WorldWideScience

Sample records for water pumping systems

  1. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  2. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  3. Audel water well pumps and systems mini-ref

    CERN Document Server

    Woodson, Roger D

    2011-01-01

    Introducing an Audel ""Mini-Ref"" for tradespeople working on water well pumps and pumping systems Water well pumps are used everywhere, with installations numbering in the millions. It's hard to believe that no one has written a small field book that covers these pieces of equipment. Finally, here's a great handy guide is for anyone who needs to know how these pumps work, how to troubleshoot problems unique to this type of piping system, and how to make common repairs for both above ground and submersible pumps. It contains vital and specific references applicable to a wide range of

  4. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    OpenAIRE

    A. M. Kulia

    2016-01-01

    Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a seq...

  5. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-07-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, variable frequency drives and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  6. Assessing variable speed pump efficiency in water distribution systems

    Directory of Open Access Journals (Sweden)

    A. Marchi

    2012-03-01

    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, inverters and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  7. AUTOMATION OF THE RESIDENTIAL BUILDING WATER SUPPLY SYSTEM PUMPING STATION

    Directory of Open Access Journals (Sweden)

    A. M. Kulia

    2016-08-01

    Full Text Available Essence of process of water-supply of apartment dwelling house is considered. The existent state over of automation of the pumping stations is brought. The task of development of the effective system of automatic control is put by them. Possibility of decision of task is shown by the use in the system of frequency transformer that feeds the electrodrives of pumps, and also due to perfection of algorithms of the pumps rotation frequency adjusting and logical management of their switching a sequence. The practical value of the use of the system is to increase dynamic.

  8. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  9. EFFICIENT DESIGN OF A PHOTOVOLTAIC WATER PUMPING AND TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Abderrahmen Ben Chaabene

    2013-01-01

    Full Text Available Through the world, the exploitation of solar energies knew a strong growth these last years. It is interesting to exploit them on the place of consumption, by directly transforming into heat, or in electricity according to needs and especially in remote areas where power from utility is not available or is too costly to install. The use of photovoltaic sources in water pumping and treatment domain is one of the most important renewable energy applications. Having an arid to a semi-arid climate, Tunisia receives low quantities of rain. Consequently, the available water resources in the country are rather modest in terms of both quantity and quality. 97% of water resources in Tunisia are of brackish water, particularly in the south parts of the country. Originate from ground water resources and surface, these waters are unsuitable for drinking or irrigation, because of the high salinity and biological contagion in sensitive (perceptible germs. The goal of this study is to direct the applied researches to the applications of coupling the photovoltaic energy, which is available in the south of the country and water domain (pumping, desalting and disinfecting. We present in this study some of pilot units coupled to photovoltaic sources and we propose a global system which gathers the water pumping, desalting and disinfecting operations. Some experimental and numerical results have been carried out to show the efficiency of the use of this system. The conception, the realization and the exploitation of this autonomous system will be the suitable solution for providing fresh water to a number of rural regions where important quantities of water are needed to either, the drinking and irrigation, in Tunisia and in the Mediterranean basin in general.

  10. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  11. System curves for 100-K water plant expansion pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rudock, E.R.

    1958-06-05

    Modifications to the 100-K water plant will be made, under Project CG-775, to increase total process water flow rates to 175,000 gpm or greater. Included in the modifications will be the installation of new pump impellers for the primary and secondary process water pumps located in the 190-K Buildings.

  12. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  13. Calculation of Earthing System at Bangladesh Storm Water Pumping Station

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaolei; QIAN Zhongyang; LIANG Wei; WANG Qin

    2015-01-01

    A Storm Water Pumping Station funded by the World Bank is under construction and commissioning, of which the earthing system design is a crucial part for the electrical design. Based on IEEE and BS standards, this article fully introduces the analysis methodology and calculation of the system within the framework of the World Bank supported project. A solution of this practical case satisfied with the requirements of international standards is shown in order to bring experience and convenience for engineers who are dedicated to projects abroad.

  14. Failure Analysis of a Water Supply Pumping Pipeline System

    Directory of Open Access Journals (Sweden)

    Oscar Pozos-Estrada

    2016-09-01

    Full Text Available This paper describes the most important results of a theoretical, experimental and in situ investigation developed in connection with a water supply pumping pipeline failure. This incident occurred after power failure of the pumping system that caused the burst of a prestressed concrete cylinder pipe (PCCP. Subsequently, numerous hydraulic transient simulations for different scenarios and various air pockets combinations were carried out in order to fully validate the diagnostic. As a result, it was determined that small air pocket volumes located along the pipeline profile were recognized as the direct cause of the PCCP rupture. Further, a detail survey of the pipeline was performed using a combination of non-destructive technologies in order to determine if immediate intervention was required to replace PCC pipes. In addition, a hydraulic model was employed to analyze the behavior of air pockets located at high points of the pipeline.

  15. First experience of water pumping system in Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, C. [Soleco Ltd., Borgaa (Finland)

    2000-07-01

    A photovoltaic water pump (PVP) was installed and monitored in a village at sea level in the east coast of Yemen. Economic study showed PVP to be competitive within the power range of small diesel pumps, where they often even constitute the least-cost option. Social study showed the high acceptance and better integration of PVP into the project village. The water in Yemen is found in wells at depths of 15 m down to 100 m, and more. The village population usually lives on the top of the steep mountains and the well is down in the valley. The first pilot PVP was installed in a village at sea level with an existing well. The work is supported by World Bank financing and a co-operation with a Danish and Finnish CTF of World Bank. (au)

  16. Application of Heat Pump in Cooling Water System of HIRFL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator generates a lot of heat when it is working.It must be cooled by the circulating cooling water.Generally the heat was released to atimosphere by the cooling water tower.Because the heat energy is very huge(about 2M watts for HIRFL),it is big waste and the machine can’t be cooled to appropriate temperature when ambient temperature is high in summer.In order to solve the problems,the heat pump has been used

  17. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  18. Automatic Control of Water Pumping Stations

    Institute of Scientific and Technical Information of China (English)

    Muhannad Alrheeh; JIANG Zhengfeng

    2006-01-01

    Automatic Control of pumps is an interesting proposal to operate water pumping stations among many kinds of water pumping stations according to their functions.In this paper, our pumping station is being used for water supply system. This paper is to introduce the idea of pump controller and the important factors that must be considering when we want to design automatic control system of water pumping stations. Then the automatic control circuit with the function of all components will be introduced.

  19. Feasibility study of a wind powered water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-12-01

    Full Text Available Water is the primary source of life for mankind and one of the most basic necessities for rural development. Most of the rural areas of Ethiopia do not have access to potable water. Is some regions of the country access potable water is available through use of manual pumping and Diesel engine. In this research, wind water pump is designed to supply drinking water for three selected rural locations in Ethiopia. The design results show that a 5.7 m diameter windmill is required for pumping water from borehole through a total head of 75, 66 and 44 m for Siyadberand Wayu, Adami Tulu and East Enderta to meet the daily water demand of 10, 12 and 15 m3, respectively. The simulation for performance of the selected wind pump is conducted using MATLAB software and the result showed that monthly water discharge is proportional to the monthly average wind speed at the peak monthly discharge of 685 m3 in June, 888 m3 in May and 1203 m3 in March for Siyadberand Wayu, Adami Tulu and East Enderta sites, respectively. An economic comparison is conducted, using life cycle cost analysis, for wind mill and Diesel water pumping systems and the results show that windmill water pumping systems are more feasible than Diesel based systems.

  20. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness

    OpenAIRE

    Oreste Fecarotta; Helena M. Ramos; Giuseppe Del Giudice; Armando Carravetta

    2013-01-01

    Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was develop...

  1. Comparison of solar powered water pumping systems which use diaphragm pumps

    Science.gov (United States)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  2. Modelling a directly coupled photovoltaic pumping system in a solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Y.; Fraisse, G. [Savoy Univ., Le Bourget du lac (FR). Design Optimization and Environmental Engineering Laboratory (LOCIE)

    2008-07-01

    This paper presents a photovoltaic (PV) powered pumping system applying in a solar domestic hot water (SDHW) system. Two circulators ('Standard' and 'Solar') are employed respectively. A new model of circulator is developed in TRNSYS based on a 'Standard' type that consists of a DC-brushless motor and a centrifugal pump. Model validation is carried out by comparing with the experimental measurement. The experimental performance of these two circulators is analyzed on the aspects of startup and the stable operation stage. (orig.)

  3. Residential CO2 Heat Pump System for Combined Space Heating and Hot Water Heating

    OpenAIRE

    Stene, Jørn

    2004-01-01

    Carbon dioxide (CO2, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO2 heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO2 heat pump systems for combined space heating and hot water hea...

  4. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... to investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....... tank, is charging. Charging is done by circulating the water in the tank through the condenser several times and thereby gradually heats the water. This result in a lower condensing temperature than if the water was heated in one step. A dynamic model of the system, implemented in Dymola, is used...

  5. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  6. The role of capacitance in a wind-electric water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Shitao [West Texas A& M Univ., Canyon, TX (United States); Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States)

    1997-12-31

    The development of controllers for wind-electric water pumping systems to enable the use of variable voltage, variable frequency electricity to operate standard AC submersible pump motors has provided a more efficient and flexible water pumping system to replace mechanical windmills. A fixed capacitance added in parallel with the induction motor improves the power factor and starting ability of the pump motor at the lower cut-in frequency. The wind-electric water pumping system developed by USDA-Agricultural Research Service, Bushland, TX, operated well at moderate wind speeds (5-12 m/s), but tended to lose synchronization in winds above 12 m/s, especially if they were gusty. Furling generally did not occur until synchronization had been lost and the winds had to subside before synchronization could be reestablished. The frequency needed to reestablish synchronization was much lower (60-65 Hz) than the frequency where synchronization was lost (70-80 Hz). As a result, the load (motor and pump) stayed off an excessive amount of time thus causing less water to be pumped and producing a low system efficiency. The controller described in this paper dynamically connects additional capacitance of the proper amount at the appropriate time to keep the system synchronized (running at 55 to 60 Hz) and pumping water even when the wind speed exceeds 15 m/s. The system efficiency was improved by reducing the system off-line time and an additional benefit was reducing the noise caused by the high speed blade rotation when the load was off line in high winds.

  7. Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)

    Energy Technology Data Exchange (ETDEWEB)

    Bellah, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-08

    The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the design of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.

  8. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  9. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  10. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  11. Study Of Solar PV Sizing Of Water Pumping System For Irrigation Of Asparagus

    Directory of Open Access Journals (Sweden)

    Mya Su Kyi

    2015-08-01

    Full Text Available The motivation for this system come from the countries where economy is depended on agriculture and the climatic conditions lead to lack of rains. The farmers working in the farm lands are dependent on the rains and bore wells. Even if the farm land has a water-pump manual involvement by farmers is required to turn the pump onoff when on earth needed. This paper presents design and calculation analysis of efficient Solar PV water pumping system for irrigation of Asparagus. The study area falls 21-58-30 N Latitude and 96-5-0 E Longitude of Mandalay. The PV system sizing was made in such a way that it was capable of irrigation one acre of Asparagus plot with a daily water requirement of 25mday.

  12. Analysis of a Residential Heating System Utilizing a Solar Assisted Water-to-Air Heat Pump.

    Science.gov (United States)

    1979-07-01

    heat pump heating system were analyzed. A realistic residence and solar assisted water-to-air heat pump system were modeled for this northern climate using the transient simulation computer code TRNSYS developed by the University of Wisconsin. The system was studied over a one month winter period, December, using actual hourly weather data. The system was analyzed for both the cloudiest and clearest December weather recorded in the last 30 years. The collector area and storage tank capacity were varied and the effects on system performance were

  13. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 2

    DEFF Research Database (Denmark)

    Olesen, Martin F.; Madsen, Claus; Olsen, Lars

    2014-01-01

    The Isolated System Energy Charging (ISEC) concept allows for a high efficiency of a heat pump system for hot water production. The ISEC concept consists of two water storage tanks, one charged and one discharged. The charged tank is used for the industrial process, while the discharged tank...... modelling of the heat pump and tank system is performed (in continuation of Part I). The modelling is extended to include the system performance with different natural refrigerants and the influence of different types of compressors....... is charging. The charging of the tank is done by recirculating water through the condenser and thereby gradually heating the water. The modelling of the system is described in Part I [1]. In this part, Part II, an experimental test setup of the tank system is reported, the results are presented and further...

  14. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  15. 46 CFR 108.471 - Water pump.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water pump. 108.471 Section 108.471 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.471 Water pump. Each water pump in a foam...

  16. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  17. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    Science.gov (United States)

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites.

  18. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations...... area, the levelised cost of pumping 1 L of water is higher than that of a solar pump and even higher when compared with diesel, if the seed yield per plant is less than 2 kg and without subsidy on the investment cost of cultivation and processing. With the productivity of 2.5 kg/plant, a biodiesel......-based system is more attractive than that of the diesel-based pump, but still remains more expensive than that of solar pump. From the technical perspective (reliability and easiness in operation) and economic evaluation of the technical alternatives, solar pumping system is found to be the most viable...

  19. Nano-porous-water Absorbents for Solid-absorbebt Heat Pump System

    Science.gov (United States)

    Mizota, Tadato; Nakayama, Noriaki

    Zeolite-water heat-pump system has been developed in these 25 years. Recently, an instant beer-cooling system has appeared by using the zeolite heat pump system as a commercial product. It takes so long time for the development since the first proposal. The most serious problem through the development has been of the ability of absorbents. Themaximum heat exchange capacity to date exceeds 1MJ•kg-1 for Mg89-A, which is comparable to the energy storage capacity of modern alkaline-ion batteries in weight-bases. But it needs high temperature heat sources more than 200°C for the activation. Absorbents useful at lower temperatures are thus desirable for effective use of various kinds of lower temperature heat sources Various nano-porous materials as well as zeolites now under investigation as candidates of heat-pump absorbents, such as silica-gels, allophane, imogolite, hydrotalcite, etc.

  20. Antibiotic resistance, efflux pump genes and virulence determinants in Enterococcus spp. from surface water systems.

    Science.gov (United States)

    Molale, L G; Bezuidenhout, Cornelius Carlos

    2016-11-01

    The aim of this study was to report on antibiotic susceptibility patterns as well as highlight the presence of efflux pump genes and virulence genetic determinants in Enterococcus spp. isolated from South African surface water systems. One hundred and twenty-four Enterococcus isolates consisting of seven species were identified. Antimicrobial susceptibility testing revealed a high percentage of isolates was resistant to β-lactams and vancomycin. Many were also resistant to other antibiotic groups. These isolates were screened by PCR, for the presence of four efflux pump genes (mefA, tetK, tetL and msrC). Efflux genes mefA and tetK were not detected in any of the Enterococcus spp. However, tetL and msrC were detected in 17 % of the Enterococcus spp. The presence of virulence factors in the Enterococcus spp. harbouring efflux pump genes was determined. Virulence determinants were detected in 86 % of the Enterococcus spp. harbouring efflux pump genes. Four (asa1, cylA, gel and hyl) of the five virulence factors were detected. The findings of this study have demonstrated that Enterococcus from South African surface water systems are resistant to multiple antibiotics, some of which are frequently used for therapy. Furthermore, these isolates harbour efflux pump genes coding for resistance to antibiotics and virulence factors which enhance their pathogenic potential.

  1. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    This paper discusses the design and performance analysis of a solar ... utilizing a special class of highly rugged machine with simple drive system called ..... Introduction to Fluid Power, Science &Technology, Delmar Cengage Learning.

  2. Emergy evaluation of a pumping irrigation water production system in China

    Science.gov (United States)

    Chen, Dan; Luo, Zhaohui; Webber, Michael; Chen, Jing; Wang, Weiguang

    2014-03-01

    The emergy concept was used to evaluate a pumping irrigation water production system in China. A framework for emergy evaluation of the significance of irrigation water and its production process was developed. The results show that the irrigation water saved has the highest emergy value (8.73E + 05 sej·J-1), followed by the irrigation water supplied to farmlands (1.72E + 05 sej·J-1), the pumped water (4.81E + 04 sej·J-1), with the lowest value shown from water taken from the local river (3.72E + 04 sej·J-1). The major contributions to the emergy needed for production are the inputs of soil and water. This production system could contribute to the irrigated agriculture and economy, according to several calculated emergy indices: emergy yield ratio ( EYR), emergy investment ratio ( EIR), environmental load ratio ( ELR), and environmental sustainability index ( ESI). The comparative analysis shows that the emergy theory and method, different from the conventional monetary-based analysis, could be used to evaluate irrigation water and its production process in terms of the biophysical account. Additional emergy evaluations should be completed on different types of water production and irrigated agricultural systems to provide adequate guidelines for the sustainability of irrigation development.

  3. Water hammer in the pump-rising pipeline system with an air chamber

    Institute of Scientific and Technical Information of China (English)

    KIM Sang-Gyun; LEE Kye-Bock; KIM Kyung-Yup

    2014-01-01

    Water hammer following the tripping of pumps can lead to overpressure and negative pressure. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient was simulated using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the polytropic exponent, the discharge coefficient and the wave speed were calibrated. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effect of the inner diameter of the orifice to minimize water hammer have been investigated by both field measurements and numerical modeling.

  4. Flux Vector Splitting Schemes for Water Hammer Flows in Pumping Supply Systems with Air Vessels

    Institute of Scientific and Technical Information of China (English)

    Qiang Sun; Yuebin Wu; Ying Xu; Tae Uk Jang

    2015-01-01

    To solve water hammer problems in pipeline systems, many numerical simulation approaches have been developed. This paper improves a flux vector splitting ( FVS) scheme whose grid is the same as the fixed⁃grid MOC scheme. The proposed FVS scheme is used to analyze water hammer problems caused by a pump abrupt shutdown in a pumping system with an air vessel. This paper also proposes a pump⁃valve⁃vessel model combining a pump⁃valve model with an air vessel model. The results show that the data obtained by the FVS scheme are similar to the ones obtained by the fixed⁃grid method of characteristics ( MOC ) . And the results using the pump⁃valve⁃vessel model are almost the same as the ones using both the pump⁃valve model and the air vessel model. Therefore, it is effective that the proposed FVS scheme is used to solve water hammer problems and the pump⁃valve⁃vessel model replaces both the pump⁃valve model and the air vessel model to simulate water hammer flows in the pumping system with the air vessel.

  5. Correcting Working Postures in Water Pump AssemblyTasks using the OVAKO Work Analysis System (OWAS)

    OpenAIRE

    Atiya Kadhim Al-Zuheri; Hussein S. Ketan

    2008-01-01

    Ovako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slight...

  6. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    Science.gov (United States)

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  7. Automation of a water pumping station

    OpenAIRE

    Mesec, Rožle

    2014-01-01

    In the thesis we displayed an automation of an industrial facility on an example of a water pumping station. We described the structure of a typical automated system and presented it's key components. We designed a water pumping station with three main components – a water pump, a reservoir and a drain. The proposed water pumping station could be used for suplying water to a small settlement, in case the settlement had access to a water source with adequate capacity in it's vicinity. As part ...

  8. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  9. Performance monitoring of a bubble pumped solar domestic hot water system - final report

    Energy Technology Data Exchange (ETDEWEB)

    Makuch, P.D.; Harrison, S.J. [Queen`s Univ., Kingston, ON (Canada). Solar Calorimetry Lab.

    1995-12-01

    A new type of solar domestic hot water (SDHW) system for cold climates was described. The bubble pump system is self pumping and self regulating (it circulates anti-freeze). The system transports heat from roof mounted solar collectors to a thermal storage located at a lower level when there is available solar radiation. The design is unique in that it has no moving parts and requires no external electrical or mechanical input to operate. A unit was installed on a row house in Kingston, Ontario, to evaluate its performance. The average daily solar fraction was 32.4 per cent, and the average system efficiency for the monitored period was 13.4 per cent. This was below expectations due to low hot water demand. Performance improved somewhat towards the end of the monitoring period due to increased demand for hot water, improvements to the system, and increased solar insulation. A more realistic annual performance was estimated at 19 per cent for system efficiency and 41 per cent for solar fraction. Further improvements could be expected, especially in mid-winter performance, if the solar collector slope could be increased to a value of 45 to 60 degrees to the horizontal. 8 refs., 14 tabs., 9 figs.

  10. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  11. Study of hybrid power system potential to power agricultural water pump in mountain area

    Science.gov (United States)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  12. Small-signal modelling and control of photovoltaic based water pumping system.

    Science.gov (United States)

    Ghosh, Arun; Ganesh Malla, Siva; Narayan Bhende, Chandrasekhar

    2015-07-01

    This paper studies small-signal modelling and control design for a photovoltaic (PV) based water pumping system without energy storage. First, the small-signal model is obtained and then, using this model, two proportional-integral (PI) controllers, where one controller is used to control the dc-link voltage and the other one to control the speed of induction motor, are designed to meet control goals such as settling time and peak overshoot of the closed loop responses. The loop robustness of the design is also studied. For a given set of system parameters, simulations are carried out to validate the modelling and the control design.

  13. Development and application of engineering-scale solar water heater system assisted by heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiufeng; Feng Shiyu; Hu Wei; Zheng Feifei [Xi' an Jiaotong Univ., Xi' an (China); Wang Huiyu; Luo Cong [Yangzhou Sunleada Co, Ltd, Yangzhou (China); Wang Jianguo; Fan Guiyou [TongLing Real Estate Co. Ltd, TongLing (China)

    2008-07-01

    An engineering-scale solar water heater system assisted by heat pump was developed based on a modularized structure. The subunits of modularized system include vacuum solar energy collectors, air source heat pump, heat storage and supplying system and control panel. All devices could be controlled and monitored centrally. Energy source of this system was composed of solar energy (70%), air thermal energy (20%) and electric power (10%). The system has advantages of high average annual comprehensive energy efficiency and elementary energy utilization efficiency. The product can be employed in central heat water supplying project with a capacity of more than 6 ton, in such facilities as residential districts, hotels, restaurants, dormitories, bathing centers and so on. The economical efficiency is better as the scale is bigger. The project has been supported by innovation funds of Science and Technology of Chinese Ministry of Science and Technology (MOST), being applied in a residential district successfully as a demonstration project of renewable and new energy by Chinese Ministry of Construction. (orig.)

  14. Design and Evaluation of a Photovoltaic/Thermal-Assisted Heat Pump Water Heating System

    Directory of Open Access Journals (Sweden)

    Huan-Liang Tsai

    2014-05-01

    Full Text Available This paper presents the design, modelling and performance evaluation of a photovoltaic/thermal-assisted heat pump water heating (PVTA-HPWH system. The cooling effect of a refrigerant simultaneously enhances the PVT efficiency and effectively improves the coefficient of performance (COP of the HPWH system. The proposed model was built in the MATLAB/Simulink environment by considering the reciprocal energy exchange between a PVT evaporator and a HPWH system. In addition, the power consumption needs of the HPWH are provided by the PV electricity using a model-based control methodology. System performance is evaluated through a real field test. The results have demonstrated the power autarchy of the proposed PVTA-HPWH system with better PVT efficiency and COP. In addition, the good agreement between the model simulation and the experimental measurements demonstrate the proposed model with sufficient confidence.

  15. Investment and Economy Analysis of Water-Source Heat Pump System in Chongqing, China

    Directory of Open Access Journals (Sweden)

    Yong Ding

    2013-01-01

    Full Text Available In China, the application of renewable energy witnesses rapid development. In the near future, a lot of demonstration projects will be built and thus it is urgent to know the economics of renewable energy building application technologies. Based on the renewable energy demonstration projects in Chongqing city, the author discussed the economy issue of water-source heat pump system (WSHPs in order to provide suggestions for the application projects. According to the design information of demonstration projects, the average incremental investment, allowance, and payback period are calculated in this paper. Comparing WSHPs with traditional heating, ventilation, and air conditioning (HVAC system, the saved energy of WSHPs is estimated in the current paper. The author calculated the amount of saved energy in unit applied area and unit intake water. Besides, the economy and efficiency of WSHPs project is analyzed at the end of this paper.

  16. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    Science.gov (United States)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  17. Design Approach for Solar Photovoltaic Ground Water Pumping System for Eastern India

    Directory of Open Access Journals (Sweden)

    Atiqur Rahman

    2014-08-01

    Full Text Available Eastern India has rich resource base for intensive and diversified agriculture, but the production and productivity of this region is quite low due to lack of assured irrigation as even a short dry spell of drought adversely affects the stability of agricultural production. The foremost reason energy squeeze in terms of lack of electricity and substantial increase in diesel price, which refrain farmers from operating required number hours of diesel pumps. This region is endowed with enormous solar energy potential with solar radiation of 4 - 6.4 kWh/m2/day and 250 - 300 bright sunshine days. Therefore, it can be a year round reliable source of energy for ground water pumpingto meet supplementary irrigation requirement. In addition to reliability,environmental pollution would also be reduced. However,in view of initial investment cost, cropping pattern and land holding sizes of the region,solar photovoltaic pumping system should be of appropriatesize and it should be designed keeping in view the solar irradianceround the year and water requirement in different seasons. This technical discusses few important aspects to fulfilthis proposition.

  18. Simulating on water storage and pump capacity of "Kencing" river polder system in Kudus regency, Central Java, Indonesia

    Science.gov (United States)

    Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick

    2017-03-01

    Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.

  19. The Dynamic Characteristic Analysis of the Water Lubricated Bearing-Rotor System in Seawater Desalination Pump

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ye

    2014-05-01

    Full Text Available In order to study the water lubricated bearing-rotor system in seawater desalination pump, this paper is based on the coupling between the lubricating flow field and the rotor dynamics. The fluid-solid interaction (FSI method, Rigid Body, was adopted to study the journal orbit of the bearing-rotor system under the periodic unbalancing load. The influences of geometric and working parameter to the journal orbit were combined to analyze the stability and reliability of the bearing-rotor system. The result shows that increasing the rotating speed would increase the journal whirling amplitude and the system sensitivity to the external excitation and unbalancing load were promoted; increasing the aspect ratio would reduce the journal whirling amplitude and cause the system to be more unstable; increasing the inlet pressure would reduce the journal whirling amplitude and cause the system to be more unstable; increasing the unbalancing load would reduce the stability margin and the system is easy to be unstable if obstructed; increasing the radial clearance would reduce the journal whirling amplitude and cause the system to be more unstable. The attitude angle has no influence on the journal whirling amplitude but would influence the stability of system and the value of attitude angle should not be large.

  20. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  1. Autonomous BDFIG-wind generator with torque and pitch control for maximum efficiency in a water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Camocardi, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); CONICET (Argentina); Battaiotto, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Mantz, R. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    2010-06-15

    This paper presents and analyzes the operation strategy for an autonomous wind energy conversion system oriented to water pumping. It consists of a wind turbine with a Brushless Doubly-Fed Induction Generator (BDFIG), electrically coupled with a squirrel cage induction machine moving a centrifugal type water pump. Because of no brushes and slip rings, the BDFIG is suitable for autonomous systems, which often work in hard conditions. Additionally, the power flow on the BDFIG principal stator could be driven from a fractional power converter connected on the auxiliary stator winding. This Turbine-BDFIG and Motor-Pump configuration provides a high robustness and reliability, reducing the operational and maintenance costs. The operation strategy proposes, for wind speeds smaller than the rated, to maximize the volume of water pumped based on the optimization of the wind energy capture. To do that, a sliding mode control tracks the optimal turbine torque by means of a torque control. Meanwhile, for wind speeds greater than the rated, a pitch control keeps the water pump within the safe operation area by adjusting the speed and power of the turbine in their rated values. To assess and corroborate the proposed strategy, simulations with different wind profiles are made. (author)

  2. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  3. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Method of evaluation of efficiency improvement potential for water supply systems with focus on variable speed centrifugal pumps

    Directory of Open Access Journals (Sweden)

    D. Pilscikovs

    2012-11-01

    Full Text Available The goal of this research is the derivation of the method for evaluation of efficiency improvement potential for public water supply systems with a focus on centrifugal network pumps. The efficiency of proportional pressure control usage has been analyzed for variable speed pumps. It has been done if proportional pressure control is used in comparison with constant pressure control mode. For this reason, energy calculation analyses have been realized for variable speed centrifugal pumps, and the theoretical tool of estimation of the efficiency improvement potential for public water supply systems has been derived. The conclusions are as follows: (1 it has been found that 1110 MWh of annually consumed electrical energy can be saved up, if the control mode of variable speed network pumps will be changed from constant pressure to proportional pressure control mode with the deviation of 20% from head value of duty point at zero flow; (2 about 13 MWh of annually consumed electrical energy can be saved up, if the proportional pressure control mode with the deviation of 15% will be changed to the deviation of 20%; (3 totally about 1123 MWh or 1.12 GWh (14% of the annually consumed electrical energy by variable speed network pumps can be saved up in small public water supply systems in Latvia.

  5. Cotransporters as molecular water pumps

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; MacAulay, Nanna

    2002-01-01

    Molecular water pumps are membrane proteins of the cotransport type in which a flux of water is coupled to substrate fluxes by a mechanism within the protein. Free energy can be exchanged between the fluxes. Accordingly, the flux of water may be relatively independent of the external water chemical...

  6. Pressure management of water distribution systems via the remote real-time control of variable speed pumps

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-08-01

    Full Text Available Low and constant pressure can be maintained throughout a water distribution system by setting the pressure at remote consumer locations and using the pressure to control the speed of a variable speed pump (VSP). The prospect of incorporating...

  7. Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping

    Science.gov (United States)

    Oki, Delwyn S.

    1998-01-01

    A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model

  8. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  9. PV water pumping: NEOS Corporation recent PV water pumping activities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  10. The integration of water loop heat pump and building structural thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  11. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  12. A product development process for a photovoltaic water pump system in a small to medium enterprise

    OpenAIRE

    2009-01-01

    D.Ing. The effective management of technology and new product development in a high technology small to medium enterprise associated with a large corporation with specific reference to the development of solar photovoltaic water pumps is investigated in this study. Innovative product and the development thereof have already become this century's battleground. The availability of information to all and the ease of communication have contributed to changing the battleground. Small organizati...

  13. Correcting Working Postures in Water Pump AssemblyTasks using the OVAKO Work Analysis System (OWAS

    Directory of Open Access Journals (Sweden)

    Atiya Kadhim Al-Zuheri

    2008-01-01

    Full Text Available Ovako Working Postures Analyzing System (OWAS is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful, AC3 (distinctly harmful. Postures that needed to be corrected soon (AC3 and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construction of real life workstation is modified simultaneously by redesign suggestions in the values of location (positioning factors for stacking workstation. The simulation workstation executed by mean of parametric CAD software. That modifications lead to improvement in the percentage of harmful postures. It was therefore recommended the use of supplementary methods is required to identify ergonomic risk factors for handling work or other hand-intensive activities on industry sites.

  14. Water Hammer in Pumped Sewer Mains

    DEFF Research Database (Denmark)

    Larsen, Torben

    This publication is intended for engineers seeking an introduction to the problem of water hammer in pumped pressure mains. This is a subject of increasing interest because of the development of larger and more integrated sewer systems. Consideration of water hammer is essential for structural...

  15. ENERGY AND ENVIRONMENTAL ANALYSIS OF AN OPEN-LOOP GROUND-WATER HEAT PUMP SYSTEM IN AN URBAN AREA

    Directory of Open Access Journals (Sweden)

    Giorgia Baccino

    2010-01-01

    Full Text Available In this paper a multidisciplinary methodology for analyzing the opportunities for exploitation of open-loop groundwater heat pump is proposed. The approach starts from a model for calculation of a time profile of thermal requirements (heat and domestic hot water. This curve is then coupled with a model of the control system in order to determine the heat pump operation, which includes its energy performances (primary energy consumption as well as profiles of water discharge to the aquifer in terms of mass flow rate and temperature. Then the thermo-fluid dynamics of the aquifer is performed in order to determine the system impact on the environment as on possible other systems. The application to a case study in the Piedmont region, in Italy, is proposed. Energy analysis of the system shows that ground-water heat pumps constitute an interesting option in areas with small housing density, where there is not district heating. In comparison with typical heating/cooling systems, environmental benefits are related with reduction in global emissions. These benefits may be significantly enhanced using renewables as the primary energy source to produce electricity. The analysis also shows that possible issues related with the extension of the subsurface thermal plume may arise in the case of massive utilization of this technology.

  16. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    Science.gov (United States)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  17. Water Hammer in Pumped Sewer Mains

    DEFF Research Database (Denmark)

    Larsen, Torben

    This publication is intended for students and engineers seeking an introduction to the problem of water transients in pumped sewer and water mains. This is a subject of increasing interest because of the development of larger and more integrated systems. Consideration of transients is essential...... for the structural design of pipelines and for the planning of the proper function of the systems. The text is written by Torben Larsen, who is a professor of environmental hydraulics at the Department of Civil Engineering, Aalborg University. Torben Larsen has many years of experience with computer simulations...... of transients in pumped pipeline systems. This present publication can be understood as the second and revised edition of the pamphlet ”Transients in pumped sewer mains” (2006) which was published as a technical report by The EVA committee under The Danish Water Pollution Committee (The Danish Society...

  18. Pulsed differential pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  19. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-06-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in the GAMS language from a hydraulic model in the EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in the EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for a variety of requirements.

  20. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-02-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in GAMS language from a hydraulic model in EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for variety of requirements.

  1. Construção de um sistema simples e compacto de recirculação d'água sob pressão para trompa d'água Construction of a simple and compact system to recirculate water under pressure using a water-jet aspira tor pump

    Directory of Open Access Journals (Sweden)

    Dennis de Oliveira Imbroisi

    2009-01-01

    Full Text Available Vacuum pumps are very useful in physical, chemical and biological experiments. In this communication it is described the design of a compact and low cost water recirculating system employing a water-jet aspirator pump as the vacuum source. The system requires only a water pump, water-jet aspirator pump, commercial PVC water tubes and a drain connection.

  2. Optimization of Water Hammer Protection in Water Supply System for Pump Station%泵站供水系统水锤防护措施优化

    Institute of Scientific and Technical Information of China (English)

    梅红

    2012-01-01

    In order to ensure the safe operation of water supply system in pump station, priority scheme of overflow type surge tank is selected and water hammer protection measures in the water supply system are discussed. The surge tank is adjacent to the pump station, which would reduce the water hammer pressure of pump starting and ensure the water supply system safety. The practice operation in pump station also proves the rationality of design scheme.%为确保泵站供水系统的安全运行,通过对供水系统水锤防护措施的多方案分析研究,优选了溢流式调压塔.调压塔紧邻泵站布置,有利于消减水泵开停机产生的水锤压力,供水系统运行安全可靠.泵站工程运行实践验证了水锤防护设计方案的合理性.

  3. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  4. Quantifying Systemic Efficiency using Exergy and Energy Analysis for Ground Source Heat Pumps: Domestic Space Conditioning and Water Heating Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL

    2017-01-01

    Although air temperatures over land surfaces show wide seasonal and daily variations, the ground, approximately 10 meters below the earth s surface, remains relatively stable in temperature thereby serving as an energy source or sink. Ground source heat pumps can heat, cool, and supply homes with hot water efficiently by utilizing the earth s renewable and essentially inexhaustible energy resources, saving fossil fuels, reducing greenhouse gas emissions, and lowering the environmental footprint. In this paper, evidence is shown that ground source heat pumps can provide up to 79%-87% of domestic hot water energy needs, and up to 77% of space heating needs with the ground s thermal energy resources. The case refers to a 12-month study conducted at a 253 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days and CDD of 723 C-days under simulated occupancy conditions. A single 94.5m vertical bore interfaced the heat pump with the ground. The research shows that this technology is capable of achieving US DOE targets of 25 % and 35% energy savings in HVAC, and in water heating, respectively by 2030. It is also a viable technology to meet greenhouse gas target emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources. The paper quantifies systemic efficiencies using Exergy analysis of the major components, clearly pointing areas for further improvement.

  5. Model for the Study of Automating a System of Pumping Water from Upstream to Downstream Hydropower Plant Using Siemens S7-200 PLC

    OpenAIRE

    Eugen Raduca; Mihaela Răduca; Lucian Ghinea; Aki Uyetani

    2010-01-01

    This paper shows the realization of an experimental model for studying didactic use automation system pumping water from upstream to downstream hydropower. As command and control unit was used PLC Siemens S7-200.

  6. Model for the Study of Automating a System of Pumping Water from Upstream to Downstream Hydropower Plant Using Siemens S7-200 PLC

    Directory of Open Access Journals (Sweden)

    Eugen Raduca

    2010-10-01

    Full Text Available This paper shows the realization of an experimental model for studying didactic use automation system pumping water from upstream to downstream hydropower. As command and control unit was used PLC Siemens S7-200.

  7. HYDRODYNAMICS THEORY AND CALCULATION IN WATER WAVE PUMP DESIGN

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-xue; TAO Yi; LIU Gao-lian

    2005-01-01

    This paper introduces the hydrodynamics theory related to water wave pump.Water wave pump is a new type pump, which uses the particular quality of water wave and re-divides the inflow energy to increase the pressure of one part of the inflow water with the rest water flowing away freely.The research and development of such a pump is of importance and significant value and profitable social interest in that it can fully utilize the residual energy of natural source in industrial and civil water circle systems.Through hydrodynamics research and calculation, a series of valid design parameters were obtained and the predicted results achieved.

  8. IMITATING THE MODEL OF THE FREQUENCY CONVERTER - INDUCTION MOTOR OF A PUMP WATER SYSTEM WITH ADAPTIVE CONTROL ALGORITHM

    Directory of Open Access Journals (Sweden)

    Taranov D. M.

    2015-06-01

    Full Text Available This article presents main water supply systems and justifies the choice of direct flow of water supply system in the application of regulation of electric drive for pumps, which doesn’t have any tanks to create pressures required for fire-governmental purposes. This avoids interruption in the supply of reserve while water freezing. In the article the substantiation of the necessity of implementation of adaptive algorithm in modern-WIDE frequency converters by a substantiation of the number of stages of ratio control of voltage-frequency mains. It was revealed that the number of degrees of regulation of 10-12 gives optimum. Modern frequency converters allow you to change the regulation law, establishing 3-5 points of regulation. Therefore, the introduction of adaptive algorithm will reduce the power consumption of the electric drive of the pump of the water supply system. The article shows the simulation model of the "the converter frequency-induction motor," plots of the stator current of mains frequency and active power, surface speed and phase current when changing the voltage and frequency of the mains. These dependences confirm to have applicability of adaptive algorithm in the regulation of modern frequency converters with the skalar administration. Simulation model confirms the sub-physical experiments on a real motor and frequency converter with adaptive control algorithm. As a result of the selection of the parameters, we obtain the voltage reduction of the phase current, and reduce electricity consumption by 5-7%

  9. 46 CFR 76.25-15 - Pumps and water supply.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Pumps and water supply. 76.25-15 Section 76.25-15... EQUIPMENT Automatic Sprinkling System, Details § 76.25-15 Pumps and water supply. (a) An automatically... water from the two highest fire hose outlets in a manner similar to that described in §...

  10. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  11. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  12. Optimization of hybrid system (wind-solar energy) for pumping water

    African Journals Online (AJOL)

    DR OKE

    ηp is the panel output determined from the efficiency of photovoltaic cell that constitutes .... The reservoir: a pond of water storage featuring a cylindrical shape of 6m ..... Prospect of wind-PV-battery hybrid power system as an alternative to grid.

  13. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  14. Energy Savings Potential for Pumping Water in District Heating Stations

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2015-05-01

    Full Text Available In district heating stations, the heat carrier is circulated between the energy source and consumers by a pumping system. Fluid handling systems, such as pumping systems, are responsible for a significant portion of the total electrical energy use. Significant opportunities exist to reduce pumping energy through smart design, retrofitting, and operating practices. Most existing systems requiring flow control make use of bypass lines, throttling valves or pump speed adjustments. The most efficient of these options is pump speed control. One of the issues in using variable-speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper provides a comprehensive discussion about pump control in heating stations and analyzes the energy efficiency of flow control methods. Specific attention is also given to the selection of motor types, sizing and pump duty cycle. A comparative energy analysis is performed on the hot water discharge adjustment using throttling control valves and variable-speed drives in a district heating station constructed in Romania. To correlate the pumped flow rate with the heat demand and to ensure the necessary pressure using minimum energy, an automatic system has been designed. The performances of these control methods are evaluated in two practical applications. The results show that approximately 20%–50% of total pumping energy could be saved by using the optimal control method with variable-speed pumps. Additionally, some modernization solutions to reduce the environmental impact of heating stations are described.

  15. Water pumping system using solar photovoltaic induction motor; Sistema de bombeamento de agua com energia solar fotovoltaica utilizando motor de inducao trifasico

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Eduardo Henrique Pereira de; Bezerra, Luiz Daniel Santos; Antunes, Fernando Luiz Marcelo [Universidade Federal do Ceara (DEE/PPGEE/UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica. Programa de Pos -Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    One of the main difficulties to people who live in remote areas or isolated community and not grid connected, certainly is to access potable drink water. In the world, more than 6000 children dies everyday by some kind of illnesses associated to non-potable drink water. At state of Ceara, during the dry weather periods, remain water reservoir becomes practically a mud puddle, as a result, people and animals are forced to drink this inappropriate water. To minimize this consequences in this periods some water is distributed by tankers but, sometimes, even this water is not enough potable. Underground water is an alternative to mitigate this problem. The most common technique is the use of direct current (DC) pumps set supplied by solar photovoltaic systems. However, this kind of pump-set is relatively expensive and too hard to maintain. This paper brings an alternative lower expensive and sustainable to water pumping system, it uses a three phase induction machine coupled to an underwater centrifugal pump supplied by solar photovoltaic energy system. (author)

  16. Improving pumping system efficiency at coal plants

    Energy Technology Data Exchange (ETDEWEB)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  17. DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxin; Zhang Tiezhu; Wang Yushun; Zhao Hong; Huo Wei

    2005-01-01

    The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.

  18. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  19. Water Pumping Stations, Included in water system layer above, Published in Not Provided, 1:600 (1in=50ft) scale, Town of Franklin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  20. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  1. Fluid-dynamic study and optimization of the pumping station of the circulation water system in Cofrentes NPP; Estudio fluido-dinamico y optimizacion de la estacion de bombeo del sistema de agua de circulacion de CN Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Munoz, S.

    2010-07-01

    The circulation water system in Cofrentes is located at the north-east of the plant. It is a closed cooling system composed of a channel that carries the water to the pumping station, made up of four vertical pumps, with four separate compartments for suction and supplied from the same channel.

  2. An Analysis of Water Hammer Sensitivity in Double-pump Water Supply Systems%双泵给水系统水锤敏感度分析

    Institute of Scientific and Technical Information of China (English)

    韩伟实; 王鑫; 幸奠川; 王明鹤

    2012-01-01

    In this paper, based on the model of a specific parallel two-pump water supply system, the numerical simulation and quan- titative analysis of water hammer of this water supply system are carried out, with emphasis on sensitivity analysis of water hammer. The research results show that the effect of flow on water hammers is significant, with the initial flow rate increasing, fluctuations of pressure increases significantly. As the moment of inertia of centrifugal increases, the water hammer effect will be weakened. In the case of constant water supply, the increase of diameter of the pipeline will ease water hammer pressure. In addition, the ways of the control valve closes will have a significant impact on the water hammer effect.%建立双泵并联给水系统,对本给水系统水锤过程进行了数值模拟以及定量分析,重点进行双泵给水系统水锤作用敏感度分析。结果表明:初始流量对水锤作用效果影响明显,随着初始流量增大,输水管道后压差波动明显增强;离心泵转动惯量增加,停泵水锤作用效果将减弱;输水流量不变情况下,输水管道管径增加将缓解水锤压力;另外,改变调节阀关闭方式也将对水锤效果产生明显影响。

  3. Contamination of successive samples in portable pumping systems

    Science.gov (United States)

    Robert B. Thomas; Rand E. Eads

    1983-01-01

    Automatic discrete sample pumping systems used to monitor water quality should deliver to storage all materials pumped in a given cycle. If they do not, successive samples will be contaminated, a severe problem with highly variable suspended sediment concentrations in small streams. The cross-contamination characteristics of two small commonly used portable pumping...

  4. Solar and wind systems utilization in water pumping for irrigation; Utilizacao de sistemas solar e eolico no bombeamento de agua para uso na irrigacao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Cicero Urbanetto

    2009-07-01

    In this work, it was made an applied research in two stations, the first one located at Canabarro locality and the second one at Polytechnic School at UFSM, in Santa Maria city, RS, with wind and photovoltaic equipment for pumping water. These ones are used for fruit trees irrigation in irrigation systems of low pressure. The research work was developed from September 2007 to August 2009, when the results showed the viability of wind and photovoltaic equipment for utilization in the complementary irrigation in fruit cultures such as guava, fig and grape trees. In the fruit culture sector, are installed: one multivane fans wind indicator one savonius wind indicator and respective pumps as well as pump set and a photovoltaic board. With the photovoltaic system, the pumped volume was about 5000 m{sup 3}/ha and, with the wind system, the pumped volume was approximately 6m{sup 3}/ha. The wind groups demonstrated low efficiency, if compared to photovoltaic systems, which showed more efficient. (author)

  5. Pump control system for windmills

    Science.gov (United States)

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  6. Energy-saving Design of Multi-pump Control Constant Pressure Water Supply System by Single Converter%单变频器多泵恒压供水系统节能设计

    Institute of Scientific and Technical Information of China (English)

    李焦明

    2009-01-01

    介绍了基于多泵控制器的多泵恒压供水控制系统的结构,给出了一用一备定时换泵加附属小泵恒压供水系统、多泵恒压供水固定泵变频控制系统、多泵恒压供水循环软启动方式控制系统的电气工作原理、设计要点与性能特点.应用实践表明,基于多泵控制器的多泵恒压供水控制系统应用简单、功能强大、节能效果显著.%The multi-pump control constant pressure water supply system structure was introduced. One pump to run a backup from time to time to exchange the water pump plus affiliated small pump constant pres-sure water supply systems, multi-pump constant pressure water supply fixed pump frequency control systems, multi-pump constant pressure water supply cycle soft-start control system for electrical working principle, de-sign features and performance characteristics were given. Application of practice shows, that based on multi-pump controller, the multi-pump constant pressure water supply control system is simple, powerful, and has obvious energy-saving results.

  7. Efficiency of small wind generator powered water pumping systems; Rendimento de unidade de bombeamento de agua acionada por gerador eolico de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Mendeleyev Guerreiro; Carvalho, Paulo Cesar Marques de; Costa, Levy Ferreira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET), PE (Brazil)

    2008-07-01

    The present paper aims to evaluate the efficiency of a small wind generator powered water pumping system; the generator is a permanent magnet generator of 1 kw of axial flow, using three fiber glass blades with 2.46 m diameter. The used centrifugal pump is connected to a 0.5 c v motor, three-phase, frequency of 60 Hz, rotational speed of 3450 rpm. For the efficiency evaluation a shell anemometer, a flow and pressure sensor were used, connected to a data logger to the collection and storage of the data. An energy analyzer was also used to collect the current, voltage and power generated from the wind generator. (author)

  8. A Numerical Study on System Performance of Groundwater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  9. A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants--an experimental setup.

    Science.gov (United States)

    Bayindir, Ramazan; Cetinceviz, Yucel

    2011-04-01

    This paper describes a water pumping control system that is designed for production plants and implemented in an experimental setup in a laboratory. These plants contain harsh environments in which chemicals, vibrations or moving parts exist that could potentially damage the cabling or wires that are part of the control system. Furthermore, the data has to be transferred over paths that are accessible to the public. The control systems that it uses are a programmable logic controller (PLC) and industrial wireless local area network (IWLAN) technologies. It is implemented by a PLC, an communication processor (CP), two IWLAN modules, and a distributed input/output (I/O) module, as well as the water pump and sensors. Our system communication is based on an Industrial Ethernet and uses the standard Transport Control Protocol/Internet Protocol for parameterisation, configuration and diagnostics. The main function of the PLC is to send a digital signal to the water pump to turn it on or off, based on the tank level, using a pressure transmitter and inputs from limit switches that indicate the level of the water in the tank. This paper aims to provide a convenient solution in process plants where cabling is not possible. It also has lower installation and maintenance cost, provides reliable operation, and robust and flexible construction, suitable for industrial applications.

  10. Analysis and simulation of water supply systems with photovoltaic pumping; Analise e simulacao de sistemas de abastecimento de agua com tecnologia fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro

    1996-09-01

    During the last two decades, a remarkable progress on the technology of photovoltaic pumping systems (PVP) has been observed. The decrease in the costs of the photovoltaic module and the increase in the efficiency of photovoltaic pumping systems (generator and motor-pump) make PVP systems a good option for rural communities. Most analysis and simulations of PVP systems, utility function, assume the existence of a linear relationship between the hydraulic power and the solar collected radiation. Usually, more general relations exist between those variables. This work presents a new procedure for the analysis and simulation of PVP systems, which uses the utility function to consider the fluctuations in solar radiation, and leads to analytical solutions for PVP systems whose behavior can be represented by general functions, including linear relations as a particular case. The system analyzed considers the energy source (solar radiation) and the components of the water supply system like water source, photovoltaic array, subsystem for conversion of electric into hydraulic energy and, finally, hydraulic network. An analytical procedure to calculate absorbed solar radiation in the optical layers of the photovoltaic module was developed, substituting the conventional ray tracing method. The volume of pumped water was obtained integrating the water flow rate through time, considering the fluctuations related to the behavior of solar radiation and the minimum level of radiation necessary to produce useful energy. The mathematical properties of the utility function allow to derive analytical solutions for the integrals of water flow and hydraulic power. At the same time, we developed a spreadsheet which allows tho visualize the behavior of all variables involved in the process and offers the possibility of simulating different situations in order to maximize the amount of pumped water for any given system. The results obtained through the new procedure were compared with

  11. Water pumping in mantle shear zones

    Science.gov (United States)

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2017-06-01

    Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle.

  12. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  13. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  14. Elevator was Worked by Water and Water Pump

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Masoumi

    2012-12-01

    Full Text Available In this research, it has been attempted to show that some elevators work with water and their energy consumption could be reduced because of water pump usage instead of powerful gear motor of the present day elevators. Power of gear motor elevators is between 3.7 to 7.5 kw and the power of water pump elevator is 1.5 kw. Water, a tank of counter weight and water pumps operate this elevator. Consequently, it can save energy especially when two or more elevators are placed adjacent to each other. The discussion of this study concentrates on the dynamic simulation and physics of this type of elevators.

  15. Elevator was Worked by Water and Water Pump

    National Research Council Canada - National Science Library

    Mohammad Mehdi Masoumi; Soheila Naderinezhad

    2012-01-01

    In this research, it has been attempted to show that some elevators work with water and their energy consumption could be reduced because of water pump usage instead of powerful gear motor of the present day elevators...

  16. Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia

    Science.gov (United States)

    Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard J.

    2011-01-01

    Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical

  17. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    Science.gov (United States)

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.

    2017-08-01

    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  18. Computation of water hammer protection of modernized pumping station

    Science.gov (United States)

    Himr, Daniel

    2014-03-01

    Pumping station supplies water for irrigation. Maximal capacity 2 × 1.2m3·s-1 became insufficient, thus it was upgraded to 2 × 2m3·s-1. Paper is focused on design of protection against water hammer in case of sudden pumps trip. Numerical simulation of the most dangerous case (when pumps are giving the maximal flow rate) showed that existing air vessels were not able to protect the system and it would be necessary to add new vessels. Special care was paid to influence of their connection to the main pipeline, because the resistance of the connection has a significant impact on the scale of pressure pulsations. Finally, the pump trip was performed to verify if the system worked correctly. The test showed that pressure pulsations are lower (better) than computation predicted. This discrepancy was further analysed.

  19. A charge-driven molecular water pump

    Science.gov (United States)

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  20. 太阳能-空气复合热源热泵热水系统%Solar-air composite heat source heat pump hot water system

    Institute of Scientific and Technical Information of China (English)

    王岗; 全贞花; 赵耀华; 侯隆澍; 徐俊芳; 邓月超

    2014-01-01

    In the light of low efficiency of photovoltaic power generation and the problems of air source heat pump applied in cold regions, a composite heat exchanger evaporator is developed and a new type of solar-air composite heat source heat pump hot water system is designed in this study, which is comprised of independent solar photovoltaic-thermal collector based on flat plate micro heat pipe and air source heat pump. The performance of heat pump hot water system is evaluated experimentally under different operating conditions, including water temperature of the tank, heating time of hot water, suction and discharge pressure, consumption of compressor power and heat pump coefficient of performance (COP), etc. Experimental results show that at ambient temperature of 5℃, 10℃ and 15℃, with 73 L hot water heated by heat pump and water temperature in the tank ranged from 15℃ to 50℃, the running time of composite heat source operation is shorter than that of separate air heat source operation, decreased by 5.14%, 10.29% and 11.38%, respectively. COPs are increased by 5.99%, 9.28%and 11.96%, respectively.%针对光伏发电效率较低和空气源热泵在寒冷地区应用中存在的问题,研发了一种新型复合蒸发器,将平板微热管阵列太阳能光伏光热(PV/T)集热器与空气源热泵相结合,组成新型太阳能-空气复合热源热泵热水系统。并对该热水系统在不同运行工况下的水箱水温、吸排气压力、压缩机功率和性能等进行了实验研究。实验结果表明,在环境温度分别为5、10和15℃的条件下,热泵加热73 L水,水温从15℃加热到50℃时,双热源运行工况的加热时间比单空气热源运行工况依次缩短了5.14%、10.29%和11.38%,COP依次提高了5.99%、9.28%和11.96%。

  1. Performance analysis of air——water dual source heat pump water heater with heat recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  2. 某商业建筑地下水源热泵系统设计%The System Design of Ground Water Heat Pumps in a Commercial Building

    Institute of Scientific and Technical Information of China (English)

    高亮

    2014-01-01

    地下水源热泵是地源热泵的一种形式。与土壤源热泵比,其具有投资小、运行费用低的特点,因此在工程实际中可推广性更强。文章以某商业建筑为例,以建筑形式、面积为基础,进行了水源热泵系统设计,并对工程投资和运行费用进行了估算。%Ground water heat pump is a form of ground source heat pumps, and compare with the soil source heat pump, its investment smal and operating cost low, so it has stronger generalization in engineering practice. This article takes a commercial building as example and based on the architectural form and area, designs the water heat pump system and estimate the engineering investment and operation cost.

  3. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...

  4. Air-to-water heat pumps for the home

    Energy Technology Data Exchange (ETDEWEB)

    Bodzin, S. [ed.

    1997-07-01

    Heat pump water heaters may be on the rise again. Retrofitters have shied away from this form of water heating due to concerns about cost, moise, efficiency, and maintaenance. Recent advances have overcome some of these problems and are helping the technology find a niche in both hot and cold climates. The topics covered in this article include the following: how heat pump water heaters work; air source from where to where, including air conditioning, heat recovery ventilation, hybrid systems; nuisances; maintenance; costs; to install or not to install; performance: a trick to quantify. 2 figs.

  5. District Heating System Using Heat Pump Installations and CHP

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2015-12-01

    Full Text Available The article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating puThe article describes the district heating system, in which part of the heat of return water thermal power is used to supply heat to the district heating pumps, evaporators heating and hot water. Heat pumps use carbon dioxide as refrigerant. During the transitional period of the year, and the summer heat pump for preparing hot-water supply system uses the heat of the surrounding air. The heat of the ambient air is used in the intermediate heat exchanger between the first and second stages of the heat pump to cool the gas after the first stage of the compressor of the heat pump.

  6. Biocorrosion of evaporators of water/water heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Denier, P.; Sutter, E.M.M.; Cornet, A. (Ecole Nationale Superieure des Arts et Industries, 67 - Strasbourg (FR))

    1990-12-01

    During the last twenty years, many heat pumps were installed in Alsace (France) using groundwater. It appeared that water contained bacteria able to induce metallic corrosion. Thus, it was necessary to have a better knowledge of the situation. A statistical study on water analysis was realised. There is no noticeable relation between bacterial contamination and water chemistry or geographical location. Most of corrosion origines were - a bad water network conception (erosion, cavitation, oxygen differential cells...) - a bad use of metal coupling (galvanic corrosion). The presence of bacteria generally increases the phenomena described above. Solutions proposed are: PVC casing, stainless steel water pumps, heat pump evaporators in noble alloys or metals, PVC or resines lagging. For the actual set of heat pumps, there are less solutions but in some cases an intermediary exchanger would be a good and easy solution.

  7. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation; Weitzel, E. [Davis Energy Group, Davis, CA (United States). Alliance for Residential Building Innovation

    2017-03-03

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  8. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-11-22

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  9. Multifamily Heat Pump Water Heater Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-03-01

    Although heat pump water heaters (HPWHs) have gained significant attention in recent years as a high efficiency electric water heating solution for single family homes, central HPWHs for commercial or multi-family applications are not as well documented in terms of measured performance and cost effectiveness. To evaluate this technology, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California. Monitoring data collected over a 16 month period were then used to validate a TRNSYS simulation model. The TRNSYS model was then used to project performance in different climates using local electric rates. Results of the study indicate that after some initial commissioning issues, the HPWH operated reliably with an annual average efficiency of 2.12 (Coefficient of Performance). The observed efficiency was lower than the unit's rated efficiency, primarily due to the fact that the system rarely operated under steady-state conditions. Changes in the system configuration, storage tank sizing, and control settings would likely improve the observed field efficiency. Modeling results suggest significant energy savings relative to electric storage water heating systems (typical annual efficiencies around 0.90) providing for typical simple paybacks of six to ten years without any incentives. The economics versus gas water heating are currently much more challenging given the current low natural gas prices in much of the country. Increased market size for this technology would benefit cost effectiveness and spur greater technology innovation.

  10. Design of an expert system for the development and formulation of push-pull osmotic pump tablets containing poorly water-soluble drugs.

    Science.gov (United States)

    Zhang, Zhi-hong; Dong, Hong-ye; Peng, Bo; Liu, Hong-fei; Li, Chun-lei; Liang, Min; Pan, Wei-san

    2011-05-30

    The purpose of this article was to build an expert system for the development and formulation of push-pull osmotic pump tablets (PPOP). Hundreds of PPOP formulations were studied according to different poorly water-soluble drugs and pharmaceutical acceptable excipients. The knowledge base including database and rule base was built based on the reported results of hundreds of PPOP formulations containing different poorly water-soluble drugs and pharmaceutical excipients and the experiences available from other researchers. The prediction model of release behavior was built using back propagation (BP) neural network, which is good at nonlinear mapping and learning function. Formulation design model was established based on the prediction model of release behavior, which was the nucleus of the inference engine. Finally, the expert system program was constructed by VB.NET associating with SQL Server. Expert system is one of the most popular aspects in artificial intelligence. To date there is no expert system available for the formulation of controlled release dosage forms yet. Moreover, osmotic pump technology (OPT) is gradually getting consummate all over the world. It is meaningful to apply expert system on OPT. Famotidine, a water insoluble drug was chosen as the model drug to validate the applicability of the developed expert system. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. EXPERIMENTAL INVESTIGATION ON WIND-POWER WATER-PUMPING SYSTEM%风力发电泵水系统实验研究(1)

    Institute of Scientific and Technical Information of China (English)

    林振娴; 霍天强

    2009-01-01

    A new plan of wind-power water-pumping system is put forward in this paper.A simulative experiment has been conducted to test the feasibility of the plan and to examine the existing problems.In light of the experimental results,the plan proves to be feasible.However,it is discovered that the head of wind-power water pump is much lower than that of the water pump driven by the industrial power.Moreover,the range of usable wind speed is limited.%本文提出了一种新的风力发电泵水系统方案.为了验证该方案的可行性及其存在的问题,进行了系统模拟实验研究.实验证明该方案配置的风力发电泵水系统是可行的,同时发现.使用风电运行的水泵比使用工业用电运行的水泵的扬程要低,该系统可利用风速的范围较窄.

  12. Development of a charcoal gasification system of 5-10 kw for water pumping; Desarrollo de un sistema de gasificacion de carbon vegetal de 5-10 KW para bombeo de agua

    Energy Technology Data Exchange (ETDEWEB)

    Duque, J.; Marcial, J. [Escuela Superior Politecnica del Litoral (Ecuador). Centro de Investigacion Experimental en Tecnologia Energetica

    1990-12-31

    A charcoal gasifier system for water pumping was designed, built and tested. The methodology for the engine construction and the experimental tests are reported. The results are also presented. 7 refs., 7 figs., 2 tabs.

  13. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Clarke, John S.; Williams, Lester J.; Cherry, Gregory C.

    2010-01-01

    Test drilling and field investigations, conducted at Hunter Army Airfield (HAAF), Chatham County, Georgia, during 2009, were used to determine the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and to evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). Field investigation activities included (1) constructing a 1,168-foot (ft) test boring and well completed in the LFA, (2) collecting drill cuttings and borehole geophysical logs, (3) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (4) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (5) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (6) conducting aquifer tests in the new LFA well and in an existing UFA well to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to quantify the effects of interaquifer leakage on the UFA and to determine the amount of pumping reduction required in the UFA to offset drawdown resulting from the leakage. Borehole-geophysical and flowmeter data indicate the LFA at HAAF consists of limestone and dolomitic limestone between depths of 703 and 1,080 ft, producing water from six major permeable zones: 723-731; 768-785; 818-837; 917-923; 1,027-1,052; and 1,060-1,080 ft. Data from a flowmeter survey, conducted at a pumping rate of 748 gallons per minute (gal/min), suggest that the two uppermost zones contributed 469 gal/min or 62.6 percent of the total flow during the test. The remaining four zones contributed from 1.7 to 18 percent of the total flow. Grab water samples indicate that with the exception of fluoride, constituent concentrations in the LFA increased with depth; water from the deepest interval (1,075 ft) contained chloride and sulfate concentrations of 480 and 240 milligrams per

  14. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2005-01-01

    Burrowing animals maintain contact with the water above the sediment by pumping water through a tube system and therefore measurements of water pumping rate of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This review deals...... with the measuring of water pumping and the analysis of flow generated by burrowing deposit- and filter-feeding zoobenthos in order to determine the type of pump and mechanisms involved, flow rate, pump pressure, and pumping power. The practical use of fluid mechanical principles is examined, and it is stressed...... that not only the pump pressure that a burrowing animal can apply is of interest for assessing the energy cost of pumping, but also the distribution of excess pressure along its burrow is of importance for assessing the seepage flow of oxygen-rich water into the sediment surrounding the burrow because...

  15. Determination of the best operation point of a solar pumping systems user to water a crop; Determinacion del punto optimo de funcionamiento dinamico en equipos de bombeo solar utilizados para riegos

    Energy Technology Data Exchange (ETDEWEB)

    Cuadros, E.; Silos, I.; Marcos, A.; Lopez-Rodriguez, F.

    2004-07-01

    In this article it is estimated the best operation point of a solar pumping system used to water a crop. This point depends on 1) the climate characteristic of the zone, 2) the watering demands of the crop and, 3) the characteristic of the solar pumping system, like flow-area-height-frequency of the inversor-variator. In this work are analyzed and commented the results obtained from the group of pressure/height curves of a 1 HP pump powered by a 1.100 W photovoltaic system according to the frequency of the inversor /variator, during the summer time. (Author)

  16. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  17. Absorption-heat-pump system

    Science.gov (United States)

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  18. 云驾岭煤矿双水源热泵系统设计%Double water-source heat pump system designing for Yunjialing colliery

    Institute of Scientific and Technical Information of China (English)

    张昌建; 王景刚; 梁界武; 袁常升

    2012-01-01

    The heat pump system adopts the cooling water from power plant and the drainage from coal mine as double water source, of which the temperature varies from 7 to 50 "C . By optimally matching the high and low temperature heat pump units, the system can output 70 to 80 °C high-temperature hot water, 40 to 55 °C mid-temperature hot water and 7 to 12 °C air conditioning chilled water at the same time, and recycle the waste water from the cooling water and the drainage for heating, air conditioning,, providing domestic hot water for industrial site buildings and preventing freeze in the pit shaft.%该热泵系统以云驾岭煤矿电厂冷却水、矿井排水作为双水源,热源温度变化范围在7~50℃之间;采用高温热泵机组和低温热泵机组优化匹配,可以同时输出70~80℃高温热水和40~55℃中温热水及7~12℃空调冷水,回收电厂冷却水和矿井排水中的废热用于云驾岭煤矿工业区建筑供暖、空调和制取生活热水及井筒防冻.

  19. 太阳能-空气源热泵热水系统节能分析%SOLAR-AIR SOURCE HEAT PUMP HOT WATER SYSTEM ENERGY EFFICIENCY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    王冠竹; 刘学来

    2011-01-01

    介绍了太阳能生活热水系统,以山东省为例,对太阳能热水器配备空气源热泵的热水系统进行了节能效益分析.结果表明,配备空气源热泵的太阳能热水系统回收期为4.21年,对我国走低碳经济之路有重要的参考价值.%This article describes the solar hot water system. It conducts the energy-saving benefit a-nalysis of solar energy -air source heat pump hot water system. The results show that the payback period of this system is 4.21 years. It has important reference value for going low-carbon economy road in China.

  20. Economic study of a water pumping system for traveling gun machine; Estudo economico de uma adutora, para sistema autopropelido de irrigacao, operando com motor diesel e alcool

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Lessandro Coll; Viola, Marcelo R.; Bilibios, Carolina; Oliveira, Henrique F.E. de; Lima Junior, Joaquim A. de [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil)

    2009-07-01

    This study aimed at comparing the set-up and operation costs of a water pumping system using engines which run on two different fuels (diesel oil and alcohol) for application in traveling gun machines. The study was carried out by considering fuel prices in Minas Gerais State on 10/11/2008. The results showed that annual costs with diesel oil engines (R$ 67,460.64) were less than those for alcohol engines (R$ 82,608.12). Nevertheless, it is worthwhile to point out that the operation with alcohol engines was found to be viable only when this fuel price does not exceed R$ 1.40 per liter. (author)

  1. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  2. Analysis on Photovoltaic Assisted Three Phase five level Unipolar PWM Inverter for Induction Motor Driven Water Pumping System

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Maurya, Kishore Chahar, Y. K. Chauhan

    2013-03-01

    Full Text Available This paper presents the analysis of a photovoltaicbases three-phase five level voltage source inverter(VSI supplying induction motor driven waterpump. The VSI uses a unipolar PWM technique forproducing three phase 5 level voltage output andthis output is used to drive three-phase inductionmotor driving a pump load. Multilevel inverters areused for generating AC voltage from several levelsof DC voltages and enhance the performance of thesystem. The proposed system is used to reduce thefiltering requirements and reduce the amplitude ofall harmonics at the output of the inverter. ThePower quality improves by reducing the harmonicslevel. The complete simulation model is simulatedin MATLAB/SIMULINK and validates thetheoretical considerations

  3. Performance analysis of photovoltaic based submersible water pump

    Directory of Open Access Journals (Sweden)

    Shiv Lal

    2013-04-01

    Full Text Available The performance of a photovoltaic (PV array based water pumping system situated at Kota Rajasthan (25.18 N and 75.83 E, India has been studied. A 2hp DC motor with 2200W (10 panels of each 225W have been used for discharge 30 m water head. The maximum discharge logged 163litre/minute between 11AM to 2PM at PV power output between 75 to 85W/m2and the system is operating approximately 8 hours in the of November of the winter season. The full day discharge has found 70995litre and it is more than the average discharge given by the manufacturer at 50m depth. It is revealed that PV array based water pumping system is suitable and feasible option for off-grid and drip irrigation system like the interior area of Kota, where clear sky days are more than 250 in a year.

  4. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  6. Análise operacional de um sistema fotovoltaico de bombeamento de água Operational analysis of a photovoltaic water pumping (PV system

    Directory of Open Access Journals (Sweden)

    Evandro M. Kolling

    2004-12-01

    Full Text Available O bombeamento de água é uma das atividades mais difundidas quanto ao emprego da energia solar fotovoltaica. Porém, apesar de se apresentar como alternativa interessante, o alto custo, a baixa eficiência dos sistemas e os projetos inadequados restringem sua aplicação. O uso racional, baseado na utilização mais eficiente de seus equipamentos, está vinculado ao conhecimento do comportamento operacional desses sistemas. No presente trabalho, teve-se o objetivo de avaliar o comportamento de um sistema fotovoltaico de bombeamento de água diretamente acoplado, sob diferentes condições de irradiância solar, por meio da montagem de uma bancada de testes, submetendo-o a diferentes alturas manométricas e determinando-se a vazão fornecida. A análise dos resultados permitiu estabelecer um modelo de regressão para estimativa de vazão do sistema em função da irradiância e altura manométrica. Concluiu-se que a potência gerada pelo painel e a vazão fornecida pela motobomba estão diretamente relacionadas à irradiância solar e à altura manométrica e influenciam na eficiência do sistema. A máxima eficiência do painel foi de 8%, 39% para a motobomba e 2,3% na interação dos componentes.The pumping of water is one of the activities most diffused to the employment of the photovoltaic solar energy, in spite of coming as an interesting alternative, the high cost and it lowers efficiency of the systems with the inadequate projects, still restricts its application. The rational use, based on the most efficient use of its equipments is linked to the knowledge of the operational behavior of these systems. The present work objectified to evaluate the operational behavior of a photovoltaic water pumping directly coupled operating in different conditions of solar irradiance, by means of the assembly of supported tests, submitting to different manometer elevation and determining the supplied rate flux of water. The analysis of the results

  7. THE CALCULATION OF THE PERFORMANCE PARAMETERS OF PUMPING EQUIPMENT AND PIPING NETWORK OF WATER SUPPLY AND RECLAMATION PUMPING STATIONS

    Directory of Open Access Journals (Sweden)

    Rahnyanskaya O. I.

    2015-06-01

    Full Text Available The calculation of pumping equipment and piping network parameters is presented. The method of cutting impeller pump diameter for optimal performance of pump unit with piping system on efficiency value is shown. The case of operating the distribution network and pumping station with three pump units D1250-25 is considered. Procedure of construction of loss-of-head curves in pipes, determination of the actual operating parameters of a single pump unit, selection of pump impeller diameter for essentials is indicated. Four points for graphing such curves are presented. According to the first point the whole network is divided into sections with suction, pressure main pipelines and pipelines with changing water flow compared with the previous ones. The second point involves definition of the electrical resistivity of each site. The resistance of network analyzer is determined in the third point, the loss-of -head of the whole network is determined in the fourth point. The article presents the scheme of pumping station with three pump units connected in parallel and a distribution network (Figure1, loss-of-head curves in pipes regardless the number of working pumps (Figure 2, the order of constructing three loss-of-head curves with operating one, two and three pumps with normal and cut pump impeller diameter (Figure 3 , the order of determination of the actual parameters of pump work characteristics according to combined characteristics of normal and cut pump impeller diameter ( Figure 4 In conclusion, it is stated that the question of proper definition of actual parameters of pumps and the support of these parameters in optimal mode remains open due to the lack of proper methods of constructing loss-of-head curves pipeline. Every similar calculation is preliminary and should be carried out in field conditions

  8. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    Energy Technology Data Exchange (ETDEWEB)

    Nydahl, J.E.; Carlson, B.O. [Univ. of Wyoming, Laramie, WY (United States)

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  9. Efficiency assessment of a wind pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Lara, David D.; Merino, Gabriel G. [Department of Mechanization and Energy, University of Concepcion, Avenida Vicente Mendez 595, Chillan (Chile); Pavez, Boris J. [Department of Electrical Engineering, University of La Frontera, Casilla 54-D, Temuco (Chile); Tapia, Juan A. [Department of Electrical Engineering, University of Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-02-15

    The combined efficiency of the components determines overall system performance in electric wind pumping systems. We evaluated a system composed of a 3 kW wind generator feeding a battery bank of 48 V/880 Ah by means of a non-controlled 6-pulse rectifier. Connected to this battery bank was a 1.5 kW inverter that generated 220 V at 50 Hz, which powers a 1.1 kW single-phase electric pump. At the University of Concepcion, Chile, energy losses in each electrical component was determined using a data collection system configured to measure electrical variables in real time. The electrical power generated by the wind generator for different wind speeds averaged 38% lower than the power curve provided by the manufacturer. Electromechanical tests performed in a lab showed the operation efficiency of the electric generator of the wind turbine averaged 80%. This information, along with the electrical power output, and the wind velocity measured during field operation allowed us to determine the rotor's power coefficient C{sub p}, which had a maximum value of 35%. For the stored energy components measured data indicated that the rectifier, the battery bank, and the inverter operated with average efficiencies of 95%, 78% and 86% respectively. The combined component efficiencies showed a maximum of 17% of the wind energy would be available for water pumping. Since a large amount of wind energy was dissipated during the energy conversion process, new configurations should be analyzed that could avoid such losses in wind pumping systems. (author)

  10. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  11. Control System for Solar-Assisted Heat Pump System.

    Science.gov (United States)

    heat pump , a water-to-air heat exchanger, a domestic water heater, and a cooling tower. The preferred embodiment of the controller of the present invention includes a first temperature sensing means for sensing the temperature of the collector fluid at the outlet of the solar collector system, a second temperature sensing means for sensing the temperature of the storage fluid at the thermal storage system, and a third temperature sensing means for sensing the temperature of the inlet water to the domestic water heater. The controller compares the temperature of the thermal

  12. Theory of wind-electric water pumping

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, M.; Probst, O. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Physics Dept.; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Acevedo, S. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Dept. of Electrical Engineering

    2004-05-01

    A proper understanding of the electrical and mechanical behavior of the system and its components is essential for the successful operation of a wind-electric pumping system. In the present article we present a formal theory of such a system, developing a framework for the determination of the steady-state operating point, as well as the study of its transient behavior, particularly at start-up. It is shown that the sufficient accumulation of kinetic energy in the wind turbine before connecting it to its load is critical for a successful start-up, even when the system has been designed to function at optimal steady-state conditions. A detailed discussion of the start-up process in terms of stored kinetic energy in the braking power provided by both the pump and the electrical system losses is given. The results of this analysis are believed to be useful both for the steady-state design of wind-electric pumping systems, as well as the optimization of control schemes and energy capture. (author)

  13. 77 FR 2957 - Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps...

    Science.gov (United States)

    2012-01-20

    ... Foreign-Trade Zones Board Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps), Bergen, NY An application has been submitted to the Foreign-Trade Zones Board (the Board... manufacturing authority on behalf of Liberty Pumps, Inc., located in Bergen, New York. The application...

  14. Replacing an electrical heating system by an air/water heat pump; Remplacement du chauffage electrique par une installation PAC air/eau (pompe a chaleur)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    A group of thirteen houses in Plan-les-Ouates (southwestern Switzerland) constructed in 1985 was originally equipped with direct electric heaters. Their inhabitants complained about high electricity bills and bad thermal comfort due to uneven room temperatures and insufficient amounts of warm water. A group of specialists from the Swiss Federal Office of Energy, the energy service of the canton of Geneva and from an engineering company studied the case and suggested to replace the direct electric heating system by an air to water heat pump. Seven owners have decided for this modification and the retrofit has been made in autumn 2000. The paper presents the results of performance measurements, operating experience gained and economic considerations for the years 2001, 2002 and 2003 for six installations. The average coefficients of performance ranged from 2.3 to 2.9.

  15. TFCX pumped limiter and vacuum pumping system design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.

  16. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  17. Applied research of a ground water thermoelectric heat pump system%地下水源热电热泵的应用研究

    Institute of Scientific and Technical Information of China (English)

    马国远

    2001-01-01

    Develops a mathematical model of the system and simulates it with computer based on the state-of-the-art performance of the thermoelectric material, compares the results with those of a conventional ground water heat pump system under the identical inlet water temperature and water flow rate and finds that the thermoelectric system is more competitive especially when the ground water temperature is under 18 ℃ but much poorer in heating performance leading it to be suitable for applications with primary heating demand.%建立了以地下水为热源的热电热泵系统的数学模型,并根据热电材料的技术性能对该系统作了计算机模拟分析,比较计算结果与进水温度和流量相同的传统地下水源热泵系统发现,热电热泵在制冷工况特别是地下水温低于18 ℃时具有很强的竞争力,但制热性能较差,因此适用于全年以制冷负荷为主的场合。

  18. Reciprocating Pump Systems for Space Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    2004-06-10

    Small propellant pumps can reduce rocket hardware mass, while increasing chamber pressure to improve specific impulse. The maneuvering requirements for planetary ascent require an emphasis on mass, while those of orbiting spacecraft indicate that I{sub SP} should be prioritized during pump system development. Experimental efforts include initial testing with prototype lightweight components while raising pump efficiency to improve system I{sub SP}.

  19. Refrigerant charge management in a heat pump water heater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  20. Safety systems for the ESES 2002 wind pump

    Energy Technology Data Exchange (ETDEWEB)

    El Agamawy, H. [Engine Factory, Doki (Egypt)

    2001-07-01

    The ESES 2002 wind pump, a 4.6 m rotor diameter high-performance water pumping windmill, was tested at four different sites (Cairo, Giza, Wadi El Natroun and El-Tor city on the Red Sea coast) from September 1997 to July 1999. These machines utilize a 3:1 gearbox and a hydrodynamic sealing piston pump. These four ESES 2002 wind pumps were tested by pumping from a motionless water depth of 3 in up to an 84 m deep well. A variety of pump diameter sizes varying from 64 to 1400 mm were used. The water pumped was returned to the well after flowing through a settling storage tank having a capacity of 3 m{sup 3}. The instrumentation provided a 16 channel data acquisition system to accurately measure the machine performance, including rotor rpm, number of stroke, starting wind speed, flow rate, tail furl angle and other variables. The results verify that the ESES 2002 wind pump is a robust machine as two machines have been running for 2 years continuously without requiring any replacement parts or major or minor maintenance. (author)

  1. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  2. Analysis of pumping systems to large flows of cooling water in power plants; Analisis de sistemas de bombeo para grandes flujos de agua de enfriamiento en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sanchez, Ramon; Herrera Velarde, Jose Ramon; Gonzalez Sanchez, Angel [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rsanchez@iie.org.mx; jrhv@iie.org.mx; ags@iie.org.mx

    2010-11-15

    Accurate measurement of large water flows remains being a challenge in the problems of implementation of circulating water systems of power plants and other applications. This paper, presents a methodology for the analysis in pumping systems with high rates of water in power plants, as well as their practical application and results in pipelines water flow of a thermoelectrical power plant of 350 MW. In this power plant, the water flow per pipeline for a half of condenser oscillates around 7 m{sup 3}/s (14 m{sup 3}/s per power generating unit). In this analysis, we present the techniques used to measure large flows of water with high accurately, as well as the computational model for water circulating system using PIPE FLO and the results of practical application techniques. [Spanish] La medicion precisa de grandes flujos de agua, sigue siendo un reto en los problemas de aplicacion de sistemas de agua de circulacion de centrales termoelectricas, entre otras aplicaciones. En este articulo, se presenta una metodologia para el analisis de sistemas de bombeo con grandes flujos de agua en centrales termoelectricas, asi como, su aplicacion practica y los resultados obtenidos en los ductos de agua de circulacion de una central generadora con unidades de 350 MW. En esta central, los flujos por caja de agua oscilan alrededor de los 7 m{sup 3}/s (14 m{sup 3}/s por unidad generadora). En el analisis, se presentan las tecnicas utilizadas para medir con precision grandes flujos de agua (tubo de Pitot), asi como, el modelado del sistema de agua de circulacion por medio de un paquete computacional (PIPE FLO) y resultados obtenidos de la aplicacion de dichas tecnicas.

  3. Applicability Analysis of Open Type River Water Source Heat Pump System in Chongqing%开式江水源热泵系统在重庆地区的适用性分析

    Institute of Scientific and Technical Information of China (English)

    林勇豹; 王勇

    2013-01-01

      This review summarized the design requirements of open type surface water source heat pump system. Technical, economic and environmental can be considered as the three aspects of the river water source heat pump feasibility analysis. The river water temperature, quantity and other characteristics can meet the requirement of the water source heat pump. In order to ensure the river water source heat pump technology suitability, the key technology is looking for solutions to reduce the sand content. Reasonable design of the water source heat pump system has good economic performance and the tail water discharge can cause less water pollution. The river water source heat pump system has strong feasibility and applicability in Chongqing.%  在总结前人研究的基础上,综述了开式地表水源热泵系统方案设计要求,认为可以从技术、经济和环保性三方面分析江水源热泵的可行性。重庆江水水量、水温等水质参数完全满足机组要求,为了确保江水源热泵在重庆地区的技术适用性,重点在于寻找解决含砂量过高的技术方案。同时,合理设计的水源热泵系统具有较好的经济性能,尾水排放对江水的污染较小,满足经济环保性要求。认为江水源热泵系统在重庆地区具有较强的可行性及适用性。

  4. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  5. Design method of water jet pump towards high cavitation performances

    Science.gov (United States)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  6. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    Science.gov (United States)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  7. TRADING-OFF CONSTRAINTS IN THE PUMP SCHEDULING OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    Gencer Genço\\u011Flu

    2016-01-01

    Full Text Available Pumps are one of the essential components of water supply systems. Depending of the topography, a water supply system may completely rely on pumping. They may consume non-negligible amount of water authorities' budgets during operation. Besides their energy costs, maintaining the healthiness of pumping systems is another concern for authorities. This study represents a multi-objective optimization method for pump scheduling problem. The optimization objective contains hydraulic and operational constraints. Switching of pumps and usage of electricity tariff are assumed to be key factors for operational reliability and energy consumption and costs of pumping systems. The local optimals for systems operational reliability, energy consumptions and energy costs are investigated resulting from trading-off pump switch and electricity tariff constraints within given set of boundary conditions. In the study, a custom made program is employed that combines genetic algorithm based optimization module with hydraulic network simulation software -EPANET. Developed method is applied on the case study network; N8-3 pressure zone of the Northern Supply of Ankara (Turkey Water Distribution Network. This work offers an efficient method for water authorities aiming to optimize pumping schedules considering expenditures and operational reliability mutually.

  8. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  9. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity....... Heat from the collectors is transferred to a domestic hot water storage tank or to a cold storage tank, which is used as the source for the heat pump. When the heat pump charges the warm storage tank, heat is extracted from the cold storage tank, which then can be reheated by the PVT collectors...

  10. Pump-stopping water hammer simulation based on RELAP5

    Science.gov (United States)

    Yi, W. S.; Jiang, J.; Li, D. D.; Lan, G.; Zhao, Z.

    2013-12-01

    RELAP5 was originally designed to analyze complex thermal-hydraulic interactions that occur during either postulated large or small loss-of-coolant accidents in PWRs. However, as development continued, the code was expanded to include many of the transient scenarios that might occur in thermal-hydraulic systems. The fast deceleration of the liquid results in high pressure surges, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increase. This phenomenon is called water hammer. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the system when the pressure surges become considerably high. If this happens and when the pressure exceeds the critical pressure that the pipe or the fittings along the pipeline can burden, it will result in the failure of the whole pipeline integrity. The purpose of this article is to introduce the RELAP5 to the simulation and analysis of water hammer situations. Based on the knowledge of the RELAP5 code manuals and some relative documents, the authors utilize RELAP5 to set up an example of water-supply system via an impeller pump to simulate the phenomena of the pump-stopping water hammer. By the simulation of the sample case and the subsequent analysis of the results that the code has provided, we can have a better understand of the knowledge of water hammer as well as the quality of the RELAP5 code when it's used in the water-hammer fields. In the meantime, By comparing the results of the RELAP5 based model with that of other fluid-transient analysis software say, PIPENET. The authors make some conclusions about the peculiarity of RELAP5 when transplanted into water-hammer research and offer several modelling tips when use the code to simulate a water-hammer related case.

  11. Water Pump Development for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  12. Site selection for drinking-water pumping boreholes using a fuzzy spatial decision support system in the Korinthia prefecture, SE Greece

    Science.gov (United States)

    Antonakos, Andreas K.; Voudouris, Konstantinos S.; Lambrakis, Nikolaos I.

    2014-12-01

    The implementation of a geographic information system (GIS)/fuzzy spatial decision support system in the selection of sites for drinking-water pumping boreholes is described. Groundwater is the main source of domestic supply and irrigation in Korinthia prefecture, south-eastern Greece. Water demand has increased considerably over the last 30 years and is mainly met by groundwater abstracted via numerous wells and boreholes. The definition of the most "suitable" site for the drilling of new boreholes is a major issue in this area. A method of allocating suitable locations has been developed based on multicriteria analysis and fuzzy logic. Twelve parameters were finally involved in the model, prearranged into three categories: borehole yield, groundwater quality, and economic and technical constraints. GIS was used to create a classification map of the research area, based on the suitability of each point for the placement of new borehole fields. The coastal part of the study area is completely unsuitable, whereas high values of suitability are recorded in the south-western part. The study demonstrated that the method of multicriteria analysis in combination with fuzzy logic is a useful tool for selecting the best sites for new borehole drilling on a regional scale. The results could be used by local authorities and decision-makers for integrated groundwater resources management.

  13. EFFECT OF THE CRITICAL IRRADIANCE ON PHOTOVOLTAIC WATER PUMP DISCHARGE UNDER EGYPTIAN CONDITIONS

    Directory of Open Access Journals (Sweden)

    Mamdouh Abbas HELMY

    2015-04-01

    Full Text Available The present investigation aimed to study the effect of critical irradiance due to changing tilt angle of PV panel and tracking sun on submersible pump discharge. The authors used solar tracker and suitable tilt angle for the panel to increase the time interval during which the water pump operates. For the same irradiance collected by the PV, all systems pump the same amount of water, although they occur at different periods of the day. The pump itself 'does not know whether the electric power comes from any processes, as long as it has the same intensity.

  14. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption...... pumps on marine vessels. The existing problem of traditional control methods for closed system pumps is analyzed and a mathematical model for variable flow controls with the appropriate control settings is derived. The performance of the proposed method is demonstrated and verified through experimental...... and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve...

  15. Engine room cooling system using jet pump

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.W.; Lee, S.H. [Daewoo Heavy Industries Ltd. (Korea)

    2000-04-01

    Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated by secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump. (author). 4 refs., 7 figs., 5 tabs.

  16. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit...... in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared....... The results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  17. Development of a Prototype Water Pump for Future Space Suit Applications

    Science.gov (United States)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  18. Investigation of pump and pump switch failures in rainwater harvesting systems

    Science.gov (United States)

    Moglia, Magnus; Gan, Kein; Delbridge, Nathan; Sharma, Ashok K.; Tjandraatmadja, Grace

    2016-07-01

    Rainwater harvesting is an important technology in cities that can contribute to a number of functions, such as sustainable water management in the face of demand growth and drought as well as the detention of rainwater to increase flood protection and reduce damage to waterways. The objective of this article is to investigate the integrity of residential rainwater harvesting systems, drawing on the results of the field inspection of 417 rainwater systems across Melbourne that was combined with a survey of householders' situation, maintenance behaviour and attitudes. Specifically, the study moves beyond the assumption that rainwater systems are always operational and functional and draws on the collected data to explore the various reasons and rates of failure associated with pumps and pump switches, leaving for later further exploration of the failure in other components such as the collection area, gutters, tank, and overflows. To the best of the authors' knowledge, there is no data like this in academic literature or in the water sector. Straightforward Bayesian Network models were constructed in order to analyse the factors contributing to various types of failures, including system age, type of use, the reason for installation, installer, and maintenance behaviour. Results show that a number of issues commonly exist, such as failure of pumps (5% of systems), automatic pump switches that mediate between the tank and reticulated water (9% of systems), and systems with inadequate setups (i.e. no pump) limiting their use. In conclusion, there appears to be a lack of enforcement or quality controls in both installation practices by sometimes unskilled contractors and lack of ongoing maintenance checks. Mechanisms for quality control and asset management are required, but difficult to promote or enforce. Further work is needed into how privately owned assets that have public benefits could be better managed.

  19. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  20. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  1. 开式湖水源热泵系统的水体热承载能力计算方法%CALCULATION MEETHOD OF THE HEAT CARRING CAPACITY OF WATER IN LAKE-WATER SOURCE HEAT PUMP SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    王勇; 韩传璞

    2012-01-01

    在流体运动基本方程N-S方程的基础上,利用水温、质量和能量方程,建立了湖水源热泵系统利用水体水温变化的二维数学模型,并耦合求解得到水体水温的数值解.以夏季取水温度限值为依据,求解出在供冷期间不同负荷特征以及不同初始水温下水体能够承受的最大排热量.通过回归方法,得到水体热承载能力的检验方程.根据工程案例测试数据分析,该计算方法下的理论结果和实际测试结果较吻合,能够应用于湖水源热泵系统的可行性研究.%Based on N-S equations, dynamic two-dimensional model of lake water used for lake-water source heat pump system was built using temperature equation mass equation and energy equation. And arithmetic solution of wate temperature was attained by coupled solution. Based on limit temperature of water abstraction in summer, the largest quantity of heat the water can carried was obtained in different load and different start water temperature in heating period. Through regression, heat carrying capacity of water was obtained. Based on test data analysis, engineering project, theoretical result and test result in this computational method were coincide well,and this computational method can be used in feasibility study for lake-water source heat pump system.

  2. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  3. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  4. Conventional and advanced exergoenvironmental analysis of an ammonia-water hybridabsorption-compression heat pump

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application...

  5. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  6. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  7. Pumping Optimization Model for Pump and Treat Systems - 15091

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.; Ivarson, Kristine A.; Karanovic, M.; Miller, Charles W.; Tonkin, M.

    2015-01-15

    Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It produces predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.

  8. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Science.gov (United States)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G.

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates.

  9. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Energy Technology Data Exchange (ETDEWEB)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-10-20

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates. (author)

  10. Damages on pumps and systems the handbook for the operation of centrifugal pumps

    CERN Document Server

    Merkle, Thomas

    2014-01-01

    Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage from a variety of causes, but the resulting breakdown can be prevented by ensuring that these pumps and systems are operated properly. This book provides a total overview of operating centrifugal pumps, including condition monitoring, preventive maintenance, life cycle costs, energy savings and economic aspects. Extra emphasis is given to the potential damage to these pumps and systems, and what can be done to prevent breakdown. Addresses specific issues about pumping of metal chips, sand, abrasive dust and other solids in fluidsEmphasis on economic and efficiency aspects of predictive maintenance and condition monitoring Uses life cycle costs (LCC) to evaluate and calculate the costs of pumping systems

  11. The Performance test of Mechanical Sodium Pump with Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang [SAM JIN Industrial Co. LTD., Chunan (Korea, Republic of)

    2015-10-15

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  12. Heat-pump-centered integrated community energy systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    A Heat Pump Centered-Integrated Community Energy System (HP-ICES) concept was explored and developed that is based on use of privately owned ice-making heat pumps in each building or complex within a community. These heat pumps will provide all of the space heating, space cooling and domestic hot water needs. All of the community input energy required is provided by electrical power, thereby eliminating a community's dependence on gas or oil supplies. The heat pumps will operate in both air and water source modes, deriving performance advantages of both. The possible forms of an HP-ICES system, the technical and economic limitations, environmental impacts and other factors are discussed from a general viewpoint. The concept is applied to a specific planned community and its performance and economic features are examined in detail. It is concluded that the HP-ICES concept is technically viable, but that its economic desirability as compared with conventional heat pump systems is hampered by much higher initial costs, and that the economic feasibility of HP-ICES systems will depend on future fuel source costs and supply and on electric power rates. (LCL)

  13. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  14. 涡旋式水源热泵系统性能仿真%Performance Simulation of Scroll Water Source Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    汤志远; 丁国良

    2011-01-01

    为了预测涡旋式水源热泵系统变结构和变工况稳态性能,建立了稳态涡旋式热泵系统仿真模型.其中涡旋式压缩机模型考虑了吸、排气换热对工质流量和排气温度的影响以及流量、排气温度和输入功率三者的耦合关系;通过增加电子膨胀阀开度对蒸发器出口过热度的控制模型,反映了过热度对膨胀阀流量的影响.系统算法综合了顺序模块法和连续迭代法,改善了迭代收敛性,且易于实现部件模型的模块化.与实验结果对比表明:模型预测值与实验值的误差小于4.4%.%To predict the steady performance of scroll water source heat pumps with different configuration and working condition a steady systematic model for scroll water source heat pump is established. In modeling the compressor, the effect of suction heatin on mass flow and the effect of discharge heat exchange on discharge temperature as well as coupling relationship between mas flow, discharge temperature and input power are considered. The effect of the superheat of evaporator on the mass flow through tfc electrical expansion valve (EEV) is reflected by the control model of EEV opening degree on the superheat of evaporator. Successrv Substitution Method and Sequential Modular Method are used in the system simulation, which is 'in favor of modulization an maintainability of components, as well as convergence of algorithm. The deviations between the model predictions and the test dai are less than 4.4%.

  15. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  16. Corrosion protection of steel in ammonia/water heat pumps

    Science.gov (United States)

    Mansfeld, Florian B.; Sun, Zhaoli

    2003-10-14

    Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.

  17. Economical Feasibility of Utilizing Photovoltaics for Water Pumping in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmet Z. Sahin

    2012-01-01

    Full Text Available Energy and water are the two major need of the globe which need to be addressed for the sustenance of the human beings on this planet. All the nations, no matter most populous, developed and developing need to diversify the means and ways of producing energy and at the same time guarding the environment. This study aims at techno economical feasibility of producing energy using PV solar panels and utilizing it to pump-water at Dhahran, Riyadh, Jeddah, Guriat, and Nejran regions in Saudi Arabia. The solar radiation data from these stations was used to generate electricity using PV panels of 9.99 kW total capacity. Nejran region was found to be most economical in terms of minimal payback period and cost of energy and maximum internal rate of return whereas PV power production was concerned. Water-pumping capacity of the solar PV energy system was calculated at five locations based on the PV power production and Goulds model 45J series of pumps. Monthly total and annual total water pumping capacities were determined. Considering the capital cost of combined solar PV energy system and the pump unit a cost analysis of water pumping for a well of 50 m total dynamic head (TDH was carried out. The cost of water pumping was found to vary between 2 and 3 /m3.

  18. Effect of Pumping Strategies on Pesticide Concentrations in Water Abstraction Wells

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Bjerg, Poul Løgstrup; Albrechtsen, Hans-Jørgen;

    and pumping wells show that pesticide concentrations vary greatly in both time and space. This study aimed to use models to determine how pumping affects pesticide concentrations in drinking water wells placed in two hypothetical aquifer systems; a homogeneous layered aquifer and a layered aquifer...... pumping rates can generate temporal variability in the concentration at the well, similar to that observed in groundwater monitoring programmes. The results are also used to provide guidance on the design of pumping and remediation strategies for the long-term supply of safe potable groundwater...

  19. Air-to-water heat pumps, business for refrigeration systems experts. Marketing of energy-efficient technology; Luft/Wasser-Waermepumpen. Ein Geschaeft fuer Kaelteanlagenbauer. Vermarktung von energieeffizienter Technik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-01-15

    Many providers of refrigerating systems are already active in the private customer market offering split systems. There are less of them in the field of air-to-water heat pumps although this is also a growing market, and some producers of the air conditioning sector are already offering complete solutions. The contribution presents some sales arguments, outlines marketing tools for fitters - illustrated by the example of one provider -, and closes with a short market review. (orig.)

  20. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  1. A New Type of Complex System of Solar Energy Air Source Heat Pump Water Heater%一种新型的太阳能——空气源复合热泵热水器系统

    Institute of Scientific and Technical Information of China (English)

    王军军

    2011-01-01

    基于太阳能热利用技术、空气源热泵热水器理论,介绍了一种将太阳能与空气源相结合的双热源热泵热水器系统。该系统可充分利用太阳能加热生活用热水,辅以空气源热泵来满足太阳辐射照度不足时的用热水需求,同时用太阳能辅助加热来解决低温环境下空气源热泵运行工况恶劣的问题。系统充分利用了低品位的太阳能,保证稳定性,又可提高夏季阴雨天气、过渡季节及冬季太阳能热水器的热水温度,对于节约能源和环境保护具有重要意义。%Based on the technology of solar thermal and the theory of air-source heat pump water heater, a combined water heater system about solar and air source heat pump was introduced. The system Could make full use of solar energy to heat domestic hot water, combined with air-source heat pump to meet the shortage of solar irradiance when the hot water demand, and the auxiliary heating with solar energy to solve the problems of air source heat pump operating conditions in low temperature. The system took full use of the low-grade solar energy, and stability could be assured. And it could improve the temperature of the water in solar water heaters in rainy summers, transition seasons and winters. The system had significance for energy conservation and environmental protection.

  2. Groundwater heat pumps with turbines for the return water; Grundwasser-Waermepumpe mit Rueckgabe-Turbinierung

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, M.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on improvements in the efficiency of a ground water heat pump installation in an office building. The water return well was equipped with a turbine. In this installation, the ground water is pumped up from a depth of 45 meters which means that a lot of electricity is needed for the pumping of the water. Coefficients of performance of the system are quoted for the situation with and without the turbine. The conversion of a pump for use as a turbine is commented on. The construction of a specially developed turbine with reduced electricity consumption is suggested. Seasonal performance data of the system is provided in tabular form.

  3. 76 FR 30936 - West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-27

    ... Energy Regulatory Commission West Maui Pumped Storage Water Supply, LLC; Notice of Preliminary Permit... April 1, 2011, West Maui Pumped Storage Water Supply, LLC, filed an application for a preliminary permit... supply project effluent water to an existing irrigation system; (5) a powerhouse with two...

  4. Measurement and analysis of the water hammer in ram pump

    Indian Academy of Sciences (India)

    W SOBIESKI; D GRYGO; S LIPINSKI

    2016-11-01

    This paper presents the results of experimental research of the phenomena occurring in water ram during a single cycle of its operation. Apart from a brief introduction and description of the test stand and data recording system, the work includes a broad interpretation of the obtained results. Based on the pressure waveforms recorded in two characteristic zones of the device and its detailed analysis, the single cycle of waterram is divided into three main stages: acceleration, pumping, and backflow. The waveforms of phenomena in each of these steps were considered separately. In discussion, some of the issues were supported with additional measurements, including Fourier analysis of signals from the electronic pressure transducers. The main topic ofdiscussion based on the results recorded for the impulse valve, is supplemented by the comments that take into account the results obtained for the impulse valve (flap check valve) and for the others two (self-made) impulse valves. In the final part, in a graphic form presented is the interpretation of the phenomena occurring during one work cycle of water ram. The motivation of this work was to supplement the knowledge concerning the water hammer waveform in ram pump.

  5. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  6. Water pumps generate power efficiently; Wasserpumpen erzeugen wirtschaftlich Strom

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, Bryan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2010-09-15

    The water supply utility of Baden-Wuerttemberg and Bavaria (Zweckverband Landeswasserversorgung - ZV-LW) intended to construct another power generation stage in the Geislingen station. A longitudinally divided, single-stage spiral casing pump with a capacity of 600 kW was used as turbine; the investment cost and installation cost was only one fourth of the cost of a Francis turbine. Further, it is an advantage that the pump can also be used conventionally, i.e. in pump operation, to support drinking water transport. (orig.)

  7. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  8. Purge water management system

    Science.gov (United States)

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  9. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered fati

  10. Analysis and Reform on Reliability of Circulating Water Pump and Hydraulic-control Butterfly Valve Control System%循环水泵及液控蝶阀控制系统可靠性分析及改造

    Institute of Scientific and Technical Information of China (English)

    郭凌云

    2014-01-01

    This paper introduces and analyzes existing problems of circulating water pump and hydraulic-control butterfly valve control system in Guangdong Datang Chaozhu power plant and proposes optimization measures for improving reliabili-ty.Referred measures are feasible to greatly improve reliability of circulating water pump and hydraulic-control butterfly valve control system and safety of the unit.%对广东大唐潮州电厂循环水泵、液控蝶阀控制系统存在的问题进行了介绍和分析,并提出提高可靠性改造的优化措施。这些措施大大提高了循环水泵及液控蝶阀控制系统的可靠性及机组的安全性。

  11. Entropy, pumped-storage and energy system finance

    Science.gov (United States)

    Karakatsanis, Georgios

    2015-04-01

    Pumped-storage holds a key role for integrating renewable energy units with non-renewable fuel plants into large-scale energy systems of electricity output. An emerging issue is the development of financial engineering models with physical basis to systematically fund energy system efficiency improvements across its operation. A fundamental physically-based economic concept is the Scarcity Rent; which concerns the pricing of a natural resource's scarcity. Specifically, the scarcity rent comprises a fraction of a depleting resource's full price and accumulates to fund its more efficient future use. In an integrated energy system, scarcity rents derive from various resources and can be deposited to a pooled fund to finance the energy system's overall efficiency increase; allowing it to benefit from economies of scale. With pumped-storage incorporated to the system, water upgrades to a hub resource, in which the scarcity rents of all connected energy sources are denominated to. However, as available water for electricity generation or storage is also limited, a scarcity rent upon it is also imposed. It is suggested that scarcity rent generation is reducible to three (3) main factors, incorporating uncertainty: (1) water's natural renewability, (2) the energy system's intermittent components and (3) base-load prediction deviations from actual loads. For that purpose, the concept of entropy is used in order to measure the energy system's overall uncertainty; hence pumped-storage intensity requirements and generated water scarcity rents. Keywords: pumped-storage, integration, energy systems, financial engineering, physical basis, Scarcity Rent, pooled fund, economies of scale, hub resource, uncertainty, entropy Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  12. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  13. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  14. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  15. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  16. Study on Recharge Ability of Ground Water Heat Pump System%地下水源热泵系统中回灌能力分析

    Institute of Scientific and Technical Information of China (English)

    赵宏亮

    2012-01-01

    近年,地下水源热泵技术在我国被广泛应用,并在节能、环保等方面取得了一定效益.但是,回灌问题仍是困扰我国地下水源热泵发展的瓶颈.以唐山市丰润区乡居假日住宅区A4区地下水源热泵系统的应用为例,从区域水文地质条件方面,对水源热泵系统中地下水回灌能力进行了分析,指出开展地下水源热泵项目时,掌握热源井所在区域水文地质条件的重要性.探讨了影响地下水回灌能力的关键因素,其中包括区域水文地质条件、热源井成井工艺、回灌井阻塞以及地下水回灌方式.%In recent years, ground water beat pump technology has been widely applied in China and has made certain benefits in energy saving and environmental protection. However, groundwater recharge is still the main difficulty. This paper studied on the recharge of ground water heat pump according to the local hydrogeologic conditions at A4 area in the Fengrun countryside holiday block in Tangshan City, pointed out that the local hydrogeological condition is very important, and discussed the key factors impacting the recharge ability of ground water heat pump, including local hydrogeologic conditions,heat source well completion technology, clogging problem of disposal well and groundwater recharge mode.

  17. Development of a control system for evaluation of renewable power plants in the water pumping; Desenvolvimento de um sistema de controle para avaliacao de fontes de energias renovaveis no bombeamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Presenco, Jose Fernando [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Pos-graduacao em Agronomia; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural

    2010-07-01

    The use of alternative energy systems in the current days is an urgent necessity due to the problems that the planet is facing as the heating and loss of ozone layer. The scarcity of conventional energy is another problem that must be solved for the future of humanity. It must be considered that the people are inhabiting places moved away not always with available energy. The application of technologies as automation and control can help us to solve this problem. Therefore, this work aimed at apply an equipment of industrial usage, the Programmable Logical Controller, PLC, in alternative energies systems, as eolic generation and photovoltaic generation used for water pumping, aiming the automatic control and the efficiency in the places where it has simultaneous availability of these sources, based in criterion of priority that previously established itself between them. It was made a hydraulic and energetic evaluation of the energy system, eolic and photovoltaic, used in the automatic control system of pumping, in the place of accomplishment of the experiment, according to previously established physical conditions. The results have shown that the control system using the PLC is practicable and has trustworthiness. The program developed can be adapted for the use with several power plants in a specific application place. The photovoltaic system of pumping, using a polycrystalline of 70 Watts connected to a pump Shurflo 8000, showed to be efficient with significant flows in almost all the months. The eolic system of pumping, using an eolic generator of 400 Watts assembled in place of experiment, did not demonstrate energetic capacity for use in this specific type of application. (author)

  18. Diagnosis of the operation state of photovoltaic water pumping systems installed in Pernambuco state, Brazil; Diagnostico do estado de funcionamento de sistemas de bombeamento de agua fotovoltaico (SBFV) instalados em Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Heitor Scalambrini [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Nucleo de Apoio a Projetos de Energias Renovaveis], Email: hscosta@ufpe.br

    2006-07-01

    The major projects concerning the dissemination of the use of photovoltaic solar energy (PVSE) in Brazil are located in the Northeast region. Particularly, the state of Pernambuco has the largest number of installations and the largest installed power of autonomous systems. There exist approximately 700 residencies, 250 schools and 150 water pumping systems among other applications using PVSE, totaling 250 k Wp installed in more than 80 cities of that State. This work analyses a diagnosis report on the state of functioning of 64 one-year-old water-pumping installations in 30 m to 60 m depth wells, driven by 300 to 1,600 Wp photovoltaic generators, the flows varying from 200 l/h to 6,000 l/h. Technical and non-technical problems were identified, ranging from improper location choice, wrong system dimensioning, inadequate photovoltaic generator installations, lack of user instruction and training, lack of responsibility definitions regarding the technical assistance and the needed follow-up. In the final part of this report proposals are enumerated concerning the establishment of a local and municipal organizing structure aiming the management of the water-pumping installations and the assurance of a larger success probability in the use of that technology. (author)

  19. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  20. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  1. Technologies for Safe Water Supply in Arsenic Affected Villages of Bangladesh Utilizing a Pedal Pump

    Science.gov (United States)

    Biswas, Wahidul K.; Leslie, Greg

    2007-10-01

    This paper presents information on the socio-techno-economic aspects of a water purification system for the arsenic contaminated villages of Bangladesh. The proposed system which is based on hollow fiber membranes and granular activated carbon columns can be used to harvest potable water from ponds without many of the problems inherent in the conventional pond sand filters. This paper also examines the possible application of human operated pedal pump, instead of diesel or electricity driven pump, for pumping water from ponds to overcome limitations in existing water technologies in the arsenic-contaminated villages in Bangladesh. A market model of this technology has been suggested that allows the rural poor to access to safe water at affordable monthly rate.

  2. Comparative study by simulation of photovoltaic pumping systems with stationary and polar tracking arrays

    Energy Technology Data Exchange (ETDEWEB)

    Illanes, R.; De Francisco, A. [Universidad Politecnica de Madrid, E.T.S.I. de Montes, Madrid (Spain); Torres, J.L.; De Blas, M. [Universidad Publica de Navarra, Dept. Proyectos e Ingenieria Rural, Navarra (Spain); Appelbaum, J. [Tel Aviv Univ., Faculty of Engineering, Tel Aviv (Israel)

    2003-07-01

    Using mathematical models for the different components of the photovoltaic pumping system: generator, inverter (if applicable), motors, pumps and piping, we have developed a computer program that, for given irradiance and temperature data, calculates the flow of water pumped at any given time. The program has been applied to study the hourly and yearly water flow pumped by a photovoltaic pumping system located in Madrid, employing centrifugal pumps powered by AC motors. The photovoltaic generator consists of, in one case, a stationary array and in the second case a polar tracking array. The hourly radiation data were estimated from the distribution of the atmospheric clearness coefficients and the monthly average daily radiation on a horizontal surface. The results of this study show that the use of a polar tracking array increases the average yearly water flow compared with the stationary array more than the corresponding increase of the incident radiation on the arrays. (Author)

  3. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    in Danish conditions. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment...... goals. The presented study investigates the possible introduction of HPs from both a thermodynamic and a system/operation management perspective, in order to find optimal integration schemes in both current and future energy scenarios. Five generic configurations of HPs in district heating (DH) systems...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...

  4. Research of Water Pump Fault Diagnosis System Based on Wavelet Transform and TMS320F2812%基于小波变换和TMS320F2812的水泵故障诊断系统研究

    Institute of Scientific and Technical Information of China (English)

    卢艳宏; 冯源

    2012-01-01

    For water pumps and uther rotating machinery, the running status of water pump equipment can be more comprehensive judged through the acquisition and analysis of water pump vibration signal. So the collection of vibration signal is the key part of equipment status monitoring and fault diagnosis. The water pump fault diagnosis system is designed in the paper based on wavelet transform and DSP, and the system can realise acquisition of the water pump vibration signal. In order to improve ratio of the vibration signal to noise, and get relatively pure vibration signal, the vibration signal which is collected is eliminated noise by the wavelet diagnosis technology. We do research on water pump fault diagnosis which exemplified by the water pump unit normal operation, overheating winding, imbalance, serious lopsided, pedestal looseness and so on, and fault set parametersamax smax , Tamax , Tsmax and amin , smir , Tamin , Tsmm arc 1. 1500, 0. 1600, 46.9787, 446. 5000 and 0. 9000, 0.0700, 40.9825, 410. 6000 respectively . The experimental results show that the system can effectively find the fault, distinguish fault type and identify degreeof fault, a kind of effective method is provided for water pump unit fault diagnosis, and has the certain instruction significance for other similar mechanical fault diagnosis.%对于水泵等旋转机械来说,通过采集水泵振动信号并进行分析,能够较全面地判断出水泵设备运行状态,因此,振动信号的采集就成为设备状态监测与故障诊断的关键部分;设计了一套基于小波变换和DSP的水泵故障诊断系统,该系统可以实现对水泵振动信号的实时采集;为了提高振动信号的信噪比,得到较为纯净的振动信号,采用小波消噪的技术对采集的振动信号进行消噪处理;并且以水泵机组正常运行和发生绕组过热、轻度不平衡、严重不平衡、支座松动等故障为例进行诊断实验,并且故障集参数am(s)x·smax

  5. Effects of pumping strategies on pesticide concentration of a drinking water well

    Science.gov (United States)

    Aisopou, A.; Bjerg, P. L.; Binning, P. J.; Albrechtsen, H.

    2011-12-01

    Groundwater is an important source of drinking water production in many countries including Denmark. This requires high quality groundwater that meets the standards of the European Water Framework Directive. Yet as a result of agricultural activitity, deposition and previous handling, pesticides are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well's screen are important parameters that affect the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing the effects of pumping on water age distribution along the well. Three compounds with different application histories were considered: an old banned pesticide MCPP (Mecoprop) which is mobile and relatively persistent in deeper aquifers, and a highly applied, biodegradable and strongly sorbing pesticide glyphosate, and its degradation product AMPA. A steady state flow field was first computed. A well field was then introduced and different pumping regimes were applied for a period of 180 years; a low-rate pumping, a high-rate pumping and a varying pumping regime. A constant application rate at the surface was assumed for the application period of each pesticide. The pre-abstraction age distribution of the water in the system was first estimated using a steady

  6. Pump/Control System Minimum Operating Cost Testing

    Science.gov (United States)

    1977-01-01

    A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.

  7. Application and summary of fresh water-source heat pump system in Chengdu Jinjiangchuangyi Science and Technology Building%成都锦江创意科技大厦淡水源热泵应用及总结

    Institute of Scientific and Technical Information of China (English)

    王波; 徐净宇; 黄进

    2012-01-01

    The project is a demonstration project of renewable energy application in buildings, adopting a fresh water-source heat pump system for cooling, heating and domestic hot water supply. To realize the system energy efficiency ratio over 3.0 both in winter and summer, considering the water quality of the water source, adopts the scheme of the water entering the heat pump unit directly. By selecting anti-corrosion units and installing rubber-ball cleaning devices, guarantees the stability of system operation.%该工程为可再生能源建筑应用示范工程,采用淡水源热泵系统为建筑供冷、供热和生活热水提供冷热源.为达到示范工程所要求的冬夏季系统能效比均在3.0以上,结合该工程的水源水质情况,采用了水源水直接进热泵主机的方案;通过选用耐腐蚀的水源热泵主机并加装胶球清洗装置,保证了系统的稳定运行.

  8. 'Pioneer' - A controlled air-water heat pump for the replacement of oil-fired and electric heating systems; Geregelte Waermepumpe Pioneer. Geregelte Luft-Wasser-Waermepumpe fuer Sanierungen von Oel- und Elektroheizungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boeckh, P. von; Borer, M.; Borer, T. [Fachhochschule beider Basel FHBB, Dept. Industrie, Abtlg. Maschinenbau, Muttenz (Switzerland); Eggenberger, H.J. [Solartis GmbH, WP-Versuchslabor EICH, Fuellinsdorf (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that involved the development of an air-water heat pump system that could replace existing oil-fired and electric heating systems. The system features variable-frequency compressor and ventilator drives and was tested on a special test bed that provided appropriately prepared primary air. The measurements and optimisations made included the definition of optimal parameters for ventilator and de-icing system, measurement of performance coefficients and noise emissions as well as on the suitability of the system for hot-water generation. The authors quote figures that show that the performance of the variable-speed system is much better than systems running in stop-and-go mode.

  9. Computation of water hammer protection of modernized pumping station

    Directory of Open Access Journals (Sweden)

    Himr Daniel

    2014-03-01

    Finally, the pump trip was performed to verify if the system worked correctly. The test showed that pressure pulsations are lower (better than computation predicted. This discrepancy was further analysed.

  10. Design of Control System of Parallel Solar Assisted Heat Pump Water Heater%并联式太阳能热泵热水器控制系统设计

    Institute of Scientific and Technical Information of China (English)

    张建成; 吴永明; 苗文凭

    2012-01-01

    阐述了并联式太阳热泵热水器是最易受推广使用的太阳能热泵热水器类型;针对23目前并联式太阳能热泵热水器存在的集成化控制问题,分析了并联式太阳热泵热水器控制系统的控制要求,采用水位、温差与时间相结合的控制方法,以ATmega48单片机为核心,研究了控制系统的工作原理、硬件结构及控制数据流程;系统能够根据天气、水温等不同情况自动选择太阳能机组或空气能热泵机组来制取热水,并且具有主要设备的故障自诊断功能、压缩机延时保护功能及智能化霜功能,提高了该热水器的稳定性和低温制热效率;测试结果表明:使用该集成系统后,系统平均能源利用率提高了约23%.%Among all the solar assisted heat pump water heater, the paralle type is the most easily promoted. According to the integrated problem that exists in the control of the parallel solar assisted heat pump water heater, on the basis of analyzing requirements of the control system of the parallel solar assisted heat pump water heater, the control method associating with water-level, difference in temperature and time is applied. The realization principle, hardware structure and controlling data flow of the control system are studied based on AT-mega48. The system can select automatically solar-energy or air-energy heat -pump to make hot water according to weather and water temperature. Combined with the functions of fault self -diagnosis for key facilities, delay protection for compressor and automatically defrosting, the control system can improve the stability and thermal efficiency of the water heater under the low temperature. The results show that 23%of the average energy efficiency have been improved by using the integrated control system.

  11. Effects of pumping strategies on pesticide concentration of a drinking water well

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Binning, Philip John; Bjerg, Poul Løgstrup

    are frequently found in groundwater and can raise a substantial problem for ground water abstraction. The concentration of this contamination may vary between different layers. The heterogeneity of the subsurface geology and the depth of the drinking water well’s screen are important parameters that affect...... the resulting contamination of the abstracted groundwater. The pesticide concentration in wells may also be affected by the pumping strategy because pumping can alter the structure of the flow field, the flowpath of water going to the well and subsequently the age of water at the well. The purpose of this study...... was to examine numerically the effects of pumping on pesticide contamination of drinking water wells using a reactive transport model in a hypothetical aquifer system resembling a typical Danish well field. The application history of the pesticides is crucial. This can be taken into account by assessing...

  12. 风力提水机的结构及其在山地茶园的应用分析%Application of Water Pumping System with Wind Power in Upland Tea Garden

    Institute of Scientific and Technical Information of China (English)

    何华兴; 陈向镇; 林军; 柯玉琴; 何华勤

    2014-01-01

    Wind and solar energy should be utilized in farming system to save the energy.This study applied Profiliand AutoCAD to design a wind-powered water pumping system for the upland tea garden.The system,whichconsisted an air compressor and an atmospheric pressure pump,was evaluated.The result showed that with 4.0m·s-1 wind a 2.1-m-diameter wind-powered water pumping system could pump water 30-m-high at a rate of 1.90kg·m-1 .The power generated from 3 wind-powered water pump system was calculated to be 1 1 1 kWh,whichcould adequately supply the irrigation need of a 1 00-mu tea plantation.%应用 Profili、AutoCAD 等软件,采用风力空气压缩机与气压提水机分体的形式,探讨适用于沿海山地风力提水机的结构。并分析风力提水机在山地茶园的应用效益,研究结果表明在平均风速为4.0m·s-1的条件下,风叶半径为2.1m 的风力提水机的理论扬水量为1.90kg·s-1(30m 扬程),现场实际观测值可达理论值的50%,3台3级风力提水机可满足近6.67hm2铁观音茶园的充分灌溉需求,节省111kWh的电力,节能效益明显。

  13. Solar Assisted Water Source Heat Pump System for Heating in Winter%关于太阳能辅助水源热泵系统联合冬季供暖的研究

    Institute of Scientific and Technical Information of China (English)

    石东森; 赵展

    2014-01-01

    Along with the increased awareness of energy shortage and environmental protection in China, solar energy and shallow geothermal energy as renewable energy are getting more and more atten-tion. But regardless of the solar system or single water source heat pump system has some limitations, few of joint operation for both applications. Based on the actual project as an example, the solar system can be combined with water source heat pump system, and the system will achieve the required indoor air temper-ature; and the technical analysis of operation cost for solar system with water source heat pump system shows the energy efficiency is completely obvious.%随着我国能源的紧缺和环保意识的加强,太阳能、浅层地热能作为可再生能源,越来越受到人们的重视。但无论是太阳能系统,还是水源热泵系统,单独运行时均有一定的局限性,两者联合运行的应用很少。通过实际工程分析,太阳能系统与水源热泵系统可以联合工作,并可达到预期的室内空调温度;对太阳能系统与水源热泵系统联合运行的运行费用做了技术分析,证实这种联合模式节能效果十分明显。

  14. An optimized ground-coupled heat pump system design for northern climate applications

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.; Baxter, V.D.

    1985-01-01

    This paper addresses the question of the performance of a ground coupled heat pump (GCHP) system with a water-source heat pump package designed expressly for such systems operating in a northern climate. The project objective was to minimize the life-cycle cost of a GCHP system by optimizing the design of both the heat pump package and the group coil in concert. In order to achieve this objective, a number of modelling tools were developed to analyze the heat pump's performance and cost, and the ground coil's performance.

  15. Energy Saving and Benefit Analysis of Water Cooled Heat Pump Energy Recovery System%水冷热泵机组冷热回收系统的节能效益分析

    Institute of Scientific and Technical Information of China (English)

    袁莉莉

    2013-01-01

    本文结合华南地区的温泉度假区实际案例,针对水冷热泵机组冷热回收系统应用,详细介绍其系统设计、运行策略、实际运行数据分析、全年能耗模拟与节能效果分析等,充分证明了该系统的节能效果与经济效益。同时指出,针对酒店行业,水冷热泵机组非常适合在制冷同时回收冷凝器热量,用于免费制取生活热水,节能效益显著。%Combined with the actual case of hot spring resort in south area, aimed at the water cooled heat pump energy recovery system, the system design, operation strategy, real operating data record, whole year energy simulation and energy saving analysis were introduced. The energy saving effect and economic benefits were demostrated. Meanwhile, it is pointed out that in hotel application the condensing heat of heat pumps is very suitable to be recovered to heat domestic hot water while heat pumps are running for cooling, and the energy saving would be remarkable.

  16. MONITORING ON DEBUGGING OF GEOTHERMAL HEAT PUMP AIR CONDITIONING SYSTEM AND DOMESTIC HOT-WATER SYSTEM%地源热泵空调及生活热水系统调试监控

    Institute of Scientific and Technical Information of China (English)

    丁育南; 丁楠育

    2012-01-01

    以某工程的地源热泵空调及生活热水系统调试的有关监控要求为例,从生活热水系统运行要求、系统调试监控要点及其调试结果分析等方面介绍了调试监控的方法,即为确保该系统满足设计要求的节能减排目标,应先进行分区、分子系统调试,合格后再联合调试,实时总结调试期间出现的不足并及时修正,为类似工程的调试监控工作提供借鉴.%Based on related monitoring requirements for debugging of geothennal heat pump air conditioning system and domestic hot-water system of a project, the debugging monitoring method is introduced on the following aspects, including operation requirement of domestic hot-water system, key points for monitoring on system debugging and analysis on debugging result, etc. To ensure the energy conservation and emission reduction required in design can be satisfied, the system shall be debugged in subzones and subsystems before joint debugging. Problems detected in debugging shall be summarized and corrected timely, so as to provide references for debugging monitoring of similar projects.

  17. Development of a nonazeotropic heat pump for crew hygiene water heating

    Science.gov (United States)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. Feasibility in photovoltaic pumping systems; Fiabilidad en sistemas de bombeo fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Narvarte, I.; Poza, F.; Lorenzo, E.

    2004-07-01

    In spite of the high reliability of PV pumping technology, PV pumping programs show that there are numerous problems when the whole system is evaluated: pumping, storage and distribution. Therefore, reality suggests the convenience of implementing quality assurance procedures taking into account the whole water chain. This paper presents how a current PV program in the Maghreb has faced up this challenge by elaborating technical specifications, carrying out quality tests, and developing testing procedures and facilities locally reproducible. (Author)

  20. The Pumping Up Phenomenon of Double-Stage Bubble Pump with Water and Aqueous LiBr Solution

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2013-02-01

    Full Text Available The double-stage bubble pump, using thermal energy as driving force to transport the solution, can replace the mechanical solution pump in the double-effect lithium bromide absorption chiller. By building a bench, a lot of experimental research and analysis were conducted with water and different concentrations of lithium bromide solution as the working fluid of the bubble pump. The first-stage bubble pump in the experiment pumps up by the external heat source. The heat for driving the second-stage bubble pump is provided by refrigerant steam produced from the first-stage bubble pump. The experiment data shows that the heating of refrigerant vapor is only one of the elements of pump-up phenomenon. Another is that the intermediate solution flashes to vapor to become bubbles. The pump-up phenomenon of double-stage bubble pump has much to do with the pressure difference of intermediate solution and first-stage refrigerant vapor. With water as the working fluid, when the pressure difference between refrigerant vapor and the intermediate liquefied refrigerant is 3.5-3.9 kPa, the bubble pump can pump up and run for some time and the start-up time decreases with the driving head. When the working fluid is lithium bromide solution, the pressure difference of the double-stage bubble pump increases with the solution concentration and is bigger than that of water. The start-up time increases with the concentrations of lithium bromide solution within the range of 45.5 to 54% and decreases within the range of 54-59.5%. The start-up time is largest at 54% under this experimental condition. The experimental result is also compared with the single-stage bubble pump. The start-up time of double-stage bubble pump decreases with the driving height, which is contrary to the single-stage bubble pump.

  1. MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system

    Science.gov (United States)

    Mortazavi, Seyed Mohammad; Mohamadi, Maryam; Jouzdani, Javid

    2017-08-01

    In many cases, redundant systems are beset by both independent and dependent failures. Ignoring dependent variables in MTBF evaluation of redundant systems hastens the occurrence of failure, causing it to take place before the expected time, hence decreasing safety and creating irreversible damages. Common cause failure (CCF) and cascading failure are two varieties of dependent failures, both leading to a considerable decrease in the MTBF of redundant systems. In this paper, the alpha-factor model and the capacity flow model are combined so as to incorporate CCF and cascading failure in the evaluation of MTBF of a 2-out-of-3 repairable redundant system. Then, using a transposed matrix, the MTBF function of the system is determined. Due to the fact that it is difficult to estimate the independent and dependent failure rates, industries are interested in considering uncertain failure rates. Therefore, fuzzy theory is used to incorporate uncertainty into the model presented in this study, and a nonlinear programming model is used to determine system's MTBF. Finally, in order to validate the proposed model, evaluation of MTBF of the redundant system of a centrifugal water pumping system is presented as a practical example.

  2. Energy Efficient Pump Control for an Offshore Oil Processing System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Soleiman, Kian; Løhndorf, Bo

    2012-01-01

    The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps in parallel, and the lifted seawater is used to cool down the crude oil flowing out of a threephase...... separator on one of the Danish north-sea platform. A hierarchical pump-speed control strategy is developed for the considered system by minimizing the pump power consumption subject to keeping a satisfactory system performance. The proposed control strategy consists of online estimation of some system...... operating parameters, optimization of pump configurations, and a real-time feedback control. Comparing with the current control strategy at the considered system, where the pump system is on/off controlled, and the seawater flows are controlled by a number of control valves, the proposed control strategy...

  3. Characteristics of a water pump system fed on photovoltaic panel connected to a battery group; Caracteristicas de um sistema de bombeamento d'agua alimentado por paineis fotovoltaicos ligado a um banco de baterias

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger N.; Gnoato, Estor; Santos, Jose A.A. dos; Oyama, Paulo T.; Pasa, Leandro A.; Fischborn, Marcos; Mayer, Giovano; Halmemann, Maria C. [Universidade Tecnologica Federal do Parana (UTFPR-MD), Medianeira, PR (Brazil)], Emails: gnoatto@utfpr.edu.br, airton@utfpr.edu.br, oyama@utfpr.edu.br, pasa@utfpr.edu.br, fisch@utfpr.edu.br, giovano@utfpr.edu.br, cristhal@fca.unesp.br

    2009-07-01

    The photovoltaic solar energy started to be explored intensively in the 80's when researches related to this technology received great investments because it is a clean, renewable and greatly available energy. To improve the efficiency in this form of electric energy generation it is necessary to know its characteristics in order to reach a coherent sizing and foresee in which equipment they can be installed. This project analyzes the characteristics of a water pump system fed on two batteries connected to two photovoltaic modules, with variation of the geometric height of pressure. With the increase of the geometric height of pressure, occurs the reduction of the voltage (not only in the pump but also in the battery) and of the outflow and the increase of the electric current and power. (author)

  4. Photovoltaic water pumping applications: Assessment of the near-term market

    Science.gov (United States)

    Rosenblum, L.; Bifano, W. J.; Scudder, L. R.; Poley, W. A.; Cusick, J. P.

    1978-01-01

    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist.

  5. Fish-Friendly Pumping Stations Principles, Practices and Outcomes in Dutch Water Management

    NARCIS (Netherlands)

    Moria, Laura

    2008-01-01

    In the Netherlands polder water levels are managed with almost 3000 pumping stations that pump excess water from polders to reservoir canals or sea. These pumping stations might threaten Dutch fish stocks. Migrating fish are often unable to pass a pumping

  6. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  7. Long-Term Operating Characteristics of Ground-Coupled Heat Pump Systems with Variable Water Volume%土壤源热泵变流量系统的长期运行特性研究

    Institute of Scientific and Technical Information of China (English)

    戴霖姗; 刘金祥; 盛建军; 陈高峰; 章亚武

    2014-01-01

    The variable-speed pump model of TRNSYS transient system simulation program is opti-mized, and the new model is validated with the measured data. The system models of constant flow rate and several different variable flow rates are established, running the system models for 15 years. The energy consumption of water pump and heat pump are expounded based on the results of simulation. According to the results of simulation, we can also discuss the average temperature of the heat storage.%在TRNSYS仿真模拟软件的基础上,对其中的变速泵模拟进行了优化,并用实验值验证模型。分别建立定流量和变流量系统的仿真模型,并进行长期模拟。模拟结果得到15年的水泵、热泵机组全年的能耗,分别讨论了制冷期、制热期的能耗情况,并从15年的土壤平均温度变化讨论定流量与变流量对埋管区域热环境的影响。

  8. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  9. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  10. Energy Saving in a Water Supply Network by Coupling a Pump and a Pump As Turbine (PAT) in a Turbopump

    OpenAIRE

    Armando Carravetta; Lauro Antipodi; Umberto Golia; Oreste Fecarotta

    2017-01-01

    The management of a water distribution network (WDN) is performed by valve and pump control, to regulate both the pressure and the discharge between certain limits. The energy that is usually merely dissipated by valves can instead be converted and used to partially supply the pumping stations. Pumps used as turbines (PAT) can be used in order to both reduce pressure and recover energy, with proven economic benefits. The direct coupling of the PAT shaft with the pump shaft in a PAT-pump turbo...

  11. European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishaldeep [ORNL; Shen, Bo [ORNL; Keinath, Chris [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City; Geoghegan, Patrick J [ORNL

    2017-01-01

    High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in colder climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.

  12. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  13. Statistical Modeling of Controllable Heat Pump Water Heaters Considering Customers' Convenience and Uncertainty and its Application to Frequency Control in Power System with a Large Penetration of Renewable Energy Sources

    Science.gov (United States)

    Masuta, Taisuke; Gunjikake, Yasutoshi; Yokoyama, Akihiko; Tada, Yasuyuki

    Nowadays, electric power systems confront many problems, such as environmental issues, aging infrastructures, energy security, and quality of electricity supply. The smart grid is a new concept of a better future grid, which enables us to solve the mentioned problems with Information and Communication Technology (ICT). In this research, a number of Heat Pump Water Heaters (HPWHs), one of the energy efficient-use customer equipment, and Battery Energy Storage System (BESS) are considered as controllable equipment for the frequency control. The utilization of customer equipment such as HPWH for power system control is one of the key elements in the concept of Ubiquitous Power Grid, which was proposed by our research group as a smart grid in Japanese context. The frequency control using a number of HPWHs with thermal storage of hot water tank is evaluated. Moreover, a novel statistical modeling of controllable HPWHs taking into account customers' convenience and uncertainty is proposed.

  14. Economics of heat pump systems for simultaneous heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Devotta, S.; Patwardhan, V.S.

    1987-01-01

    Heat pumps can be incorporated advantageously into processes which require simultaneously both cooling and heating. The economics of heat pumps in India for simultaneous heat and cooling is assessed with respect to process, design and economic parameters. For the typical conditions of various parameters in India, a heat pump system for simultaneous heating and cooling is very attractive.

  15. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  16. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  17. Pore Water Pumping by Upside-Down Jellyfish

    Science.gov (United States)

    Gaddam, Manikantam; Santhanakrishnan, Arvind

    2016-11-01

    Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.

  18. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  19. Reliability of water distribution networks due to pumps failure: comparison of VSP and SSP application

    Directory of Open Access Journals (Sweden)

    N. Mehzad

    2012-07-01

    Full Text Available Reliability is an important indicator to ensure the operation of Water Distribution Networks (WDNs. To optimize the operation of WDN, it is necessary to incorporate the reliability of active components (such as pumps and tanks besides the reliability of pipes. In this research, a concept is suggested to calculate the reliability of WDNs' pumping stations. A computer code is provided in Visual Basic and is linked to EPANET2.0. To evaluate the proposed methodology a real WDN near the city of Tehran is considered. According to the obtained results, it is concluded that by increasing the demand of the WDN during a day, the reliability of pumps decrease. Therefore, it seems that decision-making is necessary if high demand hours are considered, in order to increase the reliability of the system. On the other hand, it is observed in this research that using variable speed pumps not only reduces the energy cost of the network, but also the reliability of the pumping stations with variable speed pumps is higher than single speed pumps. Therefore, using VSP is highly recommended in WDNs.

  20. Noise abatement in air-water heat pump systems. Basic considerations, guidelines for practice; Laermreduktion bei Luft/Wasser-Waermepumpenanlagen. Grundlagen und Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Graf, H.R.

    2002-07-01

    With increasing numbers of installations of air/water heat pumps the issue of noise emissions is becoming more of a concern. In reaction to this situation, the company Sulzer Innotec has developed these guidelines by order of the Swiss Federal Office of Energy. Typically, more than 90% of the noise emitted outdoors is produced by the fan. Due to the strong tonal components, the noise emitted is substantially more annoying than a reference broadband noise of the same intensity. For further noise reduction mainly the fan noise must be addressed. Despite the dominance of fan noise, other noise sources must not be neglected. The most promising countermeasures are: Reduction of fan noise by (i) low blade tip speed (prerequisite is a pressure drop in the air channels including the evaporator as low as possible), (ii) improvement of flow geometry in the vicinity of the fan, (iii) insulation of air ducts with acoustic foam (thickness 50 mm or more), (iv) elbows in the air duct line for sound dissipation. Reduction of compressor noise by (i) a highly effective acoustic enclosure, (ii) vibration insulation of structure-borne noise by elastic mounts, (iii) decoupling of refrigerant pipes. (author)

  1. The efficient use of the electric energy in underground water pumping systems in the Bajio (lowlands); El uso eficiente de la energia electrica en los sistemas de bombeo de agua subterranea en el Bajio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Irapuato (Mexico)

    1997-12-31

    In the Bajio region the underground water is the main source of drinking water and approximately constitutes 50% of the water used for agricultural purposes. From the energy standpoint pumping represents 33% of the electricity consumption and a wastage of 35% is estimated. In order to take care of this problem a methodology was designed for an energetic appraisal of the well pumping systems, with the basic objective of knowing the electro-mechanical efficiency of the equipment and the efficiency of the auxiliary equipment and the well hydraulic response. The analysis of the results of 221 diagnoses performed demonstrates the profitability of the equipment rehabilitation, plus other advantages of collective character . [Espanol] En la region del Bajio, el agua subterranea constituye la principal fuente de agua potable y aproximadamente, el 50% del agua para riego agricola; desde el punto de vista energetico, el bombeo de ella representa el 33% de la electricidad que se consume y se estima un desperdicio del 35%. Para atender la problematica, se diseno una metodologia para un diagnostico energetico de los sistemas de bombeo de los pozos, con el objetivo basico de conocer la eficiencia electro-mecanica de los equipos, el comportamiento de los equipos auxiliares y la capacidad de respuesta hidraulica del pozo. El analisis de los resultados de 221 diagnosticos realizados, pone de manifiesto la redituabilidad de la rehabilitacion de los equipos, ademas de otras ventajas de caracter colectivo.

  2. Optimized ground-coupled heat pump system design for northern climate applications. [Including ground coil

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.; Baxter, V.D.

    1985-01-01

    This paper addresses the question of the performance of a ground coupled heat pump (GCHP) system with a water - source heat pump package designed expressly for such systems operating in a northern climate. The project objective was to minimize the life-cycle cost of a GCHP system by optimizing the design of both the heat pump package and the ground coil in concert. In order to achieve this objective, a number of modelling tools were developed or modified to analyze the heat pump's performance and cost and the ground coil's performance. The life-cycle cost of a GCHP system (water-source heat pump with a horizontal ground coil) for an 1800 ft/sup 2/ (167 m/sup 2/) house in Pittsburgh, PA, was minimized over a 7 year economic life. Simple payback for the optimized GCHP system, relative to conventional air-source heat pumps, was under 3 years. The water-source heat pump package resulting from this optimization is calculated to cost 21% more than its conventional counterpart with a heating coefficient of performance (COP) about 20% higher, and a cooling COP about 23% higher. In the GCHP system modeled, its annual energy savings are predicted to be about 11% compared to a system designed around the conventional heat pump while having about the same installation cost. The major conclusion of this study is - GCHP system performance improvement can be attained by improving the water-source heat pump package at less cost than by buying more ground coil. The following conclusions were drawn from the steady-state performance optimization results: (1) By adding about $100.00 to the manufacturer's cost off construction, both the heating and cooling COPs can be improved by 20% or more. (2) Cooling COP need not be sacrificed for the sake of heating performance and vice versa. 13 refs., 11 figs., 12 tabs.

  3. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  4. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  5. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  6. Molecular system generation with strong resonance optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Kuntsevich, B.F.; Churakov, V.V.

    1977-03-01

    A study was made of molecular system generation modulated by three oscillating levels with a rotating structure with strong resonance optical pumping. Molecular behavior of the active medium is described by equations for the density matrix. The relationship between the amplification coefficient and pressure at various pumping intensities was examined. In approaching the assigned pumping field, an examination was made of how the generation field is affected by the volumetric density of the pumping energy, partial pressure of the buffer gas and frequency difference in the pumping channel.

  7. Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

    2012-07-01

    Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

  8. 46 CFR 154.1135 - Pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-522)....

  9. Analysis of air-to-water heat pump in cold climate: comparison between experiment and simulation

    Directory of Open Access Journals (Sweden)

    Karolis Januševičius

    2015-10-01

    Full Text Available Heat pump systems are promising technologies for current and future buildings and this research presents the performance of air source heat pump (ASHP system. The system was monitored, analysed and simulated using TRNSYS software. The experimental data were used to calibrate the simulation model of ASHP. The specific climate conditions are evaluated in the model. It was noticed for the heating mode that the coefficient of performance (COP varied from 1.98 to 3.05 as the outdoor temperature changed from –7.0 ºC to +5.0 ºC, respectively. TRNSYS simulations were also performed to predict seasonal performance factor of the ASHP for Vilnius city. It was identified that seasonal performance prediction could be approximately 15% lower if frost formation effects are not included to air-water heat pump simulation model.

  10. Development of Absorption Heat Pump Driven by Low Temperature Hot Water

    Science.gov (United States)

    Hoshida, Toshihiro; Nakamura, Naoto; Asai, Hiroshi; Hasatani, Masanobu; Watanabe, Fujio; Fujisawa, Ryou

    We developed an Adsorption Heat Pump (AHP) system, which applies silica-gel as adsorbent and H2O as refrigerant, and is possibly intended to use low temperature hot water (333K) as a driving force. The growing importance to save energy, leads us to develop energy saving systems such as Co-generation systems, including fuel cell system. It is important to use low temperature hot water in order to achieve high efficiency in total. It is, however, noticed that the lower water temperature is, the more difficult its' heat recovery becomes. We reported experimental results of the AHP system, and estimated the possibility to apply low temperature hot water from fuel cell system to the AHP system. We showed quantitatively that the AHP system is able to be driven by low temperature hot water(333K).

  11. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Science.gov (United States)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  12. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  13. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    OpenAIRE

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  14. Savings potential of pump control systems; Sparpotenzial geregelter Pumpensysteme

    Energy Technology Data Exchange (ETDEWEB)

    Gontermann, D.

    2008-07-01

    This article takes a look at the potential for saving energy available if speed-control systems are used to regulate the speed and, as a result, the energy consumption of industrial pumps. The author quotes that around one third of power consumption in commercial buildings is used for powering pumps. Life-cycle costs of pumps, in which operation, maintenance and repair are also taken into account, are discussed. Methods of dimensioning pumps and the difficulties that can be encountered in doing this are discussed. The planning necessary to choose the correct pump power is discussed, as is the use of multi-stage pump installations and their control. Monitoring of the operation of pump installations is also examined.

  15. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-12-31

    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  16. Simulation of separation for 2-methoxyethanol-water system by separate heat pump distillation%基于分割式热泵的2-甲氧基乙醇-水精馏工艺模拟

    Institute of Scientific and Technical Information of China (English)

    杨德明; 王杨; 廖巧

    2012-01-01

    Separate heat pump distillation was applied to separate 2-methoxyethanol-water system based on the azeotropic characters of the system. The binary interaction parameters of UNIQUAC equation used for calculating vapor-liquid equilibrium data were fitted against the experimental data of 2-methoxyethanol-water system. Based on the minimum annual operation cost, the simulation and optimization for separate heat pump distillation process were performed by Radfrac block and Compr block in Aspen Plus software, and the optimum conditions were determined, such as the breakpoint mole fraction x(H2O) =0. 17 and the stream input of compressor 6. 16 t/h. The simulation results show that the separate heat pump distillation process can save total annual cost by 34. 4% and the annual operating cost by 36. 3% compared with the conventional heat pump distillation.%基于2-甲氧基乙醇-水体系的共沸特性,应用分割式热泵精馏用于该体系的分离.采用UNIQUAC方程计算该体系的相平衡数据,并利用实验数据对UNIQUAC方程中的二元交互作用参数进行修正.利用Aspen Plus过程模拟软件中的Radfrac精馏模型和Compr等熵压缩模型,以年总费用最小为目标函数,对提出的分割式热泵精馏工艺进行了模拟与优,得到了合适的工艺参数,如分割点摩尔分数为x(H20) =0.17、压缩机进气量为6.16 t/h等关键工艺变量.模拟结果表明,与常规热泵精馏工艺相比,分割式热泵精馏工艺的年总费用可节约34.4%,操作费用可节约36.3%.

  17. Millwater Pumping System Optimization Improves Efficiency and Saves Energy at an Automotive Glass Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-03-01

    In 2001, the Visteon automotive glass plant in Nashville, Tennessee renovated its millwater pumping system. This improvement saved the plant $280,000 annually in energy and operating costs, reduced annual energy consumption by 3.2 million kilowatt-hours, reduced water consumption, improved system performance, and reduced use of water treatment chemicals.

  18. Origin of Possible Contamination Introduced by a Turbomolecular Pumping System

    CERN Document Server

    Bojon, J P; Weiss, K P

    1999-01-01

    Turbomolecular pumping groups are widely used in accelerators for the pre-evacuation and during the bake-out of the vacuum system. A major requirement for these groups, apart from pumping speed considerations, is the cleanliness of the vacuum produced. In an attempt to clarify this question, a bakeable low-pressure vacuum system has been constructed to allow the direct comparison of the contamination introduced by a turbomolecular pump and by an ideally clean cryopump. This contamination has been checked by the quantitative analysis of the residual gas as well as of the gases desorbed from surfaces under electron bombardment. Contamination by the rotary pump oil is only apparent below 40% of the turbomolecular pump nominal rotation speed. When the pump is stopped, the system is contaminated by heavy hydrocarbons which can be eliminated by a 300°C vacuum bake out.

  19. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  20. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  1. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  2. Effects of air vessel on water hammer in high-head pumping station

    Science.gov (United States)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  3. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  4. Determination of zero-pressure point location and water pump head in distributed power systems%动力分散系统中零压差点位置及水泵扬程的确定

    Institute of Scientific and Technical Information of China (English)

    焦扬; 符永正

    2011-01-01

    运用水压图分析了零压差点位于不同位置时动力分散系统的水压分布.结果显示,零压差点应位于临界点与热(冷)源之间,才能消除调节阀能耗,从而使系统输配能耗最低;零压差点位于临界点与热(冷)源之间的不同位置时,水泵的配置方案不同,但各水泵的输出功率总和相等.%Using the pressure diagram analyses the pressure distribution of the distributed power system when the zero-pressure point is in different locations. The results show that the zero-pressure point should be at the location between the critical point and heat or cold source, which can cause the transmission energy consumption of the system to be lowest because of eliminating the energy consumption of the regulating valve, and that when the zero-pressure point is in different locations between the critical point and heat or cold source, disposition plans of water pumps are almost different, but total output powers of the pumps are the same.

  5. Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.; Delombard, R.

    1982-01-01

    The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.

  6. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [ENVIRON; Yavuzturk, Cy [University of Hartford; Pinder, George [University of Vermont

    2015-04-15

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  7. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  8. 水源热泵与蓄能结合系统的评价体系研究%Evaluation methods of water-source heat pump systems combined with thermal storage

    Institute of Scientific and Technical Information of China (English)

    白雪莲; 张南桥

    2011-01-01

    针对水源热泵和冰蓄冷的技术特点,确定了水源热泵与蓄能结合的系统的评价指标.对系统的经济性、节能性、安全性、环境效益、特性进行分析,提出该系统的综合评价体系.采用模糊综合评价方法,建立了评价模型,并得到相应的评价步骤.结合工程实例,分析了综合评价体系的应用结果,研究表明,综合评价体系可以全面反映该系统的特性,为方案决策和系统设计提供了量化依据.%Aiming at the characteristics of water-source heat pump and ice storage, determines the evaluation indices for the system of water-source heat pump combined with thermal storage. Analysing economic effects, energy saving, safety, environment benefits and exergy characteristics, puts forward a comprehensive evaluation method for the system. Adopting fuzzy comprehensive evaluation method, sets up an evaluation model and presents corresponding steps. Taking an actual project as example, analyses the application results of the evaluation method. The results show that the evaluation method can reflect totally the characteristics of the system and provide quantitative reference for scheme decision and system design.

  9. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  10. Test results for the Oasis 3C high performance water-pumping windmill

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  11. Residential heat pumps in the future Danish energy system

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...... temperature while installation of ground-source heat pumps is constrained by available ground area. In this study, TIMES-DK model is utilised to test the effects of improved modelling of residential heat pumps on the Danish energy system until 2050.The analysis of the Danish energy system was done...... for politically agreed targets which include: at least 50% of electricity consumption from wind power starting from 2020, fossil fuel free heat and power sector from 2035 and 100% renewable energy system starting from 2050. Residential heat pumps supply around 25% of total residential heating demand after 2035...

  12. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    Directory of Open Access Journals (Sweden)

    Sekret Robert

    2014-03-01

    Full Text Available Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  13. Sliding mode control for efficiency optimization of wind electrical pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Universidad Nacional de la Patagonia (Argentina); Universidad Nacional de La Plata (Argentina); Mantz, R.J. [Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina); Battatotto, P.E. [Universidad Nacional de La Plata (Argentina)

    2003-07-01

    Wind energy conversion systems have been receiving increasing attention in recent years, particularly in remote areas, where power from the utility is not available or is costly to install. Among many applications, wind electrical systems are successfully used for pumping water. Owing to the non-linear characteristics of these systems, their control is essential to attain high efficiency. In this work, concepts of sliding mode control are employed to guarantee global stability and to optimize the efficiency of a wind electrical water-pumping system. The measurement of wind speed is avoided. A thorough analysis of stability and dynamic behaviour is realized. Simulation results are presented. (Author)

  14. Avaliação do bombeamento de água em um sistema alimentado por painéis fotovoltaicos Water pumping in a system fed by photovoltaic panels

    Directory of Open Access Journals (Sweden)

    Roger N. Michels

    2009-09-01

    Full Text Available O presente trabalho foi desenvolvido com a finalidade de avaliar um sistema de bombeamento de água acionado por painéis fotovoltaicos instalados nas dependências da Universidade Tecnológica Federal do Paraná, Câmpus Medianeira - PR. O município está localizado no oeste paranaense (25º17'43" S; 54º03'38" e 500,7 m. O sistema trabalhou em situação real de funcionamento, bombeando água à altura de 20 m. Foram coletados dados de fevereiro a novembro de 2005; utilizou-se coletor de dados computadorizado da Campbell Scientific INC. , que possibilitou adquirir e armazenar os dados de irradiância solar no plano do painel, tensão e corrente gerada, temperatura no painel e vazão. Por meio de cálculos, obtiveram-se os valores de potência e eficiência do sistema. O solstício de inverno apresentou eficiência de 9,58% com bombeamento diário de 2.056 litros, enquanto o solstício de verão apresentou eficiência de 9,07% com bombeamento diário de 2.377 litros. A maior eficiência nos dias de inverno está ligada às menores temperaturas se comparada aos dias de verão, e o fator que provocou a maior vazão de água bombeada nos dias de verão está atrelado ao tempo de insolação, que é maior se comparado aos dias de inverno.The main objective of this paper is to evaluate a water pumping system powered by photovoltaic panels installed at Federal Technological University of Paraná - UTFPR, in Medianeira, State of Paraná, Brazil. The city is located at the West of Paraná (25º17'43"; 54º03'38" and 500.7 meters - 1,642.72 feet. The system operated in a real working situation, pumping water to 20 meters (65.62 feet of elevation. The data were collected, from February 2005 to November 2005, by means of a computerized data collector made by Campbell Scientific Inc that made possible to acquire and store irradiance values in the panel plane, generated current and voltage, panel temperature and outflow. Through calculations, the power and

  15. Heat Pump Water Heaters and American Homes: A Good Fit?

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  16. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    Science.gov (United States)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  17. Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Lukas G.; Allen, Peter L. [Department of Mechanical Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1 (Canada)

    2010-09-15

    Most solar thermal hot water heating systems utilize a pump for circulation of the working fluid. An elegant approach to powering the pump is via solar energy. A ''solar pump'' employs a photovoltaic module, electric motor, and pump to collect and convert solar energy to circulate the working fluid. This article presents an experimental investigation of a new integrated solar pump design that employs the stator of a brushless DC motor and a magnetically coupled pump that has no dynamic seal. This design significantly reduces total volume and mass, and eliminates redundant components. The integrated design meets a hydraulic load of 1.7 bar and 1.4 litres per minute, equal to 4.0 watts, at a rotational speed of 500 revolutions per minute. The brushless DC motor and positive displacement pump achieve efficiencies of 62% and 52%, respectively, resulting in an electric to hydraulic efficiency of 32%. Thus, a readily available photovoltaic module rated 15 watts output is suitable to power the system. A variety of design variations were tested to determine the impact of the armature winding, pump size, pulse width modulation frequency, seal can material, etcetera. The physical and magnetic design was found to dominate efficiency. The efficiency characteristics of a photovoltaic module are such that over-sizing is wasteful. The integrated design presents a robust, efficient package for use as a solar pump. Although focus has been placed on application to a solar thermal collector system, variations of the design are suitable for a wide variety of applications such as remote location water pumping. (author)

  18. CNT based thermal Brownian motor to pump water in nanodevices

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Zambrano, Harvey; Walther, Jens Honore

    2016-01-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through...... Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by flxing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial...... asymmetry drive the water ow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed...

  19. Economic feasibility of large scale PV water pumping applications utilizing real field data for a case study in Jordan

    Directory of Open Access Journals (Sweden)

    Ibrahim Odeh

    2014-05-01

    Full Text Available Economic viability of photovoltaic, diesel and grid connected water pumping systems is investigated and compared for system capacities in the range 1500 m4/day to 100,000 m4/day. Actual performance data from installed systems are considered in calculating systems outputs for base case scenarios. Sensitivity analysis is carried out to generalize results for other locations and conditions. Several scenarios of the effect of variation electricity tariffs, components prices, diesel fuel prices, operation cost and interest rate on the output water unit cost (US$/1000m4  are investigated.  Breakeven points of PV pumping systems are determined at certain input parameters.

  20. 2012 International Conference on Medical Physics and Biomedical Engineering Thermal Economic Analysis on LiBr Refrigeration -Heat Pump System Applied in CCHP System

    Science.gov (United States)

    Zhang, CuiZhen; Yang, Mo; Lu, Mei; Zhu, Jiaxian; Xu, Wendong

    LiBr refrigeration cooling water contains a lot of low-temperature heat source, can use this part of the heat source heat boiler feed water. This paper introduced LiBr refrigeration - heat pump system which recovery heat of the LiBr refrigeration cooling water by heat pump system to heat the feed water of boiler. Hot economic analysis on the system has been performed based on the experimental data. Results show that LiBr refrigeration-heat pump system brings 26.6 percent decrease in primary energy rate consumption comparing with the combined heat and power production system(CHP) and separate generation of cold;

  1. Application of Air Source Heat Pump plus Solar Energy in Domestic Hot Water Preparation System%空气源热泵+太阳能在热水制备系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李超; 卢强; 郭萌; 赵勇

    2015-01-01

    This paper analyzes the commonly used heating modes and gives a detailed introduction of both air source heat pump technology and solar heating technology. Combined with the actual project, the steam heating system of hot water is changed into air source heat pump plus solar heating. By analyzing the actual enetgy consumption data, we obtain the energy -saving value, thus achieve the goal of energy efficiency.%通过对常用供热方式的分析,并对空气源热泵技术、太阳能制热技术原理的介绍,结合工程实际情况,将原蒸汽加热制热水方式改造为空气源热泵+太阳能制热。通过对实际能耗数据的经济分析,得出改造后的节能价值,达到了节约能源的目的。

  2. 空气源热泵辅助型太阳能热水系统标准的探讨%Research on Specifications of Air Source Heat Pump Assisted Domestic Solar Water Heating Systems

    Institute of Scientific and Technical Information of China (English)

    徐言生; 何钦波; 陈学锋; 李锡宇

    2013-01-01

    The Specifications of Air Source Heat Pump Assisted Domestic Solar Water Heating Systems have stipulated a certain range of variations on the mean environment temperature and the amount of solar radiation in the coefficient of performance (COP) testing of whole unit. In order to research the influence of the variations on COP, the performance testing was divided into two phases. The test of solar water heating system was performed outdoors. The test of air source heat pump heating was performed in an environmental test chamber whose temperature could be adjusted. The experimental results show that the variations in the mean environment temperature and the amount of solar radiation had a great influence on the COP of air source heat pump assisted domestic solar water heating systems. The variation of the COP of the whole unit was minor with the influence of the mean environment temperature and the amount of solar radiation on the solar water heating system performance. But the maximum change of the COP of the whole unit could reach 40%with the influence of the mean environment temperature on the air source heat pump performance. Hence, the amending advice on the testing methods and conditions of the specifications were presented.%《家用空气源热泵辅助型太阳能热水系统技术条件》中对整机综合制热性能系数(COP)试验的平均环境温度和全天太阳能辐照量给出了一定变化范围,为研究这一变化对整机综合COP的影响,将整机的性能试验分两个阶段进行,其中太阳能热水系统加热段在户外进行,空气源热泵加热段在环境温度可控的环境试验室进行。试验表明在标准规定的变化范围内,平均环境温度的变化及全天辐照量的变化对空气源热泵辅助太阳能热水系统整机综合COP有较大影响,其中因平均环境温度的变化及全天辐照量的变化对太阳能热水系统性能影响而引起整机综合COP

  3. Economics of heat pump assisted drying systems

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, V.R.; Devotta, S.; Patwardhan, V.S.

    1986-01-01

    The sensitivity of the economics of heat pump assisted dryers to various factors such as design, operational and economic variables, when payback period is adopted as the criterion, has been assessed for Indian conditions. Results have been presented in graphical form to illustrate the optimum conditions for economic viability. For the specific typical conditions and the current costs of electricity and steam in India, a heat pump assisted dryer has a payback period in the range of two to three years.

  4. Elements for Effective Management of Operating Pump and Treat Systems

    Science.gov (United States)

    This fact sheet summarizes key aspects of effective management for operating pump and treat (P&T) systems based on lessons learned from conducting optimization evaluations at 20 Superfund-financed P&T systems.

  5. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  6. Solar energy and heat pumps: evaluation of combined systems for heating and cooling of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Catan, M.A.; Le Doux, P.

    1982-09-01

    An analysis of a broad range of solar assisted heat pump systems was carried out. Systems were divided into three categories on the basis of whether ground coupling was included in the system and, if so, whether solar energy was stored in the ground or used in some other way. In the category of non-ground-coupled systems, an advanced air-source heat pump concept designed to improve capacity and coefficient of performance at low source temperatures was used as the basis for a dual source heat pump. For ground coupled systems which do not store solar heat in the ground, three options were considered: use of simple passive techniques to reduce the effective heating load; use of photovoltaics to drive the heat pump compressor; and use of active solar components as a source to the heat pump, for direct space heating, or for domestic hot water only. For systems which do store solar energy in the ground, the minimum size for efficient thermal carryover from summer to winter was determined to be a system capable of serving approx. 100 houses. Use of a fuel-fired heat pump is also an advantage in these larger systems. Economic analyses were based on a maximum allowable payback of 8 years for residential systems. For the large-scale system, a simplified 10-year life-cycle costing was employed.

  7. A review on opportunities for the development of heat pump drying systems in South Africa

    Directory of Open Access Journals (Sweden)

    Thomas Kivevele

    2014-05-01

    Full Text Available Recently, it has been discovered that heat pump drying is an efficient method of drying for drying industries. Heat pumps deliver more heat during the drying process than the work input to the compressor. Heat pump drying is a more advanced method than the traditional South African industrial and agricultural drying methods, such as direct/indirect sunlight, wood burning, fossil fuel burning, electrical heating and diesel engine heating. Heat pump dryers provide high energy efficiency with controllable temperature, air flow and air humidity and have significant energy-saving potential. In the last decade the market for heat pump systems for water heating and space cooling/heating has grown in South Africa, but the development of heat pumps for industrial and agricultural drying is very slow. As a result of high increases in fossil fuel prices and electricity in South Africa, as well as the problem of CO2 emissions, green energy, energy saving and energy efficiency are imperative. The development of heat pump drying systems in South Africa is an efficient way to solve energy problems in drying applications as this technology is still in its infancy. We review studies on heat pump drying and compare the methods therein with the most common methods of drying in South Africa.

  8. Advanced Control of Wind Electric Pumping System for Isolated Areas Application

    Directory of Open Access Journals (Sweden)

    Mohamed Barara

    2014-12-01

    Full Text Available The supply water in remote areas of windy region is one of most attractive application of wind energy conversion .This paper proposes an advanced controller suitable for wind-electric pump in isolated applications in order to have a desired debit from variation of reference speed of the pump also the control scheme of DC voltage of SIEG for feed the pump are presented under step change in wind speed. The simulation results showed a good performance of the global proposed control system.

  9. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... based on heat pump performance at distinct operatingconditions. Results show that percentage increase of operating costs is similar for thethree considered climate zones, even though the effect of maldistribution on heat pumpperformance varies with operating conditions. Differences in terms of absolute...

  10. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change...... of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best possible vapour...... compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 140 XC and temperature lifts up to 60 K...

  11. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase...... change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated based on technical and economic constraints. The HACHP working domain is compared to that of the best available...... vapour compression heat pump with natural working fluids. This shows that the HACHP increases the temperature lifts and heat supply temperatures that are feasible to produce with a heat pump. The HACHP is shown to be capable of delivering heat supply temperatures as high as 150 °C and temperature lifts...

  12. Pumped storage system model and experimental investigations on S-induced issues during transients

    Science.gov (United States)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  13. Geothermal heat pump system assisted by geothermal hot spring

    Science.gov (United States)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  14. 33 CFR 157.126 - Pumps.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  15. 水润滑电主轴迷宫密封充、抽气系统仿真分析%Simulation on Filling and Pumping System of Labyrinth Seals of Water Lubrication High Speed Spindles

    Institute of Scientific and Technical Information of China (English)

    张宏林

    2013-01-01

      设计带充、抽气系统的高速电主轴水润滑迷宫密封,利用Gambit和Fluent等计算流体动力学相关软件,采用两相流、瞬态模型模拟电主轴滑动轴承两侧迷宫密封的压气、抽水系统的内部流场;对不同时间流场的压力、速度和相图进行分析;探讨泄漏水在该系统作用下的流动行为和特点。结果表明,该非接触、动力密封系统可在最小摩擦损耗的同时,有效地抽取滑动轴承两端部泄漏的润滑用水,从而起到密封作用,为超高速电主轴滑动轴承的密封设计提供了新的设计思路。%The labyrinth seal with charge and exhaust system was designed for water lubrication high-speed electric spindle. The internal flow field of the pressure gas and pumping system of the labyrinth seal on both sides of electric spin-dle sliding bearings was simulated based on two-phase flow model and transient model by using Gambit and Fluent compu-tational fluid dynamics software. The pressure,speed and phase diagram of the flow field at different time were analyzed, and the flow behavior and characteristic of the leakage water in the system was investigated. The results show that the non-contact dynamic sealing system designed can effectively pump the water for lubrication that gives away from the two sides of sliding bearing when maintaining the minimum friction losses of the system,and thus plays a role in sealing. This research provides a new idea for the seal design of super high-speed spindle sliding bearing.

  16. Summer Indoor Heat Pump Water Heater Evaluation in a Hot-Dry Climate

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Seitzler, Matthew [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2017-05-01

    Heat pump water heaters offer a significant opportunity to improve water heating performance for the over 40% of U.S. households that heat domestic hot water using electric resistance storage water heaters. Numerous field studies have also been completed documenting performance in a variety of climates and applications. More recent evaluation efforts have focused attention on the performance of May through September 2014, with ongoing winter monitoring being sponsored by California utility partners. Summer results show favorable system performance with extrapolated annual water heating savings of 1,466 to 2,300 kWh per year, based on the observed hot water loads. Additional summer space cooling benefits savings of 121 to 135 kWh per year were projected, further increasing the water energy savings.

  17. Modeling an autonomous wind turbine electric pump system

    Directory of Open Access Journals (Sweden)

    Andreea Forcos

    2009-10-01

    Full Text Available Being one of the variable renewable energy sources, wind energy integration can be made using storage methods. All of these have been developed during time, but one might be more accessible than others because is using a free natural resource, water. This is pump storage. The purpose of this paper is modeling an autonomous wind turbine connected to an electric pump, in the aim of storage, and finally the determination of the efficiency.

  18. Water balance and irrigation water pumping of Lake Merdada for potato farming in Dieng Highland, Indonesia.

    Science.gov (United States)

    Fadlillah, Lintang N; Widyastuti, M

    2016-08-01

    Lakes provide water resources for domestic use, livestock, irrigational use, etc. Water availability of lakes can be estimated using lake water balance. Lake water balance is calculated from the water input and output of a lake. Dieng Highland has several volcanic lakes in its surroundings. Lake Merdada in Dieng Highland has been experiencing extensive water pumping for several years more than other lakes in the surrounding area. It provides irrigation water for potato farming in Dieng Highland. The hydrological model of this lake has not been studied. The modeled water balance in this research uses primary data, i.e., bathymetric data, soil texture, and outflow discharge, as well as secondary data, i.e., rainfall, temperature, Landsat 7 ETM+ band 8 image, and land use. Water balance input components consist of precipitation on the surface area, surface (direct) runoff from the catchment area, and groundwater inflow and outflow (G net), while the output components consist of evaporation, river outflow, and irrigation. It shows that groundwater is the dominant input and output of the lake. On the other hand, the actual irrigation water pumping plays the leading role as human-induced alteration of outflow discharge. The maximum irrigation pumping modeling shows that it will decrease lake storage up to 37.14 % per month and may affect the ecosystem inside the lake.

  19. Design, optimization, and deployment of a waterworks pumping station control system.

    Science.gov (United States)

    Borkowski, Dariusz; Wetula, Andrzej; Bień, Andrzej

    2012-07-01

    This article presents a summary of the development and realization of a custom control and monitoring system for a water supply facility consisting of fixed-capacity intake pumps, a reservoir tank, and variable-speed outtake pumps. Project realization included the design and building of control hardware, as well as the design and deployment of the intake pump switching algorithm. Details of the control system design with an emphasis on the pump switching algorithm are given. The stages of the system development, including process modeling, design goal formulation, optimization of control algorithm using genetic algorithms, simulation, and implementation, are presented. Finally, deployment and real-life results are shown. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  1. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  2. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  3. A Review of the Security of Insulin Pump Infusion Systems

    Science.gov (United States)

    Paul, Nathanael; Kohno, Tadayoshi; Klonoff, David C

    2011-01-01

    Insulin therapy has enabled patients with diabetes to maintain blood glucose control to lead healthier lives. Today, rather than injecting insulin manually using syringes, a patient can use a device such as an insulin pump to deliver insulin programmatically. This allows for more granular insulin delivery while attaining blood glucose control. Insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result, security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this article, we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components, which include the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues. PMID:22226278

  4. A Review of the Security of Insulin Pump Infusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klonoff, David C. [Mills-Peninsula Health Services; Paul, Nathanael R [ORNL; Kohno, Tadayoshi [University of Washington, Seattle

    2011-01-01

    Insulin therapy has enabled diabetic patients to maintain blood glucose control to lead healthier lives. Today, rather than manually injecting insulin using syringes, a patient can use a device, such as an insulin pump, to programmatically deliver insulin. This allows for more granular insulin delivery while attaining blood glucose control. The insulin pump system features have increasingly benefited patients, but the complexity of the resulting system has grown in parallel. As a result security breaches that can negatively affect patient health are now possible. Rather than focus on the security of a single device, we concentrate on protecting the security of the entire system. In this paper we describe the security issues as they pertain to an insulin pump system that includes an embedded system of components including the insulin pump, continuous glucose management system, blood glucose monitor, and other associated devices (e.g., a mobile phone or personal computer). We detail not only the growing wireless communication threat in each system component, but we also describe additional threats to the system (e.g., availability and integrity). Our goal is to help create a trustworthy infusion pump system that will ultimately strengthen pump safety, and we describe mitigating solutions to address identified security issues both for now and in the future.

  5. Water chemical evolution in Underground Pumped Storage Hydropower plants and induced consequences

    Science.gov (United States)

    Pujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain

    2017-04-01

    Underground Pumped Storage Hydropower (UPSH) using abandoned mines is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs; the upper reservoir is located at the surface or at shallow depth, while the lower reservoir is underground. These plants have potentially less constraints that the classical Pumped Storage Hydropower plants because more sites are available and impacts on landscape, land use, environment and society seem lower. Still, it is needed to consider the consequences of the groundwater exchanges occurring between the underground reservoir and surrounding porous media. Previous studies have been focused on the influence of these groundwater exchanges on the efficiency and on groundwater flow impacts. However, hydrochemical variations induced by the surface exposure of pumped water and their consequences have not been yet addressed. The objective of this work is to evaluate the hydrochemical evolution of the water in UPSH plants and its effects on the environment and on the UPSH efficiency. The problem is studied numerically by means of reactive transport modelling. Different scenarios are considered varying the chemical properties of the surrounding porous medium and groundwater. Results show that the dissolution and/or precipitation of some compounds may affect (1) the groundwater quality, and (2) the efficiency and the useful life of the used pumps and turbines of the UPSH system.

  6. Water source heat pumps for greenhouse soil cooling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spieser, H.

    1987-06-01

    In an attempt to diversify and grow flowers which are in high demand, growers are looking to produce certain exotic flowers which require unique growing conditions. One example is the Alstroemerias also knwon as the Peruvian Lily. If the plants are grown continuously at about 12-15/sup 0/C soil temperature, the plant will continue to flower regardless of air temperature and photoriod. These latter two factors are considered secondary to the importance of cool soil temperatures. Alstroemeria production is still relatively new to the greenhouse industry. Some controversy still exists as to the direct benefits of planned soil cooling. This project was set up to evaluate a mechanical soil cooling system for continuous year round Alstroemeria production. A heat pump soil cooling system was installed in two greenhouses each with dimensions of 16 m by 61 m. Combined these greenhouses have a growing area of 1952 m/sup 2/. These greenhouses are older wooden greenhouses, covered by double poly, air-inflated glazing. This system worked very well, maintaining the soil temperature at the proper levels throughout the spring and summer months. During the rest of the year the soil cooling system is used less intensely. During winter months when soil cooling is not required, the heat pumps provide base load heating to the greenhouse through fan forced unit heaters.

  7. Impact of compressors on the efficiency of a heat pump. System efficiency; Einfluss des Verdichters auf die Effizienz einer Waermepumpe. Systemeffizienz

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Stephan [Danfoss GmbH, Offenbach am Main (Germany)

    2012-03-15

    Heat pumps increasingly are becoming popular. Their operation is emission-free. Everywhere, the available power distribution system may supply compressors, pumps and fans with energy. Whether air-air, air-water or water (brine)-water heat pump - the compressor always is the core element and the largest single consumer. What should be considered in the selection and optimization of compressors in order to design the overall system as efficiently as possible?.

  8. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Directory of Open Access Journals (Sweden)

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  9. Optimal Duration of Submersible Pump Equipped Deep Water Borehole Project in Ikwuano, Nigeria

    Directory of Open Access Journals (Sweden)

    Nwankwojike, B. Nduka

    2014-12-01

    Full Text Available Optimal duration for constructing a submersible pump equipped deep water borehole in Ikwuano and optimal durations of distinct jobs in this project were determined to aid effective planning and implementation of borehole projects in this area. The investigation was conducted and analyzed using network modeling procedure. Results revealed 13days as the optimal duration of the borehole project when construction of overhead water distribution tank stantion constitutes part of the contract and 12days when the overhead structure is not involved. The optimal duration in hours for the distinct jobs involved in this borehole construction include 25.92 for site preparation/mobilization of geophysical survey team, 36 for geophysical analysis/selection of the best water yielding point in the site, 72 for mobilizing labour and materials to the selected site, 168 for constructing overhead water distribution tank stantion, 3.12 for placement of overhead tank(s on its stantion/installation of its water conveying pipes/accessories, 4.56 for casing/gravel packing/flushing materials preparation, 19.44 for well drilling, 1.92 for casing, 1.92 for gravel packing, 1.2 for flushing, 25.92 for water collection/analysis, 1.2 for water treatment, 13.44 for pumping test, 25.92 for platforming, 77.04 for pump installation/integration of water conveying systems, 4.8 for test running and 0.96 for training end users/project commission. Thus, a guide for effective planning to ensure adequate and timely implementation of deep borehole water supply projects in Ikwuano is set.

  10. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  11. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  12. Evaluation of water source heat pumps for the Juneau, Alaska Area

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  13. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-01-01

    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. CNT based thermal Brownian motor to pump water in nanodevices

    Science.gov (United States)

    Oyarzua, Elton; Zambrano, Harvey; Walther, J. H.

    2016-11-01

    Brownian molecular motors are nanoscale machines that exploit thermal fluctuations for directional motion by employing mechanisms such as the Feynman-Smoluchowski ratchet. In this study, using Non Equilibrium Molecular Dynamics, we propose a novel thermal Brownian motor for pumping water through Carbon Nanotubes (CNTs). To achieve this we impose a thermal gradient along the axis of a CNT filled with water and impose, in addition, a spatial asymmetry by fixing specific zones on the CNT in order to modify the vibrational modes of the CNT. We find that the temperature gradient and imposed spatial asymmetry drive the water flow in a preferential direction. We systematically modified the magnitude of the applied thermal gradient and the axial position of the fixed points. The analysis involves measurement of the vibrational modes in the CNTs using a Fast Fourier Transform (FFT) algorithm. We observed water flow in CNTs of 0.94, 1.4 and 2.0 nm in diameter, reaching a maximum velocity of 5 m/s for a thermal gradient of 3.3 K/nm. The proposed thermal motor is capable of delivering a continuous flow throughout a CNT, providing a useful tool for driving liquids in nanofluidic devices by exploiting thermal gradients. We aknowledge partial support from Fondecyt project 11130559.

  15. 火力发电厂水源热泵空调系统与传统空调系统的技术经济性比较%Technical and Economic Comparison between Water-Source Heat Pump Air-Conditioning System and Classical Air-Conditioning System in Fossil Fuel Power Plants

    Institute of Scientific and Technical Information of China (English)

    王明国; 毛永东; 卢柏春; 谢网度

    2013-01-01

    Water-source heat pump air-conditioning as an energy-efficient, environmentally friendly air-conditioning system is gained more attention, and has a broad development prospects. According to Huarun Lianyuan power plant project, this paper has discussed the advantages about water-source heat pump air-conditioning system through the theoretical and economic comparison. The Water source heat pump air-conditioning system has a broad application value.%  水源热泵空调作为一种高效节能,环保型的空调系统正日益受到人们的重视,有着广阔的发展前景。介绍了华润电力涟源坑口电厂工程,通过与传统空调系统的技术经济比较论述其优越性,具有推广应用的价值。

  16. 循环水泵前池水位降低对汽轮机冷端系统运行性能影响分析%Influence Analysis of Circulating Water Pump Forebay Water Lowering on the Operating Performance of Steam Turbine Cold-end System

    Institute of Scientific and Technical Information of China (English)

    田思来; 程东涛; 居文平

    2016-01-01

    Water lowering of the power station circulating water pump forebay compared to local water level influences the safety and economy of the steam turbine cold-end system.Through quantitative analysis and qualitative analysis ,the analysis of impact of water lowering of the circulating water pump forebay on the economic performance of the steam turbine cold -end system,clearly put forward decision criteria for operating safety of the steam turbine cold-end system.A set of simple and practical calculation method is developed , applied to the quantitative analysis on the problems existing in the circulating water system,at the same time provides guidance advice for the work of design and selection of circulating water system of same type.%电站循环水泵前池水位相对水源地水位下降,对汽轮机冷端系统安全性和经济性运行产生重要影响。通过定量分析和定性分析相结合,分析计算循环水泵前池水位下降对汽轮机冷端系统运行经济性的影响量,明确了对汽轮机冷端系统运行安全性影响的判定标准。形成了一套简便、实用的分析计算方法,对循环水取水系统存在的问题进行量化分析,同时为同类型循环水取水系统的设计选型工作提供了指导建议。

  17. Heating performance of a ground source heat pump system installed in a school building

    Institute of Scientific and Technical Information of China (English)

    Jaedo; SONG; Kwangho; LEE; Youngman; JEONG; Seongir; CHEONG; Jaekeun; LEE; Yujin; HWANG; Yeongho; LEE; Donghyuk; LEE

    2010-01-01

    The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.

  18. 浓缩风能型风力发电提水系统及其仿真研究%SIMULATION RESEARCH OF THE CONCENTRATED WIND TURBINE WATER PUMPING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    宋海辉; 田德

    2011-01-01

    将浓缩风能型风力发电机组应用于提水系统,设计控制系统,满足功率控制和最大风能捕获的要求,应用Matlab/Simulink建立该系统仿真模型,对风速阶跃变化情况进行仿真,证明了该系统的合理性及控制策略的可行性和正确性.%The concentrated wind turbine was used for water pumping. The control system was improved, and a fast and stable maximum power point tracking was achieved, which made the generation system capture more wind energy , and finally got the high generation efficiency. The model of this system and the proposed control strategies were realize with the engineering software, Matlab/simuink. Simulation for the case of wind change verifies the validity of the model and the feasibility of the control strategies.

  19. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  20. Hot water preparation using only a heat-pump; Warmwasserbereitung immer mit Waermepumpe

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.; Gabathuler, H. R. [Gabathuler AG, beratende Ingenieure, Diessenhofen (Switzerland); Baumgartner, T. [Th. Baumgartner und Partner AG, Duebendorf (Switzerland)

    2007-07-01

    This article discusses the use of heat-pumps to heat up domestic hot water. The authors note that previously, heat-pumps were used to provide only space heating and domestic hot water was heated up using separate electrical heating elements. The results of a research and development project that defined standard configurations for small heat-pump installations that also provide hot water are discussed. An existing installation with two heat-pumps with ground-loop heat probes and a hot water store was used for tests. Measurements made and the results obtained are presented and discussed. Six configuration variants are described and their operation examined in detail. It is concluded that heat pumps may always be used for hot water preparation despite hygiene regulations demanding hot water temperatures up to 60 {sup o}C to prevent legionella growth.

  1. Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply

    Science.gov (United States)

    Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.

    2013-01-01

    Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.

  2. 46 CFR 119.520 - Bilge pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge pumps. 119.520 Section 119.520 Shipping COAST... Ballast Systems § 119.520 Bilge pumps. (a) Each vessel must be provided with bilge pumps in accordance... have a portable hand bilge pump that must be: (1) Capable of pumping water, but not...

  3. Using a Cast Iron Hand-Pump to Teach Students About Water Resources and Resource Allocation

    Science.gov (United States)

    Mailloux, B. J.; Radloff, K. A.

    2010-12-01

    Simply turning on the tap brings safe, clean, fresh-tasting water to most Americans. Students never need to consider basic concepts about water supply, including their daily water consumption and the quality of the water required for drinking. In stark contrast, the issues of water quality and quantity play a central role in people’s daily lives in the developing world. It is difficult to convey this reality to our students through lectures alone and hands-on activities are required. In order to develop an active learning based approach, we transported a traditional cast iron hand-pump and aluminum urns from Bangladesh to the United States. The hand-pump is mounted on a cooler, which acts as a water reservoir, and is now functional and easily transportable. Using this powerful demonstration tool, we have developed an active learning module we call “How far will you walk for water?”. The goal of the module is to teach students about water quantity, water quality, and resource allocation with a focus on Arsenic and Bangladesh, but the system could be applied to other areas of concern. First the students are given a quick lecture on Arsenic, its health impacts, and the extent of contamination in Bangladesh. They are then assigned a specific well, complete with a map of their village and picture of their well and a water sample (pre-spiked with arsenic to be above or below the 10 ug/L WHO limit). Next they pump the wellhead, fill an urn, walk down the hall and back, and measure the distance walked. This is compared to the distance from their village home to their private well, to safe wells belonging to neighbors and to a community well. The students then use the Hach Arsenic test kit to test the arsenic levels in their water samples and learn if their well is safe to drink. Finally, given all this information students must determine if they should continue drinking from their well or switch to a new well, even if that means making multiple, long trips each day

  4. Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source

    Directory of Open Access Journals (Sweden)

    Ali Kahraman

    2009-08-01

    Full Text Available In this research, a water-water heat pump system using waste water as a heat source, a type that is not often used in Turkey and the World, was experimentally modeled. The experiments were performed under the conditions of simulated waste water temperature values of 20 °C, 30 °C and 40 °C. Inlet and outlet water temperatures of the evaporator and condenser, water flow rates in the evaporator and condenser circuits, pressures at the compressor inlet and outlet and power consumption of the system were measured. The heating coefficients of performance were calculated based on the measurements. It was found that the maximum temperature in the energy storage tank was about 50.6 °C. For the heat source temperatures of 20 °C, 30 °C and 40 °C, the heating coefficients of the performance of the system became 3.36, 3.43 and 3.69, respectively, 6 min. after the start time of the experiments and then they were decreased to 1.87, 1.83 and 1.77 with increasing water temperature in the condenser tank. The mean uncertainty value of the measurement parameters was found to be about ±2.47%. Finally, for the purpose of meeting hot water need as well as floor heating system requirements, it is seen that energy quality level of a waste low grade temperature heat source can be increased by using a heat pump system.

  5. Methodology for energetic diagnosis for a water pumping station; Metodologia de diagnostico energetico em estacao de captacao de agua

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Filho, Delly; Damiao, Jorge H.A. de C. [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], Emails: delly@ufv.br, jorge.damiao@ufv.br; Sampaio, Ricardo P. [Vale, Nova Lima, MG (Brazil); Moraes, Maria J. de [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil)], E-mail: maria.moraes@ufv.br; Pizziolo, Tarcisio de A. [Universidade Federal de Vicosa (DEL/UFV), MG (Brazil). Dept. de Engenharia Eletrica], E-mail: pizziolo@ufv.br

    2011-10-15

    This study aimed to develop a methodology to diagnose energetically a water supply system for a irrigation system and for a city. The steps taken were: the energy quality supplied by the utility in relation to level and unbalanced of the supplied voltage; the electrical energy consumption and demand for the pumping station; the study of the electrical and hydraulic load's characteristics; the tariff and demand contracts optimization; the water storage capacity; and the working hours management. This methodology was tested and validated for the water pumping station in a town of about 70,000 inhabitants. Among the proposed actions, which saved the most, were: the sizing of pumps and motors and the optimization of tariff and demand contracts. It was noted that this methodology is simple and easy to apply and there is a great potential for saving energy up to 52%. (author)

  6. Novel sucker rod pumping system based on linear motor technology

    Institute of Scientific and Technical Information of China (English)

    李立毅; 李立清; 吴红星; 胡余生; 邹积岩

    2004-01-01

    Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility,tremendous volume and weight in long stroke, etc. Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.

  7. Energy conservation and the reaching for the key indicator for energy efficiency performance - a case study of water pumping systems; Conservacao de energia e a busca de indicador chave de desempenho de eficiencia energetica - um estudo de caso de sistemas de bombeamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Mariotoni, Carlos Alberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: cam@fec.unicamp.br; Canada, Claudete Bezerra dos Santos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Grupo de Planejamento Energetico e Sistemas Eletricos (GPESE)]. E-mail: claudete@fec.unicamp.br

    2006-07-01

    Aiming to analyze the consumption of energy in the process of water pumping of the Treated Water Elevatory stations and the Booster, using an indicator of energy efficiency, the water deliverer of the State of Sao Paulo - SABESP, through the Electromechanical Division and Management of Electric Energy of the ML - Metropolitan East, comes developing rationalization of consumption actions of electric energy, resulting an annual average economy of US$365.510,18 . The energy efficiency indicator demonstrates the improvement of the operational performance of the electrical and hydraulic system in the EEAT of Itaquera, which presents efficiency standard and it assists the water deliverer in the process of pumping and in what refers to the sustainable development. This article revises the process followed by the water deliverer and presents the indicator of energy efficiency.

  8. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  9. Demonstration of a heat pump water heater. Volume 3. Design report

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, B.D.; Krise, R.C.; Kent, D.D.

    1979-12-01

    Work performed during the pilot run manufacturing and laboratory testing stages of a heat pump water heater for residential installations is described. A general description of the heat pump water heater is provided, as are detailed discussions of individual components. Also included is a description of the pilot run manufacturing facility and experience, laboratory operations, and laboratory test data.

  10. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  11. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    DEFF Research Database (Denmark)

    Riisgård, H. U.; Larsen, Poul Scheel

    2002-01-01

    Measurement of water pumping rates of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This short review deals with water pumping and analysis of flow, including available techniques and bio-fluid mechanical theory, in burrowing deposit...

  12. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  13. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  14. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    -life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...... that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...

  15. Optimization of the Geometrical Parameters of a Solar Bubble Pump for Absorption-Diffusion Cooling Systems

    Directory of Open Access Journals (Sweden)

    N. Dammak

    2010-01-01

    Full Text Available Problem statement: The objective of this study was to optimize the geometrical parameters of a bubble pump integrated in a solar flat plate collector. Approach: This solar bubble pump was part of an ammonia/water/helium (NH3/H2O/He absorption-diffusion cooling system. Results: An empirical model was developed on the basis of momentum, mass, material equations and energy balances. The mathematical model was solved using the simulation tool “Engineering Equation Solver (EES”. Conclusion/Recommendations: Using metrological data from Gabes (Tunisia various parameters were geometrically optimized for maximum bubble pump efficiency which was best for a bubble pump tube diameter of 6 mm, a tube length of 1.5 m, an inclination to the horizontal between 30 and 50° of the solar flat plate collector and a submergence ratio between 0.2 and 0.3.

  16. Heat-pump-centered integrated community energy systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    Heat-pump-centered integrated community energy systems (HP-ICES) are energy systems for communities which provide heating, cooling and/or other thermal energy services through the use of heat pumps. Since heat pumps primarily transfer energy from existing and otherwise probably unused sources, rather than convert it from electrical or chemical to thermal form, HP-ICES offer significant potential for energy savings. Secondary benefits of HP-ICES include reduction of adverse environmental effects as compared to conventional systems, reliable production of services in contrast to the increasingly frequent utility curtailments and interruptions, and delivery of services to consumers at costs lower than those for conventional systems (including acquisition, operation, and maintenance costs). The objective of this multiphase project is development and demonstration of HP-ICES concepts leading to one or more operational systems by the end of 1984. The results of the system development phase of the HP-ICES Project are reported. Information is presented on: central heat pump and distributed heat pump ICES; potential applications; waste heat availability; system performance and economics; environmental impacts; site requirements; component testing requirements; mathematical analysis of heat balance and cost relations; and performance and economic analyses of HP-ICES located near Seattle, Washington and San Antonio, Texas. (LCL)

  17. 地埋管地源热泵热水供应系统运行性能的影响因素%Influencing factors of operating performance of ground-source heat pump hot water supply systems

    Institute of Scientific and Technical Information of China (English)

    王成勇; 雷俊; 王雁生; 宋月贤

    2012-01-01

    建立了地埋管地源热泵热水供应系统实验平台,研究了环境温度、间歇/连续运行工况、管内循环液流速等对地埋管换热器换热能力的影响,并研究了地埋管换热器周围土壤温度场的变化.结果表明,地埋管地源热泵热水供应系统基本不受环境温度的影响;采用间歇运行,有利于提高地埋管换热器的换热能力;地埋管换热器平均单位井深换热量随管内循环液流速的增大而增大,但当流速增大到一定程度时,其增幅趋于平缓.%Establishes an experimental platform for ground-source heat pump system (GCHP) hot water supply system. Studies the influences of ambient temperature, intermittent or continuous operation mode and flow rate of circulating fluid on the heat exchange efficiency, and studies the variation of soil temperature field around ground heat exchangers. The results show that the GSHP hot water supply system is little influenced by the ambient temperature; intermittent operation mode is conducive to improving the heat exchange capacity of the ground heat exchanger; the heat flow of unit borehole depth of the ground heat exchanger increases along with the fluid flow rate until the fluid flow rate rises to a certain extent when the increasing trends became flat.

  18. Efficiency evaluation for the heat pump system in sharp continental climate

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available With the aim to calculate the energy efficient of water source heat pump system (HPSW under sharp climate conditions, the ice formation processe on the surface of evaporator pipes under conditions of “autumn-winter-spring” was studied.

  19. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  20. Procurement specification high vacuum test chamber and pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Cormick, J. E.

    1976-05-31

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown.

  1. Optimization of pumping schemes for 160-Gb/s single channel Raman amplified systems

    DEFF Research Database (Denmark)

    Xu, Lin; Rottwitt, Karsten; Peucheret, Christophe;

    2004-01-01

    Three different distributed Raman amplification schemes-backward pumping, bidirectional pumping, and second-order pumping-are evaluated numerically for 160-Gb/s single-channel transmission. The same longest transmission distance of 2500 km is achieved for all three pumping methods with a 105-km...... span composed of superlarge effective area fiber and inverse dispersion fiber. For longest system reach, second-order pumping and backward pumping have larger pump power tolerance than bidirectional pumping, while the optimal span input signal power margin of second-order pumping is the largest...

  2. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  3. Hand-pumps as reservoirs for microbial contamination of well water.

    Science.gov (United States)

    Ferguson, Andrew S; Mailloux, Brian J; Ahmed, Kazi M; van Geen, Alexander; McKay, Larry D; Culligan, Patricia J

    2011-12-01

    The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (approximately 10³ MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t₅₀ = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality.

  4. A simplified but accurate prevision method for along the sun PV pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Martire, Thierry [Laboratoire d' Electrotechnique de Montpellier (LEM), Universite de Montpellier II, CC079, Place Eugene Bataillon, F 34095 Montpellier Cedex 5 (France); Apex BP-SOLAR - 1, Rue du Grand Chene, F 34270 Saint Mathieu de Treviers (France); Glaize, Christian; Joubert, Charles [Laboratoire d' Electrotechnique de Montpellier (LEM), Universite de Montpellier II, CC079, Place Eugene Bataillon, F 34095 Montpellier Cedex 5 (France); Rouviere, Benoit [Apex BP-SOLAR - 1, Rue du Grand Chene, F 34270 Saint Mathieu de Treviers (France)

    2008-11-15

    Supplying water in desert areas or isolated sites is the perfect job for along sun pumping systems. However, due to their relatively high cost, the sizing of these systems implies the use of an accurate tool. This paper presents a method that could be used for the sizing of an along the sun pumping system based on energetic considerations, simple modeling and fitting methods. The model described allows to predict the flow rate hour per hour for a given daily solar irradiance profile. It uses a three-phase induction machine, a voltage inverter and a centrifugal pump. Some experimental results are also confronted with the calculated ones in order to show the accuracy of the model. The accuracy of the model is shown to be good and essentially depends on the precision used to model each element in the overall system. (author)

  5. Heat pump applications and water heating by means of solar collectors. Waermepumpenanwendungen und Wasserwaermung mit Sonnenkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Szokody, G.

    1990-01-15

    About 25 to 30% of all newly constructed single-family houses in Switzerland are equipped with heat pump systems. This increasing attractivity is partly due to new techniques, e.g. microprocessor control, as well as to higher component efficiencies, a more efficient heat exchange technology, and to the compactness of systems. Active solar energy conversion, i.e. by means of solar collectors, is another technique which is predominantly applied for water heating in single-family buildings. Public investments in this field are scarce. (BWI).

  6. Numerical and experimental study on heat pump water heater with PCM for thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Long, Jian-You; Zhu, Dong-Sheng [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, Academy of Chemistry and Energy, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2008-07-01

    An air source heat pump water heater with phase change material (PCM) for thermal storage was designed to take advantage of off-peak electrical energy. The heat transfer model of PCM was based upon a pure conduction formulation. Quasi-steady state method was used to calculate the temperature distribution and phase front location of PCM during thermal storage process. Temperature and thermal resistance iteration approach has been developed for the analysis of temperature variation of heat transfer fluid (HTF) and phase front location of PCM during thermal release process. To test the physical validity of the calculational results, experimental studies about storing heat and releasing heat of PCM were carried. Comparison between the calculational results and the experimental data shows good agreement. Graphical results including system pressure and input power of heat pump, time-wise variation of stored and released thermal energy of PCM were presented and discussed. (author)

  7. Hot water preparation with heat pumps; Warmwasserbereitung mit Waermepumpe. Messungen an einer Anlage in Rorschacherberg

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H.; Gabathuler, H. R. [Gabathuler AG, Beratende Ingenieure, Diessenhofen (Switzerland); Baumgartner, Th. [Th. Baumgartner and Partner AG, Duebendorf (Switzerland)

    2007-07-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of measurements made on an installation in Rorschacherberg, Switzerland. The paper examines the results obtained as a result of implementing recommendations for designing domestic hot water heating systems using heat pumps. These were published in the STASCH project on standard circuit diagrams for small-scale heat pump plants. The effectiveness of these recommendations was investigated in this project. Furthermore, optimum hydraulic circuits and control procedures were developed based on measurements made on the experimental plant in Rorschacherberg. The installation examined is described and commented on. Six configuration variants conforming to the STASCH concept are examined and operational aspects are commented on. Finally, recommendations on temperatures and operational modi are made.

  8. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  9. Comparative analytics of infusion pump data across multiple hospital systems.

    Science.gov (United States)

    Catlin, Ann Christine; Malloy, William X; Arthur, Karen J; Gaston, Cindy; Young, James; Fernando, Sudheera; Fernando, Ruchith

    2015-02-15

    A Web-based analytics system for conducting inhouse evaluations and cross-facility comparisons of alert data generated by smart infusion pumps is described. The Infusion Pump Informatics (IPI) project, a collaborative effort led by research scientists at Purdue University, was launched in 2009 to provide advanced analytics and tools for workflow analyses to assist hospitals in determining the significance of smart-pump alerts and reducing nuisance alerts. The IPI system allows facility-specific analyses of alert patterns and trends, as well as cross-facility comparisons of alert data uploaded by more than 55 participating institutions using different types of smart pumps. Tools accessible through the IPI portal include (1) charts displaying aggregated or breakout data on the top drugs associated with alerts, numbers of alerts per device or care area, and override-to-alert ratios, (2) investigative reports that can be used to characterize and analyze pump-programming errors in a variety of ways (e.g., by drug, by infusion type, by time of day), and (3) "drill-down" workflow analytics enabling users to evaluate alert patterns—both internally and in relation to patterns at other hospitals—in a quick and efficient stepwise fashion. The formation of the IPI analytics system to support a community of hospitals has been successful in providing sophisticated tools for member facilities to review, investigate, and efficiently analyze smart-pump alert data, not only within a member facility but also across other member facilities, to further enhance smart pump drug library design. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. Ground-water heat pumps: an examination of hydrogeologic, environmental, legal, and economic factors affecting their use

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, D M; Bacon, D J; Massey-Norton, J T; Miller, J D

    1980-11-12

    Groundwater is attractive as a potential low-temperature energy source in residential space-conditioning applications. When used in conjuncton with a heat pump, ground water can serve as both a heat source (for heating) and a heat sink (for cooling). Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground-water quality is considered as it affects the performance and life-expectancy of the water-side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface (usually via injection wells) is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and Federal levels. Although Federal regulations currently exist, the agencies are not equipped to regulate individual, domestic installations. Computer smulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life-cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.

  11. 核电厂电动主给水泵调速系统研究及改进%Research and Improvement of the Speed Regulation System of Motor Driven Main Feed Water Pump in Nuclear Power Plant

    Institute of Scientific and Technical Information of China (English)

    张冲; 王旭峰

    2015-01-01

    对核电厂电动主给水泵( APA)的调速系统进行了研究,并针对手动调速模式下给水泵转速调节幅度过大的工程问题进行了研究及验证. 研究及验证采用理论研究结合现场试验的方式. 理论研究主要集中在手动调速和自动调速两个可编程逻辑控制器( PLC)程序,再经过现场的实际操作进行结果验证,最终及时解决了以上问题.%The research on speed regulation system of motor driven main feed water pump in nuclear power plant is conducted, and the engineering problem of excessive adjusting amplitude for the speed in manual operating mode is researched and validated. The way of research and validation is theoretical research combining with field tests;theoretic research is mainly focused on controlling the PLC programs for manual regulation and automatic regulation of the speed, and then the results are validated through practical operation on site, finally above problem is resolved promptly.

  12. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    Science.gov (United States)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  13. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  14. Experimental performance evaluation of heat pump-based steam supply system

    Science.gov (United States)

    Kaida, T.; Sakuraba, I.; Hashimoto, K.; Hasegawa, H.

    2015-08-01

    Heat pumps have become increasingly important as a technology to reduce primary energy consumption and greenhouse effect gas emission. They are presently used mainly on residential air-conditioning and domestic hot water and are expected to spread to industrial heating processes. In 2011, Kobe Steel, Ltd. developed and commercialized two heat pump- based steam supply systems; the high efficiency steam supply system with a steam temperature of 120°C (SGH120) and the system which enables a steam temperature of 165°C (sGh165). For promoting the spread of these industrial heat pumps and enhancing the reliability of them, we investigate experimentally steam generation rate, energy efficiency and controlled performance of the SGH165 under various operating conditions on the assumption of actual different industrial processes, and evaluate technical possibilities for better performance.

  15. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  16. Energy optimization of water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  17. Guidelines for transient analysis in water transmission and distribution systems

    OpenAIRE

    Pothof, Ivo; Karney, Bryan

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent, monitor and mitigate water losses in water transmission and distribution systems. One of the causes of water losses are transient phenomena, caused by normal and accidental pump and valve operations. ...

  18. Identification of pumping influences in long-term water level fluctuations.

    Science.gov (United States)

    Harp, Dylan R; Vesselinov, Velimir V

    2011-01-01

    Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  19. 76 FR 28025 - East Maui Pumped Storage Water Supply LCC; Notice of Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-05-13

    ... Energy Regulatory Commission Project No. 14142-000 East Maui Pumped Storage Water Supply LCC; Notice of... Competing Applications On April 1, 2011, East Maui Pumped Storage Water Supply LCC filed an application for... the feasibility of the East Maui Pumped Storage Water Supply Project to be located on the Miliko...

  20. Preliminary Feasibility Study of a Hybrid Solar and Modular Pumped Storage Hydro System at Biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Lansey, Kevin [Univ. of Arizona, Tucson, AZ (United States); Hortsman, Chris [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-01

    In this study, the preliminary feasibility of a hybrid solar and modular pumped storage system designed for high energy independence at Biosphere 2 is assessed. The system consists of an array of solar PV panels that generate electricity during the day to power both Biosphere 2 and a pump that sends water through a pipe to a tank at a high elevation. When solar power is not available, the water is released back down the pipe towards a tank at a lower elevation, where it passes through a hydraulic water turbine to generate hydroelectricity to power Biosphere 2. The hybrid system is sized to generate and store enough energy to enable Biosphere 2 to operate without a grid interconnection on an average day.

  1. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  2. Installation of photovoltaic cell systems for rural residences and water pumping; Instalacao de sistemas fotovoltaicos para residencias rurais e bombeamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Tiba, Chigueru; Fraidenraich, Naum; Barbosa, Elielza M. de S.

    1999-07-01

    This document presents a text for the course on photovoltaic systems installation, elaborated under request of CEPEL (Brazilian research center for electric power) by the group of research on energy alternative sources of the Federal University of Pernambuco, Brazil. This text is being used as basic text for various countrywide courses on renewable energies.

  3. Feasibility of a TinyPump system for pediatric CPB, ECMO, and circulatory assistance: hydrodynamic performances of the modified pump housing for implantable TinyPump.

    Science.gov (United States)

    Yokoyama, Naoyuki; Suzuki, Masaaki; Hoshi, Hideo; Ohuchi, Katsuhiro; Fujimoto, Tetsuo; Takatani, Setsuo

    2007-01-01

    The TinyPump is a miniature centrifugal blood pump with an extremely small priming volume of 5 ml, allowing blood transfusion free cardiopulmonary bypass as well as extracorporeal membrane oxygenation in pediatric patients. In this study, a new pump housing with the angled inlet port (25 degrees toward impeller center with respect to the flow axis) was designed to optimize the pump displaced volume and to extend the application of the TinyPump to implantable support The fluid dynamic performance analysis revealed that the head pressure losses increased from 3 to 17 mm Hg in comparison with straight port design as the pump rotational speed increased from 2,000 to 4,000 rpm. This was probably caused by perturbed flow patterns at the site of the inlet bent port area and streamline hitting the off-center of the impeller. No significant effect on pumping efficiency was observed because of modification in inlet port design. Modification in the inflow and outflow port designs together with the drive mechanism reduces the height of the pump system, including the motor, to 27 mm yielding the displaced volume of 68 ml in comparison with 40 mm of the paracorporeal system with the displaced volume of 105 ml. Further analysis in terms of hemolytic as well as antithrombogenic performance will be carried out to finalize the housing design for the implantable version of the TinyPump.

  4. Control characteristics for heating system circulation pumps; Regelkennlinien fuer Heizungsumwaelzpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoe, C. S.; Bidstrup, N.; Bayer, M.

    2009-07-01

    This article takes a look at variable speed circulation pumps for space heating systems that are used in one and two-family housing. Although the control systems in most houses usually have just one characteristic, the need for several control characteristics in order to cope with varying needs is discussed. The basics of finding out what the control characteristic should look like in a particular case are discussed. Modern circulation pumps with integrated speed control and their interplay with thermostatic valves are examined and discussed. A new automatic adaptation algorithm is described and its way of working is explained. Experience gained in practice is examined.

  5. Ply Thickness Fiber Glass on Windmill Drive Salt Water Pump

    Science.gov (United States)

    Sifa, Agus; Badruzzaman; Suwandi, Dedi

    2016-04-01

    Factors management of salt-making processes need to be considered selection of the location and the season is very important to support the efforts of salting. Windmills owned by the farmers are still using wood materials are made each year it is not effectively done and the shape of windmills made not in accordance with the requirements without considering the wind speed and the pumping speed control influenced by the weight and size of windmill, it affects the productivity of salt. to optimize the function of windmills on pumping salt water by change the material blade on the wheel by using a material composite, composite or fiberglass are used for blades on windmills made of a material a mixture of Epoxy-Resin and Matrix E-Glass. The mechanical characteristics of the power of his blade one of determining the materials used and the thickness of the blade, which needed a strong and lightweight. The calculation result thick fiberglass with a composition of 60% fiber and 40% epoxy, at a wind speedof area salt fields 9 m/s, the drag force that occurs at 11,56 kg, then the calculation result by 0,19 mm thick with a layer of 10, the total thickness of 1,9 mm, with a density of 1760 kg/m3, mechanical character of elongated elastic modulus of 46200 MPa, modulus of transverse elasticity of 10309,6 MPa, shear modulus of 3719 MPa and Poisson ratio of 0,31, then the calculation using the finite element ABAQUS obtained critical point at the confluence of the blade to the value of Von Mises tension was happening 1,158e9 MPa maximum and minimum 2,123e5 MPa, for a maximum value of displacement occurred condition at the tip of the blade. The performance test results windmills at a wind speed of 5,5 m/s wind power shows that occur 402,42 watts and power turbines produced 44,21 watt, and TSR 0,095 and the value Cp of 0,1, test results windmill in salt fields in the beginning rotation windmill lighter, able to move above wind speed of 5.5 m/s.

  6. Operation of the counter-rotating type pump-turbine unit installed in the power stabilizing system

    Science.gov (United States)

    Kanemoto, T.; Honda, H.; Kasahara, R.; Miyaji, T.

    2014-03-01

    This serial research intends to put a unique power stabilization system with a pumped storage into practical use. The pumped storage is equipped with a counter-rotating type pump-turbine unit whose operating mode can be shifted instantaneously in response to the fluctuation of power from renewable resources. This paper verifies that the system is reasonably effective to stabilize the fluctuating power. It is necessary to quickly increase the rotational speed when the operation is shifted from the turbine to the pumping modes, because the unit cannot pump-up water from a lower reservoir at a slow rotational speed while keeping gross/geodetic head constant. The maximum hydraulic efficiency at the turbine mode is close to the efficiency of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. The system is also provided for a pilot plant to be operated in the field.

  7. Water Follies: Groundwater Pumping and the Fate of America's Fresh Waters

    Science.gov (United States)

    Glennon, R.

    2002-12-01

    The next time you open a bottle of spring water, consider that it may have come from a well that is drying up a blue-ribbon trout stream. The next time you super-size a meal at McDonald's, note that the fries are all the same length. That's because the potato farmers irrigate their fields with groundwater from wells, some adjacent to nearby rivers. The next time you purchase gold jewelry, consider that it may have come from a mine that has pumped so much groundwater to de-water the gold-bearing rock that 60 to100 years will pass before the water table recovers. The next time you water your suburban lawn, pause to reflect on what that's doing to the nearby wetland. And the next time you visit Las Vegas and flip on the light in your hotel room, consider that the electricity may have been generated by a coal-fired power plant supplied by a slurry pipeline that uses groundwater critical to springs sacred to the Hopi people. These and countless other seemingly innocuous activities reflect our individual and societal dependence on groundwater that is hydrologically connected to surface water. Hydrologists understand that ground and surface water are interconnected, but frequently the legal rules governing water distinguish between ground and surface water. This has led to groundwater pumping that has dried up many rivers, particularly in the arid West. In Arizona, many once verdant streams have become desiccated sandboxes as city, mines, and farms pumped groundwater to such an extent that surface flows were totally depleted. The problem of the impact of groundwater pumping on the environment, however, is not confined to the arid West. It is an enormous national, indeed international problem. This presentation will focus on the United States and illustrate with examples from around the country the array of environmental problems caused by excessive groundwater pumping. The locations of these case studies range from Maine to California, from Minnesota to Florida, and from

  8. Wind energy conversion systems with electric transmission to the water pumping with field control to constant flow; Sistema de conversao de energia eolica com transmissao eletrica para bombeamento de agua com controle de campo a fluxo constante

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Juraci Carlos de Castro

    1989-07-01

    The stead-state analysis of a Wind Energy Conversion Systems, consisting on a Windmill, Synchronous Generator, transmission Line and Induction Motor driving a Centrifugal Pump is developed. The performance of the system operating at variable Speed with a flux control is examined using mathematical and digital simulation. The control scheme is proposed and tested in laboratory and a tested in laboratory and a test centre to be compared with simulation results. (author)

  9. Super heat pump energy accumulation system

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-20

    The SHP is a project for which NEDO is commissioned as a part of the Moonlight Project by MITI and has developed since 1985. This report introduced mainly the practical results(trial operation study of the 100kW class bench scale plant) in 1988 fiscal year and the present situation of SHP technical development. Further, this report introduced the estimation of the effects of carbon dioxide decrease and energy saving on the global warmimg up. On the bench scale experiment, the 100kW class compressive heat pump of super high performance and a 10Mcal class high density chemical energy storing technique between higher temperature(100{sup 0}C or more) and cooler temperature(10{sup 0}C or less) were established. The energy saving effect for business, industry and cooling energy in Japan by SHP is estimated to be 205kl(oil)/year in 2000 and CO{sub 2} reducing effect is estimated to be about 820,000tons/Year. 2 refs., 4figs.

  10. System and method of detecting cavitation in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.

    2017-10-03

    A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.

  11. NUMERICAL INVESTIGATION OF FLOW PATTERNS IN DIFFERENT PUMP INTAKE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAN Jie-min; WANG Ben-cheng; YU Ling-hui; LI Yok-sheung; TANG Ling

    2012-01-01

    A 3-D numerical model for pump intake is established based on the Navier-Stokes equations with the RNG k-εturbulence model and the VOF method to simulate the free surface.The applicability of the proposed model is validated by a test case of non-symmetric pump-intake bay.The predicted locations,structures and shapes of all vortices are in good agreement with those observed in experiments,though with some differences in vorticity strengths.The flow pattern and the efficiency of five types of pump intake systems are studied.The discharge and the velocity uniformity of the intake system are used as indices to evaluate its performance.

  12. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  13. Test bench for operational investigation of photovoltaic pumping systems; Bancada de ensaio para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Alaan Ubaiara; Fedrizzi, Maria Cristina; Zilles, Roberto [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia], Emails: alaan@iee.usp.br, fedrizzi@iee.usp.br, zilles@iee.usp.br

    2006-07-01

    From the daily water demand, total head and the daily average irradiation, is possible to determine the size of the PV generator for pumping systems. However, once the equipment is acquired some tests are recommended, specially to verify its performance. One of the most relevant parameters to qualify a pumping system is the daily water delivered (m{sup 3}/day) as a function of daily solar irradiation (Wh/m{sup 2}). Facilities that fit different boundaries conditions, as for example constant total head (m) are not easily available, and just few laboratories have this capability. In this way a simple instrumentation with the capability to determine the daily performance of PV pumping systems is presented. The proposed test tools use a hydraulic circuit with two pumps, one connected to the PV system and the other to the electric grid. The total head is maintained constant by the variable speed drive connected to the grid. (author)

  14. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  15. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  16. Variable speed drives for pumps used in intensive pond culture systems

    Science.gov (United States)

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  17. 辛集市以地热弃水为热源的热泵供暖方式探讨%Heating mode of geothermal abandoned water-source heat pump system in Xinji City

    Institute of Scientific and Technical Information of China (English)

    牛利敏; 孟冲; 毛晓峰; 兰文治; 田建章; 李红艳

    2011-01-01

    Presents the application of the system to a residential quarter in Xinji. Tests the application effect and the COP of heat pump units and the heat pump system. Analyses and evaluates the energy saving property and economic efficiency of the system based on the field test data, providing reference for other similar applications.%介绍了辛集某小区地热弃水热泵供暖系统的应用情况,并对其应用效果、热泵机组的性能、热泵系统的性能进行了测试,依据测试结果对其节能性、经济性进行了分析评价,供其他地热弃水热泵供暖项目参考.

  18. Use of an Irrigation Pump System in Arthroscopic Procedures.

    Science.gov (United States)

    Hsiao, Mark S; Kusnezov, Nicholas; Sieg, Ryan N; Owens, Brett D; Herzog, Joshua P

    2016-05-01

    Since its inception, arthroscopic surgery has become widely adopted among orthopedic surgeons. It is therefore important to have an understanding of the basic principles of arthroscopy. Compared with open techniques, arthroscopic procedures are associated with smaller incisions, less structural damage, improved intra-articular visualization, less pain in the immediate postoperative period, and faster recovery for patients. Pump systems used for arthroscopic surgery have evolved over the years to provide improved intraoperative visualization. Gravity flow systems were described first and are still commonly used today. More recently, automated pump systems with pressure or dual pressure and volume control have been developed. The advantages of automated irrigation systems over gravity irrigation include a more consistent flow, a greater degree of joint distention, improved visualization especially with motorized instrumentation, decreased need for tourniquet use, a tamponade effect on bleeding, and decreased operative time. Disadvantages include the need for additional equipment with increased cost and maintenance, the initial learning curve for the surgical team, and increased risk of extra-articular fluid dissection and associated complications such as compartment syndrome. As image quality and pump systems improve, so does the list of indications including diagnostic and treatment modalities to address intra-articular pathology of the knee, shoulder, hip, wrist, elbow, and ankle joints. This article reviews the current literature and presents the history of arthroscopy, basic science of pressure and flow, types of irrigation pumps and their functions, settings, applications, and complications. [Orthopedics. 2016; 39(3):e474-e478.].

  19. Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system

    Science.gov (United States)

    Lotz, David Allen

    The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.

  20. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2010-09-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagatiom fuzzy neural network (CFNN for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  1. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  2. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Mauro De Marchis

    2016-10-01

    Full Text Available Complex systems of water distribution networks (WDS are used to supply water to users. WDSs are systems where a lot of distributed energy is available. Historically, this energy is artificially dissipated by pressure reduction valves (PRVs, thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs to produce energy in a small network located in a town close to Palermo (Italy. The main idea is to avoid dissipation in favor of renewable energy production. The proposed study is applied to a WDN typical of the Mediterranean countries, where the users, to collect water during the period of water scarcity conditions, install private tanks. The presence of private tanks deeply modifies the network from its designed condition. In the proposed analysis, the economic benefit of PATs application in water distribution networks has been investigated, accounting for the presence of users’ private tanks. The analysis, carried out by mean of a mathematical model able to dynamically simulate the water distribution network with PATs, shows the advantage of their installation in terms of renewable energy recovery, even though the energy production of PATs is strictly conditioned by their installation position.

  3. Dynamic damper pressure fluctuation in the pumping systems

    Directory of Open Access Journals (Sweden)

    O.V. Korolyov

    2016-05-01

    Full Text Available Inertial part of any devices and equipment (e.g., pumps, hung or mounted on the resilient frame and being under the influence of the disturbing force that works at a constant frequency, may be subject to fluctuations, especially near of the resonance area. For elimination these fluctuations, you can resort to the use of a dynamic damper. Aim: The aim of the work is an analytical study of various dynamic dampers to reduce pressure fluctuation problems in pumping systems. Materials and Methods: A comparative analysis of efficiency of functioning was carried out for two types of dynamic dampers - hydraulic and mechanical. Results: The technique for calculating of dynamic damper of fluid pressure fluctuations in the hydraulic and mechanical pumps is presented. Algorithms of calculations are reported to engineering applications and implemented in the production process. The calculations show that the use of dynamic mechanical dampers is expedient at high frequency pumps, and, with increasing frequency of the pump by 6 times, winning in the dimensions of the damper in 3.5 times.

  4. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  5. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  6. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Science.gov (United States)

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  7. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Directory of Open Access Journals (Sweden)

    Аlla Е. Denysova

    2015-06-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.

  8. Recirculation pump discharge line break tests at ROSA-III for a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Anoda, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Tasaka, K.

    1985-08-01

    Three loss-of-coolant accident (LOCA) tests were conducted at the Rig of Safety Assessment (ROSA)-III test facility, which simulates boiling water reactor (BWR)/6-251 with a volumetric scaling factor of 1/424. The fundamental features of the recirculation pump discharge line break LOCA and the effects of break areas on the features are investigated. It has been confirmed experimentally that the LOCA phenomena in the discharge line break are analogous to those in the suction line break with the same effective choking flow area, which is a sum of the least choking flow areas along the break flow paths and controls the system pressure responses. In general, the maximum effective choking flow area is (A /SUB j/ + A /SUB p/ ) for discharge line breaks and (A /SUB j/ + A /SUB o/ ) for suction line breaks, where A /SUB j/ , A /SUB p/ , and A /SUB o/ are the flow areas of the jet pump drive nozzles, the main recirculation pump discharge nozzle, and the break, respectively. The similarity between the ROSA-III test and a BWR LOCA has been confirmed in the key phenomena by the analyses using the RELAP5/MOD1 code. An atypical behavior is observed in the fuel rod surface temperature transient in the early phase of blowdown due to the limitation of the ROSA-III initial core power.

  9. Open-cycle vapor compression heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.E.

    1983-06-01

    Waste energy in the form of low pressure waste steam and low grade waste heat can be efficiently recovered and upgraded to high pressure steam by means of an open-cycle steam heat pump system. Thermo Electron has developed a steam heat pump system. A description of the system highlights the rotary screw compressor, the gas engine prime mover, the speed increaser, and the control system. The amount of energy saved by the system is dependent on the performance of the prime mover as well as the compressor. Energy savings of 40 to 70 percent are predicted. A demonstration system was installed at Monsanto in Indian Orchard, Massachusetts. Energy savings of over 63% compared to current steam generation efficiency is expected.

  10. Proposition of Unique Pumping System with Counter-Rotating Mechanism

    Directory of Open Access Journals (Sweden)

    Toshiaki Kanemoto

    2004-01-01

    Full Text Available Turbo-pumps have weak points, such as when the pumping operation becomes unstable in the rising portion of the head characteristics and/or the cavitation occurs under the intolerably low suction head. To overcome both weak points simultaneously, this article proposes a unique pumping system with counter-rotating mechanism, which consists of two stage impellers and a peculiar motor with double rotors. The front and the rear impellers are driven by the inner and the outer rotors of the motor, respectively, keeping the relative rotational speed constant and counter-balancing the rotational torque. Such driving conditions not only smartly improve the unstable performance at lower discharge, but also suppress the cavitation at higher discharge, in the optimum cooperation with the impeller works and the rotor outputs.

  11. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  12. Modeling a high output marine steam generator feedwater control system which uses parallel turbine-driven feed pumps

    Institute of Scientific and Technical Information of China (English)

    QIU Zhi-qiang; ZOU Hai; SUN Jian-hua

    2008-01-01

    Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps,a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel turbine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.

  13. Simulated effects of proposed ground-water pumping in 17 basins of east-central and southern Nevada

    Science.gov (United States)

    Schaefer, D.H.; Harrill, J.R.

    1995-01-01

    The Las Vegas Valley Water District filed 146 applications in 1989 to pump about 180,800 acre- ft/yr in 17 basins for use in Las Vegas Valley. A previously constructed, two-layer computer model of the carbonate-rock province area was configured to simulate transient conditions and used to develop first approximations of the possible effects of these withdrawals. Simulations were made using the phased pumping schedule proposed by the water district. Ground-water-level declines of several hundred feet could ultimately develop in the basins scheduled to supply most of the pumped ground water. Simulated declines in the carbonate-rock aquifer were somewhat larger than simulated declines in the overlying basin-fill deposits. Decreases in simulated regional spring flow were shown in several cells including those representing the Muddy River Springs, Hiko-Crystal-Ash spring area, and the Ash Meadows spring area. Model simulations show flow decreases of about 11 percent, 14 percent, and 2 percent, respectively, at these springs after almost 100 years of pumping. Simulated evapotranspiration also decreased in many basins, with the largest decreases occurring in the basins where ground-water withdrawals were greatest. These basins include Railroad, Spring, and Snake Valleys. The largest decrease in simulated evapotranspiration occurred in Railroad Valley, 64 percent after almost 100 years of pumpage. Model-sensitivity tests indicate that long-term results were relatively insensitive to variations in values used for aquifer storage. The adequacy of the model to simulate the effects of this proposed pumping will remain untested until actual pumping stresses have been in place long enough to cause measurable effects within the system.

  14. Design and Implementation of Microcontroller Based SelfSwitching Control and Protection System for Twin Pumps

    Directory of Open Access Journals (Sweden)

    Hrudaynath Yelgudkar

    2016-07-01

    Full Text Available This paper apprises reader with a unique, modular and comprehensive control system designed using embedded systems approach (microcontroller based, primarily for efficient use of twin (two or couple of pumps working simultaneously in a given environment while constantly monitoring critical parameters such as current, voltage, temperature, water level in reservoir etc. for protection purposes. Though this control system is developed for pumps, it can be seamlessly adapted for controlling similar loads. We have developed the system using ATMmega-32 microcontroller of AVR family. The critical parameters were monitored using ADC port (analogto-digital-converter port of the microcontroller. Motivation behind developing this system was to replace classical „dedicated integrated circuit‟ based control system with more intelligent, compact, programmable and upgradable system besides lowering its cost aspects, using „embedded systems‟.

  15. Stability of Hydraulic Systems with Focus on Cavitating Pumps

    OpenAIRE

    Brennen, C. E.; Braisted, D. M.

    1980-01-01

    Increasing use is being made of transmission matrices to characterize unsteady flows in hydraulic system components and to analyze the stability of such systems. This paper presents some general characteristics which should be examined in any experimentally measured transmission matrices and a methodology for the analysis of the stability of transmission matrices in hydraulic systems of order 2. These characteristics are then examined for cavitating pumps and the predicted instabilities (kn...

  16. 高校地源热泵空调及生活热水系统设计浅析——以柳州医学高等专科学校新校区为例%On Design of Geothermal Heat Pump Air Conditioner and Domestic Hot Water System

    Institute of Scientific and Technical Information of China (English)

    刘国成; 陈捷

    2012-01-01

    通过工程实例,介绍地源热泵空调及生活热水系统的设计方法及要点,并对其先进性及难点进行了总结,供类似工程设计参考。%Through project case of Liuzhou Medical College, this paper introduces design of geothermal heat pump air conditioner and domestic hot water system for reference.

  17. 东江—深圳供水工程太圆泵站计算机监控系统%The computer monitoring and controlling system of Taiyuan pumping station of Dongjiang—Shenzhen Water supply project

    Institute of Scientific and Technical Information of China (English)

    徐叶琴; 张宇; 粟海; 郭华

    2001-01-01

    结合开发太园泵站计算机监控系统工程实例,系统地研究了泵站计算机监控系统的网络结构\\,功能及主要特征.%The network structure, function and main feature of the computer monitoring and controlling system of Taiyuan Pumping Station are discused and has been applyed to the project successfully.

  18. A systematic outline of the system combination of solar thermal power plants and heat pumps; Systematische Gliederung der Systemkombination von solarthermischen Anlagen und Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Michel Y.; Frank, Elimar [Hochschule fuer Technik HSR, Rapperswil (Switzerland). SPF Inst. fuer Solartechnik; Trinkl, Christoph; Zoerner, Wilfried [Hochschule Ingolstadt (Germany). Kompetenzfeld Erneuerbare Energien

    2010-07-01

    In recent years, increasingly systems for heat supply for space heating and hot water were developed based on the combination of solar thermal systems and heat pumps up to serial production. The manufacturers or suppliers either come from the solar energy industry or from the heat pump sector and accordingly have the specific background knowledge in one of these two technologies. Thus, two different approaches for the conceptual design of system solutions are identifiable. Under this aspect, the authors of the contribution under consideration report on the actual classification in solar thermal systems and heat pumps as well as a systematic outline concept for combined solar heat pump systems.

  19. Electric power conservation while using pumping systems; Conservacion de Energia Electrica en Sistemas de Bombeo

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, P

    2007-01-15

    The pumping systems provide about 20 to 25 percent of energy which is necessary worldwide: it is fruitful to understand how to use electric power efficiently, to achieve the reduction regarding expenses a pumping system implies.It is essential to possess a better knowledge about the pumping system and its applications, in order to be able to use energy responsibly. If people do not how to operate this kind of systems properly, they will use inadequate equipment that will cause an energy waste. In addition it is important to know: alternative methods to meet variable demands, an adapted system to pump water requirements in order to ensure the pump work in its pumping point, and the life cycle system cost for the energy saving in the long term. [Spanish] En promedio del 20 al 25% de la energia necesaria en el mundo proviene de los sistemas de bombeo, por tal razon es importante saber como utilizar la energia electrica con eficiencia para asi lograr reducir los gastos que este tipo de sistemas implican. Para poder hacer un buen uso de la energia, es necesario que se tenga un conocimiento mayor del sistema de bombeo y aplicacion, ya que la ignorancia sobre esto exige el uso de aparatos que contribuyen al desperdicio de la energia; por otro lado tambien es esencial conocer metodos alternos para demandas variables, tener un sistema que se adapte a las necesidades de bombeo del agua para asegurarse de que cada bomba trabaje cerca de su punto de bombeo y finalmente conocer el costo del ciclo de vida del sistema para el ahorro de energia a largo plazo.

  20. Dynamic simulation and efficiency analysis of beam pumping system

    Institute of Scientific and Technical Information of China (English)

    邢明明; 董世民; 童志雄; 田然凤; 陈慧玲

    2015-01-01

    An improved whole model of beam pumping system was built. In the detail, for surface transmission system (STS), a new mathematical model was established considering the influence of some factors on the STS’s torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string (SRS), an improved mathematical model was built considering the influence of some parameters on the SRS’s longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system.

  1. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  2. Vein-style air pumping tube and tire system and method of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  3. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  4. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  5. Analysis and field evaluation of an advanced ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V.D. (Oak Ridge National Lab., TN (USA)); Catan, M.A. (Brookhaven National Lab., Upton, NY (USA)); Hughes, H.M. (Climate Master, Inc. (USA)); Hughes, P.J. (Fleming (W.S.) and Associates, Inc., Syracuse, NY (USA)); O' Neil, R.A. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1986-01-01

    This paper addresses the performance of a ground-coupled heat pump (GCHP) system with a water-source heat pump (WSHP) package designed expressly for such systems for a northern climate. The research objective was to minimize the life-cycle cost (LCC) of a GCHP system by optimizing the design of both the heat pump package and the ground heat exchanger in concert. The LCC of a GCHP system with a horizontal ground heat exchanger was minimized over a seven-year economic life for an 1800 ft{sup 2} (167 m{sup 2}) house in Pittsburgh, PA, USA. Simple payback for the optimized system, relative to conventional air-source heat pumps (ASHPs), was less than three years. The resulting WSHP design is calculated to cost approximately 20% more than its conventional counterpart, but offers a 20% higher heating coefficient of performance (COP) and a 23% higher cooling COP. The major conclusion of this study is that by improving the WSHP package efficiency, the ground heat exchanger size can be reduced by at least 30% without sacrificing performance; this can yield significant improvement in the cost competitiveness of GCHP systems. 10 refs., 8 figs., 8 tabs.

  6. Carbon dioxide as refrigerant for tap water heat pumps: A comparison with the traditional solution

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Luca; Corradi, Marco; Fornasieri, Ezio; Zamboni, Lorenzo [Dipartimento di Fisica Tecnica, Universita degli Studi di Padova, Via Venezia, 1 I-35131 Padova (Italy)

    2005-12-01

    Increased concern about the environmental impact of the refrigeration technology is leading toward design solutions aimed at improving the energy efficiency of the related applications, using eco-friendly refrigerants, i.e. ozone-friendly and with the least possible global warming potential (GWP). In this respect, carbon dioxide (ASHRAE R744) is seen today as one of the most promising refrigerants and is raising great interest in industrial and scientific fields. In the present work, the plant options are investigated, which are related to the design of air/water heat pumps for tap water using CO{sub 2}. A comparison is made, in terms of energy efficiency, between a system working with CO{sub 2} and a similar one working with HFC R134a; such a comparison is carried out by means of a simulation model of a refrigerating machine/heat pump, characterized by a detailed representation of the heat exchangers, based on their subdivision into elementary volumes. Results show that carbon dioxide is an interesting substitute for synthetic fluids, if the design of the system is focused to take advantage of its properties. (author)

  7. Nozzle optimization for water jet propulsion with a positive displacement pump

    Science.gov (United States)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  8. Nozzle Optimization for Water Jet Propulsion with A Positive Displacement Pump

    Institute of Scientific and Technical Information of China (English)

    杨友胜; 谢迎春; 聂松林

    2014-01-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  9. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...

  10. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  11. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  12. Heat pump centered integrated community energy systems: system development. Georgia Institute of Technology final report

    Energy Technology Data Exchange (ETDEWEB)

    Wade, D.W.; Trammell, B.C.; Dixit, B.S.; McCurry, D.C.; Rindt, B.A.

    1979-12-01

    Heat Pump Centered-Integrated Community Energy Systems (HP-ICES) show the promise of utilizing low-grade thermal energy for low-quality energy requirements such as space heating and cooling. The Heat Pump - Wastewater Heat Recovery (HP-WHR) scheme is one approach to an HP-ICES that proposes to reclaim low-grade thermal energy from a community's wastewater effluent. This report develops the concept of an HP-WHR system, evaluates the potential performance and economics of such a system, and examines the potential for application. A thermodynamic performance analysis of a hypothetical system projects an overall system Coefficient of Performance (C.O.P.) of from 2.181 to 2.264 for waste-water temperatures varying from 50/sup 0/F to 80/sup 0/F. Primary energy source savings from the nationwide implementation of this system is projected to be 6.0 QUADS-fuel oil, or 8.5 QUADS - natural gas, or 29.7 QUADS - coal for the period 1980 to 2000, depending upon the type and mix of conventional space conditioning systems which could be displaced with the HP-WHR system. Site-specific HP-WHR system designs are presented for two application communities in Georgia. Performance analyses for these systems project annual cycle system C.O.P.'s of 2.049 and 2.519. Economic analysis on the basis of a life cycle cost comparison shows one site-specific system design to be cost competitive in the immediate market with conventional residential and light commercial HVAC systems. The second site-specific system design is shown through a similar economic analysis to be more costly than conventional systems due mainly to the current low energy costs for natural gas. It is anticipated that, as energy costs escalate, this HP-WHR system will also approach the threshold of economic viability.

  13. Domestic Heating and Cooling and Hot Water Supply System Based on Heat Pumps and Solar Energy%基于热泵和太阳能的住宅供暖供冷供生活热水三联供系统研究

    Institute of Scientific and Technical Information of China (English)

    魏海翔; 梁镇杰; 梁海珍; 刘翠华

    2014-01-01

    Residential heating and cooling water supply system for combined based on heat pumps and solar is a line with the social sustainable development, energy saving and environmental protection technical measures, it is a major breakthrough in air heat pump and solar energy industries. The system DC inverter air heat pump as the core,combined with solar energy,electricity and other energy to residential heating, cooling and domestic hot water provided, focus on solving the DC inverter air heat pump to residential and efficient heating, cooling, hot for life water, and solar and other alternative energy linkage, for residential heating cooling and domestic hot water systems integration and technology and other key technology issues.%基于热泵和太阳能的住宅供暖供冷供生活热水三联供系统是一项符合社会可持续发展的,节能环保的技术措施。该系统以直流变频空气能热泵为核心,结合太阳能、电能及其他能源,向住宅供暖、供冷及提供生活热水,着重解决了直流变频空气能热泵向住宅高效供暖、供冷、供生活热水,和太阳能及其他备用能源的联动,面向住宅供暖冷及生活热水的系统集成关键技术及工艺等问题。

  14. Numerical simulation of dynamic flow characteristics in a centrifugal water pump with three-vaned diffuser

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Shuai

    2015-08-01

    Full Text Available The complex three-dimensional turbulent flow field in a centrifugal water pump with three asymmetrical diffusers was numerically simulated. The characteristics of pressure and force fluctuations inside the model pump were investigated. Fast Fourier transformation was performed to obtain the spectra of pressure and force fluctuations. It indicates that the dominant frequency of pressure fluctuations is the blade passing frequency in all the sub-domains inside the pump and the first blade passing frequency energy (first order of blade passing frequency is the most significant. The dominant frequency of pressure fluctuations at the location of diffuser outlet is featured by low frequency (less than 1 Hz, which may be due to the locally generated eddy structures. Besides, the dominant frequency force fluctuations on the impeller blades are also the blade passing frequency. The existence of the three asymmetrical diffusers has damping effect on the pressure fluctuation amplitude and energy amplitude of pressure fluctuations in the diffuser domain dramatically, which indicates that the diffusers can effectively control the hydraulically excited vibration in the pump. Besides, the prediction of the dominant frequency of pressure fluctuations inside the pump can help to utilize the pump effectively and to extend the pump life. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

  15. Parametric Study on a Horizontal Axis Wind Turbine Proposed for Water Pumping

    Directory of Open Access Journals (Sweden)

    Dr. Abdullateef A. Jadallah

    2014-01-01

    Full Text Available Water pumping is considered an economically competitive sustainable process of providing water to communities, rural areas and livestock's. A parametric analysis on HAWT is carried out to explore the influence of the performance parameters on the power generated and withdrawal quantity of water. Effect of wind speed, radius of rotor, ambient condition, well depth, and efficiencies of turbine, generator and the pump were studied and reflected in important generalized performance maps. These performance graphs are valuable in best understanding of on‐design and off‐ design constraints of the horizontal axis wind turbine in water pumping. The blade geometry was also studied. Results showed the reasonable range of wind turbine performance and the corresponding water discharge within the abovementioned constraints. Rating and the effect of pitch angle on discharged water are also presented. Methodology necessary to achieve the abovementioned results is processed by a computer program written in Matlab

  16. Vibration Analysis and Experimental Research of the Linear-Motor-Driven Water Piston Pump Used in the Naval Ship

    Directory of Open Access Journals (Sweden)

    Ye-qing Huang

    2016-01-01

    Full Text Available Aiming at the existing problems of traditional water piston pump used in the naval ship, such as low efficiency, high noise, large vibration, and nonintelligent control, a new type of linear-motor-driven water piston pump is developed and its vibration characteristics are analyzed in this research. Based on the 3D model of the structure, the simulation analyses including static stress analysis, modal analysis, and harmonic response analysis are conducted. The simulation results reveal that the mode shape under low frequency stage is mainly associated with the eccentricity swing of the piston rod. The vibration experiment results show that the resonance frequency of linear-motor-driven water piston pump is concentrated upon 500 Hz and 800 Hz in the low frequency range. The dampers can change the resonance frequency of the system to a certain extent. The vibration under triangular motion curve is much better than that of S curve, which is consistent with the simulation conclusion. This research provides an effective method to detect the vibration characteristics and a reference for design and optimization of the linear-motor-driven water piston pump.

  17. Automated Web-based Monitoring of a Pump and Treat System at the Hanford Site

    Science.gov (United States)

    Webber, W.; Versteeg, R.; Richardson, A.; Ankeny, M.; Gilmore, T.; Morse, J.; Thompson, M.

    2006-05-01

    Automated and autonomous monitoring of environmental conditions can be used to improve operational efficiency, verify remedial action decisions, and promote confidence in the monitoring process by making data and associated derived information readily accessible to regulators and stakeholders. Ultimately autonomous monitoring systems can reduce overall costs associated with regulatory compliance of performance and long- term monitoring. As part of a joint decision between DOE and the WA Department of Ecology to put on "cold standby" a pump and treat system that has been operating on the Department of Energy's Hanford site in Washington State since 1995, a web site was developed to display the automated water level network around the pump and treat system. The automated water level network consists of nineteen wells with water level transducers and temperature and conductivity probes for selected wells. Data from this network will be used to evaluate the impacts of the pump-and-treat system and the response of the aquifer to shutdown of the system. The website will provide access to data from the automated network along with additional information pertaining to the shutdown of the pump and treat system to the various stakeholders in a convenient and timely fashion. This will allow the various stakeholders to observe the impacts of the shutdown as the aquifer responds. There are future plans to expand this web-based data reporting platform to other environmental data that pertains to the various remedial actions planned at the Hanford site. The benefits of the web site application for monitoring and stewardship are: consistency of data processing and analyses with automated and on demand data and information delivery. The system and data access is password controlled and access to various data or fields can be restricted to specified users. An important feature is that the stakeholders have access to the data in near-real time providing a checks-and-balance system

  18. Including Pressure Measurements in Supervision of Energy Efficiency of Wastewater Pump Systems

    DEFF Research Database (Denmark)

    Larsen, Torben; Arensman, Mareike; Nerup-Jensen, Ole

    2016-01-01

    Wastewater pump systems decompose relatively rapidly compared to other pump systems because of the demanding properties of the pump medium. Only a systematic maintenance of the systems can prevent a significant and continuous decrease of the energy consumption per unit volume pumped (the specific...... energy). This article presents a method for a continuous supervision of the performance of both the pump and the pipeline in order to maintain the initial specific energy consumption as close as possible to the original value from when the system was commissioned. The method is based on pressure...... measurements only. The flow is determined indirectly from pressure fluctuations during pump run-up....

  19. New Electronic-Transition Laser Systems. Part 1. Electron Pumped Systems. Part 2. Chemically Pumped Systems

    Science.gov (United States)

    1976-12-01

    laser development . There has not yet been a demonstration of gain in a visible chemical laser systems, and it appears unlikely that practical lasers of this type will be developed in the near future. Substantial progress has been made

  20. System of Thermal Balance Maintenance in Modern Test Benches for Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article “Systems of the heat balance maintenance in modern test benches for centrifugal pumps” makes the case to include cooling systems of a working fluid (heat setting in test bench for impeller pumps. It briefly summarizes an experience of bench building to test centrifugal pumps, developed at the BMSTU Department E-10 over the last 10 years. The article gives the formulas and the algorithm to calculate the heat capacity of different types of impeller pumps when tested at the bench as ell as to determine the heating time of the liquid in the bench without external cooling. Based on analysis of the power balance of a centrifugal pump, it is shown that about 90% of the pump unit-consumed electric power in terminals is used for heating up the working fluid in the loop of the test bench. The article gives examples of elementary heat calculation of the pump operation within the test bench. It presents the main types of systems to maintain thermal balance, their advantages, disadvantages and possible applications. The cooling system schemes for open and closed version of the benches both with built-in and with an independent cooling circuit are analysed. The paper separately considers options of such systems for large benches using the cooling tower as a cooling device in the loop, and to test the pumps using the hydraulic fluids other than water, including those at high temperatures of working fluids; in the latter case a diagram of dual-circuit cooling system "liquid-liquid-air" is shown. The paper depicts a necessity to use ethylene glycol coolant in the two-loop cooling bench. It provides an example of combining the functions of cooling and filtration in a single cooling circuit. Criteria for effectiveness of these systems are stated. Possible ways for developing systems to maintain a thermal balance, modern methods of regulation and control are described. In particular, the paper shows the efficiency of frequency control of the

  1. Analysis of the Hydrologic Response Associated with Shutdown and Restart of the 200-ZP-1 Pump-and-Treat System

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Thorne, Paul D.

    2000-09-08

    A number of programs have been implemented on the Hanford Site that utilize the pumping and treatment of contaminated groundwater as part of their remediation strategy. Often the treated water is reinjected into the aquifer at injection well sites. The implementation of remedial pump and treat systems, however, results in hydraulic pressure responses, both areally and vertically (i.e., with depth) within the pumped aquifer. The area within the aquifer affected by the pump and treat system (i.e., radius of influence) is commonly estimated based on detecting associated water-level responses within surrounding monitor wells. Natural external stresses, such as barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These temporal barometric effects may significantly mask water-level responses within more distant wells that are only slightly affected (< 0.10 m) by the test system. External stress effects, therefore, can lead to erroneous indications of the radius of influence of the imposed pump and treat system remediation activities and can greatly diminish the ability to analyze the associated well responses for hydraulic property characterization. When these extraneous influences are significant, adjustments or removal of the barometric effects from the test-response record may be required for quantitative hydrologic assessment. This report examines possible hydrologic effects of pump and treat remediation actions and provides a detailed analysis of water-level measurements for selected 200-ZP-1 pump and treat system monitor wells during the recent Y2K shutdown (December 1999) and restart activity (January 2000). The general findings presented in this report have universal application for unconfined and confined aquifer systems.

  2. TEAMS Model for the HPGF LN2 Pump System Diagnostic Utility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The engineering design group upgraded the liquid nitrogen pump system at the HPGF. The pump system supports the site-wide liquid nitrogen supply and its operation is...

  3. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  4. A simple, low-cost method to monitor duration of ground water pumping.

    Science.gov (United States)

    Massuel, S; Perrin, J; Wajid, M; Mascre, C; Dewandel, B

    2009-01-01

    Monitoring ground water withdrawals for agriculture is a difficult task, while agricultural development leads frequently to overexploitation of the aquifers. To fix the problem, sustainable management is required based on the knowledge of water uses. This paper introduces a simple and inexpensive direct method to determine the duration of pumping of a well by measuring the temperature of its water outlet pipe. A pumping phase is characterized by a steady temperature value close to ground water temperature. The method involves recording the temperature of the outlet pipe and identifying the different stages of pumping. It is based on the use of the low-cost and small-size Thermochron iButton temperature logger and can be applied to any well, provided that a water outlet pipe is accessible. The temperature time series are analyzed to determine the duration of pumping through manual and automatic posttreatments. The method was tested and applied in South India for irrigation wells using electricity-powered pumps. The duration of pumping obtained by the iButton method is fully consistent with the duration of power supply (1.5% difference).

  5. Experimental investigation on optimal temperature lift of an inverter heat pump system

    Directory of Open Access Journals (Sweden)

    Wang Fang

    2013-01-01

    Full Text Available The temperature lift directly influences the efficiency of the heat pump, meanwhile, the coefficient of performance and the heat sink temperature lift of heat pump systems are mutually exclusive parameters, i.e., the higher temperature lift leads to the lower coefficient of performance while the lower temperature lift leads to the higher coefficient of performance. To deal with the dilemma, a primary theoretical analysis is performed, and a case study of an inverter water source heat pump is carried out, which is operated under the conditions of compressor frequency of 15-85 Hz and heat sink flow rate of 120/160/180/200 kg/h, respectively. The relationships among the temperature lift, coefficient of performance and compressor power consumption are analyzed, The results show that the optimal temperature lift mainly depends on the inlet temperature of heat sink, and has little to do with the compressor frequency and water flow rate, which are of significance for the optimal operation of heat pump systems.

  6. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  7. An Energy Saving System for a Beam Pumping Unit

    Directory of Open Access Journals (Sweden)

    Hongqiang Lv

    2016-05-01

    Full Text Available Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU based on the Internet of Things (IoT was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  8. An Energy Saving System for a Beam Pumping Unit.

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  9. Thermal efficiency improvements : a chemical heat pump system application

    Energy Technology Data Exchange (ETDEWEB)

    Mert, M.S.; Salt, I.; Bolat, E. [Yildiz Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering; Karaca, F. [Marmara Univ., Istanbul (Turkey). Dept. of Chemical Engineering

    2006-07-01

    Chemical heat pumps are used to upgrade thermal energy and provide energy storage without losses. The feasibility of an n-hexane/1-hexane/hydrogen chemical heat pump system based on the dehydrogenation of n-hexane at low temperatures and 1-hexane at high temperatures was investigated. Theoretical analysis was carried out using related thermodynamic and equilibrium data to determine the thermal efficiency of the cycle. The latent heats of vaporization at normal boiling points for n-hexane and 1-hexane were calculated using a Riedel equation. Heat capacities as a function of temperature were calculated by Missenard group contribution and Rowlinson-Bondi methods. Estimated C{sub PL} values were presented. The effect of temperature on the Standart heat of reaction was calculated. Gibbs free energy was expressed as a function of temperature. Results indicated that a high 1-hexane concentration in the liquid mixture was required. The ratio of upgraded heat to supplied heat was the key parameter for estimating the thermal coefficient of performance (COP). It was observed that the efficiency of the pump increased with an increase in low level hydrogenation pressure. It was concluded that designing a chemical heat pump involves the consideration of a variety of interacting parameters. 17 refs., 5 tabs., 3 figs.

  10. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Energy Technology Data Exchange (ETDEWEB)

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  11. 33 CFR 183.524 - Fuel pumps.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel pumps. 183.524 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.524 Fuel pumps. (a) Each diaphragm pump must not leak fuel from the pump if the primary diaphragm fails. (b) Each...

  12. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  13. Fast Water Thermo-pumping Flow Across Nanotube Membranes for Desalination.

    Science.gov (United States)

    Zhao, Kuiwen; Wu, Huiying

    2015-06-10

    Development of high-efficiency and low-cost seawater desalination technologies is critical to meet global water crisis. Here we report a fast water pumping method in which the water molecules in seawater are continuously pumped across nanotube membranes driven by a small temperature difference, opening the possibility of high-throughput small-scale desalination devices driven by low-grade thermal energy. Using molecular dynamics simulations, we show that an equivalent driving pressure of 5.3 MPa is achieved with a temperature difference of only 15 K. The remarkable water pumping ability is attributed to the asymmetric thermal fluctuation of water molecules. With this method, a 10 cm(2) nanotube membrane with 1.5 × 10(13) pores per cm(2) will produce freshwater with a flow rate of 7.77 L/h under a small temperature difference of 15 K.

  14. Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea?

    Science.gov (United States)

    Kim, T. W.; Ha, H. K.; Wåhlin, A. K.; Lee, S. H.; Kim, C. S.; Lee, J. H.; Cho, Y. K.

    2017-01-01

    Ekman pumping induced by horizontally varying wind and sea ice drift is examined as an explanation for observed seasonal variation of the warm layer thickness of circumpolar deep water on the Amundsen Sea continental shelf. Spatial and temporal variation of the warm layer thickness in one of the deep troughs on the shelf (Dotson Trough) was measured during two oceanographic surveys and a two-year mooring deployment. A hydrographic transect from the deep ocean, across the shelf break, and into the trough shows a local elevation of the warm layer at the shelf break. On the shelf, the water flows south-east along the trough, gradually becoming colder and fresher due to mixing with cold water masses. A mooring placed in the trough shows a thicker and warmer layer in February and March (late summer/early autumn) and thinner and colder layer in September, October and November (late winter/early spring). The amplitude of this seasonal variation is up to 60 m. In order to investigate the effects of Ekman pumping, remotely sensed wind (Antarctic Mesoscale Prediction System wind data) and sea ice velocity and concentration (EASE Polar Pathfinder) were used. From the estimated surface stress field, the Ekman transport and Ekman pumping were calculated. At the shelf break, where the warm layer is elevated, the Ekman pumping shows a seasonal variation correlating with the mooring data. Previous studies have not been able to show a correlation between observed wind and bottom temperature, but it is shown here that when sea ice drift is taken into account the Ekman pumping at the outer shelf correlates with bottom temperature in Dotson Trough. The reason why the Ekman pumping varies seasonally at the shelf break appears to be the migration of the ice edge in the expanding polynya in combination with the wind field which on average is westward south of the shelf break.

  15. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, Liya; Wu, Hengan; Wang, Fengchao

    2017-02-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications.

  16. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  17. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  18. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    Science.gov (United States)

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  19. Performance analysis of multi-pump Raman+EDFA hybrid amplifiers for WDM systems

    Science.gov (United States)

    Jardim Martini, Márcia M.; Pontes, Maria José; Ribeiro, Moisés. R. N.; Kalinowski, Hypolito José

    2014-08-01

    An approximated technique to optimize the gain profile of multi-pump broadband hybrid amplifiers (Raman+EDFA) under residual pump recycling is applied to a WDM system. The Optimized hybrid amplifier configurations with multi-pumping were analyzed considering different number of input channels in order to check the global gain saturation and the changes in the global gain profile that occur due to signal-pump, signal-signal, and pump-pump interactions. This work extends the optimization of the gain profile from Raman+EDFA hybrid amplifiers and studies the signal-signal interactions, signal-pumping and pumping-pumping WDM systems. Multiple input channels allowed the gain characterization of the Raman+EDFA hybrid amplifier in terms of global gain, ripple, and noise figure considering applications for WDM systems.

  20. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  1. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  2. Stationary density matrix of a pumped polariton system.

    Science.gov (United States)

    Vera, Carlos Andrés; Cabo, Alejandro; González, Augusto

    2009-03-27

    The density matrix rho of a model polariton system is obtained numerically from a master equation which takes account of pumping and losses. In the stationary limit, the coherences between eigenstates of the Hamiltonian are 3 orders of magnitude smaller than the occupations, meaning that the stationary density matrix is approximately diagonal in the energy representation. A weakly distorted grand canonical Gibbs distribution fits well the occupations.

  3. Development of advanced heat pump for commercial use. Denchukenshiki koseino heat pump no kaihatsu; Gyomuyo system no energy koritsu to keizaisei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Saikawa, Michiyuki; Iwatsubo, Tetsushiro; Hamamatsu, Teruhide.; (Central Research Inst. of Electric Power Industry, Tokyo, Japan)

    1989-10-01

    The Central Research Instotute of Electric Power Industry (CRIEPI) has been developing the CRIEPI type heat pump to achieve high efficiency. The energy saving ability and economic efficiency were evaluated for this system when the system would be applied to the medium scale hotels for which the construction figure was comparatively large. The objective hotel was a business hotel having gross floor area of 13,436m {sup 2} in which yearly cooling load, heating load and hot water supplying load were nearly equal. The system was based on a 2 stage compression type and had the thermal storing function utilizing the midnight power. The total thermal output was 660Mcal/h on the heat pump for air conditioning and hot water supplying, and the compressure input was 210kW. It was clarified that this system had higher efficiency and more energy saving ability than those of conventional heat pump systems; that the installation cost could be cleared off by the difference of 5-7 years energy cost; and that this system could compete in economic efficiency with conventional systems. 12 figs., 11 tabs.

  4. Method and system for homogenizing diode laser pump arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  5. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    Science.gov (United States)

    Kappali, M.; Udayakumar, R. Y.

    2014-07-01

    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .

  6. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented....... The focus of this paper is to improve the efficiency of this system, which is small at low power levels. The driving motorpump group of the storage system is the key point presented in this paper for efficiency improving. Two control methods, experimentally implemented for induction machine are presented...

  7. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  8. The PLC control System Design for The Laser Marking Location of Water Pump Nameplate%水泵铭牌激光打标工位PLC控制系统设计

    Institute of Scientific and Technical Information of China (English)

    董改花

    2013-01-01

    论述水泵铭牌自动化激光打标控制系统,取代人工作业方式.给出系统PLC设计的软硬件思路及设计方案,通过运行证明该系统即提高打标质量又降低了报废率,使得公司营运成本明显降低,具有一定的实用价值.%The paper provides the laser marking automation control system for the pump nameplates, to instead the original artificial control system. Meanwhile, it points out the whole system design ideas of the PLC software and hardware. And through the operation, it proves that the system not only improves the quality and reduces the marking of scrap rate, but also makes the company operation cost decreasing obviously with the great practical value.

  9. Compact Water Jet Propulsion System for a Marine Vehicle.

    Science.gov (United States)

    The invention is directed to an improved water jet propulsion system for a marine vehicle. The water jet propulsion system of the present invention...the vehicle hull and extending internally thereof, a water jet pump having an inlet end attached to the outlet end of the inlet duct, a motor for

  10. OPAL - extension for use with ventilation and pump systems; OPAL-Erweiterung mit Luefter- und Pumpensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses how an existing software tool called OPAL that supports the energy-efficient dimensioning of electrical drive systems was extended to cover pump and fan applications. According to the authors, the new version 3 allows the energy efficiency of such systems as well as the economic feasibility of many types of improvement projects to be evaluated in a fast and accurate manner. Software is described that has been designed and optimised using real world examples that can be often found in the water supply and facility management areas. These include heating-system pumps as well as ventilation and pressure-boosting applications. The practicability and benefits offered by the tool are demonstrated using several examples.

  11. OPAL - extension for use with ventilation and pump systems; OPAL-Erweiterung mit Luefter- und Pumpensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses how an existing software tool called OPAL that supports the energy-efficient dimensioning of electrical drive systems was extended to cover pump and fan applications. According to the authors, the new version 3 allows the energy efficiency of such systems as well as the economic feasibility of many types of improvement projects to be evaluated in a fast and accurate manner. Software is described that has been designed and optimised using real world examples that can be often found in the water supply and facility management areas. These include heating-system pumps as well as ventilation and pressure-boosting applications. The practicability and benefits offered by the tool are demonstrated using several examples.

  12. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  13. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load

    CSIR Research Space (South Africa)

    Sichilalu, S

    2016-10-01

    Full Text Available This paper presents an optimal energy management strategy for a grid-tied photovoltaic–wind-fuel cell hybrid power supply system. The hybrid system meets the load demand consisting of an electrical load and a heat pump water heater supplying thermal...

  14. Ultra high vacuum pumping system and high sensitivity helium leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  15. Effect of suction pipe leaning angle and water level on the internal flow of pump sump

    Science.gov (United States)

    Chen, Z.-M.; Lee, Y.-B.; Kim, K.-Y.; Park, S.-H.; Choi, Y.-D.

    2016-11-01

    The pump sump, which connects forebay and intake of pump station, supplies good flow condition for the intake of the pump. If suction sumps are improperly shaped or sized, air entraining vortices or submerged vortices may develop. This may greatly affect pump operation if vortices grow to an appreciable extent. Moreover, the noise and vibration of the pump can be increased by the remaining of vortices in the pump flow passage. Therefore, the vortices in the pump flow passage have to be reduced for a good performance of pump sump station. In this study, the effect of suction pipe leaning angle on the pump sump internal flow with different water level has been investigated by CFD analysis. Moreover, an elbow type pipe was also investigated. There are 3 leaning angles with 0°, 45° and 90° for the suction pipe. The suction pipe inlet centre is kept same for all the cases. In addition, the three different water levels of H/D=1.85, 1.54, and 1.31, is applied to different suction pipe types. The result shows that the amount of air sucked into the suction pipe increases with increasing the suction pipe leaning angle. Especially for the horizontal suction pipe, there is maximum air sucked into the suction pipe. However, there is certain effect of the elbow type bell mouth installation in the horizontal suction pipe on suppressing the amount of air sucked into the pipe. Moreover, vertical suction pipe plays an effective role on reducing the free surface vortex intake area.

  16. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other...

  17. Water Pumping Stations, wPump - collected data from As-Builts, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Board Of Commissioners.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Pumping Stations dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Hardcopy Maps information as of 2010. It is described as...

  18. Optimal Operation for Baoying Pumping Station in East Route Project of South-to-North Water Transfer

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaoli; QIU Baoyun; CAO Haihong; WEI Qianglin; TENG Haibo

    2009-01-01

    Baoying pumping station is a part of source pumping stations in East Route Project of South-to-North Water Transfer in China. Aiming at the characteristics of head varying, and making use of the function of pump adjustable blade, mathematical models of pumping station optimal operation are established and solved with genetic algorithm. For different total pumping discharge and total pumping volume of water per day, in order to minimize pumping station operation cost, the number and operation duties of running pump units are respectively determined at different periods of time in a day. The results indicate that the saving of electrical cost is significantly effected by the schemes of adjusting blade angles and time-varying electrical price when pumping certain water volume of water per day, and compared with conventional operation schemes (namely, the schemes of pumping station operation at design blade angles based on certain pumping discharge), the electrical cost is saved by 4.73%-31.27%. Also, compared with the electrical cost of conventional operation schemes, the electrical cost is saved by 2.03%-5.79% by the schemes of adjusting blade angles when pumping certain discharge.

  19. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  20. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  1. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  2. Simulation of heat-pump systems in Polysun 4 - Final report; Simulation von Waermepumpen-Systemen in Polysun 4 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Marti, J.; Witzig, A. [Vela Solaris AG, Winterthur (Switzerland); Huber, A.; Ochs, M. [Huber Energietechnik AG, Zuerich (Switzerland)

    2009-01-15

    Polysun 4 is a software program for the simulation of heating systems. The simulation kernel applies a time stepping algorithm and dynamically calculates all relevant system parameters over a one year period, based on statistical weather data. On the one hand, Polysun draws out by physics-based simulation scheme and its modularity, which allows any arrangement of the system components. On the other hand, Polysun offers a unique set of component catalogues which cover a large number of commercially available system components. In this project, three kinds of heat pumps have been integrated in Polysun, namely the air/water, water/water and brine/water heat pumps. Furthermore, the relevant heat sources have been implemented, namely ambient air, soil and groundwater. In consequence, Polysun now covers a large, and almost complete, range of renewable energy systems. Simulation parameters are the measured heat pump COP values (in accordance with EN 255 and EN 14511). A linear interpolation scheme has been developed in this project in order to simulate systems for arbitrary source and heat pump temperatures and to interpolate the power consumption. For the dynamic simulation of the ground source heat pump, the numerical algorithm from the Program EWS (calculation module developed in 1997) has been integrated into Polysun. Groundwater probes are calculated with respect to the soil temperatures. Heat pumps and probes were implemented as independent components in Polysun. In the graphical user interface, they can be arbitrarily placed and connected with other hydraulic components. The timestepping simulation calculates inlet temperature, electric power consumption and heat transfer in the entire system. The Polysun catalogs have been extended accordingly with total over 300 component entries and a number of relevant system templates. (authors)

  3. Heat pump system promises relief for asthma sufferers

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, G.

    1992-01-01

    A new energy efficient system for heating and ventilating domestic dwellings is being evaluated by E. A. Technology - a major electricity utilisation and distribution research company in the U.K. As well as providing enhanced comfort levels at lower operating costs, the use of the new heat pump system from E. A. Technology could, it is believed, prove to be an effective means of controlling the numbers and activity of the common house dust mite - one of the principal causes of asthma attacks. (author).

  4. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.

    Science.gov (United States)

    Yano, Naomine; Muramoto, Kazumasa; Shimada, Atsuhiro; Takemura, Shuhei; Baba, Junpei; Fujisawa, Hidenori; Mochizuki, Masao; Shinzawa-Itoh, Kyoko; Yamashita, Eiki; Tsukihara, Tomitake; Yoshikawa, Shinya

    2016-11-11

    Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O(+) through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3 To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg(2+) ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu(198), which bridges the Mg(2+) and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu(198)-Mg(2+) system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg(2+)-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO.

  5. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    Science.gov (United States)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the

  6. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  7. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    Science.gov (United States)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  8. Water Distribution Lines, Water distribution system details Including pumps, storage tanks, valves, and mains, Published in Not Provided, 1:600 (1in=50ft) scale, Town of Franklin.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Distribution Lines dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  9. Improvement Analysis in a Municipal Pumping System Aiming the Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Rafael Fernando Dutra

    2014-08-01

    Full Text Available With the rapid and disorderly growth that occurred in the city of Caxias do Sul - RS in the last two decades, many problems of water supply are observed in specific areas, especially in peak times and days of consumption. In order to solve the mentioned problem and focusing on energy efficiency, this study proposed two improvements in the pumping system of Santa Fe, which is responsible for supplying the northern part of Caxias do Sul. The improvements mentioned dealt with the exchange of the pumping system and the use of a frequency converter to control its speed. From the measurements made and simulations in spreadsheets and software Epanet, it was found that the two improvements are technically and economically viable, providing an estimated monthly savings of 37.7%.

  10. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  11. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.

  12. A method of applying two-pump system in automatic transmissions for energy conservation

    Directory of Open Access Journals (Sweden)

    Peng Dong

    2015-06-01

    Full Text Available In order to improve the hydraulic efficiency, modern automatic transmissions tend to apply electric oil pump in their hydraulic system. The electric oil pump can support the mechanical oil pump for cooling, lubrication, and maintaining the line pressure at low engine speeds. In addition, the start–stop function can be realized by means of the electric oil pump; thus, the fuel consumption can be further reduced. This article proposes a method of applying two-pump system (one electric oil pump and one mechanical oil pump in automatic transmissions based on the forward driving simulation. A mathematical model for calculating the transmission power loss is developed. The power loss transfers to heat which requires oil flow for cooling and lubrication. A leakage model is developed to calculate the leakage of the hydraulic system. In order to satisfy the flow requirement, a flow-based control strategy for the electric oil pump is developed. Simulation results of different driving cycles show that there is a best combination of the size of electric oil pump and the size of mechanical oil pump with respect to the optimal energy conservation. Besides, the two-pump system can also satisfy the requirement of the start–stop function. This research is extremely valuable for the forward design of a two-pump system in automatic transmissions with respect to energy conservation and start–stop function.

  13. Accuracy of a New Patch Pump Based on a Microelectromechanical System (MEMS) Compared to Other Commercially Available Insulin Pumps

    Science.gov (United States)

    Borot, Sophie; Franc, Sylvia; Cristante, Justine; Penfornis, Alfred; Benhamou, Pierre-Yves; Guerci, Bruno; Hanaire, Hélène; Renard, Eric; Reznik, Yves; Simon, Chantal

    2014-01-01

    The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo. For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h basal rates. The occlusion alarm threshold was measured after a catheter occlusion. The JP, filled with physiological serum, was then tested in 13 patients with type 1 diabetes simultaneously with their own pump for 2 days. The weight difference was used to calculate the infused insulin volume. The JP showed reduced absolute median error rate in vitro over a 15-minute observation window compared to other pumps (1 IU/h): ±1.02% (JP) vs ±1.60% (AN), ±1.66% (AC), ±2.22% (MP), and ±4.63% (OP), P pumps: 21 (19; 25) minutes vs 90 (85; 95), 58 (42; 74), and 143 (132; 218) minutes (AN, AC, MP), P pumps (–2.2 ± 5.6% vs –0.37 ± 4.0%, P = .25). The JP was found to be easier to wear than conventional pumps. The JP is more precise over a short time period, more sensitive to catheter occlusion, well accepted by patients, and consequently, of potential interest for a closed-loop insulin delivery system. PMID:25079676

  14. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure ......, and 140 bar up to 147 °C. If the compressor discharge temperature limit is increased to 250 °C and the vapour water content constraint is removed, this becomes: 182 °C, 193 °C and 223 °C....

  15. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  16. Hydrodynamic performance of distributed pump-jet propulsion system for un- derwater vehicle

    Institute of Scientific and Technical Information of China (English)

    LÜ Xiao-jun; ZHOU Qi-dou; FANG Bin

    2014-01-01

    A type of distributed pump-jet propulsion system (DPJP) is developed with two or four specially designed pump-jet pods located around the axisymmetric underwater vehicle body symmetrically. The flow field is numerically simulated by solving the RANS equations with the finite volume method. The computational method is validated by comparing the calculated hull resistances of the SUBOFF AFF-3 model and the open water performance of a ducted propeller with experimental data. The hydrodynamic performances of the DPJP with different axial or radial positions and numbers of pump-jet pods are obtained to analyze the interactions between the hull and the pump-jet pods. It is shown in the calculated results that the decrease of the distance between the pods and the hull leads to an increase both in the efficiency of the pods and the thrust deduction factor due to the effect of the stern wake. And, a negative thrust deduction factor can be obtained by locating the DPJP at the parallel middle body near the aftbody of the vehicle to improve the hydrodynamic performance of the DPJP. Besides, the increase of the number of pods will cause a remarkable decrease of the total propulsive efficiency of the DPJP with the pods mounted on the stern planes, while a small decline of the total propulsive efficiency of the DPJP is observed with the pods mounted on the parallel middle body.

  17. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  18. Reliable, Economic, Efficient CO2 Heat Pump Water Heater for North America

    Energy Technology Data Exchange (ETDEWEB)

    Radcliff, Thomas D; Sienel, Tobias; Huff, Hans-Joachim; Thompson, Adrian; Sadegh, Payman; Olsommer, Benoit; Park, Young

    2006-12-31

    Adoption of heat pump water heating technology for commercial hot water could save up to 0.4 quads of energy and 5 million metric tons of CO2 production annually in North America, but industry perception is that this technology does not offer adequate performance or reliability and comes at too high of a cost. Development and demonstration of a CO2 heat pump water heater is proposed to reduce these barriers to adoption. Three major themes are addressed: market analysis to understand barriers to adoption, use of advanced reliability models to design optimum qualification test plans, and field testing of two phases of water heater prototypes. Market experts claim that beyond good performance, market adoption requires 'drop and forget' system reliability and a six month payback of first costs. Performance, reliability and cost targets are determined and reliability models are developed to evaluate the minimum testing required to meet reliability targets. Three phase 1 prototypes are designed and installed in the field. Based on results from these trials a product specification is developed and a second phase of five field trial units are built and installed. These eight units accumulate 11 unit-years of service including 15,650 hours and 25,242 cycles of compressor operation. Performance targets can be met. An availability of 60% is achieved and the capability to achieve >90% is demonstrated, but overall reliability is below target, with an average of 3.6 failures/unit-year on the phase 2 demonstration. Most reliability issues are shown to be common to new HVAC products, giving high confidence in mature product reliability, but the need for further work to minimize leaks and ensure reliability of the electronic expansion valve is clear. First cost is projected to be above target, leading to an expectation of 8-24 month payback when substituted for an electric water heater. Despite not meeting all targets, arguments are made that an industry leader could

  19. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  20. Computer system design description for the spare pump mini-dacs data acquisition and control system

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F. Jr.

    1994-09-29

    The attached document outlines the computer software design for the mini data acquisition and control system (DACS), that supports the testing of the spare pump for Tank 241-SY-101, at the maintenance and storage facility (MASF).