WorldWideScience

Sample records for water pressure

  1. Water Pressure. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water Pressure,"…

  2. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... ment of water distribution systems based on the water balance and performance .... The first comprehensive concept of real loss components and influenc- ...... residual pressure as design criterion for South African water distri-.

  3. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  4. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  5. Chloride Ingress into Concrete under Water Pressure

    OpenAIRE

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent; Hansen, Kurt Kielsgaard

    2011-01-01

    The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 kPa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly infl...

  6. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  7. Tongue pressure patterns during water swallowing.

    Science.gov (United States)

    Kennedy, Daniel; Kieser, Jules; Bolter, Chris; Swain, Michael; Singh, Bhavia; Waddell, J Neil

    2010-03-01

    Bolus propulsion during the normal oral phase of swallowing is thought to be characterised by the sequential elevation of the front, middle, and posterior regions of the dorsum of the tongue. However, the coordinated orchestration of lingual movement is still poorly understood. This study examined how pressures generated by the tongue against the hard palate differed between three points along the midline of the tongue. Specifically, we tested three hypotheses: (1) that there are defined individual patterns of pressure change within the mouth during liquid swallowing; (2) that there are significant negative pressures generated at defined moments during normal swallowing; and, (3) that liquid swallowing is governed by the interplay of pressures generated in an anteroposterior direction in the mouth. Using a metal appliance described previously, we measured absolute pressures during water swallows in six healthy volunteers (4 male, 2 female) with an age range of 25-35 years. Participants performed three 10-ml water swallows from a small cup on five separate days, thus providing data for a total of 15 separate water swallows. There was a distinct pattern to the each of the pressure signals, and this pattern was preserved in the mean obtained when the data were pooled. Furthermore, raw signals from the same subjects presented consistent patterns at each of the five testing sessions. In all subjects, pressure at the anterior and hind palate tended to be negative relative to the preswallow value; at mid-palate, however, pressure changes were less consistent between individuals. When the pressure differences between the sites were calculated, we found that during the swallow a net negative pressure difference developed between anterior and mid-palate and a net positive pressure difference developed between mid-palate and hind palate. Large, rapid fluctuations in pressure occurred at all sites and these varied several-fold between subjects. When the brief sharp reduction

  8. Pressure-induced polyamorphism in salty water.

    Science.gov (United States)

    Bove, L E; Klotz, S; Philippe, J; Saitta, A M

    2011-03-25

    We investigated the metastable phase diagram of an ionic salt aqueous solution, LiCl:6D₂O, at high pressure and low temperature by neutron diffraction measurements and computer simulations. We show that the presence of salt triggers a stepwise transformation, under annealing at high pressure, to a new very high-density amorphous form. The transition occurs abruptly at 120 K and 2 GPa, is reversible, and is characterized by a sizeable enthalpy release. Simulations suggest that the polyamorphic transition is linked to a local structural reorganization of water molecules around the Li ions.

  9. Chloride Ingress into Concrete under Water Pressure

    DEFF Research Database (Denmark)

    Lund, Mia Schou; Sander, Lotte Braad; Grelk, Bent

    2011-01-01

    Pa (~8 atm.) is 12 times greater than at 100 kPa (~1 atm.). For w/c = 0.45 and w/c = 0.55 the chloride diffusion coefficients are 7 and 3 times greater. This means that a change in pressure highly influences the chloride ingress into the concrete and thereby the life length models for concrete structures.......The chloride ingress into concrete under water pressures of 100 kPa and 800 kPa have been investigated by experiments. The specimens were exposed to a 10% NaCl solution and water mixture. For the concrete having w/c = 0.35 the experimental results show the chloride diffusion coefficient at 800 k...

  10. Numerical simulation of high pressure water jet impacting concrete

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    High pressure water jet technology is an unconventional concrete crushing technology. In order to reveal the mechanism of high pressure water jet impacting concrete, it built a three-dimensional numerical model of high pressure water jet impacting concrete based on fluid mechanics and damage mechanics. And the numerical model was verified by theoretical analysis and experiments. Based on this model, it studied the stress characteristics in concrete under high pressure water jet impacting at different time, and quantified the damage evolution rules in concrete along the water jet radial direction. The results can provide theoretical basis and guidance for the high pressure water jet crushing concrete technology.

  11. Water Pressure Distribution on a Flying Boat Hull

    Science.gov (United States)

    Thompson, F L

    1931-01-01

    This is the third in a series of investigations of the water pressures on seaplane floats and hulls, and completes the present program. It consisted of determining the water pressures and accelerations on a Curtiss H-16 flying boat during landing and taxiing maneuvers in smooth and rough water.

  12. Experimental study on pore water pressure dissipation of mucky soil

    Institute of Scientific and Technical Information of China (English)

    Xianwei ZHANG; Changming WANG; Junxia LI; Bin WANG

    2008-01-01

    Pore water pressure has an important influence on mechanical properties of soil. The authors studied the characteristics of pore water pressure dissipating of mucky soil under consolidated-drained condition by using refitted triaxial instrument and analyzed the variation of pore pressure coefficient with consolidation pressure. The results show that the dissipating of pore water pressure behaves in different ways depends on different styles of loading. What is more, the pore water pressure coefficient of mucky soil is less than 1. As the compactness of soil increases and moisture content reduces, the value of B reduces. There is a staggered dissipating in the process of consolidation, in which it is a mutate point when U/P is 80%. It is helpful to establish the pore water pressure model and study the strength-deformation of soil in process of consolidation.

  13. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  14. Tensile Strength of Water Exposed to Pressure Pulses

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2012-01-01

    It is well known that pressurization for an extended period of time increases the tensile strength of water, but little information is available on the effect of pressure pulses of short duration. This is addressed in the present paper where we first measure the tensile strength of water...

  15. Correcting for response lag in unsteady pressure measurements in water

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.N. [John Graham Associates, Seattle, WA (United States); Ramaprian, B.R. [Washington State Univ., Pullman, WA (United States). Dept. of Mechanical and Materials Engineering

    1993-12-01

    There is not much information available on the use of diaphragm-type pressure transducers for the measurements of unsteady pressures in liquids. A procedure for measuring the dynamic response of a pressure transducer in such applications and correcting for its inadequate response is discussed in this report. An example of the successful use of this method to determine unsteady surface pressures on a pitching airfoil in a water channel is presented.

  16. Volume analysis of supercooled water under high pressure

    OpenAIRE

    Duki, Solomon F.; Tsige, Mesfin

    2016-01-01

    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  17. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several...... consumers are considered. Under mild assumptions on the consumption pattern and hydraulic resistances of pipes we use properties of the network graph and Kirchhoffs node and mesh laws to show that simple relations exist between the actuator pressure and critical point pressures inside the network....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  18. Prediction of Production Power for High-pressure Hydrogen by High-pressure Water Electrolysis

    Science.gov (United States)

    Kyakuno, Takahiro; Hattori, Kikuo; Ito, Kohei; Onda, Kazuo

    Recently the high attention for fuel cell electric vehicle (FCEV) is pushing to construct the hydrogen supplying station for FCEV in the world. The hydrogen pressure supplied at the current test station is intended to be high for increasing the FCEV’s driving distance. The water electrolysis can produce cleanly the hydrogen by utilizing the electricity from renewable energy without emitting CO2 to atmosphere, when it is compared to be the popular reforming process of fossil fuel in the industry. The power required for the high-pressure water electrolysis, where water is pumped up to high-pressure, may be smaller than the power for the atmospheric water electrolysis, where the produced atmospheric hydrogen is pumped up by compressor, since the compression power for water is much smaller than that for hydrogen gas. In this study the ideal water electrolysis voltage up to 70MPa and 523K is estimated referring to both the results by LeRoy et al up to 10MPa and 523K, and to the latest steam table. By using this high-pressure water electrolysis voltage, the power required for high-pressure hydrogen produced by the high-pressure water electrolysis method is estimated to be about 5% smaller than that by the atmospheric water electrolysis method, by assuming the compressor and pump efficiency of 50%.

  19. Evaluation of pressure transducers under turbid natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    Pressure measurements made in two turbid natural waters have led to the inference that the effective depthmean in situ density values, rho sub(eff), of these waters are less than (approx equal to 0.4%-4.5%) that of the density of the same water...

  20. Importance of pressure reducing valves (PRVs) in water supply networks.

    Science.gov (United States)

    Signoreti, R. O. S.; Camargo, R. Z.; Canno, L. M.; Pires, M. S. G.; Ribeiro, L. C. L. J.

    2016-08-01

    Challenged with the high rate of leakage from water supply systems, these managers are committed to identify control mechanisms. In order to standardize and control the pressure Pressure Reducing Valves (VRP) are installed in the supply network, shown to be more effective and provide a faster return for the actual loss control measures. It is known that the control pressure is while controlling the occurrence of leakage. Usually the network is sectored in areas defined by pressure levels according to its topography, once inserted the VRP in the same system will limit the downstream pressure. This work aims to show the importance of VRP as loss reduction for tool.

  1. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  2. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  3. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    Science.gov (United States)

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  4. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  5. Pressure-induced gelatinization of starch in excess water.

    Science.gov (United States)

    Vallons, Katleen J R; Ryan, Liam A M; Arendt, Elke K

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently high, they both induce gelatinization of starch in excess water, resulting in a transition of the native granular structure to a starch paste or gel. However, there are significant differences in the structural and rheological properties between heated and pressurized starches. These differences offer benefits with respect to new product development. However, in order to implement high-pressure technology to starch and starch-containing products, a good understanding of the mechanism of pressure-induced gelatinization is necessary. Studies that are published in this area are reviewed, and the similarities and differences between starches gelatinized by pressure and by temperature are summarized.

  6. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  7. Attenuating water hammer pressure by means of gas storage tank

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid-liquid two-phase flow, the gas storage tank, pressure-relief valves and slow-closure reverse-control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated.

  8. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-06

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage.

  9. High Pressure Cryocooling of Protein Crystals: The Enigma of Water

    Science.gov (United States)

    Gruner, Sol M.

    2010-03-01

    A novel high-pressure cryocooling technique for preparation biological samples for x-ray analysis is described. The method, high-pressure cryocooling, involves cooling samples to cryogenic temperatures (e.g., 100 K) in high-pressure Helium gas (up to 200 MPa). It bears both similarities and differences to high-pressure cooling methods that have been used to prepare samples for electron microscopy, and has been especially useful for cryocooling of macromolecular crystals for x-ray diffraction. Examples will be given where the method has been effective in providing high quality crystallographic data for difficult samples, such as cases where ligands needed to be stabilized in binding sites to be visualized, or where very high resolution data were required. The talk concludes with a discussion of data obtained by high-pressure cryocooling that pertains to two of the most important problems in modern science: the enigma of water and how water affects the activity of proteins.

  10. The phase diagram of water at negative pressures: virtual ices.

    Science.gov (United States)

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  11. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2015-01-01

    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure and ...

  12. Is high-pressure water the cradle of life?

    Energy Technology Data Exchange (ETDEWEB)

    Bassez, Marie-Paule [Universite de Strasbourg-3, Departement Chimie, 72 route du Rhin, 67400 Illkirch (France)

    2003-06-25

    Several theories have been proposed for the synthesis of prebiotic molecules. This letter shows that the structure of supercritical water, or high-pressure water, could trigger prebiotic synthesis and the origin of life deep in the oceans, in hydrothermal vent systems. Dimer geometries of high-pressure water may have a point of symmetry and a zero dipole moment. Consequently, simple apolar molecules found in submarine hydrothermal vent systems will dissolve in the apolar environment provided by the apolar form of the water dimer. Apolar water could be the medium which helps precursor molecules to concentrate and react more efficiently. The formation of prebiotic molecules could thus be linked to the structure of the water inside chimney nanochannels and cavities where hydrothermal piezochemistry and shock wave chemistry could occur. (letter to the editor)

  13. Dynamic Pressure of Seabed around Buried Pipelines in Shallow Water

    OpenAIRE

    Changjing Fu; Guoying Li; Tianlong Zhao; Donghai Guan

    2015-01-01

    Due to the obvious nonlinear effect caused by the shallow waves, the nonlinear wave loads have a great influence on the buried pipelines in shallow water. In order to ensure their stability, the forces on the pipelines that resulted from nonlinear waves should be considered thoroughly. Based on the Biot consolidation theory and the first-order approximate cnoidal wave theory, analytical solutions of the pore water pressure around the buried pipelines in shallow water caused by waves are first...

  14. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  15. Design of virtual SCADA simulation system for pressurized water reactor

    Science.gov (United States)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  16. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  17. The inner containment of an EPR trademark pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Dirk; Krumb, Christian; Wienand, Burkhard [AREVA GmbH, Offenbach (Germany)

    2014-08-15

    On February 12, 2014 the containment pressure and subsequent leak tightness tests on the containment of the Finnish Olkiluoto 3 EPR trademark reactor building were completed successfully. The containment of an EPR trademark pressurized water reactor consists of an outer containment to protect the reactor building against external hazards (such as airplane crash) and of an inner containment that is subjected to internal overpressure and high temperature in case of internal accidents. The current paper gives an overview of the containment structure, the design criteria, the validation by analyses and experiments and the containment pressure test.

  18. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  19. Methodology for surge pressure evaluation in a water injection system

    Energy Technology Data Exchange (ETDEWEB)

    Meliande, Patricia; Nascimento, Elson A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Civil; Mascarenhas, Flavio C.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Hidraulica Computacional; Dandoulakis, Joao P. [SHELL of Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Predicting transient effects, known as surge pressures, is of high importance for offshore industry. It involves detailed computer modeling that attempts to simulate the complex interaction between flow line and fluid in order to ensure efficient system integrity. Platform process operators normally raise concerns whether the water injection system is adequately designed or not to be protected against possible surge pressures during sudden valve closure. This report aims to evaluate the surge pressures in Bijupira and Salema water injection systems due to valve closure, through a computer model simulation. Comparisons among the results from empirical formulations are discussed and supplementary analysis for Salema system were performed in order to define the maximum volumetric flow rate for which the design pressure was able to withstand. Maximum surge pressure values of 287.76 bar and 318.58 bar, obtained in Salema and Bijupira respectively, using empirical formulations have surpassed the operating pressure design, while the computer model results have pointed the greatest surge pressure value of 282 bar in Salema system. (author)

  20. Nonlinear vibration of a hemispherical dome under external water pressure

    Science.gov (United States)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  1. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  2. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    Science.gov (United States)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  3. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  4. Major vascular injury from high-pressure water jet.

    Science.gov (United States)

    Harvey, R L; Ashley, D A; Yates, L; Dalton, M L; Solis, M M

    1996-01-01

    High-pressure water jets are used in industry as a cleaning and cutting tool. Penetrating injuries by these devices can produce minimal external evidence of extensive internal damage. We report a literature review and the case of a limb-threatening injury to the lower extremity caused by such a device.

  5. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  6. Pore Water Pressure Contribution to Debris Flow Mobility

    Directory of Open Access Journals (Sweden)

    Chiara Deangeli

    2009-01-01

    Full Text Available Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In particular the role of pore water pressure on debris flow mobility in both types was debated. Approach: Laboratory flume experiments were set up in order to analyze the behavior of debris flows generated by model sand slope failures. Failures were induced in sand slopes by raising the water level by seepage from a drain located at the top end of the flume, and by rainfall supplied by a set of pierced plastic pipes placed above the flume. Video recordings of the tests were performed to analyze debris flow characteristics. Results: In all the tests the sand water mixture flows were unsteady and non uniform and sand deposition along the channel bed was a relevant phenomenon. The flows were characterized by a behavioral stratification of the sand water mixture along the flow depth. Back analyzed pore water pressure were just in excess to the hydrostatic condition. The reliability of the experimental results was checked by comparison with other flume experiment data. Conclusion: Debris flow behavior was influenced by the mode of initiation, the inclination of the channel and grain size of the soils. These factors affected the attained velocities and the pore water pressure values. The mobility of debris flows was not always enhanced by high excess pore water pressure values.

  7. A Study on Development of Variable High Pressurizer Pressure Trip Function to Mitigate System Peak Pressure during Transients for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ung Soo; Park, Min Soo; Huh, Jae Young; Lee, Gyu Cheon [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    According to intensified regulation environment such as separate safety analysis for the reactor coolant system (RCS) and the main steam system peak pressure, strict consideration of a control system malfunction as a single failure for the safety analysis and so on, the safety margin with respect to system pressure of pressurized water reactors (PWRs) has been decreased. Also, the possibility for that the main steam system pressure may violate the acceptance criteria during the LOCV event has been raised and relevant design modifications for the main steam safety valve (MSSV) have ever been performed as a solution. In order to overcome this problem, in this work, the variable high pressurizer pressure trip (VHPPT) function has been developed and a feasibility study on the application of this trip function has been performed. The VHPPT function has been devised to trip the reactor beforehand when a sharply pressurizing transient such as the LOCV occurs and to cutoff system pressure increase, resulting in reducing the system peak pressure. In this work, the VHPPT function has been suggested and developed to trip the reactor beforehand and to cutoff system pressure increase mitigating the system peak pressure of PWRs when a sharply pressurizing transient like the LOCV occurs. The VHPPT function uses the rate-limited variable setpoint and includes the existing HPPT function.

  8. How water contributes to pressure and cold denaturation of proteins

    CERN Document Server

    Bianco, Valentino

    2015-01-01

    The mechanisms of cold- and pressure-denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  9. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  10. Experimental study of water effects on gas desorption during high-pressure water injection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hua; LIU Xian-xin; BI Ye-wu; PU Wen-long

    2011-01-01

    For the question of applying high-pressure water injection to increase gas extraction efficiency by increasing the permeability of water to drive gas action,an independently designed gas desorption experimental measuring device was used under the condition of external solution invasion.The law of water effect on gas desorption was obtained after water invasion through experiment for the first time.The results show that water's later invasion not only can make the quantity of gas desorption greatly reduced,but also can make gas desorption end early.Therefore,when evaluating the applications of high-pressure water injection to increase gas extraction efficiency,we should take water damaging effects on gas desorption into account.

  11. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    Energy Technology Data Exchange (ETDEWEB)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    2001-07-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 {approx} 10{sup -V} at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  12. System for water level measurement based on pressure transducer

    Science.gov (United States)

    Paczesny, Daniel; Marzecki, Michał; Woyke, Michał; Tarapata, Grzegorz

    2016-09-01

    The paper reports system for water level measurement, which is designed to be used for measuring liquid levels in the tanks of an autonomous industrial cleaning robot. The selected method of measurement utilized by the designed system is based on pressure measurement. Such system is insensitive on vibrations, foams presence and liquid impurities. The influences of variable pressure on the measurements were eliminated by utilizing the differential method and as well as the system design. The system is capable of measuring water level in tanks up to 400 mm of height with accuracy of about 2,5%. The system was tested in a container during filling and emptying with various liquids. Performed tests exhibited the linearity of the sensor characteristic and the lack of hysteresis. Obtained sensitivity of the sensor prototype was approximately 6,2 mV/mm H2O.

  13. Molecular dynamics of water at high temperatures and pressures

    Science.gov (United States)

    Brodholt, John; Wood, Bernard

    1990-09-01

    There are currently no precise P-V-T data for water at pressures above 8.9 kbars and temperatures above 900°C. Many petrological processes in the lower crust and upper mantle take place under more extreme conditions, however and petrologists commonly rely on empirical equations of state such as the modified Redlich-Kwong equation (MRK) to extrapolate the low pressure data. In this study we have taken an alternative approach and attempted to simulate the P-V-T properties of water using molecular dynamics. The TIP4P intermolecular potential for H 2O ( JORGENSEN et al., 1983) has had considerable success predicting the properties of water at low temperatures and pressures up to 10 kbar ( MADURA et al., 1988). We have extended its application by making molecular dynamics (MD) simulations at a density of 1.0 g/cc from 300 to 2300 K and 0.5 to 40 kbars. The results agree with the P-V-T data of BURNHAM et al. (1969) (up to 10 kbars) with an average error of under 2%. This is a much better concordance than is obtained with any of the currently used versions of MRK. At 300 kbars and 2000 K the MD simulations predict densities within 8% of those obtained in the shock wave experiments of KORMER (1968). This is a very good agreement given the fact that water ionizes to some extent at high pressures ( MITCHELL and NELLIS, 1982) and we have made no provisions for this effect. We conclude that molecular dynamics simulations provide the possibility of estimating P-V-T properties in the upper mantle P-T regime with very good accuracy.

  14. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    OpenAIRE

    Matjaž Leskovar; Mitja Uršič

    2016-01-01

    A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In ...

  15. Pressure measurements on a pitching airfoil in a water channel

    Science.gov (United States)

    Conger, Rand N.; Ramaprian, B. R.

    1994-01-01

    Measurements of unsteady pressures over a symmetric NACA 0015 airfoil performing pitching maneuvers are reported. The tests were performed in an open-surface water channel specially constructed for this purpose. The design of the apparatus allowed the pressure measurements to be made to a very high degree of spatial and temporal resolution. Reynolds numbers in the range of 5.2 x 10(exp 4) to 2.2 x 10(exp 5) were studied. Although the results qualitatively agreed with earlier studies performed at similar Reynolds numbers, the magnitudes of pressure and aerodynamic forces measured were observed to be much larger than those measured in ealier pitchup studies. They were found, in fact, to be closer to those obtained in some recent high-Reynolds-number experiments. This interesting behavior, which was suspected to be caused by the relatively high freestream turbulence level in the water channel, was explored in some detail. In addition, several issues like the quasisteady and dynamic effects of the pitching process are discussed. The experimental data are all archived and are available for use as a database.

  16. Satellites and solid state electronics test concrete pressure water pipelines

    Science.gov (United States)

    Fumo, John; Worthington, Will

    2000-06-01

    Like all structures, water pressure pipelines have a finite life. Pipelines will eventually begin to fail, leaving the pipeline owner to deal with the quandary: what caused this to happen, can we prevent future failures, must we replace this structure now? The causes for pipeline failure include defects and anomalies which may occur in any phase of a pipeline's life: during the engineering, the manufacture, the construction, or the operation. Failure may simply be the result of environmental conditions or old age. In the past five years, passive acoustic emission detection technology has been adapted to concrete pressure pipelines. This method of inspection is based on the caustic emissions made by the prestressed reinforcing wire as it releases its energy. A recently patented method of using this technology relies on a series of remote, independent test stations to detect, record and time-stamp these acoustic emissions. A low-powered, high- performance embedded processor system makes use of global positioning system time signals to synchronize multiple stations. These methods are re-defining the standard of care of water pressure pipelines. This paper describes pipeline failure mechanisms and a state-of-the-art data sampling system which has been developed to evaluate pipeline structural integrity.

  17. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  18. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Science.gov (United States)

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors... and operate integral pressurized water reactors (iPWR). This guidance applies to environmental reviews...

  19. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  20. Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Matjaž Leskovar

    2016-02-01

    Full Text Available A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel–coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.

  1. Culinary and pressure irrigation water system hydroelectric generation

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, Cory [Water Works Engineers, Pleasant Grove City, UT (United States)

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  2. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Matthew [Structural Integrity Associates, Inc.; Yin, Shengjun [ORNL; Stevens, Gary [U.S. Nuclear Regulatory Commission; Sommerville, Daniel [Structural Integrity Associates, Inc.; Palm, Nathan [Westinghouse Electric Company, Cranberry Township, PA; Heinecke, Carol [Westinghouse Electric Company, Cranberry Township, PA

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  3. Shielding designs for pressurized water reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Forestier, J.; Vergnaud, T.

    1986-07-01

    The efforts made by Electricite de France to reduce exposure from the two-component neutron-gamma radiation fields inside the pressurized water reactor (PWR) building are described. Most of the attention had been focused on the problem of neutron exposure relative to the problem of achieving a highly efficient confinement within the reactor cavity and the state of the art of personnel neutron dosimetry. A description of the general neutron calculation scheme that links the characteristics of the neutron fields escaping from the reactor vessel to the dose equivalent rate cartographies inside the reactor building is provided.

  4. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1980-08-01

    tests of reference steels of the NRC light water reactor, pressure vessel irradiation dosimetry program. SECURITY CLAS5IICATION 0PHiS PA6GMbn" Dfat ...multiple specimen R- curve approach; NRL emphasis was on the SSC procedure as it is being developed for hot- cell testing of irradiated materials. MULTIPLE...a second autoclave, capable of testing 50 or 100 mm (2T or 4T) thick CT or WOL specimens, was installed in a hot cell and a test was started on 2T-CT

  5. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau

    2014-10-01

    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  6. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  7. Intra-abdominal pressure correlates with extracellular water content.

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    Full Text Available Secondary increase in intra-abdominal pressure (IAP may result from extra-abdominal pathology, such as massive fluid resuscitation, capillary leak or sepsis. All these conditions increase the extravascular water content. The aim of this study was to analyze the relationship between IAP and body water volume.Adult patients treated for sepsis or septic shock with acute kidney injury (AKI and patients undergoing elective pharyngolaryngeal or orthopedic surgery were enrolled. IAP was measured in the urinary bladder. Total body water (TBW, extracellular water content (ECW and volume excess (VE were measured by whole body bioimpedance. Among critically ill patients, all parameters were analyzed over three consecutive days, and parameters were evaluated perioperatively in surgical patients.One hundred twenty patients were studied. Taken together, the correlations between IAP and VE, TBW, and ECW were measured at 408 time points. In all participants, IAP strongly correlated with ECW and VE. In critically ill patients, IAP correlated with ECW and VE. In surgical patients, IAP correlated with ECW and TBW. IAP strongly correlated with ECW and VE in the mixed population. IAP also correlated with VE in critically ill patients. ROC curve analysis showed that ECW and VE might be discriminative parameters of risk for increased IAP.IAP strongly correlates with ECW.

  8. The Interface Conditions for Pressures at Oil-water Flood Front in the Porous Media Considering Capillary Pressure

    CERN Document Server

    Peng, Xiaolong; Du, Zhimin

    2016-01-01

    Flood front is the jump interface where fluids distribute discontinuously, whose interface condition is the theoretical basis of a mathematical model of the multiphase flow in porous medium. The conventional interface condition at the jump interface is expressed as the continuous Darcy velocity and fluid pressure (named CPVCM). This paper has inspected it via the studying the water-oil displacement in one dimensional reservoir with considering capillary pressure but ignoring the compressibility and gravity. It is proved theoretically that the total Darcy velocity and total pressure (defined by Antoncev etc.), instead of the Darcy velocities and pressures of water and oil, are continuous at the flood front without considering the compressibility of fluid and porous media. After that, new interface conditions for the pressures and Darcy velocity of each fluid are established, which are collectively named as Jump Pressures and Velocities Conditions Model (JPVCM) because the model has shown the jump pressures and...

  9. The condensation of steam from steam-water mixture on water jets at high pressure

    Science.gov (United States)

    Somova, E. V.; Kisina, V. I.; Shvarts, A. L.; Kolbasnikov, A. V.; Kanishchev, V. P.

    2009-01-01

    A physical model for condensation of steam in water flow at high pressure is developed, and analytical dependences for calculating heat transfer are obtained, in particular as applied to the operation of a direct-contact feedwater heater for a new-generation reactor plant with lead coolant.

  10. A Test Model of Water Pressures within a Fault in Rock Slope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence.

  11. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  12. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    Energy Technology Data Exchange (ETDEWEB)

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  13. Upper internals arrangement for a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Norman R; Altman, David A; Yu, Ching; Rex, James A; Forsyth, David R

    2013-07-09

    In a pressurized water reactor with all of the in-core instrumentation gaining access to the core through the reactor head, each fuel assembly in which the instrumentation is introduced is aligned with an upper internals instrumentation guide-way. In the elevations above the upper internals upper support assembly, the instrumentation is protected and aligned by upper mounted instrumentation columns that are part of the instrumentation guide-way and extend from the upper support assembly towards the reactor head in hue with a corresponding head penetration. The upper mounted instrumentation columns are supported laterally at one end by an upper guide tube and at the other end by the upper support plate.

  14. Experimental study of critical flow of water at supercritical pressure

    Institute of Scientific and Technical Information of China (English)

    Yuzhou CHEN; Chunsheng YANG; Shuming ZHANG; Minfu ZHAO; Kaiwen DU; Xu CHENG

    2009-01-01

    Experimental studies of the critical flow of water were conducted under steady-state conditions with a nozzle 1.41mm in diameter and 4.35 mm in length, covering the inlet pressure range of 22.1-26.8 MPa and inlet temperature range of 38^74°C. The parametric trend of the flow rate was investigated, and the experimental data were compared with the predictions of the homogeneous equilibrium model, the Bernoulli correlation, and the models used in the reactor safety analysis code RELAP5/ MOD3.3. It is concluded that in the near or beyond pseudo-critical region, thermal-dynamic equilibrium is dominant, and at a lower temperature, choking does not occur. The onset of the choking condition is not predicted reasonably by the RELAP5 code.

  15. Aging assessment of PWR (Pressurized Water Reactor) Auxiliary Feedwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab.

  16. Major influencing factors of water flooding in abnormally high-pressure carbonate reservoir

    Science.gov (United States)

    Qingying, Hou; Kaiyuan, Chen; Zifei, Fan; Libing, Fu; Yefei, Chen

    2017-01-01

    The higher pressure coefficient is the major characteristics of the abnormal high pressure carbonate reservoirs, which the pressure coefficient generally exceeds 1.2 and the initial formation pressure is higher than normal sandstone reservoirs. Due to the large pressure difference between initial formation and saturated pressure, oil wells are capable to production with high flow rate by the natural energy at early production stage. When the formation pressure drops to the saturation pressure, the water or gas is usually injected to stabilize the well productivity and sustain the formation pressure. Based on the characteristics of Kenkiak oilfield, a typical abnormal high pressure carbonate reservoir, a well group model is designed to simulate and analyze the influence factors on water flooding. The conclusion is that permeability, interlayer difference and reserve abundance are the main three factors on the water flooding development in these reservoirs.

  17. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Poznań, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was

  18. Reducing energy consumption and leakage by active pressure control in a water supply system

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2013-01-01

    WTP Gruszczyn supplies drinking water to a part of the city of Poznań, in the Midwest of Poland. For the optimal automatic pressure control of the clear water pumping station, nine pressure measuring points were installed in the distribution network, and an active pressure control model was develope

  19. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  20. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Institute of Scientific and Technical Information of China (English)

    Yong-liang ZHANG; Ming-fei MIAO; Ji-ming MA

    2010-01-01

    This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock,and a valve positioned at the downstream end of the penstock.Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure.The analytical results were then compared with numerical ones obtained using the method of characteristics.There is agreement between them.The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  1. Analytical study on water hammer pressure in pressurized conduits with a throttled surge chamber for slow closure

    Directory of Open Access Journals (Sweden)

    Yong-liang ZHANG

    2010-06-01

    Full Text Available This paper presents an analytical investigation of water hammer in a hydraulic pressurized pipe system with a throttled surge chamber located at the junction between a tunnel and a penstock, and a valve positioned at the downstream end of the penstock. Analytical formulas of maximum water hammer pressures at the downstream end of the tunnel and the valve were derived for a system subjected to linear and slow valve closure. The analytical results were then compared with numerical ones obtained using the method of characteristics. There is agreement between them. The formulas can be applied to estimating water hammer pressure at the valve and transmission of water hammer pressure through the surge chamber at the junction for a hydraulic pipe system with a surge chamber.

  2. Simulations of dissociation constants in low pressure supercritical water

    Science.gov (United States)

    Halstead, S. J.; An, P.; Zhang, S.

    2014-09-01

    This article reports molecular dynamics simulations of the dissociation of hydrochloric acid and sodium hydroxide in water from ambient to supercritical temperatures at a fixed pressure of 250 atm. Corrosion of reaction vessels is known to be a serious problem of supercritical water, and acid/base dissociation can be a significant contributing factor to this. The SPC/e model was used in conjunction with solute models determined from density functional calculations and OPLSAA Lennard-Jones parameters. Radial distribution functions were calculated, and these show a significant increase in solute-solvent ordering upon forming the product ions at all temperatures. For both dissociations, rapidly decreasing entropy of reaction was found to be the controlling thermodynamic factor, and this is thought to arise due to the ions produced from dissociation maintaining a relatively high density and ordered solvation shell compared to the reactants. The change in entropy of reaction reaches a minimum at the critical temperature. The values of pKa and pKb were calculated and both increased with temperature, in qualitative agreement with other work, until a maximum value at 748 K, after which there was a slight decrease.

  3. An Analytic Solution to Well-water Level Changes under Barometric Pressure

    Institute of Scientific and Technical Information of China (English)

    Liu Chunping; Deng Liang; Liao Xin; Wan Fei; Shi Yun

    2011-01-01

    Under barometric pressure, groundwater flow in well-aquifer systems is a kind of hydromechanical coupling problem. Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under

  4. Piston slap induced pressure fluctuation in the water coolant passage of an internal combustion engine

    Science.gov (United States)

    Ohta, Kazuhide; Wang, Xiaoyu; Saeki, Atsushi

    2016-02-01

    Liner cavitation is caused by water pressure fluctuation in the water coolant passage (WCP). When the negative pressure falls below the saturated vapor pressure, the impulsive pressure following the implosion of cavitation bubbles causes cavitation erosion of the wet cylinder liner surface. The present work establishes a numerical model for structural-acoustic coupling between the crankcase and the acoustic field in the WCP considering their dynamic characteristics. The coupling effect is evaluated through mutual interaction terms that are calculated from the mode shapes of the acoustic field and of the crankcase vibration on the boundary. Water pressure fluctuations in the WCP under the action of piston slap forces are predicted and the contributions of the uncoupled mode shapes of the crankcase and the acoustic field to the pressure waveform are analyzed. The influence of sound speed variations on the water pressure response is discussed, as well as the pressure on the thrust sides of the four cylinders.

  5. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    Science.gov (United States)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  6. A case of quinsy following high-pressure water jet injury.

    Science.gov (United States)

    Fitzgerald, C; Oosthuizen, J C; O'Dwyer, T

    2014-06-01

    High-pressure water injuries of the oropharynx are uncommon but can cause significant injury and airway compromise when they occur. A small number of cases of high-pressure water injury of the oropharynx have been presented in the literature, detailing a range of effects and outcomes. We describe the first reported case of high-pressure water injury of the oropharynx associated with peritonsillar abscess (quinsy) requiring surgical drainage.

  7. Parameter-less remote real-time control for the adjustment of pressure in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-09-01

    Full Text Available Reducing pressure in a water distribution system leads to a decrease in water leakage, decreased cracks in pipes, and consumption decreases. Pressure management includes an advanced type called remote real-time control. Here pressure control valves...

  8. Influence of temperature and pressure on quartz-water-CO₂ contact angle and CO₂-water interfacial tension.

    Science.gov (United States)

    Sarmadivaleh, Mohammad; Al-Yaseri, Ahmed Z; Iglauer, Stefan

    2015-03-01

    We measured water-CO2 contact angles on a smooth quartz surface (RMS surface roughness ∼40 nm) as a function of pressure and temperature. The advancing water contact angle θ was 0° at 0.1 MPa CO2 pressure and all temperatures tested (296-343 K); θ increased significantly with increasing pressure and temperature (θ=35° at 296 K and θ=56° at 343 K at 20 MPa). A larger θ implies less structural and residual trapping and thus lower CO2 storage capacities at higher pressures and temperatures. Furthermore we did not identify any significant influence of CO2-water equilibration on θ. Moreover, we measured the CO2-water interfacial tension γ and found that γ strongly decreased with increasing pressure up to ∼10 MPa, and then decreased with a smaller slope with further increasing pressure. γ also increased with increasing temperature.

  9. Performance of materials in the component cooling water systems of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S.

    1993-06-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed.

  10. Pressurized-water reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  11. Bridge Pressure Flow Scour at Clear Water Threshold Condition

    Institute of Scientific and Technical Information of China (English)

    GUO Junke; KERENYI Kornel; PAGAN-ORTIZ Jorge E; FLORA Kevin

    2009-01-01

    Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally. The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional; all the measured scour profiles can be described by two similarity equations, where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth; the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge; the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge; and the maximum scour depth decreases with increas-ing sediment size, but increases with deck inundation. The theoretical analysis shows that: bridge scour can be divided into three cases, i.e. downstream unsubmerged, partially submerged, and totally submerged. For downstream unsubmerged flows, the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied; for partially and totally submerged flows, the equilibrium maximum scour depth can be described by a scour and an inundation similarity number, which has been confirmed by experiments with two decks and two sediment sizes. For application, a design and field evaluation procedure with examples is presented, including the maximum scour depth and scour profile.

  12. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  13. Pressure-induced gelatinization of starch in excess water

    NARCIS (Netherlands)

    Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K.

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently high

  14. Pressure-induced gelatinization of starch in excess water

    NARCIS (Netherlands)

    Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K.

    2014-01-01

    High pressure processing is a promising non-thermal technology for the development of fresh-like, shelf-stable foods. The effect of high pressure on starch has been explored by many researchers using a wide range of techniques. In general, heat and pressure have similar effects: if sufficiently

  15. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  16. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    Science.gov (United States)

    Martinez, N.; Michoud, G.; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-09-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  17. Dual temperature dual pressure water-hydrogen chemical exchange for water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Takada, Akito; Morita, Youhei [Faculty of Engineering, Nagoya University, Fro-cho 1, Chikusa-ku, Nagoya 464-8603 (Japan); Kotoh, Kenji [Graduate School of Engineering, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Munakata, Kenzo [Faculty of Engineering and Resource Science, Akita University, Tegata-gakuen-machi 1-1, Akita 010-8502 (Japan); Taguchi, Akira [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Kawano, Takao; Tanaka, Masahiro; Akata, Naofumi [National Institute for Fusion Science, Oroshi-cho 322-6, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Experimental and analytical studies on hydrogen-tritium isotope separation by a dual temperature dual pressure catalytic exchange (DTDP-CE) with liquid phase chemical exchange columns were carried out in order to apply it to a part of the water detritiation system for DEMO fuel cycle. A prototype DTDP-CE apparatus was successfully operated and it was confirmed that tritium was separated by the apparatus as significantly distinguishable. A calculation code was developed based on the channeling stage model. The values of separation factors and the effects of some operating parameters were well predicted by the separative analyses with the code.

  18. Experimental study on pore pressure in rock-soil slope during reservoir water level fluctuation

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuewu; CHEN; Huixin; LIU; Qingquan; GONG; Xin; ZHANG

    2005-01-01

    A test system was developed for measuring the pore pressure in porous media, and a new model was devised for the pore pressure testing in both saturated and unsaturated rock-soil. Laboratory experiments were carried out to determine the pore pressure during water level fluctuation. The variations of transient pore pressure vs. time at different locations of the simulated rock-soil system were acquired and processed, and meanwhile the deformation and failure of the model are observed. The experiment results show that whether the porous media are saturated or not, the transient pore pressure is mainly dependent on the water level fluctuation, and coupled with the variation of the stress field.

  19. Research on Properties of Woven Fabrics Treated by High Pressure Water Jet

    Institute of Scientific and Technical Information of China (English)

    黄故

    2001-01-01

    The paper introduces a new technique for the treatment of the woven fabrics. Sprayed by high pressure water jet, the appearance, handle and stiffness of the fabric are improved. Other properties of the high pressure water treated fabrics like drape coefficient, air permeability, tenacity are also presented.

  20. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  1. Study and application of a high-pressure water jet multi-functional flow test system

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; Huang, Zhongwei; Li, Jingbin; Zhang, Yi

    2015-12-01

    As the exploration and development of oil and gas focus more and more on deeper formation, hydraulic issues such as high-pressure water jet rock breaking, wellbore multiphase flow law, cuttings carrying efficiency, and hydraulic fracturing technique during the drilling and completion process have become the key points. To accomplish related researches, a high-pressure water jet multi-functional flow test system was designed. The following novel researches are carried out: study of high-pressure water jet characteristics under confining pressure, wellbore multiphase flow regime, hydraulic pressure properties of down hole tools during jet fracturing and pulsed cavitation jet drilling, and deflector's friction in radial jet drilling. The validity and feasibility of the experimental results provided by the system with various test modules have proved its importance in the research of the high-pressure water jet and well completion technology.

  2. A viscoelastic spring-block model for investigating subglacial water pressure pulse generation

    Science.gov (United States)

    Kavanaugh, J. L.

    2009-12-01

    A viscoelastic spring-block model of glacier motion has been developed to investigate the mechanisms responsible for generating brief pulses in subglacial water pressure recorded at Trapridge Glacier, Yukon. In this model, the glacier is treated as an array of ice blocks, each of which is connected to its nearest neighbors by spring-and-dashpot linkages. The model glacier is gravitationally driven, and down-slope flow is resisted by a basal shear stress determined by the Mohr-Coulomb failure criterion. This model is forced with realistic basal water pressure conditions. With prescribed summer-mode, diurnally-varying pressures, the model produces elevated slip activity at times of rising (rather than peak) water pressures; with steady, elevated winter-mode pressures, slip events occur at non-uniform intervals due to the effects of elastic loading and the (nonlinear) viscous relaxation of stresses. Magnitude and interevent time statistics for model slip events and basal water pressure pulses are compared.

  3. Experimental investigation and numerical simulation on the effect of fissure water pressure in vertical sliding surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lei; LI; Shihai; LIAN; Zhenzhong; WANG; Yuannian

    2005-01-01

    This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists.Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.

  4. Initial excess pore water pressures induced by tunnelling in soft ground

    Institute of Scientific and Technical Information of China (English)

    梁荣柱; 夏唐代; 林存刚; 俞峰; 吴世明

    2015-01-01

    Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects on the long-term consolidation settlement. A simple and reliable method for predicting the tunnel-induced initial excess pore water pressure calculation in soft clay is proposed. This method is based on the theory of elasticity and SKEMPTON’s excess pore water pressure theory. Compared with the previously published field measurements and the finite-element modelling results, it is found that the suggested initial excess pore water pressure theory is in a good agreement with the measurements and the FE results. A series of parametric analyses are also carried out to investigate the influences of different factors on the distribution and magnitude of the initial excess pore water pressure in soft ground.

  5. Direct measurement of the capillary pressure characteristics of water-air-gas diffusion layer systems for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gostick, Jeff T.; Ioannidis, Marios A.; Fowler, Michael W.; Pritzker, Mark D. [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON (Canada)

    2008-10-15

    A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers (GDL) is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies. (author)

  6. The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration

    Directory of Open Access Journals (Sweden)

    Björn Frostell

    2012-09-01

    Full Text Available Without monitoring anthropogenic pressures on the water environment, it is difficult to set realistic river restoration targets in relation to water quality. Therefore a more holistic approach is needed to systematically explore the links between socio-economic drivers and observed water quality-related impacts on river ecosystems. Using the DPSIR (Drivers-Pressures-State of the Environment-Impacts-Responses framework, this study linked ecological river restoration with the socio-economic sector, with the focus on promoting a pressure-oriented water quality monitoring system. Based on the European Water Framework Directive (WFD and relevant literature, it was found that most water quality-related indicators employed today are state/impacts-oriented, while very few are pressure-oriented. As a response, we call for more attention to a DPR (Drivers-Pressures-Responses framework in developing an industrial ecology-based pressure-oriented water quality monitoring system for aiding ecological river restoration planning. This approach is characterized in general by accounting for material-related flows throughout the socio-economic sector in relation to river ecosystem degradation. Then the obtained information would help decision makers take appropriate measures to alleviate various significant human-induced wastes and emissions at their sources. We believe that such a pressure-oriented monitoring system will substantially complement traditional state/impacts-oriented environmental and ecological monitoring and help develop more proactive planning and decision-making processes for specific river restoration projects and general water quality management.

  7. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  8. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  9. Dynamic effects of high-pressure pulsed water jet in low-permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; ZHOU Dong-ping; LU Yi-yu; KANG Yong; ZHAO Yu; WANG Xiao-chuan

    2009-01-01

    Mine gas extraction in China is difficult due to the characteristics such as mi-cro-porosity, low-permeability and high adsorption of coal seams. The pulsed mechanism of a high-pressure pulsed water jet was studied through theoretical analysis, experiment and field measurement. The results show that high-pressure pulsed water jet has three dynamic properties. What's more, the three dynamic effects can be found in low-perme-ability coal seams. A new pulsed water jet with 200-1 000 Hz oscillation frequency and peak pressure 2.5 times than average pressure was introduced. During bubble collapsing, sound vibration and instantaneous high pressures over 100 MPa enhanced the cutting ability of the high-pressure jet. Through high-pressure pulsed water jet drilling and slotting, the exposure area of coal bodies was greatly enlarged and pressure of the coal seams rapidly decreased. Therefore, the permeability of coal seams was improved and gas ab-sorption rate also decreased. Application results show that gas adsorption rate decreased by 30%-40% and the penetrability coefficient increased 100 times. This proves that high-pressure pulsed water is more efficient than other conventional methods.

  10. Pressure suppression containment system for boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.; Nesbitt, Loyd B.

    1997-01-01

    A system for suppressing the pressure inside the containment of a BWR following a postulated accident. A piping subsystem is provided which features a main process pipe that communicates the wetwell airspace to a connection point downstream of the guard charcoal bed in an offgas system and upstream of the main bank of delay charcoal beds which give extensive holdup to offgases. The main process pipe is fitted with both inboard and outboard containment isolation valves. Also incorporated in the main process pipe is a low-differential-pressure rupture disk which prevents any gas outflow in this piping whatsoever until or unless rupture occurs by virtue of pressure inside this main process pipe on the wetwell airspace side of the disk exceeding the design opening (rupture) pressure differential. The charcoal holds up the radioactive species in the noncondensable gas from the wetwell plenum by adsorption, allowing time for radioactive decay before the gas is vented to the environs.

  11. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    Science.gov (United States)

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  12. The transpiration of water at negative pressures in a synthetic tree.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2008-09-11

    Plant scientists believe that transpiration-the motion of water from the soil, through a vascular plant, and into the air-occurs by a passive, wicking mechanism. This mechanism is described by the cohesion-tension theory: loss of water by evaporation reduces the pressure of the liquid water within the leaf relative to atmospheric pressure; this reduced pressure pulls liquid water out of the soil and up the xylem to maintain hydration. Strikingly, the absolute pressure of the water within the xylem is often negative, such that the liquid is under tension and is thermodynamically metastable with respect to the vapour phase. Qualitatively, this mechanism is the same as that which drives fluid through the synthetic wicks that are key elements in technologies for heat transfer, fuel cells and portable chemical systems. Quantitatively, the differences in pressure generated in plants to drive flow can be more than a hundredfold larger than those generated in synthetic wicks. Here we present the design and operation of a microfluidic system formed in a synthetic hydrogel. This synthetic 'tree' captures the main attributes of transpiration in plants: transduction of subsaturation in the vapour phase of water into negative pressures in the liquid phase, stabilization and flow of liquid water at large negative pressures (-1.0 MPa or lower), continuous heat transfer with the evaporation of liquid water at negative pressure, and continuous extraction of liquid water from subsaturated sources. This development opens the opportunity for technological uses of water under tension and for new experimental studies of the liquid state of water.

  13. Temperature, pressure, and isotope effects on the structure and properties of liquid water: a lattice approach.

    Science.gov (United States)

    Hakem, Ilhem F; Boussaid, Abdelhak; Benchouk-Taleb, Hafida; Bockstaller, Michael R

    2007-12-14

    We present a lattice model to describe the effect of isotopic replacement, temperature, and pressure changes on the formation of hydrogen bonds in liquid water. The approach builds upon a previously established generalized lattice theory for hydrogen bonded liquids [B. A. Veytsman, J. Phys. Chem. 94, 8499 (1990)], accounts for the binding order of 1/2 in water-water association complexes, and introduces the pressure dependence of the degree of hydrogen bonding (that arises due to differences between the molar volumes of bonded and free water) by considering the number of effective binding sites to be a function of pressure. The predictions are validated using experimental data on the temperature and pressure dependence of the static dielectric constant of liquid water. The model is found to correctly reproduce the experimentally observed decrease of the dielectric constant with increasing temperature without any adjustable parameters and by assuming values for the enthalpy and entropy of hydrogen bond formation as they are determined from the respective experiments. The pressure dependence of the dielectric constant of water is quantitatively predicted up to pressures of 2 kbars and exhibits qualitative agreement at higher pressures. Furthermore, the model suggests a--temperature dependent--decrease of hydrogen bond formation at high pressures. The sensitive dependence of the structure of water on temperature and pressure that is described by the model rationalizes the different solubilization characteristics that have been observed in aqueous systems upon change of temperature and pressure conditions. The simplicity of the presented lattice model might render the approach attractive for designing optimized processing conditions in water-based solutions or the simulation of more complex multicomponent systems.

  14. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Science.gov (United States)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  15. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  16. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China, coal-fire

  17. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  18. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    Science.gov (United States)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  19. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  20. Impingement capability of high-pressure submerged water jet:Numerical prediction and experimental verification

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 邵启明; 康灿; 龚辰

    2015-01-01

    At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.

  1. Volume and structural analysis of super-cooled water under high pressure

    Science.gov (United States)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  2. Study of pressure in water wells using analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, S.

    1979-01-01

    According to the data of studying wells, an examination is made of the possibility of determining the deep pressure. As applied to wells with gas influx, a method of correction is proposed which is based on laws regarding gas or laws of its solubility.

  3. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  4. Conversion of urodynamic pressures measured simultaneously by air-charged and water-filled catheter systems.

    Science.gov (United States)

    Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S

    2015-08-01

    The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.

  5. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  6. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  7. Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

    Directory of Open Access Journals (Sweden)

    Venkatesh Kumar

    2016-01-01

    Full Text Available The variation of pore water pressure in earthen dams plays an important role in maintaining its stability. The pore water pressure within the dam are altered by the external loading conditions like rapid drawdown of reservoir water, earthquake loading and raise of water table caused by infiltration of rainfall. The seepage through an earthen dam involves saturated and unsaturated flows but to avoid complexity in solving the non-linear partial differential equations, the flow in unsaturated zone is neglected and seepage analysis is carried by constructing the flow net in which the pore water pressures beyond the free surface is taken as zero. In actual conditions negative pore water pressure develops beyond the free surface due to the capillarity which leads development to the matrix suction of the soil. In this paper a comparative study on distribution of pore pressure in a zoned earthen dam under steady state and transient conditions had been carried out considering unsaturated-saturated seepage theory. To solve the non-linear partial differential equations, finite element method has been adopted in the present study. The earthen dam has been modeled in different stages. At each stage a new parameter was added and parametric analysis was carried out. The results indicate that negative pore water pressure developed at the downstream side and the pore pressures at the mid-levels of the core are high. This specifies that, soils with low permeability have higher pore pressure. The pore pressures appeared to be higher in upstream side during rapid drawdown compared to steady state.

  8. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  9. Model test of the tunnel subjected to high water pressure in Jinping Second Cascade Hydropower Station,China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the area with high groundwater pressure,grout curtain is often adopted to reduce the water pressure on tunnel lining.A series of model tests for the diversion tunnel of the Jinping Second Cascade Hydropower Station,China,is designed to study the effect of grout curtain.The impact of the thickness of grout curtain,permeability of grout curtain,internal water pressure and drainage inflow on the distribution of water pressure are discussed.The results indicates that under un-drained condition,water pressure is equal to hydrostatic one no matter grout curtain is selected or not,water pressure under drained condition is far less than that of un-drained condition,drainage in tunnel can reduce tunnel water pressure effectively.For same inflow,both increasing of thickness and decrease of hydraulic conductivity of grout curtain can reduce water pressure effectively.For the same water pressure,the smaller inflow of grout curtain,the less volume of water to be discharged.The impact of hydraulic conductivity of grout curtain is more obvious than that of thickness.With increasing of internal water pressure,the water pressure of grout curtain increases too,and the water pressure increases nearly linearly.The proposed thickness of grout curtain for the diversion tunnels is 16 m.

  10. Review of Water Resource Exploitation and Landuse Pressure in ...

    African Journals Online (AJOL)

    In addition, changes in climate regime, due to increasing temperature and reduced rainfall conditions, contribute to the reduced water supply. This coupled with the land degradation problems, has multiple effects on the coastal environments.

  11. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  12. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    soybeans or rapeseed, but research is being conducted that would have non-food plants produce oils with which to make biodiesel. Microalgae is seen as...fraction of solar energy (89, 98). Microalgae can be grown almost anywhere and require only sunlight, water and simple nutrients, although higher yields...are obtained under more controlled conditions (99, 100). Microalgae can be grown in water unfit for human consumption, such as wastewater or

  13. Molecular Dynamical Simulation of Water/Ice Phase Transitions within Carbon Nanotubes under Various Pressures

    Institute of Scientific and Technical Information of China (English)

    YIN Bing; DONG Shun-Le

    2009-01-01

    A molecular dynamics simulation is performed for water confined within carbon nanotubes with diameters 11.00 (A) and 12.38 (A).Under pressures from 0.1 MPa to 500MPa the simulations are carried out by cooling from 300K to 240 K.Water molecules tend to transform from disordered to ordered with different configurations (square,pentagonal,hexagonal and hexagonal plus a chain).It is concluded that denser structures may appear under high pressures.

  14. Corrosion behavior of F82H exposed to high temperature pressurized water with a rotating apparatus

    Science.gov (United States)

    Kanai, A.; Kasada, R.; Nakajima, M.; Hirose, T.; Tanigawa, H.; Enoeda, M.; Konishi, S.

    2014-12-01

    The present study reports the corrosion behavior of a reduced-activation ferritic martensitic steel F82H exposed to high temperature pressurized water for 28 and 100 h using a rotating disk apparatus at rotation speeds of 500 and 1000 rpm at a temperature of 573 K under a water pressure of 15 MPa with corrosion and/or flow-accelerated corrosion of F82H under the rotating condition.

  15. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  16. Water pressure and ground vibrations induced by water guns at a backwater pond on the Illinois River near Morris, Illinois

    Science.gov (United States)

    Koebel, Carolyn M.; Egly, Rachel M.

    2016-09-27

    Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth

  17. Experimental study on pressure and temperature distributions for low mass flux steam jet in subcooled water

    Institute of Scientific and Technical Information of China (English)

    YAN JunJie; WU XinZhuang; CHONG DaoTong

    2009-01-01

    A low mass flux steam jet in subcooled water was experimentally investigated. The transition of flow pattern from stable jet to condensation oscillation was observed at relatively high water temperature. The axial total pressures, the axial and radial temperature distributions were measured in the jet region. The results indicated that the pressure and temperature distributions were mainly influenced by the water temperature. The correlations corrected with water temperature were given to predict the dimen-sionless axial pressure peak distance and axial temperature distributions in the jet region, the results showed s good agreement between the predictions and experiments. Moreover, the self-similarity property of the radial temperature was obtained, which agreed well with Gauss distribution. In present work, all the dimensionless properties were mainly dependent on the water temperature but weakly on the nozzle size under a certain steam mass flux.

  18. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  19. Gas Shale Capillary Pressure - Saturation Relations Determined using a Water Activity Meter

    Science.gov (United States)

    Perfect, E.; Donnelly, B.; McKay, L. D.; Lemiszki, P. J.; DiStefano, V. H.; Anovitz, L. M.; McFarlane, J.; Hale, R. E.; Cheng, C. L.

    2016-12-01

    Capillary pressure is the pressure difference across the interface between two immiscible fluids in a porous medium. It is related to properties of the fluids, properties of the solid matrix, and the history of wetting and drying (hysteresis). Capillary pressure increases as the degree of wetting fluid saturation decreases. The petroleum industry commonly employs parameters describing the air - water capillary pressure - saturation relationship in numerical reservoir models. Traditional methods of measuring this relationship are unsuitable for the characterization of gas shales due to their inability to measure the high capillary pressures associated with small pores. A possible alternative method is the water activity meter which is widely used in the soil sciences. However, its application to lithified material has been limited. This study utilized a water activity meter to measure air - water capillary pressures (ranging from 1.3 - 219.6 MPa) at several water saturation levels (measured gravimetrically) in both the wetting and drying directions. Seven types of gas producing shale with different porosities (2.5 - 13.6%) and total organic carbon contents (0.4 - 13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure - water saturation data pairs for each shale type to the Brooks and Corey (BC) equation. This equation successfully fitted data for 6 of the 7 shale types investigated (median R2 = 0.93) indicating the water activity meter is a viable method for characterizing capillary pressure - saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different BC parameters. However, there were no significant differences between the BC parameters for the wetting versus drying data sets suggesting hysteresis was negligible and can be ignored when simulating production and leakoff in gas shales.

  20. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Science.gov (United States)

    Dong, Xin; Lu, Hao; Huang, Houxu; Hao, Yiqing; Xia, Yuanpu

    2017-06-01

    Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  1. Failure Mode of the Water-filled Fractures under Hydraulic Pressure in Karst Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Xin

    2017-06-01

    Full Text Available Water-filled fractures continue to grow after the excavation of karst tunnels, and the hydraulic pressure in these fractures changes along with such growth. This paper simplifies the fractures in the surrounding rock as flat ellipses and then identifies the critical hydraulic pressure values required for the occurrence of tensile-shear and compression-shear failures in water-filled fractures in the case of plane stress. The occurrence of tensile-shear fracture requires a larger critical hydraulic pressure than compression-shear failure in the same fracture. This paper examines the effects of fracture strike and lateral pressure coefficient on critical hydraulic pressure, and identifies compression-shear failure as the main failure mode of water-filled fractures. This paper also analyses the hydraulic pressure distribution in fractures with different extensions, and reveals that hydraulic pressure decreases along with the continuous growth of fractures and cannot completely fill a newly formed fracture with water. Fracture growth may be interrupted under the effect of hydraulic tensile shear.

  2. Effect of pressure on mass absorption in an ammonia-water absorption system

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Hatem; Monde, Masanori [Saga University, Department of Mechanical Engineering, Saga (Japan)

    2007-11-15

    Absorption phenomenon of ammonia vapor into ammonia water solution has been investigated experimentally, by inserting superheated ammonia vapor into a test cell containing a stagnant pool of ammonia water solution. Before commencing the experiment, the pressure in the test cell corresponds to the equilibrium vapor of the ammonia-water system at room temperature. When the valve is opened, mechanical equilibrium is established quickly and the pressure in the test cell becomes equal to that of the ammonia vapor cylinder. The difference between the initial pressure in the vapor cylinder and the initial pressure in the test cell is found to have a major influence on the absorption rate. The main objective of this study is to investigate the effect of this initial pressure difference on the absorption rate of ammonia vapor. A correlation which gives the total absorbed mass of ammonia as a function of the initial concentration, the initial pressure difference and time is derived. In addition the absorbed mass at no pressure difference could be estimated from the absorbed mass at initial pressure difference. (orig.)

  3. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    Science.gov (United States)

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  4. Conversion of Dynamic High Pressures from Air to Water for a Spherical TNT Charge

    Directory of Open Access Journals (Sweden)

    A. K. Sharma

    1996-01-01

    Full Text Available A numerical method has been applied to convert the dynamic high pressures from air-to-water for a spherical TNT charge. Standard equation of scaling law in air for TNT has been utilised to make the necessary conversions. The investigations have been made by taking into consideration the ambient pressure values for the two media. The calculations have been performed under the scaled distances to get better results. Experimental measurements using indigenous blast pressure gauge have been undertaken by detonating spherical charges of TNT under the same scaled distances in water to check the correctness of results and direct application of this method. A fairly close agreement between the theoretically computed and the experimental values of the dynamic high pressures shows the practical utility of this approach in that it enables an estimate of the experimental shock wave pressures, without conducting underwater experiments.

  5. Numerical Analysis including Pressure Drop in Oscillating Water Column Device

    Science.gov (United States)

    das Neves Gomes, Mateus; Domingues dos Santos, Elizaldo; Isoldi, Liércio André; Rocha, Luiz Alberto Oliveira

    2015-06-01

    The wave energy conversion into electricity has been increasingly studied in the last years. There are several proposed converters. Among them, the oscillatingwater column (OWC) device has been widespread evaluated in literature. In this context, the main goal of this work was to perform a comparison between two kinds of physical constraints in the chimney of the OWC device, aiming to represent numerically the pressure drop imposed by the turbine on the air flow inside the OWC. To do so, the conservation equations of mass,momentumand one equation for the transport of volumetric fraction were solved with the finite volume method (FVM). To tackle thewater-air interaction, the multiphase model volume of fluid (VOF)was used. Initially, an asymmetric constraint inserted in chimney duct was reproduced and investigated. Subsequently, a second strategywas proposed,where a symmetric physical constraint with an elliptical shapewas analyzed. Itwas thus possible to establish a strategy to reproduce the pressure drop in OWC devices caused by the presence of the turbine, as well as to generate its characteristic curve.

  6. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions

    CERN Document Server

    Darvishzadeh, Tohid

    2012-01-01

    This study addresses the issue of oil removal from water using hydrophilic porous membranes. The effective separation of oil-in-water dispersions involves high flux of water through the membrane and, at the same time, high rejection rate of the oil phase. The effects of transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of a given surface hydrophilicity, agrees well with analytical predictions based on the Young-Laplace equation. With increasing crossflow velocity, the shape of the oil droplet is strongly deformed near the pore entrance and the critical pressure of permeation increases. We determined numerically the phase diagram for the droplet rejection, permeation, and breakup depending of the transmembrane pressure and...

  7. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  8. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer

    Science.gov (United States)

    Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming

    2017-01-01

    Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524

  9. Data quality assurance in pressure transducer-based automatic water level monitoring

    Science.gov (United States)

    Submersible pressure transducers integrated with data loggers have become relatively common water-level measuring devices used in flow or well water elevation measurements. However, drift, linearity, hysteresis and other problems can lead to erroneous data. Researchers at the USDA-ARS in Watkinsvill...

  10. Revisiting the Integrated Pressurized Thermal Shock Studies of an Aging Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryson, J.W.; Dickson, T.L.; Malik, S.N.M.; Simonen, F.A.

    1999-08-01

    The Integrated Pressurized Thermal Shock (IPTS) studies were a series of studies performed in the early-mid 1980s as part of an NRC-organized comprehensive research project to confirm the technical bases for the pressurized thermal shock (PTS) rule, and to aid in the development of guidance for licensee plant-specific analyses. The research project consisted of PTS pilot analyses for three PWRs: Oconee Unit 1, designed by Babcock and Wilcox; Calvert Cliffs Unit 1, designed by Combustion Engineering; and H.B. Robinson Unit 2, designed by Westinghouse. The primary objectives of the IPTS studies were (1) to provide for each of the three plants an estimate of the probability of a crack propagating through the wall of a reactor pressure vessel (RPV) due to PTS; (2) to determine the dominant overcooling sequences, plant features, and operator actions and the uncertainty in the plant risk due to PTS; and (3) to evaluate the effectiveness of potential corrective actions. The NRC is currently evaluating the possibility of revising current PTS regulatory guidance. Technical bases must be developed to support any revisions. In the years since the results of IPTS studies were published, the fracture mechanics model, the embrittlement database, embrittlement correlation, inputs for flaw distributions, and the probabilistic fracture mechanics (PFM) computer code have been refined. An ongoing effort is underway to determine the impact of these fracture-technology refinements on the conditional probabilities of vessel failure calculated in the IPTS Studies. This paper discusses the results of these analyses performed for one of these plants.

  11. Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.

    Science.gov (United States)

    Kadambala, Ravi; Townsend, Timothy G; Jain, Pradeep; Singh, Karamjit

    2011-05-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth.

  12. Prediction of Pressure Drop in Chilled Water Piping System Using Theoretical and CFD Analysis

    Directory of Open Access Journals (Sweden)

    Shirish P. Patil

    2013-08-01

    Full Text Available In the present study, three dimensional models of chilled water piping system is created using design modeler of Ansys-13. Ansys-13 fluent is used to analyses flow through chilled water pipe for pressure drop prediction. Karman-Prandtl equation is used for defining velocity profile of turbulent flow with the help of user defined function. Result obtained from CFD analysis is compared with results of 3K, 2K, ISHARE and Carrier equivalent length methods. Statistical analysis of performance based relative error has been carried out and based on that optimum analytical method for pressure drop prediction in chilled water piping is suggested.

  13. The Analysis of the Water-Expanded Rock Bolts Ruptures During Pressure Test

    Science.gov (United States)

    Pawłowski, Bogdan; Krawczyk, Janusz; Bała, Piotr; Cios, Grzegorz; Tokarski, Tomasz

    2017-06-01

    This paper describe the investigation of a water-expanded rock bolts failed during pressure test (inner water pressure of 330 bar). A main objective of this work was to determine the cracks nucleation and propagation mechanism. It was found that the rock bolts failure was promoted by presence of non-metallic inclusions (mainly long sulphide inclusions) but the primary cause of cracking is strain ageing of steel. Suggestions for improving the behaviour of steel used for water-expanded rock belts by the modification of its chemical composition are proposed finally.

  14. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.;

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... they have large scatter. The data sets that have been measured at low pressures extrapolate well towards the ideal equilibrium values. The two models show similar results, but differ at high pressure and/or temperature. CPA is shown to extrapolate well for methane-water to 1000 bar and 573 K, and our...

  15. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tanugi, David; Grossman, Jeffrey C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-08-21

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.

  16. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....

  17. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    2014-08-01

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000-2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m2-h-bar assuming a nanopore density of 1.7 × 1013 cm-2.

  18. Experimental Investigation on the Basic Law of Hydraulic Fracturing After Water Pressure Control Blasting

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng; Ma, Jian; Chen, Shuliang

    2014-07-01

    Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 × 300 × 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to

  19. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  20. Capillary pressure-saturation relationships for diluted bitumen and water in gravel

    Science.gov (United States)

    Hossain, S. Zubair; Mumford, Kevin G.

    2017-08-01

    Spills of diluted bitumen (dilbit) to rivers by rail or pipeline accidents can have serious long-term impacts on environment and ecology due to the submergence and trapping of oil within the river bed sediment. The extent of this problem is dictated by the amount of immobile oil available for mass transfer into the water flowing through the sediment pores. An understanding of multiphase (oil and water) flow in the sediment, including oil trapping by hysteretic drainage and imbibition, is important for the development of spill response and risk assessment strategies. Therefore, the objective of this study was to measure capillary pressure-saturation (Pc-Sw) relationships for dilbit and water, and air and water in gravel using a custom-made pressure cell. The Pc-Sw relationships obtained using standard procedures in coarse porous media are height-averaged and often require correction. By developing and comparing air-water and dilbit-water Pc-Sw curves, it was found that correction was less important in dilbit-water systems due to the smaller difference in density between the fluids. In both systems, small displacement pressures were needed for the entry of non-wetting fluid in gravel. Approximately 14% of the pore space was occupied by trapped dilbit after imbibition, which can serve as a source of long-term contamination. While air-water data can be scaled to reasonably predict dilbit-water behaviour, it cannot be used to determine the trapped amount.

  1. Structural Integrity of Water Reactor Pressure Boundary Components.

    Science.gov (United States)

    1981-02-20

    RES-79-103 UNCLASSIFIED NRL--- 400 NURE-CR-17B3 NL mnmmnuunin -’El-.--. IIIIIIINI ., *q. - - ,aM T? * NUREG /CI 73 NIL Iteof AW, SOIituA 1 nert of Water...Progress Report for July-September 1979," NUREG /CR-1197, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1978. 2. F. J. Loss, Ed., "Structural...Progress Report for April-June 1976," ORNL/ NUREG /TM-49, Oak Ridge National Labora- tory, Oak Ridge, Tn., Oct. 1976, pp. 27-38. 5. R. G. Berggren

  2. Development of a pressurized bipolar alkaline water electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da; Rapelli, Rubia; Pinto, Cristiano da Silva [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada], Email: nevesjr@unicamp.br; Marin Neto, Antonio Jose; Lopes, Daniel Gabriel; Camargo, Joao Carlos; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil); Furlan, Andre Luis [Universidade Estadual de Campinas (DE/FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This paper reports the actual development status of a bipolar alkaline water electrolyzer with maximum production capacity of 1 m3/h of hydrogen and controlled by a PLC (Programmable Logic Controller), which also interfaces the electrolytic system with operators and other equipment, such as gas storage tanks, fuel cells and photovoltaic panels. The project also includes the construction of an electrolysis test bench to record electrical parameters (cathode, anode, separator and electrolyte potentials), the amount of produced gases and gas quality determined by gas chromatography. (author)

  3. Propagation speed of a pressure spike during the water-liquid nitrogen interaction

    Directory of Open Access Journals (Sweden)

    Tatchai Sumitra

    2004-05-01

    Full Text Available The experiments on the interaction between the liquid nitrogen and the water were conducted in order to confirm its similarity with the interaction between the molten metal and the volatile liquid coolant,the Fuel-Coolant Interaction (FCI. For the experiments, the water was injected from a pressurized water bottle into a cylindrical interaction chamber to interact with the saturated liquid nitrogen that was filled from the bottom. From the experiments, some of the obtained pressure profiles showed relatively strong and sharp pressure spikes. This suggested the possibility of vapor explosion during the experiments. The propagation speeds of these pressure spikes could be calculated based on the time differences recorded by the transducers at the top and at the bottom of the interaction chamber. Based on the results from an experiment with the injection pressure of 4 bars and the volume ratio for the water and the liquid nitrogen of 0.10, the propagation speed was calculated to be between 22 m/s to 50 m/s. This speed was found to be comparable with the theoretical value for the sound speed in a mixture of liquid nitrogen and nitrogen gas. It was concluded that the observed pressure spikes were actually the movement of the shock wave and that vapor explosion had actually occurred in this particular experiment.

  4. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  5. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  6. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  7. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa.

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-28

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  8. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common

  9. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S.; Dickson, James M.

    2013-03-01

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  10. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.

    Science.gov (United States)

    Wang, Luying; Dumont, Randall S; Dickson, James M

    2013-03-28

    Nonequilibrium molecular dynamics (NEMD) simulations are presented to investigate the effect of water-membrane interactions on the transport properties of pressure-driven water flow passing through carbon nanotube (CNT) membranes. The CNT membrane is modified with different physical properties to alter the van der Waals interactions or the electrostatic interactions between water molecules and the CNT membranes. The unmodified and modified CNT membranes are models of simplified nanofiltration (NF) membranes at operating conditions consistent with real NF systems. All NEMD simulations are run with constant pressure difference (8.0 MPa) temperature (300 K), constant pore size (0.643 nm radius for CNT (12, 12)), and membrane thickness (6.0 nm). The water flow rate, density, and velocity (in flow direction) distributions are obtained by analyzing the NEMD simulation results to compare transport through the modified and unmodified CNT membranes. The pressure-driven water flow through CNT membranes is from 11 to 21 times faster than predicted by the Navier-Stokes equations. For water passing through the modified membrane with stronger van der Waals or electrostatic interactions, the fast flow is reduced giving lower flow rates and velocities. These investigations show the effect of water-CNT membrane interactions on water transport under NF operating conditions. This work can help provide and improve the understanding of how these membrane characteristics affect membrane performance for real NF processes.

  11. Numerical Simulation for Roadways in Swelling Rock Under Coupling Function of Water and Ground Pressure

    Institute of Scientific and Technical Information of China (English)

    缪协兴; 卢爱红; 茅献彪; 张东升

    2002-01-01

    According to the analogical relation in the governing differential equations of the humidity stress field theory and the temperature stress field theory, the problem of solving the humidity stress field was transformed into that of solving the temperature stress field by the change of parameters. As a result, th e problem of roadways in swelling rock under the coupling function of water and ground pressure can be solved by the analytical module of temperature stress fie ld in software ANSYS. In the numerical simulation mentioned above, three kinds of supporting, I.e. Steel support, bolting support and non-support, were taken I nto account, the pressure distribution and deformation state of roadways with a swelling rock floor under the coupling function of water and ground pressure were analyzed and compared with those in the action of only ground pressure. The rese arch results provides a scientific basis for the deformation control of roadways in swelling rock.

  12. Fluctuations of ice cover and sea water pressure nearby the Tunabreen Glacier front at Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. V. Muzylev

    2013-01-01

    Full Text Available Results of oceanographic measurements carried out in February, 2011, from the sea ice surface in the Tempelfjorden near the Tunabreen front in Svalbard are presented. Two temperature and pressure recorders SBE-39 were deployed on a wire from the ice approximately 300 m from the glacier front. The sampling time interval was 1 s. A pressure recorder SBE-37 was located under them on the bottom with a sampling interval of 6 s. Pressure oscillations on the bottom with a period of 90 s and ice cover oscillations with periods of 10 s and 14 s were recorded. The conclusion is made that the recorded oscillations of pressure in the sea water are related to the glacier microsurges, and the observed profiles of temperature, density, and salinity show the absence or insignificant inflow of fresh water from the glacier in the fjord during the winter season. The measurements allowed us to estimate the Young's modulus of the ice.

  13. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Katoh, Y.; Yamada, H. (Toyama Medical and Pharmaceutical Univ. (Japan))

    1989-11-01

    The behavior of water in the intervertebral disc of pig tail and its physiologic and biomechanical properties were investigated in relation to compression load. The water content, chemical composition, and swelling pressure in the intervertebral disc were measured, and the mechanism of the generation of the swelling pressure in relation to compression load stress was studied. The swelling pressure, through regulation of the water content of the disc and the resistance of the external load, differs with the region of the intervertebral disc. In the nucleus pulposus and the inner layer of the anulus fibrosus, the swelling pressure rises in proportion to the load, but few changes occur in the outer layer of the anulus fibrosus, and the constant pressure environment is thus maintained. The tritiated water (3H2O) uptake of the disc under various loads was measured. The molar partition coefficient of tritiated water is almost equal to 1 even under a compression load, which suggests that water is freely exchangeable. The diffusion of 3H2O in the intervertebral disc was traced using two pathway models: the perianular route and the end-plate route. The diffusion of water in the unloaded disc for both uptake and washout was about 2 to 3 times larger in the perianular route than in the end-plate route. Under load, the water diffusion was inhibited in both pathways. The relation between the load and displacement revealed viscoelastic properties indicating creep and stress relaxation. Young's modulus and the stiffness increased with a rise in load speed.

  14. Partial molar volume of L-Valine in water under high pressure

    Science.gov (United States)

    Sawamura, Seiji

    2013-06-01

    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  15. Experimental study on steam-water two-phase flow frictional pressure drops in helical coils

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.

  16. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate.

    Science.gov (United States)

    Moras, Benjamin; Rey, Stéphane; Vilarem, Gérard; Pontalier, Pierre-Yves

    2017-01-01

    A Doehlert experimental design was conducted and surface response methodology was used to determine the effect of temperature, contact time and solid liquid ratio on isoflavone extraction from soybean flour or Soybean Protein Isolate in pressurized water system. The optimal conditions conducted gave an extraction yield of 85% from soybean flour. For Soybean Protein Isolate compared to soybean flour, the isoflavone extraction yield is 61%. This difference could be explained by higher aglycon content, while aglycon appears to be the least extracted isoflavone by pressurized water. The solid liquid ratio in the ASE cell was the overriding factor in obtaining high yields with both soybean products, while temperature has less influence. A high temperature causes conversion of the malonyls-glucosides and glucosides isoflavone derivatives into glucosides or aglycons forms. pressurized water extraction showed a high solubilization of protein material up to 95% of inserted Soybean Protein Isolate.

  17. Analysis and numerical simulation of dynamic effect on rock under high pressure water jet

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-hong; SI Hu; WANG Dan-dan

    2008-01-01

    Based on continuum mechanics and rock dynamics, analyzed the micro-structure damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on nonlinear finite element and Arbitrary Lagrangian-Eulerian(ALE) method. The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method. The propagation of stress wave in rock was numerically simulated at different impacting velocity. The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet. The faster the impacting velocity is, the quicker the comedown of stress wave.

  18. Spray Formation of a Liquid Carbon Dioxide-Water Mixture at Elevated Pressures

    Directory of Open Access Journals (Sweden)

    Hakduck Kim

    2016-11-01

    Full Text Available Liquid carbon dioxide-assisted (LCO2-assisted atomization can be used in coal-water slurry gasification plants to prevent the agglomeration of coal particles. It is essential to understand the atomization behavior of the water-LCO2 mixture leaving the injector nozzle under various conditions, including the CO2 blending ratio, injection pressure, and chamber pressure. In this study, the flash-atomization behavior of a water-LCO2 mixture was evaluated with regard to the spray angle and penetration length during a throttling process. The injector nozzle was mounted downstream of a high-pressure spray-visualization system. Based on the results, the optimal condition for the effective transport of coal particles was proposed.

  19. The effect of KZK pressure equation on the sonoluminescence in water and fat tissues

    Energy Technology Data Exchange (ETDEWEB)

    Gheshlaghi, M. [Payame Noor University, P.O.B. 19395-3697, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir [Department of Physics, Sharif University of Technology, 11365-91, Tehran (Iran, Islamic Republic of); Ghadirifar, A. [Islamic Azad University, Faculty of Mechanical Engineering, Mashhad (Iran, Islamic Republic of)

    2015-09-25

    The effect of the produced light flashes from sonoluminescence (SL) on the fat tissue and water is studied. By using KZK equation as an essential equation for calculating the thermal source in bio-liquids, the effective bubble parameters in quasi-adiabatic model are calculated and compared in these systems. It is noticed that the temperature and the intensity for fat tissue are about 30% and 38% less than the ones for water respectively. These results are almost in good agreement with the only experimental measurement denoting less SL temperature in bio-liquids which present more suitable condition for using SL in such applications. - Highlights: • Coupling of acoustic pressure and the pressure's KZK equation for using Sonoluminescence equations. • The Sonoluminescence parameters (temperature, pressure and intensity) are calculated and Compared for water and fat tissue. • The high-intensity radiation of Sonoluminescence bubble is used in medical applications.

  20. The effects of pulse pressure from seismic water gun technology on Northern Pike

    Science.gov (United States)

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  1. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  2. Prediction of pore-water pressure response to rainfall using support vector regression

    Science.gov (United States)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-11-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  3. Prediction of pore-water pressure response to rainfall using support vector regression

    Science.gov (United States)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-05-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  4. Pressure of drinking water network on the Meyrin site to be boosted

    CERN Multimedia

    2004-01-01

    In the framework of the refurbishment of CERN's drinking water supply system, the final part of the network on the Meyrin site is to be connected to the pumping station operated by Services Industriels de Genève, bringing about a significant increase in the network pressure of up to 5 bar. This means that from January 2005 onwards, the water pressure in buildings will be increased from 2 - 4 bar to 7 - 9 bar. The TS Department will be checking and upgrading the drinking water supply equipment in toilets and washrooms. All users with devices connected to the water supply system are kindly requested to check that these are compatible with the new pressure levels. More information on the buildings affected, the new pressure levels and the dates on which the changes will come into effect can be found at: https://edms.cern.ch/document/525717/1 Should any equipment under your responsibility be incompatible with the future pressure levels, please contact the Technical Control Room on 72201.

  5. Managing risks from virus intrusion into water distribution systems due to pressure transients.

    Science.gov (United States)

    Yang, Jian; LeChevallier, Mark W; Teunis, Peter F M; Xu, Minhua

    2011-06-01

    Low or negative pressure transients in water distribution systems, caused by unexpected events (e.g. power outages) or routine operation/maintenance activities, are usually brief and thus are rarely monitored or alarmed. Previous studies have shown connections between negative pressure events in water distribution systems and potential public health consequences. Using a quantitative microbial risk assessment (QMRA) model previously developed, various factors driving the risk of viral infection from intrusion were evaluated, including virus concentrations external to the distribution system, maintenance of a disinfectant residual, leak orifice sizes, the duration and the number of nodes drawing negative pressures. The most sensitive factors were the duration and the number of nodes drawing negative pressures, indicating that mitigation practices should be targeted to alleviate the severity of low/negative pressure transients. Maintaining a free chlorine residual of 0.2 mg/L or above is the last defense against the risk of viral infection due to negative pressure transients. Maintaining a chloramine residual did not appear to significantly reduce the risk. The effectiveness of ensuring separation distances from sewer mains to reduce the risk of infection may be system-specific. Leak detection/repair and cross-connection control should be prioritized in areas vulnerable to negative pressure transients.

  6. Prolonged water immersion. Effects on blood pressure maturation in normotensive rats.

    Science.gov (United States)

    Magrini, F; Reggiani, P; Ciulla, M; Meazza, R; Branzi, G

    1992-05-01

    The purpose of this experiment was to study the impact of simulated microgravity and of chronic removal of hydrostatic pressure gradients on blood pressure maturation and body growth in rats. A special device was developed in our laboratory to transfer prolonged "dry" water immersion (a technique that has been used for training astronauts under hypogravic conditions) to six Sprague-Dawley test rats (immersion-G group). The time course of heart rate, systolic blood pressure, urinary output, and body weight was monitored from weaning to maturity and then compared with those responses from six sex- and age-matched Sprague-Dawley rats grown in a gravity environment (group G). A downward shift in systolic blood pressure and body weight maturation curves was observed in immersion-G rats from the age of 60 days. Cessation of dry water immersion produced a gradual, significant rise in systolic blood pressure but not in body weight to control values. No marked changes in heart rate and urinary output between G and immersion-G rats were noticed throughout the investigation. Our results provide indirect evidence that an interference in the natural history of blood pressure maturation was introduced by immersion, which dissociated the effects of body weight increase during growth from the effects of ageing per se. It is concluded that the physiological increase in systolic blood pressure during growth is partly gravity-dependent.

  7. Methodology for Calculation of Pressure Impulse Distribution at Gas-Impulse Regeneration of Water Well Filters

    Directory of Open Access Journals (Sweden)

    V. V. Ivashechkin

    2010-01-01

    Full Text Available The paper considers a mathematical model for process of pressure impulse distribution in a water well which appear as a result of underwater gas explosions in cylindrical and spherical explosive chambers with elastic shells and in a rigid cylindrical chamber which is open from the bottom. The proposed calculation methodology developed on the basis of the mathematical model makes it possible to determine pressure in the impulse on a filter wall and at any point of a water well pre-filter zone. 

  8. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    Science.gov (United States)

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...Engineer Center Tyndall Air Force Base, FL 32403-5319 ERDC/GSL TR-14-11 ii Abstract Runway rubber removal is a maintenance function employed to

  9. Fatal Penetrating Injuries Sustained by High-pressure Water Jet Unit.

    Science.gov (United States)

    Radojevic, Nemanja; Radnic, Bojana; Curovic, Ivana

    2015-11-01

    The high-pressure water jet unit is a generator of frequent burst of water jets. The water jet reaches very high speeds and is able to cause wounds similar to those of high-velocity projectiles. In the presented case, unusual fatal injuries sustained by water jet are presented. Operating with the unit, an untrained worker accidentally activated a high-pressure water jet unit, and the extremely high pressure of water liberated the jet unit from his hand and whirled it around him. A jet stream of water ran across his body and caused fatal penetrating injuries in the femoral region. The edges of the wound were mainly sharp with contusion rings on the skin beyond the edges. Exploring the inside of the canals during the autopsy, the left femoral artery and vein were found to be completely transected. The resemblance to a firearm entry wound and the severity of the internal injury make it a noteworthy entity. © 2015 American Academy of Forensic Sciences.

  10. Formation and properties of water from quartz and hydrogen at high pressure and temperature

    Science.gov (United States)

    Futera, Zdenek; Yong, Xue; Pan, Yuanming; Tse, John S.; English, Niall J.

    2017-03-01

    Quartz, as the most stable low-pressure polymorph of silica (SiO2), is widely abundant in Earth's crust and mantle, exhibiting relatively high chemical stability. Although silica is only slightly soluble in water at ambient conditions, producing silicon-based weakly acidic compounds, Shinozaki et al. (2014) have shown recently that water itself can be formed by dissolution of SiO2 in H2 fluid under high- temperature and pressure conditions. Here, we have simulated this process via molecular-dynamics techniques based on a reactive force-field description of the Si O2 /H2 interface. Diffusion of the H2 fluid into the quartz crystal lattice was observed upon increasing temperature and pressure, followed by interaction of dissociated, atomic hydrogen with oxygen atoms in the SiO2 lattice, disrupting the lattice and leading to the formation of water. Interestingly, water is evolved in the subsurface region of the silica, and it remains confined there, isolated from the hydrogen fluid, which corresponds precisely to the ice-like spectroscopic patterns observed experimentally. The over-pressured water formed from quartz and H2 is a possible trigger for nucleating enigmatic deep earthquakes in the continental mantle lithosphere.

  11. Vibration pore water pressure characteristics of saturated fine sand under partially drained condition

    Institute of Scientific and Technical Information of China (English)

    王炳辉; 陈国兴

    2008-01-01

    Vibration pore water pressure characteristics of saturated fine sand under partially drained condition were investigated through stress-controlled cyclic triaxial tests employed varied fine content of samples and loading frequency. In order to simulate the partially drained condition, one-way drainage for sample was implemented when cyclic loading was applied. The results show that the vibration pore water pressure’s response leads the axial stress and axial strain responses, and is lagged behind or simultaneous with axial strain-rate’s response for all samples in this research. In addition, the satisfactory linear relationship between vibration pore water pressure amplitude and axial strain-rate amplitude is also obtained. It means that the direct cause of vibration pore water pressure generation under partially drained conditions is not the axial stress or axial strain but the axial strain-rate. The lag-phase between pore water pressure and axial strain-rate increases with the increase of the fine content or the loading frequency.

  12. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  13. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  14. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air...... not been reached. Contact angle measurements of droplets on solid surfaces offer useful quantitative measurements of the physiochemical properties of the solid-liquid interface. For hydrophobic systems the properties the solid- liquid interface are now known to be strongly influenced by the presence of air...... are obtained from the literature. The silica surface is modeled by a large 32 ⨯ 32 ⨯ 2 nm amorphous SiO2 structure consisting of 180000 atoms. The water consists of 18000 water molecules surrounded by N2 and O2 air molecules corresponding to air pressures of 0 bar (vacuum), 50 bar, 100 bar and 200 bar. We...

  15. Water surface elevations recorded by submerged pressure transducers along the upper Willamette River, Oregon, Spring, 2015

    Science.gov (United States)

    Lind, Greg D.; Wellman, Roy E.; Mangano, Joseph F.

    2017-01-01

    Water-surface elevations were recorded by submerged pressure transducers in Spring, 2015 along the upper Willamette River, Oregon, between Eugene and Corvallis. The water-surface elevations were surveyed by using a real-time kinematic global positioning system (RTK-GPS) at each pressure sensor location. These water-surface elevations were logged over a small range of discharges, from 4,600 cubic feet per second to 10,800 cubic feet per second at Harrisburg, OR. These datasets were collected for equipment calibration and validation for the National Aeronautics and Space Administration’s (NASA) Surface Water and Ocean Topography (SWOT) satellite mission. This is one of multiple datasets that will be released for this effort.

  16. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  17. The influence of chemicals on water quality in a high pressure separation rig

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Einar E.; Hemmingsen, Paal V.; Mediaas, Heidi; Svarstad, May Britt E.; Westvik, Arild

    2006-03-15

    In the research laboratory of Statoil at Rotvoll, Trondheim, a high pressure experimental rig used for separation and foaming studies has been developed. There have been several studies to ensure that the high pressure separation rig produces reliable and consistent results with regard to the water-in-oil and oil-in-water contents. The results are consistent with available field data and, just as important, consistent when changing variables like temperature, pressure drop and water cut. The results are also consistent when changing hydrodynamic variables like flow velocity and mixing point (using different choke valves) and when using oil with and without gas saturation. At equal experimental conditions, the high pressure separation rig is able to differentiate between separation characteristics of oil and water from different fields and from different wells at the same field. The high pressure separation and foam rig can be used from -10 deg C to 175 deg C and at pressures up to 200 bar. Crude oil and water are studied under relevant process conditions with respect to temperature, pressure, shear, water cut and separation time. In the present work the influence of chemicals on the oil and water quality has been studied. Chemicals have been mixed into the oil and/or water beforehand or added in situ (on-stream; simulated well stream). The amount of oil in the water after a given residence time in the separation cell has been measured. The results from the high pressure rig show that some demulsifiers, with their primary purpose of giving less water in oil, also have influence on the water quality. Improvement of water quality has been observed as well as no effect or aggravation. The experimental results have been compared to results from bottle tests at the field. The results from the bottle tests and from the laboratory are not corresponding, and only a full-scale field test can tell which of them are the correct results, if any. (Experience from corresponding

  18. Effects of soil heterogeneity on steady state soil water pressure head under a surface line source

    Science.gov (United States)

    Zhang, Z. Fred; Parkin, Gary W.; Kachanoski, R. Gary; Smith, James E.

    2002-07-01

    There are numerous analytical solutions available for flow in unsaturated homogeneous porous media. In this paper, the stream tube model for one-dimensional water movement is extended to two-dimensional (2-D) water movement from a line source as the stream plane model. As well, new solutions are derived to predict the mean and variance of pressure head of water movement under a surface line source in heterogeneous soil using the perturbation method with first-order approximation (PM1) and with second-order approximation (PM2). A variance expression was also developed based on the spectral relationship presented by Yeh et al. [1985a]. The new solutions were tested using the 2-D stream plane model with parameters A = ln(α) and Y = ln(KS) and measurements from field experiments. Results show that the mean of steady state pressure head below the line source is not only a function of the mean parameter values but also a function of the variances of A and Y and the linear cross-correlation coefficient (ρ) between A and Y. The PM2 model can predict the mean pressure head accurately in heterogeneous soils at any level of correlation between A and Y, except when both the soil variability and ρ are high. The pressure head variance estimation based on the PM1 model predicts the measured variance well only when both the soil variability and ρ are low. The field experimental results show that both the PM1 and the spectral models give reasonable predictions of the pressure head variance. Both the measured and predicted values of the variance of pressure head using the two models increase with the depth of soil. Both models show that the variance of pressure head decreases as the source strength increases, but on average, the pressure head variance was underestimated by both models.

  19. Long term evolution of the subglacial water pressure on Russell glacier, a modelling approach.

    Science.gov (United States)

    de Fleurian, Basile; Mouginot, Jeremie; Nisancioglu, Kerim H.

    2017-04-01

    Basal sliding is the main control on land terminating outlet glaciers velocity. This sliding is mainly driven by the water pressure at the base of the glaciers. The ongoing increase in surface melt of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here, we examine the case of Russell glacier, West Greenland, where a remarkably extensive set of observations have been gathered. Our recently published study (de Fleurian et. al. 2016) is pointing to the fact that two different hydrological regimes exist under this glacier. Near the front of the glacier, the development of an efficient drainage system allows the water pressure to drop quickly at the end of summer and yields a stagnation of its annual-mean value. Conversely, further upglacier, the lack of an efficient drainage system leads to an increase of the mean annual water pressure throughout the years. This study left the question of the long term evolution of the subglacial hydrological system under a warmer climate. To answer this question we present here the results of longer simulations where runoff forcing is derived from a simple Positive Degree Day scheme scaled on the IPCC climatic scenarios. To get further insight from our subglacial hydrological model, we investigate the impact of the varying water pressure on modelled surface velocities. Reference: de Fleurian, B., M. Morlighem, H. Seroussi, E. Rignot, M. R. van den Broecke, P. Kuipers Munneke, J. Mouginot, C. J. P. P. Smeets, and A. J. Tedstone (2016), A modeling study of the effect of runoff variability on the effective pressure beneath Russell Glacier, West Greenland, J. Geophys. Res. Earth Surf., 121, 1834-1848, doi:10.1002/2016JF003842.

  20. Experimental study of flow patterns and pressure drops of heavy oil-water-gas vertical flow

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-mao; ZHONG Hai-quan; LI Ying-chuan; LIU Zhong-neng; WANG Qi

    2014-01-01

    A stainless steel apparatus of 18.5 m high and 0.05 m in inner diameter is developed, with the heavy oil from Lukeqin Xinjiang oil field as the test medium, to carry out the orthogonal experiments for the interactions between heavy oil-water and heavy oil-water-gas. With the aid of observation windows, the pressure drop signal can be collected and the general multiple flow patterns of heavy oil-water-gas can be observed, including the bubble, slug, churn and annular ones. Compared with the conventional oil, the bubble flows are identified in three specific flow patterns which are the dispersed bubble (DB), the bubble gas-bubble heavy oil go(B-B), and the bubble gas-intermittent heavy oilgo(B-I). The slug flows are identified in two specific flow patterns which are the intermittent gas-bubble heavy oilgo(I-B)and the intermittent gas-intermittent heavy oilgo(I-I). Compared with the observa- tions in the heavy oil-water experiment, it is found that the conventional models can not accurately predict the pressure gradient. And it is not water but heavy oil and water mixed phase that is in contact with the tube wall. So, based on the principle of the energy con- servation and the kinematic wave theory, a new method is proposed to calculate the frictional pressure gradient. Furthermore, with the new friction gradient calculation method and a due consideration of the flow characteristics of the heavy oil-water-gas high speed flow, a new model is built to predict the heavy oil-water-gas pressure gradient. The predictions are compared with the experiment data and the field data. The accuracy of the predictions shows the rationality and the applicability of the new model.

  1. Median Nerve Injury Due to High-Pressure Water Jet Injection: A Case Report and Review of Literature.

    Science.gov (United States)

    Emre, Ufuk; Unal, Aysun

    2009-08-01

    High-pressure injuries that occur accidentally are potentially destructive injuries that often affect the nondominant hands of young men. A variety of products such as paint, gasoline, grease, fuel oil, cement, thinner and solvents have been reported as destructive agents. High-pressure water jet injection injuries to soft tissues have rarely been reported. In this study, we present the first case of median nerve injury due to high-pressure water jet injection by a water spray gun.

  2. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  3. Negative Pressures and the First Water Siphon Taller than 10.33 Meters

    Science.gov (United States)

    Vera, Francisco; Rivera, Rodrigo; Romero-Maltrana, Diego; Villanueva, Jaime

    2016-01-01

    A siphon is a device that is used to drain a container, with water rising inside a hose in the form of an inverted U and then going down towards a discharge point placed below the initial water level. The siphon is the first of a number of inventions of the ancients documented about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the explanation given by Hero was essentially correct, there is nowadays a controversy about the underlying mechanism that explains the working of this device. Discussions concerning the physics of a siphon usually refer to concepts like absolute negative pressures, the strength of liquid’s cohesion and the possibility of a siphon working in vacuum or in the presence of bubbles. Torricelli understood the working principle of the barometer and the impossibility of pumping water out of wells deeper than 10.33 m. Following Torricelli’s ideas it would also not be possible to build a siphon that drives pure water to ascend higher than 10.33 m. In this work, we report the first siphon that drives water (with surfactant) to ascend higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m siphon that shows that absolute negative pressures are not prohibited, that cohesion plays an important role in transmitting forces through a fluid, and that surfactants can help to the transport of water in a metastable regime of negative pressures. PMID:27054847

  4. Exploring glacier dynamics with subglacial water pressure pulses: Evidence for self-organized criticality?

    Science.gov (United States)

    Kavanaugh, J. L.

    2009-03-01

    In order to determine whether brief excursions, or "pulses," in subglacial water pressure inferred by Kavanaugh and Clarke (2000, 2001) occur, water pressures at the bed of Trapridge Glacier, Yukon, Canada, were recorded using an interface board that continuously monitored a pressure transducer. During the 231 day period between 16 July 2005 and 4 March 2006, more than 7000 pressure pulses were recorded, with magnitudes reaching nearly 3 times the flotation value. Comparison of the pressure pulse record with those from a number of other instruments installed in this soft-bedded glacier indicates that these pulses are generated by stress transients that compress the water within the borehole; calculations suggest that these transients are as large as 75 times the nominal driving stress. Both the magnitudes and interevent times for these pulses are well fitted by power law distributions that are remarkably similar to those exhibited by earthquakes. These similarities suggest that the ice-bed interface of a soft-bedded glacier behaves much like an earthquake fault and raises the possibility that such glaciers self-organize to a critical state. Further evidence for self-organized criticality (SOC) of soft-bedded glaciers is suggested by an examination of well-known ice dynamical properties and the rheological properties of subglacial sediments, which suggests that SOC might be a natural consequence of the rate-independent behavior of subglacial sediments.

  5. Use of inexpensive pressure transducers for measuring water levels in wells

    Science.gov (United States)

    Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.

    1997-01-01

    Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.

  6. Effect Of Pressure On The Temperature Dependence Of Water Solubility In Forsterite

    Science.gov (United States)

    Bali, E.; Bolfan-Casanova, N.; Koga, K.

    2005-12-01

    Water storage capacity of the upper mantle largely depends on water solubility in mantle olivine. Realistic models must take into account the simultaneous effects of variables such as pressure, temperature, iron content and silica activity. Previous experimental studies have shown that the water solubility in olivine increases with increasing water fugacity up to 12 GPa at 1100°C. Water incorporation in olivine was also observed to increase with increasing temperature and increasing iron content at 0.3 GPa, however the temperature dependence was not studied at higher pressures. Interestingly, the only high-pressure data available, that is for wadsleyite and ringwoodite, show that their water solubility decreases with increasing temperature. The goal of this study is to determine the dependence of water maximum concentration on temperature at pressures higher than 0.3 GPa. We performed experiments at 3 and 6 GPa, and temperatures ranging from 1000 to 1400°C in the MgO-SiO2-H2O system using a multi-anvil apparatus. The olivine and orthopyroxene molar ratio was 1 to 1 in the starting material with 5 wt% H2O. The samples were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The mineralogical assemblage consisted of olivine+orthopyroxene+fluid at temperatures below 1250°C both at 3 and 6 GPa and olivine+melt+/-orthopyroxene at higher temperatures. At 3 GPa, above 1325°C orthopyroxene was missing from the assemblage, whereas in case of the 6 GPa experiments it was present even at higher temperatures. This indicates a change in fluid composition from 3 to 6 GPa. Preliminary data using unpolarized FTIR measurements, but comparing same orientations, indicate that water solubility in olivine at 6 GPa decreases with increasing temperature. This observation agrees with the results on wadsleyite and ringwoodite, but contradict the results of the existing low-pressure data. The explaination we propose for the change in temperature

  7. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the ADAMS... published a notice requesting public comments on draft LR-ISG-2011-04, ``Updated Aging Management...

  8. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... license renewal interim staff guidance (LR-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for... Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures...

  9. Creep and stick-slip in subglacial granular beds forced by variations in water pressure

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    of grain and fluid dynamics to show that rapid rearrangements of load-bearing force chains within the granular sediments drive mechanical transitions between stability and failure. Cyclic variations in driving stresses or pore-water pressure give rise to strain-rate dependent creeping motion at stress...

  10. Formation of genotoxic compounds by medium pressure ultra violet treatment of nitrate rich water

    NARCIS (Netherlands)

    Martijn, A.J.; Boersma, M.G.; Vervoort, Jacques; Rietjens, I.; Kruithof, J.C.

    2014-01-01

    Genotoxic compounds were produced by full-scale medium pressure (MP) ultraviolet hydrogen peroxide (UV/H2O2) treatment of nitrate-rich pretreated surface water. It was hypothesized that this formation was caused by the reaction of nitrate photolysis intermediates with natural organic matter (NOM). A

  11. Identifying the effects on fish of changes in water pressure during turbine passage

    Energy Technology Data Exchange (ETDEWEB)

    Becker, James M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernathy, C. Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, Dennis D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-09-01

    This article discusses experiments conducted by the Pacific Northwest National Laboratory to determine how water pressure and dissolved gas levels associated with hydroelectric facilities may affect the survival of fish. The results of the experiments are discussed as well as how these results can be applied to turbine designs and plant operation.

  12. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  13. Mark I 1/5-scale boiling water reactor pressure suppression experiment facility report

    Energy Technology Data Exchange (ETDEWEB)

    Altes, R.G.; Pitts, J.H.; Ingraham, R.F.; Collins, E.K.; McCauley, E.W.

    1977-10-11

    An accurate Mark I /sup 1///sub 5/-scale, boiling water reactor (BWR), pressure suppression facility was designed and constructed at Lawrence Livermore Laboratory (LLL) in 11 months. Twenty-seven air tests using the facility are described. Cost was minimized by utilizing equipment borrowed from other LLL programs. The total value of borrowed equipment exceeded the program's budget of $2,020,000. Substantial flexibility in the facility was used to permit independent variation in the drywell pressure-time history, initial pressure in the drywell and toroidal wetwells, initial toroidal wetwell water level and downcomer length, vent line flow resistance, and vent line flow asymmetry. The two- and three-dimensional sectors of the toroidal wetwell provided significant data.

  14. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  15. Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant

    KAUST Repository

    Jamil, Shazad

    2016-07-26

    The use of forward osmosis (FO) is growing among the researchers for water desalination and wastewater treatment due to use of natural osmotic pressure of draw solute. In this study pressure assisted forward osmosis (PAFO) was used instead of FO to increase the water production rate. In this study a low concentration of draw solution (0.25 M KCl) was applied so that diluted KCl after PAFO operation can directly be used for fertigation. The performance of PAFO was investigated for the treatment of reverse osmosis concentrate (ROC) from a water reclamation plant. The water production in PAFO was increased by 9% and 29% at applied pressure of 2 and 4 bars, respectively, to feed side based on 90 h of experiments. Granular activated carbon (GAC) pretreatment and HCl softening were used to reduce organic fouling and scaling prior to application of PAFO. It reduced total organic carbon (TOC) and total inorganic carbon (TIC) by around 90% and 85%, respectively from untreated ROC. Subsequently, this led to an increase in permeate flux. In addition, GAC pretreatment adsorbed 12 out of 14 organic micropollutants tested from ROC to below detection limit. This application enabled to minimise the ROC volume with a sustainable operation and produced high quality and safe water for discharge or reuse. The draw solution (0.25 M KCl) used in this study was diluted to 0.14 M KCl, which is a suitable concentration (10 kg/m3) for fertigation, due to water transport from feed solution. © 2016 Elsevier B.V.

  16. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  17. Development of a nuclear technique for monitoring water levels in pressurized vehicles

    Science.gov (United States)

    Singh, J. J.; Davis, W. T.; Mall, G. H.

    1983-01-01

    A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.

  18. Study of distribution and characteristics of the time average of pressure of a water cushion pool

    Science.gov (United States)

    Guo, Y. H.; Fu, J. F.

    2016-08-01

    When a dam discharges flood water, the plunging flow with greater kinetic energy, will scour the riverbed, resulting in erosion damage. In order to improve the anti-erosion capacity of a riverbed, the cushion pool created. This paper is based on turbulent jet theoryto deduce the semi-empirical formula of the time average of pressure in the impinging portion of the cushion pool. Additionally, MATLAB numerical is used to conduct a simulation analysis according to turbulent jet energy and watercushion depth when water floods into the water cushion pool, to determine the regularities of distribution and related characteristics.

  19. Low pressure water vapour discharge as a light source: I. Spectroscopic characteristics and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Artamonova, E; Artamonova, T; Beliaeva, A; Gorbov, D; Khodorkovskii, M; Melnikov, A; Milenin, V; Murashov, S; Rakcheeva, L; Timofeev, N [Saint-Petersburg State University, Ulyanovskaya 3, 198504 (Russian Federation); Michael, D [General Electric Global Research Center, One Research Circle (Bldg K1 Rm 4B31), Niskayuna, NY, 12309 (United States)], E-mail: timofeev@pobox.spbu.ru, E-mail: michael@crd.ge.com

    2008-08-07

    Spectral and electrical characteristics of a low pressure dc discharge formed from a mixture of one of the rare gases Ne, Ar or Kr plus water vapour are studied. Water vapour is only a minor additive to the rare gas. It has been shown that enhanced emission of the OH 306.4 nm band is registered from the discharge of Ar mixed with water vapour. Plasmas from the other investigated rare gases yielded considerably less OH 306.4 nm emission. Data about consumed electric power, spectra and relative efficiencies are presente000.

  20. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site.

  1. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  2. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    Science.gov (United States)

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather

  3. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process

    Directory of Open Access Journals (Sweden)

    Andreas Lemmer

    2015-03-01

    Full Text Available Two-stage pressurized anaerobic digestion is a promising technology. This technology integrates in one process biogas production with upgrading and pressure boosting for grid injection. To investigate whether the efficiency of this novel system could be further increased, a water scrubbing system was integrated into the methanogensis step. Therefore, six leach-bed reactors were used for hydrolysis/acidification and a 30-L pressurized anaerobic filter operated at 9 bar was adopted for acetogenesis/methanogenesis. The fermentation liquid of the pressurized anaerobic filter was circulated periodically via a flash tank, operating at atmospheric pressure. Due to the pressure drop, part of dissolved carbon dioxide was released from the liquid phase into the flash tank. The depressurized fermentation liquid was then recycled to the pressurized reactor. Three different flow rates (0 L·day−1, 20 L·day−1 and 40 L·day−1 were tested with three repetitions. As the daily recycled flashed liquid flow was increased from 0 to 40 L, six times as much as the daily feeding, the methane content in the biogas increased from 75 molar percent (mol% to 87 mol%. The pH value of the substrate in the methane reactor rose simultaneously from 6.5 to 6.7. The experimental data were verified by calculation.

  4. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure

    CERN Document Server

    Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-01-01

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...

  6. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  7. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings.

  8. The Research on Atmospheric Pressure Water Vapour Plasma Generation and Application for the Destruction of Wastes

    Directory of Open Access Journals (Sweden)

    Viktorija Grigaitiene

    2013-01-01

    Full Text Available In the Lithuanian Energy Institute an experimental atmospheric pressure Ar/water vapour plasma torch has been designed and tested. The power of plasma torch was estimated 40 ÷ 69 kW, the mean temperature of plasma jet at the exhaust nozzle was 2300÷2900K. The chemical compositionof water vapour plasma was established from the emission spectrum lines at 300 ÷ 800nm range. The main species observed in Ar/water vapour plasma were: Ar, OH, H, O, Cu. The experiments on water vapour steam reforming were performed. The results confirmed that water vapour plasma has the unique properties – high enthalpy and environmentally friendly conditions. It could be employed for environmental purposes such as destruction of wastes into simple molecules or conversion to synthetic gas.

  9. Development of water soluble binder systems for low pressure injection molding of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, H.I.; Gunes, M. [TUBITAK-MRC Materials and Chemical Technologies Research Inst., Kocaeli (Turkey)

    2004-07-01

    Low pressure injection molding of alumina powder using a water-soluble binder system has been carried out successfully. The water-soluble based binder system consisted of poly (2-ethyl-2-oxaline), low density polyethylene and stearic acid. The critical powder loading of the binder-powder mixture was determined based on torque rheometry experiments. The rheological properties of the powder-binder mixture were investigated systematically. The binder system used provides satisfactory mixture stability, excellent mouldability and reasonably fast water leaching and thermal debinding rates. The water-soluble constituent, poly (2-ethyl-2-oxaline), was removed by leaching in convecting water at 60 C within 6 hour. The remaining binder constituents were thermally removed during heating to 450 C. Sintering of the parts was conducted at 1550 C for an hour in air. (orig.)

  10. Dependence of CO2-Brine Interfacial Tension on Aquifer Pressure, Temperature and Water Salinity

    Science.gov (United States)

    Bachu, S.; Bennion, B.

    2007-12-01

    Carbon dioxide storage in deep saline aquifers is a climate-change mitigation strategy that has significant potential in the short-to-medium term. The displacement of formation water by CO2 (drainage) and of CO2 by invading aquifer brine (imbibition) depend on the interfacial tension (IFT) of the CO2-brine system. To provide needed data, an extensive laboratory program was conducted for the measurement of the interfacial tension between CO2 and water or brine covering the ranges of 2 to 27 MPa pressure, 20°C to 125°C temperature, and 0 to 334,000 mg/l water salinity. The laboratory experiments were conducted using the pendant drop method combined with the Laplace solution for the profile of the brine drop in the CO2-rich environment. The analysis of the resulting set of 294 IFT measurements reveals that: 1) for conditions of constant temperature and water salinity, IFT decreases steeply with increasing pressure in the range PPc, with an asymptotic trend towards a constant value for high pressures; 2) for the same conditions of constant pressure and temperature, IFT increases with increasing water salinity, reflecting decreasing CO2 solubility in brine as salinity increases; 3) the dependence of IFT on temperature is more complex, depending on the CO2 phase. For TTc, with an asymptotic trend towards a constant value for high temperatures. These results indicate that, in the case of CO2 storage in deep saline aquifers, the formation water displacement by injected CO2 during the injection phase of CO2 storage and the CO2 displacement by invading brine during the CO2 migration phase depend on the in-situ conditions of pressure, temperature and water salinity through the effects that these primary variables have on the IFT between CO2 and aquifer brine. Since the IFT of CO2-brine systems affects relative permeability and capillary pressure, it is essential that the in-situ conditions and their effect of secondary variables are properly taken into account when

  11. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    Science.gov (United States)

    Barton, Emma J.; Hill, C.; Yurchenko, Sergei N.; Tennyson, Jonathan; Dudaryonok, Anna S.; Lavrentieva, Nina N.

    2017-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H216O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H2- and He-broadening parameters of water vapour lines (rotational quantum number J up to 50) are obtained for temperatures in the range 300-2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for J ‧ J ″ -dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution (Δ ν ˜ = 0.01cm-1) pressure broadened cross sections for a fixed range of temperatures and pressures between 300 and 2000 K and 0.001-10 bar. An interpolation procedure which can be used to determine cross sections at intermediate temperature and pressure is described. Pressure broadening parameters and cross sections are presented in new ExoMol format.

  12. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  13. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    Institute of Scientific and Technical Information of China (English)

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  14. Effect of Stand-Off Distance on Impact Pressure of High Speed Water Jets

    Science.gov (United States)

    Sittiwong, Wuttichai; Seehanam, Wirapan; Pianthong, Kulachate; Matthujak, Anirut

    2010-06-01

    High speed liquid jets may be applied to jet cutting, drilling and cleaning. Recently, in the automotive industries, the spray injection pressure becomes higher and higher to enhance the fuel mixing for the improved combustion efficiency. However, the ultra high injection pressure may cause the damage to the nozzle and also the combustion chamber. In the medical application, the high speed liquid injection might be applied for the drug delivery through the skin where the needle is not required anymore. From the above mentioned application, the investigation on the impact pressure of the high speed liquid jet relative to the stand-off distant is significant. The high speed liquid jets are generated by the projectile impact driven method. The high speed projectile is launched by the horizontal single stage powder gun. The experimental study focuses on the stand-off between 1.5 cm to 6.0 cm, while the nozzle contains approximately 1.5cm3 of water in its cavity. The nozzle conical angles are 30° and 60° with the orifice diameter of 0.7 mm. The jet velocities are measured by laser beam interruptions method. The target material is the Polymethyl Methacrylate (PMMA) which the impact pressure is measured by using a piezoelectric Polyvinylidene Fluoride (PVDF) film. From the experiments, the maximum water jet velocity of 2290 m/s can be obtained from the 30° conical angle nozzle. The maximum impact pressures of nozzle conical angle of 30° and 60° are 3.4 GPa and 2.6 GPa respectively, at stand-off distance 3 cm. However, at the stand-off distance more than 3 cm, the impact pressure significantly decreases, because of aerodynamic drag, jets core break-up, and atomization of the water.

  15. Risks assessment of water pollution by pesticides at local scale (PESTEAUX project): study of polluting pressure.

    Science.gov (United States)

    Noel, Stéphanie; Billo Bah, Boubacar

    2009-01-01

    Pollution of water resources (surface waters and ground waters) by pesticide uses is one of the key point of the European policy with the implementation of the Water Frame Work Directive (2000/60/EC) and the thematic Strategy on the Sustainable use of pesticides. According to this legislation, the Member States must initiate measures to limit environmental and toxicological effects caused by pesticide uses. The Agricultural Research Centre of Wallonia (CRA-W) emphasized the need of a tool for spatial risk analysis and develOPs it within the framework of PESTEAUX project. The originality of the approach proposed by the CRA-W is to generate maps to identify the risk of pollution at locale scale (agricultural parcel). The risk will be assessed according to the study of different factors, grouped under 3 data's layers: polluting pressure, vulnerability of the physical environment (soil) and meteorological data. This approach is directly based on the risk's definition which takes into account the polluting pressure, linked to the human activities, and the vulnerability of the soil, defined by factors of physical environment which characterize the water flow in the parcel. Moreover, meteorological data influence the intensity and likelihood flow of water, and indirectly pesticide by leaching or runoff. The PESTEAUX's approach to study the pollution is based on the model "source-vector-target". The source is the polluting pressure, in other words, the pesticides which could reach the targets. The main vector is the water which vehicles the pesticide on and trough the soil until the target which are the surface waters or ground waters. In this paper we introduce the factors contributing to the polluting pressure. These factors are linking to the human activities and more precisely, to the pesticide uses. The factors considered have an influence on pesticide's transport by water (in its solid state or in dissolved state by leaching, run-off, or erosion) but also on a set of

  16. The pressurization transient analysis for Lungmen advanced boiling water reactor using RETRAN-02

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-W., E-mail: d937121@oz.nthu.edu.t [Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Wang, J.-R.; Lin, H.-T. [Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Longtan Township, Taoyuan County 32546, Taiwan (China); Cheng, S.-C. [Department of Nuclear Engineering, Taiwan Power Company, No. 242, Sec. 3, Roosevelt Rd., Taipei City 10016, Taiwan (China)

    2010-10-15

    A RETRAN-02 model was devised and benchmarked against the preliminary safety analysis report (PSAR) for the Lungmen nuclear power plant roughly 10 years ago. During these years, the fuel design, some of the reactor vessel designs, and control systems have since been revised. The Lungmen RETRAN-02 model has also been modified with updated information when available. This study uses the analytical results of the final safety analysis report (FSAR) to benchmark the Lungmen RETRAN-02 plant model. Five transients, load rejection (LR), turbine trip (TT), main steam line isolation valves closure (MSIVC), loss of feedwater flow (LOFF), and one turbine control valve closure (OTCVC), were utilized to validate the Lungmen RETRAN-02 model. Moreover, due to the strong coupling effect between neutron dynamics and the thermal-hydraulic response during pressurization of transients, the one-dimensional kinetic model with the cross-section data library is used to simulate the coupling effect. The analytical results show good agreement in trends between the RETRAN-02 calculation and the Lungmen FSAR data. Based on the benchmark of these design-basis transients, the modified Lungmen RETRAN-02 model has been adjusted to a level of confidence for analysis of pressure increase transients. Analytical results indicate that the Lungmen advanced boiling water reactor (ABWR) design satisfied design criteria, i.e., vessel pressure and hot shutdown capability. However, a slight difference exists in the simulation of the water level for cases with changes in water levels. The Lungmen RETRAN-02 model tends to predict the change in water level at a slower rate than that in the Lungmen FSAR. There is also a slight difference in void reactivity response toward vessel pressure change in both simulations, which causes the calculated neutron flux before reactor shutdown to differ to some degree when the reactor experiences a rapid pressure increase. Further studies will be performed in the future using

  17. Pressure management of water distribution systems via the remote real-time control of variable speed pumps

    CSIR Research Space (South Africa)

    Page, Philip R

    2017-08-01

    Full Text Available Low and constant pressure can be maintained throughout a water distribution system by setting the pressure at remote consumer locations and using the pressure to control the speed of a variable speed pump (VSP). The prospect of incorporating...

  18. Automatic measurement of soil-water pressure using a capacitance manometer

    Science.gov (United States)

    Thony, Jean-Louis; Vachaud, Georges

    1980-03-01

    A new, cheap and reliable pressure transducer has been developed. It is based on the use of a mercury manometer with the outer face of the glass tubing covered with a transparent metallic oxide. This acts as the fixed outer electrode of a capacitor, of which the capacitance linearly changes with the position of the mercury in the tube. This pressure transducer can be linked with an automatic recording device. Examples are given of the field use of a series of these transducers in which they are coupled to tensiometers in a natural water-balance study.

  19. In-Reactor Oxidation of Zircaloy-4 Under Low Water Vapor Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330° and 370°C). Data from these tests will be used to support fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex- reactor test results were performed to evaluate the influence of irradiation.

  20. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Senor, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Kevin K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Longhurst, Glen R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ºC). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  1. Tissue fusion bursting pressure and the role of tissue water content

    Science.gov (United States)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  2. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    Science.gov (United States)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  3. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effects of high hydrostatic pressures on living cells: a consequence of the properties of macromolecules and macromolecule-associated water.

    Science.gov (United States)

    Mentré, P; Hui Bon Hoa, G

    2001-01-01

    Sixty percent of the Earth's biomass is found in the sea, at depths greater than 1000 m, i.e., at hydrostatic pressures higher than 100 atm. Still more surprising is the fact that living cells can reversibly withstand pressure shifts of 1000 atm. One explanation lies in the properties of cellular water. Water forms a very thin film around macromolecules, with a heterogeneous structure that is an image of the heterogeneity of the macromolecular surface. The density of water in contact with macromolecules reflects the physical properties of their different domains. Therefore, any macromolecular shape variations involving the reorganization of water and concomitant density changes are sensitive to pressure (Le Chatelier's principle). Most of the pressure-induced changes to macromolecules are reversible up to 2000 atm. Both the effects of pressure shifts on living cells and the characteristics of pressure-adapted species are opening new perspectives on fundamental problems such as regulation and adaptation.

  5. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  6. Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Antonio de [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain); Donate, Marina [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain); Rodriguez, Juan F. [Department of Chemical Engineering, University of Castilla - La Mancha, Avda. de Camilo Jose Cela s/n, 13004 Ciudad Real (Spain)]. E-mail: juan.rromero@uclm.es

    2006-02-15

    Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH{sub 3}COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH{sub 3}CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH{sub 3}COOK) or (LiBr + CH{sub 3}CH(OH)COONa) and refrigerant H{sub 2}O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion.

  7. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Directory of Open Access Journals (Sweden)

    K. Shadananan Nair

    2016-10-01

    Full Text Available Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  8. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    Science.gov (United States)

    Shadananan Nair, K.

    2016-10-01

    Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  9. Water-permeability measurement of high performance concrete using a high-pressure triaxial cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S. [Ain Shams Univ., Cairo (Egypt). Dept. of Civil Engineering; Hooton, R.D. [Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering

    1995-08-01

    Water permeability of concrete is used to indicate its durability. Accurate and reproducible measurement of water permeability is difficult and becomes more difficult as the quality of concrete increases. When high-performance concrete (HPC) is tested, these concerns become more pronounced. HPC is used widely to improve the durability and performance of structures but there are few test procedures able to evaluate its permeability-related properties. In this study the water permeabilities of concretes including HPC were measured using a high-pressure triaxial cell with a sensitive and automated measurement capability. Special analysis procedures were developed to obtain useful data from the extremely low volume of water being measured. This method was able to measure a wide range of permeability values from 10{sup {minus}12} m/s to 10{sup {minus}16} m/s, with reproducible measurements on replicates.

  10. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    Science.gov (United States)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  11. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Aines, R D; Wolery, T J; Hao, Y; Bourcier, W L

    2009-07-22

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh water to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir

  12. AN EXPERIMENTAL INVESTIGATION ON THE IMPACT PERFORATION FAILURE OF WATER-FILLED-PRESSURIZED PIPELINES

    Institute of Scientific and Technical Information of China (English)

    LuGuoyun; LeiJianping; ZhangShanyuan

    2004-01-01

    Some experimental data recorded from impact tests on empty and water-filled pressurized mild steel pipes are presented. The pipes were supported as a three-span continuous beam and impacted laterally by a rigid indenter at the mid-span of middle span. Three kinds of indenter nose shapes were used: blunt-nose, hemisphere-nose and 90° conical-nose. The internal pressure ranged up to 20 MPa. The perforation failure modes and corresponding critical impact energies were obtained under different test conditions. The time-history curves of the internal pressure and impact force were given. The experiments show that the media filled in the tube greatly decreased the ballistic limit energy.

  13. Equilibrating Pressure with Auto-Control Valve in Water Distribution Networks

    Institute of Scientific and Technical Information of China (English)

    张宏伟; 闫晓强; 张丽

    2003-01-01

    This paper probes into the feasibility of equilibrating pressure of water distribution network through using auto-control valves in theory and in the economy. An optimal valve control model is designed to minimize the sum of squares of residual pressure in the network. Such an analog simulation has been performed on the year 2003 programming network of a certain littoral district in North China, through which this paper confirms that it is feasible to equilibrate pressure with auto-control valves in theory. The research work has brought about a discovery of applicable conditions of valves in economic feasibility, which avoids a great economic loss due to the wild use of auto-control valve. In addition, simulated annealing algorithm is applied to optimize valve settings and shown to identify global optimum or near-optimum.

  14. Thermodynamic Consistency Test for Binary Gas+Water Equilibrium Data at Low and High Pressures

    Institute of Scientific and Technical Information of China (English)

    Claudio A. Fandez; Felipe A. Quiero; Jos O. Valderrama

    2013-01-01

    Phase equilibrium in binary gas+water mixtures over wide ranges of temperatures and pressures are modeled and tested for thermodynamic consistency. For modeling, the Peng-Robinson equation of state was used and the Wong-Sandler mixing rules were incorporated into the equation of state parameters. In the Wong-Sandler mixing rules the van Laar model for the excess Gibbs en-ergy was applied. In addition, a reasonable and flexible method is applied to test the thermody-namic consistency of pressure-temperature-concentration (P-T-x) data of these binary mixtures. Modeling is found acceptable in all cases, meaning that deviations in correlating the pressure and the gas phase concentration are low. For all cases the thermodynamic consistency method gives a clear conclusion about consistency or inconsistency of a set of experimental P-T-x data.

  15. State space modeling of reactor core in a pressurized water reactor

    Science.gov (United States)

    Ashaari, A.; Ahmad, T.; Shamsuddin, Mustaffa; M, Wan Munirah W.; Abdullah, M. Adib

    2014-07-01

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  16. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  17. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  18. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  19. Volume of supercooled water under pressure and the liquid-liquid critical point.

    Science.gov (United States)

    Mishima, Osamu

    2010-10-14

    The volume of water (H(2)O) was obtained at about 200-275 K and 40-400 MPa by using emulsified water. The plot of volume against temperature showed slightly concave-downward curvature at pressures higher than ≈200 MPa. This is compatible with the liquid-liquid critical-point hypothesis, but hardly with the singularity-free scenario. When the critical point is assumed to exist at ≈50 MPa and ≈223 K, the experimental volume and the derived compressibility are qualitatively described by the modified Fuentevilla-Anisimov scaling equation.

  20. Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition

    DEFF Research Database (Denmark)

    Therwani, Safa Al; Rosenbæk, Jeppe Bakkestrøm; Mose, Frank Holden

    2017-01-01

    during 60 min. We measured urine output (UO), free water clearance (CH2O), fractional excretion of sodium (FENa), urinary aquaporin-2 channels (u-AQP2) and epithelial sodium channels (u-ENaCγ), plasma vasopressin (p-AVP) and central blood pressure (cBP). RESULTS: During baseline, FENa was unchanged...... in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP....

  1. Ice flow dynamics forced by rapid water pressure variations in subglacial granular beds

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.;

    2016-01-01

    mechanical processes driving transitions from stability to slip. We performed computational experiments that show how rearrangements of load-bearing force chains within the granular sediments drive the mechanical transitions. Cyclic variations in pore water pressure give rise to rate-dependent creeping......Glaciers and ice streams can move by deforming underlying water-saturated sediments, and the nonlinear mechanics of these materials are often invoked as the main reason for initiation, persistence, and shutdown of fast-flowing ice streams. Existing models have failed to fully explain the internal...

  2. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several......Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...

  3. Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure.

    Science.gov (United States)

    Disalvo, E Anibal; Hollmann, Axel; Martini, M Florencia

    2015-01-01

    In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.

  4. Rock Breaking by Conical Pick Assisted with High Pressure Water Jet

    Directory of Open Access Journals (Sweden)

    Liu Songyong

    2014-03-01

    Full Text Available In the process of hard rock breaking, the conical pick bears great cutting force and wear, and the cutting efficiency is lower. Thus different combination ways of water jet and conical pick were proposed to solve this issue; for instance, water jet placed in the front of pick (JFP and water jet through the center of pick (JCP was researched by numerical simulation and experiments in this paper. First, the models of rock breaking were built based on SPH combined with finite element method. Then, the stress distribution of rock and the cut force of pick were analyzed when the rock broken by the conical pick assisted with the high pressure water jet. It indicates that the effect of the JCP on rock breaking is better than the JFP. At last, experiments about rock breaking with a conical pick and the JCP were conducted to verify the reliability of the simulation. It indicates that the rock breaking with the assistance of high pressure water jet cannot only reduce the pick force, but also increase the rock crushing volume.

  5. The flooding incident at the Aagesta pressurized heavy water nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, C. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1996-03-01

    This work is an independent investigation of the consequences of the flooding incident at the Aagesta HPWR, Stockholm in May 1969. The basis for the report is an incident in which, due to short circuits in the wiring because of flooding water, the ECCS is momentarily subjected to a pressure much higher than designed for. The hypothetical scenario analyzed here is the case in which the ECCS breaks due to the high pressure. As a consequence of the break, the pressure and the water level in the reactor vessel decrease. The report is divided into three parts; First the Aagesta HPWR is described as well as the chronology of the incident, an analysis of the effects of a hypothetical break in the ECCS is then developed. The second part is a scoping analysis of the incident, modeling the pressure decrease and mass flow rate out of the break. The heat-up of the core, and the core degradation was modeled as well. The third part is formed by a RELAP5/MOD3.1 modeling of the Aagesta HPWR. 18 refs.

  6. Reaction of aluminous perovskite and water at high pressure and temperature and water transport into the lower mantle

    Science.gov (United States)

    Ohira, I.; Ohtani, E.; Sakai, T.; Miyahara, M.; Hirao, N.; Ohishi, Y.; Nishijima, M.

    2012-12-01

    Water cycle is an important issue in earth science, because water can affect rheological properties and melting temperature of the mantle. It has been clarified that water can be transported to at least deep upper mantle and the transition zone (e.g., Ono, 1998). The transition zone is believed to be a water reservoir in the earth, because wadsleyite and ringwoodite which compose the transition zone can contain 1 to 3 wt.% water (Inoue et al., 1995; Kohlstedt et al., 1996). However, it has been a debated matter whether water can be transported into the lower mantle and the core. Here we report the phase relation and mineral chemistry of MgSiO3-perovskite and delta-AlOOH obtained from a combination of in-situ X-ray diffraction measurements at high-pressure and high-temperature, and chemical analyses using scanning transmission electron microscope with an EDS detector (STEM-EDS). We used MgSiO3-Al2O3-H2O gel-samples for high-temperature and high-pressure experiments at the SPring-8 BL10XU. The bulk composition of the starting gel sample was 70 mol% MgSiO3 - 30 mol% Al2O3. H2O contents of the starting gel samples were 1.5 wt.%, 6.0wt.% and 7.0 wt.%. A double sided laser heating diamond anvil cell was used for generation of high pressure and temperature. The YAG (Nd) or fiber laser was used for heating the sample. A Pt foil or powder was mixed with the sample for the absorber of the laser. In situ X-ray diffraction was conducted in the pressure and temperature ranges of 55~87 GPa and 1700~2400 K. We observed a clear coexistence of perovskite and delta-AlOOH at 68 GPa and 2000 K. The chemical analysis of the recovered sample revealed that MgSiO3-perovskite coexisting with delta-AlOOH contains 6.6±2.2 mol.% Al2O3 and delta-AlOOH phase contains about 50 mol.% MgSiO3. Our results revealed a new reaction of aluminous perovskite and water to form a mixture of alumina-depleted perovskite and Mg, Si-bearing delta-AlOOH along the mantle geotherm under the lower mantle

  7. REFERENCE ON THERMOPHYSICAL PROPERTIES: DENSITY AND VISCOSITY OF WATER FOR ATMOSPHERIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2016-09-01

    Full Text Available A reference on thermophysical properties, density and viscosity, for water at atmospheric pressure has been developed in MS Excel (as a macros. Patterson’s density equations and Kestin’s viscosity equations have been chosen as a basic equation in the VBA programming as a user-defined function. These results have been compared with REFPROF as a wellknow standart reference

  8. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    OpenAIRE

    2009-01-01

    A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS), which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (S...

  9. Computational fluid dynamic analysis of a closure head penetration in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.R.; Schwirian, R.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-09-01

    ALLOY 600 has been used typically for penetrations through the closure head in pressurized water reactors because of its thermal compatibility with carbon steel, superior resistance to chloride attack and higher strength than the austenitic stainless steels. Recent plant operating experience with this alloy has indicated that this material may be susceptible to degradation. One of the major parameters relating to degradation of the head penetrations are the operational temperatures and stress levels in the penetration.

  10. Experimental investigation of heat transfer from a 2 × 2 rod bundle to supercritical pressure water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Bi, Qincheng, E-mail: qcbi@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Linchuan; Lv, Haicai [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Leung, Laurence K.H. [Atomic Energy of Canada Limited, Chalk River, Ont., Canada K0J 1J0 (Canada)

    2014-08-15

    Highlights: • Heat transfer of supercritical water through a 2 × 2 rod bundles is investigated. • Circumferential wall temperature distribution is obtained. • Effects of system parameters on heat transfer characteristics are analyzed. • Heat transfer correlations are compared against the rod bundle test data. - Abstract: Heat transfer experiments with supercritical pressure water flowing vertically upward through a 2 × 2 rod bundle have been performed at Xi’an Jiaotong University. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. The experiments covered the pressure range of 23–28 MPa, mass-flux range of 350–1000 kg/(m{sup 2} s) and heat-flux range on the rod surface of 200–1000 kW/m{sup 2}. Heat transfer characteristics of supercritical pressure water through the bundle were examined with respect to variations of heat flux, system pressure, and mass flux. These characteristics were shown to be similar to those previously observed in tubes or annuli. The experimental data indicate a non-uniform circumferential wall-temperature distribution around the heated rod. A maximum wall temperature was observed at the surface facing the corner gap between the heated rod and the ceramic tube, while the minimum wall temperature was observed at the surface facing the center subchannel. The difference between maximum and minimum wall temperatures varies with heat flux and/or mass flux. Eight heat transfer correlations developed for supercritical water were assessed against the current set of test data. Prediction of the Jackson correlation agrees closely with the experimental Nusselt number. A new correlation has been derived based on Jackson correlation to improve the prediction accuracy of supercritical heat transfer coefficient in a 2 × 2 rod bundle.

  11. Risk assessment of a pressurized water reactor for Class 3-8 accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.E.

    1979-10-01

    An assessment has been made of the impact on societal risk of Class 3-8 accident sequences as defined by Appendix D to 10 CFR50. The present analysis concentrates on a pressurized water reactor and utilizes realistic assumptions when practical. Conclusions are drawn as to the relative importance of the analyzed accidents and their impact on the development of a complete societal risk curve. 65 refs., 61 figs., 37 tabs.

  12. FBG Temperature and Pressure Sensing System for Hot Water Pipeline of Petrochemical Factory

    Institute of Scientific and Technical Information of China (English)

    Guo-Hui Lü; Shao-Hua Shang; Xu Jiang; Jin-Ping Ou; Chao Yang; Chuan-Di Li; Wei Xu

    2008-01-01

    A spatial and wavelength division multi-plexing fiber Bragg grating (FBG) sensing system is reported for monitoring the temperature and the pressure (T-P) of hot water pipeline in petrochemical factory. The FBG sensing system has 72 channels independently, and it provides the capability to monitor large number sensors at same time. A resolution of 0.1 ℃ and 0.01 MPa with a measurement bandwidth of 150 Hz has been achieved.

  13. Scram simulation of a control rod drive mechanism of a pressurized water reactor under seismic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Katsuhisa; Shinohara, Yoshikazu; Ichinoo, Hiroyuki; Yoshikawa, Eiji; Nambu, Kiyoshi; Nomura, Tomonori.

    1987-03-01

    Control rod drop verification experiments of Mitsubishi pressurized water reactor under seismic conditions are performed to confirm the insertion function of control rods into the core. To evaluate these tests, computer simulations are performed. The scram time of control rods under seismic conditions was confirmed to meet the scram function. The behavior of the dropping control rods and the scram time obtained by the computer simulation show a very good correspondence with the results of verification experiments.

  14. A review of qualitative inspection aspects of end fittings in an Indian pressurized heavy water reactor

    OpenAIRE

    Urva Pancholi; Dhaval Dave; Ajay Patel

    2016-01-01

    The paper provides a summarized description of the current state of knowledge and practices used in India, in the qualitative inspection of end fittings – a key component of the fuel channel assembly of a pressurized heavy water reactor (PHWR), generally of a Canadian Deuterium Uranium (CANDU) type. Further it discusses various quality inspection techniques; and the high standards and mechanical precision of the job required, to be accepted as viable nuclear reactor component. The techniqu...

  15. Analog modeling of pressurized subglacial water flow: Implications for tunnel valley formation and ice flow dynamics

    Science.gov (United States)

    Lelandais, Thomas; Ravier, Edouard; Mourgues, Régis; Pochat, Stéphane; Strzerzynski, Pierre; Bourgeois, Olivier

    2017-04-01

    Tunnel valleys are elongated and overdeepened depressions up to hundreds of kilometers long, several kilometers wide and hundreds of meters deep, found in formerly glaciated areas. These drainage features are interpreted as the result of subglacial meltwater erosion beneath ice sheets and constitute a major component of the subglacial drainage system. Although tunnel valleys have been described worldwide in the past decades, their formation is still a matter of debate. Here, we present an innovative experimental approach simulating pressurized water flow in a subglacial environment in order to study the erosional processes occurring at the ice-bed interface. We use a sandbox partially covered by a circular, viscous and transparent lid (silicon putty), simulating an impermeable ice cap. Punctual injection of pressurized water in the substratum at the center of the lid simulates meltwater production beneath the ice cap. Surface images collected by six synchronized cameras allow to monitor the evolution of the experiment through time, using photogrammetry methods and DEM generation. UV markers placed in the silicon are used to follow the silicon flow during the drainage of water at the substratum-lid interface, and give the unique opportunity to simultaneously follow the formation of tunnel valleys and the evolution of ice dynamics. When the water pressure is low, groundwater circulates within the substratum only and no drainage landforms appear at the lid-substratum interface. By contrast, when the water pressure exceeds a threshold that is larger than the sum of glaciostatic and lithostatic pressures, additional water circulation occurs at the lid-substratum interface and drainage landforms develop from the lid margin. These landforms share numerous morphological criteria with tunnel valleys such as undulating longitudinal profiles, U-shaped cross-sectional profiles with flat floors, constant widths and abrupt flanks. Continuous generation of DEMs and flow velocity

  16. Evaluation of low degree polynomial kernel support vector machines for modelling Pore-water pressure responses

    Directory of Open Access Journals (Sweden)

    Babangida Nuraddeen Muhammad

    2016-01-01

    Full Text Available Pore-water pressure (PWP is influenced by climatic changes, especially rainfall. These changes may affect the stability of, particularly unsaturated slopes. Thus monitoring the changes in PWP resulting from climatic factors has become an important part of effective slope management. However, this monitoring requires field instrumentation program, which is resource and labour expensive. Recently, soft computing modelling has become an alternative. Low degree polynomial kernel support vector machine (SVM was evaluated in modelling the PWP changes. The developed model used pore-water pressure and rainfall data collected from an instrumented slope. Wrapper technique was used to select input features and k-fold cross validation was used to calibrate the model parameters. The developed model showed great promise in modelling the pore-water pressure changes. High correlation, with coefficient of determination of 0.9694 between the predicted and observed changes was obtained. The one degree polynomial SVM model yielded competitive result, and can be used to provide lead time records of PWP which can aid in better slope management.

  17. Changes in water binding during ripening of cheeses made from raw, pasteurized or high-pressure-treated goat milk

    OpenAIRE

    Buffa, Martín; Guamis, Buenaventura; Saldo, Jordi; Trujillo, Antonio

    2003-01-01

    International audience; The different types of water contained in the matrix of cheeses made from raw (RA), pasteurized (PA; 72 °C, 15 s) or pressure-treated (PR; 500 MPa, 15 min, 20 °C) goat milk were studied throughout ripening. Water content was qualitatively and quantitatively assessed by thermogravimetry. Thermogravimetric curves showed that water is lost in two successive steps (W$_1$ and W$_2$), depending on the temperature required for water to leave the cheese network. Although water...

  18. Self-overcoming of the boiling condition by pressure increment in a water target irradiated by proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Hwan, E-mail: burnn@kirams.re.kr [Korea Institute of Radiological and Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Kang, Joonsun; Jung, In Su; Ram, Han Ga; Park, Yeun Soo [Korea Institute of Radiological and Medical Sciences (KIRMAS), 75 Nowon-Gil, Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cho, Hyung Hee [Department of Mechanical Engineering, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-11-11

    An experiment was conducted to examine and visualize the boiling phenomena inside a water target by irradiating it with a proton beam from MC-50 cyclotron. The boiling phenomena were recorded with a CMOS camera. While an increase of the fraction of the water vapor volume is generally considered to be normal when water is boiled by a proton beam, our experiment showed the opposite result. The volume expansion of the liquid water exceeded the compressibility of the initial air volume. A grid structure in front of the entrance window foil held the target volume constant. Therefore, the phenomena inside the target underwent an isochoric process, and the pressure inside the target was increased rapidly beyond the pressure at the boiling point. Consequently, there was no more bulk boiling in the Bragg-peak region in the target water. Our results show that the boiling of the water can be controlled by controlling the equilibrium pressure of the water target.

  19. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    Science.gov (United States)

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  20. Pressure perturbation calorimetry, heat capacity and the role of water in protein stability and interactions.

    Science.gov (United States)

    Cooper, A; Cameron, D; Jakus, J; Pettigrew, G W

    2007-12-01

    It is widely acknowledged, and usually self-evident, that solvent water plays a crucial role in the overall thermodynamics of protein stabilization and biomolecular interactions. Yet we lack experimental techniques that can probe unambiguously the nature of protein-water or ligand-water interactions and how they might change during protein folding or ligand binding. PPC (pressure perturbation calorimetry) is a relatively new technique based on detection of the heat effects arising from application of relatively small pressure perturbations (+/-5 atm; 1 atm=101.325 kPa) to dilute aqueous solutions of proteins or other biomolecules. We show here how this can be related to changes in solvation/hydration during protein-protein and protein-ligand interactions. Measurements of 'anomalous' heat capacity effects in a wide variety of biomolecular interactions can also be related to solvation effects as part of a quite fundamental principle that is emerging, showing how the apparently unusual thermodynamics of interactions in water can be rationalized as an inevitable consequence of processes involving the co-operative interaction of multiple weak interactions. This leads to a generic picture of the thermodynamics of protein folding stabilization in which hydrogen-bonding plays a much more prominent role than has been hitherto supposed.

  1. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  2. Artificial Neural Network Modeling for Spatial and Temporal Variations of Pore-Water Pressure Responses to Rainfall

    Directory of Open Access Journals (Sweden)

    M. R. Mustafa

    2015-01-01

    Full Text Available Knowledge of spatial and temporal variations of soil pore-water pressure in a slope is vital in hydrogeological and hillslope related processes (i.e., slope failure, slope stability analysis, etc.. Measurements of soil pore-water pressure data are challenging, expensive, time consuming, and difficult task. This paper evaluates the applicability of artificial neural network (ANN technique for modeling soil pore-water pressure variations at multiple soil depths from the knowledge of rainfall patterns. A multilayer perceptron neural network model was constructed using Levenberg-Marquardt training algorithm for prediction of soil pore-water pressure variations. Time series records of rainfall and pore-water pressures at soil depth of 0.5 m were used to develop the ANN model. To investigate applicability of the model for prediction of spatial and temporal variations of pore-water pressure, the model was tested for the time series data of pore-water pressure at multiple soil depths (i.e., 0.5 m, 1.1 m, 1.7 m, 2.3 m, and 2.9 m. The performance of the ANN model was evaluated by root mean square error, mean absolute error, coefficient of correlation, and coefficient of efficiency. The results revealed that the ANN performed satisfactorily implying that the model can be used to examine the spatial and temporal behavior of time series of pore-water pressures with respect to multiple soil depths from knowledge of rainfall patterns and pore-water pressure with some antecedent conditions.

  3. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    Science.gov (United States)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  4. Low pressure water vapour discharge as a light source: II. Electrical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Artamonova, E; Artamonova, T; Beliaeva, A; Khodorkovskii, M; Melnikov, A; Milenin, V; Murashov, S; Rakcheeva, L; Timofeev, N [Saint Petersburg State University, Ulyanovskaya 3, Petrodvoretz, Saint Petersburg 198504 (Russian Federation); Michael, D [General Electric Global Research Center, One Research Circle (Bldg K1 Rm 4B31A), Niskayuna, NY 12309 (United States); Zissis, G, E-mail: timofeev@pobox.spbu.r, E-mail: michael@crd.ge.co, E-mail: georges.zissis@laplace.univ-tlse.f [Universite Toulouse 3-Paul Sabatier, LAPLACE Building 3R2, 118 rte de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2009-09-07

    The electric field strength, electrode fall voltage, light emission characteristics and efficiency of a (Ar + H{sub 2}O) dc discharge as functions of water vapour content, argon pressure and electric current are presented. The data show that the main processes of 306.4 nm OH band generation are (1) a collision between an excited argon atom and a water molecule with simultaneous excitation of OH into the A {sup 2}{Sigma}{sup +} state and (2) electron excitation of a ground state hydroxyl molecule produced by a quenching process from a water molecule. Electric field strength measurements make it possible to conclude that the light production efficiency of the plasma under study can reach 35 lm W{sup -1}. It is possible, with these data, to propose a model of the plasma in question having reasonable accordance with the experiment and show the way to further increase the efficiency.

  5. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  6. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  7. Existence for a global pressure formulation of water-gas flow in porous media

    Directory of Open Access Journals (Sweden)

    Brahim Amaziane

    2012-06-01

    Full Text Available We consider a model of water-gas flow in porous media with an incompressible water phase and a compressible gas phase. Such models appear in gas migration through engineered and geological barriers for a deep repository for radioactive waste. The main feature of this model is the introduction of a new global pressure and it is fully equivalent to the original equations. The system is written in a fractional flow formulation as a degenerate parabolic system with the global pressure and the saturation potential as the main unknowns. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, including unbounded capillary pressure function and non-homogeneous boundary conditions, we prove the existence of weak solutions of the system. Furthermore, it is shown that the weak solution has certain desired properties, such as positivity of the saturation. The result is proved with the help of an appropriate regularization and a time discretization of the coupled system. We use suitable test functions to obtain a priori estimates and a compactness result in order to pass to the limit in nonlinear terms.

  8. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  9. Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition

    Directory of Open Access Journals (Sweden)

    Xie Yuanguang

    2016-05-01

    Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.

  10. Hydrothermal Treatment of Cellulose in Hot-Pressurized Water for the Production of Levulinic Acid

    Directory of Open Access Journals (Sweden)

    ASLI YUKSEL

    2016-12-01

    Full Text Available In this paper, hot-pressurized water, operating above boiling point and below critical point of water (374. 15 °C and 22.1 MPa, was used as a reaction medium for the decomposition of cellulose to high-value chemicals, such levulinic acid. Effects of reaction temperature, pressure, time, external oxidant type and concentration on the cellulose degradation and product distribution were evaluated. In order to compare the cellulose decomposition and yields of levulinic acid, experiments were performed with and without addition of oxidizing agents (H2SO4 and H2O2. Analysis of the liqueur was monitored by HPLC and GC-MS at different temperatures (150 - 280 °C, pressures (5-64 bars and reaction times (30 - 120 mins. Levulinic acid, 5-HMF and formic acid were detected as main products. 73% cellulose conversion was achieved with 38% levulinic acid yield when 125 mM of sulfuric acid was added to the reaction medium at 200 °C for 60 min reaction time.

  11. THERMODYNAMICAL ANALYSIS OF HIGH-PRESSURE FEED WATER HEATER IN STEAM PROPULSION SYSTEM DURING EXPLOITATION

    Directory of Open Access Journals (Sweden)

    Igor Poljak

    2017-01-01

    Full Text Available Nowadays diesel engines prevail as ship propulsion. However, steam propulsion is still primary drive for LNG carriers. In the presented paper high-pressure feed water heater was analyzed, as one of the essential components in LNG carrier steam propulsion system. Measurements of all operating parameters (fluid streams at the analyzed heat exchanger inlets and outlets were performed. Change of the operating parameters was measured at different steam system loads, not at full load as usual. Through these measurements was enabled the insight into the behaviour of the heat exchanger operating parameters during the whole exploitation. The numerical analysis was performed, based on the measured data. The changes in energy and exergy efficiency of the heat exchanger were analyzed. Energetic and exergetic power inputs and outputs were also calculated, which enabled an insight into the change of energetic and exergetic power losses of the heat exchanger at different steam system loads. Change in energetic and exergetic power losses and operating parameters, which have the strongest influence on the high-pressure feed water heater losses, were described. Analyzed heat exchanger was compared with similar heat exchangers in the base loaded conventional steam power plants. From the conducted analysis, it is concluded that the adjustment and control modes of these high-pressure heat exchangers are equal, regardless of whether they were mounted in the base loaded conventional steam power plants or marine steam systems, while their operating parameters and behaviour patterns differ greatly.

  12. Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure.

    Science.gov (United States)

    Cui, Wenwen; Cerqueira, Tiago F T; Botti, Silvana; Marques, Miguel A L; San-Miguel, Alfonso

    2016-07-20

    We present simulations of the collapse under hydrostatic pressure of carbon nanotubes containing either water or carbon dioxide. We show that the molecules inside the tube alter the dynamics of the collapse process, providing either mechanical support and increasing the collapse pressure, or reducing mechanical stability. At the same time the nanotube acts as a nanoanvil, and the confinement leads to the nanostructuring of the molecules inside the collapsed tube. In this way, depending on the pressure and on the concentration of water or carbon dioxide inside the nanotube, we observe the formation of 1D molecular chains, 2D nanoribbons, and even molecular single and multi-walled nanotubes. The structure of the encapsulated molecules correlates with the mechanical response of the nanotube, opening up opportunities for the development of new devices or composite materials. Our analysis is quite general and it can be extended to other molecules in carbon nanotube nanoanvils, providing a strategy to obtain a variety of nano-objects with controlled features.

  13. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    Science.gov (United States)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  14. Intraocular pressure dynamics with prostaglandin analogs: a clinical application of water-drinking test

    Directory of Open Access Journals (Sweden)

    Özyol P

    2016-07-01

    Full Text Available Pelin Özyol,1 Erhan Özyol,1 Ercan Baldemir2 1Ophthalmology Department, 2Biostatistics Department, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey Aim: To evaluate the clinical applicability of the water-drinking test in treatment-naive primary open-angle glaucoma patients. Methods: Twenty newly diagnosed primary open-angle glaucoma patients and 20 healthy controls were enrolled in this prospective study. The water-drinking test was performed at baseline and 6 weeks and 3 months after prostaglandin analog treatment. Peak and fluctuation of intraocular pressure (IOP measurements obtained with the water-drinking test during follow-up were analyzed. Analysis of variance for repeated measures and paired and unpaired t-tests were used for statistical analysis. Results: The mean baseline IOP values in patients with primary open-angle glaucoma were 25.1±4.6 mmHg before prostaglandin analog treatment, 19.8±3.7 mmHg at week 6, and 17.9±2.2 mmHg at month 3 after treatment. The difference in mean baseline IOP of the water-drinking tests was statistically significant (P<0.001. At 6 weeks of prostaglandin analog treatment, two patients had high peak and fluctuation of IOP measurements despite a reduction in baseline IOP. After modifying treatment, patients had lower peak and fluctuation of IOP values at month 3 of the study. Conclusion: Peak and fluctuation of IOP in response to the water-drinking test were lower with prostaglandin analogs compared with before medication. The water-drinking test can represent an additional benefit in the management of glaucoma patients, especially by detecting higher peak and fluctuation of IOP values despite a reduced mean IOP. Therefore, it could be helpful as a supplementary method in monitoring IOP in the clinical practice. Keywords: glaucoma, intraocular pressure, water-drinking test, prostaglandin analog, intra­ocular pressure fluctuation

  15. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    Energy Technology Data Exchange (ETDEWEB)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet and is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.

  16. Experimental study on the minimum drag coefficient of supercritical pressure water in horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Xianliang, E-mail: xianlianglei@mail.xjtu.edu.cn; Li, Huixiong; Guo, YuMeng; Zhang, Qing; Zhang, Weiqiang; Zhang, Qian

    2016-05-15

    Highlights: • The minimum drag coefficient phenomenon (MDC) has been observed and further investigated. • Effects of heat flux, mass flux and pressure to MDC have been discussed. • A series of comparisons between existing correlations and data have been conducted. • Two correlations of drag coefficient are proposed for isothermal and nonisothermal flow. - Abstract: Hydraulic resistance and its components are of great importance for understanding the turbulence nature of supercritical fluid and establishing prediction methods. Under supercritical pressures, the hydraulic resistance of the fluid exhibits a “pit” in the regions near its pseudo-critical point, which is hereafter called the minimum drag coefficient phenomenon. However, this special phenomenon was paid a little attention before. Hence systematical experiments have been carried out to investigate the hydraulic resistance of supercritical pressure water in both adiabatic and heated horizontal tubes. Parametric effects of heat flux, pressure and mass fluxes to drag coefficient are further compared. It is found that almost all of the existing correlations don’t agree well with the experimental data due to the insufficient consideration of thermal-properties near the pseudocritical point. Two correlations of the drag coefficients are finally proposed by introducing the new variable of the derivative of density with respect to temperature or Prandtl number, which can better predict the drag coefficient of isothermal and nonisothermal flow respectively.

  17. Pressure Drop and Heat Transfer of Water Flowing Shell-Side of Multitube Heat Exchangers

    Science.gov (United States)

    Ohashi, Yukio; Hashizume, Kenichi

    Experimental studies on heat transfer augmentation in water-flowing shell sides of counter flow multitube exchangers are presented. Various kinds of augmented tube bundles have been examined to obtain the characteristics of pressure drop and heat transfer. Data for a smooth tube bundle were a little different from those for the tube side. The pressure drop in the shell side depended on Re-0.4 and deviated from the tube side pressure drop to within +30%, while the shell side heat transfer coefficient depended on Re0.8 but about 35%. larger than that of the tube side. Furthermore the augmented tube bundles have been evaluated and compared using 21 evaluation criteria. Enhanced tube bundles, low-finned tube bundles and those with twisted tapes inserted had especially good performances. The ratios of increase in heat transfer were larger than those in pressure drop. In case of low-finned tube bundles, there seem to exist an optimum fin-pitch and an optimum relation between the fin-pitch and the pitch of twisted tapes inserted.

  18. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  19. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    Science.gov (United States)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  20. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    Science.gov (United States)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of

  1. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  2. Effects of submaximal exercise with water ingestion on intraocular pressure in healthy human males

    Directory of Open Access Journals (Sweden)

    Moura M.A.

    2002-01-01

    Full Text Available The effects of exercise and water replacement on intraocular pressure (IOP have not been well established. Furthermore, it is not known whether the temperature of the fluid ingested influences the IOP response. In the present study we determined the effect of water ingestion at three temperatures (10, 24 and 38ºC; 600 ml 15 min before and 240 ml 15, 30 and 45 min after the beginning of each experimental session on the IOP of six healthy male volunteers (age = 24.0 ± 3.5 years, weight = 67.0 ± 4.8 kg, peak oxygen uptake (VO2peak = 47.8 ± 9.1 ml kg-1 min-1. The subjects exercised until exhaustion on a cycle ergometer at a 60% VO2peak in a thermoneutral environment. IOP was measured before and after exercise and during recovery (15, 30 and 45 min using the applanation tonometry method. Skin and rectal temperatures, heart rate and oxygen uptake were measured continuously. IOP was similar for the right eye and the left eye and increased post-water ingestion under both exercising and resting conditions (P<0.05 but did not differ between resting and exercising situations, or between the three water temperatures. Time to exhaustion was not affected by the different water temperatures. Rectal temperature, hydration status, heart rate, oxygen uptake, carbon dioxide extraction and lactate concentration were increased by exercise but were not affected by water temperature. We conclude that IOP was not affected by exercise and that water ingestion increased IOP as expected, regardless of water temperature.

  3. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  4. Water-borne pressure-sensitive adhesives acrylics modified using amorphous silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-12-01

    Full Text Available The application of water-borne pressure-sensitive adhesives (PSA based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium, Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium, Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium, and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium (from Grace in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF and Plextol D273 (Synthomer properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.

  5. Numerical investigation on stress corrosion cracking behavior of dissimilar weld joints in pressurized water reactor plants

    Directory of Open Access Journals (Sweden)

    Lingyan Zhao

    2014-07-01

    Full Text Available There have been incidents recently where stress corrosion cracking (SCC observed in the dissimilar metal weld (DMW joints connecting the reactor pressure vessel (RPV nozzle with the hot leg pipe. Due to the complex microstructure and mechanical heterogeneity in the weld region, dissimilar metal weld joints are more susceptible to SCC than the bulk steels in the simulated high temperature water environment of pressurized water reactor (PWR. Tensile residual stress (RS, in addition to operating loads, has a great contribution to SCC crack growth. Limited experimental conditions, varied influence factors and diverging experimental data make it difficult to accurately predict the SCC behavior of DMW joints with complex geometry, material configuration, operating loads and crack shape. Based on the film slip/dissolution oxidation model and elastic-plastic finite element method (EPFEM, an approach is developed to quantitatively predict the SCC growth rate of a RPV outlet nozzle DMW joint. Moreover, this approach is expected to be a pre-analytical tool for SCC experiment of DMW joints in PWR primary water environment.

  6. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jeanmairet, Guillaume, E-mail: g.jeanmairet@fkf.mpg.de; Levesque, Maximilien, E-mail: maximilien.levesque@ens.fr [École Normale Supérieure - PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ. Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sergiievskyi, Volodymyr [SIS2M, LIONS, CEA, Saclay (France); Borgis, Daniel [École Normale Supérieure - PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ. Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris (France); Maison de la Simulation, USR 3441, CEA - CNRS - INRIA - Univ. Paris-Sud - Univ. de Versailles, 91191 Gif-sur-Yvette Cedex (France)

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  7. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures

    Science.gov (United States)

    GENG, Ming; DUAN, Zhenhao

    2010-10-01

    A thermodynamic model is presented to calculate the oxygen solubility in pure water (273-600 K, 0-200 bar) and natural brines containing Na +, K +, Ca 2+, Mg 2+, Cl -, SO 42-, over a wide range of temperature, pressure and ionic strength with or close to experimental accuracy. This model is based on an accurate equation of state to calculate vapor phase chemical potential and a specific particle interaction model for liquid phase chemical potential. With this approach, the model can not only reproduce the existing experimental data, but also extrapolate beyond the data range from simple aqueous salt system to complicated brine systems including seawater. Compared with previous models, this model covers much wider temperature and pressure space in variable composition brine systems. A program for this model can be downloaded from the website: http://www.geochem-model.org.

  8. The effect of pressure and temperature on aluminium hydrolysis: Implications to trace metal scavenging in natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Removal of aluminium through precipitation/scavenging in natural waters was evaluated based on its hydrolysis at different temperatures and pressures. In general, pH for the occurrence of cation hydrolysis was lowered with hike in temperature which...

  9. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  10. Changes of structure and dipole moment of water with temperature and pressure: a first principles study.

    Science.gov (United States)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2011-07-14

    The changes of structure and distribution of dipole moment of water with temperatures up to 2800 K and densities up to 2.2 g/cm(3) are investigated using ab initio molecular dynamics. Along the isochore of 1.0 g/cm(3), the structure of liquid water above 800 K is dramatically different from that at ambient conditions, where the hydrogen-bonds network collapses. Along the isotherm of 1800 K, the transition from the liquid state to an amorphous superionic phase occurs at 2.0 g/cm(3) (32.9 GPa), which is not observed along the isotherm of 2800 K. With increasing temperature, the average dipole moment of water molecules is decreased arising from the weakened polarization by the collapse of the hydrogen-bonds network, while it is contrarily increased with compression due to the strengthening effect upon the polarization of water molecules. Both higher temperature and pressure broaden the distribution of dipole moment of water molecules due to the enhanced intramolecular charge fluctuations.

  11. Monitoring and Analysis of Transient Pore Water Pressures in Large Suspended Rock Slides near Poschiavo, CH

    Science.gov (United States)

    de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter

    2016-04-01

    Many mountain slopes in the Alps exhibit large compound rock slides or Deep Seated Gravitational Slope Deformations. Due to the basal rupture plane geometry and the cumulative displacement magnitude such landslide bodies are often strongly deformed, highly fractured and - at least locally - very permeable. This can lead to high infiltration rates and low phreatic groundwater tables. This is also the situation in the studied mountain slopes southwest of Poschiavo, where large suspended rockslides occur, with very little surface runoff at high elevations, and torrents developing only at the elevation of the basal rupture planes. Below the landslide toes, at altitudes below ca. 1700 m a.s.l., groundwater appears forming spring lines or distributed spring clusters. Within the scope of the design of a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored and deep boreholes (of 50 to 300 m depth) have been drilled along the planned pressure tunnel alignement at elevations ranging from 963 to 2538 m a.s.l. in the years 2010 and 2012. In several boreholes Lugeon and transient pressure tests were executed and pore water pressure sensors installed in short monitoring sections at various depths. Most of these boreholes intersect deep rockslides in crystalline rocks and limestones, showing highly fragmented rock masses and cohesionless cataclastic shear zones of several tens of meters thickness. This study explores these borehole observations in landslides and adjacent stable slopes and links them to the general hydrologic and hydrogeologic framework. The analysis of the pore water pressure data shows significant variability in seasonal trends and short-term events (from snow melt and summer rain storms) and remarkable pressure differences over short horizontal and vertical distances. This reflects rock mass damage within landslide bodies and important sealing horizons at their base. Based on water balances, the estimated effective

  12. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  13. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography

    Science.gov (United States)

    Aricò, Costanza; Lo Re, Carlo

    2016-12-01

    We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow water equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dynamic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the vertical momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain using unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes encountered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.

  14. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  15. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination.

    OpenAIRE

    Fumagalli, F; Kylian, O; Amato, Letizia; Hanus, J; Rossi, F.

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) fro...

  16. A review of qualitative inspection aspects of end fittings in an Indian pressurized heavy water reactor

    Directory of Open Access Journals (Sweden)

    Urva Pancholi

    2016-07-01

    Full Text Available The paper provides a summarized description of the current state of knowledge and practices used in India, in the qualitative inspection of end fittings – a key component of the fuel channel assembly of a pressurized heavy water reactor (PHWR, generally of a Canadian Deuterium Uranium (CANDU type. Further it discusses various quality inspection techniques; and the high standards and mechanical precision of the job required, to be accepted as viable nuclear reactor component. The techniques, instruments and specific data for such components mentioned here are synthesized results from primary research and knowledge available in this area, in order to produce coherent argument focused on quality control of end fittings.

  17. FAULT CAUSED BY WATER PRESSURE IN THE HEAD-COVER CHAMBER

    Institute of Scientific and Technical Information of China (English)

    PEI Hai-lin; QI Xue-yi; LI Hui; LI Jian-hui; PEI Ze-yu

    2006-01-01

    Owing to the high temperature of the thrust bearing pads, the No.1 unit wasn't performed in the upgrading test at Liujiaxia Hydropower Plant. Through the experimental and theoretical analysis, it has been confirmed that the fault unit was caused by the high water pressure in the head-cover chamber. This type of the fault is out-of-the-way. After the suitable measure wags against the fault were taken, the No.1 unit can stably operate. The conclusions and the methodology are of the certain reference value to the fault-diagnosis of the hydroelectric unit.

  18. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  19. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    Science.gov (United States)

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    Three different geophysical sensor types were used to characterize the underwater pressure waves generated by the underwater firing of a seismic water gun and their suitability for establishing a pressure barrier to potentially direct or prevent the movement of the Asian carps. The sensors used to collect the seismic information were blast rated hydrophones and underwater blast sensors. Specific location information for the water guns and the sensors was obtained using either laser rangefinders or differentially corrected global positioning systems (GPS).

  20. Stresses and Displacements in Steel-Lined Pressure Tunnels and Shafts in Anisotropic Rock Under Quasi-Static Internal Water Pressure

    Science.gov (United States)

    Pachoud, Alexandre J.; Schleiss, Anton J.

    2016-04-01

    Steel-lined pressure tunnels and shafts are constructed to convey water from reservoirs to hydroelectric power plants. They are multilayer structures made of a steel liner, a cracked backfill concrete layer, a cracked or loosened near-field rock zone and a sound far-field rock zone. Designers often assume isotropic behavior of the far-field rock, considering the most unfavorable rock mass elastic modulus measured in situ, and a quasi-static internal water pressure. Such a conventional model is thus axisymmetrical and has an analytical solution for stresses and displacements. However, rock masses often have an anisotropic behavior and such isotropic assumption is usually conservative in terms of quasi-static maximum stresses in the steel liner. In this work, the stresses and displacements in steel-lined pressure tunnels and shafts in anisotropic rock mass are studied by means of the finite element method. A quasi-static internal water pressure is considered. The materials are considered linear elastic, and tied contact is assumed between the layers. The constitutive models used for the rock mass and the cracked layers are presented and the practical ranges of variation of the parameters are discussed. An extensive systematic parametric study is performed and stresses and displacements in the steel liner and in the far-field rock mass are presented. Finally, correction factors are derived to be included in the axisymmetrical solution which allow a rapid estimate of the maximum stresses in the steel liners of pressure tunnels and shafts in anisotropic rock.

  1. A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the RISMC Toolkit

    Directory of Open Access Journals (Sweden)

    Diego Mandelli

    2015-01-01

    Full Text Available In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.

  2. Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Naka Fusion Research Institute, JAEA, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)]. E-mail: hirose.takanori@jaea.go.jp; Shiba, K. [Naka Fusion Research Institute, JAEA, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Enoeda, M. [Naka Fusion Research Institute, JAEA, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Akiba, M. [Naka Fusion Research Institute, JAEA, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2007-08-01

    A water-cooled solid breeder (WCSB) blanket cooled by high temperature SCPW (super critical pressurized water) is a practical option of DEMO reactor. Therefore, it is necessary to check the compatibility of the steel with SCPW. In this work, reduced activation ferritic/martensitic steel, F82H has been tested through slow strain rate tests (SSRT) in 23.5 MPa SCPW. And weight change behavior was measured up to 1000 h. F82H did not demonstrated stress corrosion cracking and its weight simply increased with surface oxidation. The weight change of F82H was almost same as commercial 9%-Cr steels. According to a cross-sectional analysis and weight change behavior, corrosion rate of F82H in the 823 K SCPW is estimated to be 0.04 mm/yr.

  3. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    Science.gov (United States)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  4. Bonding durability of custom-made mouthpiece for scuba diving after water storage under pressure.

    Science.gov (United States)

    Ihara, Chie; Takahashi, Hidekazu; Matsui, Ryosuke; Yamanaka, Takuto; Ueno, Toshiaki

    2009-07-01

    The purpose of this study was to assess the behavior of laminated thermoforming materials in an underwater environment to understand the durability of mouthpieces for scuba diving. Two thermoforming materials, polyolefin (PO) and ethylene-vinyl acetate copolymer (EV), were laminated and stored in air, 37 degrees C water, and 37 degrees C water under 0.2-MPa pressure for 1 and 4 weeks . The load/ bonding width (bonding strength: BS) and displacement at the start of delamination (SD) and fracture (FR) were analyzed with 3-way ANOVA. BS values at SD and FR in air were significantly greater than those under the other conditions, and the BS at SD of EV was significantly greater than that of PO, though the effects of materials, duration and their interactions were not significantly different. The displacements at SD and FR were significantly influenced by the material. These results suggest that both materials can be employed for making a diving custom mouthpiece.

  5. Pressure-dependent water absorption cross sections for exoplanets and other atmospheres

    CERN Document Server

    Barton, Emma J; Yurchenko, Sergei N; Tennyson, Jonathan; Dudaryonok, Anna S; Lavrentieva, Nina N

    2016-01-01

    Many atmospheres (cool stars, brown dwarfs, giant planets, extrasolar planets) are predominately composed of molecular hydrogen and helium. H$_2{}^{16}$O is one of the best measured molecules in extrasolar planetary atmospheres to date and a major compound in the atmospheres of brown-dwarfs and oxygen-rich cool stars, yet the scope of experimental and theoretical studies on the pressure broadening of water vapour lines by collision with hydrogen and helium remains limited. Theoretical H$_2$- and He-broadening parameters of water vapour lines (rotational quantum number $J$ up to 50) are obtained for temperatures in the range 300 - 2000 K. Two approaches for calculation of line widths were used: (i) the averaged energy difference method and (ii) the empirical expression for $J$\\p $J$\\pp-dependence. Voigt profiles based on these widths and the BT2 line list are used to generate high resolution ($\\Delta \\tilde{\

  6. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    Science.gov (United States)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  7. Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).

    Science.gov (United States)

    Lai, W Y; Phelan, P E; Prasher, R S

    2010-12-01

    Nanofluids have attracted wide attention because of their promising thermal applications. Compared with the base fluid, numerous experiments have generally indicated increases in effective thermal conductivity and convective heat transfer coefficient for suspensions having only a small amount of nanoparticles. It is also known that with the presence of nanoparticles, the viscosity of a nanofluid is greater than its base fluid and deviates from Einstein's classical prediction. However, only a few groups have reported nanofluid viscosity results to date. Therefore, relative viscosity data for gamma-Al2O3 nanoparticles in DI-water and propylene glycol/H2O mixtures are presented here based on pressure drop measurements of flowing nanofluids. Results indicate that with constant wall heat flux, the relative viscosities of nanofluid decrease with increasing volume flow rate. The results also show, based on Brenner's model, that the nanofluid viscosity can be explained in part by the aspect ratio of the aggregates.

  8. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  9. The effect of head-down tilt and water immersion on intracranial pressure in nonhuman primates

    Science.gov (United States)

    Keil, Lanny C.; Mckeever, Kenneth H.; Skidmore, Michael G.; Hines, John; Severs, Walter B.

    1992-01-01

    Intracranial pressure (ICP) is investigated in primates during and after -6-deg head-down tilt (HDT) and immersion in water to examine the effects of the headward fluid shift related to spaceflight. Following the HDT the primates are subjected to head-out thermoneutral water immersion, and the ICP is subsequently measured. ICP is found to increase from 3.8 +/- 1.1 to 5.3 +/- 1.3 mm Hg during the horizontal control period. ICP stabilizes at -6.3 +/- 1.3 mm Hg and then increases to -2.2 +/- 1.9 mm Hg during partial immersion, and ICP subsequently returns to preimmersion levels after immersion. These data indicate that exposure to HDT or water immersion lead to an early sharp increase in ICP, and water immersion alone leads to higher ICP levels. A significant conclusion of the work is that the ICP did not approach pathological levels, and this finding is relevant to human spaceflight research.

  10. Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature

    Science.gov (United States)

    Mazza, Marco G.; Stokely, Kevin; Stanley, H. Eugene; Franzese, Giancarlo

    2012-11-01

    We study a coarse-grained model for a water monolayer that cannot crystallize due to the presence of confining interfaces, such as protein powders or inorganic surfaces. Using both Monte Carlo simulations and mean field calculations, we calculate three response functions: the isobaric specific heat CP, the isothermal compressibility KT, and the isobaric thermal expansivity αP. At low temperature T, we find two distinct maxima in CP, KT, and |αP|, all converging toward a liquid-liquid critical point (LLCP) with increasing pressure P. We show that the maximum in CP at higher T is due to the fluctuations of hydrogen (H) bond formation and that the second maximum at lower T is due to the cooperativity among the H bonds. We discuss a similar effect in KT and |αP|. If this cooperativity were not taken into account, both the lower-T maximum and the LLCP would disappear. However, comparison with recent experiments on water hydrating protein powders provides evidence for the existence of the lower-T maximum, supporting the hypothesized LLCP at positive P and finite T. The model also predicts that when P moves closer to the critical P the CP maxima move closer in T until they merge at the LLCP. Considering that other scenarios for water are thermodynamically possible, we discuss how an experimental measurement of the changing separation in T between the two maxima of CP as P increases could determine the best scenario for describing water.

  11. Water-carbon dioxide solid phase equilibria at pressures above 4 GPa.

    Science.gov (United States)

    Abramson, E H; Bollengier, O; Brown, J M

    2017-04-11

    A solid phase in the mixed water-carbon dioxide system, previously identified as carbonic acid, was observed in the high-pressure diamond-anvil cell. The pressure-temperature paths of both its melting and peritectic curves were measured, beginning at 4.4 GPa and 165 °C (where it exists in a quadruple equilibrium, together with an aqueous fluid and the ices H2O(VII) and CO2(I)) and proceeding to higher pressures and temperatures. Single-crystal X-ray diffraction revealed a triclinic crystal with unit cell parameters (at 6.5 GPa and 20 °C) of a = 5.88 Å, b = 6.59 Å, c = 6.99 Å, α = 88.7°, β = 79.7°, and γ = 67.7°. Raman spectra exhibit a major line at ~1080 cm(-1) and lattice modes below 300 cm(-1).

  12. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  13. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-06-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in the GAMS language from a hydraulic model in the EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in the EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for a variety of requirements.

  14. Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems

    Directory of Open Access Journals (Sweden)

    P. Skworcow

    2014-02-01

    Full Text Available This paper considers optimisation of pump and valve schedules in complex large-scale water distribution networks (WDN, taking into account pressure aspects such as minimum service pressure and pressure-dependent leakage. An optimisation model is automatically generated in GAMS language from a hydraulic model in EPANET format and from additional files describing operational constraints, electricity tariffs and pump station configurations. The paper describes in details how each hydraulic component is modelled. To reduce the size of the optimisation problem the full hydraulic model is simplified using module reduction algorithm, while retaining the nonlinear characteristics of the model. Subsequently, a nonlinear programming solver CONOPT is used to solve the optimisation model, which is in the form of Nonlinear Programming with Discontinuous Derivatives (DNLP. The results produced by CONOPT are processed further by heuristic algorithms to generate integer solution. The proposed approached was tested on a large-scale WDN model provided in EPANET format. The considered WDN included complex structures and interactions between pump stations. Solving of several scenarios considering different horizons, time steps, operational constraints, demand levels and topological changes demonstrated ability of the approach to automatically generate and solve optimisation problems for variety of requirements.

  15. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice

    CERN Document Server

    del Rosso, Leonardo; Ulivi, Lorenzo

    2016-01-01

    The properties of some forms of water ice reserve still intriguing surprises. We report here on the direct observation of a new form of ice, metastable at atmospheric pressure and having remarkable molecular adsorption ability. We study the crystalline solid compound of water and molecular hydrogen, called filled ice and indicated with C$_0$, that is formed at about 400 MPa and can be recovered at room pressure and low temperature, still containing a large fraction of molecular hydrogen. We perform x-rays diffraction to check the structure of the recovered sample. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures, and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII) which tolerate heating under vacuum up to about 120 K. Of paramount interest is the fact that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature dependent hysteresis. We present here the first characterization of this n...

  16. Photolytic removal of DBPs by medium pressure UV in swimming pool water.

    Science.gov (United States)

    Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes.

  17. The Effect of Water Pressure and Chlorine Concentration on Microbiological Characteristics of Spray Washed Broiler Carcasses

    Directory of Open Access Journals (Sweden)

    Pissol AD

    2013-08-01

    Full Text Available The objective of this study was to evaluate the efficiency of water pressure and concentration of dichloromethane after the evisceration system under the fecal decontamination of chicken carcasse  surfaces with and without apparent contamination. From a total of  322 carcasses, 50% were intentionally added chicken droppings in an area of more  than 2 cm2 and the rest of carcasses were kept without fecal inoculation. Escherichia coli and Enterobacteriaceae counting was carried out in samples immediately after the inoculation (initial counting and after different treatments. Treatments consisted of water with different pressures (1.5,  3.5 and  5.5 Kgf/cm2, and the addition of a echnological adjuvant (dichloride at the concentrations of 0, 5 and 10 ppm. The results were validated using  40 chicken carcasses for each treatment by means of a  22  factorial statistical design. The results showed no significant differences (P

  18. Ergonomics of abrasive blasting: a comparison of high pressure water and steel shot.

    Science.gov (United States)

    Rosenberg, Beth; Yuan, Lu; Fulmer, Scott

    2006-09-01

    Abrasive blasting with silica sand has long been associated with silicosis. Alternatives to sand are being used increasingly. While NIOSH has done extensive investigations of the respiratory effects of the substitutes for sand, the ergonomic effects of the substitutes have not been examined. Too often, hazards are shifted, and technologies that might save workers' lungs could do so at the expense of their musculoskeletal systems. Hence, the objective of this study was to examine the ergonomic effects of alternatives to sand. Multiple methods, both qualitative and quantitative, were used to yield numerous kinds of data for the analysis of exposures to abrasive blasters. PATH, a method for quantifying ergonomic exposure in non-routine work, was combined with interviews with workers, biomechanical modeling and noise level readings to assess the ergonomics of two abrasive blasting operations: high-pressure water and steel shot. Advantages and disadvantages of each medium are discussed. High-pressure water was slightly less ergonomically stressful, environmentally cleaner, much quieter and less dusty that steel shot, and it was reported to be slower on those tasks where both media could be used.

  19. A Study on the Optimal Position for the Secondary Neutron Source in Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Jungwon Sun

    2016-12-01

    Full Text Available This paper presents a new and efficient scheme to determine the optimal neutron source position in a model near-equilibrium pressurized water reactor, which is based on the OPR1000 Hanul Unit 3 Cycle 7 configuration. The proposed scheme particularly assigns importance of source positions according to the local adjoint flux distribution. In this research, detailed pin-by-pin reactor adjoint fluxes are determined by using the Monte Carlo KENO-VI code from solutions of the reactor homogeneous critical adjoint transport equations. The adjoint fluxes at each allowable source position are subsequently ranked to yield four candidate positions with the four highest adjoint fluxes. The study next simulates ex-core detector responses using the Monte Carlo MAVRIC code by assuming a neutron source is installed in one of the four candidate positions. The calculation is repeated for all positions. These detector responses are later converted into an inverse count rate ratio curve for each candidate source position. The study confirms that the optimal source position is the one with very high adjoint fluxes and detector responses, which is interestingly the original source position in the OPR1000 core, as it yields an inverse count rate ratio curve closest to the traditional 1/M line. The current work also clearly demonstrates that the proposed adjoint flux-based approach can be used to efficiently determine the optimal geometry for a neutron source and a detector in a modern pressurized water reactor core.

  20. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Science.gov (United States)

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  1. Nonhydrostatic correction for shallow water equations with quadratic vertical pressure distribution: A Boussinesq-type equation

    Science.gov (United States)

    Jeschke, Anja; Behrens, Jörn

    2015-04-01

    In tsunami modeling, two different systems of dispersive long wave equations are common: The nonhydrostatic pressure correction for the shallow water equations derived out of the depth-integrated 3D Reynolds-averaged Navier-Stokes equations, and the category of Boussinesq-type equations obtained by an expansion in the nondimensional parameters for nonlinearity and dispersion in the Euler equations. The first system uses as an assumption a linear vertical interpolation of the nonhydrostatic pressure, whereas the second system's derivation includes an quadratic vertical interpolation for the nonhydrostatic pressure. In this case the analytical dispersion relations do not coincide. We show that the nonhydrostatic correction with a quadratic vertical interpolation yields an equation set equivalent to the Serre equations, which are 1D Boussinesq-type equations for the case of a horizontal bottom. Now, both systems yield the same analytical dispersion relation according up to the first order with the reference dispersion relation of the linear wave theory. The adjusted model is also compared to other Boussinesq-type equations. The numerical model with the nonhydrostatic correction for the shallow water equations uses Leapfrog timestepping stabilized with the Asselin filter and the P1-PNC1 finite element space discretization. The numerical dispersion relations are computed and compared by employing a testcase of a standing wave in a closed basin. All numerical values match their theoretical expectations. This work is funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839. We acknowledge the support given by Geir K. Petersen from the University of Oslo.

  2. Experimental investigation of wave-driven pore-water pressure and wave attenuation in a sandy seabed

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2016-06-01

    Full Text Available Wave–seabed interaction has become a big concern of coastal researchers and engineers in the past decades as it may largely contribute to the seabed instability and failure of marine foundations. A series of laboratory experiments are carried out in a wave flume to study the wave-driven pore-water pressure in a sandy seabed and the attenuation of wave height. Waves propagating over a sandy seabed lead to oscillatory excess pore-water pressures within the porous seabed. Amplitude of pore-water pressure within the seabed decreases toward the bottom. A phase lag of pore-water pressure is clearly observed, and it contributes to net upward pressure related to seabed instability. Height of the incident wave is reduced as part of wave energy is dissipated by bottom friction, and a maximum attenuation of the incident wave height is up to 7.23% in the experiments. The influences of wave period and height of the incident wave on pore-water pressure and wave attenuation are also analyzed and discussed.

  3. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Cassan, Delphine; Mercier, Béatrice; Castex, Françoise; Rambaud, André

    2006-03-01

    The aim of our study was to determine the impact of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. An indoor swimming pool was equipped with two medium-pressure UV lamps. We collected eight samples of water daily over a four-weeks period and measured total and free chlorine, pH, water temperature, bacteriological parameters, total organic carbon and trihalomethanes. During the first week, which served as control, medium-pressure UV lamps were turned off. During the next three weeks, medium-pressure UV lamps were kept on 24 h per day. The third week, we reduced the level of the injected chlorine into water, and the last week we also reduced the water renewal volume by 27%. Our results showed that bacteriological parameters remained within allowable french limits. When medium-pressure UV lamps were kept on, total, free and active chlorine levels were significantly increased (P<0.001), whereas combined chlorine level were significantly decreased (P<0.001 and P<0.05, respectively). The levels of chloroform and bromodichloromethane were significantly increased when medium-pressure UV lamps were kept on (P<0.001), whereas chlorodibromomethane and bromoform levels significantly decreased (P<0.05 and P<0.001, respectively). The additional formation of chloroform and bromodichloromethane may be explained by the increase in active chlorine and by radicalizing mechanisms initiated by UV radiation.

  4. Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes

    Science.gov (United States)

    Meniconi, S.; Brunone, B.; Ferrante, M.

    2012-08-01

    In view of scarcity of both experimental data and numerical models concerning transient behavior of cross-section area changes in pressurized liquid flow, the paper presents laboratory data and numerical simulation of the interaction of a surge wave with a partial blockage by a valve, a single pipe contraction or expansion and a series of pipe contraction/expansion in close proximity.With regard to a single change of cross-section area, laboratory data point out the completely different behavior with respect to one of the partially closed in-line valves with the same area ratio. In fact, for the former the pressure wave interaction is not regulated by the steady-state local head loss. With regard to partial blockages, transient tests have shown that the smaller the length, the more intense the overlapping of pressure waves due to the expansion and contraction in series.Numerically, the need for taking into account both the viscoelasticity and unsteady friction is demonstrated, since the classical water-hammer theory does not simulate the relevant damping of pressure peaks and gives rise to a time shifting between numerical and laboratory data. The transient behavior of a single local head loss has been checked by considering tests carried out in a system with a partially closed in-line valve. As a result, the reliability of the quasi steady-state approach for local head loss simulation has been demonstrated in viscoelastic pipes. The model parameters obtained on the basis of transients carried out in single pipe systems have then been used to simulate transients in the more complex pipe systems. These numerical experiments show the great importance of the length of the small-bore pipe with respect to one of the large-bore pipes. Precisely, until a gradually flow establishes in the small-bore pipe, the smaller such a length, the better the quality of the numerical simulation.

  5. Aging of the containment pressure boundary in light-water reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)] [and others

    1997-01-01

    Research is being conducted by the Oak Ridge National Laboratory to address aging of the containment pressure boundary in light-water reactor plants. The objectives of this work are to (1) identify the significant factors related to occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containments and liners of concrete containments, and to make recommendations on use of risk models in regulatory decisions; (2) provide NRC reviewers a means of establishing current structural capacity margins for steel containments, and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by NRC reviewers in assessing the seriousness of reported incidences of containment degradation. In meeting these objectives research is being conducted in two primary task areas - pressure boundary condition assessment and root-cause resolution practices, and reliability-based condition assessments. Under the first task area a degradation assessment methodology was developed for use in characterizing the in-service condition of metal and concrete containment pressure boundary components and quantifying the amount of damage that is present. An assessment of available destructive and nondestructive techniques for examining steel containments and liners is ongoing. Under the second task area quantitative structural reliability analysis methods are being developed for application to degraded metallic pressure boundaries to provide assurances that they will be able to withstand future extreme loads during the desired service period with a level of reliability that is sufficient for public safety. To date, mathematical models that describe time-dependent changes in steel due to aggressive environmental factors have been identified, and statistical data supporting their use in time-dependent reliability analysis have been summarized.

  6. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    Science.gov (United States)

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  7. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  8. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    Science.gov (United States)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  9. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guangdong [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, 200072 (China); Ru, Xiangkun; Chen, Junjie; Xiao, Qian; Tian, Yongwu [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China)

    2015-12-15

    The oxidation behavior of 316L stainless steel specimens after emery paper grounding, mechanical polishing, and electropolishing were investigated in simulated pressurized water reactor primary water at 310 °C for 120 and 500 h. Electropolishing afforded improved oxidation resistance especially during the early immersion stages. Duplex oxide films comprising a coarse Fe-rich outer layer and a fine Cr-rich inner layer formed on all specimens after 500 h of immersion. Only a compact layer was observed on the electropolished specimen after 120 h of immersion. The enrichment of chromium in the electropolished layer contributed to the passivity and protectiveness of the specimen. - Highlights: • Duplex oxide films on ground and mechanically polished specimens. • Compact oxide on electropolished specimen after 120 h immersion. • Large spinel outer layer rich in Fe and fine spinel inner layer rich in Cr. • Electropolishing improved oxidation resistance especially at the early stages. • Inhomogeneous Cr-rich inner layer with granular areas affected by surface treatment.

  10. Temperature dependence of evaporation coeffcient of water in air and nitrogen under atmospheric pressure; study in water droplets

    CERN Document Server

    Zientara, M; Kolwas, K; Kolwas, M

    2008-01-01

    The evaporation coefficients of water in air and nitrogen were found as a function of temperature, by studying the evaporation of pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering Mie interference patterns. A model of quasi-stationary droplet evolution, accounting for the kinetic effects near the droplet surface was applied. In particular, the effect of thermal effusion (a short range analogue of thermal diffusion) was discussed and accounted for. The evaporation coefficient \\alpha in air and in nitrogen were found equal. \\alpha was found to decrease from ~ 0.18 to ~ 0.13 for the temperature range from 273.1 K to 293.1 K and follow the trend given by Arrhenius formula. The agreement with condensation coefficient values obtained with essentially different method by Li et al.[1] was found excellent...

  11. Acute blood pressure response in hypertensive elderly women immediately after water aerobics exercise: A crossover study.

    Science.gov (United States)

    Cunha, Raphael Martins; Vilaça-Alves, José; Noleto, Marcelo Vasconcelos; Silva, Juliana Sá; Costa, Andressa Moura; Silva, Christoffer Novais Farias; Póvoa, Thaís Inácio Rolim; Lehnen, Alexandre Machado

    2017-01-01

    Water aerobics exercise is widely recommended for elderly people. However, little is known about the acute effects on hemodynamic variables. Thus, we assessed the effects of a water aerobic session on blood pressure in hypertensive elderly women. Fifty hypertensive elderly women aged 67.8 ± 4.1 years, 1.5 ± 0.6 m high and BMI 28.6 ± 3.9 kg/m(2), participated in a crossover clinical trial. The experiment consisted of a 45-minute water aerobics session (70%-75% HRmax adjusted for the aquatic environment) (ES) and a control session (no exercise for 45 minutes) (CS). Heart rate was monitored using a heart rate monitor and systolic blood pressure (SBP) and diastolic (DBP) measurements were taken using a semi-automatic monitor before and immediately after the sessions, and at 10, 20 and 30 minutes thereafter. It was using a generalized estimating equation (GEE) with Bonferroni's post-hoc test (p exercise, BP declined in ES by a greater magnitude than in CS (SBP 7.5 mmHg, 6.2%, p = 0.005 and DBP 3.8 mmHg, 5.5%, p = 0.013). At 20 minutes after exercise and thereafter, SBP and DBP were similar in both ES and CS. In conclusion, BP returned to control levels within 10-20 minutes remaining unchanged until 30 minutes after exercise, and post-exercise hypotension was not observed. Besides, BP changed after exercise was a safe rise of small magnitude for hypertensive people.

  12. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  13. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.

    Science.gov (United States)

    Floris, R; Nijmeijer, K; Cornelissen, E R

    2016-03-15

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size during removal of nC60 fullerene nanoparticle suspensions in dead-end microfiltration and ultrafiltration mimicking separation in real industrial water treatment plants. Membranes were selected with pore sizes ranging from 18 nm to 500 nm to determine the significance of the nC60 to membrane pore size ratio and the adsorption affinity between nC60 and membrane material during filtration. Experiments were carried out with a dead-end bench-scale system operated at constant flux conditions including a hydraulic backwash cleaning procedure. nC60 nanoparticles can be efficiently removed by low pressure membrane technology with smaller and, unexpectedly, also by mostly similar or larger pores than the particle size, although the nC60 filtration behaviour appeared to be different. The nC60 size to membrane pore size ratio and the ratio of the cake-layer deposition resistance to the clean membrane resistance, both play an important role on the nC60 filtration behaviour and on the efficiency of the backwash procedure recovering the initial membrane filtration conditions. These results become specifically significant in the context of drinking water production, for which they provide relevant information for an accurate selection between membrane processes and operational parameters for the removal of nC60 in the drinking water treatment.

  14. Effects of hydrostatic pressure/heat combinations on water uptake and gelatinization characteristics of japonica rice grains: a kinetic study.

    Science.gov (United States)

    Huang, Shih-Li; Jao, Chia-Ling; Hsu, Kuo-Chiang

    2009-10-01

    The combination effects of pressure (200 to 500 MPa) and temperature (20, 40, and 50 degrees C) on the water uptake and gelatinization characteristics of japonica rice (Tainung 71) grains were investigated. Pressure greater than 200 MPa at all temperatures increased the moisture content and volume of rice grains; meanwhile, the increase content of rice grain volume showed a high correlation with that of moisture content (r(2)= 0.96). The highest degree of gelatinization of 73% was observed at 500 MPa and 50 degrees C for 120 min, while gelatinization did not occur at pressures below 300 MPa and temperatures of 20 and 40 degrees C. The rate of gelatinization followed the 1st-order kinetics at each temperature and pressure. The higher pressures and temperatures would result in higher values of rate constant k which could be correlated with both pressure and temperature by combining Arrhenius and Eyring models.

  15. NUMERICAL SIMULATION STUDY ON ROCK BREAKING MECHANISM AND PROCESS UNDER HIGH PRESSURE WATER JET

    Institute of Scientific and Technical Information of China (English)

    NI Hong-jian; WANG Rui-he; ZHANG Yan-qing

    2005-01-01

    The numerical simulation method to study rock breaking process and mechanism under high pressure water jet was developed with the continuous mechanics and the FEM theory. The rock damage model and the damage-coupling model suited to analyze the whole process of water jet breaking rock were established with continuum damage mechanics and micro damage mechanics. The numerical results show the dynamic response of rock under water jet and the evolvement of hydrodynamic characteristic of jet during rock breaking is close to reality, and indicates that the body of rock damage and breakage under the general continual jet occurs within several milliseconds, the main damage form is tensile damage caused by rock unload and jet impact, and the evolvement of rock damage shows a step-change trend. On the whole,the numerical results can agree with experimental conclusions, which manifest that the analytical method is feasible and can be applied to guide the research and application of jet breaking rock theory.

  16. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2013-03-01

    Full Text Available Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water.Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 µw / cm2.Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001. Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults.Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode.

  17. Drinking water and blood pressure: some aspects of problem in republic Dagestan

    Directory of Open Access Journals (Sweden)

    S. O. Abdulkadyrova

    2008-01-01

    Full Text Available The aim of this study was to estimate the links between chemical composition of drinking water and a level of arterial pressure (AP and prevalence of an arterial hypertension AH in populations in highmountainous (Kulinsky,Tljaratinsky, Tsuntinsky areas and plane regions (Nogajsky area of republic Dagestan. Drinking water in high-mountainous region was low mineralized (128, 24±7, 41 mg /l. A parity of anions was HCO3SO4 CL, the parity of cations was Сa>Mg>Na. In plane region drinking water was more mineralized (633, 26±22, 56 mg /l the parity of anions was HCO3 > SO4 > Cl and the parity of cations was Na> Ca> K> Mg. It was revealed, that in a high-mountainous region agerelated levels of AP were lower, than that in plane region. Age increase of BP was negligible. Prevalence AH (BP≥140/90 mm Hg in high-mountainous areas was accordingly equal 5,67±0,48 %., 4,21±0,93 %, 7,23±0,73 %. In Nogajsky area the prevalence of AH was equal 26,90±0,92 %.

  18. Quasi-elastic neutron scattering study on water and polymer dynamics in thermo/pressure sensitive polymer solutions.

    Science.gov (United States)

    Osaka, Noboru; Shibayama, Mitsuhiro; Kikuchi, Tatsuya; Yamamuro, Osamu

    2009-10-01

    Dynamics of water and poly(N-isopropylacrylamide) (PNIPA) in concentrated aqueous solutions, where the majority of water molecules are attached to polymer chains, has been investigated with use of incoherent quasi-elastic neutron scattering (QENS) and dynamic light scattering (DLS) measurements as functions of temperature, T, and hydrostatic pressure, P. It was observed by QENS that the self-diffusion coefficient, D(water), of water in PNIPA/H(2)O solutions increased by P at temperatures below the lower critical solution temperature (LCST) of PNIPA aqueous solutions. However, above the LCST, D(water) decreased by P, as is often reported in non-hydrogen bonding solutions. In isobaric heating runs, therefore, the jump in D(water) at LCST decreased with increasing pressure. On the other hand, the mean-square displacement, , of the local vibrational motion of PNIPA in PNIPA/D(2)O solutions, where the incoherent scattering signal of PNIPA was predominantly observed, was reduced due to the aggregation behavior of PNIPA by pressurizing, which was also confirmed by using DLS. The jump in at the LCST became gradual by pressurizing, which was consistent with the changes of the dynamics of water obtained in PNIPA/H(2)O solutions.

  19. Reconstruction of stratified steady water waves from pressure readings on the ocean bed

    CERN Document Server

    Chen, Robin Ming

    2015-01-01

    Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be reconstructed from data consisting of the wave speed, upstream and downstream density profile, and the trace of the pressure on the bed. First, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes. Second, for waves that consist of multiple layers of constant density immiscible fluids, we provide an exact formula describing each of the interfaces in terms of the data. Finally, for continuously stratified fluids, we detail a reconstruction scheme based on approximation by layer-wise constant density flows.

  20. Gasification Mechanism of Carbon with Supercritical Water at Very High Pressures: Effects on H2 Production.

    Science.gov (United States)

    Martin-Sanchez, Nicolas; Salvador, Francisco; Sanchez-Montero, M Jesus; Izquierdo, Carmen

    2014-08-07

    The scarce data concerning the gasification of carbonaceous solids with supercritical water (SCW) suggest the great potential of this method to produce a valuable green fuel such as H2. However, the extraordinary properties of SCW have not been properly applied to H2 production because the mechanism that governs gasification under these conditions remains unclear. Here, we present a study in which this reaction is explored within the largest pressure range ever assayed in this field, from 1 to 1000 bar. The amplitude of the experimental conditions investigated highlights the various pathways that govern gasification with steam and SCW. Under supercritical conditions, the clusters formed around the superficial groups of the solid reduce the energetic requirements for gasification and generate CO2 as a primary product of the reaction. Consequently, gasification with SCW is significantly faster than that using steam, and the produced gases are richer and more appropriate to obtain pure H2.

  1. Wastewater disinfection by low-pressure UV and ozone: a design approach based on water quality.

    Science.gov (United States)

    Savoye, P; Janex, M L; Lazarova, V

    2001-01-01

    Disinfection processes are known to be very sensitive to wastewater quality. This paper discusses the parameters that impact the UV light (UV) and ozone disinfection processes and the related mechanisms based on literature review. Low-pressure UV and ozone technologies were investigated on effluents that covered a wide range of water quality. The results are given in terms of design doses required to meet three major disinfection standards. Both processes were found eligible for the majority of effluents tested. Although cost-effectiveness is usually considered more favourable to UV, the ozone alternative should be examined in cases such as the disinfection of low-quality effluents or large treatment plants. Ozonation was also found capable of meeting the stringent Title 22 standard with no coagulation at a dose of 10 mg/l.

  2. Analysis of Pressurized Water Reactor Primary Coolant Leak Events Caused by Thermal Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Corwin Lee; Shah, Vikram Naginbhai; Galyean, William Jospeh

    1999-09-01

    We present statistical analyses of pressurized water reactor (PWR) primary coolant leak events caused by thermal fatigue, and discuss their safety significance. Our worldwide data contain 13 leak events (through-wall cracking) in 3509 reactor-years, all in stainless steel piping with diameter less than 25 cm. Several types of data analysis show that the frequency of leak events (events per reactor-year) is increasing with plant age, and the increase is statistically significant. When an exponential trend model is assumed, the leak frequency is estimated to double every 8 years of reactor age, although this result should not be extrapolated to plants much older than 25 years. Difficulties in arresting this increase include lack of quantitative understanding of the phenomena causing thermal fatigue, lack of understanding of crack growth, and difficulty in detecting existing cracks.

  3. A technical learning on the Pressurized Water Nuclear Power Plants using animation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hajime [Kansai Electric Power Co., Inc., Osaka (Japan); Tomohara, Yasutaka; Kubo, Setsuo; Ninomiya, Toshiaki

    2002-01-01

    The pressurized water nuclear power generation plants tends to reduce construction of its new plant from viewpoints of recent stabilization in power demand/supply balance, development of new siting points, and so on. And, together with reducing any opportunity to experience at site, generation alternation to younger engineers without such experiences is progressing. In order to carry out technical tradition with high quality , as it is important to understand experiences of troubles and so on as valuable inheritance to apply them to actual use, it can be thought, in doubt, to be one of solving measures to prepare some learning tools applying the newest technology. The Kansai Electric Co., Ltd. Developed a CAD software using animation and 3D pictures using a personal computer which is edited some processes of technical transition on nuclear energy as a reference on a shape of CD ROM as an object from initial period of nuclear power station to present APWR. (G.K.)

  4. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  5. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  6. Effects of Abscisic Acid and of Hydrostatic Pressure Gradient on Water Movement through Excised Sunflower Roots.

    Science.gov (United States)

    Glinka, Z

    1977-05-01

    The effect of abscisic acid on the exudation rate from decapitated roots of sunflower plants (Helianthus annuus L.) was investigated in the presence and absence of an imposed hydrostatic pressure gradient. The magnitude of the abscisic acid effect was constant even when suctions up to 60 cm Hg were applied to the cut stumps.When roots were bathed in a THO-labeled nutrient solution, the course of the appearance of radioactivity in the exudate, expressed as a function of exudate volume, was not affected by abscisic acid treatment but was strongly speeded up by applying suction.The implications of those findings with regard to the water pathway through the root and the location of the abscisic acid effect are discussed.

  7. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  8. High-frequency and low-frequency chest compression: effects on lung water secretion, mucus transport, heart rate, and blood pressure using a trapezoidal source pressure waveform.

    Science.gov (United States)

    O'Clock, George D; Lee, Yong Wan; Lee, Jongwong; Warwick, Warren J

    2012-01-01

    High-frequency chest compression (HFCC), using an appropriate source (pump) waveform for frequencies at or above 3 Hz, can enhance pulmonary clearance for patients with cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Using a trapezoidal HFCC source pressure waveform, secretion of water from epithelial tissue and transport of mucus through lung airways can be enhanced for patients with CF and COPD. At frequencies below 3 Hz, low-frequency chest compression (LFCC) appears to have a significant impact on the cardiovascular system. For a trapezoidal source pressure waveform at frequencies close to 1 Hz, LFCC produces amplitude or intensity variations in various components of the electrocardiogram time-domain waveform, produces changes at very low frequencies associated with the electrocardiogram frequency spectra (indicating enhanced parasympathetic nervous system activity), and promotes a form of heart rate synchronization. It appears that LFCC can also provide additional cardiovascular benefits by reducing peak and average systolic and diastolic blood pressure for patients with hypertension.

  9. Solvated electrons at the atmospheric pressure plasma-water anodic interface

    Science.gov (United States)

    Gopalakrishnan, R.; Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Graves, D. B.

    2016-07-01

    We present results from a particle-in-cell/Monte Carlo model of a dc discharge in argon at atmospheric pressure coupled with a fluid model of an aqueous electrolyte acting as anode to the plasma. The coupled models reveal the structure of the plasma-electrolyte interface and near-surface region, with a special emphasis on solvated or hydrated electrons. Results from the coupled models are in generally good agreement with the experimental results of Rumbach et al (2016 Nat. Commun. 6 7248). Electrons injected from the plasma into the water are solvated, then lost by reaction with water within about 10-20 nm from the surface. The major reaction products are OH- and H2. The solvated electron density profile is controlled by the injected electron current density and subsequent reactions with water, and is relatively independent of the external plasma electric field and the salt concentration in the aqueous electrolyte. Simulations of the effects of added scavenger compounds (H2O2, \\text{NO}2- , \\text{NO}2- and H+) on near-surface solvated electron density generally match the experimental results. The generation of near-surface OH- following electron-water decomposition in the presence of bulk acid creates a highly basic region (pH ~ 11) very near the surface. In the presence of bulk solution acidity, pH can vary from a very acidic pH 2 away from the surface to a very basic pH 11 over a distance of ~200 nm. High near-surface gradients in aqueous solution properties could strongly affect plasma-liquid applications and challenge theoretical understanding of this complex region.

  10. Effect Of Cuo-Distilled Water Based Nanofluids On Heat Transfer Characteristics And Pressure Drop Characteristics.

    Directory of Open Access Journals (Sweden)

    SANDEEP KUMAR

    2014-09-01

    Full Text Available In this paper, the heat transfer and pressure drop characteristics of the distilled water and the copper oxide-distilled water based nanofluid flowing in a horizontal circular pipe under constant heat flux condition are studied. Copper oxide nanoparticles of 40nm size are dispersed in distilled water using sodium dodecyl sulphate as surfactant and sonicated the nanofluid for three hour. Both surfactant and sonication increases the stability of the nanofluid. The nanofluids are made in three different concentration i.e. 0.1 Vol. %, 0.25 Vol. % and 0.50 Vol. %. The thermal conductivity is measured by KD2 PRO, density with pycnometer, viscosity with Brookfield LVDV-III rheometer. The results show that the thermal conductivity increases with both temperature and concentration. The viscosity and density increases with concentration but decreases with temperature. The specific heat is calculated by model and it decreases with concentration. The experimental local Nusselt number of distilled water is compared with local Nusselt number obtained by the well known shah equation for laminar flow under constant heat flux condition for validation of the experimental set up. The relative error is 4.48 % for the Reynolds number 750.9. The heat transfer coefficient increases with increase in both flow rate and concentration. It increases from 14.33 % to 46.1 % when the concentration is increased from 0.1 Vol. % to 0.5 Vol. % at 20 LPH flow rate. Friction factor decreases with increase in flow rate. It decreases 66.54 % when the flow rate increases from 10 LPH to 30 LPH for 0.1 Vol. %.

  11. Drinking Water Sodium and Elevated Blood Pressure of Healthy Pregnant Women in Salinity-Affected Coastal Areas.

    Science.gov (United States)

    Scheelbeek, Pauline F D; Khan, Aneire E; Mojumder, Sontosh; Elliott, Paul; Vineis, Paolo

    2016-08-01

    Coastal areas in Southeast Asia are experiencing high sodium concentrations in drinking water sources that are commonly consumed by local populations. Salinity problems caused by episodic cyclones and subsequent seawater inundations are likely (partly) related to climate change and further exacerbated by changes in upstream river flow and local land-use activities. Dietary (food) sodium plays an important role in the global burden of hypertensive disease. It remains unknown, however, if sodium in drinking water-rather than food-has similar effects on blood pressure and disease risk. In this study, we examined the effect of drinking water sodium on blood pressure of pregnant women: increases in blood pressure in this group could severely affect maternal and fetal health. Data on blood pressure, drinking water source, and personal, lifestyle, and environmental confounders was obtained from 701 normotensive pregnant women residing in coastal Bangladesh. Generalized linear mixed regression models were used to investigate association of systolic and diastolic blood pressure of these-otherwise healthy-women with their water source. After adjustment for confounders, drinkers of tube well and pond water (high saline sources) were found to have significantly higher average systolic (+4.85 and +3.62 mm Hg) and diastolic (+2.30 and +1.72 mm Hg) blood pressures than rainwater drinkers. Drinking water salinity problems are expected to exacerbate in the future, putting millions of coastal people-including pregnant women-at increased risk of hypertension and associated diseases. There is an urgent need to further explore the health risks associated to this understudied environmental health problem and feasibility of possible adaptation strategies.

  12. Screening of octanol-water partition coefficients for pharmaceuticals by pressure-assisted microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Jia, Zhongjiang; Mei, Lijie; Lin, Fangling; Huang, Sujuan; Killion, Robert B

    2003-07-25

    A rapid screening assay for the determination of octanol-water partition coefficients (log P(OW)) of pharmaceuticals was developed by using pressure-assisted microemulsion electrokinetic chromatography (MEEKC). The microemulsion system contains 50 mM sodium dodecyl sulfate, 0.87 M l-butanol, 82 mM heptane, and 50 mM borate-phosphate (2:3) at pH 10. Ten standard compounds with known log P(OW) values from -0.26 to 4.88 were used for constructing the calibration curve of log P(OW) against the MEEKC retention factor, log k. The log P(OW) values of the compounds were calculated based on the log k values measured by MEEKC and the slope and intercept of the calibration curve. For 13 literature and 32 Roche compounds, about 90% of the log P(OW) values measured by MEEKC are within 0.5 log units of the values from the literature and potentiometric titration. The throughput is about 2 samples/h using +20 kV voltage plus 5 mbar air pressure for separation. This MEEKC method is applicable for log P(OW) screening of weakly basic, weakly acidic, and neutral pharmaceuticals with log P(OW) = 0-5 and pKa < or = 10.

  13. Effects of sediment on the dynamic pressure of water and sediment on dams

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    After a reservoir has been in operation for a period of time,a sediment layer is likely formed before the dam. Since studies of the effects of sediment layers on the hydrodynamic pressures of impounded water and the aseismic responses of dam are few,the dynamic effect of sediment may be applied neither in the seismic design of new dams nor in the assessment of earthquake safety of existing dams. However,a common practice of the action of sediment layers and foundation is based on a partial energy absorption boundary. It is shown that during a vertical harmonic ground motion,the sediment layer could alter the natural frequencies of reservoir. The dynamic pressure on a rigid vertical dam face caused by the vertical ground motion is obtained through a computational model and an experimental test by using a shaking table. With a change in the thickness of sediment,the frequency corresponding to the inertia amplification effect appears to vary gradually. The results are useful for further study of seismic responses of dams.

  14. Standard Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards, E706(0)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Some of these are existing ASTM standards, some are ASTM standards that have been modified, and some are proposed ASTM standards. General requirements of content and consistency are discussed in Section 6 . More detailed writers' and users' information, justification, and specific requirements for the nine practices, ten guides, and three methods are provided in Sections 3-5. Referenced documents are discussed in Section 2. The summary-type information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced documents, Section 2 and references (1-106) for use by individual writers and users. 1...

  15. The simulation of thermohydraulic phenomena in a pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Popp, M

    1987-01-01

    Several important fluid flow and heat transfer phenomena essential to nuclear power reactor safety were investigated. Scaling and modeling laws for pressurized water reactors are reviewed and a new scaling approach focusing on the overall loop behavior is presented. Scaling criteria for one- and two-phase natural circulation are developed, as well as a simplified model describing the first phase of a small break loss of coolant accident. Reactor vessel vent valve effects are included in the analysis of steady one-phase natural circulation flow. Two new dimensionless numbers, which uniquely describe one-phase flow in natural circulation loops, were deduced and are discussed. A scaled model of the primary loop of a typical Babcock and Wilcox reactor was designed, built, and tested. The particular prototype modeled was the TMI unit 2 reactor. The electrically heated, stainless steel model operates at a maximum pressure of 300 psig and has a maximum heat input of 188 kW. The model is about 4 times smaller in height than the prototype reactor, with a nominal volume scale of 1:500. Experiments were conducted establishing subcooled natural circulation in the model loop. Both steady flow and power transients were investigated.

  16. First-principles investigation of boron incorporation into CRUD under Pressurized Water Reactor conditions

    Science.gov (United States)

    Rak, Zs.; O'Brien, C. J.; Brenner, D. W.

    2014-03-01

    CRUD (Chalk River Unidentified Deposit) is predominately a nickel-ferrite deposit on hot surfaces of nuclear fuel rods during reactor operation. The presence of CRUD modifies the core-coolant heat transfer and can induce localized corrosion on the cladding surface. Besides these unwanted effects boron, which is a neutron absorber, can accumulate within the CRUD, triggering shifts in the neutron flux and fluctuations in the reactor power level. Therefore, it is crucial to understand and predict the mechanisms by which B is trapped into the CRUD. As a first step, the incorporation of B defect into the crystal structure of NiFe2O4 has been investigated using the DFT framework. To obtain the formation energies of various interstitial and substitutional B-defects, theoretical results have been combined with experimental thermo-chemical data. Assuming solid-solid equilibrium conditions, the main factors that limit the incorporation of B are (i) the narrow stability domain of the host NiFe2O4 and (ii) the formation of ternary Fe-B-O and Ni-B-O compounds. The study also investigates the incorporation of B assuming solid-liquid equilibrium between NiFe2O4 and the surrounding aqueous solution under conditions of pressure, temperature, and pH characteristic to pressurized water reactors.

  17. Ice-melt rates during volcanic eruptions within water-drained, low-pressure subglacial cavities

    Science.gov (United States)

    Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.

    2016-02-01

    Subglacial volcanism generates proximal and distal hazards including large-scale flooding and increased levels of explosivity. Direct observation of subglacial volcanic processes is infeasible; therefore, we model heat transfer mechanisms during subglacial eruptions under conditions where cavities have become depressurized by connection to the atmosphere. We consider basaltic eruptions in a water-drained, low-pressure subglacial cavity, including the case when an eruption jet develops. Such drained cavities may develop on sloping terrain, where ice may be relatively shallow and where gravity drainage of meltwater will be promoted. We quantify, for the first time, the heat fluxes to the ice cavity surface that result from steam condensation during free convection at atmospheric pressure and from direct and indirect radiative heat transfer from an eruption jet. Our calculations indicate that the direct radiative heat flux from a lava fountain (a "dry" end-member eruption jet) to ice is c. 25 kW m-2 and is a minor component. The dominant heat transfer mechanism involves free convection of steam within the cavity; we estimate the resulting condensation heat flux to be c. 250 kW m-2. Absorption of radiation from a lava fountain by steam enhances convection, but the increase in condensing heat flux is modest at c. 25 kW m-2. Overall, heat fluxes to the ice cavity surface are likely to be no greater than c. 300 kW m-2. These are comparable with heat fluxes obtained by single phase convection of water in a subglacial cavity but much less than those obtained by two-phase convection.

  18. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  19. 14C release from a Soviet-designed pressurized water reactor nuclear power plant.

    Science.gov (United States)

    Uchrin, G; Csaba, E; Hertelendi, E; Ormai, P; Barnabas, I

    1992-12-01

    The Paks Nuclear Power Plant in Hungary runs with four pressurized water reactors, each of 440-MWe capacity. Sampling systems have been developed and used to determine the 14C of various chemical forms (14CO2, 14CO, 14CnHm) in the airborne releases. The average normalized yearly discharge rates for the time period 1988-1991 are equal to 0.77 TBq GWe-1 y-1 for hydrocarbons and 0.05 TBq GWe-1 y-1 for CO2. The contribution of 14CO was less than 0.5% of the total emission. The 14C discharge rate is estimated to be four times higher than the corresponding mean data of Western European pressurized water reactors. The calculated effective dose equivalent to individuals living in the vicinity of the power plant, due to 14C release, was 0.64 microSv in 1991 while the effective dose equivalent due to the natural 14C level was 15 microSv y-1. The long-term global impact of the 14C release in the operational period of the plant (1982-1991) was 1,270 man-Sv. The 14C excess in the environmental air has been measured since 1989 by taking biweekly samples at a distance of 1.7 km from the nuclear power plant. The long-term average of radiocarbon excess coming from the power plant was 2 mBq m-3. The local 14C deposition was followed by tree ring analysis, too. No 14C increase higher than the uncertainty of the measurement (four per thousand = 0.17 mBq m-3) was observed.

  20. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    Science.gov (United States)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  1. Investigation on the Determination of Initial Shock Pressure at Near Interface Field of TNT Charge and Water for Underwater Explosion

    Institute of Scientific and Technical Information of China (English)

    WU Cheng; ZHANG Xiang-rong; HUANG Feng-lei; SHI Jing-zhu; ZHANG Yu-xia

    2007-01-01

    There are few report on the directly measurement of the initial shock pressure of explosive charge at its interface of water for underwater explosion.The special technologies have been taken to the measurement system with manganin piezoresistive gauge (PRG) in order to measure the initial shock pressure at the interface and its near field of TNT chare and water.The free-holding PRG film gauge can directly determine the shock peak pressure at the interface and near field of TNT charge up to 12.85GPa, which is satisfying for the good agreement to the 12.97GPa with one dimensional theoretical analysis and 12.86GPa with numerical simulation.The maximum discrepancy is 0.93%.The results show that it is precise and reliable to determine the initial shock pressure of underwater explosion charge with the PRG technology.

  2. Water properties and structure of pork sausages as affected by high-pressure processing and addition of carrot fibre

    DEFF Research Database (Denmark)

    Møller, Sandie Mejer; Grossi, Alberto Blak; Christensen, Mette;

    2011-01-01

    The effects of high-pressure processing (HPP) and addition of carrot fibre on pork sausages have been studied using NMR T(2) relaxometry and measurements of water-binding capacity (WBC) by centrifugation. Significant effects of temperature (raw, 40, 50, or 60°C), holding time (1s, 3, 6, or 9min......), and addition of carrot fibre on the distribution and mobility of water were found. However, the effect of carrot fibre could not be explained by structural changes in the sausages when examined by confocal laser scanning microscopy (CLSM). Correlations between T(2) relaxation measurements and WBC determined...... by centrifugation revealed that T(2) relaxation times were able to explain more than 90% of the variation in WBC for both non-pressure and pressure-treated sausages. However, only 49% of the variation was explained for pressure-treated sausages with carrot fibre, indicating that combining addition of fibre and high...

  3. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Science.gov (United States)

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  4. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  5. Natural Convective Heat and Mass Transfer of Water with Corrosion Products at Super—Critical Pressures under Cooling COnditions

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1993-01-01

    A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures.The influence of variable properties at super-critical pressures on natural convertion has been analyzed.The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.

  6. A Tilt, Soil Moisture, and Pore Water Pressure Sensor System for Slope Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Rosanno de Dios

    2009-06-01

    Full Text Available This paper describes the design, implementation and characterization of a sensor network intended for monitoring of slope deformation and potential failures. The sensor network system consists of a tilt and moisture sensor column, a pore water pressure sensor column and a personal computer for data storage and processing. The tilt sensor column consists of several pipe segments containing tri-axial accelerometers and signal processing electronics. Each segment is joined together by flexible joints to allow for the column to deform and subsequently track underground movement. Capacitive-type sensors for soil moisture measurement are also included in the sensor column, which are used to measure the soil moisture at different depths. The measurements at each segment are transferred via a Controller Area Network (CAN bus, where the CAN master node is located at the top of the column above ground. The CAN master node transmits the collected data from the slave nodes via a wireless connection to a personal computer that performs data storage, processing and display via a Python-based graphical user interface (GUI. The entire system was deployed and characterized on a small-scale slope model. Slope failure was induced via water seepage and the system was demonstrated to ably measure the inclination and soil moisture content throughout the landslide event.

  7. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  8. Spectrochemical analysis of Cs in water and soil using low pressure laser induced breakdown spectroscopy

    Science.gov (United States)

    Ramli, Muliadi; Khumaeni, Ali; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2017-06-01

    An experimental study has been conducted for the practical and in situ application of laser-induced breakdown spectroscopy (LIBS) for the detection of Cs pollutant in water and soil in the nearby area of Fukushima Nuclear Power Station. The spectrochemical measurements were carried out by means of 355 nm Nd-YAG laser with N2 and He ambient gases at atmospheric and low pressures. The soil samples were prepared by pelletizing the mixtures of 80% soil and 20% KBr while the aqueous samples were prepared as thin films electro deposited on indium tin oxide (ITO) glass. The resulted emission spectra using 0.5 kPa N2 ambient gas shows the minimum detectable Cs concentration of 0.2 ppm and 0.3 ppm in the water and soil samples, respectively. The result of this experiment has thus demonstrated the viability of the LIBS equipment employed here as a more practical, in-situ and even mobile alternative to the standard use of gamma-ray spectroscopy using germanium detector.

  9. Modes of targets in water excited and identified using radiation pressure of modulated focused ultrasound

    Science.gov (United States)

    Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip

    2016-11-01

    The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.

  10. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    CERN Document Server

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...

  11. Effect of 300 and 500 MPa pressure treatments on starch-water adsorption/desorption isotherms and hysteresis

    Science.gov (United States)

    Santos, Mauro D.; Cunha, Pedro; Queirós, Rui P.; Fidalgo, Liliana G.; Delgadillo, Ivonne; Saraiva, Jorge A.

    2014-10-01

    Pressure treatments of 300 and 500 MPa during 15 min were found to change starch-water sorption (adsorption and desorption) isotherms and the hysteresis effect, particularly the 500 MPa. This last treatment shifted the adsorption/desorption isotherms downward, compared with non-treated starch and starch treated at 300 MPa. The observed hysteresis effect decreased with the increase in pressure level in the whole aw range, indicating that adsorption and desorption isotherms became closer. Guggenheim-Anderson-De Boer and Brunauer-Emmett-Teller model parameters Cb, Cg, K and Mm also showed changes caused by pressure, the latter being lower in the pressure-processed samples, thus indicating possible changes on microbial and (bio)chemical stabilities of pressure-processed food products containing starch.

  12. Effect of tender coconut water on systolic and diastolic blood pressure in prehypertensive women

    Directory of Open Access Journals (Sweden)

    Farapti Farapti

    2014-02-01

    . Dietary intakes of high potassium will decrease blood pressure (BP. Tender coconut water (TCW is a typical drink high in potassium. This study aimed to investigate the effect of TCW on BP in female teachers and employees prehypertension. Methods: The research was a parallel single blind randomized clinical trial. A total of 32 female prehypertension subjects aged 25-44 years. The subjects were selected using certain criteria and randomly allocated to one of two groups using block randomized, 16 subjects each. The treatment group received TCW 300 ml twice daily for 14 days and nutritional counseling, and the control group received water 300 ml twice daily for 14 days and nutritional counseling. Assessment of BP was done on day 0, day 8, and day 15. Statistical analysis were done using t-test and Mann-Whitney test. Results: Mean dietary intakes of potassium were 1420.28±405.54 mg/day or 30.22±8.63% compared to Recommended Dietary Allowance (RDA. During treatment period, potassium intake increased significantly in the treatment group. There were decreased BP in both groups, which were greater in the treatment group, but not statistically significant different (P > 0.05. The mean decrease of systolic BP was significant in treatment group (P = 0.031, meanwhile the mean decrease of diastolic BP was not significant (P=0.134. Conclusion: Tender coconut water 300 ml twice daily for 14 consecutive days has tendency to decrease systolic BP, but not diastolic blood pressure. (Health Science Indones 2013;2: 64-8Key words: coconut water, systolic and diastolic blood pressure

  13. Effect of tender coconut water on systolic and diastolic blood pressure in prehypertensive women

    Directory of Open Access Journals (Sweden)

    Farapti Farapti

    2014-02-01

    . Dietary intakes of high potassium will decrease blood pressure (BP. Tender coconut water (TCW is a typical drink high in potassium. This study aimed to investigate the effect of TCW on BP in female teachers and employees prehypertension. Methods: The research was a parallel single blind randomized clinical trial. A total of 32 female prehypertension subjects aged 25-44 years. The subjects were selected using certain criteria and randomly allocated to one of two groups using block randomized, 16 subjects each. The treatment group received TCW 300 ml twice daily for 14 days and nutritional counseling, and the control group received water 300 ml twice daily for 14 days and nutritional counseling. Assessment of BP was done on day 0, day 8, and day 15. Statistical analysis were done using t-test and Mann-Whitney test. Results: Mean dietary intakes of potassium were 1420.28±405.54 mg/day or 30.22±8.63% compared to Recommended Dietary Allowance (RDA. During treatment period, potassium intake increased significantly in the treatment group. There were decreased BP in both groups, which were greater in the treatment group, but not statistically significant different (P > 0.05. The mean decrease of systolic BP was significant in treatment group (P = 0.031, meanwhile the mean decrease of diastolic BP was not significant (P=0.134. Conclusion: Tender coconut water 300 ml twice daily for 14 consecutive days has tendency to decrease systolic BP, but not diastolic blood pressure. (Health Science Indones 2013;2: 64-8Key words: coconut water, systolic and diastolic blood pressure

  14. Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane:Effects of Operating Pressure on Membrane Fouling

    Institute of Scientific and Technical Information of China (English)

    赵学辉; 张宏伟; 王捷

    2014-01-01

    Membrane fouling seriously restricts applications of membrane technology. A novel strategy was ap-plied in this study to retard membrane fouling by changing operating pressure with the pressure responsibility membrane. A polyurethane-based hollow fiber membrane was used to treat surface water for evaluating the effect of operating pressure on membrane fouling. Some bench-scale tests in dead-end mode were carried out. In the experi-ments without backwashing, as operating pressure increased, severe membrane fouling occurred on membrane sur-face, while the permeate quality was improved obviously, which is considered to be due to shrinkage deformation. The total resistance, irreversible resistance and reversible resistance under different backwash pressures were de-termined in filtration/backwashing test. With the increase of backwash pressure, the total resistance decreased, and more importantly, the irreversible resistance also decreased, which implies that small particles deposited inside membrane pores and cake layers on membrane surface are effectively removed. Similar results could be obtained in mass balance tests. The results of the present study indicate that the application of pressure responsibility membrane in surface water treatment may be an effective strategy for reducing membrane fouling.

  15. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Science.gov (United States)

    Hoffer, Petr; Sugiyama, Yuki; Hosseini, S. Hamid R.; Akiyama, Hidenori; Lukes, Petr; Akiyama, Masahiro

    2016-10-01

    This paper reports physical characteristics of water surface discharges. Discharges were produced by metal needle-to-water surface geometry, with the needle electrode driven by 47 kV (FWHM) positive voltage pulses of 2 µs duration. Propagation of discharges along the water surface was confined between glass plates with 2 mm separation. This allowed generation of highly reproducible 634 mm-long plasma filaments. Experiments were performed using different atmospheres: air, N2, and O2, each at atmospheric pressure. Time- and spatially-resolved spectroscopic measurements revealed that early spectra of discharges in air and nitrogen atmospheres were dominated by N2 2nd positive system. N2 radiation disappeared after approx. 150 ns, replaced by emissions from atomic hydrogen. Spectra of discharges in O2 atmosphere were dominated by emissions from atomic oxygen. Time- and spatially-resolved emission spectra were used to determine temperatures in plasma. Atomic hydrogen emissions showed excitation temperature of discharges in air to be about 2  ×  104 K. Electron number densities determined by Stark broadening of the hydrogen H β line reached a maximum value of ~1018 cm-3 just after plasma initiation. Electron number densities and temperatures depended only slightly on distance from needle electrode, indicating formation of high conductivity leader channels. Direct observation of discharges by high speed camera showed that the average leader head propagation speed was 412 km · s-1, which is substantially higher value than that observed in experiments with shorter streamers driven by lower voltages.

  16. Effect of Electronic Toilet System (Bidet) on Anorectal Pressure in Normal Healthy Volunteers: Influence of Different Types of Water Stream and Temperature

    Science.gov (United States)

    Ryoo, Seungbum; Song, Yoon Suk; Seo, Mi Sun; Oh, Heung-Kwon; Choe, Eun Kyung

    2011-01-01

    Although bidets are widely used in Korea, its effects on anorectal pressures have not been studied in detail in terms of the water settings used. Twenty healthy volunteers were placed on a toilet equipped with a bidet, and anorectal pressures were measured with a manometry catheter inserted into the rectum and anal canal before and after using the bidet at different water forces (40, 80, 160, 200 mN), temperatures (24℃ vs 38℃), and water jet widths (narrow vs wide). The pressure at anal high pressure zone decreased from 96.1 ± 22.5 to 81.9 ± 23.3 mmHg at water jet pressure of 40 mN and 38℃ wide water jet (P water jet pressure of 80 mN and 38℃ narrow water jet (P water jet pressure of 80 mN and 38℃ wide water jet (P water jet pressure, a warm water temperature, and a wide type water jet. PMID:21218033

  17. FLOW PATTERN AND PRESSURE LOSS OF OIL-WATER TWO-PHASE FLOW IN HORIZONTAL STEEL PIPE

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; YAN Da-fan; ZHAO Jing-mei; AN Wei-jie; YAN Da-chun

    2005-01-01

    Experimental Study on oil-water two-phase flow patterns and pressure loss was conducted on a horizontal steel pipe loop with 26.1mm inner diameter and 30m total length.The working fluids are white oil, diesel oil and tap water.Several instruments, including a new type of liquid-probe are successfully integrated to identify 7 different flow patterns.The characteristics of the flow patterns and the transition process were observed and depicted in this paper.Investigation revealed that the pressure loss was mainly depended on the flow patterns.

  18. Increasing gas output by an active water-pressure regime interaction in a massive deposit at the Korobsk field

    Energy Technology Data Exchange (ETDEWEB)

    Trubaev, V.L.; Shandrygin, A.N.

    1983-02-01

    Controlled water flooding and pressurization were used to increase the gas output at the Korobsk field (USSR). The mechanics of gas accumulation under flooding conditions depend on the macroheterogeneity of the collector; optimizing the gas output involves selective flooding and pressurizing the water to prevent gas pocket formation in the zones bypassed by the flooded front. Strata mapping of the Korobsk field, combined with theoretical and laboratory studies of the geological characteristics of the deposit, has made it possible to estimate the location and distribution of the various types of residual gas pockets.

  19. Pressure Measurements on a Deforming Surface in Response to an Underwater Explosion in a Water-Filled Aluminum Tube

    Directory of Open Access Journals (Sweden)

    G. Chambers

    2001-01-01

    Full Text Available Experiments have been conducted to benchmark DYSMAS computer code calculations for the dynamic interaction of water with cylindrical structures. Small explosive charges were suspended using hypodermic needle tubing inside Al tubes filled with distilled water. Pressures were measured during shock loading by tourmaline crystal, carbon resistor and ytterbium foil gages bonded to the tube using a variety of adhesives. Comparable calculated and measured pressures were obtained for the explosive charges used, with some gages surviving long enough to record results after cavitation with the tube wall.

  20. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments

    Science.gov (United States)

    Konno, Yoshihiro; Jin, Yusuke; Uchiumi, Takashi; Nagao, Jiro

    2013-06-01

    We present a novel setup for measuring the effective gas-water permeability of methane-hydrate-bearing sediments. We developed a core holder with multiple pressure taps for measuring the pressure gradient of the gas and water phases. The gas-water flooding process was simultaneously detected using an X-ray computed tomography scanner. We successfully measured the effective gas-water permeability of an artificial sandy core with methane hydrate during the gas-water flooding test.

  1. Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations

    Science.gov (United States)

    Myint, Philip C.; Benedict, Lorin X.; Belof, Jonathan L.

    2017-08-01

    We present equations of state relevant to conditions encountered in ramp and multiple-shock compression experiments of water. These experiments compress water from ambient conditions to pressures as high as about 14 GPa and temperatures of up to several hundreds of Kelvin. Water may freeze into ice VII during this process. Although there are several studies on the thermodynamic properties of ice VII, an accurate and analytic free energy model from which all other properties may be derived in a thermodynamically consistent manner has not been previously determined. We have developed such a free energy model for ice VII that is calibrated with pressure-volume-temperature measurements and melt curve data. Furthermore, we show that liquid water in the pressure and temperature range of interest is well-represented by a simple Mie-Grüneisen equation of state. Our liquid water and ice VII equations of state are validated by comparing to sound speed and Hugoniot data. Although they are targeted towards ramp and multiple-shock compression experiments, we demonstrate that our equations of state also behave reasonably well at pressures and temperatures that lie somewhat beyond those found in the experiments.

  2. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Charton A

    2014-08-01

    Full Text Available Antoine Charton,1 François Péronnet,2 Stephane Doutreleau,3 Evelyne Lonsdorfer,3 Alexis Klein,4 Liliana Jimenez,4 Bernard Geny,3 Pierre Diemunsch,1 Ruddy Richard5 1Department of Anesthesia and Critical Care, and EA 3072, Hôpital de Hautepierre; University of Strasbourg, Strasbourg, France; 2Department of Kinesiology, Université de Montréal, Montreal, QC, Canada; 3CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, Strasbourg, France and University of Strasbourg, Faculty of Medicine, Physiology Department, Strasbourg, France; 4Danone Research, Palaiseau, France; 5Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand and INRA UMR 1019, CRNH-Auvergne, Clermont-Ferrand, France Background: Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2 supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods: Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach. Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2, skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2 were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results: Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in

  3. Effect of supplementation of tender coconut water on blood pressure of primary hypertensive subjects

    Directory of Open Access Journals (Sweden)

    Gullapalli HS, Avinash P Tekade, Namrata H Gullapalli

    2013-04-01

    Full Text Available Background: Hypertension is a major health problem worldwide. Increased vascular resistance, sodium retention & sympathetic over activity contributes to the blood pressure elevation. Plant foods may be beneficial in decreasing blood pressure (BP. Recently much attention has been focused on plant foods that may be beneficial in preventing Hypertension, metabolic syndrome and possibly reduce the risk of various diseases. This clinical study was conducted to test the effectiveness of a structured intervention on BP of primary hypertensive subjects. Aim: To study the effect of Tender Coconut Water (TCW on BP of Primary hypertensive subjects. Methods and Material: 70 subjects were selected randomly sample for 6 weeks of the intervention program. Among them 40 subjects were selected as the experimental group and 30 300ml/day for 6 weeks whereas the control group was instructed to follow the same routine without modifications. One initial, two mid intervention (after every 15 days and one final (post intervention BP recorded for both the groups. The obtained data was statistically analyzed. Results: The mean systolic BP of experimental group and control group were decreased from 145.8 mm Hg and 141mm of Hg to 135.3 mm of Hg and 140 mm of Hg respectively. The mean diastolic BP of experimental group and control group were decreased from 93.7 mm H g and 90.9 mmHg to 86.9 mm of Hg and 89.7 mm of Hg respectively. Conclusion: Irrespective of cause of hypertension TCW has beneficial effect on BP. TCW contains high amount of potassium which causes vasodilatation and also improve the endothelial function.

  4. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  5. 管道水击压力的影响因素%Influence factors of water hammer pressure in pipeline

    Institute of Scientific and Technical Information of China (English)

    张艳玲

    2015-01-01

    本文综合分析了流速变化和阀门的不同关闭特性对管道水击压力的影响,从而为水击防护措施提供了一定的理论依据。%This paper reviews the influence of flow-rate change and valve closing characteristics on water hammer pressure in pipeline to provide a theoretical basis for water hammer protection.

  6. A high pressure triaxial cell with improved measurement sensitivity for saturated water permeability of high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    El-Dieb, A.S.; Hooton, R.D. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01

    The measurement of the saturated water permeability of concrete is of great interest, but with the rapid improvements in properties of high performance concretes, the most common problem is the ability and accuracy of measuring the very small flow volumes. A high pressure triaxial cell with improved measurement sensitivity, capable of continuously measuring saturated water permeability of the order of < 10[sup [minus]15] m/s, is presented in this paper.

  7. Measurements of turbulent pressures of flow in a water-conveying pipe containing a simulation fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, F.; Cao, J.; Yu, S.D. [Ryerson Univ., Dept. of Mechanical and Industrial Engineering, Toronto, Ontario (Canada)

    2008-07-01

    A test apparatus was set up to investigate the turbulent flows and flow induced vibrations in a fluid-conveying pipe containing a CANDU 43-element simulation fuel bundle. The fuel bundle is immersed in test pipe of 4-inch in diameter. A centrifugal pump circulates fresh water with a maximum velocity of 9 m/s at full pump power. The pressure fluctuation near the inner surface of the flow channel was measured at various locations using a pressure transducer and a data acquisition system. It was found that the turbulence away from the test section containing the simulation fuel bundle is largely caused by the pipe flow of high Reynolds number; the turbulence near and inside the bundle structures is the result of pipe flow and fluid-solid interactions. The measurements of pressures near the fuel bundle structure showed that the power spectral density (PSD) of pressure fluctuation has a frequency range of 1-300 Hz, and a normalized maximum pressure range of 0.04 to 0.05 times dynamic pressure. The effects of bundle angular alignments and subchannels on the pressure spectra, Strouhal number range, and streamwise pressure drop are also investigated in this paper. Results presented in this paper are useful in validating the computational models for flow-induced fluid forces that cause the fuel bundle structure to rock and fret. (author)

  8. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark (Denmark); Zortea, Raissa [Department of Land, Environment and Geotechnology Engineering, Polytechnic University of Turin (Italy); Piketty, Aurelia [Institute of Chemistry, Industrial and Chemical Engineering and Technology (INP-ENCIACET), National Polytechnic Institute of Toulouse (France); Vega, Sergio Rodriguez [Chemical Engineering, Complutense University of Madrid (Spain); Andersen, Henrik Rasmus, E-mail: Henrik@ndersen.net [Department of Environmental Engineering, Technical University of Denmark (Denmark)

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min{sup −1} for chloroform to 0.523 min{sup −1} for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m{sup −3} d{sup −1} and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m{sup −3} d{sup −1}, while 2.6 kWh m{sup −3} d{sup −1} was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m{sup −3} d{sup −1}. It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. - Highlights: ► UV irradiation is able to degrade all 12 investigated disinfection by-products. ► Bromine species are easier to remove than their chlorinated analogues. ► UV dose used for combined chlorine was comparable with doses required for DBP removal. ► Significant removal of some disinfection by-products in swimming pools is indicated.

  9. Piezoluminescence at the air-water interface through dynamic molecular recognition driven by lateral pressure application.

    Science.gov (United States)

    Ariga, Katsuhiko; Nakanishi, Takashi; Terasaka, Yukiko; Tsuji, Hiromitsu; Sakai, Daisuke; Kikuchi, Jun-ichi

    2005-02-01

    The steroid cyclophanes with a cyclic core consisting of a 1,6,20,25-tetraaza[6.1.6.1]paracyclophane connected to four steroid moieties (cholic acid or cholanic acid) through a flexible l-lysine spacer were spread on water as Langmuir monolayers. The pi-A isotherm of the cholic-type steroid cyclophane includes a transition to the condensed phase with a limiting area of approximately 2 nm(2). This value is close to the cross-sectional area of the steroid cyclophane with a standing-up conformation of the cholic acid moieties, strongly suggesting that the cavity converts from a two-dimensional cavity to a three-dimensional cavity upon compressing the monolayer. Surface-reflective fluorescence spectroscopy of the monolayer using an aqueous fluorescent probe (6-(p-toluidino)naphthalene-2-sulfonate (TNS)) showed an abrupt increase in the TNS fluorescence intensity at a molecular area of 2 nm(2). Efficient binding of the guest probe would occur upon the completion of the three-dimensional cavity. Repeated compression and expansion induces periodic changes in the fluorescence intensity. This indicates a piezoluminescence effect through the catch and release of the TNS guest upon dynamic cavity formation. Analyses of the binding behavior of TNS to the steroid cyclophane resulted in binding constants in the range of approximately (5-9) x 10(4) M(-1) which are similar to that observed in lipid bilayer media (K = 5.1 x 10(4) M(-1)). The fluorescence intensity within the condensed phase was significantly increased with increasing pressure, suggesting that suppression of the molecular motion of the bound TNS may retard the nonemission process. Similar monolayer experiments were carried out with the monolayer of the cholanic-type steroid cyclophane that cannot form an open conformation on water. Both the phase transition in the pi-A isotherm and the change in the fluorescence intensity were negligible, confirming that the dynamic characteristic of the cavity is indispensable for

  10. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  11. Real-time adjustment of pressure to demand in water distribution systems: Parameter-less P-controller algorithm

    CSIR Research Space (South Africa)

    Page, Philip R

    2016-08-01

    Full Text Available . De Paola, E. Galdiero and M. Giugni, "A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks," Engineering Optimization, vol. 48, no. 5, pp. 727-739, 2016. [16] M. J. Mudumbe and A. M. Abu...

  12. Waste water ducts in high-rise buildings. Pressure compensation in the downpipe; Schmutzwasserleitungen in Hochhaeusern. Druckausgleich im Fallrohr

    Energy Technology Data Exchange (ETDEWEB)

    Ishorst, B. [Informationszentrum Entwaesserungstechnik Guss e.V. (IZEG) (Germany); Guetegemeinschaft Entwaesserungstechnik Guss e.V. (GEG) (Germany)

    2006-09-15

    Ventilation is a key aspect for correct function of a waste water system. In order to enable pressure compensation and ensure that sewer gases are led outside, downpipes in high-rise buildings must have at least one main ventilation duct. The author presents examples to illustrate how downpipes should be constructed for optimum flow conditions and reliable function. (orig.)

  13. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2010-10-01

    Full Text Available Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power – this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  14. Standard Test Method for Water Penetration of Flat Plate Solar Collectors by Uniform Static Air Pressure Difference

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the determination of the resistance of flat plate solar collectors to water penetration when water is applied to their outer surfaces with a static air pressure at the outer surface higher than the pressure at the interior of the collector. 1.2 This test method is applicable to any flat plate solar collector. 1.3 The proper use of this test method requires a knowledge of the principles of pressure and deflection measurement. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is contained in Section 6.

  15. The impalement of water drops impinging onto hydrophobic/superhydrophobic graphite surfaces: the role of dynamic pressure, hammer pressure and liquid penetration time

    Science.gov (United States)

    Pittoni, Paola G.; Lin, Ya-Chi; Lin, Shi-Yow

    2014-05-01

    Droplet impingement experiments at low Weber numbers were conducted by digitizing silhouettes of impacting water drops onto unlike graphite substrates, typified by different advancing water contact angles (θa): 140 and 160°. The relaxation of wetting diameter, dynamic contact angle, and drop shapes were measured. The purpose was to carefully investigate the phenomenology and possible causes of the failure of the superhydrophobicity. During impact and spreading phases, all the drops impinging onto both graphite substrates showed a similar behavior. Then, after an initial free recoil, drops impinging at lower impact velocities onto graphite substrates characterized by θa = 140° clearly exhibited time intervals in which the wetting diameter appeared to be almost constant. The duration of this pinned phase was observed decreasing with increasing the impact height and almost completely disappearing for drops impinging at higher impact velocities. This behavior has never been reported before, and, contrariwise, water droplets impinging at lower impact velocities onto hydrophobic and superhydrophobic surfaces have been generally observed more freely retracting, and ultimately rebounding, compared to drops impacting at higher velocities. In the present study, this latter behavior was recorded just for drops impinging onto graphite surfaces characterized by θa = 160°. A theoretical description of the experimental results was proposed, specifically investigating the role of dynamic pressure, hammer pressure and liquid penetration time during the impact, spreading and recoil stages.

  16. Characteristic analysis of a water hydraulic pilot-operated pressure-reducing valve

    Science.gov (United States)

    Mao, Xuyao; Hu, Junhua; Wu, Chao; Liu, Yiou; Liu, Yinshui

    2017-06-01

    Comprehensive characteristics of a seawater hydraulic pilot-operated pressure-reducing valve with constant pressure output were analyzed. A rated pressure of 15MPa and a rated flowrate of 40L/min were offered in the numerical work. Static and dynamic analyses show good behaviors: The settling time is less than 0.2s, the output pressure variation is about 0.3MPa at the maximum when input pressure or flowrate is flucturing, and the steady external leakage is below 0.025L/min. The pilot spring regulates the output pressure and the main spring has an ability to adjust the output pressure variation faintly. The narrow hole diameter of the adjustable damping plugs is negatively related to the respond time. And appropriately raising the spring chamber volume can evidently reduce outlet pressure impact of the valve when input mutations happen.

  17. Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process

    Science.gov (United States)

    See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy

    1993-03-01

    The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.

  18. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  19. Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Junli Gou

    2009-01-01

    Full Text Available A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS, which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (SCPRHRS, the transient behaviors of the PRHRS as well as the effects of the height difference between the steam generator and the heat exchanger and the heat transfer area of the heat exchanger are studied in detail. Through the calculation analysis, it is found that the calculated parameter variation trends are reasonable. The higher height difference between the steam generator and the residual heat exchanger and the larger heat transfer area of the residual heat exchanger are favorable to the passive residual heat removal system.

  20. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large (1175 MW(e)) pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1/sup 1///sub 2/ years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period.

  1. Interactions between dislocations and irradiation-induced defects in light water reactor pressure vessel steels

    Science.gov (United States)

    Jumel, Stéphanie; Van Duysen, Jean-Claude; Ruste, Jacky; Domain, Christophe

    2005-11-01

    The REVE project (REactor for Virtual Experiments) is an international effort aimed at developing tools to simulate irradiation effects in light water reactors materials. In the framework of this project, a European team developed a first tool, called RPV-1 designed for reactor pressure vessel steels. This article is the third of a series dedicated to the presentation of the codes and models used to build RPV-1. It describes the simplified approach adopted to simulate the irradiation-induced hardening. This approach relies on a characterization of the interactions between a screw dislocation and irradiation-induced defects from molecular dynamics simulations. The pinning forces exerted by the defects on the dislocation were estimated from the obtained results and some hypotheses. In RPV-1, these forces are used as input parameters of a Foreman and Makin-type code, called DUPAIR, to simulate the irradiation-induced hardening at 20 °C. The relevance of the proposed approach was validated by the comparison with experimental results. However, this work has to be considered as an initial step to facilitate the development of a first tool to simulate irradiation effects. It can be improved by many ways (e.g. by use of dislocation dynamics code).

  2. Generic risk insights for Westinghouse and Combustion Engineering pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R.; Taylor, J.; Fresco, A. (Brookhaven National Lab., Upton, NY (USA)); Chung, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1990-11-01

    A methodology has been developed to extract generic risk-based information from probabilistic risk assessments (PRAs) of Westinghouse and Combustion Engineering (CE) pressurized water reactors (PWRs) and apply the insights gained to Westinghouse and Ce plants have not been subjected to a PRA. The available PRAs (five Westinghouse plants and one CE plant) were examined to identify the most probable, i.e., dominant accident sequences at each plant. The goal was to include all sequences which represented at least 80% of core damage frequency. If the same plant specific dominant accident sequence appeared within this boundary in at least two plant PRAs, the sequence was considered to be a representative sequence. Eleven sequences met this definition. From these sequences, the most important component failures and human errors that contributed to each sequence have been prioritized. Guidance is provided to prioritize the representative sequences and modify selected basic events that have been shown to be sensitive to the plant specific design or operating variations of the contributing PRAs. This risk-based guidance can be used for utility and NRC activities including operator training maintenance, design review, and inspections.

  3. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  4. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Energy Technology Data Exchange (ETDEWEB)

    A. G. Ware; C. Hsu (USNRC); C. L. Atwood; M. B. Sattison; R. S. Hartley (INEEL); V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  5. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ansarifar, Gholam Reza; Saadatzi, Saeed [Dept. of Nuclear Engineering, Faculty of Advanced Sciences and Technology, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2015-12-15

    One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  6. Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    Science.gov (United States)

    Pini, Ronny; Benson, Sally M.

    2017-10-01

    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  7. Construction of linear empirical core models for pressurized water reactor in-core fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, K.C.; Aldemir, T. (The Ohio State Univ., Dept. of Mechanical Engineering, Nuclear Engineering Program, 206 West 18th Ave., Columbus, OH (US))

    1988-06-01

    An empirical core model construction procedure for pressurized water reactor (PWR) in-core fuel management problems is presented that (a) incorporates the effect of composition changes in all the control zones in the core of a given fuel assembly, (b) is valid at all times during the cycle for a given range of control variables, (c) allows determining the optimal beginning of cycle (BOC) kappainfinity distribution as a single linear programming problem,and (d) provides flexibility in the choice of the material zones to describe core composition. Although the modeling procedure assumes zero BOC burnup, the predicted optimal kappainfinity profiles are also applicable to reload cores. In model construction, assembly power fractions and burnup increments during the cycle are regarded as the state (i.e., dependent) variables. Zone enrichments are the control (i.e., independent) variables. The model construction procedure is validated and implemented for the initial core of a PWR to determine the optimal BOC kappainfinity profiles for two three-zone scatter loading schemes. The predicted BOC kappainfinity profiles agree with the results of other investigators obtained by different modeling techniques.

  8. Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts.

    Science.gov (United States)

    Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta

    2013-06-12

    There is a great interest in searching for new environmentally sustainable techniques to enhance the use of agricultural byproducts. In this work, a response surface methodology was used to study the influence of the two independent variables, temperature (25-200 °C) and extraction time (3-17 min), in the extraction of antioxidants by pressurized hot water extraction (PHWE) from industrial apple byproducts. The optimized extraction method for determination of flavonols was at 120 °C and 3 min, giving a predicted total yield of flavonols of 1.3 μmol/g dry apple byproduct. Results obtained suggest that new antioxidant compounds were formed at the higher extraction temperatures. A desirability function response surface, considering maximum antioxidant capacity and minimal formation of brown color, was calculated and gave an optimum of 125 °C and 3 min. This latter PHWE method correlates well with the obtained results for flavonols; thus, a desirability function is a simpler alternative method for finding optimal conditions.

  9. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  10. Infiltration from a surface point source and drip irrigation: 1. The midpoint soil water pressure

    Science.gov (United States)

    Revol, P.; Vauclin, M.; Vachaud, G.; Clothier, B. E.

    1997-08-01

    Bresler [1978] proposed a procedure for drip irrigation design which is focused on the midpoint soil water pressure hc. We present a practical field test of this approach in order to evaluate the validity of the underlying assumptions. The simulated hc values were obtained from Raats' [1971] steady state theory for 32 points in the field where the hydraulic conductivity parameters Ks and αwere measured. The hc values were measured at the same locations during microirrigation of a maize crop. Measured hc's appear to be lower than the simulated ones, especially late in the season. The measured spatial variability in hc appeared to be higher than the simulated ones. This could well have been caused by root uptake activity, which is not considered in the analysis, as well as by the large but typical drippers spacing of d = 1.00 m. Thus the tensiometers could have been beyond the practical limit of wetting. Consequences for design and management are important. For design, even if a high hc value is chosen, there is no real guarantee that the wetting would be effective at the midpoint. For irrigation management, tensiometer placement too far from the dripper would lead to overirrigation, so for a large dripper spacing d, the midpoint placement is not judicious.

  11. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  12. Development of spherical fine powders by high-pressure water atomization using swirl water jet; Senkaisui jet wo mochiita koatsusui atomize ni yoru kyujo bifun no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kikukawa, M.; Matsumoto, S.; Inaba, T.; Iwatsu, O.; Takeda, T. [Fukuda Metal Foil and Powder Co. Ltd., Kyoto (Japan)

    2000-05-15

    In order to obtain spherical fine powders, a new high-pressure water atomization method using swirl water jet was developed. In this paper the effects of jet swirl angle ({omega}) upon the properties of powders were investigated. Cu-10 mass%Sn alloy was atomized by this method at the constant water pressure of 83.3 MPa and constant metal orifice diameter of 4mm, while {omega} was varied from 0 to 0.18 rad. Median diameter of the powder by the laser diffraction method (D{sub 50}) decreased from 12.5 {mu}m to 7.5{mu}m with increasing {omega}, and this corresponded to Fisher average diameter (D{sub FS}) at about w=0.18 rad. The apparent and tap density of the powder increased about 1 and 1.5 Mg/m{sup 3} respectively, and the particle shape observed by SEM became spherical with increasing {omega}. (author)

  13. Application of high-pressure water jet technology and the theory of rock burst control in roadway

    Institute of Scientific and Technical Information of China (English)

    Yang Zengqiang; Dou Linming; Liu Chang; Xu Mengtang; Lei Zhen; Yao Yahu

    2016-01-01

    This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rota-tional way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress super-position zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static com-bined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.

  14. Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water, 1-Propanethiol + Methane + Water and 1-Butanethiol + Methane + Water Ternary Systems at 303, 335, and 365 K and Pressure Up to 9 MPa

    DEFF Research Database (Denmark)

    Awan, Javeed; Kontogeorgis, Georgios; Tsivintzelis, Ioannis;

    2013-01-01

    New vapor–liquid–liquid equilibrium (VLLE) data for ethanethiol + methane + water, 1-propanethiol + methane + water, and 1-butanethiol + methane + water ternary systems have been measured at three temperatures (303, 335, and 365 K) and pressures up to 9 MPa. A “static-analytic” method was used...... for performing the measurements; the total system pressure was maintained by CH4. The objective of this work is to provide experimental VLLE data for mixtures of mercaptans (thiols) with other natural gas contents at its crude form, for which no data are available in the open literature. Such data will help....... However, the model underestimates the water content of the vapor phase, especially at low pressures and at the highest investigated temperature, i.e., at 365 K. Only the ethanthiol + methane + water system showed significant cross-association effects...

  15. Simultaneous in vivo comparison of water-filled and air-filled pressure measurement catheters: Implications for good urodynamic practice.

    Science.gov (United States)

    Gammie, A; Abrams, P; Bevan, W; Ellis-Jones, J; Gray, J; Hassine, A; Williams, J; Hashim, H

    2016-11-01

    This study aimed to evaluate whether the pressure readings obtained from air-filled catheters (AFCs) are the same as the readings from simultaneously inserted water-filled catheters (WFCs). It also aimed to make any possible recommendations for the use of AFCs to conform to International Continence Society (ICS) Good Urodynamic Practices (GUP). Female patients undergoing urodynamic studies in a single center had water-filled and air-filled catheters simultaneously measuring abdominal and intravesical pressure during filling with saline and during voiding. The pressures recorded by each system at each event during the test were compared using paired t-test and Bland-Altman analyses. 62 patients were recruited, of whom 51 had pressures that could be compared during filling, and 23 during voiding. On average, the pressures measured by the two systems were not significantly different during filling and at maximum flow, but the values for a given patient were found to differ by up to 10 cmH2 O. This study shows that AFCs and WFCs cannot be assumed to register equal values of pressure. It has further shown that even when the pdet readings are compared with their value at the start of a test, a divergence of values of up to 10 cmH2 O remains. If AFCs are used, care must be taken to compensate for any pdet variations that occur during patient movement. Before AFCs are adopted, new normal values for resting pressures need to be developed to allow good quality AFC pressure readings to be made. Neurourol. Urodynam. 35:926-933, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Solubility of natural gases in water under high pressure; Solubilite des gaz naturels dans l`eau a pression elevee

    Energy Technology Data Exchange (ETDEWEB)

    Dhima, A.

    1998-10-08

    Under high pressure (up to 1200 bar) and high temperature (up to 200 deg C) petroleum reservoir conditions the hydrocarbon-water mutual solubilities may become important. Under such conditions, the prediction of hydrocarbon water solubilities is a challenge for petroleum engineers. Indeed, very few studies have been done ar pressures higher that 700 bars. New solubility data for methane, ethane, n-butane, CO{sub 2} and their mixtures in pure water were obtained at 344.25 K and from 2.5 to 100 MPa. The results agree very well with those of the literature in the case of pure hydrocarbons in water, but differ for the hydrocarbon mixtures. A rigorous thermodynamic analysis allows the elaboration of a model that combines a cubic equation of state (Peng-Robinson with k{sub ij} given in literature) with the Henry`s law approach. The (P,T) functional form of Henry`s constant is given by the Krichevsky-Kasarnovsky equation which involves two important parameters: partial molar volume at infinite dilution and Henry`s constant at the vapour pressure of water. For a given solute both parameters are only functions of temperature. A critical selection of binary solubility data for a large number of solutes has been used as a basis for a new correlation for calculating both this partial molar volume and the corresponding Henry`s constants as a function of temperature. (author) 169 refs.

  17. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    Science.gov (United States)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    Catchment systems provide multiple benefits for society, including: land for agriculture, climate regulation and recreational space. Yet, these systems also have undesirable externalities, such as flooding, and the benefits they create can be compromised through societal use. For example, agriculture, forestry and urban land use practices can increase the export of fine sediment and faecal indicator organisms (FIO) delivered to river systems. These diffuse landscape pressures are coupled with pressures on the in stream temperature environment from projected climate change. Such pressures can have detrimental impacts on water quality and ecological habitat and consequently the benefits they provide for society. These diffuse and in-stream pressures can be reduced through actions at the landscape scale but are commonly tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. This research presents (1) a simple but spatially distributed model to predict the pattern of multiple pressures at the landscape scale, and (2) a method for spatially targeting the optimum location for riparian woodland planting as mitigation action against these pressures. The model follows a minimal information requirement approach along the lines of SCIMAP (www.scimap.org.uk). This approach defines the critical source areas of fine sediment diffuse pollution, rapid overland flow and FIOs, based on the analysis of the pattern of the pressure in the landscape and the connectivity from source areas to rivers. River temperature was modeled using a simple energy balance equation; focusing on temperature of inflowing and outflowing water across a catchment. The model has been calibrated using a long term observed temperature record. The modelling outcomes enabled the identification of the severity of each pressure in relative rather

  18. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles

    Science.gov (United States)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.

    2017-02-01

    Experimental data on heat transfer to supercritical pressure water presented at ISSCWR-5, 6, and 7 international symposiums—which took place in 2011-2015 in Canada, China, and Finland—and data printed in recent periodical scientific publications were analyzed. Results of experiments with annular channels and three- and four-rod bundles of heating elements positioned in square or triangular grids were examined. Methodology used for round pipes was applied at generalization of experimental data and establishing of correlations suitable for engineering analysis of heat exchange coefficient in conditions of strongly changing water properties in the near-critical pressure region. Empiric formulas describing normal heat transfer to supercritical pressure water mowing in annular channels and rod bundles were obtained. As compared to existing recommendations, suggested correlations are distinguished by specified dependency of heat exchange coefficient on density of heat flux and mass flow velocity of water near pseudo-critical temperature. Differences between computed values of heat exchange coefficient and experimental data usually do not exceed ±25%. Detailed statistical analysis of deviations between computed and experimental results at different states of supercritical pressure water flow was carried out. Peculiarities of deteriorated heat exchange were considered and their existence boundaries were defined. Experimental results obtained for these regimes were generalized using criteria by J.D. Jackson that take the influence of thermal acceleration and Archimedes forces on heat exchange processes into account. Satisfactory agreement between experimental data on heat exchange at flowing of water in annular channels and rod bundles and data for round pipes was shown.

  19. Variable Frequency Constant Pressure Water Supply System Design%变频恒压供水系统设计

    Institute of Scientific and Technical Information of China (English)

    尤志强

    2016-01-01

    小区供水是变频恒压供水系统经常应用的例子。随着人民的生活条件越来越好,所以供水方式要越来越高效节能。小区供水系统是用PLC和变频器制作的供水控制系统。%District water supply is an example of constant frequency and constant pressure water supply system.In recent years, the development of people's living conditions are getting better and better, so the way to water supply more and more efficient and energy saving.District water supply system is a water supply control system with PLC and frequency changer.

  20. 远程无线恒压供水系统%Wireless Remote Water Supply System with Constant Pressure

    Institute of Scientific and Technical Information of China (English)

    孔德彭; 孔德辉; 赖柏乐

    2013-01-01

    一个水泵房为多个山头的水塔供水,因为传输距离较远,水位信号无法及时得到反馈,给供水工作带来很大的麻烦;文中引入数传电台完成与水塔水位信号反馈,利用PLC对接收到的各个水位信号进行变频调速,从而实现恒压供水.%One pump supplies water for multiple towers on different hills in the distance and there is more trouble as the water level feedback signal can not get to controller. The system used digital broadcasting station to complete signal feedback of the tower's water level, and used PLC to deal with receiving various water level signal and to implement frequency control, and realized constant pressure water supply.

  1. RELATIONSHIP AMONG EVAPORATION FLUX OF GROUNDWATER, DEPTH OF WATER TABLE AND NEGATIVE PRESSURE HEAD IN BARE SOIL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Evaporation of ground water is a part of moisture circulation in the field.And it is a main natural form in which water transmits from the ground water to the soil water and atmosphere water.According to the simulated experiments, we study the relationship among the evaporation, depth of groundwater table and negative pressure.By theoretical analysis of the experimental results, the main conclusions are drawn as follows.There are two abrupt points in every Q-H curve.The locations of the abrupt points are separately in step with the height of top of the capillary fringe and the height of maximal capillary rise in the soil section.When the depth of ground water table H is small, the evaporation flux of ground water is large.While the depth of water table exceeds the maximal capillary rise of media in vadose zone, the capillary rise breaks up and evaporation flux of groundwater is small.The water content ratio in ground surface tends to be zero and the surface of soil tends to be drought.These conclusions show that the maximal capillary rise of media in vadose zone is an important value in regulating rational depth of ground water to reduce the evaporation of ground water and to increase effective quantity of water resources.In the meantime, these conclusions are of important theoretical and practical significance to reduce the evaporation of ground water, to prevent and cure the salinization of soil, and to make full use of and protect water resources in the northern plains in China.

  2. Experimental study of heat transfer of ultra-supercritical pressure water in vertical upward internally ribbed tube

    Institute of Scientific and Technical Information of China (English)

    Wang Weishu; Chen Tingkuan; Luo Yushan; Gu Hongfang; Yin Fei

    2007-01-01

    Under ultra-supercritical pressure, the heat transfer characteristics of water in vertical upward 4-head internally ribbed tubes with a diameter of 28.65mm and thickness of 8mm were experimentally studied.The experiments were performed at P=25~34MPa,G=450~1800kg/(m2·s)and q=200~600kW/m2. The results show that the pressure has only a moderate effect on the heat transfer of ultra-supercritical water when the water temperature is below the pseudocritical point. Sharp rise of the wall temperature near the pesudocritical region occurs earlier at a higher pressure. Increasing the mass velocity improves the heat transfer with a much stronger effect below the pesudocritical point than that above the pesudocritical point. For given pressure and mass velocity, the inner wall heat flux also shows a significant effect on the inner wall temperature, with a higher inner wall heat flux leading to a higher inner wall temperature. Increasing of inner wall heat flux leads to an early occurrence of sharp rise of the wall temperature. Correlations of heat transfer coefficients are also presented for vertical upward internally ribbed tubes.

  3. Effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Yan, Jiejuan; Liu, Cailong; Liu, Xizhe; Han, Yonghao, E-mail: hanyh@jlu.edu.cn, E-mail: cc060109@qq.com; Gao, Chunxiao, E-mail: hanyh@jlu.edu.cn, E-mail: cc060109@qq.com [State Key Lab for Superhard Materials, Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Ke, Feng; Wang, Qinglin [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Li, Yanchun [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China); Ma, Yanzhang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2015-11-16

    The effect of crystallization water on the structural and electrical properties of CuWO{sub 4} under high pressure has been investigated by in situ X-ray diffraction and alternating current impedance spectra measurements. The crystallization water was found to be a key role in modulating the structural stability of CuWO{sub 4} at high pressures. The anhydrous CuWO{sub 4} undergoes two pressure-induced structural transitions at 8.8 and 18.5 GPa, respectively, while CuWO{sub 4}·2H{sub 2}O keeps its original structure up to 40.5 GPa. Besides, the crystallization water makes the electrical transport behavior of anhydrous CuWO{sub 4} and CuWO{sub 4}·2H{sub 2}O quite different. The charge carrier transportation is always isotropic in CuWO{sub 4}·2H{sub 2}O, but anisotropic in the triclinic and the third phase of anhydrous CuWO{sub 4}. The grain resistance of CuWO{sub 4}·2H{sub 2}O is always larger than that of anhydrous CuWO{sub 4} in the entire pressure range. By analyzing the relaxation response, we found that the large number of hydrogen bonds can soften the grain characteristic frequency of CuWO{sub 4}·2H{sub 2}O over CuWO{sub 4} by one order of magnitude.

  4. Investigation on two-phase critical flow for loss-of-coolant accident of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The previous investigations were mainly conducted under the condition of low pressure,however,the steam-water specific volume and the interphase evaporation rate in high pressure are much different from those in low pressure,Therefore,the new experimental and theoretical investigation are performed in Xi'an Jiaotong University.The investigation results could be directly applied to the analysis of loss-of -coolant accident for pressurized water reacor.The system transition characteristics of cold leg and hot leg break loss-of -coolant tests are described for convective circulation test loop.Two types of loss-of-coolant accident are identified for :hot leg” break,while three types for “cold leg”break and the effect parameters on the break geometries.Tests indicate that the mass flow rate with convergent-divergent nozzle reaches the maximum value among the different break sections at the same inlet fluid condition because the fluid separation does not occur.A wall surface cavity nucleation model is developed for prediction of the critical mass flow rate with water flowing in convergentdivergent nozzles.

  5. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)

    2012-07-01

    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  6. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chattin, Marc Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giaquinto, Joseph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    will behave during processing, scoping tests are being performed to determine the tritium content in the cladding pre- and post-tritium pretreatment. Samples of Surry-2 and H.B. Robinson pressurized water reactor cladding were heated to 1100–1200°C to oxidize the zirconium and release all of the tritium in the cladding sample. Cladding samples were also heated within the temperature range of 480–600ºC expected for standard air tritium pretreatment systems, and to a slightly higher temperature (700ºC) to determine the impact of tritium pretreatment on tritium release from the cladding. The tritium content of the Surry-2 and H.B. Robinson cladding was measured to be ~234 and ~500 µCi/g, respectively. Heating the Surry-2 cladding at 500°C for 24 h removed ~0.2% of the tritium from the cladding, and heating at 700°C for 24 h removed ~9%. Heating the H.B. Robinson cladding at 700°C for 24 h removed ~11% of the tritium. When samples of the Surry-2 and H.B. Robinson claddings were heated at 700°C for 96 h, essentially all of the tritium in the cladding was removed. However, only ~3% of the tritium was removed when a sample of Surry-2 cladding was heated at 600°C for 96 h. These data indicate that the amount of tritium released from tritium pretreatment systems will be dependent on both the operating temperature and length of time in the system. Under certain conditions, a significant fraction of the tritium could remain bound in the cladding and would need to be considered in operations involving cladding recycle.

  7. Convective Heat and Mass Transfer in Water at Super—Critical Pressures under Heating or Cooling Conditions in Vertical Tubes

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1995-01-01

    Forced and mixed convection heat and mass transfer are studied numerically for water containing metallic corrosion products in a heated or cooled vertical tube with variable thermophysical properties at super-citical pressures.the fouling mechanisms and fouling models are presented.The influence of variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed.It is found that variable properties,especially buoyancy,greatly influence the fluid flow and heat mass fransfer.

  8. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  9. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  10. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, P. III

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  11. A modified firefly algorithm applied to the nuclear reload problem of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Iona Maghali Santos de; Schirru, Roberto, E-mail: ioliveira@con.ufrj.b, E-mail: schirru@lmp.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    The Nuclear Reactor Reload Problem (NRRP) is an issue of great importance and concern in nuclear engineering. It is the problem related with the periodic operation of replacing part of the fuel of a nuclear reactor. Traditionally, this procedure occurs after a period of operation called a cycle, or whenever the nuclear power plant is unable to continue operating at its nominal power. Studied for more than 40 years, the NRRP still remains a challenge for many optimization techniques due to its multiple objectives concerning economics, safety and reactor physics calculations. Characteristics such as non-linearity, multimodality and high dimensionality also make the NRRP a very complex optimization problem. In broad terms, it aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. The primary goal is to design fuel loading patterns (LPs) so that the core produces the required energy output in an economical way, without violating safety limits. Since multiple feasible solutions can be obtained to this problem, judicious optimization is required in order to identify the most economical among them. In this sense, this paper presents a new contribution in this area and introduces a modified firefly algorithm (FA) to perform LPs optimization for a pressurized water reactor. Based on the original FA introduced by Xin-She Yang in 2008, the proposed methodology seems to be very promising as an optimizer to the NRRP. The experiments performed and the comparisons with some well known best performing algorithms from the literature, confirm this statement. (author)

  12. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  13. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Science.gov (United States)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  14. A study of the relationship between water and anions of the Hofmeister series using pressure perturbation calorimetry.

    Science.gov (United States)

    Bye, Jordan W; Falconer, Robert J

    2015-06-07

    Pressure perturbation calorimetry (PPC) was used to study the relationship between water and sodium salts with a range of different anions. At temperatures around 25 °C the heat on pressurisation (ΔQ) from 1 to 5 bar was negative for all solutions relative to pure water. The raw data showed that as the temperature rose, the gradient was positive relative to pure water and the transition temperature where ΔQ was zero was related to anion surface charge density and was more pronounced for the low-charge density anions. A three component model was developed comprising bulk water, the hydration layer and the solute to calculate the molar expansivity of the hydration layer around the ions in solution. The calculated molar expansivities of water in the hydration layer around the ions were consistently less than pure water. ΔQ at different disodium hydrogen phosphate concentrations showed that the change in molar enthalpy relative to pure water was not linear even as it approached infinite dilution suggesting that while hydration layers can be allocated to the water around ions this does not rule out interactions between water and ions extending beyond the immediate hydration layer.

  15. Potential application of high pressure carbon dioxide in treated wastewater and water disinfection: Recent overview and further trends.

    Science.gov (United States)

    Vo, Huy Thanh; Imai, Tsuyoshi; Ho, Truc Thanh; Dang, Thanh-Loc Thi; Hoang, Son Anh

    2015-10-01

    Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions (pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms. Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products (resulting from chlorination or ozone treatment).

  16. Critical hydraulic pressure forecasting of water inrush in coal seam floors based on a genetic algorithm-neural network

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, M.; Shi, C.; Liu, T. [China Academy of Safety Science and Technology, Beijing (China); Fu, T. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2008-08-15

    This paper presented a method of forecasting water inrush in coal seam floors. The theoretical forecasting method used a combined genetic algorithm-neural network method to analyze the relationships between the critical pressure of water inrush and the different conditions in coal seam floors. Actual measurement data from Chinese coal mines were used to train the multi-layer feedforward neural network. Genetic algorithms were used to train the neural networks and optimize the neural network topology. The topology structure of the network was selected by considering population size, mutation rate, and crossing rates. The critical hydraulic pressure of water inrush was then predicted, and predictions were compared with measurements taken to validate the method. Results of the study showed that the forecasting method improved learning efficiency and the prediction capacity of the network. It was concluded that the combined method can be used to accurately predict the critical hydraulic pressure of water inrush on coal seam floors. 28 refs., 1 tab., 7 figs.

  17. Application of water-insoluble polymers to orally disintegrating tablets treated by high-pressure carbon dioxide gas.

    Science.gov (United States)

    Ito, Yoshitaka; Maeda, Atsushi; Kondo, Hiromu; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-09-10

    The phase transition of pharmaceutical excipients that can be induced by humidifying or heating is well-known to increase the hardness of orally disintegrating tablets (ODTs). However, these conditions are not applicable to drug substances that are chemically unstable against such stressors. Here, we describe a system which enhances the hardness of tablets containing water-insoluble polymers by using high-pressure carbon dioxide (CO2). On screening of 26 polymeric excipients, aminoalkyl methacrylate copolymer E (AMCE) markedly increased tablet hardness (+155N) when maintained in a high-pressure CO2 environment. ODTs containing 10% AMCE were prepared and treatment with 4.0MPa CO2 gas at 25°C for 10min increased the hardness to +30N, whose level corresponded to heating at 70°C for 720min. In addition, we confirmed the effects of CO2 pressure, temperature, treatment time, and AMCE content on the physical properties of ODTs. Optimal pressure of CO2 gas was considered to be approximately 3.5MPa for an AMCE formula, as excessive pressure delayed the disintegration of ODTs. Combination of high-pressure CO2 gas and AMCE is a prospective approach for increasing the tablet hardness for ODTs, and can be conducted without additional heat or moisture stress using a simple apparatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High-pressure phase equilibria for the carbon dioxide + 3-pentanol and carbon dioxide + 3-pentanol + water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Mun, S.Y.; Lee, H. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of). Dept. of Chemical Engineering

    1999-05-01

    High-pressure vapor-liquid equilibria for the binary carbon dioxide + 3-pentanol system were measured at 313.2 K. The phase equilibrium apparatus used in this work was of the circulation type in which the coexisting phases were recirculated, on-line sampled, and analyzed. The critical pressure and corresponding mole fraction of carbon dioxide at 313.2 K were found to be 8.22 MPa and 0.974, respectively, for this binary system. The phase equilibria for the ternary carbon dioxide + 3-pentanol + water system were also measured at 313.2 K and pressures of 2.00, 4.00, 6.00, 8.00, and 8.25 MPa. This ternary system showed the liquid-liquid-vapor (LLV) phase behavior over the range of pressure up to the critical pressure of 8.25 MPa. The binary equilibrium data were all reasonably well-correlated with the Redlich-Kwong, Soave-Redlich-Kwong, Peng-Robinson, and Patel-Teja equations of state incorporated with the eight different mixing rules: the van der Waals, Panagiotopoulos-Reic, and six modified Huron-Vidal mixing rules with UNIQUAC parameters. For the prediction of high-pressure phase equilibria for the systems containing carbon dioxide and alcohols, the SRK-MHV2 might reproduce many features of the measured behavior although further tests are needed with other systems.

  19. The effect of water saturation on methane breakthrough pressure: An experimental study on the Carboniferous shales from the eastern Qaidam Basin, China

    Science.gov (United States)

    Zhang, Cheng; Yu, Qingchun

    2016-12-01

    Breakthrough pressure plays an important role in shale gas flow, mining, and caprock evaluation. A series of breakthrough experiments were conducted under different water saturation conditions for four shales taken from the Carboniferous Hoit Taria Formation in the eastern Qaidam Basin, China to investigate the influence of water saturation on breakthrough pressure. Relevant geochemical tests (mineral composition, clay content, total organic carbon, thermal maturity and vitrinite reflectance) and micro structural characteristics of micro pores were also conducted. Breakthrough pressures under at least five different water saturations (from 0 to 100%) were obtained and relationship between breakthrough pressure and water saturation was fitted for each sample. We found that breakthrough pressure increases exponentially with water saturation. The decrease in effective pore diameter caused by both the bound water films and the swelling of the clay minerals resulted in the increase in the breakthrough pressure. After water saturation reached about 60%, breakthrough pressure increased rapidly from connectivity reduction, caused by the sealing off of smaller pores and partial water saturation of the macropores. By analyzing the correlation between breakthrough pressure and pore structure characteristics, breakthrough pressure is inversely related to porosity, and is primarily affected by macropores. Because macropores consist of many microfractures with lengths up to dozens of micrometers, they determine the porosity and then affect the connectivity of the rock. Correlation analysis between the mineral compositions and breakthrough pressure showed that TOC content exhibits a positive correlation with breakthrough pressure, but neither quartz content nor the clay mineral content exhibits a correlation. By combining this information with Field Emission Scanning Electron Microscope results, we found that microfractures are easily created where the TOC (total organic carbon

  20. High pressure membrane foulants of seawater, brackish water and river water: Origin assessed by sugar and bacteriohopanepolyol signatures

    KAUST Repository

    Mondamert, Leslie

    2011-01-01

    The present work aimed to study the origin of foulant material recovered on membranes used in water treatment. Firstly, sugar signatures were assessed from the monosaccharide composition. As results were not conclusive, a statistical approach using discriminant analysis was applied to the sugar data set in order to predict the origin of the foulant material. Three groups of various origins (algal, microbial, continental dissolved organic matter) were used as sugar references for the prediction. The results of the computation showed that the origin of reverse osmosis (RO) seawater foulant material is influenced by both the location of the water sources and the season. RO brackish water and nanofiltration river water foulant materials had a terrestrial origin. Secondly, bacteriohopanepolyol signatures indicated that RO seawater foulant material had a marine signature, RO brackish water foulant material had both a marine and a terrestrial origin and the nanofiltration river water foulant material contained only a terrestrial signature. © 2011 Taylor & Francis.

  1. Photolytic removal of DBPs by medium pressure UV in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Zortea, R.; Piketty, A.;

    2013-01-01

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported ...

  2. The solubility of carbon monoxide and hydrogen in water and sea-water at partial pressures of about 10?5 atmospheres

    OpenAIRE

    Schmidt, Ulrich

    2011-01-01

    A new technique was used to measure the Bunsen solubility coefficients of CO and H2 in deionized water and artificial sea-water in the temperature range from 0° to 30 °C. The partial pressure of the respective gas was less than 2 × 10?5 atmospheres. Within 10% the results compare rather well with solubility data from the literature, which were obtained from measurements applying pure CO and H2 in the gaseous phase.DOI: 10.1111/j.2153-3490.1979.tb00883.x

  3. Current components, water pressure, physical, and other data from moored current meters, pressure gauges, and CTD casts from CHARTER/FISHING BOATS and other platforms from the Bering Sea - Coastal Waters of Western Alaska and other locations from 14 May 1989 to 06 October 1989 (NCEI Accession 9000278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, water pressure, physical, and other data were collected from moored current meters, pressure gauges, and CTD casts from CHARTER/FISHING BOATS and...

  4. Rheology of coal-water slurries prepared by the high-pressure roll mill grinding of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; De, A.

    1996-08-01

    The preparation of coal water slurries to replace fuel oil for direct combustion has become an important field in modem coal technology. The U.S. Department of Energy has planned or has underway several demonstration projects to burn coal-water slurries to replace fuel oil is attractive not only because there is an assured domestic supply of coal, but also on various technoeconomic grounds. Coal-water slurries combine the handling flexibility of fuel oil in power plants and various other industrial applications. This report discusses the rheology of coal-water slurries and the correlation to the coal preparation by grinding with a choke-fed high pressure roll mill. Performance of the roll mills and energy consumption are described.

  5. Tilting oil-water contact in the chalk of Tyra Field as interpreted from capillary pressure data

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Rana, M.A.

    2010-01-01

    -trends from logs were compared with normalized water saturation depth-trends predicted from capillary pressure core data. The ten wells lie close to a SW–NE cross section of the field. For the gas–oil contact, a free contact measured in one well corresponds to a practically horizontal contact interpreted from......The Tyra Field in the central North Sea is located in Palaeogene and Upper Cretaceous chalk. It contains a natural gas zone underlain by an oil leg. Based on analysis of logs and core data from ten wells drilled prior to the field being put into production, normalized water saturation depth...... logging data in the remaining wells. A westerly dipping oil–water contact was found from logging data. Comparison of the depth-wise trends in normalized water saturation among the different wells indicates a regional pattern: in the western side of the field, the trends correspond to a situation...

  6. Experimental study on the influence of clamping pressure on proton exchange membrane water electrolyzer (PEMWE) cell’s characteristics

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Cui, Xiaoti; Kær, Søren Knudsen

    Energy transition can be led by more hydrogen production. Hydrogen offers a clean, sustainable, and flexible option for overcoming different obstacles that face the low-carbon economy [1]. PEMWE is one of the most promising candidate technologies to produce hydrogen from renewable energy sources...... temperature (70°C) and atmospheric pressure. Early results for IV curve predict that the PEMWE cell performance increases with increasing the clamping pressure at fixed temperature and current density. This can be elucidated by the EIS measurements which predict an increment in ohmic and activation resistance...... at lower clamping pressure values at the same temperature and current density. Furthermore, early results have not shown any significant change in the amount of hydrogen crossing-over from cathode to anode and water from anode to cathode. This might be attributed to the membrane properties which might...

  7. On the Experimental Investigation of the Clamping Pressure Effects on the Proton Exchange Membrane Water Electrolyser Cell Performance

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Frensch, Steffen Henrik; Kær, Søren Knudsen

    2017-01-01

    to migrate to negatively chargedcathode, where hydrogen is reduced. Meanwhile, oxygen is produced at the anode sideelectrode and escape as a gas with the circulating water.In the recent few years, PEMWE’s R&D has inched towards; operating conditions; such asincreased operating temperature and cathode...... at different clamping pressures. All thesemeasurements are conducted at constant cell temperature (70°C) and atmospheric pressure.Furthermore, to ensure a high confidence level in the obtained data, experiments are repeatedfew times.Early results for polarization curve predict that the PEMWE cell performance...... increases withincreasing the clamping pressure at fixed temperature and current density. This can beelucidated by the EIS measurements which predict an increment in ohmic and activation...

  8. The Impact of Climate Changes on the Thermal Performance of a Proposed Pressurized Water Reactor: Nuclear-Power Plant

    Directory of Open Access Journals (Sweden)

    Said M. A. Ibrahim

    2014-01-01

    Full Text Available This paper presents a methodology for studying the impact of the cooling water temperature on the thermal performance of a proposed pressurized water reactor nuclear power plant (PWR NPP through the thermodynamic analysis based on the thermodynamic laws to gain some new aspects into the plant performance. The main findings of this study are that an increase of one degree Celsius in temperature of the coolant extracted from environment is forecasted to decrease by 0.39293 and 0.16% in the power output and the thermal efficiency of the nuclear-power plant considered, respectively.

  9. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even;

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...... measurements in the gas phase. The CPA and SRK EoS, the latter using either conventional or EoS/G(E) mixing rules are used to predict the solubility of the heavy components in the gas phase. It is concluded that CPA and SRK using the Huron-Vidal mixing rule perform equally satisfactory, while CPA requires...

  10. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    Directory of Open Access Journals (Sweden)

    Alan T. Gardner

    2009-01-01

    Full Text Available An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument’s two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated.

  11. 矿井带压开采突水危险性分析%Analysis on Water Inrush Risk of Mining with Water Pressure

    Institute of Scientific and Technical Information of China (English)

    李立新

    2014-01-01

    针对梗阳煤业10#煤层西北部存在带压开采的问题,采用带压区域划分的原理,对井下巷道掘进、工作面回采过程安全性进行分析评价,找出10#煤层受带压开采危害最大区域,再根据《煤矿防治水规定》,确定矿井带压开采防治水的最佳方案,可为矿井安全生产提供保障。%Aims at Gengyang coal company No.10 coal seam northwest existing problems of mining with water pressure. Using the principle of dividing the pressure zone, analyzes and evaluates the safety of underground roadway on drivage and mining process. Finds the maximum area of No.10 coal seam danger. According to the regulations of mine water prevention and control, determines the best scheme of mining with pressure for prevention and treatment of water, and provides guarantee for the safety in production of coal mine.

  12. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  13. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  14. Evolution Characteristic Analysis of Pressure-arch of a Double-arch Tunnel in Water-rich Strata

    Directory of Open Access Journals (Sweden)

    C. L. Li

    2016-03-01

    Full Text Available It is of importance to analyze the morphological characterization, the evolution process and the skewed effect of pressure-arch of a double-arch tunnel in the water-rich strata. Taking a buried depth 80 m double-arch tunnel as an example, a computational model of the double-arch tunnel was built by using FLAC3D technique. Then considering some aspects including groundwater conditions, tunnel depth, construction sequences and permeability coefficients, the coupling effect of stress field and seepage field in the pressure-arch of the double-arch tunnel was analyzed. The results show that the thickness of the pressure-arch induced by step-by-step excavation and display a step-descent skewed distribution from the left to the right of the double-arch tunnel. The permeability coefficient has a significant influence on the shape and the skewed effect of the pressure arch. The excavation of the bench method has a better arching condition than that of the expanding method. The abtained results provide a basic reference for the rock reinforcement design and safety construction of double-arch tunnels in the water-rich strata.

  15. Remote field eddy current technique for gap measurement of horizontal flux detector guide tube in pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Jung, Hyun Kyu; Yang, Dong Ju; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2004-11-15

    The fuel channels including the pressure tube(PT) and the calandria tube(CT) are important components of the pressurized heavy water reactor(PHWR). A sagging of fuel channel increases by heat and radiation exposure with the increasing operation time. The contact of fuel channel to the Horizontal flux Detector(HFD) guide tube is needed for the power plant safety. In order to solve this safety issue, the electromagnetic technique was applied to measure the status of the guide tube. The Horizontal flux Detector(HFD) guide tube and the Calandria tube(CT) in the Pressurized Heavy Water Reactor(PHWR) are cross-aligned horizontally. The remote field eddy current(RFEC) technology is applied for gap measurement between the HFD guide tube and the CT HFD guide tube can be detected by inserting the RFEC probe into pressure tube(PT) at the crossing point directly. The RFEC signals using the volume integral method(VIM) were simulated for obtaining the optimal inspection parameters. This paper shows that the simulated eddy current signals and the experimental results in variance with the CT/HFD gap.

  16. New criteria for the standardization of the pressure water pipelines; Nuevos criterios para la clasificacion de las conducciones a presion

    Energy Technology Data Exchange (ETDEWEB)

    Balairon Perez, L.

    2005-07-01

    This paper deals the main conclusions of the thesis New criteria for the standardization of the pressure water pipelines delivered by Mr. Luis Balairon Perez in April 2005 at the Madrid Politechnical University in which a new guidelines are proposed for improving the actual technical standardization in the field of pipes. The complete thesis will be published this year at the official Spanish Ministry of Fomento Editorial Programme as a Cedex monograph. (Author)

  17. Effect of electronic toilet system (bidet) on anorectal pressure in normal healthy volunteers: influence of different types of water stream and temperature.

    Science.gov (United States)

    Ryoo, Seungbum; Song, Yoon Suk; Seo, Mi Sun; Oh, Heung-Kwon; Choe, Eun Kyung; Park, Kyu Joo

    2011-01-01

    Although bidets are widely used in Korea, its effects on anorectal pressures have not been studied in detail in terms of the water settings used. Twenty healthy volunteers were placed on a toilet equipped with a bidet, and anorectal pressures were measured with a manometry catheter inserted into the rectum and anal canal before and after using the bidet at different water forces (40, 80, 160, 200 mN), temperatures (24°C vs 38°C), and water jet widths (narrow vs wide). The pressure at anal high pressure zone decreased from 96.1 ± 22.5 to 81.9 ± 23.3 mmHg at water jet pressure of 40 mN and 38°C wide water jet (P bidet could be used to reduce anal resting pressure in the same manner as the traditional warm sitz bath under the conditions of low or medium water jet pressure, a warm water temperature, and a wide type water jet.

  18. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  19. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  20. Osmosis-induced water uptake by Eurobitum bituminized radioactive waste and pressure development in constant volume conditions

    Science.gov (United States)

    Mariën, A.; Mokni, N.; Valcke, E.; Olivella, S.; Smets, S.; Li, X.

    2013-01-01

    The chemo-hydro-mechanical (CHM) interaction between swelling Eurobitum radioactive bituminized waste (BW) and Boom Clay is investigated to assess the feasibility of geological disposal for the long-term management of this waste. These so-called compatibility studies include laboratory water uptake tests at the Belgian Nuclear Research Center SCK•CEN, and the development of a coupled CHM formulation for Eurobitum by the International Center for Numerical Methods and Engineering (CIMNE, Polytechnical University of Cataluña, Spain). In the water uptake tests, the osmosis-induced swelling, pressure increase and NaNO3 leaching of small cylindrical BW samples (diameter 38 mm, height 10 mm) is studied under constant total stress conditions and nearly constant volume conditions; the actual geological disposal conditions should be intermediate between these extremes. Two nearly constant volume tests were stopped after 1036 and 1555 days to characterize the morphology of the hydrated BW samples and to visualize the hydrated part with microfocus X-ray Computer Tomography (μCT) and Environmental Scanning Electron Microscopy (ESEM). In parallel, a coupled CHM formulation is developed that describes chemically and hydraulically coupled flow processes in porous materials with salt crystals, and that incorporates a porosity dependent membrane efficiency, permeability and diffusivity. When Eurobitum BW is hydrated in (nearly) constant volume conditions, the osmosis-induced water uptake results in an increasing pressure to values that can be (in theory) as high as 42.8 MPa, being the osmotic pressure of a saturated NaNO3 solution. After about four years of hydration in nearly constant volume water uptake tests, pressures up to 20 MPa are measured. During this hydration period only the outer layers with a thickness of 1-2 mm were hydrated (as derived from μCT and ESEM analyses), and only about 10-20% of the initial NaNO3 content was released by the samples. In the studied test

  1. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations reported herein is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of three reactor critical configurations for the Sequoyah Unit 2 Cycle 3. This unit and cycle were chosen because of the relevance in spent fuel benchmark applications: (1) the unit had a significantly long downtime of 2.7 years during the middle of cycle (MOC) 3, and (2) the core consisted entirely of burned fuel at the MOC restart. The first benchmark critical calculation was the MOC restart at hot, full-power (HFP) critical conditions. The

  2. Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    1995-01-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit for the negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark computational methods against spent fuel critical configurations. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using selected critical configurations from commercial pressurized-water reactors. The analysis methodology selected for all the calculations in this report is based on the codes and data provided in the SCALE-4 code system. The isotopic densities for the spent fuel assemblies in the critical configurations were calculated using the SAS2H analytical sequence of the SCALE-4 system. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code module was used to extract the necessary isotopic densities from the SAS2H results and to provide the data in the format required by the SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of the cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) of each case. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all the calculations. This volume of the report documents the SCALE system analysis of two reactor critical configurations for Surry Unit 1 Cycle 2. This unit and cycle were chosen for a previous analysis using a different methodology because detailed isotopics from multidimensional reactor calculations were available from the Virginia Power Company. These data permitted a direct comparison of criticality calculations using the utility-calculated isotopics with those using the isotopics generated by the SCALE-4

  3. Preliminary Design of In-Pile Supercritical Pressurized Water Test Loop

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Based on two proven technologies, current light water reactors (LWRs) and the supercritical coal-fired power plants, the supercritical water-cooled reactor (SCWR) is one of the six Generation-Ⅳ

  4. Data from Sustainability Base Characterizing Hot Water Pump Differential Pressure Spikes for ACCEPT

    Data.gov (United States)

    National Aeronautics and Space Administration — During the heating season in Sustainability Base, a critical alarm associated with a hot water pump circulating heating water for the radiative system which...

  5. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  6. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  7. Time-dependent water permeation behavior of concrete under constant hydraulic pressure

    Institute of Scientific and Technical Information of China (English)

    Fang Yonghao; Wang Zhongli; Zhou Yue

    2008-01-01

    In the present work, a concrete permeability testing setup was designed to study the behavior of hydraulic concrete subjected to constant hydraulic pressure. The results show that when concrete is subjected to high enough constant hydraulic pressure, it will be permeated, and after it reaches its maximum permeation rate, the permeability coefficient will gradually decrease towards a stable value. A time-dependent model of permeability coefficient for concrete subjected to hydraulic pressure is proposed. It is indicated that the decrease of the permeability coefficient with permeation time conforms well to the negative-exponential decrease model.

  8. Leak localization in water distribution networks using pressure residuals and classifiers

    OpenAIRE

    Ferrandez-Gamot, Lise; Busson, Pierre; Blesa, Joaquim; Tornil-Sin, Sebastian; Puig, Vicenç; Duviella, Eric; Soldevila, Adrià

    2015-01-01

    In order to take into account the scarcity of the water resource and the increasing of the population, the management of drinking water networks has to be improved with the use of new tools and actions that allows fighting against wasting water. The monitoring of drinking water networks is based on the use of sensors to locate malfunctions (leaks, quality/contamination events, etc.). Practical implementation has to be carried out by optimizing the placement of the number of sensors and improv...

  9. Experimental determination of thermal contact conductance between pressure and calandria tubes of Indian pressurised heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dureja, A.K., E-mail: akdureja@barc.gov.in [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Pawaskar, D.N.; Seshu, P. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai (India); Sinha, S.K. [Reactor Design & Development Group, Bhabha Atomic Research Centre, Mumbai (India); Sinha, R.K. [Department of Atomic Energy, OYC, Near Gateway of India, Mumbai (India)

    2015-04-01

    Highlights: • We established an experimental facility to measure thermal contact conductance between disc shaped specimens. • We measured thermal contact conductance between Zr-2.5Nb alloy pressure tube (PT) material and Zr-4 calandria tube (CT) material. • We concluded that thermal contact conductance is a linear function of contact pressure for interface of PT and CT up to 10 MPa contact pressure. • We concluded that thermal contact conductance is a weak function of interface temperature. - Abstract: Thermal contact conductance (TCC) is one of the most important parameters in determining the temperature distribution in contacting structures. Thermal contact conductance between the contacting structures depends on the mechanical properties of underlying materials, thermo-physical properties of the interstitial fluid and surface condition of the structures coming in contact. During a postulated accident scenario of loss of coolant with coincident loss of emergency core cooling system in a tube type heavy water nuclear reactor, the pressure tube is expected to sag/balloon and come in contact with outer cooler calandria tube to dissipate away the heat generated to the moderator. The amount of heat thus transferred is a function of thermal contact conductance and the nature of contact between the two tubes. An experimental facility was designed, fabricated and commissioned to measure thermal contact conductance between pressure tube and calandria tube specimens. Experiments were conducted on disc shaped specimens under axial contact pressure in between mandrels. Experimental results of TCC and a linear correlation as a function of contact pressure have been reported in this paper.

  10. Assessing the relation between anthropogenic pressure and PAH concentrations in surface water in the Seine River basin using multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Uher, Emmanuelle, E-mail: emmanuelle.uher@irstea.fr [Irstea, UR HBAN Hydrosystèmes et bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony cedex (France); FIRE, FR-30204 place Jussieu, 75005 Paris (France); Mirande-Bret, Cécile [LISA, 61 avenue du général de Gaulle, 94010 Créteil (France); Gourlay-Francé, Catherine [Anses, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex (France)

    2016-07-01

    Understanding the relation between polycyclic aromatic hydrocarbons (PAHs) in freshwater and anthropogenic pressure is fundamental to finding a solution to reduce the presence of PAHs in water, and thus their potential impact on aquatic life. In this paper we propose to gain greater insight into the variability, sources and partitioning of PAHs in labile (or freely dissolved = not associated to the organic matter), dissolved and particulate phases in freshwater. This study was conducted using land use data as a marker of anthropogenic pressure and coupling it with chemical measurements. This study was conducted on 30 sites in the Seine River basin, which is subjected to a strong human impact and exhibits a wide range of land uses. Half of the sites were studied twice. Labile PAHs were measured by semi-permeable membrane devices (SPMDs), and dissolved and particulate phases by grab samples. Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure. The results indicate different sources for the dissolved phase and particles. Dissolved and labile phases were more related to the population density of the watershed, while particles were more related to a local pressure. Season and land use data are necessary information to correctly interpret and compare PAH concentrations from different sites. Furthermore, the whole data set of the 45 field deployments comprising labile, dissolved, total and particulate PAH concentrations as well as the physico-chemical parameters is available in the supplementary information. - Highlights: • A large-scale deployment of semi-permeable membrane devices was performed at the Seine Catchment scale • Partial least squares regressions were performed between chemical measurements and data of anthropogenic pressure • The results seem to show a PAHs release from particles to dissolved phase slower than in laboratory work • Dissolved and labile phases were related to a pressure at

  11. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    Science.gov (United States)

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-07

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.

  12. Influence of assistance of high-pressure water jet in the process of rock cutting upon the temperature, wear cutting force and dustiness of the shearer pick edge

    Energy Technology Data Exchange (ETDEWEB)

    Klich, A.; Kotwica, K.; Res, J. [University of Mining and Metallurgy, Cracow (Poland)

    1995-08-01

    The cutting of artificial samples of rock with and without cutting process assistance of a high-pressure water jet was investigated in the laboratory. During the research the temperature, pick edge wear, pressure and adjacent force and dustiness were measured under several selected mining parameters. The research used Rapid 85 shearer radial picks and the adjacent Alpine picks. The cutting with radial picks was assisted with a high-pressure water jet from the front and back whereas the adjacent picks cutting was assisted only from the front. For cutting with assistance of a high-pressure water jet the Saphintec type nozzles of d=0.3, 0.55 and 0.8 mm diameter and water pressure of p=1, 20, 40 and 60 MPa were used. 6 refs., 15 figs., 3 tabs.

  13. In Situ Measurement, Characterization, and Modeling of Two-Phase Pressure Drop Incorporating Local Water Saturation in PEMFC Gas Channels

    Science.gov (United States)

    See, Evan J.

    Proton Exchange Membrane Fuel Cells (PEMFCs) have been an area of focus as an alternative for internal combustion engines in the transportation sector. Water and thermal management techniques remain as one of the key roadblocks in PEMFC development. The ability to model two-phase flow and pressure drop in PEMFCs is of significant importance to the performance and optimization of PEMFCs. This work provides a perspective on the numerous factors that affect the two-phase flow in the gas channels and presents a comprehensive pressure drop model through an extensive in situ fuel cell investigation. The study focused on low current density and low temperature operation of the cell, as these conditions present the most challenging scenario for water transport in the PEMFC reactant channels. Tests were conducted using two PEMFCs that were representative of the actual full scale commercial automotive geometry. The design of the flow fields allowed visual access to both cathode and anode sides for correlating the visual observations to the two-phase flow patterns and pressure drop. A total of 198 tests were conducted varying gas diffusion layer (GDL), inlet humidity, current density, and stoichiometry; this generated over 1500 average pressure drop measurements to develop and validate two-phase models. A two-phase 1+1 D modeling scheme is proposed that incorporates an elemental approach and control volume analysis to provide a comprehensive methodology and correlation for predicting two-phase pressure drop in PEMFC conditions. Key considerations, such as condensation within the channel, consumption of reactant gases, water transport across the membrane, and thermal gradients within the fuel cell, are reviewed and their relative importance illustrated. The modeling scheme is shown to predict channel pressure drop with a mean error of 10% over the full range of conditions and with a mean error of 5% for the primary conditions of interest. The model provides a unique and

  14. Numerical analysis on coal-breaking process under high pressure water jet

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-hua; LIANG Yun-pei; CHENG Guo-qiang

    2009-01-01

    Based on the theory of nonlinear dynamic finite element, the control equation of coal and water jet was acquired in the coal breaking process under a water jet. The calcu-lation model of coal breaking under a water jet was established; the fluid-structure cou-pling of water jet and coal was implemented by penalty function and convection calculation. The dynamic process of coal breaking under a water jet was simulated and analyzed by combining the united fracture criteria of the maximum tensile strain and the maximal shear strain in the two cases of damage to coal and damage failure to coal.

  15. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-12-15

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  16. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    , ideally suits the objectives and constraints of the heterogeneous assemblies. However, significant technological advancements must be made before nitride fuels can be employed in an LWR: its water resistance needs to be improved and a viable technology to enrich N in N-15 must be devised. Moreover, for the nitride heterogeneous configurations examined in this study, the enhancement in TRU burning performance is achieved not only by replacing oxide with nitride fuel, but also by increasing the fuel rod size. This latter modification, allowed by the high thermal conductivity of nitride fuel, leads however to a very tight lattice, which may challenge reactor coolant pumps and assembly hold-down mechanisms, the former through an increase in core pressure drop and the latter through an increase in assembly lift-off forces. To alleviate these issues, while still achieving the large fuel-to-moderator ratios resulting from using tight lattices, wire wraps could be used in place of grid spacers. For tight lattices, typical grid spacers are hard to manufacture and their replacement with wire wraps is known to allow for a pressure drop reduction by at least 2 times. The studies, while certainly very preliminary, provide a starting point to devise an optimum strategy for TRU transmutation in Th-based PWR fuel. The viability of the scheme proposed depends on the timely phasing in of the associated technologies, with proper lead time and to solve the many challenges. These challenges are certainly substantial, and make the current once-through U-based scheme pursued in the US by far a more practical (and cheaper) option. However, when compared to other transmutation schemes, the proposed one has arguably similar challenges and unknowns with potentially bigger rewards. (authors)

  17. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    Science.gov (United States)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New

  18. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) (Spain); Ernestova, M.; Zamboch, M. [Nuclear Research Inst. (NRI) (Czech Republic); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (PSI) (Switzerland); Roth, A.; Devrient, B. [Framatome ANP GmbH (F ANP) (Germany); Ehrnsten, U. [Technical Research Centre of Finland (VTT) (Finland)

    2004-07-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the