage of the method is low energy consumption, potentially purifying water without pretreatment and removing different types of bacteria including spore forms, radionuclides, heavy metal ions, organic contaminants. Devices can be powered by solar units in remote locations. The purpose of this work is further elaboration of this technology creation of new method and its accommodation to conditions of different countries. Test models will be made and tested in laboratories of interested countries

  6. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  7. Electrochemical alkaline Fe(VI) water purification and remediation.

    Science.gov (United States)

    Licht, Stuart; Yu, Xingwen

    2005-10-15

    Fe(VI) is an unusual and strongly oxidizing form of iron, which provides a potentially less hazardous water-purifying agent than chlorine. A novel on-line electrochemical Fe(VI) water purification methodology is introduced. Fe(VI) addition had been a barrier to its effective use in water remediation, because solid Fe(VI) salts require complex (costly) syntheses steps and solutions of Fe(VI) decompose. Online electrochemical Fe(VI) water purification avoids these limitations, in which Fe(VI) is directly prepared in solution from an iron anode as the FeO42- ion, and is added to the contaminant stream. Added FeO42- decomposes, by oxidizing a wide range of water contaminants including sulfides (demonstrated in this study) and other sulfur-containing compounds, cyanides (demonstrated in this study), arsenic (demonstrated in this study), ammonia and other nitrogen-containing compounds (previously demonstrated), a wide range of organics (phenol demonstrated in this study), algae, and viruses (each previously demonstrated).

  8. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties

    Directory of Open Access Journals (Sweden)

    Fabian Borghetti

    2013-03-01

    Full Text Available Most studies conducted to test the allelopathic activity of plant parts have made use of water as solvent. However, the presence of polar, water-soluble substances, such as proteins and carbohydrates, tends to hamper the purification of active compounds. In this study, we present a simple purification procedure that separates the active fraction of the extract from the undesirable substances, thus facilitating the search for active molecules through standard chromatographic methods. Aqueous leaf extracts of three Cerrado species (Caryocar brasiliense, Qualea parviflora and Eugenia dysenterica were prepared at 5% concentration (w/v and stored at 4ºC (crude extracts. After 24 h, these solutions were filtered and freeze-dried. The powder obtained was dissolved in methanol, filtered again, evaporated and dissolved in water for bioassays (purified extracts. For the bioassays, seedlings of Sesamum indicum were grown for five days in aqueous solutions prepared from crude and purified extracts at concentrations ranging from 0.1% to 1.0% (w/v. Seedling growth in distilled water was set as a control. In comparison with the control, we found that test solutions prepared from both crude and purified extracts significantly inhibited sesame seedling growth. However, solutions prepared from purified extracts were two to ten times more inhibitory to seedling growth than were those prepared from crude extracts. The inhibition of root growth ranged from 35% to 77%, depending on the plant species, at a concentration as low as 0.1%. Roots were more affected than were shoots. The effects of purified extracts on seedling morphology were similar to those observed when crude extracts were employed, indicating that the procedure of purification of crude extracts did not interfere with the mode of action of the active substances

  9. Filters for water purification from oil products and radionuclides

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Khaydarov, R.A.; Gapurova, O.U.; Malikov, Sh.

    2006-01-01

    Full text: Purification of waste water and drinking water from radionuclides, heavy metal ions, and organic contaminants is one of the most important problems at present day. One of widely used methods for solving this problem is the ionic exchange method based on using different types of resins and fibroid sorbents. The paper deals with new chemically modified polyester fibroid filters having satisfactory adsorption characteristics. The process of the filter production includes their treatment by acrylo nitrilic emulsion for improving mechanical characteristics. An advantage of the fibroid ion-exchange sorbents over resin is in high rate of a sorption process, effective regeneration and small value of pressure drop of the sorbent layer for purified water. The specific surface of the fibroid sorbents is (2 - 3). 10'4 m 2 / kg, i.e. about 102 times greater than that of the resin (10 2 m 2 / kg). Owing to that fact the rate of the sorption process on the developed fibroid sorbents is much greater than that on the resin. The developed cation- and anion-exchange filters can be used for removing metal ions (Zn, Ni, Cu, Sb, Co, Cd, Cr, etc.) and organic compounds (M- P 32, M- I 131, M-Mo 99 mTc+99, etc.) from water. Capacity of the cation-exchange sorbents is 0.25 meq/g (Cu 2 +) and that of the anion - exchange is 0.45 meq/g (Cr 6 +). The cation- and anion-exchange filters are also selective for removing radionuclides Cs 134,137, Sr 90, Co 60 and I 129 in presence of Na + , K + , Ca 2 +, Mg 2 +, Cl - ions in water at concentrations up to 500 mg/L. New developed ionic-exchange sorbents have been used in drinking water filters and mini-systems for removing organic and inorganic contaminants, in the equipment for waste water purification from oil products (at atomic power stations, car-washing stations, etc), from heavy metal ions (in electronic industry, match fabrics, leather processing plants etc)

  10. Diffusion bonded matrix of HGMF applied for BWR condensate water purification

    International Nuclear Information System (INIS)

    Soda, Fumitaka; Yukawa, Takao; Ito, Kazuyuki.

    1984-01-01

    High Gradient Magnetic Filter (HGMF) applied to the purification of power plant primary water has recently attracted much attention. In the application of HGMF to the water treatment of power plants, especially nuclear power plants, reliabillties of matrix (filtering medium) as well as removal performance for cruds (insoluble corrosion products) are considered to be important factors. To satisfy these factors, a new filtering medium named Diffision Bonded Matrix (DBM) has been developed and the test results are reported. Filtering efficiency and mechanical stiffness of DBM were examined using HGMF pilot test units consisting of 160 mm diameters x 240 mm length filter. The filtering velocity and the magnetic flux density used in this test were 800 m/h 5 kG, respectively. The filtering efficiencies and of 85-100% were obtained for artificial cruds for DBM. The DBM indicated slightly better filtering efficiency than for conventional wool matrix under the same filtering and matrix conditions. The DBM kept its original mechanical properties and very few pieces of fibers were broken off while the conventional wool matrix lost its volume elasticities and the considerable amount of fibers was broken off during the test operation. The results described here demonstrated the applicability of DBM for treatment of BWR primary water by High Gradient Magnetic Filter. (author)

  11. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  12. Conductive diamond electrodes for water purification

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2007-12-01

    Full Text Available Nowadays, synthetic diamond has been studied for its application in wastewater treatment, electroanalysis, organic synthesis and sensor areas; however, its use in the water disinfection/purification is its most relevant application. The new electrochemistry applications of diamond electrodes open new perspectives for an easy, effective, and chemical free water treatment. This article highlights and summarizes the results of a selection of papers dealing with electrochemical disinfection using synthetic diamond films.

  13. Optimal purification technology of ultrapure water for instrumental analysis

    International Nuclear Information System (INIS)

    Ishii, Naoe

    2011-01-01

    Purified water is one of the most commonly utilized reagents in the laboratory. It is used throughout experimental protocols in virtually every type of laboratory application : as blanks, for the dissolution and dilution of samples, the dilution of standards, preparation of mobile phases and for media and buffer preparation. Contaminants present in purified water can therefore have a significant impact on results. Hence, it is important to ensure that the laboratory water-purification system contains a combination of purification technologies to target specific impurities related to each application. This article looks at some of these technologies and their relevance for specific applications, such as HPLC, LC/MS, and ion chromatography (IC). (author)

  14. The method of purification of waste water of NPS from petroleum oil using UV-radiation

    International Nuclear Information System (INIS)

    Kulemin, V.V.; Kareta, V.I.

    1993-01-01

    The main methods of concentration and purification of radioactive waste water of russian NPS are distillation and ion exchange. When waste water containing petroleum oil and washing matter is distillated, part of petroleum and washing matters go to the condensate. The purification of this condensate leads to pollution of ion exchange resins by petroleum oil and reduction of the filter cycle number. The purification of condensate of Russian NPS from petroleum oil is carried out using active carbon and polymer filters, but this process is not effective and fails to give pure condensate. Therefore, the authors began to search for more effective methods of purification of waste water from petroleum oil. They found that UV-radiation makes it possible to purify water from petroleum matter to concentration of the organic phase less than 0.5 mg/dm3. In this process of purification the air, contained in the water phase, was used as an oxidant. When purification is carried out in the absence of sorbents, the quantity of radioactive solid waste, which have to be recovered, decreases. During the study of purification of waste water it was found that increasing of the temperature of the process increases the rate of UV-radiation-induced oxidation of organic phase. The increase in the initial concentration of petroleum products also increases the rate of petroleum oil decomposition. The content of ions in water phase decreases the purification rate. The investigations were carried out on the laboratory scale with water and condensate from Tver's NPS

  15. Treatment of waste water containing solid particles (coal-ash-water suspensions) from 500 MW blocks of brown coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, H

    1981-01-01

    This paper presents a technological scheme and details on efficiency of the waste water cleaning installation in the 4 x 500 MW Boxberg III brown coal power plant. The power plant waste water contains between 0.1 and 100 kg of solids per m/sup 3/ of waste water; it requires cleaning to the environmental standard of up to 30 mg/l. The water cleaning installation consists of a coarse grain settling tank 30.7 m long, four one chamber thickeners with a 22 m diameter each, using aluminium sulfate as flocculent, and a water purification basin. The coarse grain settling tank is furnished with a continuously working chain scraper for removal of up to 100 m/sup 3//d of sludge from the bottom of the tank. Technological parameters of the settling tank are provided. Details of the tank's water cleaning performance are compared to the coarse grain settling tank at the Hagenwerder power plant. A list of the percentage of grain sizes removed from waste waters at both power plants is given. It is concluded that 85% of solids are removed from the Boxberg III waste water at the first water purification stage with a coarse grain settling tank and that use of continuously working chain scrapers is successful for removal of sludge with high water content and with a high content of fines in the grain size below 0.1 mm.

  16. Purification of ammonia-containing trap waters from atomic power plant by ozone treatment

    International Nuclear Information System (INIS)

    Grachok, M.A.; Prokudina, S.A.; Shulyat'ev, M.I.

    1990-01-01

    The aim of research was to study the process of ozonation of ammonia-containing trap waters from the Kursk Atomic Power Plant both on the model solutions and on real ones. Different factors (pH of the medium, temperature, concentration of the initial substances) have been studied for their effect on ozonation of aqueous ammonia solutions, model solutions of trap waters from the Kursk Atomic Power Plant as well as ammonia-containing trap waters and liquid radioactive wastes delivered to special water treatment at the Kursk Atomic Power Plant. It is shown that in all the cases the highest rate of ammonia oxidation by ozone is observed in the alkaline medium (pH 1.4-11.0) and at 55 deg C. The obtained results have shown that a method of ozonation followed by evaporation of water to be purified can be used to treat ammonia-containing waters from atomic power plant

  17. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  18. Expression and affinity purification of recombinant proteins from plants

    Science.gov (United States)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  19. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  20. Technical project for a new water purification solution

    Directory of Open Access Journals (Sweden)

    Toma Adina

    2018-01-01

    Full Text Available This research is part of the RO-BG Cross-Border Cooperation Program, project “CLEANDANUBE”, MIS-ETC 653, which has finalised by providing a common strategy to prevent the Danube’s pollution technological risks with oil and oil products. This paper presents a new sustainable water purification solution. A short introduction will be offered and an overview regarding the research and new methods to greening the waste is provided. The theoretical aspects of the centrifugal separation phenomenon are studied and the preliminary project bases were established. The paper conveys the possible constructive variations and the technological implications of those. Ultimately, the technical project for a new water purification solution and conclusions with critical points encountered during the designing phase are presented.

  1. Enriched Water-H2 18O Purification to be Used in Routine 18FDG Production

    International Nuclear Information System (INIS)

    Al Rayyes, A.H.

    2009-01-01

    Oxygen-18 enriched water has been recovered from IBA (Ion Beam Applications) recovery system followed by purification and then used in the production of 18 F-. The purification process has been carried out by irradiation with UV followed by a distillation under vacuum. After purification, 95% of water is recovered and organic compounds, radioisotopes, trace metals and gases are eliminated efficiently. Results show that there are no significant differences in (2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) production yield using purified water by the proposed method and new enriched water. Tritium was detected in the irradiated enriched water. Contamination precautions during purification should be considered. Tritium was not present in 18 FDG or Na- 18 F final products. (author)

  2. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration. Pilot Plant Trials

    Energy Technology Data Exchange (ETDEWEB)

    Kullab, Alaa; Martin, Andrew

    2007-12-15

    Water treatment is an important auxiliary process in all thermal cogeneration plants. In this context membrane distillation (MD) is a novel technology that is potentially advantageous to technologies like reverse osmosis in the following ways: ability to utilize low-grade heat; reduced sensitivity to fluctuations in pH or salt concentrations; and lower capital and operation and maintenance costs (assumed in the case of fully-developed technology only). This research is a continuation of a Varmeforsk prestudy (report no. 909) and encompasses field trials at Idbaecken Combined Heat and Power (CHP) Facility (Nykoeping). Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. The test rig consisted of a five-module MD unit capable of producing 1-2 m3/day purified water. District heating supply was employed for heating; feed stocks include municipal water and flue gas condensate. Field trials can be divided into three phases: (1) parametric study of yield; (2) long term operation with municipal water as feed stock; and (3) evaluation of flue gas condensate as a feed stock. Testing commenced in the beginning of April 2006. The performance of MD concerning production rate is highly dependent on the feed stock temperature, flow rate and temperature difference across the membrane. Initial results for municipal water feed stocks showed that product water fluxes were in line with previous experiments, thus confirming the findings made in the prestudy. Connecting several MD modules in series has the advantage of reducing the electrical energy consumption needed for recirculation; the penalty comes in less efficient operation from flux point of view. This is more critical in the case of low flow rates, and hence much careful design studies are needed to optimize the system. Regarding the long term performance, the test period lasted for 13 days on a continuous operation basis before the first flux

  3. Purification of the functional plant membrane channel KAT1

    International Nuclear Information System (INIS)

    Hibi, Takao; Aoki, Shiho; Oda, Keisuke; Munemasa, Shintaro; Ozaki, Shunsuke; Shirai, Osamu; Murata, Yoshiyuki; Uozumi, Nobuyuki

    2008-01-01

    The inward-rectifying K + channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K + channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a 'test set' of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography

  4. Research progress of novel adsorption processes in water purification:A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As an effective, efficient, and economic approach for water purification, adsorbents and adsorption processes have been widely studied and applied in different aspects for a long time. In the recent years, a lot of novel adsorption processes have been developed for enhancing the efficiency of removing the organic and inorganic contaminants from water. This article reviews some new adsorbents and advanced adsorption methods that specialize in their compositions, structures, functions, and characteristics used in water treatment. The review emphasizes adsorption/catalytic oxidation process, adsorption/catalytic reduction process, adsorption coupled with redox process, biomimetic sorbent and its sorption behaviors of POPs, and modified adsorbents and their water purification efficiency.

  5. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  6. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  7. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  8. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    OpenAIRE

    Misri Gozan; Mia Sari Setiawan; Kenny Lischer

    2017-01-01

    High purity of Bioethanol is required in biofuel mixing with gasoline (EXX). In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption m...

  9. Control of water absorption by purification of graphite

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Strehlow, R.A.; Mioduszewski, P.K.; Uckan, T.

    1988-01-01

    It is well known that graphite can absorb large quantities of water, which can represent an abundant source of oxygen impurities in fusion plasmas if the corresponding components are not properly outgassed. We have outgassed various fusion-relevant graphites (e.g., POCO AXF-5Q) for 1.5 h at 1500/degree/C to release absorbed water and have subsequently exposed the samples to air for various periods of time. Re-absorption of water during the air exposure was estimated by measuring the amount of water produced in subsequent outgassing runs. The results show that the amount of water re-absorbed increases by a factor of approximately 10 within 8 h compared to the sample in the outgassed state but with no air exposure. The water content of the 'as received' material is reached after approximately 30 days. Re-absorption of water was significantly reduced by purification of the investigated graphite samples. This purification process, which consists of heating the sample at 2800/degree/C for 30 min in an argon atmosphere, reduces the levels of trace impurities which can be responsible for catalytic surface reactions on the internal surfaces of the graphite. After exposing an outgassed sample to an electron cyclotron heated plasma followed by 1 h air exposure, the amount of water desorbed was observed to increase by a factor of 6. Data will be presented to correlate this effect with trace impurities. 9 refs., 2 figs., 5 tabs

  10. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  11. Feasibility of water purification technology in rural areas of developing countries.

    Science.gov (United States)

    Johnson, Dana M; Hokanson, David R; Zhang, Qiong; Czupinski, Kevin D; Tang, Jinxian

    2008-08-01

    Water scarcity is threatening social and economic growth in rural areas of developing countries. There are potential markets for water purification technologies in these regions. The main focus of this article is to evaluate the social, economic and political feasibilities of providing water purification technologies to rural areas of developing countries. The findings of this research can serve as the basis for private investors interested in entering this market. Four representative regions were selected for the study. Economic, demographic, and environmental variables of each region were collected and analyzed along with domestic markets and political information. Rural areas of the developing world are populated with poor people unable to fulfill the basic needs for clean water and sanitation. These people represent an important group of potential users. Due to economic, social, and political risks in these areas, it is difficult to build a strong case for any business or organization focusing on immediate returns on capital investment. A plausible business strategy would be to approach the water purification market as a corporate responsibility and social investing in the short term. This would allow an organization to be well positioned once the economic ability of individuals, governments, and donor agencies are better aligned.

  12. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  13. InDA-APDA conference on desalination and water purification

    International Nuclear Information System (INIS)

    Sodaye, H.S.; Prabhakar, S.; Tewari, P.K.

    2010-03-01

    The symposium covers all relevant areas including integrated water management, current experiences and advances in membrane and thermal desalination, water purification and effluent treatment. Special sessions on nanotechnology and advances in membrane development provide an in sight into what we can expect in future. Papers in the conference proceedings relevant to INIS are indexed separately

  14. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2016-05-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  15. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

    Directory of Open Access Journals (Sweden)

    Hendry Sakke Tira

    2014-10-01

    Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

  16. Proceedings of the Trombay symposium on desalination and water reuse: technology interventions in water purification and management - challenges and opportunities

    International Nuclear Information System (INIS)

    Tewari, P.K.; Saurabh; Tiwari, S.A.; Kaza, Saikiran

    2015-01-01

    This conference deals with the issues relevant to water security, desalination processes and water reuse. The topics covered in the symposium include: water scenario, integrated water resource management, innovative desalination technologies, nuclear and renewable energy based desalination, intake and out fall systems, advances in water purification technologies, advanced water treatment, nanotechnologies in water purification, innovations in desalination technologies, reject brine management, drinking water in rural and remote areas, water quality monitoring and assurance, emerging membrane technologies, spent membrane management, environment and health, techno-economic evaluation and financial models etc. Papers relevant to INIS are indexed separately

  17. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  18. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    International Nuclear Information System (INIS)

    Romero, R.J.; Siqueiros, J.; Huicochea, A.

    2007-01-01

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP WP is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and water purification coefficient of performance (COP WP ) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP ET up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP WP allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP A value or working fluid-absorbent pair

  19. Purification and concentration of uranium-bearing solutions at the plants of the Societe industrielle des minerais de l'Ouest

    International Nuclear Information System (INIS)

    Vollerin, G.

    1980-01-01

    The author describes the various processes for purification of uranium-bearing solutions used at the plants of the Societe industrielle des minerais de l'Ouest (SIMO) from their commissioning up to the present time, together with the purification circuit adopted at the two plants at present operating in Niger. (author)

  20. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  1. Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification.

    Science.gov (United States)

    Nie, Chuanxiong; Peng, Zihang; Yang, Ye; Cheng, Chong; Ma, Lang; Zhao, Changsheng

    2016-11-15

    Developing robust and recyclable absorbents for water purification is of great demand to control water pollution and to provide sustainable water resources. Herein, for the first time, we reported the fabrication of Kevlar nanofiber (KNF) based composite particles for water purification. Both the KNF and KNF-carbon nanotube composite particles can be produced in large-scale by automatic injection of casting solution into ethanol. The resulted nanofibrous particles showed high adsorption capacities towards various pollutants, including metal ions, phenylic compounds and various dyes. Meanwhile, the adsorption process towards dyes was found to fit well with the pseudo-second-order model, while the adsorption speed was controlled by intraparticle diffusion. Furthermore, the adsorption capacities of the nanofibrous particles could be easily recovered by washing with ethanol. In general, the KNF based particles integrate the advantages of easy production, robust and effective adsorption performances, as well as good recyclability, which can be used as robust absorbents to remove toxic molecules and forward the application of absorbents in water purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  3. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    Science.gov (United States)

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  5. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  6. Evaluation of RSG-GAS purification system and pool warm water layer supplier performance

    International Nuclear Information System (INIS)

    Sudiyono; Suhadi; Diah-Erlina-Lestari

    2005-01-01

    Function of RSG-GAS purification system and warm water supplier (KBE 02) are to pick up dissolve activation result and another dirts of warm water layer. To keep quality of water at the decided level. The system is equipped by heater to supply warm water layer on the reactor pool surface the distribution is to reduce radiation level in the operation hall area a speciality on the reactor pool surface. Line KBE 02 tomord beam tube headitty system supplies water necessary to be shielding to beam tube in use off time. Of the RSG-GAS purification system and pool warm water layer performance date can be shown north of water is always in good condition. To require the dechded requirement. Resin live time is two years and then months

  7. The application of modified montmorillonite in the processes of baromembrane purification of water from U (VI)

    International Nuclear Information System (INIS)

    Yurlova, L.Yu.; Krivoruchko, A.P.

    2010-01-01

    The processes of uranium-containing water purification by ultra- and nanofiltration methods combined with the use of montmorillonite modified by polyethyleneimine are studied. It is shown that the application of montmorillonite allows one to obtain the high indices of the uranium-containing water purification by baromembrane methods.

  8. Enriched Water-H{sub 2} {sup 18}O Purification to be Used in Routine {sup 18}FDG Production

    Energy Technology Data Exchange (ETDEWEB)

    Al Rayyes, A. H. [Atomic Energy Commission of Syria, Chemistry Department, Cyclotron Division, Damascus (Syrian Arab Republic)

    2009-07-01

    Oxygen-18 enriched water has been recovered from IBA (Ion Beam Applications) recovery system followed by purification and then used in the production of {sup 18}F-. The purification process has been carried out by irradiation with UV followed by a distillation under vacuum. After purification, 95% of water is recovered and organic compounds, radioisotopes, trace metals and gases are eliminated efficiently. Results show that there are no significant differences in (2-deoxy-2-[{sup 18}F]fluoro-D-glucose ([{sup 18}F]FDG) production yield using purified water by the proposed method and new enriched water. Tritium was detected in the irradiated enriched water. Contamination precautions during purification should be considered. Tritium was not present in {sup 18}FDG or Na-{sup 18}F final products. (author)

  9. Water purification using solar radiation in Nigeria

    International Nuclear Information System (INIS)

    Udounwa, A.E.; Osuji, R.U.

    2005-12-01

    In developing countries, lack of safe and reliable drinking water constitutes a major problem. Contaminated water is the major cause of most water borne diseases like diarrhoea. Disinfection of water is accomplished by a number of different physical - chemical treatments including boiling, application of chlorine and filtration techniques. Solar energy, which is universally available, can also be used effectively in this process, that is, to deactivate the micro-organisms present in this contaminated water thereby improving its microbiological quality. This treatment process is called solar water disinfection. This paper therefore appraises the extent to which research work has been done as regards purification of water using solar radiation in Nigeria vis-a-vis outside the country. It is hoped that it will serve as a wake-up-call for Nigerians especially those in remote areas with no treated pipe borne water supply. The problems and prospects of this technology as well as the policy implications are presented. (author)

  10. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  11. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  12. Purification of oil-contaminated soils from heavy metals using plants

    International Nuclear Information System (INIS)

    Zamanova, A.

    2014-01-01

    Full text : Purification of local areas of oil-contaminated soils with contamination degree of 5-8 percent using plant resistant to salinity and high temperature and rehabilitation of these soils is the most urgent task for Apsheron Peninsula which is the main territory of oil onshore in Azerbaijan. This method is environmentally compatible and economically viable against other methods. Despite the fact that in this area it has been carried out numerous scientific researches, for each level of contamination, for each specific soil type, for each specific climatic conditions and the group of plants requires more and more researches

  13. Detection of hepatitis A virus and Enterovirus In the output water purification stations and charguia Jdeida

    International Nuclear Information System (INIS)

    Tallous Chaowki

    2010-01-01

    The objective of this study is looking for two enteric viruses (enteroviruses and hepatitis A) in the treated wastewater from two sewage treatment plants, Jdeida and charguia. The detection of these viruses is performed by RT-PCR. The detection limit of this technique is estimated at 10PFU/ml. The molecular study showed that HAV found in 10 pour cent of wastewater analyse samples.Enteroviruses were detected in 15 pour cent of tested samples. The presence of these viruses in treated water showed a lack of purification function of these stations on virology terms.

  14. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  15. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  16. The importance of the ammonia purification process in ammonia-water absorption systems

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Sieres, Jaime

    2006-01-01

    Practical experience in working with ammonia-water absorption systems shows that the ammonia purification process is a crucial issue in order to obtain an efficient and reliable system. In this paper, the detrimental effects of the residual water content in the vapour refrigerant are described and quantified based on the system design variables that determine the effectiveness of the purification process. The study has been performed considering a single stage system with a distillation column with complete condensation. The ammonia purification effectiveness of the column is analysed in terms of the efficiencies in the stripping and rectifying sections and the reflux ratio. By varying the efficiencies from 0 to 1, systems with neither the rectifying nor stripping section, with either the rectifying or stripping section, or with both sections can be considered. The impact of the ammonia purification process on the absorption system performance is studied based on the column efficiencies and reflux ratio; and its effects on refrigerant concentration, system COP, system pressures and main system mass flow rates and concentrations are analysed. When the highest efficiency rectifying sections are used a combination of generation temperature and reflux ratio which leads to optimum COP values is found. The analysis covers different operating conditions with air and water cooled systems from refrigeration to air conditioning applications by changing the evaporation temperature. The importance of rectification in each kind of application is evaluated

  17. Protection and environmental supervision activities at ROMAG PROD Plant

    International Nuclear Information System (INIS)

    Chilom, Rodica

    2002-01-01

    The protection and environmental supervision activity at ROMAG PROD heavy water plant is embodied in the very production process. The environmental supervision is done by: 1. the sensing system for H 2 S which monitors H 2 S and other gases 24 h/day on three zones of production storage and transport of H 2 S; 2. daily tightness checking of the installations working with H 2 S; 3. daily analytical checking of the air and water pollutants at seven air sampling checking points in dwelled zones, at the industrial area boundary and at purification stations and water waste discharge points. The water and air environmental components are protected through safe operation of the heavy water installations and of the flue gas installation. The water protection is ensured through optimal operation of the purification facilities, namely: the purification of the water resulting from the isotopic exchange; acid water neutralization station which process the waste water collected from the whole plant; neutralization reservoir for water resulting from ionic exchange; purification station of the sulfate waters resulting from the H 2 S fabrications installation; mud pool. The ROMAG PROD Plant operates according to the ISO 9001 and ISO 14001 standards and reports regularly its activity to the Environmental Protection and Water System Management Authority

  18. Purification of the Drain Water and Distillation Residues from Organic Compounds, Transuranic Elements and Uranium at the Chernobyl NPP

    Directory of Open Access Journals (Sweden)

    Rudenko, L.I.

    2014-05-01

    Full Text Available Article examines the purification of drain water and distillation residue from organic (polymeric compounds, tran suranic elements and uranium. We propose the pretreatment method with the use of a type «Sizol» coagulant-flocculant and catalytic oxidation with hydrogen peroxide and ultrafiltration. This method prevents evaporator coking by dustsuppression and other organic substances, which are vulcanized by heating. Removing alpha-emitting radionuclides increases safety level at the nuclear power plant.

  19. Efficacy of Flocculating and Other Emergency Water Purification Tablets

    Science.gov (United States)

    1993-05-01

    challenge agent was Giardia muris cysts (10,11,12). Water temperatures were 5 °C, 15 °C and 25 °C. Chemical Agent Challenge The challengjng chemical...Aquapure water purification tablets for inactivation of Giardia muris cysts. Final Technical Report, W1360701503201. Environmental Ass=iates LTD, 1185...Environmental Protection Agency, Washington, D. c. 20460. 27 39. Jackson, T.F.H.G. 1988. A report of the effect of Chlorfloc treabrent on Giardia muris cysts

  20. Polyamide membranes with nanoscale Turing structures for water purification

    Science.gov (United States)

    Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie

    2018-05-01

    The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

  1. Formation of secondary products in water purification. ; Charactarization of chlorination by-products. Josui shori ni okeru fukuseiseibutsu. ; Enso shori ni yoru shodoku fukuseiseibutsu no seisei tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, T [The Inst. of Public Health, Tokyo (Japan)

    1993-12-10

    Chlorination of drinking water is an inevitable process for the purification of drinking water. It has been made clear that injected free chlorine reacts with organic matter in water to produce chlorinated by-products. Many of those compounds are toxic, and studies have been made on the international water quality standard. Water quality standard has been revised also in Japan. The sources of organic matter which is the cause for production of chlorinated by-products vary according to the kinds and conditions of the water source for drinking water. Removal of precursors in the original water, removal of by-products, and change in the disinfection system with alternate disinfectant for chlorine are among the measures for decreasing chlorinated by-products at water purification plants, but the first one is employed as the basis method. It is expected that more severe regulation may be imposed on the quality of the water source for drinking water, and more strict oxidation and disinfection systems is inevitable for water management based on the new water quality standard. 10 refs., 5 figs., 2 tabs.

  2. Early Detection of Biofouling on Water Purification Membranes by Ambient Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Jakka Ravindran, Swathy; Kumar, Ramesh; Srimany, Amitava; Philip, Ligy; Pradeep, Thalappil

    2018-01-02

    By direct analysis of water purification membranes using ambient ionization mass spectrometry, an attempt has been made to understand the molecular signatures of bacterial fouling. Membrane based purification methods are used extensively in water treatment, and a major challenge for them is biofouling. The buildup of microbes and their extracellular polymeric matrix clog the purification membranes and reduce their efficiency. To understand the early stages of bacterial fouling on water purification membranes, we have used desorption electrospray ionization mass spectrometry (DESI MS), where ion formation occurs in ambient conditions and the ionization event is surface sensitive. Biosurfactants at the air-water interface generated by microorganisms as a result of quorum sensing, influence the water-membrane interface and are important for the bacterial attachment. We show that these biosurfactants produced by bacteria can be indicator molecular species signifying initiation of biofilms on membrane surfaces, demonstrated by specific DESI MS signatures. In Pseudomonas aeruginosa, one of the best studied models for biofilm formation, this process is mediated by rhamnolipids forewarning bacterial fouling. Species dependent variation of such molecules can be used for the precise identification of the microorganisms, as revealed by studies on P. aeroginosa (ATCC 25619). The production of biosurfactants is tightly regulated at the transcriptional level by the quorum-sensing (QS) response. Thus, secretion of these extracellular molecules across the membrane surface allows rapid screening of the biofilm community. We show that, the ambient ionization mass spectrometry can detect certain toxic heavy metals present in water, using surfactant-metal complexes as analytes. We believe that such studies conducted on membranes in various input water streams will help design suitable membrane processes specific to the input streams.

  3. Radiation purification of water from cyanides

    International Nuclear Information System (INIS)

    Piskarev, I.M.; Rylova, A.E.; Sevast'yanov, A.I.

    1994-01-01

    Attempts at performing the process of radiation purification of water from cyanides have been described in the literature and were briefly reviewed earlier. Sodium cyanide solutions were examined in a concentration range from 26 mg/l to 80 g/l. The data given in various publications often disagree. Radiation yields of cyanide decay vary from 0.48 to 28 molecule/100 eV for equal dose rates, according to the data presented by various authors, and the maximum yield of 1200 was attained at a low dose rate (0.18 kGy/h) in a neutral solution. Chain decomposition of cyanides was observed in some studies, but not in others; the acidity of the solution examined was not necessarily reported. It was specified that complete decomposition of cyanides occurs; however, no detection limits for the analytical procedures of cyanide determination were reported. The authors performed experiments on the purification of actual industrial waste waters (solution and slurry), which were preliminarily preserved with sodium hydroxide (pH 9; the cyanide content was 90 mg/1). Solutions in dishes 40 mm in diameter and 20 or 40 mm in height were exposed to X-rays with a maximum energy of bremsstrahlung spectrum of 70 keV. Volumes of the solutions were 20 and 40 ml. With consideration for angular divergence and beam attenuation by solution, the average absorbed-dose rates were 1.5 and 3.1 kGy/h for dishes of V equal to 40 and 20 ml, respectively. Measurements of the absorbed dose were made with a ferrosulfate dosimeter

  4. Comparison of bioindicator eukaryotes of activated sludge biocenoses on two water-treatment plants: a case study

    Directory of Open Access Journals (Sweden)

    Achmadulina Farida Y.

    2017-06-01

    Full Text Available Activated sludge biocenoses were compared on waste-water treatment plants in the city of Kazan, Russian Federation and the city of Teplice, Czech Republic. Based on Palia-Kovnatski index, Acanthamoeba in Kazan, Epistylis in Teplice, and Acanthamoeba and Centropyxis were dominant genera in both plants. The major subdominant generas identified were Arcella, Opercularia and Aspidisca. This indicates high nitrification ability, high water purification potential and matured activated sludge. Chemical composition of the waste-water was identified as the main factor determining the sludge biocenoses diversity. Higher sludge biodiversity (Shannon, Margalef, and Sorensen indexes was found in Kazan corresponding to more concentrated inflow water.

  5. Application of electrochemically synthesized ferrate(VI in the purification of wastewater from coal separation plant

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2010-01-01

    Full Text Available The oxidative and coagulation efficiency of Na2FeO4 solution, electrochemically generated by trans-passive anodic oxidation of electrical steel in 10M NaOH solution, is confirmed in the process of purification of heavily contaminated wastewater from coal separation plant. The decontamination efficiency is evaluated comparing the values of selected contamination parameters obtained by chemical and biochemical analysis of plant effluent water and water obtained after decontamination with ferrate(VI solution in relatively simple laboratory procedure. The sample of 450 ml of wastewater is treated in laboratory conditions with 100cm3 solution of 1 mg dm-3 Na2FeO4 in 10M NaOH. The chemical analysis of effluent water after treatment have shown almost 3 times lower permanganate index, about 3 times lower iron content, 1.45 times lower As3+ content, 7.35 times lower ammonia content. Turbidity and chemical oxygen demand (COD is reduced for more than 5.77and 13.4 times, respectively. The suspended and colloid matter is eliminated from effluent water after treatment with ferrate(VI solution. Also, biochemical exploration has confirmed high efficiency of ferrate(VI in organics and microbial elimination showing 7.1 times lower 5-days bio-chemical oxygen demand (BOD5, and total elimination of aerobic and anaerobic bacteria from effluent water. According to standards on quality of industrial wastewater effluents, it may be concluded that ferrate(VI treatment of wastewater almost completely eliminates excess of dangerous chemicals and pathogen bacteria, with the exemption of arsenic. Thus, ferrate(VI shows capable performance in treatment of coal separation plant wastewater.

  6. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    Science.gov (United States)

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  7. Biofouling of reverse osmosis membranes used in river water purification for drinking purposes: analysis of microbial populations.

    Science.gov (United States)

    Chiellini, Carolina; Iannelli, Renato; Modeo, Letizia; Bianchi, Veronica; Petroni, Giulio

    2012-01-01

    Biofouling in water treatment processes represents one of the most frequent causes of plant performance decline. Investigation of clogged membranes (reverse osmosis membranes, microfiltration membranes and ultrafiltration membranes) is generally performed on fresh membranes. In the present study, a multidisciplinary autopsy of a reverse osmosis membrane (ROM) was conducted. The membrane, which was used in sulfate-rich river water purification for drinking purposes, had become inoperative after 6 months because of biofouling and was later stored for 18 months in dry conditions before analysis. SSU rRNA gene library construction, clone sequencing, T-RFLP, light microscope, and scanning electron microscope (SEM) observations were used to identify the microorganisms present on the membrane and possibly responsible for biofouling at the time of removal. The microorganisms were mainly represented by bacteria belonging to the phylum Actinobacteria and by a single protozoan species belonging to the Lobosea group. The microbiological analysis was interpreted in the context of the treatment plant operations to hypothesize as to the possible mechanisms used by microorganisms to enter the plant and colonize the ROM surface.

  8. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    Science.gov (United States)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  9. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  10. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  11. Concept of off-gas purification in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; von Ammon, R.

    1986-01-01

    Concepts and individual processes for the off-gas purification in reprocessing plants are described which are suited to achieve a better retention of the gaseous and volatile radionuclides 129 I, 85 Kr, 14 C, and tritium. Improved and new process steps have been developed to the cold pilot plant scale. Essential individual process steps are an efficient iodine desorption from the dissolver solution, improved and new off-gas scrubs with nitric acid, a cryogenic as well as a selective absorption process for rare gas recovery plus the required prepurification steps and a process for the continuous and pressure-free fixation and storage of krypton in a metal matrix. Individual facilities have been selected and combined to investigate integrated dissolver off-gas systems. Advanced concepts based on a process using low flows and loads of all off-gas streams including the cell ventilation off-gas are briefly discussed

  12. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  13. Symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries: proceedings

    International Nuclear Information System (INIS)

    2008-12-01

    The symposium is organised to bring together researchers, plant operators and regulatory agencies working in the area of operational and environmental problems associated with use of water as a coolant in power plants and other allied industries. The symposium targets chemists, biologists, environmental scientists, power plant operating engineers and plant designers working in various academic, governmental and non-governmental organisations. The major themes of the symposium are: water chemistry of coolant systems in power plants and other industries, chemistry of primary and moderator systems in nuclear power plants and research reactors, corrosion issues including Flow-Accelerated Corrosion (FAC) and its control in water coolant systems, chemistry of steam and water at elevated temperature in nuclear power plants, once through steam generator chemistry, industrial fire water systems, ion-exchange purification, innovative water treatment in power and industrial units, chemical cleaning and chemical decontamination, biofouling and biocorrosion, cooling water treatment chemicals and their environmental fate and environmental impact of thermal effluents. Papers relevant to INIS are indexed separately

  14. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification.

    Science.gov (United States)

    Sun, Guofei; Chung, Tai-Shung; Jeyaseelan, Kandiah; Armugam, Arunmozhiarasi

    2013-02-01

    Aquaporins are water channel proteins in biological membranes that have extraordinary water permeability and selectivity. In this work, we have demonstrated that one of their family members, AquaporinZ (AqpZ), can be possibly applied in a pressure-driven water purification process. A nanofiltration membrane was designed and fabricated by immobilization of AqpZ-reconstituted liposomes on a polydopamine (PDA) coated microporous membrane. Amine-functionalized proteoliposomes were first deposited via gentle vacuum suction and subsequently conjugated on the PDA layer via an amine-catechol adduct formation. Due to the existence of a polymer network within the lipid bilayers, the membrane could sustain hydraulic pressure of 5 bar as well as the strong surface agitation in nanofiltration tests, indicating a relatively stable membrane structure. In comparison with membrane without AqpZ incorporation, the membrane with AqpZ-to-lipid weight ratio of 1:100 increased the water flux by 65% with enhanced NaCl and MgCl(2) rejections of 66.2% and 88.1%, respectively. With AqpZ incorporation, the vesicle immobilized membrane exhibits a promising strategy for high productivity water purification. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Purification of Drinking Water from Fluorides by Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Aleksander A.

    2018-03-01

    Full Text Available Introduction: An important task in the sphere of sanitary and epidemiological welfare of the population of the Russian Federation is provision of drinking water. Tap water must not contain pathogenic bacteria and dangerous chemicals. Purification systems regulate the concentration of fluoride ions in drinking water. The aim of this paper is to study the possibility of purifying tap water from fluoride ions by reverse osmosis. Materials and Methods: We used the Alfa Laval PilotUnit 2.5 "RO/NF with a set of spiral-type membrane elements RO99-2517/48 to remove fluoride ions. We measured the concentration of fluoride ions by the potentiometric method using the Hanna HI 2211 (pH/mV/T. Fluoride-selective electrode ELIS 131 F was used as an indicator electrode and the standard chloride-silver electrode EVL-1M3 was used as a reference electrode. Both the calibration and buffer solutions were prepared from chemically pure reagents and A. R. purity for analysis reagents according to GOST 4386-89. Results: A single passage of water through the reverse osmosis membrane reduced the concentration of fluoride ions from 2.29 ± 0.02 to 0.240 ± 0.015 mg/l. Double passage of water reduced the concentration by a factor of two. As the concentration of fluoride ions increased in the retentate, the concentration in the filtrate slightly increased too. Purification of water reduced the concentration of fluoride ions from 20 mg/l, to 0.5 mg/l. Discussion and Conclusions: Thus, using the Alfa Laval PilotUnit 2.5" RO/NF with a set of spiral-type membrane elements RO99-2517/48 filters tap water of ions of fluoride to the maximum allowable concentration. This study opens the perspective of using reverse osmosis to purify tap water with high concentration of fluoride ions.

  16. Purification of mine water of radium - The implementation of the technology in a coal mine

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2002-01-01

    In underground coal mines in the Upper Silesian Coal Basin there are inflows of highly mineralised waters containing radium isotopes. These waters cause radioactive pollution of the natural environment in mining areas. Therefore cleaning of saline waters of radium is very important. Two types of radium-bearing waters were distinguished - one type containing radium and barium ions, but no sulphates (type A) and another one in which radium and sulphate ions are present but no barium (type B). A very efficient and inexpensive method of purification of saline waters, of Ba 2+ and Ra 2+ ions was developed and implemented in two coal mines. As the result of used technology, based on application of phosphogypsum as the cleaning agent, a significant decrease of radium discharge was achieved - daily of about 120 MBq of 226 Ra and 80 MBq of 228 Ra. Another type of radium waters does not contain barium ions, but contains sulphate ions SO 4 2- . There is no carrier for co-precipitation of radium so radium is transported with discharged waters to main rivers. Different method of purification from radium must be applied for such waters. Laboratory and field experiments were performed, and a cleaning method was chosen. For purification of saline waters - waste products from other industrial processes are applied. The method of purification have been applied in full technical scale in coal mine with very good results - of about 6 m 3 /min of radium-bearing waters is cleaned. Whole this process takes place in underground old workings without any contact of mining crew with radioactive deposits, which are produced during the process. As a result radium amount released to the natural environment was significantly diminished - approximately of about 90 MBq of 226 Ra per day and 150 MBq of 228 Ra. (author)

  17. Reverse osmosis and its use at the nuclear power plants. Purification of primary circuit coolant by the means of reverse osmosis

    International Nuclear Information System (INIS)

    Kus, Pavel; Vonkova, Katerina; Kunesova, Katerina; Bartova, Sarka; Skala, Martin; Moucha, Tomáš

    2014-01-01

    This contribution is focused on the use of membrane technologies (e.g. reverse osmosis) for the primary coolant purification at the nuclear power plants. Currently, boric acid present in the primary coolant is preconcentrated at the evaporators, but their operation is very inefficient and expensive. Therefore, reverse osmosis was proposed as one of promising methods possibly replacing evaporators. The aim of the purification process is to achieve boric acid solution of a defined concentration (40 g/l) in the retentate stream in order to recycle it and reuse it in the primary circuit. Additionally, permeate flow should consist solely of pure water. To study the efficiency of several reverse osmosis modulus in the boric acid removal form the water solutions, experimental apparatus was constructed in our laboratory. It consists of the solution reservoir, pump and reverse osmosis modulus. The arrangement of experiments was batch and the retentate flow was refluxed to the feed solution. Several modulus of commercial reverse osmosis membranes were tested. The feed solution contained various concentrations of H 3 BO 3 , KOH, LiOH and NH 3 in order to simulate real primary coolant composition. Based on the experimental results, mathematical model was developed in order to optimize experimental conditions for the best results in primary coolant purification and boric acid preconcentration. (author)

  18. Development of constructed wetland using hydroponic biofilter method for purification of hyper-eutrophic lake water; Fueiyoka kosui no joka no tameno suiko seibutsu rokaho wo mochiita jinko shicchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Aizaki, M. [Shimane Univ., Matsue (Japan)] Nakasato, H. [Top Ecology Co. Ltd., Tokyo (Japan)

    1997-09-10

    Applying the hydroponic biofilter method as a direct purification method for a hyper-eutrophic lake water, an experiment was carried out at the Tsuchiura Port on Lake Kasumigaura to obtain data for constructing a hydrophilic artificial wetland. Purification of hyper-eutrophic lake water containing a large amount of water blooms in summer was attempted applying the hydroponic biofilter method for which hydrophyte is used. As a result, it was clarified, by applying the hydroponic biofilter method, that capturing effect of suspended substances can be achieved in the rooting zone, captured suspended substances are decomposed at high rate, and the revolved nutrient salt can be absorbed and assimilated by the use of plants having high growth rates. Ipomoea aquatica had the highest removal activity, followed by nasturtium officinal, menthe spicata, and oenanthe javanica. As a result, it became clear that a constructed wetland made with the hydroponic biofilter method can be applied as a direct purifying method for hyper-eutrophic lake water by selecting appropriate plants in accordance with season. 18 refs., 1 fig., 4 tabs.

  19. Water Purification Characteristic of the Actual Constructed Wetland with Carex dispalata in a Cold Area

    Science.gov (United States)

    Tsuji, Morio; Yamada, Kazuhiro; Hiratsuka, Akira; Tsukada, Hiroko

    Carex dispalata, a native plant species applied in cold districts for water purification in constructed wetlands, has useful characteristics for landscape creation and maintenance. In this study, seasonal differences in purification ability were verified, along with comparison of frozen and non-frozen periods' performance. A wetland area was constructed using a “hydroponics method” and a “coir fiber based method”. Results show that the removal rates of BOD, SS, and Chl-a were high. On this constructed wetland reduces organic pollution, mainly phytoplankton, but the removal of nitrogen and phosphorus was insufficient. The respective mean values of influent and treated water during three years were 26.6 mg/L and 12.2 mg/L for BOD, and 27.9 mg/L and 7.5 mg/L for SS. The mean value of the BOD removal rate for the non-frozen period was 2.99 g/m2/d that for the frozen period was 1.86 g/m2/d. The removal rate followed the rise of the BOD load rate. The removal rate limits were about 4 g/m2/d during the frozen period and 15 g/m2/d during the non-frozen period. For operations, energy was unnecessary. The required working hours were about 20 h annually for all maintenance and management during operations.

  20. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  1. Replacement of fine particle purification filter of the PHT purification system - 15083

    International Nuclear Information System (INIS)

    Lee, D.S.

    2015-01-01

    The increase of chalk river unidentified deposit (CRUD), a particulate corrosion product in PHT (primary heat transport) system with increased operating years of a nuclear power plant causes: -) the problems of increased heavy water decomposition and deuterium formation reaction due to catalytic reaction with CRUD, -) damage to PHT pump seal due to a corrosion product, -) damage to fuel channel closure seal, and increased radiation exposure of workers due to elevated dose rate in steam generator water chamber. Wolsung unit 3 and 4 have replaced fine filter media in PHT purification system in phases reducing the pore size of the filter media (5 μm → 2 μm → 1 μm → 0.45 μm) to solve this problem. The phased replacement of fine filter media by the one with a smaller pore size reduced CRUD in PHT system significantly and also radiation dose rate in steam generator water chamber. Accordingly, many problems related to the aging of a plant (including increased radiation exposure of workers during outage, damage to mechanical seal of PHT pump) have been solved. (author)

  2. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  3. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    Science.gov (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  4. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  5. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Radiation methods for purification of water, wastewater and flue gases at international chemical congress of Pacific basic societies

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1996-01-01

    Content of report, presented at the symposium Ecological applications of ionizing radiation (water, waste water and technological waste products), which took place within the frames of the International Chemical Congress of the Pacific Ocean Region counters (the PacifiChem'95, December 17-22, 1995, Honolulu, Hawaii, USA) is briefly presented. The problems on electron-radiation purification of natural water, domestic and technological waste waters, flue gases and contaminated soils, radiation treatment of the waste water sediments, ionizing radiation sources, applied in this area of technology and economics of radiation purification methods were discussed

  7. Radiation purification of the chemical industry effluents and possibilities of realization of this method

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kovalevskaya, A.M.; Shlyk, V.G.; Savushkin, I.A.; Kazazyan, V.T.

    1977-01-01

    Radiation-chemical methods for synthetic fibre industry effluents purification from cyanides, sulphides and monomers, as well as for disinfection of circulation water and improvement in sedimental and filtering properties of waste active slurry in petrochemical industry are described. Chemical plant effluents are purified by 70-90% from cyanides at the dose rate of 0,3 - 0,5 Mrad, by 60 - 70% from sulphides and monomers at the dose of 0,2 Mrad. Circulation water of petroleum processing plant is disinfected at the dose of 0,08 Mrad; the rates of filtration and sedimentation of waste active slurry increase two and three fold, correspondingly, at the dose of 0,6 Mrad. The power of radiation sources required for the industrial realization of radiation purification of liquid wastes has been calculated

  8. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    Science.gov (United States)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  9. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  10. Use of microphytoalgae for purification of radioactive waste water

    International Nuclear Information System (INIS)

    Cecal, Al.; Palamaru, Ileana; Humelnicu, Doina; Popa, K.; Rudic, V.; Cepoi, Liliana; Gulea, A.

    1999-01-01

    This work deals with a study on the purification of some radioactive waters, simulating radioactive waste waters, by some microbial collectors. For a given ion the retaining degree varies as 134 Cs - > 60 Co 2- > 51 Cr 3- > 55-59 Fe 3- , but for same algae types, this parameter decreases as follows: Scenedesmus quadricauda > Cylindrospermum major > Nostoc microscopicum. Furthermore, using the radioactive 60 Co 2- ions, the biochemical mechanism of retaining for such cations by different separated components of living cells was established. More retention is observed in proteins, pigments and polysaccharides, but the glycides are not able to keep such cations. (authors)

  11. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  12. STUDY ON WATER QUALITY INDICATORS AT TAIA TREATMENT PLANT HUNDEDOARA COUNTY

    Directory of Open Access Journals (Sweden)

    Ramona Violeta CAZALBAŞU

    2017-05-01

    Full Text Available Water is consumed in its natural form or in a processed one. It is a well-known fact that enterprises, institutions, energy and agriculture consume it as processed water whereas the population consumes it as drinking water or wastewater. This paper presents the study of water quality indicators from the treatment plant Taia in Hunedoara County. The following quality indicators were determined: turbidity, hardness, alkalinity, chlorine oxide and organic substances. The determined quality indicators revealed that they fall within the limits set by legislation, with some exceptions. In each step of purification of organic substances there has been a continual reduction, this being carried out both biologically because of the biomass deposited on sand grains in the filter bed as well as especially during the oxidation step with active chlorine

  13. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  14. Active test of purification facility at Rokkasho reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, Takahiro; Sato, Nobuharu; Inaba, Makoto; Itagaki, Takashi [Purification Section, Plant Operation Department, Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan)

    2009-06-15

    I. Introduction: At RRP, following the completion of Water Test, Chemical Test (CT) and Uranium Test (UT), the Active Test (AT) with actual spent fuel assemblies has been performed since March of 2006. This paper deals with the AT of the plutonium purification unit at RRP. II. Outline of plutonium purification unit: The plutonium purification unit purifies plutonium nitrate sent from the Separation Facility, and it has 5 pulsed columns and 4 mixer-settlers. Plutonium valence is adjusted to Pu{sup 4+} in plutonium nitrate sent from the Separation Facility, and then plutonium is extracted into organic phase (tri-butyl phosphate: TBP) in the extraction column. At this time, most of fission products remain in aqueous phase (nitric acid solution), which is discharged as raffinate through the diluent washing column. The fission products still contained in loaded organic solvent are removed in the FP scrubbing column, and then plutonium is stripped with nitric acid solution including hydroxylamine nitrate (HAN) as reducer. After TBP contained in purified plutonium nitrate solution is removed in the diluent washing bank with n-dodecane, it is sent to the plutonium concentration unit. Organic solvent used in the stripping column is sent to the plutonium barrier bank in order to remove remaining plutonium with uranous nitrate and hydrazine nitrate solution, and organic solvent is sent to the solvent regeneration unit. III. Active test results: The main purpose of the AT on the plutonium purification unit is (1) checking the performance of plutonium extraction and stripping, (2) checking the efficiency of diluent washing. III.A. Plutonium Extraction and Stripping performances: As a result of the neutron monitor profile on the extraction column during the representative operation, extraction was completed at the upper part of the column. As for the neutron monitor profile on the stripping column, stripping was performed at the lower part of the column. Plutonium concentration

  15. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  16. First operational experiences with the new biological waste water treatment plant at HKM; Erste Betriebserfahrungen mit der neuen biologischen Abwasserbehandlungsanlage der HKM

    Energy Technology Data Exchange (ETDEWEB)

    R. Wendt; L. Nelles

    2002-07-01

    The common process of coke oven gas purification in by-product plant produces process water that is namely composed of excess flushing water from the crude tar decantation and waste water from NH{sub 3} and H{sub 2}S scrubbers. In 1959, the coke plant at HKM (formerly Mannesmann Huettenwerken Huckingen AG) was commissioned. This plant made use of the phenol removal process. Utilizing the phenolsolvan method the phenols toxic to microbes were removed from ammonia waste water and crude phenol recovered. The process water was subsequently steam stripped in strippers and deacidifiers. After more than 40 years of operation the need for modernization of the phenol removal plant arose. As a consequence of more stringent limits on coke plant effluents that have already been in place for several years the HKM came to a resolution to construct a new biological waste water treatment plant instead of renewing the phenol removal plant.

  17. Development of concept for concurrent biocide generation and water system purification. [with application to Skylab water tanks

    Science.gov (United States)

    1974-01-01

    An attempt was made to construct an electrochemical system, using iodine, for water purification in Skylab. Data cover measurements of iodine production rates, effect of electrode size and geometry on iodine production rates, and feasibility of using stainless steels as reference electrodes.

  18. Recovering of thorium contained in wastes from Thorium Purification Plant

    International Nuclear Information System (INIS)

    Brandao Filho, D.; Hespanhol, E.C.B.; Baba, S.; Miranda, L.E.T.; Araujo, J.A. de.

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author)

  19. Hygienic study of barrier function of local water purification facilities in respect to chemical pollutants agrochemicals and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, I E

    1984-08-01

    Contamination of water reservoirs is presently a multicomponent phenomenon because pesticides, fertilizers, petroleum products, dyes and surfactants may all be present in water. Efficiency of commonly-employed water purification methods was evaluated: sedimentation, chlorination, filtering, and its related effect or representative groups of agricultural chemicals. The most vulnerable link in the rural water purification system was the filtration; in presence of surfactants, the filtration effectiveness was reduced by 40-50%. The effectiveness of this hauling function of surfactants was related to chemical structure of the polluting compounds and to homologous characteristics of the detergents. The effectiveness of the precipitation of chemical impurities from polluted water depended on their solubility in water. 1 figure.

  20. CAREM 25: Design of resin bed for purification and boron removal systems

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Jimenez Rebagliati, Raul; Raffo Calderon, Maria C.; La Gamma, Ana M.

    2000-01-01

    The purification of the water the primary coolant of a water cooled nuclear reactor as well as the water of many auxiliary systems is controlled by the use of ion exchange resins. In the present paper, the resin beds for three different systems are specified: the purification and control volume system, the suppression pool water and the spent fuel pool water for the reactor CAREM-25. In all cases the dimensioning calculations have been done taking in consideration the amount of contaminants and corrosion products generated under normal operation or post-accident. Also, the results have been contrasted with the experience of the nuclear power plants in operation in Argentina, international design criteria and international standards. For the primary coolant, the boron-removal beds have been sized and an estimation of the maximum dose received by the resins have been calculated. It have been found that the result is well below the damaging threshold reported in the literature. (author)

  1. Purification of waters and elimination of organochloric insecticides by means of active coal

    Directory of Open Access Journals (Sweden)

    DRAGAN MARINOVIĆ

    2010-04-01

    Full Text Available Pollution of water and the determination of the degree of its pollution with numerous physical, chemical and biological polluters have become general, ever increasing social and health related problems. Within this study, the concentrations of some most frequently used organochloric insecticides (OCI: a-hexachlorocyclohexane (a-HCH, γ-hexachlorocyclohexane (lindane, heptachlor, aldrin, dieldrin, endrin, dichlorodiphenyl trichlorethane (DDT were investigated. OCI are highly toxic substances for the human population and their effective elimination from the environment is of paramount interest. To determine the OCI concentration in water samples, the EPA–608 method and the liquid–liquid extraction principle were applied. A procedure for OCI elimination was realized by passing the water over four columns filled with various active coals: KRF, K-81/B, NORIT ROW-0.8 and AQUA SORB CS. These active coals are carbonized coconut shells activated by different procedures. The obtained results indicated that best purification of potable and waste water achieved using a column with Norit Row-0.8 filling. Research proved that small quantities of OCI can also be effectively removed using a Norit Row-0.8 active coal filled column, without altering the organoleptic properties of the water, which meets the requirements of water purification processes.

  2. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  3. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted

  4. Thorium, Uranium and Rare Earth Elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas Advanced Materials Plant (LAMP)

    International Nuclear Information System (INIS)

    Al-Areqi, W.M.; Amran Abdul Majid; Sukiman Sarmani

    2013-01-01

    Full-text: Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6 Bq/ kg) whereas the Th and U concentrations in WLP were determined to be 1952.9 ± 17.6 ppm (7987.4 ± 71.9 Bq/ kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/ kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/ kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/ kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6 % and 4.7 ± 0.1 % respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04 %, 1.6 %, 0.22 % and 0.06 % respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be re

  5. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  6. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  7. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    OpenAIRE

    Mariina Hiiob; Enn Karro

    2012-01-01

    Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight diffe...

  8. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  9. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  10. Summary of the last step of active test at separation facility and purification facility in Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kuroishi, Yuuki; Iseki, Tadahiro; Mitani, Akira; Takahashi, Naoki; Tsujimura, Akino; Sato, Nobuharu; Inaba, Makoto; Itagaki, Takashi

    2008-01-01

    During the last step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performance of the Separation Facility, mainly for pulsed columns and mixer-settlers were tested; Diluent washing efficiency, Plutonium extraction and stripping efficiency, Decontamination factors of fission products and Uranium and plutonium losses into wastes. Also, those of the Plutonium purification unit in the Purification Facility have been checked; Diluent washing efficiency, Plutonium extraction and stripping efficiency and Plutonium losses into wastes. Test results were equivalent to or better than expected values. (author)

  11. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  12. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants.

    Science.gov (United States)

    Zhang, Feng Juan; Jin, You Ju; Xu, Xing You; Lu, Rong Chun; Chen, Hua Jun

    2008-01-01

    Jasmonic acid (JA), abscisic acid (ABA) and indole-3-acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C(18) cartridges. The final extracts were derivatised with diazomethane and then measured by GC-MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Sequential elution of the assimilates from the C(18 )cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue.

  13. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  14. Exergy analysis of an experimental heat transformer for water purification

    International Nuclear Information System (INIS)

    Rivera, W.; Huicochea, A.; Martinez, H.; Siqueiros, J.; Juarez, D.; Cadenas, E.

    2011-01-01

    First and second law of thermodynamics have been used to analyze the performance of an experimental heat transformer used for water purification. The pure water is produced in the auxiliary condenser delivering an amount of heat, which is recycled into the heat transformer increasing the heat source temperatures and also the internal, external and exergy coefficients of performance. The theoretical and experimental study was divided into two parts. In the first part, a second law analysis was carried out to the experimental system showing that the absorber and the condenser are the components with the highest irreversibilities. In the second part, with the results obtained from the second law analysis, new test runs were carried out at similar conditions than the former but varying only one selected temperature at the time. Comparing the COP (coefficient of performance) between the old and new test runs, it was shown that higher internal, external and exergy coefficients of performance were obtained in all the new test runs. Also it was shown that the ECOP (exergy coefficient of performance) increases with an increment of the amount of the purified water produced and with the decrease of the flow ratio. -- Research highlights: → By the first time an experimental results of a heat transformer for water purification with heat recycling has been presented. → An exergy analysis has been carried out in order to identify the irreversibilities in the main components of the system. → With the results obtained of the second law analysis new experimental test runs were carried out minimizing the system irreversibilities and furthermore increasing the system efficiency.

  15. A facile TiO{sub 2}/PVDF composite membrane synthesis and their application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wei.zhang@unisa.edu.au; Zhang, Yiming; Fan, Rong; Lewis, Rosmala [University of South Australia, Centre for Water Management and Reuse (Australia)

    2016-01-15

    In this work, we have demonstrated a facile wet chemical method to synthesise TiO{sub 2}/PVDF composite membranes as alternative water purification method to traditional polymer-based membrane. For the first time, hydrothermally grown TiO{sub 2} nanofibers under alkali conditions were successfully inserted into PVDF membranes matrix. The structure, permeability and anti-fouling performance of as-prepared PVDF/TiO{sub 2} composite membranes were studied systematically. The TiO{sub 2}/PVDF composite membranes prepared in this work promise great potential uses in water purification applications as microfiltration membranes due to its excellent physical/chemical resistance, anti-fouling and mechanical properties.

  16. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  17. Dictionary of water chemistry. English/German/French. Woerterbuch der Wasserchemie. Deutsch/Englisch/Franzoesisch

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, F von

    1985-01-01

    This dictionary presents a compilation of the most important terms related to water composition and quality. Technical terms used to describe water purification and other technical processes are also included. In fact, terms come from all areas of water chemistry: they concern water sampling, water analysis and its statistical interpretation, the evalutation of results as indicators for planing and operating water purification and waste-water plants.

  18. Determination of 89Sr and 90Sr in highly radioactive water from a nuclear power plant

    International Nuclear Information System (INIS)

    Bojanowski, R.; Radecki, Z.; Duniec, S.

    1994-01-01

    The main criterion in assaying strontium radionuclides is to obtain radiochemically pure strontium sources for beta-particle counting. Nuclear power plant waters contain both 89 Sr and 90 Sr accompanied by many beta-particle and gamma-ray emitting fission and neutron-activation products. The latter activities can sometimes exceed those of strontium by a factor of 10 7 . Efficient purification procedures must be used to remove these products, preferably at an initial stage of analysis to reduce the radiation risk to personnel. A method has been developed in which a water sample is passed through a prefilter installed on top of an ion-exchange column filled with Dowex-50 resin in H + form. This prefilter is impregnated with ferrocyanides and manganese dioxide and retains most of the interfering radionuclides while the underlying cation-exchanger takes up strontium ions. A few additional purification steps result in a strontium salt that is free from other radioactivity. (orig.)

  19. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    Rakhmatulin I.R.

    2014-04-01

    Full Text Available The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental results of a constructed distiller when working with vacuum glass tubes and vacuum tubes with copper core inside. Conclusions about the possibility of using solar collectors for water desalination, are tips and tricks to improve the performance of solar desalination plant.

  20. Technological features of contamination and purification of drilling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Striletskiy, I V

    1981-01-01

    The most efficient solution to the problem of preventing contamination of the reservoirs with waste water is their reuse for water supply of the borehole. Requirements are presented which the purified waste water must meet. As a result of the conducted studies it has been established that in reservoirs, only coarsely dispersed mixture, weighting compounds and floating petroleum products are removed from the water. Finely dispersed suspension and colloid particles have a sedimentation stability and do not settle out under the influence of the gravity force. For drilling waste water there is a characteristic inconsistency in the degree of contamination both at the different boreholes and at one borehole with the passage of time. Physical-chemical characteristics of the waste waters are presented. The greatest degree of contamination of water is observed when such operations are performed as replacement of the drilling fluid, lifting of the drilling tool, cementing as well as the development of emergencies. Studies on the purification of drilling water were conducted on an experimental-industrial unit.

  1. Treatment of mine water. A German joint project purifies highly charged mine water in Vietnam; Behandlung von Bergbauabwasser. Ein deutsches Verbundprojekt reinigt in Vietnam stark belastete Bergbauabwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Stefan; Bilek, Felix [GFI Grundwasserforschungsinstitut GmbH, Dresden (Germany); Kochan, Hans-Juergen [eta AG/LUG Enginering GmbH, Cottbus (Germany); Denke, Peter [LMBV international GmbH, Senftenberg (Germany)

    2011-09-15

    As part of the joint project RAME 'Mining and Environment in Vietnam', a pilot plant for the purification of mine water arises in Vietnam. In cooperation with Vietnamese partners, for the first time an active method for the purification of mine water is used in Vang Danh. The research tasks and development activities necessary for the process development are funded in part by the Federal Ministry of Education and Research (Berlin, Federal Republic of Germany). The construction of the mine water treatment plant is described in addition to the specific national conditions.

  2. Biodiesel purification methodology produced in the RECOPE experimental plant, using ion exchange resins

    International Nuclear Information System (INIS)

    Calderon Hernandez, Teresita

    2016-01-01

    A methodology was proposed for the biodisel purification of crude palm oil produced in a plant located on the Refinadora Costarricense de Petroleo (RECOPE) campus in Alto de Ochomogo, using ion exchange resins. A comparison between two resins was carried out: the USF C-211H, which had been acquired together with the RECOPE experimental plant and the PD206 resin, which was in the process of being acquired at the time of starting the project. The biodisel was eluted by glass columns packed with each resin, to determine the saturation of the same. The percentage of free and bound glycerin and the presence of soaps were analyzed as response variables. With the results obtained, it was determined that the PD206 resin is more efficient in the removal of glycerin, soaps and methanol than the resin USF C-211H. However, neither of the two resins diminishes the acidity of the biodisel. A biodisel sample was eluted by the PD206 resin and the quality of the obtained product was analyzed. A flash point of 145 degrees was obtained. A total acid number of 0.82 mg KOH / G was shown, no presence of water or sediment was observed. The percentage value of carbon residue was 0.01% m / m, the cloud point was 12 degrees, the density at 15 degrees was 0.8713 g / cm 3 , the viscosity at 40 degrees was 2.75 mm 2 /s; the stability to oxidation was 14.5 h, the percentage of free glycerin was 0.01% m / m and the percentage of total glycerin was 0.06% m / m, finally a percentage of Fatty Acids Methyl Esters (FAME) of 98,6%. Of the analyzed parameters, all are within the limits established in the Reglamento Tecnico Centroamericano except the acidity value, which exceeds the maximum value of 0.05 mg KOH / g sample. An economic analysis was carried out to evaluate which resin provides the best option to complete the purification process of the biodisel produced. The PD206, despite being more expensive, purifies a larger volume of biodiesel, so for a better negotiation in the purchase price, this

  3. Determination of 90Sr in waters of discharge of nuclear power plants

    International Nuclear Information System (INIS)

    Campos, J.M.; Equillor, H.E.

    2010-01-01

    The determination of 90 Sr has some problems because it is a pure beta emitter, and despite the specificity of radiochemical techniques used, their full identification is not always easy, especially when detected low activities. In addition, samples water discharge presents a matrix consisting of a series of fission or activation products, beta / gamma emitters, several of which may interfere with the determination of 90 Sr. This paper describes a simple method for the determination of 90 Sr in water of discharge of nuclear power plants, which is based on the purification of 90 Y, which is used in the ARN since 2009 and has yielded good results to the present, as no interferences were detected in the analysis of the decay of 90 Y. (authors) [es

  4. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  5. Commercial Charcoal Characterisation For Water Purification

    International Nuclear Information System (INIS)

    Saryati; Sumardjo; Sutisna; Handayani, Ari; Suprapti, Siti

    2001-01-01

    In order to provide a drinking water purification substance, has been studied the charcoal characterisation that based on a porous profile and an adsorption properties of the charcoal. There were using the commercial charcoal like wood charcoals, coconut shell charcoals and activated charcoals. The porous profile was studied by using an electron microscope SEM-EDX and the adsorption properties was studied by using the water sample simulation that contains several metal ions. The concentration of all ions was ten times greater that the maximum ions concentration that permissible in the drinking water. From the grain surface microscopic analysis was shown that the pore structure of the wood charcoal was more regular than the coconut shell charcoal. Mean while the activated charcoal has pore more than wood and coconut shell charcoal. Grains size was not an adsorption parameter. The absorptivitas charcoal was affected by pH solution, but this effect was not linear proportion. There are no significant deference in the adsorptivitas among the tree charcoals that has been studied for Al 3 + , Cr 3+ , Ag 1 +, and Pb 2+ ions the adsorption was large enough (> 60%), for Mn 2+ , Fe 3+ , Se 4+ , Cd 2+ and Ba 2+ ions was 20%-60% dan for Mg 2+ , Na 1+ , Ca 2+ , and Zn 2+ ions was less than 20 %. Generally the wood and coconut shell charcoal absorptivity in the pH 4 solutions was lower than in the pH 5-7 solutions

  6. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  7. Current status of purification of mine waters which arose from uranium ore mining at the Pucov and Olsi-Drahonin sites

    International Nuclear Information System (INIS)

    Jez, J.

    1999-01-01

    The abandoned, flooded uranium mines, the uranium deposits, and the mine waters are described. At Pucov, the mine water purification consists in reduction of insoluble contents. The technology also enables uranium and radium to be removed from the mine water; this approach was practised in 1992-1997, now, however, the radionuclide levels are low enough not to require any special purification. At Olsi-Drahonin, the technology of the decontamination stations is aimed at reducing the concentrations of insolubles, uranium, and radium in the water treated. The concentration of iron is reduced as well. The decontamination facilities at the two mining sites are described in detail. (P.A.)

  8. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  9. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (solar thermal water purification system for a variety of environmental conditions.

  10. Using problem-based learning to improve students' creative thinking skills on water purification

    Science.gov (United States)

    Wahyu, Wawan; Kurnia, Eli, Rohaeni Nur

    2016-02-01

    The aim of this study is to obtain information about the using Problem-based Learning (PBL) to improve students' creative thinking skills on water purification. The research adopted quasi-experimental method with one group pre-test-post-test design, involving 31students of class XI in one SMK in Cimahi as the subjects of study. The students were divided into three groups categories: high, medium, and low based on the average grades of daily tests. The used instruments in this study were essay, observation sheet, questionnaire (Likert scale), and interview sheet Aspects of creative thinking skills are developed including: fluency, flexibility, originality, detailing (elaborative), and judging (evaluative). To identify the improvement of students' creative thinking skills on water purification, "normalized gain" or of the pre-test and post-test scores was calculated. The results showed that PBL can enhance students' creative thinking skills by means high category (percentage of = 70.12%). This nformation can be used as an input to teachers in the school and teacher education programs.

  11. Two-step purification of scutellarin from Erigeron breviscapus (vant.) Hand. Mazz. by high-speed counter-current chromatography.

    Science.gov (United States)

    Gao, Min; Gu, Ming; Liu, Chun-Zhao

    2006-07-11

    Scutellarin, a flavone glycoside, popularly applied for the treatment of cardiopathy, has been purified in two-step purification by high-speed counter-current chromatography (HSCCC) from Erigeron breviscapus (vant.) Hand. Mazz. (Deng-zhan-hua in Chinese), a well-known traditional Chinese medicinal plant for heart disease. Two solvent systems, n-hexane-ethyl acetate-methanol-acetic acid-water (1:6:1.5:1:4, v/v/v/v/v) and ethyl acetate-n-butanol-acetonitrile-0.1% HCl (5:2:5:10, v/v/v/v) were used for the two-step purification. The purity of the collected fraction of scutellarin was 95.6%. This study supplies a new alternative method for purification of scutellarin.

  12. Health physics system scheme for the uranium purification plant

    International Nuclear Information System (INIS)

    Meyer, M.; Oliveira, E.C.; Sordi, G.A.A.; Abrao, A.

    1976-01-01

    After describing the two uranium purification processes used in the Chemical Engineerring Division of the Instituto de Energia Atomica, it is examined the possible hazards and methods to control or eliminate them. Since these purification process present several stages, in each one of them it is evaluated the hazards and tried to give adequate solutions to protect both, personnel and installations, from the potential radiation hazards

  13. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Science.gov (United States)

    Jordanowska, Joanna; Jakubus, Monika

    2014-12-01

    The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity). The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater. It has been shown that one year after modernization of the technological line there was a high reduction degree of most parameters, respectively for the general iron content -99%, general manganese - 93% ammonia - 93%, turbidity - 94%. It has been proved, that chalcedonic turned out to be better filter material than quartz sand previously used till 2008. The studies have confirmed that the stage of modernization was soon followed by bed start-up for removing general iron from the groundwater. The stage of manganese removal required more time, about eight months for bed start-up. Furthermore, the technological modernization contributed to the improvement of the efficiency of the nitrification process.

  14. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration - A Prestudy

    Energy Technology Data Exchange (ETDEWEB)

    Chuanfeng Liu; Martin, Andrew [Royal Inst. of Technology, Stockholm (Sweden)

    2005-02-01

    Cost-effective, reliable, and energy efficient water treatment systems are an integral part of modern cogeneration facilities. Demineralized water is required for make-up water in district heating networks and in boilers. In addition, increasing attention has been paid to the treatment of flue gas condensate for possible recycling. A number of membrane technologies like reverse osmosis (RO) and electrode ionization (EDI) have been developed for the above applications. Besides these methods, membrane distillation (MD) is promising technology in this context. MD utilizes differences in vapor pressure to purify water via a hydrophobic membrane. The process can utilize district heat supply temperatures or low-grade steam, thus making it attractive for cogeneration applications. This investigation consists of a pre-study to evaluate the viability of membrane distillation as a new water treatment technology in cogeneration plants. Results obtained from the study will be used as an input to follow-on research, which may include the construction of a pilot plant. Target groups for this study include environmental engineers with particular interest in emerging water purification technologies. Specific elements of this work include a literature survey, theoretical considerations of heat and mass transfer, and scale-up of experimental results. Data obtained from the test facility owned by Xzero AB and located at Royal Inst. of Technology was employed for this purpose. Actual water production was found to be lower than the theoretical maximum, illustrating the potential for improvements in MD module design. A case study considering a 10 m{sup 3} pure water/hr system is explored to shed light on commercial-scale aspects. Results show that MD is a promising alternative to RO in existing or new treatment facilities. The most favorable results were obtained for alternatives where either the district heat supply line or low-grade steam (2-3 bar, 200 deg C) are available. Specific

  15. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    Science.gov (United States)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  16. Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus Seed

    Directory of Open Access Journals (Sweden)

    Hamed Mirhosseini

    2012-09-01

    Full Text Available Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes, therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol, B (isopropanol and acetone, C (saturated barium hydroxide, and D (Fehling solution] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05 improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.

  17. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  18. Dosimetric assessment from 212Pb inhalation at a thorium purification plant

    International Nuclear Information System (INIS)

    Campos, M. P.; Pecequilo, B. R. S.

    2004-01-01

    At the Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo (Brazil)), there is a facility (thorium purification plant) where materials with high thorium concentrations are manipulated. In order to estimate afterwards the lung cancer risk for the workers, the thoron daughter ( 212 Pb) levels were assessed and the committed effective and lung committed equivalent doses for workers in place. A total of 28 air filter samples were measured by total alpha counting through the modified Kusnetz method, to determine the 212 Pb concentration. The committed effective dose and lung committed equivalent dose due to 212 Pb inhalation were derived from compartmental analysis following the ICRP 66 lung compartmental model, and ICRP 67 lead metabolic model. (authors)

  19. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  20. Operation and maintenance techniques of pool and pool water purification system in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Woong Sup

    1999-03-01

    IMEF pool is used pass way between pool and hot cell in order to inlet and outlet of fuel pin in cask. All operation is performed conforming with naked eyes. Therefore floating matter is filtered so as to easy under water handling. Also radioactivity in pool water is controlled according to the nuclear law, radioactivity ration maintained less than 15mR/hr on pool side. Perfect operation and maintenance can be achieved well trained operator. Result obtained from the perfection can give more influence over restrain, spreading contamination of radioactivity materials. This report describes operation and maintenance technique of pool water purification system in IMEF. (Author). 7 refs., 13 figs.

  1. Operation and maintenance techniques of pool and pool water purification system in IMEF

    International Nuclear Information System (INIS)

    Soong, Woong Sup

    1999-03-01

    IMEF pool is used pass way between pool and hot cell in order to inlet and outlet of fuel pin in cask. All operation is performed conforming with naked eyes. Therefore floating matter is filtered so as to easy under water handling. Also radioactivity in pool water is controlled according to the nuclear law, radioactivity ration maintained less than 15mR/hr on pool side. Perfect operation and maintenance can be achieved well trained operator. Result obtained from the perfection can give more influence over restrain, spreading contamination of radioactivity materials. This report describes operation and maintenance technique of pool water purification system in IMEF. (Author). 7 refs., 13 figs

  2. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th was found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)

  3. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Udom, Innocent; Zhang, Yangyang [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Ram, Manoj K., E-mail: mkram@usf.edu [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Stefanakos, Elias K. [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Hepp, Aloysius F. [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Elzein, Radwan; Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Goswami, D. Yogi [NASA Glenn Research Center, Research and Technology Directorate, MS 302-1, 21000 Brookpark Road, Cleveland, OH 44135 (United States)

    2014-08-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity.

  4. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    International Nuclear Information System (INIS)

    Udom, Innocent; Zhang, Yangyang; Ram, Manoj K.; Stefanakos, Elias K.; Hepp, Aloysius F.; Elzein, Radwan; Schlaf, Rudy; Goswami, D. Yogi

    2014-01-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity

  5. A simple and rapid method of purification of impure plutonium oxide

    International Nuclear Information System (INIS)

    Michael, K.M.; Rakshe, P.R.; Dharmpurikar, G.R.; Thite, B.S.; Lokhande, Manisha; Sinalkar, Nitin; Dakshinamoorthy, A.; Munshi, S.K.; Dey, P.K.

    2007-01-01

    Impure plutonium oxides are conventionally purified by dissolution in HNO 3 in presence of HF followed by ion exchange separation and oxalate precipitation. The method is tedious and use of HF enhances corrosion of the plant equipment's. A simple and rapid method has been developed for the purification of the oxide by leaching with various reagents like DM water, NaOH and oxalic acid. A combination of DM water followed by hot leaching with 0.4 M oxalic acid could bring down the impurity levels in the oxide to the desired level required for fuel fabrication. (author)

  6. Research of preferences of consumers of household filters for water purification by the fokus-grupp method

    OpenAIRE

    Medvedeva, E.; Blyumina, A.; Piskunov, V.

    2013-01-01

    Availability of qualitative water - the minimum guarantee of health of the person water or to use it only for cleaning and ware washing. The growing demand and change of consumer preferences causes relevance and timeliness of the organization and carrying out the research "Consumer Behaviour in the Market of Household Filters for Water Purification". As the main instrument of obtaining information the method of focus groups was chosen. In article criteria of a consumer choice are defined, to ...

  7. Incorporation of copper nanoparticles into paper for point-of-use water purification

    OpenAIRE

    Dankovich, Theresa A.; Smith, James A.

    2014-01-01

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by ...

  8. Purification of cooling water for nuclear reactors using ion exchangers; Preciscavanje vode za hladjenje nuklearnih reaktora pomocu neorganskih jonoizmenjivaca

    Energy Technology Data Exchange (ETDEWEB)

    Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1969-07-01

    Zirconiumphosphate, zirconiumoxide and natural magnetite as inorganic substances with favourable adsorption properties were the subject of investigations dealing with problems of water purification for nuclear rector cooling. Study on adsorption of impurities form reactor water to 300 deg C and 100 Atm was done by specially constructed autoclaves. On the other hand, a pre-project covering a laboratory plant for investigation of inorganic ion exchangers under real dynamic conditions is given. In order to obtain necessary data on the basis of which techno-economical analyses regarding utilization of zirconiumphosphate, zirconiumoxide and magnetite for water purification is cooling the reactors types BWR and PWR, could be performed, systematic investigations of physical and chemical properties of these substances were commenced. Equilibrium constants have been determined for adsorption processes at different pH values, as well as under various temperatures. Obtained equilibrium constants were used for calculation of thermodynamic quantities {delta}H, {delta}G and {delta}S (author) [Serbo-Croat] Cirkonijumfosfat, cirkonijumoksid i prirodni magnet, kao neorganski materijali sa pogodnim adsorpcionim osobinama, bili su predmet istrazivanja vezanih za probleme preciscavanja vode za hladjenje nuklearnih reaktora. Izucavanje adsorpcije necistoca iz reaktorske vode do 300 deg C i 100 Atm vrseno je pomocu specijalno konstruisanog autoklava, a za ispitivanje neorganskih jonoizmenjivaca pri realnim dinamickim uslovima dat je idejni projekt jednog laboratorijskog postrojenja. Za dobijanje potrebnih podataka, na osnovu kojih se mogu napraviti tehno-ekonomske analize o koriscenju cirkonijumfosfata, cirkoijumoksida i magnetita za preciscavanje vode za hladjenje reaktora tipa BWR i PWR, zapoceto je sa sistematskim proucavanjima fizickih i hemijskih osobina pomenutih materijala, odredjivane su konstante ravnoteze za procese adsorpcije pri razlicitim pH vrednostima, kao i na razlicitim

  9. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  10. Evaluation of corrosivity of the vapor-phase environments to sterilized water with chlorine; Enso kei mekkin shorisui no kisho kankyo no fushokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Michio. [Nippon Steel Corp. Yamaguchi (Japan). Technical Development Bureau

    1999-08-15

    Corrosivity of vapor-phase aenvironments in indoor pool, water thank, and water purification plants was investigated. Sodium hypochlorite (NaClO) was used as a sterilizing agent in indoor pool, while chlorine gas was used in water tank and water purification plants. It was found that Cl{sup -} ion were concentrated in the dew formed in the indoor pool. H{sup +} ions as well as Cl{sup -} ions were accumulated in the dew dormed in the water tank ans water purification plants. Thus, the corrosion condition was varied with the type of sterilizing agents used. Through the investigation of water tanl, the relationship between pH and Cl{sup -} ion concentration was given as follow; pH=-1.09-2.19 log [Cl{sup -}] (mol/L). Corrosivity of vapor-phase enviroments in sterilizing water systems would be characterized by the exstence of oxidizing chemical agents such as ClO{sup -} and HClO, the shift of corrosion potenrial of the thin water film, and the accumulation of H{sup +} and/or Cl{sup -} ions in the dew. (author)

  11. Intensification of oily waste waters purification by means of liquid atomization

    Science.gov (United States)

    Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.

    2017-10-01

    In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.

  12. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  13. Purification

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2017-01-01

    In Arequipa, Peru’s second largest city, engineers work hard to control water flows and provide different sectors with clean and sufficient water. In 2011, only 10 percent of the totality of water used daily by Arequipa’s then close to 1 million people—in households, tourism, industry, and mining......—was treated before it was returned to the river where it continues its flow downstream towards cultivated fields and, finally, into the Pacific Ocean. It takes specialized knowledge and manifold technologies to manage water and sustain life in Arequipa, and engineers are central actors for making water flow...... of categories can be understood as practices of purification. However, a purely technical grip on water is never possible. Unruly elements, like weather, contamination, urban dwellers, and competing interests, interfere and make processes of intervention unstable. Water is never completely cleaned, and, equally...

  14. Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers

    Directory of Open Access Journals (Sweden)

    Sébastien Bidault

    2012-01-01

    Full Text Available We describe a simple one-pot water-based scheme to produce gold nanoparticle groupings with short interparticle spacings. This approach combines a cross-linking molecule and a hydrophilic passivation layer to control the level of induced aggregation. Suspensions of dimers and trimers are readily obtained using a single electrophoretic purification step. The final interparticle spacings allow efficient coupling of the particle plasmon modes as verified in extinction spectroscopy.

  15. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  16. PURIFICATION AND ENRICHMENT OF BIOGAS IN ASH-WATER MIXTURE

    Directory of Open Access Journals (Sweden)

    Andrzej Brudniak

    2014-10-01

    Full Text Available Biogas, produced in an aerobic digestion process, is a mixture of gases, and that is why its inexpensive and effective valorisation is essential. Research on this process is necessary in order to use biogas as a renewable energy source. The aim of this thesis is to present methods of biogas purification and enrichment in the fly ash - water mixture, that is generated on the base of fly ash produced during burning coal in power industry. Experience presented that the fly ash absorbs CO2 and H2S, even in conventional conditions. The absorption efficiency depends not only on the chemical composition of the ash but also on its physical properties. There was also a strong neutralization of alkaline waste combustion.

  17. Application of tidal energy for purification in fresh water lake

    Directory of Open Access Journals (Sweden)

    Rho-Taek Jung

    2015-01-01

    Full Text Available In order to preserve the quality of fresh water in the artificial lake after the reclamation of an intertidal flat at the mouth of a river, we suggest two novel methods of water purification by using tidal potential energy and an enclosed permeable embankment called an utsuro (Akai et al., 1990 in the reclaimed region. One method uses an inflatable bag on the seabed within an utsuro, while the other uses a moored floating barge out of a dyke. Each case employs a subsea pipe to allow flow between the inside and outside of the utsuro. The change in water level in the utsuro, which is pushed through the pipe by the potential energy outside, caused circulation in the artificial lake. In this paper, we analyzed the inflatable bag and floating barge motion as well as the pipe flow characteristics and drafts as given by a harmonic sea level, and compared the theoretical value with an experimental value with a simple small model basin. The numerical calculation based on theory showed good agreement with experimental values.

  18. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  19. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Theoretical analysis of a biogas-fed PEMFC system with different hydrogen purifications: Conventional and membrane-based water gas shift processes

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Aunsup, Pounyaporn; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    Highlights: • Thermodynamic analysis of the biogas-fed PEMFC system is performed. • Conventional and membrane-based WGS processes for H 2 purification are studied. • A flowsheet model of the PEMFC system is developed. • Effect of key parameters on yields of H 2 and carbon in the biogas reformer is shown. • Performance of PEMFC systems with different H 2 purification processes is analyzed. - Abstract: This study presents a thermodynamic analysis of biogas reforming and proton electrolyte membrane fuel cell (PEMFC) integrated process with different hydrogen purifications: conventional and membrane-based water gas shift processes. The aim is to determine the optimal reforming process for hydrogen production from biogas in the PEMFC system. The formation of carbon is concerned in the hydrogen production. The simulation results show that increases in the steam-to-methane ratio and reformer temperature can improve the hydrogen yield and reduce the carbon formation. From the performance analysis, it is found that when the PEMFC is operated at high temperature and fuel utilization, the overall system efficiency enhances. The performance of the PEMFC system with the installation of a water gas shift membrane unit in the hydrogen purification step is slightly increased, compared with a conventional process

  1. Purification and decontamination of a caustic water by reverse osmosis

    International Nuclear Information System (INIS)

    Plock, C.E.; Travis, T.N.

    1981-01-01

    A reverse osmosis pilot plant was used to decontaminate a caustic water containing low concentrations of uranium, plutonium, and americium. The concentrations of the plutonium and americium were less than one picocurie per liter in the product water. The concentrations of the uranium was reduced to 4.4 picocuries per liter in the product water, which is a reduction of greater than 99%. The reverse osmosis pilot plant was operated at a 98% water recovery, which produced 25,000 gallons per day of product water

  2. The water purification system for the low background counting test facility of the Borexino experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Balata, M.; Cadonati, L.; Laubenstein, M.; Heusser, G.; Giammarchi, M.G.; Scardaoni, R.; Torri, V.; Cecchet, G.; De Bari, A.; Perotti, A.

    1996-01-01

    The Borexino experiment, for the study of solar neutrino physics, requires radiopurity at the level of 5 x 10 -16 g/g 238 U equivalent (or 6 x 10 -9 Bq/kg) on a detector mass of many tons of scintillator. Feasibility studies are performed in a counting test facility now operating at LNGS, which consists of 4 t of liquid scintillator viewed by 100 photomultipliers and shielded by 100 t of water. The accomplishment of this goal requires the shielding liquid, water, to be at the 10 -13 g/g contamination level (1.2 x 10 -6 Bq/kg) or better. This paper describes the water purification system; it consists of a combination of several purification processes to remove particulate, radioactive ions, dissolved gases and other impurities. Residual contaminations are measured by analytical or direct-counting techniques. For radon measurement, particularly challenging at this low activity levels, a low background counting method has been developed. (orig.)

  3. Immobilized graphene-based composite from asphalt: Facile synthesis and application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Sreeprasad, Theruvakkattil Sreenivasan; Gupta, Soujit Sen [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Maliyekkal, Shihabudheen Mundampra [School of Mechanical and Building Sciences, VIT University, Chennai Campus, Chennai 600048 (India); Pradeep, Thalappil, E-mail: pradeep@iitm.ac.in [DST Unit on Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-02-15

    Highlights: ► Facile strategy to make graphenic materials from cheaper precursor such as asphalt. ► Material can be made in solution; also as anchored on solid substrates. ► The synthesized material, GSC, was found to be excellent for water purification. ► The applicability was demonstrated through batch and laboratory columns experiments. ► The capacity was compared to other similar adsorbents and was found to be superior. -- Abstract: An in situ strategy for the preparation of graphene immobilized on sand using asphalt, a cheap carbon precursor is presented. The as-synthesized material was characterized in detail using various spectroscopic and microscopic techniques. The presence of G and D bands at 1578 cm{sup −1} and 1345 cm{sup −1} in Raman spectroscopy and the 2D sheet-like structure with wrinkles in transmission electron microscopy confirmed the formation of graphenic materials. In view of the potential applicability of supported graphenic materials in environmental application, the as-synthesized material was tested for purifying water. Removal of a dye (rhodamine-6G) and a pesticide (chlorpyrifos), two of the important types of pollutants of concern in water, were investigated in this study. Adsorption studies were conducted in batch mode as a function of time, particle size, and adsorbent dose. The continuous mode experiments were conducted in multiple cycles and they confirmed that the material can be used for water purification applications. The adsorption efficacy of the present adsorbent system was compared to other reported similar adsorbent systems and the results illustrated that the present materials are superior. The adsorbents were analyzed for post treatment and their reusability was evaluated.

  4. Environmental effects and potential hazards of chemical substances used in waste water purification; Umweltvertraeglichkeit und Gefaehrdungspotentiale von Abwasserbehandlungschemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, H. [Umweltbundesamt, Berlin (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene

    1999-07-01

    Waste water purification in sewage systems would be impossible without additions of chemical substances for coagulation, flocculation and neutralisation. However, these substances also pollute the purified waste water and the freshwater supplies. In addition, the non-reactive fraction of toxic substances originally contained in the waste water is discharged with the purified waste water and adds to the pollution of freshwater reservoirs. Detailed investigations are required for defining the state of the art in the use of chemical substances for waste water purification. [German] Um Schadstoffe aus dem Abwasser zu entfernen, werden in der Klaeranlage bestimmte Hilfsstoffe zugesetzt, ohne die eine Reinigung des Abwassers nicht in dieser Qualitaet moeglich waere und unverhaeltnismaessig teuer wuerde. Die Hilfsstoffe unterstuetzen den Reinigungsprozess durch Faellung, Flockung und Neutralisation. Durch den Einsatz dieser Chemikalien zur Behandlung von Abwaessern gelangen jedoch auch - Verunreinigungen durch die Nebenstoff-Matrix der eingesetzten Behandlungschemikalien in das behandelte Abwasser und in die Gewaesser und - durch ueberstoechiometrische Dosierung oder Additive tritt der nicht reagierende Teil toxischer Substanzen ebenfalls im behandelten Abwasserablauf und im Gewaesser auf. Detaillierte Untersuchungen erscheinen geboten, um auf dieser Grundlage den Stand der Technik beim Einsatz von Chemikalien zur Abwasserbehandlung zu formulieren. (orig./SR)

  5. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  7. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants.

    Science.gov (United States)

    Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun

    2015-10-23

    Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.

  8. Classification of methods and equipment recovery secondary waters

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2017-01-01

    Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a

  9. WATER PURIFICATION BY COAGULATION UNDER THE INFLUENCE OF ULTRASONIC FIELD

    Directory of Open Access Journals (Sweden)

    Vikulina Vera Borisovna

    2016-03-01

    Full Text Available The authors carried out experiments on the in-fluence of ultrasound on the subsidence of suspended materials. The efficiency of coagulation process in wa-ter purification in ultrasound field is estimated. The influence of ultrasound on the water with suspended materials before introducing coagulant was a condition of the experiment. The magnetostriction method for obtaining ultrasound oscillations with the help of ultra-sound generator of batch production was applied. The samples were chosen and the coagulation process was controlled using standard procedures. The experimental data was obtained which estimate the efficiency in-crease in the subsidence of suspended materials de-pending on the duration of ultrasound processing. Dur-ing one minute of ultrasound processing the following results were obtained: the subsidence efficiency in-creased by 25.83 % in case of coagulant share Al2O3 2.5 mg/l; the subsidence efficiency increased by 23.70 % in case of coagulant share Al2O3 5.0 mg/l.

  10. Purification and recycling of the waste water of a paper mill using mechanical pulp; Mekaanista massaa kaeyttaevaen paperitehtaan jaeteveden puhdistus ja uudelleenkaeyttoe - EKY 07

    Energy Technology Data Exchange (ETDEWEB)

    Mattelemaeki, R. [Enso Oyj, Imatra (Finland)

    1998-12-31

    The objective of the project was to study which levels of organic and inorganic substances could be obtained by treatment of waste waters of mechanical pulper and paper machine biologically and after that with solid matter removal. Another target was also to test the utilisation of the purified water in pulp and paper manufacture, and to study the properties of purified water. The three months test runs with PK 4 and TMP plant clarified waters were carried out using a pilot-scale plant, which also consisted of two serial aerobic bioreactors and a parallel anaerobic line as a reference. The solid matter was removed by chemical flocculation, flotation and sand filtration. The purification efficiencies of both waters were similar both in aerobic and anaerobic lines. The reduction of soluble COD in biological stage was about 75 % and that of the whole line about 85 %. The solid matter reduction was 60-70 %. Solid fines, including bacteria, could not be removed sufficiently from the water by flotation and sand filtration so the water cannot be recommended to be used to replace fresh water. Circulating water sheets were produced, and pulp washing tests, retention tests and microbiological tests were carried out in order to estimate the recyclability of the water. Minor lowering of whiteness of the sheets were observed when a part of the fresh water was replaced with recycled water. Microscopic analysis shoved that after the sand filter there were a lot of free bacteria in the water. Further research will be concentrated to recycling of purified water, e.g. To research on how the colour of the water effects on the quality of the product. (orig.)

  11. Purification and recycling of the waste water of a paper mill using mechanical pulp; Mekaanista massaa kaeyttaevaen paperitehtaan jaeteveden puhdistus ja uudelleenkaeyttoe - EKY 07

    Energy Technology Data Exchange (ETDEWEB)

    Mattelemaeki, R [Enso Oyj, Imatra (Finland)

    1999-12-31

    The objective of the project was to study which levels of organic and inorganic substances could be obtained by treatment of waste waters of mechanical pulper and paper machine biologically and after that with solid matter removal. Another target was also to test the utilisation of the purified water in pulp and paper manufacture, and to study the properties of purified water. The three months test runs with PK 4 and TMP plant clarified waters were carried out using a pilot-scale plant, which also consisted of two serial aerobic bioreactors and a parallel anaerobic line as a reference. The solid matter was removed by chemical flocculation, flotation and sand filtration. The purification efficiencies of both waters were similar both in aerobic and anaerobic lines. The reduction of soluble COD in biological stage was about 75 % and that of the whole line about 85 %. The solid matter reduction was 60-70 %. Solid fines, including bacteria, could not be removed sufficiently from the water by flotation and sand filtration so the water cannot be recommended to be used to replace fresh water. Circulating water sheets were produced, and pulp washing tests, retention tests and microbiological tests were carried out in order to estimate the recyclability of the water. Minor lowering of whiteness of the sheets were observed when a part of the fresh water was replaced with recycled water. Microscopic analysis shoved that after the sand filter there were a lot of free bacteria in the water. Further research will be concentrated to recycling of purified water, e.g. To research on how the colour of the water effects on the quality of the product. (orig.)

  12. The modified swirl sedimentation tanks for water purification.

    Science.gov (United States)

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10 -5 to 5.1⋅10 -4 [m 3 /s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Decommissioning of the Plutonium Purification and Residues Recovery Plant

    International Nuclear Information System (INIS)

    Hunt, J. G.

    2006-01-01

    British Nuclear Group is continuing to build on BNFL's successful record of decommissioning redundant nuclear facilities. Challenging radiological conditions and complex technical problems have been overcome to reduce the hazard associated with the UK's nuclear legacy. The former Plutonium Purification and Residues Recovery Plant at Sellafield operated from 1954 through to 1987. This is the only plant to have experienced an uncontrolled criticality incident in the UK, in August 1970 during operations. The plant comprised of two mirror image cells approximately 6.5 m x 13.5 m x 16 m, constructed of bare brick. The cell structure provided secondary containment, the process vessels and pipes within the cell providing primary containment. The plant utilized a solvent extraction process to purify the plutonium stream. Surrounding the two process cells to the north, east and south is an annulus area that housed the operational control panels, feed and sample glove-boxes, and ancillary equipment. The building was ventilated by an unfiltered extract on the process cells and a filtered extract from the vessels and glove-boxes. During the long operational lifetime of the plant, the primary containment deteriorated to such an extent that the process cells eventually became the main containment, with levels of radioactive contamination in excess of 14,256 pCi alpha. This led to significant aerial effluent discharges towards the end of the plant's operational life and onerous working conditions during decommissioning. Implementation of a phased decommissioning strategy from 1991 has led to: - A reduction of approximately 60% in the Sellafield site's aerial alpha discharges following installation of a new ventilation system, - Removal of 12 plutonium contaminated glove-boxes and sample cabinets from the building, - Disposal of the approximately 500 m 2 of asbestos building cladding, - Removal of over 90% of the active pipes and vessels from the highly contaminated process cells

  14. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  15. Purification of the subterranean waters. Application of new technologies of treatment in the ETAPs; Potabilizacion de las aguas subterraneas. Aplicaciones de nuevas tecnologias de tratamiento en las ETAPs

    Energy Technology Data Exchange (ETDEWEB)

    Canto Janer, J.; Luque Montilla, F. F.

    2002-07-01

    The wells of the SGAB for the caption of underground waters placed in the aquifer of delta of the Besos River were stopped exploiting progressively throughout the eighties, for effect of its pollution. When the groundwater level rose, there were flooded parking and the underground line, installing the corresponding equipments of pumping to relieve this effect. It presents the characteristics of this pollution (in comparison of the superficial waters). the diverse technologies being related of purification. The future water-treatment plant, from the tests in a plant pilot, it will consist of three lines in parallel of inverse osmosis, for 150 L/s each one and to 10 bar (low pressure), the membranes are of poliamida and placed in two stages of 40 and 20 modules respectively, with a maximum conversion of 77%. The high investment of 6.600.000 Euros justifies itself for the proximity to the net of supply, being the costs of functioning of 0,115 Euros/m''3 that include the membrane reinstatement (12%) and two washes a year. (Author)

  16. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    Science.gov (United States)

    Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymeras...

  17. Iron precipitations in the Lusatian lignite district. Pt. 1: water pumpage and water drainage in the opencast mine of Nochten, hydrochemistry of mine water; Eisenausfaellungen im Lausitzer Braunkohlerevier. T. 1: Wasserhebung und -ableitung im Tagebau Nochten, Hydrochemie der Suempfungswaesser

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, I. [LAUBAG, Senftenberg (Germany); Uhlmann, W. [IWB - Institut fuer Wasser und Boden, Dresden (Germany)

    2002-09-01

    Opencast lignite mines are subject to permanent drainage. Due to iron disulphide weathering, drainage waters are acidic and rich in ferrous iron and sulphate. In the case of the mine Nochten (Lusatia, East Germany) the originating water is directed from the mine through several open ditches and finally through a pipeline to reach to purification plant at a distance of 14 km. During this course part of the ferrous iron is oxidised to form ferric iron, which precipitates as Fe(III)-minerals. The iron loss in the drainage system between the open cast Nochten to the purification plant Schwarze Pumpe is 30-37% under summer conditions and 18% under winter conditions. Especially for the pipeline these precipitates represent a serious problem, as they result in incrustations and therefore in decreased discharge rates. This article focuses on the hydrochemical processes occurring during the discharge of water to the purification plant. Investigations were based on hydrochemical measurements in the drainage systems as well as on laboratory experiments on the oxidation kinetics of ferrous iron. These resulted in the following findings: (1) The oxidation of ferrous iron in the acidic waters is slow even at oxygen concentrations near saturation. Thus, oxygen is not the limiting factor for the oxidation process. (2) Oxidation kinetics are strongly dependent on temperature. Conclusively, a reduction of iron precipitates may be achieved firstly by shortening the distance of the transport course and secondly by preventing a warming up of waters in summer. (orig.)

  18. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  19. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    Science.gov (United States)

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  1. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  2. Moderator purification and design modifications based on operation feedback

    International Nuclear Information System (INIS)

    Das, S.; Chakrabarti, A.K.; Shirolkar, K.M.; Sharma, V.K.

    1994-01-01

    Heavy water is used as a moderator in the Pressurized Heavy Water Reactors using natural uranium as a fissile fuel. The purification system is provided to maintain the purity of moderator heavy water so as to minimise the radiolytic decomposition of heavy water due to nuclear radiation which otherwise would lead to hazardous concentration of deuterium in the moderator cover gas. The presence of dissolved impurity in the moderator increases the radiolysis rate by impeding the reverse reaction and hence these must be removed. The purification system in general controls the chemistry of moderator by minimizing the corrosion of piping in the circuit and along with the liquid poison injection system adjusts the concentration of the poisons in the moderator. This paper describes the evolution of the purification system for the 500 MWe PHWRs based on various operating requirements and feedback from the operating stations. (author)

  3. Physiological and metagenomic analyses of microbial mats involved in self-purification of mine waters contaminated with heavy metals

    Directory of Open Access Journals (Sweden)

    Lukasz Drewniak

    2016-08-01

    Full Text Available Two microbial mats found inside two old (gold and uranium mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based and metagenome (sequence-based analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction. These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals

  4. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride Hybrid Material as an Adsorbent for Water Purification

    Directory of Open Access Journals (Sweden)

    Guido Panzarasa

    2018-01-01

    Full Text Available Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride (P(E-alt-MA. Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye for a wide pH range (from pH 2 to 12 and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA, the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  5. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  6. New concept of gas purification by electron attachment

    International Nuclear Information System (INIS)

    Tamon, Hajime; Mizota, Hirotoshi; Sano, Noriaki; Schulze, S.; Okazaki, Morio

    1995-01-01

    Recently, the public has become interested in the following types of gas purification: (1) removal of indoor air pollutants; (2) complete removal of dioxin from incineration plants; (3) complete removal of radioactive iodine compounds; (4) simultaneous removal of NOx and SOx in exhaust gases from cogeneration plants; (5) removal and decomposition of halocarbons; (6) ultrahigh purification of gas sued for semiconductor industries. A new concept of gas purification by electron attachment is proposed. Low-energy electrons generated in a corona-discharge reactor are captured by electronegative impurities, producing negative ions. The ions drift to the anode in the electric field and are removed at the anode of the reactor. Two types of reactors were used to remove the negative ions: a deposition-type reactor, which deposits negative ions at the anode surface; a sweep-out-type reactor, which sweeps out enriched electronegative impurities through the porous anode. Removals of dilute sulfur compounds, oxygen and iodine from nitrogen were conducted to verify the concept of gas purification. Simulation models were used to estimate removal efficiencies of these compounds, by taking into account electron attachment, and experimental constants of the models were determined. The removal efficiency correlated by the models agreed well with the experimental one

  7. Energetic utilization of residues from wine-growing. Sewage plant Iphofen; Energetische Nutzung von Weinbaureststoffen. Klaeranlage Iphofen

    Energy Technology Data Exchange (ETDEWEB)

    Steinle, Eberhard; Carozzi, Alvaro [Dr.-Ing. Steinle Ingenieurgesellschaft fuer Abwassertechnik mbH, Weyarn (Germany); Mend, Josef; Kurth, Matthias [Stadt Iphofen (Germany)

    2010-09-15

    The treatment of waste water from the wine-growing and the treatment of liquid residual substances in local purification plants frequently result in a temporary overloading and disturbances. An innovative drop-off scheme was introduced at the purification plant Iphofen (Federal Republic of Germany). With this drop-off scheme, the winegrowers directly supply the highly concentrated liquid residual substances from the winemaking to the purification plant. There the residual substances can be used for the support of the denitrification and fermentation. After the successful conversion of this system, a gas utilization with small cogeneration units could be installed. Thus the resulting mass of gas will be used to the production of electricity and thermal energy. The authors of the contribution under consideration report on this system approach and on first operational experiences.

  8. A New Image for the Water Hyacinth

    Science.gov (United States)

    1980-01-01

    Walt Disney Company activated a sewage treatment plan using NASA technology to create water hyacinths to clean wastewater by absorbing and metabolizing pollutants. Plants have exciting promise as a natural water purification system which can be established at a fraction of the cost of a conventional sewage treatment facility. Harvested plants can be used as fertilizer. They can also be heat-treated to produce consumer energy in the form of methane gas. If an economical method of drying plants can be developed they may find further utility as high protein animal feed.

  9. Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification

    KAUST Repository

    Tang, Bo

    2017-05-01

    Reduced graphene oxide (rGO) has attracted considerable interest recently as the low cost and chemical stable derivative of pristine graphene with application in many applications such as energy storage, water purification and electronic devices. This dissertation thoroughly investigated stacked rGO membrane fabrication process by vacuum-driven filtration, discovered asymmetry of the two surfaces of the rGO membrane, explored application perspectives of the asymmetric rGO membrane in fog collection and microstructure patterning, and disclosed membrane compaction issue during water filtration and species rejection. In more details, this dissertation revealed that, with suitable pore size, the filtration membrane substrate would leave its physical imprint on the bottom surface of the rGO membrane in the form of surface microstructures, which result in asymmetric dynamic water wettability properties of the two surfaces of the rGO membrane. The asymmetric wettability of the rGO membrane would lead to contrasting fog harvesting behavior of its two surfaces. The physical imprint mechanism was further extended to engineering pre-designed patterns selectively on the bottom surface of the rGO membrane. This dissertation, for the first time, reported the water flux and rejection kinetics, which was related to the compaction of the rGO membrane under pressure in the process of water filtration.

  10. Moderator purification and design modifications based on operation feedback

    Energy Technology Data Exchange (ETDEWEB)

    Das, S; Chakrabarti, A K; Shirolkar, K M; Sharma, V K [Nuclear Power Corporation, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Heavy water is used as a moderator in the Pressurized Heavy Water Reactors using natural uranium as a fissile fuel. The purification system is provided to maintain the purity of moderator heavy water so as to minimise the radiolytic decomposition of heavy water due to nuclear radiation which otherwise would lead to hazardous concentration of deuterium in the moderator cover gas. The presence of dissolved impurity in the moderator increases the radiolysis rate by impeding the reverse reaction and hence these must be removed. The purification system in general controls the chemistry of moderator by minimizing the corrosion of piping in the circuit and along with the liquid poison injection system adjusts the concentration of the poisons in the moderator. This paper describes the evolution of the purification system for the 500 MWe PHWRs based on various operating requirements and feedback from the operating stations. (author). 2 refs., 3 figs., 1 tab.

  11. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Support on water chemistry and processes for nuclear power plant auxiliary systems

    International Nuclear Information System (INIS)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B.; Allemandi, W.; Fernandez, A.N.; Ovando, L.

    2002-01-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D 2 O/H 2 O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D 2 O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  14. [Efficiency of the preparation "Ekolan-M" for purification of oil polluted soil].

    Science.gov (United States)

    Nogina, T M; Dumanskaia, T U; Khomenko, L A; Podgorskiĭ, V S

    2012-01-01

    The efficiency of purification of oil contaminated loamy chernozem by the preparation "Ekolan-M" was investigated. During 12 months a complex soil bioremediation using the preparation and alfalfa, as the land-improving plant, at the final stage of purification resulted in the reduction of hydrocarbon content by 97.0%, and without the preparation - by 65.5 %. In the version of experiment with the preparation a 100% decrease of soil phytotoxicity was achieved and a significant stimulation of plant growth and development was observed. The process of soil purification was accompanied by intensive development of hydrocarbon-oxidizing microorganisms, the amount of which during the process of oil concentration gradually decreased, approaching the level in the control uncontaminated soil.

  15. Ecological aspects of the hydro power industry and possible means to improve ecological conditions of water reservoirs

    International Nuclear Information System (INIS)

    Chaika, A.

    1997-01-01

    In this report the analyse a hydro power generating structure as a multitask water management scheme and its environmental impact of water users was viewed. It is possible to improve sanitary, biological and hydraulic condition of reservoirs and limit water overgrowing by implementing the following set of measures: 1) limitation of poorly purified and non-organic discharges in these reservoirs by implementing purification structures; 2) construction of accumulation reservoirs for sewage water planted with plants-biological accumulators with consequent periodic removal of these plants; use of purificated water for irrigation; 3) limitation of biogens coming with agricultural drainage water; 4) annual removal of water plants in shallow places of reservoirs; 5) removal of silt (cleaning of the bottom) where technically possible; 6) aeration of reservoirs or their parts, especially shallow areas, including recreation areas; 7) controlled development of flora and fauna of reservoirs and neighbouring territories; it has been discovered that plant-eating fish has useful impact as biological purificatiors; 8) processing of seston (weighted plankton and remains of organisms) and water plants to get different producers (forage additions for animals, albumin-vitamin additions, chlorophyll and carotene paste, pharmaceutical materials and forage yeast). Development of silt removal technology is a very sharp problem especially for particular areas of Kiev reservoir contaminated with radioactive waste

  16. Improving the large scale purification of the HIV microbicide, griffithsin.

    Science.gov (United States)

    Fuqua, Joshua L; Wanga, Valentine; Palmer, Kenneth E

    2015-02-22

    Griffithsin is a broad spectrum antiviral lectin that inhibits viral entry and maturation processes through binding clusters of oligomannose glycans on viral envelope glycoproteins. An efficient, scaleable manufacturing process for griffithsin active pharmaceutical ingredient (API) is essential for particularly cost-sensitive products such as griffithsin -based topical microbicides for HIV-1 prevention in resource poor settings. Our previously published purification method used ceramic filtration followed by two chromatography steps, resulting in a protein recovery of 30%. Our objective was to develop a scalable purification method for griffithsin expressed in Nicotiana benthamiana plants that would increase yield, reduce production costs, and simplify manufacturing techniques. Considering the future need to transfer griffithsin manufacturing technology to resource poor areas, we chose to focus modifying the purification process, paying particular attention to introducing simple, low-cost, and scalable procedures such as use of temperature, pH, ion concentration, and filtration to enhance product recovery. We achieved >99% pure griffithsin API by generating the initial green juice extract in pH 4 buffer, heating the extract to 55°C, incubating overnight with a bentonite MgCl2 mixture, and final purification with Capto™ multimodal chromatography. Griffithsin extracted with this protocol maintains activity comparable to griffithsin purified by the previously published method and we are able to recover a substantially higher yield: 88 ± 5% of griffithsin from the initial extract. The method was scaled to produce gram quantities of griffithsin with high yields, low endotoxin levels, and low purification costs maintained. The methodology developed to purify griffithsin introduces and develops multiple tools for purification of recombinant proteins from plants at an industrial scale. These tools allow for robust cost-effective production and purification of

  17. Modern state of the application of ionizing radiation for protection of environment. 1. Ionizing radiation sources. Purification of natural and drinking water (review)

    International Nuclear Information System (INIS)

    Pikaev, AK.

    2000-01-01

    Review of modern state of the application of ionizing radiations for protection of environment and natural and drinking water purification is presented. Building of installations with electron accelerators with summarized power of beam ∼0.6 MW signifies that application of ionizing radiation for ecological needs increase. It is pointed out that extensible application of electron accelerators is explained by their safety and efficiency as compared with gamma-sources. New information about ionizing radiation sources, radiation-chemical purification of polluted natural and drinking water, mechanisms of processes taking place during treatment by ionizing radiations are generalized [ru

  18. Wastewater purification in a willow plantation. The case study at Aarike

    International Nuclear Information System (INIS)

    Kuusemets, V.; Mauring, T.

    1996-01-01

    In order to combine wastewater purification and biomass production for energy purposes, a willow plantation for wastewater treatment was established in 1995 in Aarike, Southern Estonia. Wastewater from a dwelling house (25 person equivalents, pe) is treated in a combined free-water filter system consisting of three separate basins, isolated with clay and having filter beds of gravel and sand mixture. The beds were planted with Salix viminalis. At the end of the first growing season, the purification efficiency of the newly established treatment system was 65% for BOD 7 , 43% for nitrogen and 11% for phosphorus removal. At the end of the establishment year, the above ground production of willow stems (bark and wood) and leaves was 1.3 and 0.3 t ha -1 , respectively. The figures are about three to five times higher than those recorded in previously established energy forest plantations of comparable ages in Estonia. 15 refs, 2 figs

  19. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Directory of Open Access Journals (Sweden)

    Falakh Fajrul

    2018-01-01

    Full Text Available Water Treatment Plant (WTP is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  20. Hazard Identification and Risk Assessment in Water Treatment Plant considering Environmental Health and Safety Practice

    Science.gov (United States)

    Falakh, Fajrul; Setiani, Onny

    2018-02-01

    Water Treatment Plant (WTP) is an important infrastructure to ensure human health and the environment. In its development, aspects of environmental safety and health are of concern. This paper case study was conducted at the Water Treatment Plant Company in Semarang, Central Java, Indonesia. Hazard identification and risk assessment is one part of the occupational safety and health program at the risk management stage. The purpose of this study was to identify potential hazards using hazard identification methods and risk assessment methods. Risk assessment is done using criteria of severity and probability of accident. The results obtained from this risk assessment are 22 potential hazards present in the water purification process. Extreme categories that exist in the risk assessment are leakage of chlorine and industrial fires. Chlorine and fire leakage gets the highest value because its impact threatens many things, such as industrial disasters that could endanger human life and the environment. Control measures undertaken to avoid potential hazards are to apply the use of personal protective equipment, but management will also be better managed in accordance with hazard control hazards, occupational safety and health programs such as issuing work permits, emergency response training is required, Very useful in overcoming potential hazards that have been determined.

  1. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  2. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  3. The effect of purified sewage discharge from a sewage treatment plant on the physicochemical state of water in the receiver

    Directory of Open Access Journals (Sweden)

    Kanownik Włodzimierz

    2016-09-01

    Full Text Available The paper presents changes in the contents of physicochemical indices of the Sudół stream water caused by a discharge of purified municipal sewage from a small mechanical-biological treatment plant with throughput of 300 m3·d−1 and a population equivalent (p.e. – 1,250 people. The discharge of purified sewage caused a worsening of the stream water quality. Most of the studied indices values increased in water below the treatment plant. Almost a 100-fold increase in ammonium nitrogen, 17-fold increase in phosphate concentrations and 12-fold raise in BOD5 concentrations were registered. Due to high values of these indices, the water physicochemical state was below good. Statistical analysis revealed a considerable effect of the purified sewage discharge on the stream water physicochemical state. A statistically significant increase in 10 indices values (BOD5, COD-Mn, EC, TDS, Cl−, Na+, K+, PO43−, N-NH4+ and N-NO2 as well as significant decline in the degree of water saturation with oxygen were noted below the sewage treatment plant. On the other hand, no statistically significant differences between the water indices values were registered between the measurement points localised 150 and 1,000 m below the purified sewage discharge. It evidences a slow process of the stream water self-purification caused by an excessive loading with pollutants originating from the purified sewage discharge.

  4. A Scintillator Purification System for the Borexino Solar Neutrino Detector

    OpenAIRE

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.

    2007-01-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector was performed with a system that combined distillation, water extraction, gas stripping and filtration. The purification of the scintillator achieved unprecedented low backgrounds for the large scale liquid scintillation detector. This paper describes the principles of operation, design, construction and commissioning of the purification system, and reviews the require...

  5. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  6. Wide-area service water information management system; Koiki suido joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A wide-area service water system is required to be more resistant to emergency situations, e.g., drought and hazards, and meet consumers' diversifying needs in each area, while stably supplying water at ordinary times by utilizing purification plants located in places within its system and piping networks in the water area. Fuji Electric is providing information management systems for wide-area service water systems, developed based on the company's abundant system know-hows accumulated for a long time and latest techniques. They are characterized by (1) Web monitoring, aided by an intranet system, (2) high-speed data transmission by a digital transmission system, (3) open network environments, and (4) emergency calling of the staff, and management of stock materials. The system allows to monitor operating conditions within the area on real time, needless to say, and business administration with civil minimum taken into consideration, e.g., stabilizing water quality by coordinating the purification plants within the system. (translated by NEDO)

  7. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, E.A. van; Bruins, M.; Beerling, E.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recirculation that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of

  8. Technical and economic aspects of purification strategies to minimise discharge water from companies with closed soilless cultivation systems

    NARCIS (Netherlands)

    Os, van E.A.; Bruins, M.A.; Beerling, E.A.M.; Jurgens, R.; Appelman, W.; Enthoven, N.

    2014-01-01

    The aim of the research project was to achieve closure by two complementary means: 1) maximising reuse of the nutrient solution by solving problems in recircula-tion that leads to discharge, and 2) purification of the left over discharged water. In this paper the technical and economic aspects of

  9. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  10. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  11. Physical and chemical quality, biodiversity, and thermodynamic prediction of adhesion of bacterial isolates from a water purification system: a case study

    Directory of Open Access Journals (Sweden)

    Roberta Barbosa Teodoro Alves

    2017-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the quality of water purification system and identify the bacteria this system, predict bacterial adherence according to the hydrophobicity of these microorganisms and of the polypropylene distribution loop for purified water. The assessment of drinking water that supplies the purification system allowed good-quality physical, chemical, and microbiological specifications. The physicochemical specifications of the distributed purified water were approved, but the heterotrophic bacteria count was higher than allowed (>2 log CFU mL-1.The sanitation of the storage tank with chlorine decreased the number of bacteria adhered to the surface (4.34 cycles log. By sequencing of the 16SrDNA genes, six species of bacteria were identified. The contact angle was determined and polypropylene surface and all bacteria were considered to be hydrophilic, and adhesion was thermodynamically unfavorable. This case study showed the importance of monitoring the water quality in the purified water systems and the importance of sanitization with chemical agents. The count of heterotrophic bacteria on the polypropylene surface was consistent with the predicted thermodynamics results because the number of adhered cells reached approximate values of 5 log CFU cm-2.

  12. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  13. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P R; Sautray, R R; Girard, B R [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence sur la decontamination. L'activite en

  14. Use of a palladium catalyst in the purification of coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Gotoh, T; Nakamura, M; Hirooka, N

    1986-01-01

    In the production of hydrogen from coke oven gas (COG) by pressure swing adsorption (PSA), various impurities in the COG have to be removed prior to the PSA. The stages of this purification are as follows: 1) removal of polymerizable substances such as NO gum by compressing the COG and then feeding it through a hot bottle and cooler arrangement; 2) removal of BTX in a scrubber; 3) removal of naphthalene and mist by means of chillers and filters; 4) removal of oxygen in a special reactor using a Pd catalyst. These various purification treatments have enabled the PSA plant to operate smoothly for 3.5 years. The authors report the results of pilot plant tests, and compare the results obtained using alternative purification techniques. 4 figures, 5 tables.

  15. Analysis of helium purification system capability during water ingress accident in RDE

    Science.gov (United States)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  16. Forward osmosis :a new approach to water purification and desalination.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  17. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H.; Nissen, M.

    1998-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  18. Utilization of internal purification rejects; Sisaeisen puhdistuksen rejektikonsentraattien kelvollistaminen - KLT 02

    Energy Technology Data Exchange (ETDEWEB)

    Manner, H; Nissen, M

    1999-12-31

    This was a preliminary study which is part of a larger programme. The aim of the programme is to determine the properties and process ability of the concentrates which come from the internal purification of waters from the papermaking process. It is very important to know the properties and process ability of these purification concentrates in order to find the best methods of separating, reprocessing and utilizing them. The objective of this preliminary study was to ascertain the basic properties of these internal purification concentrates. It was also of interest to analyse the properties of papermaking waters and the state of internal purification today in paper mills. The state of papermaking waters and their internal purification were clarified by a literature review and by analyses of different types of waters. It was found that in mechanical pulping organic dissolved and colloidal substances were present in the water. Also there was a lot of dissolved and colloidal substances in waters from machines producing wood-containing paper grades. The salt content and chemical oxygen demand are critical values concerning the reuse of circulation waters. In mechanical pulping the convection of dissolved and colloidal substances to the paper machine can be reduced by the washing stage. Thus, the amount of dissolved and colloidal substances in the paper machine circulation waters can be reduced. In a paper machine, a disk filter removes fibers and fines from the circulation waters, but dissolved and colloidal substances are not removed. Also the properties of different kind of membrane filtration concentrates were analyzed. The total residue of membrane concentrates is low. For example, they can not be burned purely. The chemical oxygen demand of membrane concentrates is high. The most important subjects for further investigation are the improvement of fractionation and condensability. Furthermore procedures must be found to lower the chemical oxygen demand. One

  19. Radiation-thermal purification of waste water from oil pollution

    International Nuclear Information System (INIS)

    Mustafaev, I.; Guliyeva, N.; Rzayev, R.; Yagubov, K.

    2004-01-01

    Full text: During the extraction, preparation, transportation and refining of oil the sewages containing oil contaminations are produced. The concentration of oil content in the water depends on used technology and may vary from a thousandths parts up to tens percents. There is a necessity of cleaning this pollution up to a permissible level. There are numerous methods (adsorption, mechanical, chemical and etc) of treating of waster water from oil contaminations. Radiation-chemical method is one of the effective among the above mentioned methods. The results of radiation-thermal decomposition of n-heptane micro-admixtures in water medium are adduced. The main parameters of radiolysis change within the intervals: temperature 20-400 o C, absorbed dose - 0†10.8 kGy at dose rate 3.6 kGy/h. The correlation of n-heptane concentration and water steam changed within [C 5 H 1 2]/[H 2 O] (1-100) 10-5. Total concentration of steam was about 10 20 molec/ml. As a product of decomposition are observed H 2 , CO, CH 4 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 3 H 6 , C 4 H 8 , hydrocarbons C 5 , and C 6 . The changes of n-heptane concentration in the reactor also were established. The chain regime of n-heptane decomposition at high temperatures in the irradiated mixture is observed. The critical value of temperature and mixture ratio of components, under which the break of chain process of normal n-heptane occurs are defined. The mechanisms of proceeding radiation thermal processes in hydrocarbons-water system are discussed. At the temperatures higher than 300 o C the radiation-thermal decompositions of hydrocarbon micro-impurities in water into gas products occurs according a chain mechanism and the radiation-chemical yield of the decomposition exceeds 100 molec/100eV. This method can be used for purification of sewages from oil contaminations

  20. Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus leaf extracts against the mosquito vectors.

    Science.gov (United States)

    Arjunan, Nareshkumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Prasannakumar, Kanagarajan; Thangamani, Sundaram; Barnard, Donald R

    2012-04-01

    Ethanolic extracts of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus were tested for their toxicity effect on the third-instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The leaves of C. dactylon, A. vera, H. indicus and C. amboinicus were collected from natural habitats (forests) in Western Ghats, Tamil Nadu, India. A total of 250 g of fresh, mature leaves were rinsed with distilled water and dried in shade. The dried leaves were put in Soxhlet apparatus and extract prepared using 100% ethanol for 72 h at 30-40°C. Dried residues were obtained from 100 g of extract evaporated to dryness in rotary vacuum evaporator. Larvicidal properties of ethanolic leaf extracts showed that the extracts are effective as mosquito control agents. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The median lethal concentration (LC(50)) values observed for the larvicidal activities are 0.44%, 0.51%, 0.59% and 0.68% for extracts of C. dactylon, A. vera, H. indicus and C. amboinicus, respectively. The observed mortality were statistically significant at P < 0.05 level. C. dactylon showed the highest mortality rate against the three species of mosquito larvae in laboratory and field. The selected plants were shown to exhibit water purification properties. Water quality parameters such as turbidity, pH and water clarity were analyzed in the water samples (pre-treatment and post-treatment of plant extracts) taken from the different breeding sites of mosquitoes. Water colour, turbidity and pH were reduced significantly after treatment with C. dactylon (13 HU, 31.5 mg/l and 6.9), H. indicus (13.8 HU, 33 mg/l and 7.1), A. vera (16 HU, 33.8 mg/l and 7.4) and C. amboinicus (21 HU, 35 mg/l and 7.5) extracts. The study proved that the extracts of C. dactylon, A. vera, H. indicus and C. amboinicus have both mosquitocidal and water sedimentation properties.

  1. Automated genomic DNA purification options in agricultural applications using MagneSil paramagnetic particles

    Science.gov (United States)

    Bitner, Rex M.; Koller, Susan C.

    2002-06-01

    The automated high throughput purification of genomic DNA form plant materials can be performed using MagneSil paramagnetic particles on the Beckman-Coulter FX, BioMek 2000, and the Tecan Genesis robot. Similar automated methods are available for DNA purifications from animal blood. These methods eliminate organic extractions, lengthy incubations and cumbersome filter plates. The DNA is suitable for applications such as PCR and RAPD analysis. Methods are described for processing traditionally difficult samples such as those containing large amounts of polyphenolics or oils, while still maintaining a high level of DNA purity. The robotic protocols have ben optimized for agricultural applications such as marker assisted breeding, seed-quality testing, and SNP discovery and scoring. In addition to high yield purification of DNA from plant samples or animal blood, the use of Promega's DNA-IQ purification system is also described. This method allows for the purification of a narrow range of DNA regardless of the amount of additional DNA that is present in the initial sample. This simultaneous Isolation and Quantification of DNA allows the DNA to be used directly in applications such as PCR, SNP analysis, and RAPD, without the need for separate quantitation of the DNA.

  2. Mosquitocidal and water purification properties of Ocimum sanctum and Phyllanthus emblica

    Directory of Open Access Journals (Sweden)

    Kadarkarai Murugan

    2012-12-01

    Full Text Available Ocimum sanctum was tested for its larvicidal and water sedimentation properties; the fruit ethanol and methanol extracts of Phyllanthus emblica were tested for phytochemical, larvicidal, oviposition-deterrent and ovicidal activities. Results emphasized that plant extracts have high toxicity against the egg and larvae of the malarial vector Anopheles stephensi and also have water sedimentation properties. LC50 of Phyllanthus emblica against Anopheles stephensi larvae ranged from 33.08 ppm to 81.26 ppm and from 23.44 to 54.19 ppm for ethanol and methanol extracts, respectively. Phyllanthus emblica also showed excellent ovipositional deterrent and ovicidal activities. The oviposition activity index value of ethanol and methanol extracts of Phyllanthus emblica at 500 ppm were -0.80 and -0.92, respectively. Ocimum sanctum includes both insecticidal secondary compounds, amino acids (glycine, lysine, vitamin C and other substances, that make treated water suitable for human consumption. Water quality parameters such as color, turbidity and pH were analyzed in the water samples (pre-treatment and post-treatment of plant extracts taken from the breeding sites of mosquitoes. Hence, the plant product can be used as both mosquitocidal and water purifier.

  3. Combustion plants and the Water Framework Directive. Methodology for consequence assessment; Vaermeanlaeggningar och Vattendirektivet. Metodik foer konsekvensbedoemning

    Energy Technology Data Exchange (ETDEWEB)

    Rossander, Annelie; Andersson, Jonas; Axby, Fredrik; Schultz, Emma; Persson, Maarten; Svaerd, Sara [Carl Bro AB, Kristianstad (Sweden)

    2007-04-15

    from the Water Framework Directive. The method was created for and in cooperation with plant owners. The result is a model to analyze the stress on the recipient caused by the discharges from the plant. Within the project samples of water from the plants and the recipient have been taken out and analyzed. In the evaluation step of the project a comparison has also been made between results from the analyzes and values measured according to the ordinary control program of the plants. The current test procedures at the plants are considered as sufficient regarding metals, but should be extended with PAH analysis. Through an ecotoxicological risk assessment of the discharged water from a plant the plants real influence on the recipient can be mapped. Based on this risk assessment an estimation of the possible future water fees which the plant could be ordered to pay can also be made. The preparation of the Frame Water Directive is an ongoing process, which will continue until year 2015. The Frame Water Directive of today does not constitute any hindrance to the activities pursued at the examined plants. If the further development of the directive involves stricter discharge limits, most of the plants will manage this with their current production and water purification equipment, at least regarding their discharge of metals. When it comes to a possible PAH occurrence in the discharged water, it is uncertain what the ecotoxicological consequences are.

  4. Danube quality water assessment from the microbiological point of view in Cernavoda nuclear plant area

    International Nuclear Information System (INIS)

    Sundri, Mirela Iuliana

    2003-01-01

    Herein are analysed the following microbiological parameters: total viable count, total coliforms and faecal coliforms, which represent a standard indicator for water quality. The study has been done during 1998-2002 upon the water in the Danube River and in the channels for cooling water used by Cernavoda Nuclear Power Plant condensers. In this area, based on these values of evaluated parameters, the water feature is placed in the quality classes II and III (moderate and critical pollution), in conformity with European Community Directives. Bacterial communities, component part of aquatic biocenoses, are very important for matter and energy flux. Their contribution to self-purification processes of rivers is of great interest related to the water quality assessment. Microorganisms are ideal sensors, because they respond fast to the fluctuation of environmental conditions by specific changes, detectable physiologically and metabolically. The temperature is a major factor, which directly affects the intensity of all microbial processes. Because the microorganisms are interconnected with the other living organisms, the qualitative or quantitative changes of their activity will affect the functions of the whole ecosystem. Bacterial indicators such as total viable count (colony count), total coliforms or faecal coliforms (thermo-tolerant coliforms) are widely applied to the assessment of water quality. Because of their mostly allochthonus origin, these are used as indicators of changes in the natural water conditions; they point out an organic matter or faecal water pollution. Although the water quality can be considered acceptable from the chemical or biological point of view, the bacteriological parameters might be detected in critical concentration. The objectives of this microbiological assessment are analysis of the variation of bacteriological indicators in some sampling points of Cernavoda aquatic ecosystems area, and monitoring the manner of using the water by

  5. Extraction of steviol glycosides from fresh Stevia using acidified water; comparison to hot water extraction, including purification

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Huurman, Sander

    2017-01-01

    This report describes a practical comparison of an acidified water extraction of freshly harvested Stevia
    plants (the NewFoss method) to the hot water extraction of dried Stevia plants, the industry standard. Both
    extracts are subsequently purified using lab-/bench scale standard industrial

  6. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  7. A DEVICE FOR PURIFICATION OF OIL- AND FAT-CONTAINING GRAY WATERS FOR THE USE AT AUTOMOBILE LAUNDRIES AND PUBLIC CATERING ESTABLISHMENTS

    International Nuclear Information System (INIS)

    Makharoblidze, N.

    2007-01-01

    There is proposed a device (a filter) for the use at automobile lauundries and public catering establishments for local purification of waste waters containing oil products and/or fats before their draining into the municipal sewage system. (author)

  8. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P.R.; Sautray, R.R.; Girard, B.R. [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence

  9. Active Test of Purification Facility at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Iseki, Tadahiro; Tsujimura, Akino; Nitta, Takeshi; Matsuda, Takashi

    2007-01-01

    During the second and third steps of Active Test of the Plutonium Purification unit, the extraction and reextraction performances of pulsed columns and mixer-settlers have been checked. Plutonium losses into wastes have been also checked. As a result, it was confirmed that the expected performances had been achieved. (authors)

  10. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands

    Science.gov (United States)

    Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.

    2017-02-01

    The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove

  11. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  12. Water conservation by 3 R's - case histories of Heavy Water Plants

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.

    2005-01-01

    The basics of water conservation revolve around three R's of Reduce, Recycle, and Reuse. The Heavy Water Plants are an excellent example of water savings, and these case studies will be of interest to the chemical industry. The issues involved with water conservation and re-use in different Heavy Water Plants are of different nature. In H 2 S-H 2 O process plants the water consumption has been substantially decreased as compared to the design water needs. To quote the figures HWP (Kota) was designed to consume 2280 m 3 /hr water, which included 453 m 3 /hr water as feed for deuterium extraction. Today the plant operates with only 1250 m 3 /hr water while processing 500 m 3 /hr feed; and is headed to decrease the total water consumption to 700 m 3 /hr. Similarly at HWP (Manuguru) the design had provided 5600 m 3 /hr water consumption, which is today operating with only 1750 m 3 /hr and poised to operate with 1600 m 3 /hr. The issues of water conservation in Ammonia Hydrogen exchange plants have an additional dimension since water losses mean direct loss of heavy water production. In adjoining ammonia plants deuterium shifts to steam in the reformer and shift converter, and this excess steam is condensed as rich condensate. It becomes incumbent on the fertilizer plant to maintain a tight discipline for conserving and re-using the rich condensate so that deuterium concentration in the synthesis gas is maintained. Efforts are also underway to utilize rich condensate of GSFC in the newly developed technology of water ammonia exchange at HWP (Baroda) and we are targeting 20% production gains by implementation of this scheme and with no increase in the pollution load. These case histories will be of interest to Chemical Process Industry. (author)

  13. Multielement analysis of water in the Yodo River

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Matsunami, Tadao; Matsuda, Yatsuka

    1979-01-01

    In 1970 we made multielement analysis of water samples collected at various points in the Yodo River, which is the main source of tap water supply in Osaka district, in order to know the extent of pollution especially by metallic elements. The analytical results were discussed from the standpoint of the material balance. In 1977 we again made a similar survey; the number of sampling points was increased. It was revealed that the pollution pattern was quite similar to that found formerly, but concentrations of the elements originating mainly from human activities somewhat decreased. The material balance was discussed in greater detail. It was attempted to explain the change of the elemental concentrations along the stream, taking into consideration the flow-in from small brooks and the take-out by water purification plants. In the down stream where the flow speed is very low, the concentrations of the elements originating mainly from soil was considerably low possibly due to the precipitation of particulates, and the concentrations of the soluble elements originating from human activities was also somewhat low possibly because of the take-out of relatively more polluted water by purification plants. (author)

  14. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  15. Design of laboratory cyclone separator for biogas purification

    Directory of Open Access Journals (Sweden)

    Marián Fodora

    2013-01-01

    Full Text Available This article deals with calculation of a cyclone separator for biogas purification using physical and chemical methods. There is presented a methodology for determination of operating dimensions of the cyclone separator and description of principal features of the cyclone separator model. Calculations have been performed for the diameter of the cylindrical part of cyclone separator 175 mm and for the biogas volume flow rate 6.9∙10−5 m3∙s−1. The calculations can be used in practice for the design of cyclone separator depending on the flow rate of biogas, size of the biogas plants respectively. The developed cyclone separator has been used for the cleaning of biogas in operating conditions at the biogas plant in Kolinany (Slovakia. The presented method of biogas purification has been used for the removing of hydrogen sulphide, particulate matter and carbon dioxide from the raw biogas at the biogas plant. Removal of these undesirable impurities from the biogas is an important step in the production of a fully valued fuel, biomethane.

  16. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  17. Elimination of ammonium from waste water by means of chemical precipitation. Summary

    International Nuclear Information System (INIS)

    Boehnke, B.; Schulze-Rettmer, R.

    1990-07-01

    In the course of this research project, a process for precipitating ammonium salts contained in waste water was developed. The precipitate can be used as fertilizer. The purification process was tested in a pilot plant. (EF) [de

  18. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    Science.gov (United States)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  19. Assessment of natural radionuclide content in deposits from drinking water purification station and excess lifetime cancer risk due to gamma radioactivity

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Uosif, M.A.M.; Tammam, M.; Elsaman, R.

    2012-01-01

    The concentrations of natural radionuclide in deposits samples taken from Thirty-six drinking water purification stations have been measured and determined using gamma-ray spectrometry system using (sodium iodide NaI (Tl) detector). Knowledge of radioactivity present in deposits of drinking water purification station enables one to assess any possible radiological hazard to humankind by the use of such materials. The natural radionuclide ( 226 Ra, 232 Th and 40 K) contents have been analyzed for the deposits samples with an aim of evaluating the radiation hazard nature. The Absorbed dose rate, The annual effective dose equivalent, Radium equivalent activities, Hazard indices (H ex and H in ), Gamma index, Excess lifetime cancer risk and Annual gonadal dose equivalent were calculated for investigated area. Results of the study could serve as an important baseline radiometric data for future epidemiological studies and monitoring initiatives in the study area.

  20. Plant water relations I: uptake and transport

    Science.gov (United States)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  1. Coagulation and flocculation in the preparation of drinking water in a pilot plant

    Directory of Open Access Journals (Sweden)

    Iličić Gordana

    2005-01-01

    Full Text Available The objective of the practical part in this article was to explore the influence of different parameters on coagulation and flocculation processes as well as the influence of this stage on other stages in water purification. Analysis of the water samples was conducted in the chemical laboratory of Banja Luka Municipal Waterworks using standard methods for analyzing drinking water. The results are presented as diagrams that show the dependence of different parameters as a function of the residual turbidity and the content of natural organic matters in water. The following conclusions were drawn It is necessary to conduct the chemical treatment of raw water with the aim to satisfy chemical and bacteriological standards for drinking water. The best results were achieved with Al2(SO4s as coagulant,. Counterrecoil sludge in an amount of 2-3% in relation with the total quantity of water has a positive impacts on coagulation-flocculation processes. 4. For effective purification, all the conditions for coagulation-flocculation must be adjusted for the filter to have a longer useful life. One of example is correction of the pH to pH=7, coagulant dose 20 mg/L Al2(SO4s, flocculant dose 0.1 mg/L PE, counterrecoil sludge dose 90 L/h PM.

  2. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  3. Water Purification

    Science.gov (United States)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  4. Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene

    Directory of Open Access Journals (Sweden)

    Emil Kowalewski

    2017-12-01

    Full Text Available This work investigates the catalytic properties of turbostratic carbon supported Pd catalyst in hydrodechlorination of trichloroethylene (TCE HDC in aqueous phase. 1.57 wt% Pd/C was thoroughly characterized by BET, TPHD, CO chemisorption, PXRD, STEM, XPS and used as the catalyst in removal of trichloroethylene from drinking water in batch and continuous-flow reactors. The studies showed that catalytic performance of Pd/C depended on the hydrophobicity and textural properties of carbon support, which influenced noble metal dispersion and increased catalyst tolerance against deactivation by chlorination. Palladium in the form of uniformly dispersed small (~3.5 nm nanoparticles was found to be very active and stable in purification of water from TCE both in batch and continuous-flow operation.

  5. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    Science.gov (United States)

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  6. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  7. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  8. Process and economic evaluation of the extraction and purification of recombinant beta-glucuronidase from transgenic corn

    Science.gov (United States)

    Evangelista; Kusnadi; Howard; Nikolov

    1998-07-01

    A process model for the recovery and purification of recombinant beta-glucuronidase (rGUS) from transgenic corn was developed, and the process economics were estimated. The base-case bioprocessing plant operates 7500 h/year processing 1.74 million (MM) kg of transgenic corn containing 0.015% (db) rGUS. The process consists of milling the corn into flour, extraction of protein by using 50 mM sodium phosphate buffer, and rGUS purification by ion exchange and hydrophobic interaction chromatography. About 137 kg of rGUS of 83% (db) purity can be produced annually. The production cost amounted to $43 000/kg of rGUS. The cost of milling, protein extraction, and rGUS purification accounted for 6, 40, and 48% of annual operating cost, respectively. The cost of transgenic corn was 31% of the raw material costs or 6% of the annual operating cost. About 78% of the cost of buffer and water were incurred in the protein extraction section, while 88% of other consumables were from the purification section. The sensitivity analysis indicated that rGUS can be produced profitably from corn even at the 0.015% (db) expression level, assuming a selling price of $100 000/kg GUS. An increase in rGUS expression levels up to 0.08% significantly improves the process economics.

  9. Contribution to the study of new hydrogen production, purification and storage processes

    International Nuclear Information System (INIS)

    Manaud, Jean-Pierre

    1984-01-01

    This research thesis addresses the various aspects of hydrogen production, purification and process within the scope of hydrogen-based energy production. Hydrogen production is achieved by water decomposition through a thermo-chemical process. The author reports the thermodynamic assessment of a water decomposition thermo-chemical cycle for chlorine and sulphur-related cycles. He reports the experimental investigation of hydrogen purification by selective diffusion, the study of contamination of a CeMg12 alloy by nitrogen, oxygen and water vapour with application to hydrogen storage under the form of hydrides [fr

  10. Process development, design and operation of off-line purification system for oil-contaminated impure heavy water

    International Nuclear Information System (INIS)

    Bose, H.; Rakesh Kumar; Gandhi, H.C.; Unny, V.K.P.; Ghosh, S.K.; Mishra, Vivek; Shukla, D.K.; Duraisamy, S.; Agarwal, S.K.

    2004-01-01

    A large volume of degraded, tritiated heavy water contaminated with mineral oil and ionic impurities have accumulated at Dhruva in the past years of reactor operation as a result of routine operation and maintenance activities. The need was felt for a simple and efficient process that could be set up and operated locally at site using readily available materials, to purify the accumulated impure heavy waters at Dhruva so as to make them acceptable at the up gradation facilities. After a detailed laboratory study, a three stage clean-up process was developed which could purify a highly turbid oil-water emulsion to yield clear, oil-free and de-mineralized heavy water at reasonable rates of volume through-put. Based on the laboratory data, a suitably scaled up purification unit has been designed and commissioned which in the past few months has processed a sizeable volume of oil-contaminated heavy water waste from Dhruva, with most satisfactory results

  11. Water filtration using plant xylem.

    Directory of Open Access Journals (Sweden)

    Michael S H Boutilier

    Full Text Available Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  12. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  13. Technological assumptions for biogas purification.

    Science.gov (United States)

    Makareviciene, Violeta; Sendzikiene, Egle

    2015-01-01

    Biogas can be used in the engines of transport vehicles and blended into natural gas networks, but it also requires the removal of carbon dioxide, hydrogen sulphide, and moisture. Biogas purification process flow diagrams have been developed for a process enabling the use of a dolomite suspension, as well as for solutions obtained by the filtration of the suspension, to obtain biogas free of hydrogen sulphide and with a carbon dioxide content that does not exceed 2%. The cost of biogas purification was evaluated on the basis of data on biogas production capacity and biogas production cost obtained from local water treatment facilities. It has been found that, with the use of dolomite suspension, the cost of biogas purification is approximately six times lower than that in the case of using a chemical sorbent such as monoethanolamine. The results showed travelling costs using biogas purified by dolomite suspension are nearly 1.5 time lower than travelling costs using gasoline and slightly lower than travelling costs using mineral diesel fuel.

  14. Plasma fractionation for blood products: isolation and purification of coagulating factors, albumin and immunoglobulin

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib; Shaharuddin Mohd; Wan Hamirul Bahrin Wan Kamal

    2005-01-01

    Approximately 12 million liters of human plasma are fractionated world-wide annually. However, with the market for clotting factors and other haemoderivatives steadily increasing from year to year, the amount processed will also increase correspondingly to keep up with the demand. In Malaysia, part of the need for the blood products are obtained commercially but a major portion of the requirement involves sending the plasma collected by the National Blood Centre to Australia for processing. Following purification and isolation of the blood products, they are sent back to Malaysia for local consumption. As yet there are no plasma fractionation plants in the South East Asia region, it would be advantageous to establish a local fractionation plant as it would be able to cater for local demands of the haemoderivatives and thus reduces the cost of importing these products. Besides, this facility will be able to provide contract fractionation services to the surrounding region. Early work in MINT has started in trying to purify plasma obtained from rats. Purification of the plasma was performed by using Sephadex G-25 column. Short term objective of this project is to develop the technique of extraction, fractionation and purification of blood products such as albumin, globulin and clotting factors (Factor VIII and Factor IX). The long term emphasis will be to scale up the production facility to a pilot plant stage and eventually to a national fractionation and purification plant. (Author)

  15. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  16. A scintillator purification system for the Borexino solar neutrino detector

    Science.gov (United States)

    Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; Harding, E.; Ianni, Aldo; Ianni, Andrea; Kidner, S.; Leung, M.; Loeser, F.; McCarty, K.; McKinsey, D.; Nelson, A.; Pocar, A.; Salvo, C.; Schimizzi, D.; Shutt, T.; Sonnenschein, A.

    2008-03-01

    Purification of the 278 tons of liquid scintillator and 889 tons of buffer shielding for the Borexino solar neutrino detector is performed with a system that combines distillation, water extraction, gas stripping, and filtration. This paper describes the principles of operation, design, and construction of that purification system, and reviews the requirements and methods to achieve system cleanliness and leak-tightness.

  17. Improved method of degassing of feed water at Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Krishnan, G.K.; Agrawal, A.K.

    1994-01-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author)

  18. Technical feasibility of the electrode ionization process for the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Chocron, Mauricio

    2003-01-01

    In thermal cycles of PWRs nuclear power plants with once-through steam generators as the CAREM-25, makeup water of very high purity is required to minimizing the induction of corrosion phenomena, fundamentally in the steam generators and other thermal cycle components. The makeup water treatment systems include several stages, of which the demineralization is the purification stage. The required makeup water purity is obtained in this stage. Historically, ultrapure water systems were based completely on ion exchange technology. Now, the electrode ionization process (EDI) has replaced the ion exchange technology used traditionally in the demineralization stage. Continuous demineralization in an EDI stack consists of three coupled processes: ion exchange, continuous ion removal by transport through the ion exchange resin and membranes into the concentrate stream, continuous regeneration by hydrogen and hydroxyl ions derived from the water splitting reaction and driven by the applied direct current. EDI process allows to obtain ultrapure water, with practically no use of chemical reagents and with technologies of continuous process. The objective of this work is the analysis of the electrode ionization process (EDI) for its implementation in the makeup water treatment system of the thermal cycle of the CAREM-25 nuclear power plant. The obtained results allow to assure the technical feasibility of implementation of the electrode ionization process, EDI, in the makeup water treatment system of the thermal cycle of this Argentinean nuclear power plant. (author)

  19. Tritium in water and plants

    International Nuclear Information System (INIS)

    Koenig, L.A.; Winter, M.

    1977-10-01

    A summary is presented of the results obtained in programs on the measurement of the T concentration in the immediate and more distant environment of the Karlsruhe Nuclear Research Center (KFK). The amount of T released with the waste water and the exhaust air from the KFK in the years 1969 until 1976 is indicated. The total releases ranged from 2000 Ci/a to 5200 Ci/a in the period of reporting. The fractions contained in the exhaust air and in the waste water were subjected to considerable variations over the years. The results of measurements for water samples are presented as annual mean values. The annual values of measured results obtained for precipitations on the site clearly exceed the values measured at sampling stations outside the KFK. Of the surface waters monitored the rivers Rhine and Neckar showed the highest T values. In smaller flowing waters the T concentration is also influenced by the percentage of waste water from communities. Obviously the tritium content of the ground and drinking water depends on the depth of sampling. Drinking water raised from a small depth in the vicinity of the Rhine is subjected to the same variations as the water from the river Rhine. To find out relations to the T offer of the relevant media close to the plants, the T concentrations in tissue water of plants and in air humidity, ground water and precipitations were investigated. Variations of the T concentration in air humidity correlate with the variations of the T concentration in the tissue water of plants. The T concentration level in the tissue water of plants is close to the T concentration in air humidity. The following time constants and half-lives, respectively, are found: for oak and hornbeam leaves 2+-1 days, for spruce needles 3+-1.5 days, for pine needles 6+-3 days. The dispersion of T released into the air and into the water is dealt with briefly. (orig.) [de

  20. Determination of natural radionuclides in wastes generated in the potable water treatment plants of the Zona da Mata of the State of Pernambuco-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Adriana M. de A.; França, Fernanda Cláudia S. da S.; Silveira, Patrícia B. da; Hazin, Clovis A.; Honorato, Eliane V., E-mail: chazin@elogica.com.br, E-mail: valentim@cnen.gov.br, E-mail: adrianamuniz.a@gmail.com [Centro Regional de Ciências Nucleares do Nordeste (CRCN/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the concentration of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Previous studies have shown that the stages of purification are quite effective in removing the radionuclides contained in the water. The removal is due to co-precipitation of the radionuclides with the suspended materials. The precipitated material is accumulated and characterized as a Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) by the United States Environmental Protection Agency (USEPA). This wastes can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U and Th, as well as {sup 40}K were determined in the residues generated at the Potable Water Treatment Plants PWTPs in six municipalities of Pernambuco. The results obtained corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiation protection standards established by CNEN. (author)

  1. Determination of natural radionuclides in wastes generated in the potable water treatment plants of the Zona da Mata of the State of Pernambuco-Brazil

    International Nuclear Information System (INIS)

    Albuquerque, Adriana M. de A.; França, Fernanda Cláudia S. da S.; Silveira, Patrícia B. da; Hazin, Clovis A.; Honorato, Eliane V.

    2017-01-01

    The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the concentration of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Previous studies have shown that the stages of purification are quite effective in removing the radionuclides contained in the water. The removal is due to co-precipitation of the radionuclides with the suspended materials. The precipitated material is accumulated and characterized as a Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) by the United States Environmental Protection Agency (USEPA). This wastes can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U and Th, as well as 40 K were determined in the residues generated at the Potable Water Treatment Plants PWTPs in six municipalities of Pernambuco. The results obtained corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiation protection standards established by CNEN. (author)

  2. Stress analysis of the O-element pipe during the process of flue gases purification

    Directory of Open Access Journals (Sweden)

    Nekvasil R.

    2008-11-01

    Full Text Available Equipment for flue gases purification from undesired substances is used throughout power and other types of industry. This paper deals with damaging of the O-element pipe designed to remove sulphur from the flue gases, i.e. damaging of the pipe during flue gases purification. This purification is conducted by spraying the water into the O-shaped pipe where the flue gases flow. Thus the sulphur binds itself onto the water and gets removed from the flue gas. Injection of cold water into hot flue gases, however, causes high stress on the inside of the pipe, which can gradually damage the O-element pipe. In this paper initial injection of water into hot pipe all the way to stabilization of temperature fields will be analyzed and the most dangerous places which shall be considered for fatigue will be determined.

  3. Analysis of Bioelectrical Potential When Plant Purifies Air Pollution(Bioelectronic and Sensor)(Recent Progress in Organic Molecular Electronics)

    OpenAIRE

    長谷川, 有貴; 浅田, 茂裕; KATSUBE, Teruaki; 池口, 、徹

    2004-01-01

    Some plants have air purification ability. This purification ability of plants is considered a promising method for indoor air purification because of the low cost and high purification performance. Therefore, several studies have been carried out to investigate the relationship between the air purification ability of plants and environmental conditions. Nevertheless, the purification mechanism and process have not been clarified yet. In this paper, we investigated the air purification proces...

  4. Improved method of degassing of feed water at Heavy Water Plant, Kota

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G K; Agrawal, A K [Heavy Water Plant, Kota (India)

    1994-06-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author). 1 fig.

  5. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  6. Potential for sustainable energy with biogas from sewage purification

    International Nuclear Information System (INIS)

    Coenen, J.; Van Gastel, M.; De Jong, K.

    2005-04-01

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks [nl

  7. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  8. The latest make-up water treatment plant for power plants

    International Nuclear Information System (INIS)

    Yokomizo, Yuichi

    1997-01-01

    As the change of the outside environment surrounding power stations, the strengthening of the environmental standard of water quality and the upgrading of required water quality standard are described. The reduction of colloidal silica in thermal power plant water and the reduction of iron and organic chlorine in PWR water are necessary. Recently it became difficult to secure water for power stations, and in dry season, the water for power stations is sometimes cut for securing livelihood and agricultural water. For the means of securing stable water source, the installation of seawater desalting plants increased. The types, the constitution of the plants and the operation performance are reported. Recently the water treatment technology using MF, UF and RO membranes has become to be adopted. The relation of the substances to be removed to the range of filtration of respective membranes is shown. The conventional method is the combination of coagulative sedimentation, filtration and ion exchange resin, but the membrane technology uses UF and RO membranes. The technical features of UF (ultrafiltration) and RO (reverse osmosis) membrane facilities and deaerating membrane are explained. (K.I.)

  9. Purification of ADU and high-molybdenum AUC by recrystallization

    International Nuclear Information System (INIS)

    Tan Huanchang; Wen Jinfeng

    1995-01-01

    The ADU was converted to AUC by preparing pulp with (NH 4 ) 2 CO 3 concentrated solution, and then the prepared AUC (high-molybdenum AUC) crystals were dissolved with hot soft water for dissolution, and after filtration or clarification and scrubbing of the residue, and the clarified solution was digested and the obtained pulp was thickened and the thickened pulp was converted and recrystallized by adding (NH 4 ) 2 CO 3 concentrated solution. The crystals were washed and filtrated, and then the high-purity AUC crystals were prepared. The laboratory and pilot-plant scale experiments showed that the presented purification process was feasible with the solvent extraction step eliminated, so the chemicals consumption would be considerably decreased and the environmental pollution would be lowered. It is easy to realize the process in practice

  10. Peat filtration, field ditches and sedimentation basins for the purification of runoff water from peat mining areas

    International Nuclear Information System (INIS)

    Ihme, R.; Heikkinen, K.; Lakso, E.

    1991-01-01

    The aim of this research is to develop new methods and to improve those already in use to reduce the loading of watercourses from peat excavation areas. Factors examined were the use of peat filtration for the purification of the runoff water, load retention by the means of field ditches and improvement of the practicability and dredging of the settling ponds. Field research was carried out in peat production areas in the province of Oulu in 1987-1989

  11. Water management and productivity in planted forests

    Directory of Open Access Journals (Sweden)

    J. E. Nettles

    2014-09-01

    Full Text Available As climate variability endangers water security in many parts of the world, maximizing the carbon balance of plantation forestry is of global importance. High plant water use efficiency is generally associated with lower plant productivity, so an explicit balance in resources is necessary to optimize water yield and tree growth. This balance requires predicting plant water use under different soil, climate, and planting conditions, as well as a mechanism to account for trade-offs in ecosystem services. Several strategies for reducing the water use of forests have been published but there is little research tying these to operational forestry. Using data from silvicultural and biofuel feedstock research in pine plantation ownership in the southeastern USA, proposed water management tools were evaluated against known treatment responses to estimate water yield, forest productivity, and economic outcomes. Ecosystem impacts were considered qualitatively and related to water use metrics. This work is an attempt to measure and compare important variables to make sound decisions about plantations and water use.

  12. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  13. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  14. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells.

    Science.gov (United States)

    Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc

    2017-05-04

    Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1  mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. System Aero-Accelator for the purification of biodegradable effluents; Sistema aero-accelator para la depuracion de efluentes biodegradables (I)

    Energy Technology Data Exchange (ETDEWEB)

    Bosque Hernandez, J. L. del; Martin Sanchez, J. L. [Universidad de Salamanca (Spain)

    2000-07-01

    The contamination of the waters is one of the factors that contributes to the deterioration of our environment and since it is a very limited one its treatment descontaminant it is one of the politic's main objectives and environmental administration at all the levels, being spread to the total purification of the generated residual effluents. To reach this objective, big technological efforts are required that allow next to the creation of new processes, the adaptation of the processes existent depuratives, increasing the effectiveness of the same ones. One of the techniques of purification of possible recovery is the Compact System of active mires Aero-Accelator. Presently work is designed and it builds a plant pilot with Aero-Accelator geometry to study its behavior in the treatment of effluents of urban type with different loads pollutants. (Author) 16 refs.

  16. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    Review of 'plant available water' aspects of water use efficiency under ... model relating the water supply from a layered soil profile to water demand; the ... and management strategies to combat excessive water losses by deep drainage.

  17. Overcoming technology - obsolescence: a case study in Heavy Water Plant

    International Nuclear Information System (INIS)

    Gupta, O.P.; Sonde, R.R.; Wechalekar, A.K.

    2002-01-01

    Ammonia based Heavy Water Plants in India are set up essentially in conjunction with fertiliser plants for the supply of feed synthesis gas. Earlier ammonia was being produced in fertiliser plants using high-pressure technology which was highly energy intensive. However with fast developments in the field of production of ammonia, fertiliser plants are switching over to low pressure technology. Ammonia based heavy water plants have to operate on pressures corresponding to that of fertiliser plants. Due to low pressures in production of ammonia, heavy water plants would also be required to operate at low pressures than the existing operating pressures. This problem was faced at Heavy Water Plant at Baroda where GSFC supplying synthesis gas switched over to low pressure technology making it imperative on the part of Heavy Water Board to carry out modification to the main plant for continued operation of Heavy Water Plant, Baroda. Anticipating similar problems due to production of ammonia at lower pressures in other fertiliser plants linked to existing Heavy Water Plants, it became necessary for HWB to develop water ammonia front end. The feed in such a case would be water instead of synthesis gas. This would enable HWB to dispense with dependence on fertiliser plants especially if grass-root ammonia based heavy water plants are to be set up. Incorporation of water ammonia front end would enable HWB to de link ammonia based heavy water plants with fertiliser plants. This paper discusses the advantage of de linking heavy water plant respective fertiliser plant by incorporating water ammonia front end and technical issues related to front end technology. A novel concept of ammonia absorption refrigeration (AAR) was considered for the process integration with the front end. The incorporation of AAR with water ammonia front-end configuration utilizes liquid ammonia refrigerant to generate refrigeration without additional energy input which otherwise would have been

  18. Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.

    Science.gov (United States)

    Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao

    2010-06-15

    In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.

    Science.gov (United States)

    Benlloch, Manuel; Benlloch-González, María

    2016-06-01

    16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the ​​stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the ​​stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Thermoeconomic cost analysis of CO_2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    Highlights: • Thermoeconomic cost analysis for CO_2 compression and purification unit is conducted. • Exergy cost and thermoeconomic cost occur in flash separation and mixing processes. • Unit exergy costs for flash separator and multi-stream heat exchanger are identical. • Multi-stage CO_2 compressor contributes to the minimum unit exergy cost. • Thermoeconomic performance for optimized CPU is enhanced. - Abstract: High CO_2 purity products can be obtained from oxy-combustion power plants through CO_2 compression and purification unit (CPU) based on phase separation method. To identify cost formation process and potential energy savings for CPU, detailed thermoeconomic cost analysis based on structure theory of thermoeconomics is applied to an optimized CPU (with double flash separators). It is found that the largest unit exergy cost occurs in the first separation process while the multi-stage CO_2 compressor contributes to the minimum unit exergy cost. In two flash separation processes, unit exergy costs for the flash separator and multi-stream heat exchanger are identical but their unit thermoeconomic costs are different once monetary cost for each device is considered. For cost inefficiency occurring in CPU, it mainly derives from large exergy costs and thermoeconomic costs in the flash separation and mixing processes. When compared with an unoptimized CPU, thermoeconomic performance for the optimized CPU is enhanced and the maximum reduction of 5.18% for thermoeconomic cost is attained. To achieve cost effective operation, measures should be taken to improve operations of the flash separation and mixing processes.

  1. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  2. Purification and properties of cowpea mosaic virus RNA replicase

    NARCIS (Netherlands)

    Zabel, P.

    1978-01-01

    This thesis concerns the partial purification and properties of an RNA-dependent RNA polymerase (RNA replicase) produced upon infection of Vigna unguiculata plants with Cowpea Mosaic Virus (CPMV). The enzyme is believed to be coded, at least in part, by the virus genome and to

  3. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  4. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    International Nuclear Information System (INIS)

    EL-Rafei, A.M.; El-Kalliny, Amer S.; Gad-Allah, Tarek A.

    2017-01-01

    Three-dimensional random calcium ferrite, CaFe 2 O 4 , nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe 2 O 4 phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe 2 O 4 NFs were fabricated with diameters in the range of 50–150 nm and each fiber was composed of 20–50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field. - Highlights: • Three-dimensional porous random CaFe 2 O 4 NFs were successfully produced via electrospinning method. • These NFs exhibited typical superparamagnetic behavior for the ferromagnetic materials. • The low band-gap energy of these NFs (~1.6 eV) allows them to absorb a wide range of the solar spectrum. • These NFs can produce the active • OH under solar light and can be recovered easily by applying an external magnetic field. • These NFs can be used solely as magnetically separable photocatalyst or as magnetic additive for another photocatalyst.

  5. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  6. Low cost strategies for microbiological purification of drinking water

    International Nuclear Information System (INIS)

    Qazi, J.I.; Saleem, F.

    2005-01-01

    Effects of sunlight intensities and freezing on prevalence of coliform bacteria in water were assessed in this study. Fish pond water indicated 1100 figure of most probable number (MPN) of coliforms, while on MacConkey agar they appeared uncountable. When this water was exposed to sunlight it was found that a exposure of 1.5 hours in ceramic containers covered by petri plates and those with magnifying lenses of 3X powers indicated 58 and 78% reduction in the coliforms, respectively. Corresponding figures for 3 hours exposure were found to be 100 percent less than the control MPN value. Freezing with subsequent thawing also reduced the microbial population. The experiments reported here are suggestive to construct simple low cost water treatment plants to provide microbiologically safe drinking water. Antibiotics sensitivity and resistant patterns of coliforms for tetracycline, piperacillin, streptomycin, metronidazole, erythromycin and chloramphenicol in connection to pre- and post treatments are indicated. (author)

  7. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant

    International Nuclear Information System (INIS)

    Elain, L.

    2004-12-01

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag + ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH) 4 ) 2 , LiB(OH) 4 and AgB(OH) 4 in medium B(OH) 3 )), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  8. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  9. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  10. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  11. Purification of a synthetic pterocarpanquinone by countercurrent chromatography

    International Nuclear Information System (INIS)

    Costa, Fernanda das Neves; Silva, Alcides Jose M. da; Domingos, Jorge L. de Oliveira; Costa, Paulo Roberto R.; Leitao, Gilda G.; Daher Netto, Chaquip

    2012-01-01

    Countercurrent chromatography (CCC) was employed as a useful, fast and economic alternative to conventional chromatography techniques for the purification of a synthetic pterocarpanquinone, LQB-118. The separation was performed in a two-step CCC with the solvent system hexanechloroform- methanol-water 2:1.5:5:2 in both steps. Traditional purification of these reaction products by silica gel column chromatography demanded a large amount of solvent and time, besides allowing the irreversible adsorption of the compound in the column. The use of 1 H NMR for the calculation of KD of target compound is proposed as an alternative for HPLC measurements. (author)

  12. Purification of simple substances by distillation with impurity hydrothermal oxidation

    International Nuclear Information System (INIS)

    Kalashnik, O.N.; Nisel'son, L.A.

    1987-01-01

    A possibility of applying distillation method in water vapours for purification of simple substances from impurities is studied. Based on thermodynamic analysis of interaction processes in E-H 2 O system, conducted using a computer, it is as certained that SS, Se, Te, As, Cd, Hg can be purified from the majority of the impurities analysed by distillation in a water vapour flow. Behaviour of Zn, C, Ge, Al, Sb characteristic impurities under cadmium, arsenic and tellurium distillation is studied. Experiments on cadmium, arsenic and tellurium purification have confirmed, that distillation with hydrothermal oxidation of Zn, C, Ge impurities sometimes appears to be a more effective method as compared to distillation in a hydrogen flow

  13. Potential Study of Water Extraction from Selected Plants

    Directory of Open Access Journals (Sweden)

    Musa S.

    2017-01-01

    Full Text Available Water is absorbed by the roots of a plant and transported subsequently as a liquid to all parts of the plant before being released into the atmosphere as transpiration. In this study, seven(7selected plant species collected from urban, rural and forested areas were studied and characterized. The water was collected using transparent plastic bag that being tied to the tree branches. Then, the vapouris water trapped inside the plastic bag and through the condensation process, it become water droplets. Water quality parameters such as temperature, pH value, DO, turbidity, colour, magnesium, calcium, nitrate and chloride were analyzed. The analysis was compared to drinking water quality standard set by the Ministry of Health Malaysia. Based on the results, it shows that banana leaf has a higher rate of water extraction compared to others. Thus, the plant can be categorised as a helpful guide for emergency use of water or as an alternative source to survival.

  14. Partial Purification of Antimicrobial Compounds Isolated from Mycelia of Tropical Lentinus cladopus LC4

    OpenAIRE

    SUDIRMAN, LISDAR IDWAN

    2010-01-01

    Lentinus cladopus LC4 produced at least eight antimicrobial compounds (ACs) which are active against plant and human pathogens. Three ACs in its crude mycelial were extracted with methanol and partial purification was carried out with silicic acid column chromatography and by thin layer chromatography (PTLC). The antimicrobial activity was tested by paper disc method and antibiographic method. The chromatography purification eluted with dichloromethane containing 5% methanol gave one active f...

  15. Seismic re-evaluation of Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-10-01

    This report deals with seismic re-evaluation of Heavy Water Plant, Kota. Heavy Water Plant, Kota handles considerable amount of H 2 S gas, which is very toxic. During the original design stage as per IS 1893-1966 seismic coefficient for zone-I was zero. Therefore earthquake and its effects were not considered while designing the heavy water plant structures. However as per IS 1893 (1984) the seismic coefficient for zone-I is 0.01 g. Hence seismic re-evaluation of various structures of the heavy water plant is carried out. Analysis of the heavy water plant structures was carried out for self weight, equipment load and earthquake load. Pressure loading was also considered in case of H 2 S storage tanks. Soil structure interaction effect was considered in the analysis. The combined stresses in the structures due to earthquake and dead load were checked with the allowable stresses. (author)

  16. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    Science.gov (United States)

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  17. Preliminary results of ecotoxicological assessment of an Acid Mine Drainage (AMD) passive treatment system testing water quality of depurated lixiviates

    OpenAIRE

    Miguel Sarmiento, Aguasanta; Bonnail, Estefanía; Nieto Liñán, José Miguel; Valls Casillas, Tomás Ángel del

    2017-01-01

    The current work reports on the preliminary results of a toxicity test using screening experiments to check the efficiency of an innovative passive treatment plant designed for acid mine drainage purification. Bioassays took place with water samples before and after the treatment system and in the river, once treated water is discharged. Due to the high toxicity of the water collected at the mouth of the mine (before the treatment plant), the bioassay was designed and developed with respect t...

  18. Radiation safety issues in the water treatment plant - Indoor radon and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jantsikene, A.; Kiisk, M.; Suursoo, S.; Koch, R. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology, Department of Chemical Engineering (Estonia)

    2014-07-01

    In order to reduce the indicative dose from drinking water consumption in Viimsi parish, Estonia, a new water treatment plant was launched in 2012 serving about 15 000 consumers. The promising new technology for groundwater purification consists of air injector, oxidation tank, patented venturi-type centrifugal degassing separation unit GDT and two-stage filtration in open filter columns. In each of the five parallel lines, approximately 95 tons of catalytic (FMH and sand) and 45 tons of non-catalytic (zeolite) filter materials were used. These filter materials proved to be very effective adsorbents of incoming radium isotopes. As a result, the columns emit direct gamma radiation. Moreover, columns' exposure to indoor air makes them radon generators that affect all rooms in the building. During the study period of two years the filter materials were not replaced and their lifespan has not been estimated yet. In order to minimize radiation risks for the workers inside the water treatment plant, a complex study and a long-term monitoring is needed. For the measurements of {sup 226}Ra and {sup 228}Ra concentrations in water and in solid filter materials gamma-ray spectroscopy was used. According to the results, the annual input of {sup 226}Ra and {sup 228}Ra is 325 MBq and 420 MBq, respectively. The average incoming concentration of {sup 226}Ra and {sup 228}Ra isotopes is 0.5 Bq/L and 0.6 Bq/L, respectively, and the radium content in the output water is below the limit of detection (about 10-15 mBq/L). This means strong accumulation of radium isotopes in the filter materials, thus causing an increase of {sup 222}Rn concentrations in the outgoing treated water. External dose rates throughout the length of the filter columns were measured with the portable dosimeter to estimate the {sup 226}Ra and {sup 228}Ra depth distribution. The results showed that distribution of these radionuclides is uneven with the maximum of 0.5 μSv/h for the first stage and 3 μSv/h for

  19. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  20. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  1. Water processing in power plants

    International Nuclear Information System (INIS)

    Marquardt, K.

    1984-01-01

    Surface water can be treated to a high degree of efficiency by means of new compact processes. The quantity of chemicals to be dosed can easily be adjusted to the raw water composition by intentional energy supply via agitators. In-line coagulations is a new filtration process for reducing organic substances as well as colloids present in surface water. The content of organic substances can be monitored by measuring the plugging index. Advanced ion-exchanger processes (fluidised-bed, compound fluidised-bed and continuously operating ion exchanger plants) allow the required quantity of chemicals as well as the plant's own water consumption to be reduced, thus minimising the adverse effect on the environment. The reverse-osmosis process is becoming more and more significant due to the low adverse effect on the environment and the given possibilities of automation. As not only ionogenic substances but also organic matter are removed by reverse osmosis, this process is particularly suited for treating surface water to be used as boiler feed water. The process of vacuum degassing has become significant for the cold removal of oxygen. (orig.) [de

  2. Good manufacturing practices production of a purification-free oral cholera vaccine expressed in transgenic rice plants.

    Science.gov (United States)

    Kashima, Koji; Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Suzuki, Yuji; Minakawa, Satomi; Takeyama, Natsumi; Fukuyama, Yoshiko; Azegami, Tatsuhiko; Tanimoto, Takeshi; Kuroda, Masaharu; Tamura, Minoru; Gomi, Yasuyuki; Kiyono, Hiroshi

    2016-03-01

    The first Good Manufacturing Practices production of a purification-free rice-based oral cholera vaccine (MucoRice-CTB) from transgenic plants in a closed cultivation system yielded a product meeting regulatory requirements. Despite our knowledge of their advantages, plant-based vaccines remain unavailable for human use in both developing and industrialized countries. A leading, practical obstacle to their widespread use is producing plant-based vaccines that meet governmental regulatory requirements. Here, we report the first production according to current Good Manufacturing Practices of a rice-based vaccine, the cholera vaccine MucoRice-CTB, at an academic institution. To this end, we established specifications and methods for the master seed bank (MSB) of MucoRice-CTB, which was previously generated as a selection-marker-free line, evaluated its propagation, and given that the stored seeds must be renewed periodically. The production of MucoRice-CTB incorporated a closed hydroponic system for cultivating the transgenic plants, to minimize variations in expression and quality during vaccine manufacture. This type of molecular farming factory can be operated year-round, generating three harvests annually, and is cost- and production-effective. Rice was polished to a ratio of 95 % and then powdered to produce the MucoRice-CTB drug substance, and the identity, potency, and safety of the MucoRice-CTB product met pre-established release requirements. The formulation of MucoRice-CTB made by fine-powdering of drug substance and packaged in an aluminum pouch is being evaluated in a physician-initiated phase I study.

  3. Solvent-extraction and purification of uranium(VI) and molybdenum(VI) by tertiary amines from acid leach solutions

    International Nuclear Information System (INIS)

    La Gamma, Ana M.G.; Becquart, Elena T.; Chocron, Mauricio

    2008-01-01

    Considering international interest in the yellow-cake price, Argentina is seeking to exploit new uranium ore bodies and processing plants. A study of similar plants would suggest that solvent- extraction with Alamine 336 is considered the best method for the purification and concentration of uranium present in leaching solutions. In order to study the purification of these leach liquors, solvent-extraction tests under different conditions were performed with simulated solutions which containing molybdenum and molybdenum-uranium mixtures. Preliminary extraction tests carried out on mill acid-leaching liquors are also presented. (authors)

  4. Laboratory studies conducted for the development of a plant to concentrate the radioactive waste from tritiated water

    International Nuclear Information System (INIS)

    Bornea, Anisia; Zamfirache, Marius; Stefanescu, Ioan; Vasut, Felicia; Soare, Amalia

    2009-01-01

    Full text: The Cernavoda Nuclear Power Plant is the biggest operational source of tritium, from Europe and one of the most important in the world. Our interest is especially focussed on tritiated water waste with low activity resulting from the maintenance operations performed on reactors with the purpose of reducing their volume and further reprocessing. The system presented in this work is based on the catalytic isotopic exchange and molecular dissociation CECE. The development of technologies in the field of isotopic separation based on the water electrolysis process was not very successful in last decades first of all because of the shortcomings of the classical electrolysers which use a KOH-type electrolyte. The main disadvantages are high KOH electrolyte hold-up and problems regarding hydrogen and oxygen purification and consequently the corrosion risk. Lately, there has been noticed a growing interest regarding the electrolysers having polymer membranes as electrolyte SPM (solid polymer membrane). Such an electrolyser is available in our institute, so the aim of our research was to use this electrolyser in a tritium concentration system from the tritiated water waste using the technology for isotopes separation-CECE. The present paper presents a conceptual design scheme for a concentration system of the tritium resulting from the tritiated water waste. (authors)

  5. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  6. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  7. Purification of drinking water by low cost method in Ethiopia

    Science.gov (United States)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  8. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  9. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  10. Tritium concentration in the heavy water upgrading plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Dumitrescu, M.; Ciortea, C.; Stefanescu, I.; Peculea, M.; Pitigoi, Gh.; Trancota, D. . E-mail of corresponding author: croitoru@icsi.ro; Croitoru, C.)

    2005-01-01

    In the course of time heavy water used in CANDU nuclear power plants, as moderator or coolant, degrades, as a result of its impurification with light water and tritium. Concentration diminution below 99.8% mol for moderator and 99.75% mol for coolant causes an inefficient functioning of CANDU reactor. By isotopic distillation, light water is removed. Simultaneously tritium concentration takes place. The heavy water upgrading plant from Cernavoda is an isotopic separation cascade with two stages. The paper presents, for this plant, a theoretical study of the tritium concentration. (author)

  11. Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    EL-Rafei, A.M., E-mail: am.amin@nrc.sci.eg [Refractories, Ceramics and Building Materials Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt); El-Kalliny, Amer S.; Gad-Allah, Tarek A. [Water Pollution Research Department, National Research Centre, 33 EL Bohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Giza (Egypt)

    2017-04-15

    Three-dimensional random calcium ferrite, CaFe{sub 2}O{sub 4}, nanofibers (NFs) were successfully prepared via the electrospinning method. The effect of calcination temperature on the characteristics of the as-spun NFs was investigated. X-ray diffraction analysis showed that CaFe{sub 2}O{sub 4} phase crystallized as a main phase at 700 °C and as a sole phase at 1000 °C. Field emission scanning electron microscopy emphasized that CaFe{sub 2}O{sub 4} NFs were fabricated with diameters in the range of 50–150 nm and each fiber was composed of 20–50 nm grains. Magnetic hysteresis loops revealed superparamagnetic behavior for the prepared NFs. These NFs produced active hydroxyl radicals under simulated solar light irradiation making them recommendable for photocatalysis applications in water purification. In the meantime, these NFs can be easily separated from the treated water by applying an external magnetic field. - Highlights: • Three-dimensional porous random CaFe{sub 2}O{sub 4} NFs were successfully produced via electrospinning method. • These NFs exhibited typical superparamagnetic behavior for the ferromagnetic materials. • The low band-gap energy of these NFs (~1.6 eV) allows them to absorb a wide range of the solar spectrum. • These NFs can produce the active {sup •} OH under solar light and can be recovered easily by applying an external magnetic field. • These NFs can be used solely as magnetically separable photocatalyst or as magnetic additive for another photocatalyst.

  12. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assets optimization at Heavy Water Plants

    International Nuclear Information System (INIS)

    Hiremath, S.C.

    2006-01-01

    In the world where the fittest can only survive, manufacturing and production enterprises are under intense pressure to achieve maximum efficiency in each and every field related to the ultimate production of plant. The winners will be those that use their assets, i.e men, material, machinery and money most effectively. The objective is to optimize the utilization of all plant assets-from entire process lines to individual pressure vessels, piping, process machinery, and vital machine components. Assets of Heavy Water Plants mainly consist of Civil Structures, Equipment and Systems (Mechanical, Electrical) and Resources like Water, Energy and Environment

  14. Real-time analysis of water movement in plant sample

    International Nuclear Information System (INIS)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro

    2000-01-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time 18 F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then 18 F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of 18 F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of 18 F labeled water absorption was found to be drastically decreased. (author)

  15. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  16. Purification technology for flue/off gases using electron beams

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2004-01-01

    The present paper describes research and development on purification technology using electron beams for flue/off gases containing pollutants: removal of sulfate oxide and nitrogen oxide from flue gases of coal/oil combustion power plants, decomposition of dioxins in waste incineration flue gas, and decomposition/removal of toxic volatile organic compounds from off gas. (author)

  17. Purification of water polluted with oil and sulfurous closed-ring and aromatic compounds contained in oil and oil products using bacteria relating to thiosphaera

    International Nuclear Information System (INIS)

    Kurashov, V.M.; Sakhno, T.V.; Gavrilov, V.S.; Zijatdinov, R.N.

    2005-01-01

    The intensity of natural purification (self-purification) of reservoirs polluted with oil and oil products is determined by microorganisms. Hydrocarbon-oxidizing microorganisms are constant natural constituent of biocenose in reservoirs. However, as a result of outflows, the oil and oil products concentration exceeds maximum values allowing normal vital functions of microorganisms resulting in breaking micro-biocenose suppression of vital functions of bacteria. In this regard, elective anaerobic microorganisms of Thiosphaera are worthy of notice. We found out that bacteria belonging to Thiosphaera pantotropha decomposed oil at high oil concentrations in water (at oil concentration like 1 liter of oil in 1 liter of water). And this is when aerobic microorganisms lose their vital functions at maximum concentration of 20 g of oil in 1 liter of water. To intensify the process of oil decomposition we emulsified oil with aqueous solutions of salts. Thiosphaera pantotropha are found out to decompose oil in a wide range of ratio between oil and aqueous solutions of salts: from 1:10 to 10:1. The water solutions salinity made from 20 g/l to 80 g/l. It must be noticed that, since the Thiosphaera pantotropha are elective anaerobes and decompose oil both in presence and in absence of oxygen, it is not necessary anymore to conduct the process under strictly anaerobic conditions and to supply additional oxygen. This makes it possible to simplify the process of biodegradation of oil and to make this process practically more feasible and economically more profitable being compared to the processes based on the use of other species of bacteria. We found out that Thiosphaera decompose sulfurous closed-ring and aromatic compounds in oil which are chemically and thermally stable and can be hardly decomposed, and possess extremely poisonous properties, as well. The use of microorganisms of Thiosphaera pantotropha allows to purify waters polluted with oil and oil products both during

  18. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  19. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  20. The recovery of cytokinins during extraction and purification of clubroot tissue

    NARCIS (Netherlands)

    Dekhuijzen, H.M.; Gevers, E.C.T.

    1975-01-01

    Losses of one naturally occurring cytokinin (zeatin) and one synthetic cytoknin (kinetin) were determined during purification of turnips (Brassica compestris) infected by Plasmodiophora brassicae (clubroot). A known amount of zeatin and 8‐14C‐kinetin was added after homogenization of plant material

  1. Fusion power plant for water desalination and reuse

    International Nuclear Information System (INIS)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N.; Velikhov, E.P.

    2001-01-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ∼0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ∼6000000 m 3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity

  2. Fusion power plant for water desalination and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N. E-mail: vasiliev@nfi.kiae.ru; Velikhov, E.P

    2001-11-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of {approx}0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is {approx}6000000 m{sup 3} per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity.

  3. Nucleic acid purification from plants, animals and microbes in under 30 seconds.

    Directory of Open Access Journals (Sweden)

    Yiping Zou

    2017-11-01

    Full Text Available Nucleic acid amplification is a powerful molecular biology tool, although its use outside the modern laboratory environment is limited due to the relatively cumbersome methods required to extract nucleic acids from biological samples. To address this issue, we investigated a variety of materials for their suitability for nucleic acid capture and purification. We report here that untreated cellulose-based paper can rapidly capture nucleic acids within seconds and retain them during a single washing step, while contaminants present in complex biological samples are quickly removed. Building on this knowledge, we have successfully created an equipment-free nucleic acid extraction dipstick methodology that can obtain amplification-ready DNA and RNA from plants, animals, and microbes from difficult biological samples such as blood and leaves from adult trees in less than 30 seconds. The simplicity and speed of this method as well as the low cost and availability of suitable materials (e.g., common paper towelling, means that nucleic acid extraction is now more accessible and affordable for researchers and the broader community. Furthermore, when combined with recent advancements in isothermal amplification and naked eye DNA visualization techniques, the dipstick extraction technology makes performing molecular diagnostic assays achievable in limited resource settings including university and high school classrooms, field-based environments, and developing countries.

  4. The Partial Purification and Characterization of Trypsin From the ...

    African Journals Online (AJOL)

    VESTEL

    fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and. 4.49%, respectively. .... It was subjected to water wash and digestive tracts were .... sulphate precipitation was a simple method and generally.

  5. Water intake and fish protection sytems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Kuz'min, D.O.; Lukashevich, V.S.

    1986-01-01

    Various designs of water intake and fish protection systems for TPP and NPP are considered. Water intake systems are divided into shore and outside shore types. There are two main modifications of the latter - opened and closed. The closed systems are more complex for construction and maintenance, but their negative influence on environment is considerably weaker. In disigning of water intake systems basic efforts are directed at optimization of a water intake device disposition, development of reliable repellents for fish, as well as devices for fish catch and return from the water intake region. A special attention is paid to the problem of preventing their icing. The conclusion of expedience of introducing into the water purification system reliable, soft mechanical barriers for fish equipped with means affecting its behaviour and preventing contacts of fish and water intake system elements was drawn

  6. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    Nielsen, Joan Maj; Dahi, Elian

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi....../L and 95 and 400 mg F/L respectively in natural and synthetic solutions. The fluoride removal capacities observed were 4.6 mg F/g bone char for the column system and 2.7 mg F/g bone char for the batch system in case of synthetic magadi solution. It is however concluded that the batch system is the best...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  7. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    International Nuclear Information System (INIS)

    Gucker, Sarah N; Foster, John E; Garcia, Maria C

    2015-01-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L −1 ). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date. (paper)

  8. Influence of mine waste water purification on radium concentration in desalinisation products

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2005-01-01

    The effects of mine waste water treatment in the desalination process on radium concentration in final products have been shown on the example of installations working in 'Ziemowit' and 'Piast' Polish coal mines. The environmental impact and health hazard resulting deposition of waste water treatment plant by-products have been also discussed

  9. Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method

    Science.gov (United States)

    Nasir, N. F.; Mirus, M. F.; Ismail, M.

    2017-09-01

    Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.

  10. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya

    Directory of Open Access Journals (Sweden)

    Chi-Chu Tsai

    2016-09-01

    Full Text Available Papaya (Carica papaya L. is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source.

  11. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  12. Increasing the effectiveness of purification of wash water discharge during placer mining. Povyshenie effekitivnosti ochistki promstokov pri razrabotke rossypei

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, V M; Matveev, A A

    1981-01-01

    In the book research results are generalized for processes of water supply and purification of wash water discharges from dredge mining of placer deposits. Aspects of the geological and mineralogical structure of the solid phase of dredge waste waters and regularities in its influence on the sedimentation capacity of the suspended matter are examined. On the basis of a study of distinctive features in the hydrodynamic processes occurring in dredge sludge-settling tanks, a method is proposed for calculation of the settling tank parameters, allowing their areas of application for wash water discharge clarification to be determined reliably. Results are reported for a study of methods of intensification of the deposition of suspended clay particles in dredge waste waters, (methods) based on the use of both a series of coagulants and flocculants producible by industry and various production wastes. Aspects of the theory and practice of organizing circulating water supply for dredges are examined. The influence of wash water discharges forming during placer mining on the environment is assessed.

  13. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  14. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  15. Novel heat-pump-assisted extractive distillation for bioethanol purification

    NARCIS (Netherlands)

    Luo, Hao; Bildea, Costin Sorin; Kiss, Anton A.

    2015-01-01

    The purification of bioethanol fuel involves an energy-intensive separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behavior of the ethanol-water mixture. The conventional separation sequence employs three distillation columns that

  16. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    Science.gov (United States)

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  17. How to observe water movement in plants using neutron imaging

    International Nuclear Information System (INIS)

    Matsushima, Uzuki

    2011-01-01

    Water in plants is one of the most important factors for life. Water availability, water distribution and water flow also regulate various plant physiological phenomena. However, non-destructive methods for the in-situ study of water transport are quite limited. Neutron Radiography (NR) seem to be appropriate methods to study water distribution in intact plants. Also the combination of NR with the low-contrast tracer D 2 O allows the direct visualization of water flow and the calculation of water flow rates in plants with a high resolution at the tissue level. This article gives general introduction into those two methods and report about most recent results of our experiments in this field. (author)

  18. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  19. Consequences of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    2002-01-01

    Heavy water plants achieve the primary isotopic concentration by H 2 O-H 2 S chemical exchange. In these plants are stored large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive) maintained in process at relative high temperatures and pressures. It is required an assessment of risks associated with the potential accidents. The paper presents adopted model for quantitative consequences assessment in heavy water plants. Following five basic steps are used to identify the risks involved in plants operation: hazard identification, accident sequences development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information from risk assessment for our heavy water pilot plant are provided. Accident magnitude, atmospheric conditions and population density in studied area were accounted for consequences calculus. (author)

  20. The development and testing of the new flowsheets for the plutonium purification of the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Bugrov, K.V.; Korotaev, V.G.; Korchenkin, K.K.; Logunov, M.V.; Ludin, S.A.; Mashkin, A.N.; Melentev, A.B.; Samarina, N.S. [FSUE ' PAMayak' , Lenin st., 35, Ozersk 456780 (Russian Federation)

    2016-07-01

    In order to improve the extraction flowsheet of RT-1 Plant two versions of plutonium purification unit flowsheet were developed: a flowsheet with stabilization of Pu(IV)-Np(IV) valence pair and Pu, Np co-recovery, and a flowsheet with stabilization of Pu(IV)-Np(V) valence pair and Pu recovery. The task related to stabilization of the valence pair of the target components in the required state was solved with the use of reactants already applied at RT-1 Plant, namely, hydrogen peroxide, hydrazine nitrate and catalyst (Fe). Both flowsheets were adapted for the plant purification facility with minimum modifications of the equipment, and passed the full scale industrial testing. As a result of this work, reduction in volume and salt content of the raffinate was achieved. (authors)

  1. Purification of gaseous and liquid releases by electron irradiation. Application of the radiation method to the purification and bacterial decontamination of liquids

    International Nuclear Information System (INIS)

    Otcenasek, P.

    1997-01-01

    Electron beams produced by electron accelerators, and gamma rays emitted by suitable radioisotopes such as Co-60 can be used to purify gases and liquids. Research and development efforts are concentrating on the following fields: (i) radiation treatment of natural and polluted drinking water, (ii) radiation purification of industrial liquid wastes, (iii) radiation purification of waste sludges, and (iv) radiation purification of flue gases. Radiation doses not exceeding 1 kGy are sufficient for the decolorization, deodorization, and disinfection of drinking water, whereas doses in the order of tens of kGy are necessary for the treatment of wastewaters. Therefore, wastewaters are first purified by conventional methods, followed by an aftertreatment with fast electrons. Active species such as OH and H radicals emerge, causing oxidation and/or decomposition of organic pollutants and exerting disinfecting effects. Gas treatment with electron beams is suitable for removing some inorganic elements and compounds and other pollutants. Applicability of this approach has been confirmed for chlorinated aromatic hydrocarbons, phenols, benzene derivatives, dioxin, and furan derivatives. For instance, the attained degree of dioxin removal from water was 99%. Trichloroethylene can be decomposed by application of a dose of 7 kGy, giving rise to carbon dioxide, hydrogen chloride, and chlorine. The resulting aerosol particles can be collected, concentrated, and disposed of by combustion or biological degradation. The method shows promise for the removal of hydrocarbons from large volumes of gases with initial concentrations of 50 to 100 mg carbon per cubic metre. (P.A.). 1 fig., 1 ref

  2. The organization closed water battery plant Aircraft Factory

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2008-01-01

    Full Text Available  The information on unrational water usage and losts is given in the article. The necessity of closed water cycle introduction is shown for the aircraft repairing plant. The principle scheme of closed cycle water usage is developed for the accumulator department of the aircraft repairing plant. Modern technological equipment is offered for implementation.

  3. Water management of the Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Rabusic, P.

    1990-01-01

    Industrial water for the Dukovany nuclear power plant is taken from a reservoir built on the Jihlava river. The volume of the reservoir is 17.1 million m 3 . The water taken serves mainly as the make-up water for the cooling circuit and is treated by clearing; it is also used for the preparation of demineralized water for making up the condensate circuit and for the preparation of soft water for making up the heat piping. The consumption of industrial water is 1 to 2 m 3 /s. Waste waters are released into rainwater drainage, sewage drainage and industrial water drainage. Waste waters are segregated according to the place of their origin and are purified, mainly on ion exchangers and on an evaporator. In normal conditions, they are returned to the operation. Concentrated liquid residues and solid wastes will be stored by using the multiple containment system. The most important radioisotopes that may be present in nuclear power plant waste waters, the water and radionuclide balance of the Dukovany nuclear power plant, and chemical and radiological data on the Dukovany waste waters (1989) are tabulated. (P.A.). 6 refs

  4. Problems of pricing fresh water obtained from a sea water desalination plant

    International Nuclear Information System (INIS)

    Gaussens, J.

    1967-01-01

    Integrating a double-purpose desalination and electricity generating plant into a water supply system alters the conditions in which the other water and electricity sources are used, as the peak and the base load water and electricity demands have to be met at the least cost. This paper attempts to show how the problem of determining optimal water supply structures can be approached, in definite cases, but against a global economic back-ground. It becomes necessary to define the competition between classical resources and desalination plants, as these plants introduce into optimum studies new factors due to the peculiar shape of their production functions. These new factors (fixed and proportional costs structures, flow availabilities) are studied in relation to the production functions in various management cases (private monopoly, public monopoly). (author) [fr

  5. Isolation and purification of alkaline keratinase from Bacillus sp. 50-3

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... improving the purification technology used in industrial conversions is ... (1976). After per- forming column chromatography, a protein concentration estimation ... enzyme activity were pooled, dialyzed against distilled water,.

  6. Plant-made vaccine antigens and biopharmaceuticals.

    Science.gov (United States)

    Daniell, Henry; Singh, Nameirakpam D; Mason, Hugh; Streatfield, Stephen J

    2009-12-01

    Plant cells are ideal bioreactors for the production and oral delivery of vaccines and biopharmaceuticals, eliminating the need for expensive fermentation, purification, cold storage, transportation and sterile delivery. Plant-made vaccines have been developed for two decades but none has advanced beyond Phase I. However, two plant-made biopharmaceuticals are now advancing through Phase II and Phase III human clinical trials. In this review, we evaluate the advantages and disadvantages of different plant expression systems (stable nuclear and chloroplast or transient viral) and their current limitations or challenges. We provide suggestions for advancing this valuable concept for clinical applications and conclude that greater research emphasis is needed on large-scale production, purification, functional characterization, oral delivery and preclinical evaluation.

  7. Drought Tip: Keeping Plants Alive under Drought or Water Restrictions

    OpenAIRE

    Hartin, Janet; Oki, Loren; Fujino, Dave; Faber, Ben

    2015-01-01

    Plants that don't receive enough water eventually show signs of water stress. During a drought or under water restrictions aimed at water conservation, keeping plants alive can be particularly difficult.

  8. Isolation and Purification of Oridonin from the Whole Plant of Isodon rubescens by High-Speed Counter-Current Chromatography

    Directory of Open Access Journals (Sweden)

    ChunYue Yu

    2011-09-01

    Full Text Available Semi-preparative high-speed counter-current chromatography (HSCCC was successfully used for isolation and purification of oridonin from Isodon rubescens by using a two-phase-solvent system composed of n-hexane-ethyl acetate-methanol-water (2.8:5:2.8:5, v/v/v/v. The targeted compound isolated, collected and purified by HSCCC was analyzed by high performance liquid chromatography (HPLC. A total of 40.6 mg of oridonin with the purity of 73.5% was obtained in less than 100 min from 100 mg of crude Isodon rubescens extract. The chemical structure of the compound was identified by IR, 1H-NMR and 13C-NMR.

  9. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  10. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    Science.gov (United States)

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  11. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  12. Technical report on analysis and purification of used O-18 cyclotron target water

    International Nuclear Information System (INIS)

    Kim, T. S.; Jeong, D. Y.; Kim, J. W.; Ko, K. H.; Lim, K; Kim, C. J.; Park, K. B.

    2004-01-01

    F-18-labeled 2-[ 18 F]fluoro-deoxy-glucose( 18 F-FDG), which is used for PET diagnosis, is generally synthesized by using the nucleophilic substitution method. If 18 O-H 2 O is irradiated by the protons accelerated in a cyclotron, 18F-fluoride is produced by means of nuclear reaction of 18O(p,n)18F. However, 18 O-H 2 O is very expensive and its timely procurement might be difficult because of its frequent world market fluctuations. Therefore, 18 O-H 2 O used for the production of 18 F-FDG should be reused efficiently. When the target 18 O-H 2 O flows the tubes in the synthetic apparatus and ion-exchange resin, it is contaminated by the organic substances such as ethanol, methanol, and acetonitrile, etc. If the recovered target water containing many of these impurities is reused as target water in a cyclotron, abnormal increases of the pressure in the target chamber during irradiation and reduction of the target chamber life-span may occur. As a result, production yield of 18F-fluoride would be decreased, and also the yield of 18 F-FDG. Therefore, organic substances and various metallic ions contained in recovered 18 O-H 2 O must be eliminated prior to its reuse. Moreover, the loss of 18 O-H 2 O during the purification process must be minimized to use the target water economically

  13. Monitoring of releases from an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  14. Optimized Reaction Conditions for Removal of Cellular Organic Matter of Microcystis aeruginosa During the Destabilization and Aggregation Process Using Ferric Sulfate in Water Purification

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Polášek, Pavel; Pivokonská, Lenka; Tomášková, Hana

    2009-01-01

    Roč. 81, č. 5 (2009), s. 514-522 ISSN 1061-4303 R&D Projects: GA ČR GA103/07/0295 Institutional research plan: CEZ:AV0Z20600510 Keywords : Microcystis aeruginosa * cellular organic matter * destabilization * aggregation * optimized reaction conditions * water purification Subject RIV: BK - Fluid Dynamics Impact factor: 0.965, year: 2009

  15. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  16. Renewable energy in Switzerland - Potential of waste-water treatment plants, waste-incineration plants and drinking water supply systems - Strategical decisions in politics

    International Nuclear Information System (INIS)

    Kernen, M.

    2006-01-01

    This article discusses how waste-water treatment plants, waste-incineration plants and drinking water supply systems make an important contribution to the production of renewable energy in Switzerland. Financing by the 'Climate-Cent' programme, which finances projects involving the use of renewable energy, is discussed. Figures are quoted on the electrical energy produced in waste-water treatment plants, waste-incineration plants and combined heat and power generation plant. Eco-balances of the various systems are discussed. Political efforts being made in Switzerland, including the 'Climate Cent', are looked at and promotion provided by new energy legislation is discussed. Eco-power and the processing of sewage gas to meet natural gas quality standards are discussed, as are energy analysis, co-operation between various research institutions and external costs

  17. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  18. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  19. Within plant resistance to water flow in tomato and sweet melons ...

    African Journals Online (AJOL)

    Efficient water resource management in relation to water use and crop yields is premised on the knowledge of plant resistance to water flow. However, such studies are limited and for most crops, the within plant resistance to water flow remains largely unknown. In this study, within plant resistance to water transport ...

  20. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  1. Study on the levels of activity of radionuclides in products solids of catalan water purification

    International Nuclear Information System (INIS)

    Montana, M.; Camacho, A.; Cespedes, R.; Devesa, R.; Serrano, I.; Duch, M. A.; Valles, I.

    2013-01-01

    In this work the results of radioactivity are presented in the sludge obtained part of the treatment process of 2 water treatment plants in Catalonia in which it is water from the rivers Ter and Llobregat. He has been also assessed the radiological impact of the sludge generated in these plants when used as raw material for the production of materials for the construction. (Author)

  2. Radioactive waste processing method for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kuriyama, O

    1976-06-04

    Object is to subject radioactive liquid waste in a nuclear power plant to reverse permeation process after which it is vaporized and concentrated thereby decreasing the quantity of foam to be used to achieve effective concentration of the liquid waste. Liquid waste containing a radioactive material produced from a nuclear power plant is first applied with pressure in excess of osmotic pressure by a reverse permeation device and is separated into clean water and concentrated liquid by semi-permeable membrane. Next, the thus reverse-permeated and concentrated waste is fed to an evaporator which control foaming by the foam and then further reconcentrated for purification of the liquid waste.

  3. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    Science.gov (United States)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  4. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  5. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  6. CAREM-25. Purification and volume control system

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Carlevaris, Rodolfo; Patrignani, Alberto; Chocron, Mauricio; Goya, Hector E.; Ortega, Daniel A.; Ramilo, Lucia B.

    2000-01-01

    The purification and volume control system has the following main functions: water level control inside reactor pressure vessel (RPR) in all the reactor operational modes, pressure control when the reactor operates in solid state, and maintenance of radiological, physical and chemical parameters of primary water. In case of Hot Shutdown operational mode and also after Scram the system is capable of extraction of nuclear decay heat. The design of the system is in accordance with the Requirements of ANSI/ ANS 51.1; 58.11 and 56.2 standards. (author)

  7. Cover gas purification in the German LMFBR-programme

    International Nuclear Information System (INIS)

    Schillings, K.-L.; Wagner, J.; Stade, K. Ch.

    1987-01-01

    A specific problem of sodium-cooled reactor plants is the purity of the noble gas argon which is used to protect the liquid alkali metal sodium in its systems in order to avoid or reduce disagreeable reactions between sodium and gaseous compounds like moisture or air and organic products like oil and grease. But as this contact cannot completely be excluded, we have to recycle such soiled cover gas. Simultaneously this procedure has to correct the release of radioactivity. Therefore the cover gas purification of primary systems of reactor plants contains the removal of the inorganic chemical disposal and of the nuclear waste. (author)

  8. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Luo, Hao; Bildea, Costin Sorin

    2015-01-01

    The purification of bioethanol fuel requires an energy demanding separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behaviour of ethanol-water mixture. The classic separation sequence consists of three distillation columns that

  10. Isolation and identification of Legionella pneumophila from drinking water in Basra governorate, Iraq.

    Science.gov (United States)

    Al-Sulami, A A; Al-Taee, A M R; Yehyazarian, A A

    2013-11-01

    This study in Iraq investigated the occurrence of Legionella. pneumophila in different drinking-water sources in Basra governorate as well as the susceptibility of isolates to several antibiotics. A total of 222 water samples were collected in 2008-2009: 49 samples from water purification plants (at entry points, from precipitation tanks, from filtration tanks and at exit points), 127 samples of tap water; and 46 samples from tankers and plants supplying water by reverse osmosis. The findings confirmed the presence of L. pneumophila in sources of crude water, in general drinking water supplies and drinking water tankers. Of 258 isolates 77.1% were serotype 1 and 22.9% serotypes 2-15. All examined isolates displayed drug resistance, particularly to ampicillin, but were 100% susceptible to doxycycline. The prevalence of L. pneumophila, especially serogroup 1, is a strong indicator of unsuitability of drinking water and requires appropriate action.

  11. Evaluation of indigenous anion exchange resins for plutonium purification

    International Nuclear Information System (INIS)

    Kumaresan, R.; Sabharwal, K.N.; Srinivasan, T.G.; Vasudeva Rao, P.R.; Thite, B.S.; Ajithlal, R.T.; Sinalkar, Nitin; Dharampurikar, G.R.; Janardhanan, C.; Michael, K.M.; Vijayan, K.; Jambunathan, U.; Dey, P.K.

    2004-01-01

    Preliminary data with pure plutonium nitrate solution indicate that indigenous anion exchange resin can be used for the purification and concentration of plutonium. However, further studies are required to be conducted on larger scale with actual plant feed solutions before arriving to final conclusions. This includes repeated loading and elution cycles studies with the same bed and evaluation of the performance after each cycle

  12. Purification and characterization of a protease from Thermophilic ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-19

    Oct 19, 2006 ... protein liquid chromatography. The method gave a ... gent industry are the proteases from bacteria sources ... In this paper, we report our recent progress on the purification ... 10 to 60 min, then cooled in ice-water and the residue activity was measured .... Huo P, Mao J, Shi Y (2003). ... Kumar CG (2002).

  13. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  14. Prediction model for exhausted point of ion exchange resin column of moderator purification circuit at Korean CANDU plant

    International Nuclear Information System (INIS)

    Sohn, Wook; Kang, Duck-Won; Ahn, Hyun Kyoung; Rhee, In Hyoung

    2005-01-01

    Most of the carbon-14 produced at CANDU plants are removed by an Ion eXchange (IX) resin column of the moderator purification circuit, and a column is replaced based on an empirical guideline. Since the amount of carbon-14 released from CANDU plants is governed by the performance of a column, optimal operation of IX resin columns through the timely replacement based on an objective criterion is very important. For this, the model for predicting the exhausted point of an IX resin column has been developed based on local chemical equilibrium. The performance evaluation at Wolsong Unit 3 showed that the model was able to simulate the removal of species by an IX resin column to such a high degree that the model could provide an objective criterion to replace an IX resin column timely. The derived maximum service time of a fresh IX resin column was 4,080 h, about twice that of the existing empirical guideline (up to 2,000h). Accordingly, if the maximum service time derived in this paper is applied to Wolsong Unit 3, it is expected to reduce the cost needed for the replacement of IX resin column by about 50%. (author)

  15. Present status and recent improvements of water chemistry at Russian VVER plants

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2001-01-01

    Water chemistry is an important contributor to reliable plant operation, safety barrier integrity, plant component lifetime, radiation safety, environmental impact. Primary and secondary water chemistry guidelines of Russian VVER plants have been modified to meet the new safety standards. At present 14 VVER units of different generation are in operation at 5 Russian NPPs. There are eight 4-loop pressurised water reactors VVER-1000 (1000 MWe) and six 6-loop pressurised water reactors VVER-440 (440 MWe). Generally, water chemistry at East European VVER plants (about 40 VVER-440 and VVER-1000 units in Ukraine, Bulgaria, Slovakia, Czech Republic, Hungary, Finland and Armenia) is similar to water chemistry at Russian VVER plants. Due to similar design and structural materials some water chemistry improvements were introduced at East European plants after they has been successfully implemented at Russian plants and vice versa. Some water chemistry improvements will be implemented at modern VVER plants under construction in Ukraine, Slovakia, Czech Republic, Iran, China, India. (R.P.)

  16. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  17. Pilot plant for exploitation of geothermal waters

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragan T.

    2006-01-01

    Full Text Available In Sijarinska spa, there are some 15 mineral and thermomineral springs, that are already being used for therapeutic purposes. For the exploitation of heat energy boring B-4 is very interesting. It is a boring of a closed type, with the water temperature of about 78°C and a flow rate of about 33 l/s. Waters with the flow rate of about 6 l/s are currently used for heating of the Gejzer hotel, and waters of the flow rate of about 0,121 l/s for the pilot drying plant. The paper presents this pilot plant. .

  18. ECOLO-HOUSE in the heavy snow-fall region. Purification of sewerage water; Yukiguni ekoro house. Gesui shorisui no joka

    Energy Technology Data Exchange (ETDEWEB)

    Umemiya, H; Kitamura, K [Yamagata University, Yamagata (Japan)

    1997-11-25

    In a local town like Yonezawa city, a large city type sewerage system has not yet been spread. Most houses use septic tanks treating waste water from both toilet and kitchen/bath. The treated water from them is discharged directly into surface water of side ditches, etc., which produces environmental problems such as water pollution and eutrophication. Enhancement of purification effects was studied by putting walnut charcoal and bacilli into the aeration tank circulating air in the septic tank to secure bacteria and improve work of them in the aeration tank. The treated water is further reused as drinking water using peat layer. Walnut charcoal can be a nest of bacteria. By this, it became possible to cope also with environmental changes such as water quality and temperature in the septic tank. It is possible to always keep water quality in the purifying tank and quality of the treated water in a stabilized condition. Moreover, existence of bacteria can be confirmed even inside the pores of walnut charcoal can be confirmed. Porosity of walnut charcoal is made use of, and it is useful to use walnut charcoal as a nest of bacteria in the septic tank. 5 refs., 12 figs.

  19. Water hammer in USA nuclear power plants and it's evaluation

    International Nuclear Information System (INIS)

    Liu Shuqian.

    1987-01-01

    The results of evaluations about the water hammer events in USA nuclear power plants in recent years are summarily reported. The evaluations included underlying causes and frequency of water hammer events, damages incurred and systems affected. Through the evaluations about water hammer events and on the basis of past operation experiences in nuclear power plants, the design and operational modifications to prevent or mitigate water hammer events were presented. The NRC's current opinions relating to the water hammer problems are summarized, the importance of water hammer events for nuclear power plants construction in China is indicated

  20. Analytical monitoring of systems for the production of high-purity, desalinated water

    International Nuclear Information System (INIS)

    Kunert, I.

    1988-01-01

    The purity requirements to be met by high-purity water currently push the most sensitive analytical methods to their utmost limits of sensitivity. The required degree of purity of the water at present can only be achieved by application of membrane processes, and pre-purification of the feedwater to a quality corresponding to that of the raw water source. The contribution in hand discusses the analytical monitoring of the raw water treatment plant, the water treatment prior to the treatment by reverse osmosis, monitoring and control of the modules for reverse osmosis, and the monitoring of high-purity water production for the microelectronics industry. (orig./RB) [de

  1. Active condensation of water by plants

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2013-10-01

    Full Text Available This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomenon in question is found everywhere, but it is particularly important for plants in arid ecosystems.

  2. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  3. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff.

    Directory of Open Access Journals (Sweden)

    Jiake Li

    Full Text Available Excessive phosphorus (P contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil, and eight intermittent tests with single filler (Blast furnace slag mixed with sand. Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume.

  4. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  5. Purification of Sodium Phosphates as by Product of Rirang Ore Decomposition Process

    International Nuclear Information System (INIS)

    Sugeng-Walujo; Hafni-LN; Susilaningtyas; Mukhlis; Budi-Sarono; Widowati

    2004-01-01

    The aim of this experiment is to get purification condition of sodium phosphates from the filtration result of mixing mother liquor and filtrate of washing residue from Rirang monazite decomposition by alkaline. The method of purification which has been used is dissolved the precipitation of sodium phosphates into agitated water 5 minutes and solution settling for 12 hours until appear of sodium phosphate crystals. The variable of experiment included dissolution time and ratio of the amount precipitate sodium phosphate volume of water to solvent. Experimental data shown that the good temperature of dissolution is 70 o C with the ratio of precipitate sodium phosphate is 80 gram/ 40 ml to water. The recovery of sodium phosphate crystallisation is 87.4314 % with 54.0105 % pure of Na 3 PO 4 , U content is 0.0004%, NaOH content and other impurities is 45.9889%. (author)

  6. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  8. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change

    International Nuclear Information System (INIS)

    Koch, Hagen; Voegele, Stefan

    2009-01-01

    According to the latest IPCC reports, the frequency of hot and dry periods will increase in many regions of the world in the future. For power plant operators, the increasing possibility of water shortages is an important challenge that they have to face. Shortages of electricity due to water shortages could have an influence on industries as well as on private households. Climate change impact analyses must analyse the climate effects on power plants and possible adaptation strategies for the power generation sector. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short- and medium-term. In the long-term, the water demand will change as old units are phased out and new generating units appear in their place. In this paper, we describe the integration of functions for the calculation of the water demand of power plants into a water resources management model. Also included are both short-term reactive and long-term planned adaptation. This integration allows us to simulate the interconnection between the water demand of power plants and water resources management, i.e. water availability. Economic evaluation functions for water shortages are also integrated into the water resources management model. This coupled model enables us to analyse scenarios of socio-economic and climate change, as well as the effects of water management actions. (author)

  9. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  10. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    Directory of Open Access Journals (Sweden)

    Penna Thereza CV

    2006-08-01

    Full Text Available Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value necessary to inactivate 90% of the initial bioburden (decimal reduction time was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2 and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10 population (n cycles. To kill 90% of the initial population (or one log10 cycle, the necessary time (D-value was for P. aeruginosa into: (i 0.5% citric acid, D = 3.8 min; (ii 0.5% hydrochloric acid, D = 6.9 min; (iii 70% ethanol, D = 9.7 min; (iv 0.5% sodium bisulfite, D = 5.3 min; (v 0.4% sodium hydroxide, D = 14.2 min; (vi 0.5% sodium

  11. Water-Related Power Plant Curtailments: An Overview of Incidents and Contributing Factors

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Water temperatures and water availability can affect the reliable operations of power plants in the United States. Data on water-related impacts on the energy sector are not consolidated and are reported by multiple agencies. This study provides an overview of historical incidents where water resources have affected power plant operations, discusses the various data sources providing information, and creates a publicly available and open access database that contains consolidated information about water-related power plant curtailment and shut-down incidents. Power plants can be affected by water resources if incoming water temperatures are too high, water discharge temperatures are too high, or if there is not enough water available to operate. Changes in climate have the potential to exacerbate uncertainty over water resource availability and temperature. Power plant impacts from water resources include curtailment of generation, plant shut-downs, and requests for regulatory variances. In addition, many power plants have developed adaptation approaches to reducing the potential risks of water-related issues by investing in new technologies or developing and implementing plans to undertake during droughts or heatwaves. This study identifies 42 incidents of water-related power plant issues from 2000-2015, drawing from a variety of different datasets. These incidents occur throughout the U.S., and affect coal and nuclear plants that use once-through, recirculating, and pond cooling systems. In addition, water temperature violations reported to the Environmental Protection Agency are also considered, with 35 temperature violations noted from 2012-2015. In addition to providing some background information on incidents, this effort has also created an open access database on the Open Energy Information platform that contains information about water-related power plant issues that can be updated by users.

  12. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  13. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  14. Statistical and Judgmental Criteria for Scale Purification

    DEFF Research Database (Denmark)

    Wieland, Andreas; Durach, Christian F.; Kembro, Joakim

    2017-01-01

    of scale purification, to critically analyze the current state of scale purification in supply chain management (SCM) research and to provide suggestions for advancing the scale-purification process. Design/methodology/approach A framework for making scale-purification decisions is developed and used...

  15. Recovering of thorium contained in wastes from Thorium Purification Plant; Reaproveitamento do torio contido em residuos provenientes da Usina de Purificacao do Torio

    Energy Technology Data Exchange (ETDEWEB)

    Brandao Filho, D; Hespanhol, E C.B.; Baba, S; Miranda, L E.T.; Araujo, J.A. de

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author).

  16. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  17. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lessel, T [Abwasserverband Ampergruppe, Eichenau/Muenchen (Germany, F.R.); Suess, A [Bayerische Landesanstalt fuer Bodenkultur und Pflanzenbau, Muenchen (Germany, F.R.)

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m/sup 3/ of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs.

  18. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    International Nuclear Information System (INIS)

    Lessel, T.; Suess, A.

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m 3 of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs. (author)

  19. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  20. Preparation and Characterization of Zeolite Membrane for Bioethanol Purification

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2013-06-01

    Full Text Available The use of bioethanol as an alternative fuel with a purity of more than 99.5% wt has prompted research on bioethanol purification. One of the promising methods used for bioethanol purification is pervaporation membrane. This research is aimed to prepare and characterize zeolite membranes for pervaporation membrane. The membrane preparation consisted of two stages, namely support preparation and zeolite deposition on the support. In support preparation, α- alumina and kaolin with specific composition (50:30; 40:40; 50:30 was mixed with additives and water. After pugging and aging process, the mixture became paste and extruded into tubular shape. The tube was then calcined at temperature of 1250 °C for 3 hours. After that, zeolite 4A was deposited on the tubes using clear solution made of 10 %wt zeolite and 90 %wt water and heated at temperature of 80 °C for 3 hours. Furthermore, the resulting zeolite membranes was washed with deionized water for 5 minutes and dried in oven at temperature of 100 °C for 24 hours. Characterization of zeolite membranes included mechanical strength test, XRD, and SEM. In the mechanical strength test, the membrane sample with α- alumina:kaolin = 50:30 (membrane A has the highest mechanical strength of 46.65 N/mm2. Result of XRD analysis for the membrane A indicated that mullite and corundum phases were formed, which mullite phase was more dominant. Meanwhile the result of SEM analysis shows that zeolite crystals have been formed and covered the pores support, but the deposition of zeolite has not been optimal yet. The performance examination for bioethanol purification showed that the membrane could increase the purity of bioethanol from 95% to 98.5% wt. © 2013 BCREC UNDIP. All rights reservedReceived: 23rd October 2012; Revised: 15th February 2013; Accepted: 16th February 2013[How to Cite: Purbasari, A., Istirokhatun, T., Devi, A.M., Mahsunnah, L. , Susanto, H. (2013. Preparation and Characterization of Zeolite

  1. Formation of secondary products in water purification. ; Toxicological evaluation of mutagenic chlorination by-products during drinking water treatment. Josui shori ni okeru fukuseiseibutsu. ; Josui shori ni okeru hen'i genseibusshitsu no dokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Nakamuro, K [Setsunan Univ., Osaka (Japan). Faculty of Pharmaceutical Sciences; Sayato, Y [Setsunan Univ., Osaka (Japan)

    1993-12-10

    The biological effects of acute toxicity, chronic toxicity, carcinogenicity, etc. of chlorination by-products detected in drinking water in Japan are discussed. The biological effects of representative chlorination by-products such as trihalomethane, haloacetic acid, haloaldehyde, haloacetonitrile, chlorophenol, chloropicrin, etc. as well as the evaluation of mutagenicity in drinking water purification process, for which Ames Salmonella/microsome assay is used for safety evaluation of drinking water, are discussed. The extent of the contribution of mutagenicity of chlorination disinfection by-products to the mutagenicity of drinking water is investigated. It must be admitted that biological evaluation of the safety of water quality is impossible currently by using only the known chemical substances contained in drinking water. The effects of chlorination and ozone treatment which are often applied to drinking water treatment are different each other. 58 refs., 1 fig., 4 tabs.

  2. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  3. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  4. Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Mayo, Aloyce W.; Hanai, Emmanuel E.

    2017-08-01

    Water hyacinth (Eichhornia crassipes) has a great potential for purification of wastewater through physical, chemical and biological mechanisms. In an attempt to improve the quality of effluents discharged from waste stabilization ponds at the University of Dar es Salaam, a pilot plant was constructed to experiment the effectiveness of this plants for transformation and removal of nitrogen. Samples of wastewater were collected and examined for water quality parameters, including pH, temperature, dissolved oxygen, and various forms of nitrogen, which were used as input parameters in a kinetic mathematical model. A conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The results show that total nitrogen was removed by 63.9%. Denitrification contributed 73.8% of the removed nitrogen. Other dominant nitrogen removal mechanisms are net sedimentation and uptake by water hyacinth, which contributed 16.7% and 9.5% of the removed nitrogen, respectively. The model indicated that in presence of water hyacinth biofilm about 1.26 g Nm-2day-1 of nitrogen was removed. However, in the absence of biofilm in water hyacinth pond, the permanent nitrogen removal was only 0.89 g Nm-2day-1. This suggests that in absence of water hyacinth, the efficiency of nitrogen removal would decrease by 29.4%.

  5. Lead uptake of water plants in water stream at Kiteezi landfill site ...

    African Journals Online (AJOL)

    user

    2Chemistry Laboratory, Uganda Industrial Research Institute, P. O. Box 7086, Kampala, Uganda. Received ... contain heavy metals which compromise water quality .... MATERIALS AND METHODS ... discharged out of the waste water treatment plant pipes. ... with deionized water twice and separated into shoots, stems and.

  6. Synthesis and purification of oxide nanoparticle dispersions by modified emulsion precipitation.

    Science.gov (United States)

    Shi, Jingyu; Verweij, Henk

    2005-06-07

    ZrO2 and Fe2O3 precursor nanoparticles are synthesized, well-dispersed in decane, via a modified emulsion precipitation (MEP) method. This method starts with preparing two thermostable water-in-oil (w/o) emulsions with nonylphenol tetra(ethylene glycol) ether (Arkopal-40) as the main surfactant, didodecyldimethylammonium bromide (DiDAB) as the cosurfactant, decane as the continuous oil phase, and either a metal salt solution or a hexamethylenetetramine (HMTA) precipitation agent solution as the dispersed water phase. After mixing of the two emulsions, individual precursor particles are formed by precipitation in the confinement of the aqueous solution droplets. Excess water is removed by azeotropic distillation, and steric stabilization of the particles in the remaining oil medium is achieved with poly(octadecyl methacrylate) (PODMA), initially present dissolved in the oil phase. A purification process is conducted to remove the precipitation reaction byproduct and excess surfactants from the nanoparticle dispersions. Transmission electron microscopy (TEM) characterization shows that the ZrO2 and Fe2O3 precursor nanoparticles are both non-agglomerated, spherical, and have a narrow particle size distribution, centered at 4 nm in diameter. The precipitation from the dispersion of byproduct NH4Cl after water removal, and insoluble surfactant DiDAB after dilution with pure decane, is confirmed by X-ray diffraction (XRD). NMR results show that most of the oil-soluble surfactant Arkopal-40 can be removed from the dispersion by a 3x repeated dead-end pressure filtration process. It is shown that, after purification, the nanoparticle dispersions can be used for the preparation of homogeneous nanostructured coatings. The purification procedure as discussed provides guidelines for up-scaling the process and reuse of emulsifiers.

  7. Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents.

    Science.gov (United States)

    Piletska, Elena V; Karim, Kal; Cutler, Malcolm; Piletsky, Sergey A

    2013-01-01

    A polymeric adsorbent for extraction of the antimalarial drug artemisinin from Artemisia annua L. was computationally designed. This polymer demonstrated a high capacity for artemisinin (120 mg g(-1) ), quantitative recovery (87%) and was found to be an effective material for purification of artemisinin from complex plant matrix. The artemisinin quantification was conducted using an optimised HPLC-MS protocol, which was characterised by high precision and linearity in the concentration range between 0.05 and 2 μg mL(-1) . Optimisation of the purification protocol also involved screening of commercial adsorbents for the removal of waxes and other interfering natural compounds, which inhibit the crystallisation of artemisinin. As a result of a two step-purification protocol crystals of artemisinin were obtained, and artemisinin purity was evaluated as 75%. By performing the second stage of purification twice, the purity of artemisinin can be further improved to 99%. The developed protocol produced high-purity artemisinin using only a few purification steps that makes it suitable for large scale industrial manufacturing process. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mine water purify from radium

    International Nuclear Information System (INIS)

    Lebecka, J.

    1996-01-01

    The article describes purification of radium containing water in coal mines. Author concludes that water purification is relatively simple and effective way to decrease environmental pollution caused by coal mining. The amount of radium disposed with type A radium water has been significantly decreased. The results of investigations show that it will be soon possible to purify also type B radium water. Article compares the amounts of radium disposed by coal mines in 1990, 1995 and forecast for 2000

  9. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  10. Alternative disinfection technology for water purification systems; Josui shori ni okeru enso daitai shodoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, T. [The Institute of Public Health, Tokyo (Japan)

    1998-09-10

    This paper describes chlorination substituting disinfection technologies used in water purification systems. Chloramine treatment is regarded as effective in reducing trihalomethane (THM). Chlorine is injected in the initial stage in the form of free chlorine to disinfect pathogenic microorganisms in a short time, which is then added with ammonia to convert it into chloramine for further utilization. Chlorine dioxide has not been used in Japan, but introduced in Europe and America to treat THM. Ozone has the strongest oxidizing power, and is used for disinfection, virus inactivation, decomposition of THM precursors, and removal of fungus odor. The ozone treatment will produce aldehyde if an organic matter is present, but aldehyde can be removed by treatment using organismic activated carbon. Ultraviolet ray treatment has an advantage of being difficult of producing byproducts. This system was experimentally compared with free chlorine treatment on disinfection effect, mutagenicity, suppression of producing THM byproducts, and odor removal. In order to assure reliability of microorganismic and chemical safety in tap water supply systems, assurance by considering the entire system is important, not only by operating the disinfection units, but also combining such physical water purifying technologies as coagulation, sedimentation, filtration, and membrane treatment. The use of chlorine substituting disinfectants is also a part of the conception. 6 refs., 8 figs., 5 tabs.

  11. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  12. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  13. Decreasing but still significant facilitation effect of cold-season macrophytes on wetlands purification function during cold winter.

    Science.gov (United States)

    Zou, Xiangxu; Zhang, Hui; Zuo, Jie; Wang, Penghe; Zhao, Dehua; An, Shuqing

    2016-06-01

    To identify the facilitation effect of a cool-season aquatic macrophyte (FEam) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FEam of 15.23-25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.

  14. Uranium removal from water by five aquatic plants

    International Nuclear Information System (INIS)

    Hu Nan; Ding Dexin; Li Guangyue; Wang Yongdong; Li Le; Zheng Jifang

    2012-01-01

    Hydroponic solution culture experiments were conducted on the growth of Eichhornia crassipes, Lemna minor L, Azolla imbircata, Potamogeton crispus, and Alligator alternanthera Herb in water with 0.15, 1.50 and 15.00 mg . L -1 concentrations of uranium, and on the uranium removal from the water by the aquatic plants. For the 21 days of hydroponic solution culture experiments, Azolla imbircata exhibited the strongest resistance to uranium and its growth inhibition rates induced by the water with 0.15, 1.50 and 15.00 mg · L -1 concentrations of uranium were 4.56%, 2.48%, 6.79%, respectively, and the uranium removal rates from the water by the plant amounted to 94%, 97% and 92%, respectively. Further experiments revealed that the most uranium removal could be achieved when 7.5 g Azolla imbircata was grown in 1 L of water, and the time required for the plant to reduce the uranium concentration in water with 1.25, 2.50, 5.00 and 10.00 mg · L -l concentrations of uranium below that stipulated in the national emission standards of China were 17, 19, 23 and 25 days, respectively. The results have laid foundation for further studies of phytoremediation of uranium contaminated water. (authors)

  15. The reliability evaluation of reclaimed water reused in power plant project

    Science.gov (United States)

    Yang, Jie; Jia, Ru-sheng; Gao, Yu-lan; Wang, Wan-fen; Cao, Peng-qiang

    2017-12-01

    The reuse of reclaimed water has become one of the important measures to solve the shortage of water resources in many cities, But there is no unified way to evaluate the engineering. Concerning this issue, it took Wanneng power plant project in Huai city as a example, analyzed the reliability of wastewater reuse from the aspects of quality in reclaimed water, water quality of sewage plant, the present sewage quantity in the city and forecast of reclaimed water yield, in particular, it was necessary to make a correction to the actual operation flow rate of the sewage plant. the results showed that on the context of the fluctuation of inlet water quality, the outlet water quality of sewage treatment plants is basically stable, and it can meet the requirement of circulating cooling water, but suspended solids(SS) and total hardness in boiler water exceed the limit, and some advanced treatment should be carried out. In addition, the total sewage discharge will reach 13.91×104m3/d and 14.21×104m3/d respectively in the two planning level years of the project. They are greater than the normal collection capacity of the sewage system which is 12.0×104 m3/d, and the reclaimed water yield can reach 10.74×104m3/d, which is greater than the actual needed quantity 8.25×104m3/d of the power plant, so the wastewater reuse of this sewage plant are feasible and reliable to the power plant in view of engineering.

  16. Health physics experiences in achieving ALARA exposures to plant personnel at NAPS

    International Nuclear Information System (INIS)

    Ramakrishna, V.; Lal Chand

    2000-01-01

    Unit 1 of NAPS achieved first criticality on 12.3.1989 and Unit 2 achieved on 24.10.1991. Till the end of Feb-2000 these units have completed 1890 and 1811 full power days respectively. The performance of NAPS was expected to be better than the earlier Indian reactors in respect of safe production as well as cumulative radiation exposures. This is because of the major design improvements like: fully double containment system, elimination of 41 Ar by introducing light water in calandria vault, reduction of core based fuel failure rate, separation of high radiation equipment to no occupancy areas during normal operation, a separate purification building for the purification of both moderator and PHT systems, a better layout of equipment and plant areas, elimination of unnecessary equipment in various systems besides ensuring the reliability of equipment for safe operation, selection of materials with low corrosion and activation characteristics etc. In this paper, the operational health physics experiences at NAPS to achieve ALARA exposures to plant personnel are described briefly. (author)

  17. Results from four Pinus patula water planting trials in the summer ...

    African Journals Online (AJOL)

    Planting with water is used by some forestry companies in South Africa to reduce post-planting water stress. Four trials were implemented to test the response in survival of Pinus patula to water applied at planting. Two trials each were situated in the KwaZulu-Natal Midlands and Mpumalanga escarpment. The first trial at ...

  18. Water quality maintaining device of power plant

    International Nuclear Information System (INIS)

    Kobayashi, Minoru; Inami, Ichiro.

    1994-01-01

    The device of the present invention reduces the amount of leaching materials of ion exchange resins from a water processing system of a BWR tyep plant, improves the water quality of reactor water to maintain the water at high purity. That is, steams used for power generation are condensated in a condensate system. A condensate filter and a condensate desalter for cleaning the condensates are disposed. A resin storage hopper is disposed for supplying the ion exchange resins to the water processing system. A device for supplying a nitrogen gas or an inert gas is disposed in the hopper. With such a constitution, the ion exchange resins in the water processing system are maintained in a nitrogen gas or inert gas atmosphere or at a low dissolved oxygen level in an operation stage in the power plant. Accordingly, degradation of the ion exchange resins in the water processing system is suppressed and the amount of the leaching material from the resins is reduced. As a result, the amount of the resins leached into the reactor is reduced, so that the reactor water quality can be maintained at high purity. (I.S.)

  19. The hydrodynamics of plant spacing distance: Optimizing consumptive and non-consumptive water use in water-limited environments

    Science.gov (United States)

    Trautz, A.; Illangasekare, T. H.; Rodriguez-Iturbe, I.; Howington, S. E.

    2017-12-01

    The availability of soil moisture in water-stressed environments is one of the primary factors controlling plant performance and overall plant community productivity and structure. The minimization of non-consumptive water loss, or water not utilized by plants (i.e. consumptive use), to bare soil evaporation is a key plant survival strategy and important agricultural consideration. Competitive (negative) and facilitative (positive) interactions between individual plants play a pivotal role in controlling the local coupled soil-plant-atmosphere hydrodynamics that affect both consumptive and non-consumptive water use. The strength of these two types of interactions vary with spacing distance between individuals. In a recent PNAS publication, we hypothesized that there exists a quantifiable spacing distance between plants that optimizes the balance between competition and facilitation, and hence maximizes water conservation. This study expands upon on our previous work, for which only a subset of the data generated was used, through the development and testing of a numerical model that can test a conceptual model we presented. The model simulates soil-plant-atmosphere continuum heat and mass transfer hydrodynamics, taking into account the complex feedbacks that exist between the near-surface atmosphere, subsurface, and plants. This model has been developed to explore the combined effects of subsurface competition and micro-climatic amelioration (i.e., facilitation) on local soil moisture redistribution and fluxes in the context of water-stressed environments that experienced sustained winds. We believe the results have the potential to provide new insights into climatological, ecohydrological, and hydrological problems pertaining to: the extensively used and much debated stress-gradient hypothesis, plant community population self-organization, agricultural best practices (e.g., water management), and spatial heterogeneity of land-atmosphere fluxes.

  20. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  1. Heavy water physical verification in power plants

    International Nuclear Information System (INIS)

    Morsy, S.; Schuricht, V.; Beetle, T.; Szabo, E.

    1986-01-01

    This paper is a report on the Agency experience in verifying heavy water inventories in power plants. The safeguards objectives and goals for such activities are defined in the paper. The heavy water is stratified according to the flow within the power plant, including upgraders. A safeguards scheme based on a combination of records auditing, comparing records and reports, and physical verification has been developed. This scheme has elevated the status of heavy water safeguards to a level comparable to nuclear material safeguards in bulk facilities. It leads to attribute and variable verification of the heavy water inventory in the different system components and in the store. The verification methods include volume and weight determination, sampling and analysis, non-destructive assay (NDA), and criticality check. The analysis of the different measurement methods and their limits of accuracy are discussed in the paper

  2. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  3. Effect of aquatic plants on 95Zr concentration in slightly polluted water

    International Nuclear Information System (INIS)

    Shi Jianjun; Yang Ziyin; Chen Hui

    2004-01-01

    Effect of three aquatic plants (Ceratophyllum demersum, Azolla caroliniana and Eichhornia crassipes) on 95 Zr concentration in slightly polluted water was studied by using isotope tracer techniques. The results showed that the aquatic plants had strong ability of 95 Zr concentration in water. The concentration factor (CF) were from 56.78 to 112.94, so three aquatic plants were suggested be bio-indicators for 95 Zr polluted water. The specific activity of 95 Zr in water decreased with time when the aquatic plants were put in slightly 95 Zr polluted water. The descent of specific activity of 95 Zr in water was very quick during the beginning period (0-3d). The time for the specific activity reduced to 50% was only 3 days, indicating that theres aquatic plants could be used to purge slightly 95 Zr polluted water. The effect of Eichhornia crassipes on purging 95 Zr in water was the best among the three aquatic plants. The specific activity of 95 Zr in bottom clay only decreased 5% after putting aquatic plants in water, indicating that desorption of 95 Zr from bottom clay was not easy. As the bottom clay had strong ability of adsorption and fixation to 95 Zr, the effect of aquatic plant on purging 95 Zr adsorbed by bottom clay was not visible

  4. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. III. Vegetation water stress

    Science.gov (United States)

    Porporato, A.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    The reduction of soil moisture content during droughts lowers the plant water potential and decreases transpiration; this in turn causes a reduction of cell turgor and relative water content which brings about a sequence of damages of increasing seriousness. A review of the literature on plant physiology and water stress shows that vegetation water stress can be assumed to start at the soil moisture level corresponding to incipient stomatal closure and reach a maximum intensity at the wilting point. The mean crossing properties of these soil moisture levels crucial for water stress are derived analytically for the stochastic model of soil moisture dynamics described in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe. Adv. Water Res. 24 (7) (2001) 707-723). These properties are then used to propose a measure of vegetation water stress which combines the mean intensity, duration, and frequency of periods of soil water deficit. The characteristics of vegetation water stress are then studied under different climatic conditions, showing how the interplay between plant, soil, and environment can lead to optimal conditions for vegetation.

  5. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  6. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  7. Strep-Tagged Protein Purification.

    Science.gov (United States)

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  8. A nuclear magnetic resonance study of plant-water relationships

    NARCIS (Netherlands)

    Reinders, J.E.A.

    1987-01-01

    Water is one of the most important constituents of a plant. It is the medium in which many biological reactions take place and nutrients are transported throughout the plant in aqueous solutions. Because it serves as a hydrogen donor In photosynthesis water can be considered as one of the

  9. An assessment of existing common traditional methods of water ...

    African Journals Online (AJOL)

    Classical water purification methods include boiling, filtration, irradiation and the use of chemicals while traditional water purification methods in use are boiling, filtration, sedimentation, long storage and solar radiation. Waterborne diseases are m ore common in the rural communities where potable water supply coverage ...

  10. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  11. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  12. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  13. Green and technical efficient growth in Danish fresh water aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2011-01-01

    growth can be achieved by introducing new environmentally friendly water purification systems in Danish fresh water aquaculture. Data Envelopment Analysis is used to investigate whether different water purification systems and farm size influence technical efficiency. The empirical results indicate...

  14. CAREM 25: Suppression pool cooling and purification system

    International Nuclear Information System (INIS)

    Carlevaris, Rodolfo; Patrignani, Alberto; Vindrola, Carlos; Palmerio, Hector D.; Quiroz, Horacio; Ramilo, Lucia B.

    2000-01-01

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  15. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  16. Possibilities of tritium removal from waste waters of pressurized water reactors and fuel reprocessing plants

    International Nuclear Information System (INIS)

    Ribnikar, S.V.; Pupezin, J.D.

    1975-01-01

    Starting from parameters known for heavy water production processes, a parallel was made with separation of tritium from water. The quantity in common is the total cascade flow. The most efficient processes appear to be hydrogen sulfide, water exchange, hydrogen- and water distillation. Prospects of application of new processes are discussed briefly. Problems concerning detritiation of pressurized water reactors and large fuel reprocessing plants are analyzed. Detritiation of the former should not present problems. With the latter, economical detritiation can be achieved only after some plant flow patterns are changed. (U.S.)

  17. Consequence of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    1998-01-01

    Heavy water plants realize the primary isotopic concentrations of water using H 2 O-H 2 S chemical exchange and they are chemical plants. As these plants are handling and spreading large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive as) maintained in the process at relative high temperatures and pressures, it is required an assessing of risks associated with the potential accidents. The H 2 S released in atmosphere as a result of an accident will have negative consequences to property, population and environment. This paper presents a model of consequences quantitative assessment and its outcome for the most dangerous accident in heavy water plants. Several states of the art risk based methods were modified and linked together to form a proper model for this analyse. Five basic steps to identify the risks involved in operating the plants are followed: hazard identification, accident sequence development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information of analysis results are provided. The accident proportions, the atmospheric conditions and the population density in the respective area were accounted for consequences calculus. The specific results of the consequences analysis allow to develop the plant's operating safety requirements so that the risk remain at an acceptable level. (authors)

  18. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2018-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  19. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  20. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.