WorldWideScience

Sample records for water power station

  1. The Trencin water power station

    International Nuclear Information System (INIS)

    2005-01-01

    This leaflet describes the Trencin water power station. The Trencin water power station was built seven years after the Dubnica nad Vahom water power station started its operation and was the last stage of the first and the oldest derived cascade of water power stations on the Vah River. After completing water power stations at Ladce (1936), Ilava (1946) and Dubnica nad Vahom (1949) and before constructing the Trencin water power station, the whole second derived cascade of water power stations including water power stations at Kostolna, Nove Mesto nad Vahom and Horna Streda was built as soon as possible mainly because the need to get compensation for discontinued electricity supplies as well as energetic coal from the Czech Republic. Hereby, experiences from the construction of previous grades were used, mainly as far as the dimensioning was concerned, as the fi rst installed power stations had, in comparison with the growing requirements on the electricity supplies, very low absorption capacity - only 150 m 3 .s -1 . Thus the Trencin power station (original name was the Skalka power station) was already dimensioned for the same absorption capacity as the cascade located downstream the river, that is 180 m 3 .s -1 . That was related also to growing demands on electricity supplies during the peaks in the daily electric system load diagram, and thus to the transfer from continuous operation of the water power station to semi-peak or even peak performance. According to the standards of power station classification, the Trencin water power station is a medium size, low pressure, channel power station with two units equipped by Kaplan turbines and synchronous hydro-alternators. The water power station installed capacity is 16.1 MW in total and its designed annual production of electrical energy for medium water year is 85,000 MWh, while the average annual production during the last 30 years is 86,252 MWh. Installed unit has a four-blade Kaplan turbine with the diameter

  2. The Miksova water power station

    International Nuclear Information System (INIS)

    2005-01-01

    This leaflet describes the Miksova water power station. The Miksova water power station is part of the second derived cascade of hydro power stations on the river Vah. It was built at the end of a huge development in Slovak hydro-energy in the late 1950's and the beginning of the 1960's. It is the second water power station on this derived cascade, which is situated downstream the Hricov reservoir and water power station. At the power station, three turbine sets with vertical Kaplan turbines are installed with a total power output of 3 x 31.2 = 93.6 MW. With this power output the Miksova water power station (Miksova I) was the biggest water power station in the Slovak Republic until the construction of Pumping water power station Liptovska Mara. And it is still the biggest channel water power station on the Vah so far. It was put into operation during the period 1963 to 1965. There are three turbine sets with Kaplan turbines from CKD Blansko, with a synchronous hydro-alternator installed in the power station. Their installed capacity is 93.6 MW in total and the projected annual production of electrical energy is 207 GWh. The turbines are fi ve-bladed (on the Hricov and Povazska Bystrica water power stations they are four-bladed) and the impeller wheel has a diameter of 4800 mm. They are designed for extension of the head from 24.1 to 22.21 m and each of them has an absorption capacity of 134 m 3 .s -1 nd a nominal operating speed of 2.08 m 3 .s -1 , runaway speed 4.9 m 3 .s -1 . Each synchronous hydro-alternator has a maximum power output of 31.2 MW, a nominal voltage of 10.5 kV and power factor cos φ of 0.8. Power from the power station is led out through 110 kV switchgear. The water power station operates under automatic turbine mode of operation with remote indication and control from the Dispatch Centre at Vodne elektrarne, in Trencin. From start of operation until the end of 2003 all three turbine sets operated for a total of 450,500 running hours and the

  3. Water pollution and thermal power stations

    International Nuclear Information System (INIS)

    Maini, A.; Harapanahalli, A.B.

    1993-01-01

    There are a number of thermal power stations dotting the countryside in India for the generation of electricity. The pollution of environment is continuously increasing in the country with the addition of new coal based power stations and causing both a menace and a hazard to the biota. The paper reviews the problems arising out of water pollution from the coal based thermal power stations. (author). 2 tabs

  4. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  5. Simulation of a pressurized-water nuclear power station

    International Nuclear Information System (INIS)

    Larminaux, Robert; Ourmann, Michel

    1978-01-01

    Faced with the large programme of fitting out PWR nuclear power stations, Electricite de France have undertaken a series of studies with a view to ensuring the best possible adaptation of the secondary part -particularly the feed water heating section- to the nuclear boiler. In order to undertake such studies it has been necessary to finalize simulation models of the entire power station. So as to verify the validity of the models, experiment-calculation comparisons were made during transient operating states recorded at the Ardennes power station as well as during starting up trials at the Tihange I power station [fr

  6. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  7. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  8. Remerschen nuclear power station with BBR pressurized water reactor

    International Nuclear Information System (INIS)

    Hoffmann, J.P.

    1975-01-01

    On the basis of many decades of successful cooperation in the electricity supply sector with the German RWE utility, the Grand Duchy of Luxemburg and RWE jointly founded Societe Luxembourgeoise d'Energie Nucleaire S.A. (SENU) in 1974 in which each of the partners holds a fifty percent interest. SENU is responsible for planning, building and operating this nuclear power station. Following an international invitation for bids on the delivery and turnkey construction of a nuclear power station, the consortium of the German companies of Brown, Boveri and Cie. AG (BBC), Babcock - Brown Boveri Reaktor GmbH (BBR) and Hochtief AG (HT) received a letter of intent for the purchase of a 1,300 MW nuclear power station equipped with a pressurized water reactor. The 1,300 MW station of Remerschen will be largely identical with the Muelheim-Kaerlich plant under construction by the same consortium near Coblence on the River Rhine since early 1975. According to present scheduling, the Remerschen nuclear power station could start operation in 1981. (orig.) [de

  9. TECHNICAL AND ECONOMICAL COMPARISON OF OVERFLOW DAM VARIANTS AT THE GRODNO WATER-POWER STATION

    Directory of Open Access Journals (Sweden)

    G. G. Krouglov

    2005-01-01

    Full Text Available The paper considers various aspects pertaining to determination of main technical characteristics of water-development projects of water-power stations. Technical and economical characteristics of overflow dams at the Grodno water-power station are compared in the paper.The paper contains results of model investigations of two-tier overflow dam which is included in composition of the Grodno water-power station and presents methodology for calculation of pool integration behind two-tier dam which has been developed at the water-development and power engineering department. This methodology makes it possible to determine rate coefficient and compressed depth. In addition to this the paper gives technical and economical comparison of various designs of overflow dams at the Grodno water-power station, analyzes their cost and on the basis of this comparative analysis it is recommended to construct a two-pier dam. 

  10. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  11. Solar-assisted MED treatment of Eskom power station waste water

    Science.gov (United States)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  12. Beaver Valley Power Station and Shippingport Atomic Power Station. 1977 annual environmental report: radiological. Volume 2

    International Nuclear Information System (INIS)

    1978-01-01

    The environmental monitoring conducted during 1977 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station is described. The environmental monitoring program consists of onsite sampling of water, gaseous, and air effluents, as well as offsite monitoring of water, air, river sediments, and radiation levels in the vicinity of the site. The report discusses releases of small quantities of radioactivity to the Ohio River from the Beaver Valley Power Station and Shippingport Atomic Power Station during 1977

  13. Process for treating waste water containing hydrazine from power stations

    International Nuclear Information System (INIS)

    Hoffmann, W.

    1982-01-01

    A process for treating waste water containing hydrazine from nuclear power stations is proposed, characterized by the fact that the water is taken continuously through a water decomposition cell. If the water does not have sufficient conductivity itself, a substance raising the electrical conductivity is added to the water to be treated. The electrolysis is situated in the waste water tank. (orig./RB) [de

  14. Beaver Valley Power Station and Shippingport Atomic Power Station. 1984 Annual environmental report, radiological. Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the Radiological Environmental Monitoring Program conducted during 1984 in the vicinity of the Beaver Valley Power Station and the Shippingport Atomic Power Station. The Radiological Environmental Program consists of on-site sampling of water and gaseous effluents and off-site monitoring of water, air, river sediments, soils, food pathway samples, and radiation levels in the vicinity of the site. This report discusses the results of this monitoring during 1984. The environmental program outlined in the Beaver Valley Power Station Technical Specifications was followed throughout 1984. The results of this environmental monitoring program show that Shippingport Atomic Power Station and Beaver Valley Power Station operations have not adversely affected the surrounding environment. 23 figs., 18 tabs

  15. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  16. Improvements to feed water system of vapor generators of nuclear power stations

    International Nuclear Information System (INIS)

    Byerlex, W.M.

    1976-01-01

    The description is given of a feed water system related to the steam generators for nuclear power stations and which have a water feed ring around their upper part. This water intake system enables water hammer to be avoided even during operation under low load [fr

  17. Heavy water radiolysis and chemistry control of the Fugen Nuclear Power Station

    International Nuclear Information System (INIS)

    Ibuki, Y.; Kitabata, T.; Kato, T.

    1989-01-01

    A computer analysis for heavy water radiolysis clarified the mechanism of the heavy water radiolysis rate change with impurities in the heavy water and cover gas, helium. The mechanism is supported by over ten years' operational data of the heavy water radiolysis in the Fugen nuclear power station. (author)

  18. Tobruk power station

    Energy Technology Data Exchange (ETDEWEB)

    Boergardts, B

    1978-01-01

    In February of 1975, the Electricity Corporation Benghazi (ECB) awarded a contract for the construction of a turnkey power station and seawater desalination plant in Tobruk, Libya to a consortium under the leadership of BBC Mannheim. This power station has an output of 129 MW and supplies about 24,000 m/sup 3/ of drinking water daily. It went into operation in 1977, two and a half years after the contract was awarded.

  19. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  20. Pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Ogura, Shiro

    1979-01-01

    16 nuclear power plants are in commercial operation in Japan, and nuclear power generation holds the most important position among various substitute energies. Hereafter also, it is expected that the construction of nuclear power stations will continue because other advantageous energy sources are not found. In this paper, the outline of the pumps used for BWR plants is described. Nuclear power stations tend to be large scale to reduce the construction cost per unit power output, therefore the pumps used are those of large capacity. The conditions to be taken in consideration are high temperature, high pressure, radioactive fluids, high reliability, hydrodynamic performances, aseismatic design, relevant laws and regulations, and quality assurance. Pumps are used for reactor recirculation system, control rod driving hydraulic system, boric acid solution injecting system, reactor coolant purifying system, fuel pool cooling and purifying system, residual heat removing system, low pressure and high pressure core spraying systems, and reactor isolation cooling system, for condensate, feed water, drain and circulating water systems of turbines, for fresh water, sea water, make-up water and fire fighting services, and for radioactive waste treating system. The problems of the pumps used for nuclear power stations are described, for example, the requirement of high reliability, the measures to radioactivity and the aseismatic design. (Kako, I.)

  1. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  2. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  3. Effect of Lakhara chemical power station (LPTS) effluents on the river Indus water quality

    International Nuclear Information System (INIS)

    Mahar, R.B.; Memon, H.M.; Khushwar, M.Y.

    2000-01-01

    The variation of the quality of river Indus water with respect to the seasonal changes, discharge of water and dilution with the effluents of Lakhra Thermal Power Station (LTPS), has been monitored. The studies were focussed on the river Indus water quality before and after mixing the effluents of the power station. The samples were collected monthly from the representative locations of the river Indus, and analyzed for the residues (total, filterable, non-filterable, volatile and fixed), pH, temperature (air and water), conductance, chloride, hardness, alkalinity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD) /sub 5/- nitrate, phosphate, sulfate, ammonia, ammonium, silicates, magnesium, potassium, calcium and sodium. The results have been compared with the permissible limits of ECC (European Economic Community) standards for drinking and surface water. (author)

  4. Law concerning water and nuclear power station licensing

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The competent water authority, within the purview of the legal provisions concerning water is entitled to define a maximum of radioactive contamination of cooling water taken from and re-fed into the Rhine river, and is entitled to make such limit form part of the permit granted to a nuclear power station (here: Biblis B reactor). This right is not overruled by sections 45, 46 of the Rad. Protection Ordinance which determine dose limits (among others also for radioactivity released through waste water), and which state the competent licensing authority under atomic energy law to be entitled to set higher or lower limits by discretion. The provisions of sections 45 ff Rad. Prot. Ordinance are to be interpreted to mean that since the competent authority in accordance with section 46, sub-sections (2) and (5) Rad. Prot. Ordinance is given the right to define maximum acceptable radioactivity release through water discharge, it many also define the lowest limit of contamination and is hence entitled to declare discharged cooling water not to fall under atomic energy law, but rather under the law relating to water management. (orig.) [de

  5. Chemicals in effluent waters from nuclear power stations: the distribution, fate, and effects of copper

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1984-04-01

    This report provides a summary of research performed to determine the physicochemical forms and fate of copper in effluents from power stations adjacent to aquatic ecosystems with water that differs in salinity, pH, and concentrations of organic and inorganic constituents. In addition, research performed to evaluate responses of selected ecologically and economically important marine and freshwater organisms to increased concentrations of soluble copper is reviewed. The same parameters were measured and the same analytical techniques were used throughout the study. Copper concentration and speciation, in influent and effluent waters collected from eight power stations using copper alloys in their cooling systems, showed that the quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species except when low pH water was circulated. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from open-cycle to closed-cycle operation. The toxic response to copper differed with the species and life stage of the organism and with the chemical form of copper in the water. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH and on a population exposed to increased soluble copper in the laboratory were also assessed. 105 references, 15 figures, 11 tables

  6. Simulation of the energy - environment economic system power generation costs in power-stations

    International Nuclear Information System (INIS)

    Weible, H.

    1978-09-01

    The costs of power generation are an important point in the electricity industry. The present report tries to supply a model representation for these problems. The costs of power generation for base load, average and peak load power stations are examined on the basis of fossil energy sources, nuclear power and water power. The methods of calculation where dynamic investment calculation processes are used, are given in the shape of formulae. From the point of view of long term prediction, power generation cost sensitivity studies are added to the technical, economic and energy-political uncertainties. The sensitivity of models for calculations is examined by deterministic and stochastic processes. In the base load and average region, power generation based on nuclear power and water power is economically more favourable than that from fossilfired power stations. Even including subsidies, this cost advantage is not in doubt. In the peak load region, pumped storage power stations are more economic than fossilfired power stations. (orig.) [de

  7. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Paks Nuclear Power Station

    International Nuclear Information System (INIS)

    Erdosi, N.; Szabo, L.

    1978-01-01

    As the first stage in the construction of the Paks Nuclear Power Station, two units of 440 MW(e) each will be built. They are operated with two coolant loops each. The reactor units are VVER 440 type water-moderated PWR type heterogeneous power reactors designed in the Soviet Union and manufactured in Czechoslovakia. Each unit operates two Soviet-made K-220-44 steam turbines and Hungarian-made generators of an effective output of 220 MW. The output of the transformer units - also of Hungarian made - is 270 MVA. The radiation protection system of the nuclear power station is described. Protection against system failures is accomplished by specially designed equipment and security measures especially within the primary circuit. Some data on the power station under construction are given. (R.P.)

  9. French experience in operating pressurized water reactor power stations. Ten years' operation of the Ardennes power station

    International Nuclear Information System (INIS)

    Teste du Bailler, A.; Vedrinne, J.F.

    1978-01-01

    In the paper the experience gained over ten years' operation of the Ardennes (Chooz) nuclear power station is summarized from the point of view of monitoring and control equipment. The reactor was the first pressurized water reactor to be installed in France; it is operated jointly by France and Belgium. The equipment, which in many cases consists of prototypes, was developed for industrial use and with the experience that has now been gained it is possible to evaluate its qualities and defects, the constraints which it imposes and the action that has to be taken in the future. (author)

  10. Review on Water Distribution of Cooling Tower in Power Station

    Science.gov (United States)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  11. A research on the environmental impact on nearby waters range at low-level radioactive waste water drain from the Dayawan nuclear power station

    International Nuclear Information System (INIS)

    Zhang Chunling; Xu Zitu; Xiao Zhang.

    1987-01-01

    The possible influence of the low-level radioactive waste water drain from the Dayawan nuclear power station upon nearby waters range is discussed. The contents of the article contains the numerical simulation on tidal currents and pollutant diffusion, the calculation of concentration distribution of radioactive contaminants in the water area and of polluted field, and the criterion on radioactive contaminant influence on nearby residents and aquatic biologicals. The result shows that when the Dayawan nuclear power station is on normal operation and after the low-level radioactive waste water has been drained off into the sea, the radioactive concentration is even lower than the natural background radiation just out-side the area of about 4 km 2 round the water outlet. As a result, it won't cause any danger to the water environment. Due to the fact that the concentration of the low-level radioactive waste water from the nuclear power station fully accords with the national standard GB4792-84 and the sea water quality sandard GBH2, 3-82. It is no harm to either residents and aquatic biologicals or ecological balance

  12. Application of ORC power station to increase electric power of gas compression ignition engine

    Directory of Open Access Journals (Sweden)

    Mocarski Szymon

    2017-01-01

    Full Text Available The paper presents the calculation results of efficiency of the subcritical low temperature ORC power station powered by waste heat resulting from the process of cooling a stationary compression ignition engine. The source of heat to supply the ORC power station is the heat in a form of water jet cooling the engine at a temperature of 92°C, and the exhaust gas stream at a temperature of 420°C. The study considers three variants of systems with the ORC power stations with different ways of using heat source. The first variant assumes using just engine cooling water to power the ORC station. In the second variant the ORC system is powered solely by a heat flux from the combustion gases by means of an intermediary medium - thermal oil, while the third variant provides the simultaneous management of both heat fluxes to heat the water stream as a source of power supply to the ORC station. The calculations were made for the eight working media belonging both to groups of so-called dry media (R218, R1234yf, R227ea and wet media (R32, R161, R152a, R134a, R22.

  13. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  14. Electricity supplies in a French nuclear power station

    International Nuclear Information System (INIS)

    2011-01-01

    As the operation of a nuclear power station requires a power supply system enabling this operation as well as the installation safety, this document describes how such systems are designed in the different French nuclear power stations to meet the requirements during a normal operation (when the station produces electricity) or when it is stopped, but also to ensure power supply to equipment ensuring safety functions during an incident or an accident occurring on the installation. More precisely, these safety functions are provided by two independent systems in the French nuclear power stations. Their operation is briefly described. Two different types of nuclear reactors are addressed: pressurised water reactors (PWR) of second generation, EPR (or PWR of third generation)

  15. Heating of water by nuclear power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The aim of this note is to examine: the thermal conditions of the Rhone in its present state; heating caused by the building of nuclear power stations; the main hydrobiological and ecological characteristics of the Rhone [fr

  16. Energy analysis of nuclear power stations

    International Nuclear Information System (INIS)

    Lindhout, A.H.

    1975-01-01

    A study based on a 1000MWe light water reactor power station was carried out to determine the total energy input and output of the power station. The calculations took into account the mining and processing of the ore, enrichment of the uranium, treatment of used nuclear fuel, investment in land, buildings, machinery, and transport. 144 tons of natural uranium produce 6100 million kWh (electric) and 340 million kWh (thermal) per annum. (J.S.)

  17. [Space-time water monitoring system at the Iriklinsk hydroelectric power station].

    Science.gov (United States)

    Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F

    2002-01-01

    The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.

  18. Development in cooling water intake and outfall systems for atomic or steam power stations

    International Nuclear Information System (INIS)

    Wada, Akira

    1987-01-01

    The condenser cooling water channel, in its functional aspects, is an important structure for securing a stable supply of cooling water. In its design it is necessary to give a thorough-going study to a reduction of ranges affected by discharged warm water and minimizing the effect of discharged water on navigating ships, and in its functional aspects as a structure for power generation, avoiding the recirculation of discharged warm water as well as to maintaining the operation of power stations in case of abnormalities (concentration of dirts owing to typhoons and floods, outbreak of a large amount of jellyfishes, etc.), and all these aspects must be reflected in the design of cooling water channel systems. In this paper, the present situation relating to the design of cooling water intake and outfall systems in Japan is discussed. (author). 10 figs

  19. TEPCO plans to construct Higashidori Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi

    2008-01-01

    In 2006, TEPCO submitted to the government plans for the construction of Higashidori Nuclear Power Station. The application was filed 41 years after the project approved by the Higashidori Village Assembly. This nuclear power station will be the first new nuclear power plant constructed by TEPCO since the construction of Units No.6 and 7 at the Kashiwazaki Kariwa Nuclear Power Station 18 years ago. Higashidori Nuclear Power Station is to be constructed at a completely new site, which will become the fourth TEPCO nuclear power station. Higashidori Nuclear Power Station Unit No.1 will be TEPCO's 18th nuclear reactor. Unit No.1 will be an advanced boiling water reactor (ABWR), a reactor-type with a proven track record. It will be TEPCO's third ABWR. Alongside incorporating the latest technology, in Higashidori Nuclear Power Station Unit No.1, the most important requirement is for TEPCO to reflect in the new unit information and experience acquired from the operation of other reactors (information and experience acquired through the experience of operating TEPCO's 17 units at Fukushima Daiichi Nuclear Power Station, Fukushima Daini Nuclear Power Station and Kashiwazaki Kashiwa Nuclear Power Station in addition to information on non-conformities at nuclear power stations in Japan and around the world). Higashidori Nuclear Power Station is located in Higashidori-Village (Aomori Prefecture) and the selected site includes a rich natural environment. From an environmental perspective, we will implement the construction with due consideration for the land and sea environment, aiming to ensure that the plant can co-exist with its natural surroundings. The construction plans are currently being reviewed by the Nuclear and Industrial Safety Agency. We are committed to making progress in the project for the start of construction and subsequent commercial operation. (author)

  20. Developmental state and perspectives of USSR power stations, espec. nuclear power stations

    International Nuclear Information System (INIS)

    1983-01-01

    According to the resolutions of the 25th and 26th party congresses of the CPSU, the Soviet electric and thermal energy economy envisages as the mainstreams in development: Energy projects based on nuclear fuel, i.e. nuclear power stations (NPS), nuclear heat- and -power stations (NHPS) and nuclear heat stations (NHS); fuel-energy complexes: Ekibastuz, Kansk-Achinsk, West-Siberian complex (Tyumen); power stations utilizing non-conventional regenerative energy sources, i.e. solar, geothermal, MHD power stations. Further down, an overview is given on the developmental perspectives of nuclear-heat and nuclear-power economy and on the development of energy management based on fossil fuels. (orig./UA) [de

  1. Development and construction of nuclear power and nuclear heating stations in the USSR

    International Nuclear Information System (INIS)

    Schmidt, G.; Kirmse, B.

    1983-01-01

    The state-of-the-art of nuclear power technology in the USSR is reviewed by presenting characteristic data on design and construction. The review takes into consideration the following types of facilities: Nuclear power stations with 1000 MWe pressurized water reactors, with 1000 MWe pressure tube boiling water reactors, and with 600 MWe fast breeder reactors; nuclear heating power stations with 1000 MWe reactors and nuclear heating stations with 500 MWth boiling water reactors

  2. Port construction works in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Narahara, Akio; Minamata, Hisashi; Harada, Kensaku

    1982-01-01

    Sendai Nuclear Power Station is the second nuclear power station of Kyushu Electric Power Co., Inc., with two PWR plants of 890 MW each, and the operation of No.1 plant will be started in July, 1984, and that of No.2 plant in March, 1986. The civil engineering works for both plants were started in June, 1978, and March, 1981, respectively, and the rate of progress as of the end of September, 1982, was 97 % and 66 %, respectively. In the construction of this power station, the port facility was provided for the transport of construction materials and spent fuel, and for the intake of condenser cooling water. In order to make the construction by dry work, the double cofferdam structures with steel sheet piles were made offshore. The use of the wharf was started in March, 1980, though typhoons hit the area several times, and the dredging in the port was completed in May, 1982. The outline of the plan of this power station, the state of affairs before the start of construction, the outline of the port construction works, the topography, geological features and sea conditions, the design of the port such as breakwaters, unloading wharf and water intake, the manufacture and installation of caissons, dredging, and the temporary cofferdam works for water intake are described. (author)

  3. Ten years of KRB Gundremmingen demonstration power station

    International Nuclear Information System (INIS)

    Facius, H. von; Ettemeyer, R.

    1976-01-01

    In August 1976 the first large nuclear power station in the Federal Republic, the KRB Gundremmingen plant with a net power of 237 MWe, has been in operation ten years. The construction of KRB as a demonstration plant was a major step forward on the way to the economic utilization of nuclear power for German utilities. Design and operation of the plant have decisively influenced the further development of the technology of light water reactors in the Federal Republic. Unlike the Kahl Experimental Nuclear Power Station (VAK), which was a test facility designed to generate experience and to train personnel, the decision to build KRB from the outset was conditional upon the fulfillment of economic criteria. Here are some of the aspects in which KRB has greatly influenced the development of nuclear power station technology: first application of internal steam-water separation instead of a steam drum with a water content of the steam of less than 1%; construction of a reactor buildung with all the necessary safety factors; solution of the corrosion and erosion problems linked with the use of a saturated steam turbine; special measures taken to prevent the turbine from speeding up due to post-evaporation effects after shutdown. Detailed comments are devoted to the subjects of availability, causes of failure and repair work. (orig.) [de

  4. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  5. Chemistry, materials and related problems in steam generators of power stations

    International Nuclear Information System (INIS)

    Mathur, P.K.

    2000-01-01

    The operational reliability and availability of power plants are considerably influenced by chemical factors. Researches all over the world indicate that several difficulties in power plants can be traced to off-normal or abnormal water chemistry conditions. Whatever the source of energy, be it fossil fuel or nuclear fuel, the ultimate aim is steam generation to drive a turbine. It is, therefore, natural that problems of water chemistry and material compatibility are similar in thermal and nuclear power stations. The present paper discusses various types of problems in the form of corrosion damages, taking place in the boiler-turbine cycles and describes different types of boiler feed water/boiler water treatments that have been in use both in nuclear and thermal power stations. Current positions in relation to requirements of boiler feed water, boiler water and steam quality have been described

  6. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  7. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  8. Power station instrumentation

    International Nuclear Information System (INIS)

    Jervis, M.W.

    1993-01-01

    Power stations are characterized by a wide variety of mechanical and electrical plant operating with structures, liquids and gases working at high pressures and temperatures and with large mass flows. The voltages and currents are also the highest that occur in most industries. In order to achieve maximum economy, the plant is operated with relatively small margins from conditions that can cause rapid plant damage, safety implications, and very high financial penalties. In common with other process industries, power stations depend heavily on control and instrumentation. These systems have become particularly significant, in the cost-conscious privatized environment, for providing the means to implement the automation implicit in maintaining safety standards, improving generation efficiency and reducing operating manpower costs. This book is for professional instrumentation engineers who need to known about their use in power stations and power station engineers requiring information about the principles and choice of instrumentation available. There are 8 chapters; chapter 4 on instrumentation for nuclear steam supply systems is indexed separately. (Author)

  9. Economic simplified boiling water reactor (ESBWR) response to an extended station blackout/ loss of all AC power

    International Nuclear Information System (INIS)

    Barrett, A.J.; Marquino, W.

    2013-01-01

    U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackout for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event

  10. Process instrumentation for nuclear power station

    International Nuclear Information System (INIS)

    Yanai, Katsuya; Shinohara, Katsuhiko

    1978-01-01

    Nuclear power stations are the large scale compound system composed of many process systems. Accordingly, for the safe and high reliability operation of the plants, it is necessary to grasp the conditions of respective processes exactly and control the operation correctly. For this purpose, the process instrumentation undertakes the important function to monitor the plant operation. Hitachi Ltd. has exerted ceaseless efforts since long before to establish the basic technology for the process instrumentation in nuclear power stations, to develop and improve hardwares of high reliability, and to establish the quality control system. As for the features of the process instrumentation in nuclear power stations, the enormous quantity of measurement, the diversity of measured variables, the remote measurement and monitoring method, and the ensuring of high reliability are enumerated. Also the hardwares must withstand earthquakes, loss of coolant accidents, radiations, leaks and fires. Hitachi Unitrol Sigma Series is the measurement system which is suitable to the general process instrumentation in nuclear power stations, and satisfies sufficiently the basic requirements described above. It has various features as the nuclear energy system, such as high reliability by the use of ICs, the methods of calculation and transmission considering signal linkage, loop controller system and small size. HIACS-1000 Series is the analog controller of high reliability for water control. (Kako, I.)

  11. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  12. Mini hydro electric power stations Lukar 1,2,3,4: Public enterprise (JP) Komunalec

    International Nuclear Information System (INIS)

    Stojanova, Blagica

    2004-01-01

    The role of the Public enterprises in improving entire living conditions of the citizens, not only by its services towards the citizenship such as: water supplying and public hygiene but the opportunity to produce the electric power by the Mini hydro electric-power stations built on the main city water supply pipes. The paper presents experiences of building the mini hydro electric power stations Lukar 1,2,3,4. The successful completion of this project should be a motivation for building more electric power stations because there are great water potential in the Republic of Macedonia i.e. there have been recorded more than a hundred places suitable for construction of power electric stations. This will contribute not only for clean ecological energy but will have a direct influence on the total economic development of the Republic of Macedonia. (Author)

  13. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  14. State-space model predictive control method for core power control in pressurized water reactor nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)

    2017-02-15

    A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  15. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs

  16. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  17. Thermodynamic power stations at low temperatures

    Science.gov (United States)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  18. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  19. 20 years of power station master training

    International Nuclear Information System (INIS)

    Schwarz, O.

    1977-01-01

    In the early fifties, the VGB working group 'Power station master training' elaborated plans for systematic and uniform training of power station operating personnel. In 1957, the first power station master course was held. In the meantime, 1.720 power station masters are in possession of a master's certificate of a chamber of commerce and trade. Furthermore, 53 power station masters have recently obtained in courses of the 'Kraftwerksschule e.V.' the know-how which enables them to also carry out their duty as a master in nuclear power stations. (orig.) [de

  20. Demonstration of laser processing technique combined with water jet technique for retrieval of fuel debris at Fukushima Daiichi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hanari, Toshihide; Takebe, Toshihiko; Yamada, Tomonori; Daido, Hiroyuki; Ishizuka, Ippei; Ohmori, Shinya; Kurosawa, Koichi; Sasaki, Go; Nakada, Masahiro; Sakai, Hideaki

    2017-01-01

    In decommissioning of Fukushima Daiichi Nuclear Power Station, a retrieval process of fuel debris in the Primary Containment Vessel by a remote operation is one of the key issues. In this process, prevention of spreading radioactive materials is one of the important considerations. Furthermore, an applicable technique to the process requires keeping of reasonable processing-efficiency. We propose to use the combined technique including a laser light and a water jet as a retrieval technique of the fuel debris. The laser processing technique combined with a repetitive pulsed water jet could perform an efficient retrieval processing. Our experimental result encourages us to promote further development of the technique towards a real application at Fukushima Daiichi Nuclear Power Station. (author)

  1. Hinkley Point 'C' power station public inquiry: statement of case

    International Nuclear Information System (INIS)

    1988-08-01

    This Statement of Case contains full particulars of the case which the Central Electricity Generating Board (CEGB) proposes to put forward at the Hinkley Point ''C'' Inquiry. It relates to the planning application made by the CEGB for the construction of a 1200 MW Pressurized Water Reactor (PWR) power station at Hinkley Point in the United Kingdom, adjacent to an existing nuclear power station. The inquiry will consider economic, safety, environmental and planning matters relevant to the application and the implications for agriculture and local amenities of re-aligning two power transmission lines. The Statement contains submissions on the following matters: Topic 1 The Requirement for the Station; Topic 2 Safety and Design, including Radioactive Discharges; Topic 3 The On-Site Management of Radioactive Waste and Decommissioning of the Station; Topic 4 Emergency Arrangements; Topic 5 Local and Environmental Issues. (author)

  2. Improving the Efficiency of Natural Raw Water Pretreatment at Thermal Power Stations

    Science.gov (United States)

    Dremicheva, E. S.

    2018-02-01

    In the treatment of make-up water for thermal power stations (TPS) and heat networks, raw water from surface water bodies is used. It contains organic and mineral pollutants in the form of particulates or colloids. Coagulation and flocculation are reagent methods for removing these pollutants from water. Chemicals are used to assist in the formation of large structured flakes that are removed easily from water. The Kuibyshev water reservoir was selected as the object of investigation. Basic physical and chemical properties of the raw water are presented. The application of various coagulating agents, their mixtures in different proportions, and flocculating agents for clarifying the Volga water was examined. The required dose of a coagulant or flocculant was determined based on test coagulation of the treated water. Aluminum sulfate and iron (III) chloride were used a coagulant, and Praestol 2500 (nonionic) as a flocculant. A method of enhancement of coagulation and flocculation by injecting air into the treated water is examined. The results of experimental investigation of the effect of water treatment method on water quality indices, such as alkalinity, pH, iron content, suspended material content, and permanganate value, are presented. It is demonstrated that joint use of ironand aluminum containing coagulation agents brings the coagulation conditions closer to the optimum ones. Aeration does not affect the coagulation process. The methods for supplying air to a clarifier are proposed for practical implementation.

  3. Cooling water intake and discharge facilities for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Ishihara, Hisashi; Iwabe, Masakazu

    1977-01-01

    Igata Nuclear Power Station is located at the root of Sadamisaki peninsula in the western part of Ehime Prefecture, Japan, and faces the Iyonada sea area in Seto Inland Sea. The most part of the shoreline forms the cliffs, and the bottom of the sea is rather steep, reaching 60 m depth at 300 m offshore. Considering warm water discharge measures in addition to the natural conditions of tide and current, temperature of sea water, water quality and wave data, it was decided that the deep layer intake system using bottom laid intake pipes and the submerged discharge system with caisson penetrable dike would be adopted for cooling water. The latter was first employed in Japan, and the submerged discharge system with caisson penetrable dike had been developed. The intake was designed to take sea water of about 38 m 3 per sec for each condenser unit at the depth of approximately 17 m with 4.8 m diameter and 116 m length pipes and its calculation details and construction are described. The discharge system was designed to provide a horseshoe-shaped discharge pond with inner diameter of approximately 50 m, surrounded by 17 concrete caissons, and to spout warm water discharge from eight openings of 1.58 m diameter, at the location of approximately 300 m eastward of the intake. Its hydraulic studies and model experiments and its construction are reported. (Wakatsuki, Y.)

  4. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  5. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  6. Advances in power station construction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This book is about power stations - specifically about the construction of modern power stations by the Central Electricity Generating Board in England and Wales over the past decade. It describes the work of the CEGB's Generation Development and Construction Division, perhaps better known throughout the world as simply 'Barnwood' where it has its Headquarters in Gloucester, UK. Barnwood was formed in the early 1970s to concentrate the CEGB's then dispersed engineering construction resources to cope with the smaller number but greatly increased size and complexity of modern power station projects. Perhaps uniquely over the ten years since its formation Barnwood has managed the construction of all types of station; coal-fired, oil-fired, nuclear, pumped storage and hydro. This book tells the story of these various projects and gives detailed descriptions of the respective stations. However, it is not intended as a comprehensive description of power station technology. Rather it is intended to convey the scale of such projects and the many decisions and compromises which have to be made in the course of managing their construction

  7. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  8. Monitoring biofouling in the seawater tunnel of a coastal power station

    International Nuclear Information System (INIS)

    Sasikumar, N.

    1994-01-01

    Water level difference (head loss) between the seawater intake and the forebay was used to determine the biofouling growth in the cooling-water tunnel of Madras atomic power station, India. During 1986-87, due to biofouling growth in the tunnel, the head loss dropped beyond the permissible limits required for operation of the power plant. The head loss showed an improvement during 1988 and 1989, after exomotive chlorination was adopted instead of shock chlorination. Fouling biomass estimated from the head loss showed a heavy biomass build-up of 535.52 ± 102 tonnes in the tunnel during 1992. The head loss showed a seasonal pattern, very similar to the settlement pattern of foulants in the coastal waters, with maximum values during summer months. On the basis of head-loss data, a suitable chlorination practice has been recommended to the power station. The experience suggested that a continuous monitoring of head loss is a simple and reliable method of estimating and controlling biofouling in power-plant cooling-water tunnels. (author)

  9. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  10. Fire protection concept for power stations

    International Nuclear Information System (INIS)

    Zitzmann, H.

    The author shows how a systematic approach permits the design of a fire-protected power station. The special conditions of an individual power station are here treated as marginal conditions. The article describes how the concept is realized in the completed power station, taking account of the information provided by fire statistics. (orig.) [de

  11. Steam turbines for nuclear power stations in Czechoslovakia and their use for district heating

    International Nuclear Information System (INIS)

    Drahy, J.

    1989-01-01

    The first generation of nuclear power stations in Czechoslavakia is equipped with 440 MW e pressurized water reactors. Each reactor supplies two 220 MW, 3000 rpm condensing type turbosets operating with saturated steam. After the completion of heating water piping systems, all of the 24 units of 220 MW in Czechoslovak nuclear power stations will be operated as dual purpose units, delivering both electricity and heat. At the present time, second-generation nuclear power stations, with 1000 MW e PWRs, are being built. Each such plant is equipped with one 1000 MW full-speed saturated steam turbine. The turbine is so designed as to permit the extraction of steam corresponding to the following quantities of heat: 893 MJ/s with three-stage water heating (150/60 0 C); and 570 MJ/s with two-stage water heating (120/60 0 C). The steam is taken from uncontrolled steam extraction points. (author)

  12. Periodical inspection in nuclear power stations

    International Nuclear Information System (INIS)

    1986-01-01

    Periodical inspection is presently being made of eight nuclear power plants in nuclear power stations. Up to the present time, in three of them, failures as follows have been observed. (1) Unit 3 (PWR) of the Mihama Power Station in The Kansai Electric Power Co., Inc. Nineteen heat-transfer tubes of the steam generators were plugged up due to failure. A fuel assembly with a failed spring fixture and in another the control-rod cluster with a failed control rod fixture were replaced. (2) Unit 2 (PWR) of the Oi Power Station in The Kansai Electric Power Co., Inc. Eight heat-transfer tubes of the heat exchangers were plugged up due to failure. (3) Unit 6 (BWR) of the Fukushima Nuclear Power Station I in The Tokyo Electric Power Co., Inc. A fuel assembly with leakage was replaced. (Mori, K.)

  13. High efficiency-large capacity circulating water pump for Hamaoka Nuclear Power Station unit No.3

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasamuro, Takemi; Takeda, Hirohisa.

    1988-01-01

    No.3 plant in the Hamaoka Nuclear Power Station, Chube Electric Power Co., Inc. is the latest plant of 1100 MW class BWR type, which began the commercial operation in August, 1987. The seawater intake and discharge system of this plant is composed of the channel exceeding 2 km in the total length from the intake tower to the discharge port. The circulating water pump installed in this system has the capacity of 1620 m 3 /min and the total head of 16.5 m, which are the largest in the world. It attained the efficiency as high as more than 90%. Three pumps supply seawater to three-body condensers. The design of the impeller and the casing for obtaining high efficiency, the structural design for facilitating maintenance, the manufacture of a model pump and the performance test using it and so on are reported. The most important item in the manufacture was the form of the onebody impeller weighing 4.5t. The confirmation of the performance of the actual machines was carried out as a part of the synthetic function confirmation test at the power station, and the flow rate was measured with Pitot tubes and ultrasonic flowmeters. (Kako, I.)

  14. Operating experience and performance at Narora Atomic Power Station

    International Nuclear Information System (INIS)

    Mittal, Subhash; Gupta, J.P.

    1998-01-01

    Narora Atomic Power Station consists of two units of 220 MWe capacity each. These are Pressurized Heavy Water Reactors, fuelled by natural uranium, moderated and cooled by heavy water. The Station is owned by Nuclear Power Corporation of India Ltd., which is responsible for design, construction, commissioning, and operation of all nuclear power stations in the country. NAPS was the first opportunity to apply operating experiences in design, keeping in view the evolving safety and seismicity requirements, ease of maintenance, inservice inspection needs, improved construction ability and standardization. Both the units of NAPS are having improved safety standards of current international levels. All the equipment are indigenous with improved quality and reliability. The first unit of the station went critical in March 1989 and synchronized to the grid in July 1989. The second units followed with its criticality in October 1991 and synchronization in January 1992. Considering the initial stabilizing period, the performance of both units of NAPS has progressively improved over the years. The annual capacity factor for NAPS - 1 was 90.01% and for NAPS - 2 was 89.01% for the financial year 1997-1998. This paper presents an analysis of the performance during the last three years and measures taken to improve it. The stated enhanced performance could be achieved by improvement in human performance by training/re-training, scrupulous monitoring and review of equipment/systems, institution of adequate procedure and ensuring their adherence. (authors)

  15. Concrete works in Igata Nuclear Power Station Unit-2

    International Nuclear Information System (INIS)

    Yanase, Hidemasa

    1981-01-01

    The construction of Igata Nuclear Power Station Unit-2 was started in February, 1978, and is scheduled to start the commercial operation in March, 1982. Construction works are to be finished by August, 1981. The buildings of Igata Nuclear Power Station are composed of large cross section concrete for the purpose of shielding and the resistance to earth quakes. In response to this, moderate heat Portland cement has been employed, and in particular, the heat of hydration has been controlled. In this report, also fine and coarse aggregates, admixtures and chemical admixtures, and further, the techniques to improve the quality are described. Concrete preparation plant was installed in the power station site. Fresh concrete was carried with agitator body trucks from the preparation plant to the unloading point, and from there with pump trucks. Placing of concrete was carried out, striving to obtain homogeneous and dense concrete by using rod type vibrators. Further, concrete was placed in low slump (8 - 15 cm) to reduce water per unit volume, and its temperature was also carefully controlled, e.g., cold water (temperature of mixing water was about 10 deg C) was used in summer season (end of June to end of September). As a result, the control target was almost satisfied. As for testing and inspection, visual appearance test was done as well as material testing in compliance with JIS and other standards. (Wakatsuki, Y.)

  16. Biological and radioecological investigations at the Ringhals nuclear power station, 1968-1987

    International Nuclear Information System (INIS)

    Grimaas, U.; Jacobsson, A.; Neuman, E.

    1989-09-01

    The summary is based on 19 papers, which are presented in the References. The reports concern fish, bottom-living animals, zooplankton and algae as well as the presence of radioactivity in the aquatic and terrestrial environments. The investigation has been conducted at the request of Vaesterbygden's Water Rights Court and present the experiences of twelve operational years, of which the last four years have been with the power station at full capacity. In judging the effects of the operation of the power station, particular emphasis has been placed on questions given priority by the Water Rights Court, namely fishing and radioactivity. As regards fishing, the direct effects of the cooling-system on fish in different developmental stages have been assessed to be of importance. Water-borne radioactivity has been traced in organisms and sediment in the area. The concentrations of different radionucleids originating from the power station are highest in algae and lowest in fish-meat. The results form the basis of calculations of the radioactive dose to man. (orig./HP)

  17. Purification of condenser water in thermal power station by superconducting magnetic separation

    International Nuclear Information System (INIS)

    Ha, D.W.; Kwon, J.M.; Baik, S.K.; Lee, Y.J.; Han, K.S.; Ko, R.K.; Sohn, M.H.; Seong, K.C.

    2011-01-01

    Magnetic separation using cryo-cooled Nb-Ti superconducting magnet was applied for the purification of condenser water. Iron oxides in condenser water were effectively removed by superconducting magnetic separation. The effect of magnetic field strength and filter size was determined. Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2 O 3 (hematite) and γ-Fe 2 O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  18. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  19. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  20. Sources of the wind power stations

    International Nuclear Information System (INIS)

    Chudivani, J.; Huettner, L.

    2012-01-01

    The paper deals with problems of the wind power stations. Describes the basic properties of wind energy. Shows and describes the different types of electrical machines used as a source of electricity in the wind power stations. Shows magnetic fields synchronous generator with salient poles and permanent magnets in the program FEMM. Describes methods for assessing of reversing the effects of the wind power stations on the distribution network. (Authors)

  1. Experience of Electricite de France in the use of sea water for cooling thermal power stations

    International Nuclear Information System (INIS)

    Boyer, R.M.E.; Malherbe, C.

    1979-01-01

    The sea is a practically unlimited reserve of water for cooling conventional or nuclear thermal power stations. On the other hand, its use gives rise to numerous problems relating to the design and operation of the equipment. The main problems encountered at EDF are associated with filter screens (clogging, corrosion), the distribution ducts (encrusted organisms), the water boxes, the tube plates, and above all, the condenser tubes (corrosion, corrosion-erosion). The site-construction of several PWR nuclear sets has caused EDF to dispense with the use of cuprous alloys for the tubes of condensers using sea water; these are now of thin-walled seam-welded titanium. In order to reduce further the risks of leakage, these tubes are expanded into double tube plates between which fresh water is trapped under pressure. (author)

  2. Numerical analysis of transient pressure variation in the condenser of a nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinjun; Zhou, Zijie; Song, Zhao [Xi' an Jiaotong University, Xi' an (China); Lu, Qiankui; Li, Jiafu [Dong Fang Turbine Co., Ltd, Deyang (China)

    2016-02-15

    To research the characteristics of the transient variation of pressure in a nuclear power station condenser under accident condition, a mathematical model was established which simulated the cycling cooling water, heat transfer and pressure in the condenser. The calculation program of transient variation characteristics was established in Fortran language. The pump's parameter, cooling line's organization, check valve's feature and the parameter of siphonic water-collecting well are involved in the cooling water flow's mathematical model. The initial conditions of control volume are determined by the steady state of the condenser. The transient characteristics of a 1000 MW nuclear power station's condenser and cooling water system were examined. The results show that at the condition of plant-power suspension of pump, the cooling water flow rate decreases rapidly and refluxes, then fluctuates to 0. The variation of heat transfer coefficient in the condenser has three stages: at start it decreases sharply, then increases and decreases, and keeps constant in the end. Under three conditions (design, water and summer), the condenser pressure goes up in fluctuation. The time intervals between condenser's pressure signals under three conditions are about 26.4 s, which can fulfill the requirement for safe operation of nuclear power station.

  3. Lippe-Ems GmbH nuclear power stations. Annual report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear power company Lippe-Ems GmbH (KLE) runs the Emsland Nuclear Power Station (KKE) in Lingen (Ems) with a 1300 MW pressurized Water reactor. Partners of KLE are VEW and Elektromark. This 1992 annual report reveals numerous financial data of the operator (balance sheet, profit and loss account.) (orig./UA) [de

  4. Dealing with operational power station wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, R B [Central Electricity Generating Board, London (UK). Nuclear Health and Safety Dept.

    1981-08-01

    The disposal of wastes from nuclear power stations is discussed. Liquid and gaseous wastes, from magnox stations, which are of low level activity, are dispersed to the sea or estuaries on coastal sites or for the case of Trawfynyeld, to the nearby lake. Low activity solid wastes are either disposed of on local authority tips or in shallow land burial sites. Intermediate level wastes, consisting mainly of wet materials such as filter sludges and resins from cooling ponds, are at present stored in shielded storage tanks either dry or under water. Only one disposal route for intermediate waste is used by Britain, namely, sea-dumping. Materials for sea dumping have to be encapsulated in a durable material for example, concrete.

  5. Measurement of actinides in samples from effluent air, primary coolant and effluent water of nuclear power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.; Rosner, G.

    1977-01-01

    Since the middle of 1973 the alpha radioactivity of a number of aerosol filters from the stack monitoring systems of some nuclear power stations, of water effluent samples from all german nuclear power stations and of samples from the primary coolant water of one nuclear power reactor was measured. Essentially, the following procedures of sample preparation for alpha spectrometry of the samples in large area gridded ionization chambers were used; cold ashing of the aerosol samples in 'excited' oxygen, coprecipitation of the alpha emitters from the effluent water samples with iron hydroxide and subsequent cold ashing of the precipitate, and evaporation of the samples from the primary cycle on stainless steel plates. The following transuranium nuclides, or some of them, were found in the samples of the primary coolant and in several aerosol filter samples: Pu-239/240, Pu-238 and/or Am-241, Cm-242 and Cm-244. Cm-242 contributes most to the alpha radioactivity in fresh samples. In the effluent water samples Cm-242, Pu-239/240 and Pu-238 and/or Am-241 were identified in some cases, in one case also Cm-244. Detection limits of the procedures used for the analysis of the above stated transuranium nuclides were in the order of 0,1 fCi per m 3 for the aerosol samples and of 0.2 pCi per 1 for the liquid samples. For the effluent air and water samples in most cases specific activities near the detection limit or somewhat higher were found. On the basis of the measurements, an estimation of the annual actinides releases from nuclear power stations in the Federal Republic of Germany is given

  6. Study on temperature field airborne remote sensing survey along shore nuclear power station in different tide status

    International Nuclear Information System (INIS)

    Liang Chunli; Li Mingsong

    2010-01-01

    Nuclear Power Station needs to let large quantity of cooling water to the near sea area when it is running. Whether the cooling water has effect to surrounding environment and the running of Nuclear Power Station needs further research. Temperature Drainage Mathematic Model and Physical Analogue Model need to acquire the distribution characteristic of near Station sea surface temperature field in different seasons and different tide status. Airborne Remote Sending Technique has a advantage in gaining high resolution sea surface temperature in different tide status, and any other manual method with discrete point survey can not reach it. After a successful implementation of airborne remote sensing survey to gain the near-shore temperature drainage information in Qinshan Nuclear Power Station, it provides the reference methods and ideas for temperature drainage remote sensing survey of Nuclear Power Station. (authors)

  7. Prospects for solving environmental problems pertinent to thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Tumanovskii; V.R. Kotler [OAO All-Russia Thermal Engineering Institute, Moscow (Russian Federation)

    2007-06-15

    Possible ways to protect the atmosphere and water basin against harmful emissions and effluent waters discharged from thermal power stations are considered. Data on the effectiveness of different methods for removing NOx, SO{sub 2}, and ash particles, as well as heavy metals and CO{sub 2}, from these emissions and discharges are presented.

  8. Mathematical modelling of thermal-plume interaction at Waterford Nuclear Power Station

    International Nuclear Information System (INIS)

    Tsai, S.Y.H.

    1981-01-01

    The Waldrop plume model was used to analyze the mixing and interaction of thermal effluents in the Mississippi River resulting from heated-water discharges from the Waterford Nuclear Power Station Unit 3 and from two nearby fossil-fueled power stations. The computer program of the model was modified and expanded to accommodate the multiple intake and discharge boundary conditions at the Waterford site. Numerical results of thermal-plume temperatures for individual and combined operation of the three power stations were obtained for typical low river flow (200,000 cfs) and maximum station operating conditions. The predicted temperature distributions indicated that the surface jet discharge from Waterford Unit 3 would interact with the thermal plumes produced by the two fossil-fueled stations. The results also showed that heat recirculation between the discharge of an upstream fossil-fueled plant and the intake of Waterford Unit 3 is to be expected. However, the resulting combined temperature distributions were found to be well within the thermal standards established by the state of Louisiana

  9. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  10. Islands for nuclear power stations

    International Nuclear Information System (INIS)

    Usher, E.F.F.W.; Fraser, A.P.

    1981-01-01

    The safety principles, design criteria and types of artificial island for an offshore nuclear power station are discussed with particular reference to siting adjacent to an industrial island. The paper concludes that the engineering problems are soluble and that offshore nuclear power stations will eventually be built but that much fundamental work is still required. (author)

  11. Environmental surveillance of PWR power stations

    International Nuclear Information System (INIS)

    Conti, M.

    1980-01-01

    The action of Electricite de France with respect to the environment of PWR nuclear power stations is essentially centred on prevention. Controls are carried out at two levels: - before the power station goes on stream (radioecological study), - when the power station is operational. The purpose of the controls effected on the radioactive effluents and the environment is to check that the maximum discharge rate stipulated in the corresponding orders is complied with and to ensure that there are no anomalies in the environment [fr

  12. Tokai earthquakes and Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Komura, Hiroo

    1981-01-01

    Kanto district and Shizuoka Prefecture are designated as ''Observation strengthening districts'', where the possibility of earthquake occurrence is high. Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., is at the center of this district. Nuclear power stations are vulnerable to earthquakes, and if damages are caused by earthquakes in nuclear power plants, the most dreadful accidents may occur. The Chubu Electric Power Co. underestimates the possibility and scale of earthquakes and the estimate of damages, and has kept on talking that the rock bed of the power station site is strong, and there is not the fear of accidents. However the actual situation is totally different from this. The description about earthquakes and the rock bed in the application of the installation of No.3 plant was totally rewritten after two years safety examination, and the Ministry of International Trade and Industry approved the application in less than two weeks thereafter. The rock bed is geologically evaluated in this paper, and many doubtful points in the application are pointed out. In addition, there are eight active faults near the power station site. The aseismatic design of the Hamaoka Nuclear Power Station assumes the acceleration up to 400 gal, but it may not be enough. The Hamaoka Nuclear Power Station is intentionally neglected in the estimate of damages in Shizuoka Prefecture. (Kako, I.)

  13. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  14. Contamination awareness at the Dresden Nuclear Power Station

    International Nuclear Information System (INIS)

    Pagel, D.J.; Rath, W.C.

    1986-01-01

    Dresden Nuclear Power Station, which is located ∼ 60 miles southwest of Chicago near Morris, Illinois, has been generating electricity since 1960. Owned by Commonwealth Edison, Dresden was the nation's first privately financed nuclear station. On its site are three boiling water reactors (BWRs). Due to the contamination potential inherent with a reactor, a contamination trending program was created at the station. Studies had indicated a rise in contamination events during refueling outages. Further increases were due to specific work projects such as hydrolyzing operations. The investigations suggested that contract personnel also increased the number of events. In 1983, a contamination awareness program was created. The 1984 contamination awareness program was comprised of the following: (1) a statistical review in which trended contamination events were discussed. (2) A demonstration of protective clothing removal by an individual making various mistakes. (3) Scenarios were developed for use in mock work areas. (4) Upper management involvement. Because of the 1984 program, favorable attention has been focused on Dresden from the US Nuclear Regulatory Commission and the Institute of Nuclear Power Operations

  15. Reliability study of nuclear power stations

    International Nuclear Information System (INIS)

    Nemec, J.; Sedlacek, J.

    1975-01-01

    The paper considers the physical and mathematical bases underlying nuclear power station reliability from the standpoints of material fatigue, thermal yield and ageing. The risk of failure of nuclear power station components is determined by means of the Markov stochastic process

  16. The latest make-up water treatment plant for power plants

    International Nuclear Information System (INIS)

    Yokomizo, Yuichi

    1997-01-01

    As the change of the outside environment surrounding power stations, the strengthening of the environmental standard of water quality and the upgrading of required water quality standard are described. The reduction of colloidal silica in thermal power plant water and the reduction of iron and organic chlorine in PWR water are necessary. Recently it became difficult to secure water for power stations, and in dry season, the water for power stations is sometimes cut for securing livelihood and agricultural water. For the means of securing stable water source, the installation of seawater desalting plants increased. The types, the constitution of the plants and the operation performance are reported. Recently the water treatment technology using MF, UF and RO membranes has become to be adopted. The relation of the substances to be removed to the range of filtration of respective membranes is shown. The conventional method is the combination of coagulative sedimentation, filtration and ion exchange resin, but the membrane technology uses UF and RO membranes. The technical features of UF (ultrafiltration) and RO (reverse osmosis) membrane facilities and deaerating membrane are explained. (K.I.)

  17. The Grossmatt hydro-power station

    International Nuclear Information System (INIS)

    Hintermann, M.

    2006-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the project for a small hydropower station on the Birs river in north-western Switzerland. The report reviews the history of the project, in which a new 385 kW-hydro-power station at the site of an earlier installation is foreseen. Details are presented on the investigations made and on the co-ordination with the owners of the hydro-power station situated up-river, the local power utility and the local authorities. Also, the requirements placed on the project by the fishing authorities are quoted and the solution foreseen is described. Also discussed are the requirements placed on the project by legislation on environmental impact and flood protection. Figures on electrical energy production and building costs are presented

  18. Station power supply by residual steam of Fugen

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y.; Kato, H.; Hattori, S. (Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan))

    1981-09-01

    In the advanced thermal reactor ''Fugen'', when the sudden decrease of load more than 40% occurs due to the failure of power system, the turbine regulating valve is rapidly shut, and the reactor is brought to scrum. However, the operation of turbo-generators is continued with the residual steam in the reactor, and the power for inside the station is supplied for 30 sec by the limiting timer, then the power-generating plant is automatically stopped. The reasons why such design was adopted are to reduce manual operation at the time of emergency, to continue water supply for cooling the reactor and to maintain the water level in the steam drum, and to reduce steam release from the safety valve and the turbine bypass valve. The output-load unbalance relay prevents the everspeed of the turbo-generator when load decreased suddenly, but when the failure of power system is such that recovers automatically in course of time, it does not work. The calculation for estimating the dynamic characteristics at the time of the sole operation within the station is carried out by the analysis code FATRAC. The input conditions for the calculation and the results are reported. Also the dynamic characteristics were actually tested to confirm the set value of the limiting timer and the safe working of turbine and generator trips. The estimated and tested results were almost in agreement.

  19. Error management process for power stations

    International Nuclear Information System (INIS)

    Hirotsu, Yuko; Takeda, Daisuke; Fujimoto, Junzo; Nagasaka, Akihiko

    2016-01-01

    The purpose of this study is to establish 'error management process for power stations' for systematizing activities for human error prevention and for festering continuous improvement of these activities. The following are proposed by deriving concepts concerning error management process from existing knowledge and realizing them through application and evaluation of their effectiveness at a power station: an entire picture of error management process that facilitate four functions requisite for maraging human error prevention effectively (1. systematizing human error prevention tools, 2. identifying problems based on incident reports and taking corrective actions, 3. identifying good practices and potential problems for taking proactive measures, 4. prioritizeng human error prevention tools based on identified problems); detail steps for each activity (i.e. developing an annual plan for human error prevention, reporting and analyzing incidents and near misses) based on a model of human error causation; procedures and example of items for identifying gaps between current and desired levels of executions and outputs of each activity; stages for introducing and establishing the above proposed error management process into a power station. By giving shape to above proposals at a power station, systematization and continuous improvement of activities for human error prevention in line with the actual situation of the power station can be expected. (author)

  20. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Hawes, F.B.

    1982-11-01

    The biological consequences of using a direct cooled system at the proposed Sizewell B power station are dealt with. Problems caused by the impingement of organisms on the fine-mesh screens through which the water is pumped, by the entrainment of smaller organisms in the flow through the cooling system and by the discharge of warmed chlorinated water into the sea are discussed. The chlorination of cooling water is described. (U.K.)

  1. Studying dynamics of indicators of nuclear power stations exploitation (the case of US nuclear power stations)

    OpenAIRE

    Varshavsky, Leonid

    2013-01-01

    Analysis of external and internal factors influencing significant improvement of economic indicators of US nuclear power stations in the 1990s is carried out. Approaches to modeling dynamics of capacity factors of nuclear power stations are proposed. Comparative analysis of dynamics of capacity factors and occupational radiation exposure for various generations of US nuclear power plants is carried out. Dynamical characteristics of «learning by doing» effects for analyzed indicators are measu...

  2. Operating experience of Fugen Nuclear Power Station

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Kaneko, Jun; Kawahara, Toshio; Matsumoto, Mitsuo

    1987-01-01

    The prototype ATR 'Fugen' developed as one of the national project has verified the performance and reliability of the advanced thermal reactor system through the operation for about eight years since 1979, and the elucidation of the characteristics in plutonium utilization and the development and verification of the tuilizing techniques have been advanced. Besides, the operational results and the achievement of the technical development are successively reflected to the design of a demonstration reactor. In this paper, the outline of Fugan and the operational results are reported. The ATR Fugen Power Station is that of the prototype reactor of heavy water moderated, boiling light water cooled, pressure tube type, having the electric output of 165 MW. It started the full scale operation on March 20, 1979, and as of January, 1987, the total generated electric power reached about 7 billion kWh, the time of power generation was about 43,000 h, and the average capacity factor was 60.6 %. Plutonium utilization techniques, the flow characteristics and the dynamic plant characteristics of a pressure tube type reactor, the operational characteristics of a heavy water system and the techniques of handling heavy water containing tritium, and the operational reliability and maintainability of the machinery and equipment installed have been studied. (Kako, I.)

  3. Extension of life of nuclear power stations

    International Nuclear Information System (INIS)

    Takahashi, Hideaki

    1991-01-01

    At the time of designing nuclear power stations, as their service life, generally 40 years are taken, and the basic design specifications of machinery and equipment are determined. In USA where atomic energy has been developed, the new construction of nuclear power stations is cased for a while, however, if this situation continues as it is, since old power stations reach the service life of 40 years and are retired in near future, it is feared that the circumstance of the total amount of power generation becoming short will occur. As one of the countermeasures to this, the research on the extension of life of nuclear power stations has been carried out in many fields in USA, and it is expected that the application for extending the life for the power stations constructed in the initial period of development is submitted in 1991. The researches that have been carried out for solving the technical problems in this extension of life and the situation in Japan are reported. The NEC of USA decided that the operation period of nuclear power stations in USA, which is considered to be 40 years so far, can be extended up to the limit of 20 years. The background and circumstances of this problem in USA, Nuclear Plant Aging Research Program, Plant Life Extension Program and so on are reported. (K.I.)

  4. Internal exposure profile of occupational workers of a BWR type atomic power station

    International Nuclear Information System (INIS)

    Hegde, A.G.; Bhat, I.S.

    1979-01-01

    The internal exposure profile of major radionuclides, for Tarapur Atomic Power Station (India) occupational staff for the last 9 years (1970-1978) of station operation, is presented. This power station has two boiling water reactor units. The occupational staff were monitored for internal exposure with the whole body counter. It has been observed that 60 Co, 134 Cs and 137 Cs are major contaminants. The highest yearly average of internal exposure was less than 1% of maximum permissible body burden recommended by ICRP. Depending on the nature of exposures the power station employees were classified under four different groups, (i) maintenance, (ii) operations, (iii) techanical and (iv) non-technical. This study revealed that maintenance group had highest incidence of internal exposure among these. It is also observed that contribution of 60 Co is maximum in the exposure of this group. (B.G.W.)

  5. Entrainment and impingement of aquatic fauna at cooling water system of Madras Atomic Power Station (MAPS)

    International Nuclear Information System (INIS)

    Barath Kumar, S.; Das, N.P.I.; Satpathy, K.K.

    2015-01-01

    Marine organisms get impinged to the intake screens of Madras Atomic Power Station (MAPS) due to the suction force of the cooling water system of the power plant. The present work has studied the loss of aquatic organism at MAPS due to impingement at cooling water screens. In total 67 species of marine faunas impinged on the water intake screens of MAPS during the study. The proportion of fish, shrimp, crab, jellyfish and others, with respect to the total biomass of impinged organisms are 1.59 % (33 species), 0.30% (9), 2.77 % (16), 95.10% (3) and 0.24% (4), respectively. Jellyfishes were observed to be the largest entrained group covering around 44.85% of individual and constituting almost 94.82 % of biomass recorded during the study period and sea nettle jelly (Chrysaora quinquecirrha) was impinged with highest frequency. The diel study shows higher impingement occurred during night time, on full moon day and at low tides in contrast to their counterparts. Fishes accounts for 14.84 % of individual count and mere 1.67 % of biomass. Totally 33 number of fish species were observed. The highest impinged species were pony fishes (Secutor ruconius, Secutor insidiator, Photopectoralis bindus, Alepes kleinii and Leiognathus equulus) (21% occurrence). These few entrained fishes are mostly very small in size and have less commercial value. The total loss of marine fauna by impingement during study period was estimated to be 4779 (or 463.46 kg). The present data when compared with the impingement data from other coastal power plants, shows that the impinged fish biomass at MAPS cooling water system is much less than the other temperate and tropical power plants. (author)

  6. Principles of nuclear power station control

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1975-12-01

    This memorandum represents lecture notes first distributed as part of a UKAEA introductory course on Reactor Technology held during November 1975. A nuclear power station is only one element of a dispersed interconnected arrangement of other nuclear and fossil-fired units which together constitute the national 'grid'. Thus the control of any one station must relate to the objectives of the grid network as a whole. A precise control of the supply frequency of the grid is achieved by regulating the output power of individual stations, and it is necessary for each station to be stable when operating in isolation with a variable load. As regards individual stations, several special control problems concerned with individual plant items are discussed, such as: controlled reactivity insertions, temperature reactivity time constants and flow instability. A simplified analysis establishes a fundamental relationship between the stored thermal energy of a boiler unit (a function of mechanical construction) and the flexibility of the heat source (nuclear or fossil-fired) if the station is to cope satisfactorily with demands arising from unscheduled losses of other generating sets or transmission capacity. Two basic control schemes for power station operation are described known as 'coupled' and 'decoupled control'. Each of the control modes has its own merits, which depend on the proposed station operating strategy (base load or load following) and the nature of the heat source. (U.K.)

  7. Work place regulations - effects on power station construction

    International Nuclear Information System (INIS)

    Richter, E.

    1979-01-01

    The paper describes that the Workplace Order and Workplace Regulations cannot be applied in every area of a conventional power station or the conventional sections of nuclear power stations. In any case extensive regulations already exist for the hot regions of nuclear power stations. A proposal is made as to which areas of power stations should be developed in accordance with the Workplace Order and the Workplace Regulations and which areas are not deemed to be 'Workplaces'. This is illustrated with the aid of typical examples. (orig.) [de

  8. Safety aspects of station blackout at nuclear power plants

    International Nuclear Information System (INIS)

    1985-03-01

    The principal focus of this report is on existing light water reactor nuclear power plants. However, many of the considerations discussed herein can be equally applied to new plants, i.e. those not yet in construction. This report is organized to provide a description of design and procedural factors which safety assessments and reviews of operating experience have shown to be important. These are divided into the off-site power system, the on-site AC power systems and alternate (or nearby) sources of power. The latter may be used in the unlikely event that both normal off-site and on-site sources fail. It must be emphasized that first priority should be placed on designing and maintaining high reliability of both the off-site and on-site AC power systems. This basic concept also applies to the capabilities for restoring power sources which failed and making use of all available alternative and nearby power sources during an emergency, to restore AC power in a prompt manner. Discussions on these aspects are provided in chapters 2 and 3 of this report. Because the expected event frequency and associated confidence in such estimations of station blackout are uncertain, preparations should be made to deal with a station blackout. The nature of those preparations, whether they be optimizing emergency procedures to use existing equipment, modifying this equipment to enhance capabilities, or adding new components or systems to cope with station blackout, must be made in light of plant-specific assessments and regulatory safety philosophies/requirements. Discussions on these matters are provided in chapter 4. General and specific conclusions and recommendations are provided in chapter 5. Appendix A provides a description of several case studies on station blackout and loss of off-site power. Abstracts of papers and presentations are provided in Appendix B with authors and affiliations identified to facilitate personal contact. The References and Bibliography contain a

  9. Evaluation of scenery in power stations

    International Nuclear Information System (INIS)

    Wakatani, Yoshifumi; Yamamoto, Kimio

    1982-01-01

    In the location of power sources hereafter, the location in natural landscape away from urban district tends to increase, accordingly, it is necessary to investigate beforehand the influence to surrounding scenery. However, the method of predicting and evaluating the effect on scenery has not yet been established, therefore, in this study, the basic concept on the investigation, forecast and evaluation of the scenery in power stations was clarified, and the establishment of the work procedure to evaluate the scenery and the effectiveness of the method of forecast and evaluation were examined. Also, the problems when power station facilities exert influence on scenery and the countermeasures to them were considered. Psychological experiment was carried out on the method of evaluation, and the structure and the regulating factors of scenery evaluation were clarified. Recently, good living environment is desired by public, and to the problems of fine environment regarding power stations, more attention is paid. The scenery problems of power stations are the protection of nature and the preservation of good living environment. Since this is an undeveloped field, many problems to be examined still remain. (Kako, I.)

  10. Results of special security inspection on improvement of security management setup in Head Office and Tsuruga Nuclear Power Station of the Japan Atomic Power Company and improvement of facilities in Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    1982-01-01

    In connection with the series of accidents in the Tsuruga Nuclear Power Station, the Agency of Natural Resources and Energy had instructed JAPC to make comprehensive inspection on the security management setup and to take improvement measures in the nuclear power station. The results of the subsequent inspection by ANRE confirmed that the improvements made by JAPC are adequate, and the following items are described: improvement of security management setup - communication and reporting in emergency, the management of inspection and maintenance records, work control and supervision in repair, improvement, etc., functional authority and responsibility in maintenance management, operation management, radiation control, personnel education; improvement of facilities - feed water heaters, laundry waste-water filter room, radioactive waste treatment facility, general drainage, concentrated waste liquid storage tanks in newly-built waste treatment building, etc. (J.P.N.)

  11. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.793 Digital low power TV and TV translator station protection of broadcast stations. (a) An application to construct a new digital low power...

  12. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  13. Condensate demineralizer system for Fukushima Daiichi Nuclear Power Station, the Tokyo Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Ariyoshi, Shigeki; Ikeda, Yukio; Kuramoto, Kenji; Omori, Yoshi; Yamamoto, Hiroyoshi

    1975-01-01

    This paper describes the condensate demineralizing equipment recently supplied to the second, third, and fifth power units of the Fukushima Daiichi Nuclear Power Station of the Tokyo Electric Power Company, Inc. The output of this equipment is rated as 4,900 m 3 /h each, which is currently the largest capacity for this type of equipment in Japan. The purpose of this equipment is to remove any ion components and suspended solids contained in condensate to improve its water purity. By doing so, decreasing the corrosion rate of materials used in the plant and, at the same time, decreasing the radioactivity of the condensate, thus easing the whole plant operation can be achieved. The same kind of equipment is also employed at the conventional thermal power stations, but the required functioning and operating mode are quite different. In the case of the nuclear power plant, extremely severe requirements specific with nuclear technology must be met which arise solely from dealing with radioactive substances. Not only the water treatment method, but also layout and arrangement, operation and liquid waste processing methods differ from those for the conventional power plants. The equipment for the sixth unit at Fukushima is now under designing and that for the Tokai No.2 unit of the Japan Atomic Power Company is already under shop fabrication. Both have the rated capacity of 7,300 m 3 /h each, which exceeds far up the capacity of the previously mentioned equipment. (auth.)

  14. Power station impacts: socio-economic impact assessment

    International Nuclear Information System (INIS)

    Glasson, John; Elson, Martin; Barrett, Brendan; Wee, D. Van der

    1987-01-01

    The aim of this study is to assess the local social and economic impacts of a proposed nuclear power station development at Hinkley Point in Somerset. The proposed development, Hinkley Point C, would be an addition to the existing Hinkley Point A Magnox station, commissioned in 1965, and the Hinkley Point B Advanced Gas Cooled Reactor (AGR) station, commissioned in 1976. It is hoped that the study will be of assistance to the CEGB, the Somerset County and District Councils and other agencies in their studies of the proposed development. In addition, the study seeks to apply and further develop the methodology and results from previous studies by the Power Station Impacts (PSI) team for predicting the social and economic effects of proposed power station developments on their localities. (author)

  15. On the development of small nuclear power stations

    International Nuclear Information System (INIS)

    Goetzmann, C.A.

    1989-01-01

    There are weighty reasons for and against the building of small nuclear power stations. Factors such as specific investment costs, opportunities for and areas of application, geographical conditions as well as those relating to infrastructure, security and availability play an important role in the planning, construction and running of a nuclear power station. For the usual large power stations, the comparatively low specific investment costs and a proven technology are favorable factors which minimize the investment risk. The article presents an overview of reasons for using small power stations and also considers the difficulties which would arise in practice. (orig.) [de

  16. Technology, safety and costs of decommissioning a reference pressurized water reactor power station. Classification of decommissioning wastes. Addendum 3

    International Nuclear Information System (INIS)

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference pressurized water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 17,885 cubic meters of waste from DECON are classified as follows: Class A, 98.0%; Class B, 1.2%; Class C, 0.1%. About 0.7% (133 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods

  17. Hinkley Point 'C' power station public inquiry: outline statement of case

    International Nuclear Information System (INIS)

    1988-05-01

    This outline statement relates to the public inquiry to be held into the planning application by the Central Electricity Generating Board (CEGB) to construct a 1200 MW Pressurized Water Reactor (PWR) power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom, adjacent to an existing nuclear power station. The inquiry will consider economic, safety, environmental and planning matters relevant to the application and the implications for agriculture and local amenities of the re-aligning of two 400 kV overhead transmission lines. The outline statement contains submissions on: policy contest and approach; the requirement for Hinkley Point ''C''; design and safety; local issues. (UK)

  18. Water Level Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Images contain station history information for 175 stations in the National Water Level Observation Network (NWLON). The NWLON is a network of long-term,...

  19. Report from investigation committee on the accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2012-01-01

    Government's Investigation Committee on the Accident at Fukushima Nuclear Power Stations of Tokyo Electric Power Company published its final report on July 23, 2012. Results of investigation combined final report and interim report published on December 26, 2011. The author was head of accident accuse investigation team mostly in charge of site response, prior measure and plant behavior. This article reported author related technical investigation results focusing on site response and prior measures against tsunamis of units 1-3 of Fukushima Nuclear Power Stations. Misunderstanding of working state of isolation condenser of unit 1, unsuitability of alternative water injection at manual stop of high-pressure coolant injection (HPCI) system of unit 3 and improper prior measure against tsunami and severe accident were pointed out in interim report. Improper monitoring of suppression chamber of unit 2 and again unsuitable work for HPCI system of unit 3 were reported in final report. Thorough technical investigation was more encouraged to update safety measures of nuclear power stations. (T. Tanaka)

  20. Hinkley Point 'C' power station public inquiry: proof of evidence on landscape and architecture

    International Nuclear Information System (INIS)

    Lisney, A.; Owen, I.D.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom, adjacent to an existing nuclear power station. The CEGB evidence to the Inquiry includes an assessment of the effect, in visual terms, that the additional power station will have on the surrounding landscape and landscaping proposals for the proposed construction, including reinstatement of land used for temporary works. In addition, the architectural objectives for the new buildings are presented, primarily aiming at the best possible appearance from relatively short distances and medium and long range. (UK)

  1. Performance of on-power fuelling equipment at Rajasthan Atomic Power Station

    International Nuclear Information System (INIS)

    Jayabarathan, S.; Gopalakrishnan, S.

    1977-01-01

    Natural uranium reactors on account of their intrinsically low reactivity need frequent refuelling. The Rajasthan Atomic Power Station based on natural uranium reactors has, therefore, been provided with on-power fuel handling system which was installed in 1972. Its performance has met the design intent and operational objectives which are enumerated. However, continuous fuelling 7 to 10 days has not been possible because frequent maintenance of refuelling system is needed on account of certain deficiencies major of which is the heavy water leakage. For better performance, installation of a programmable logic controller is suggested. Mention has also been made of inadequate number of skilled man-power required for maintenance which leads to quick depletion of man-rem of all the available personnel trained for maintenance work. (M.G.B.)

  2. Potential for use of condenser cooling waters from fossil fuel and nuclear power generating stations for freshwater aquaculture in cold climates

    International Nuclear Information System (INIS)

    Armstrong, G.C.

    1976-01-01

    Some limiting factors to the future development of freshwater aquaculture are considered. The most important of these are the need for new and improved technology for the production of better quality products at lower cost and for the promotion and establishment of new markets. The use of relatively small amounts of heated effluent water from power generating stations to optimize water temperatures is one feasible method for increasing growth and lowering the cost of production. (author)

  3. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  4. Monitoring of nuclear power stations

    International Nuclear Information System (INIS)

    Ull, E.; Labudda, H.J.

    1987-01-01

    The purpose of the invention is to create a process for undelayed automated detection and monitoring of accidents in the operation of nuclear power stations. According to the invention, this problem is solved by the relevant local measurements, such as radiation dose, components and type of radiation and additional relevant meteorological parameters being collected by means of wellknown data collection platforms, these being transmitted via transmission channels by means of satellites to suitable worldwide situated receiving stations on the ground, being processed there and being evaluated to recognise accidents. The local data collection platforms are used in the immediate vicinity of the nuclear power station. The use of aircraft, ships and balloons as data collection systems is also intended. (HWJ)

  5. Ichthyoplankton entrainment at Wylfa power station, Anglesey and implications for a further siting proposal

    International Nuclear Information System (INIS)

    Dempsey, C.H.; Rogers, S.I.

    1989-07-01

    A 12 month survey of ichthyoplankton in the cooling water system of Wylfa Power Station and the surrounding 40 km 2 of sea, was carried out between October 1986 and September 1987. The larvae of 31 species and the eggs of 8 species were identified in the survey. Samples taken from the cooling water system and by boat from offshore were largely similar in respect of species diversity and density. Estimates of annual losses due to entrainment are given both in terms of immediate losses and consequential losses of adults to the population. Estimates of losses of six commercially exploited species are considered in terms of loss to the commercial fishery. Assuming the 'worst case' of a 100% mortality of eggs and larvae passing through the cooling system, losses of ichthyoplankton due to entrainment at the existing 'magnox' nuclear power station at Wylfa Point are small and could have no significant adverse effect on fish populations of those species entrained. The operation of the proposed 'pressurised water reactor' nuclear power station on the same site would increase losses by up to 100%. Such an increase would still not alter the existing situation. No significant adverse effect is likely. (author)

  6. The AP1000R nuclear power plant innovative features for extended station blackout mitigation

    International Nuclear Information System (INIS)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L.

    2012-01-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  7. Safety aspects of nuclear power stations

    International Nuclear Information System (INIS)

    Binner, W.

    1980-01-01

    Psychological aspects of the fear of nuclear power are discussed, cancer deaths due to a nuclear accident are predicted and the need for nuclear accident prevention is stressed. A simplified analysis of the safety precautions in a generalised nuclear power station is offered, with reference to loss-of-coolant incidents, and developments in reactor design for fail-safe modes are explained. The importance of learning from the Three Mile Island incident is noted and failure statistics are presented. Tasks to be undertaken at the Austrian Zwentendorf nuclear power station are listed, including improved quality control and acoustic detectors. Precautions against earthquakes are also discussed and it is stated that safe operation of the Zwentendorf station will be achieved. (G.M.E.)

  8. Can we afford shutting down power stations?

    International Nuclear Information System (INIS)

    Hesse, David

    2015-01-01

    The author discusses and criticizes some popular beliefs on the profitability of nuclear power stations, on the fact that they are now too old to be exploited, and on the fact that nuclear energy is the most subsidised energy. As some European countries decided to phase out nuclear, he notices that the decrease of gas prices undermines the profitability of nuclear power stations in the USA and that new rules aimed at the reduction of CO 2 emissions result in high subsidies for renewable energies which are however handicapped by the grid ability to integrate all energies. He outlines that shutting down a nuclear power station costs a lot of money to the society, and denies the argument of non-profitability of these stations. He states that the issue of nuclear subsidies is in fact a matter of tax policy. He also states that these so-said old power stations take in fact advantage of numerous technical innovations for their equipment, components, technology and fuels which improve their efficiency, durability, performance and flexibility

  9. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  10. Pilot plant experiments at Wairakei Power Station

    International Nuclear Information System (INIS)

    Brown, Kevin L.; Bacon, Lew G.

    2009-01-01

    In the mid-1990s, several pilot plants were constructed at Wairakei to either improve the operational and economic performance of the power station or to mitigate the environmental effects of discharges to the Waikato River. The results of the following investigations are discussed: (1) fluid flow dynamic effects on silica scaling; (2) production of silica sols of predetermined particle size to evaluate the potential for generating commercial grade silica products; (3) use of 'sulfur oxidising bacteria' for the abatement of dissolved hydrogen sulphide in cooling water; (4) removal of arsenic from separated geothermal water; (5) steam line condensate corrosion; and (6) measurement and modelling of steam scrubbing in Wairakei's long steamlines. (author)

  11. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nuclear power station achievement 1968-1980

    International Nuclear Information System (INIS)

    Howles, L.R.

    This report reviews and gives an analysis of the achievement of operating nuclear power stations in the Western world on three relevant bases: (1) both annual and cumulative achievement of all nuclear power stations at a particular time; (2) cumulative achievement of all nuclear power stations at the end of the first and subsequent years of their lives to show trends with age; (3) achievement based on refuelling period considerations. Nowhere in the report are any operating details ignored, omitted or eliminated in the method of analysis. Summarising the results of the reviews shows: an improvement with time from initial electricity generation on all bases; that initially, larger sizes of reactor/turbine operate less well than smaller sizes (except for PHWR's); that after an initial number of years, the largest size units operate as well as the intermediate and smaller sizes, or better in the PHWR case; that a 75 per cent cumulative load factor achievement in the middle years of a reactor/turbines life can be expected on the refuelling period considerations base; that at June 1980, 35 nuclear power stations achieved an annual load factor over 75 per cent; that the above achievement was possible despite the repercussions following the Three Mile Island 'accident' and the shutdowns in the USA for piping system seismic adequacy checks required by the Nuclear Regulatory Commission for five nuclear power stations; and that even when reactors/turbines are reaching towards the end of their design life, there is no rapid deterioration in their achievements. (author)

  13. Ways of solving the problems of radiation safety and environmental protection in handling radioactive waste at atomic power stations in the USSR

    International Nuclear Information System (INIS)

    Gusev, D.I.; Belitskij, A.S.; Turkin, A.D.; Kozlov, V.M.

    1977-01-01

    Requirements of the State Sanitary Supervision on radiation safety of the personnel and population and on protection of the environment in handling radioactive wastes from nuclear power stations in the USSR are regulated by the Standards of Radiation Safety, the Main Sanitary Rules for Handling Radioactive Materials and by the Sanitary Rules for Designing Nuclear Power Stations. The regulations contained in these documents are obligatory for all the establishments at the stages of design, building and operation of nuclear power stations. The main requirement for handling radioactive wastes from nuclear power stations in the USSR is to dispose of them near the place of their production. In nuclear power station siting and designing the special territory is provided for liquid and solid radioactive wastes storage taking into account the whole period of nuclear power station operation. These storage sites are located within the controlled area. They are built as required, usually for five years. The report contains hygienic and hydrological requirements to the radiation waste burial sites and data on the accepted system of controlling leak-proof qualities of the disposal cavities and radioactivity of the ground water in this region. The results of long-term studies on radionuclide leaching from the bituminic blocks are given and it is shown that the bituminizing method used for solidification of intermediate activity wastes is very promising. In the USSR much attention is given to the problem of sanitary protection of the cooling ponds at nuclear power stations. No limits to the national-economic use of these ponds outside the nuclear power station site are established. Therefore in determining the requirements to the discharge of effluents into the cooling ponds of nuclear power stations the possibility of radionuclide transfer to the population through the aquaeous and terrestrial biological chains is taken into account. The possibility of human diet contamination

  14. Wind turbine power stations

    International Nuclear Information System (INIS)

    Anon.

    1992-11-01

    The Countryside Council for Wales (CCW's) policy on wind turbine power stations needs to be read in the context of CCW's document Energy:Policy and perspectives for the Welsh countryside. This identifies four levels of action aimed at reducing emission of gases which contribute towards the risk of global warming and gases which cause acid deposition. These are: the need for investment in energy efficiency; the need for investment in conventional power generation in order to meet the highest environmental standards; the need for investment in renewable energy; and the need to use land use transportation policies and decisions to ensure energy efficiency and energy conservation. CCW views wind turbine power stations, along with other renewable energy systems, within this framework. CCW's policy is to welcome the exploitation of renewable energy sources as an element in a complete and environmentally sensitive energy policy, subject to the Environmental Assessment of individual schemes and monitoring of the long-term impact of the various technologies involved. (Author)

  15. Evolutionary growth for Space Station Freedom electrical power system

    Science.gov (United States)

    Marshall, Matthew Fisk; Mclallin, Kerry; Zernic, Mike

    1989-01-01

    Over an operational lifetime of at least 30 yr, Space Station Freedom will encounter increased Space Station user requirements and advancing technologies. The Space Station electrical power system is designed with the flexibility to accommodate these emerging technologies and expert systems and is being designed with the necessary software hooks and hardware scars to accommodate increased growth demand. The electrical power system is planned to grow from the initial 75 kW up to 300 kW. The Phase 1 station will utilize photovoltaic arrays to produce the electrical power; however, for growth to 300 kW, solar dynamic power modules will be utilized. Pairs of 25 kW solar dynamic power modules will be added to the station to reach the power growth level. The addition of solar dynamic power in the growth phase places constraints in the initial Space Station systems such as guidance, navigation, and control, external thermal, truss structural stiffness, computational capabilities and storage, which must be planned-in, in order to facilitate the addition of the solar dynamic modules.

  16. Biofouling in the condenser cooling conduits of Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Thiyagarajan, V.; Subramoniam, T.; Venugopalan, V.P.; Nair, K.V.K.

    1995-01-01

    The present paper deals with various aspects fouling organisms collected from the condenser cooling water circuit of Madras Atomic Power Station (MAPS II) their biomass, thickness, composition and length frequency distribution of one of the major species namely, B. reticulatus. (author). 8 refs., 1 tab., 2 figs

  17. User Context Aware Base Station Power Flow Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  18. Management and construction of a major zero discharge water supply and treatment scheme at Mount Piper Power Station, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, P.; Docker, P.; Gabbrielli, E.; Wade, P. [Pacific Power, Sydney, NSW (Australia)

    1994-09-01

    Excellence in the organisation and management of a large multi-disciplinary design and construct project such as the zero discharge water supply and treatment scheme for Mount Piper coal-fired power station was essential to its successful execution. This paper discusses the management philosophies and strategies of Pacific Power and Transfield-PWT Asia/Pacific that resulted in this project being completed to the satisfaction of the client in the minimum time without delays and cost increases caused by interfaces between the parties. It highlights the advantages of contract packaging and placing the total responsibility for the performance and integration of a complex project system on one organisation. 2 refs., 6 figs.

  19. History of measures taken to reduce radiation exposure at Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    Kondou, Masashi; Takagi, Nobuyuki; Yabushita, Kazuo; Dekijima, Makoto

    2009-01-01

    Hamaoka Nuclear Power Station currently has five reactors, Units 1 to 5. Units 1 and 2 halted commercial operation in January 2009 and are now being prepared for decommissioning. Units 3 to 5 are operating at the rated thermal output with the gross electrical output of 3504 MWe. Hamaoka Nuclear Power Station has been operating for about 30 years since Unit 1 started up in 1976. Various measures have been taken to control water chemistry: for controlling SCC in the core internals and structural materials, hydrogen injection and noble metal injection were implemented; and to reduce radiation exposure for workers, condensate filter demineralizers were added, hollow fiber filters and pleated filters were installed in the condensate cleanup system, and zinc injection was performed. This paper describes measures taken at Hamaoka to reduce exposure in terms of water chemistry and techniques to monitor ion impurities in the reactor water. (author)

  20. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Science.gov (United States)

    2011-11-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2011-0244] ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor...

  1. Risk management of the North Anna Power Station Service Water System Preservation Project using the IPE model

    International Nuclear Information System (INIS)

    Afzali, A.; Donovan, M.D.; Sartain, M.D.; Bankley, A.V.

    1993-01-01

    This paper discusses the application of the North Anna Power Station Individual Plant Examination (IPE) models in PRA study of the Service Water System Preservation Project (SWSPP). The service water project involves repair and restoration of the Service Water System (SWS) piping and will require excavation of the buried SWS lines in addition to temporarily removing one of the two redundant SWS loops from operation. The SWSPP will be carried out with one or both units in normal operation. The objective of the PRA study was to quantify the risk impact (as measured by the change in Core Damage Frequency (ΔCDF)) of the SWSPP and to identify and evaluate countermeasures to reduce the risk impact of the project activities. The study concluded that the ΔCDF would be acceptable by undertaking preventative measures and by providing additional accident mitigating measures during performance of the SWSPP activities

  2. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Baker, J.W.

    1982-11-01

    The case for Sizewell B in terms of the CEGB's overall duties, policies and objectives is presented. The discussion concentrates on the rationale of the CEGB's wish to proceed with Sizewell B and the implications which an eventual decision to proceed with a Pressurised Water Reactor at Sizewell could have for future power station orders. (U.K.)

  3. Refurbishment and replacement efforts to mitigate ageing at Tarapur Atomic Power Station - an overview

    International Nuclear Information System (INIS)

    Katiyar, S.C.; Thattey, V.; Das, P.K.

    2006-01-01

    Tarapur Atomic Power Station (TAPS) - a twin Boiling Water Reactor unit and India's first Atomic Power Station was commissioned in April 1969, and was declared commercial in November 1969. Since then the light water moderated, low enriched uranium BWR with its demonstrated reliability and favourable economics is playing a vital role as a reliable source of power for the states of Maharashtra and Gujarat. The Power Station played a key role as a technology demonstrator validating the nuclear energy as safe and environmentally benign and economically viable alternate source of power generation in India. Built in the late sixties with state-of-the-art safety features prevailing then, TAPS has further evolved to be a safe plant with renovation and refurbishment efforts. Ageing Management Programme is in place at TAPS. Identification of systems, structures and components (SSCs) important to safety and availability, assessment of ageing degradation of these SSCs and mitigation through repair, replacement and refurbishment based on the investigations have enhanced the plant safety and reliability. The station's operating experience and feedback from BWRs operating abroad have also given inputs to Ageing Management Programme. A good number of major equipment have been replaced to mitigate ageing. Primary system piping, process heat exchangers, feed water heaters, turbine extraction system piping, turbine blades, emergency condenser tube bundles, various pumps, station batteries, electrical cables, circuit breakers etc. are some of them. Obsolescence is another aspect of ageing of a plant. Replacement of obsolete equipment and components particularly in C and I is another area where much headway has been made. Replacement and refurbishment of equipment have been done after detailed study and analysis so that current standards are met. Retrofitting the indigenously developed and fabricated equipment in a compact plant like TAPS was a difficult task and required lot of

  4. Outbreak of legionnaires' disease from a cooling water system in a power station (Heysham)

    International Nuclear Information System (INIS)

    Morton, S.; Dyer, J.V.; Bartlett, C.L.R.; Bibby, L.F.; Hutchinson, D.N.; Dennis, P.J.

    1986-01-01

    In September and October 1981 six cases of pneumonia occurred among men working in a power station under construction. Three were identified as cases of legionella pneumonia and two others had serology suggestive of legionella infection. In a sample of 92 men from the site 10 had low levels of antibodies to legionella; a similar sample of men working on an adjacent site showed none with positive serology. In a case control study it was found that cases of pneumonia were more likely than controls to have worked on a part of the site where four small capacity cooling towers were located. Legionella pneumophila serogroup 1 was isolated from the water systems of these four towers but was not found in samples from any other cooling towers or hot or cold water outlets on the site. It would appear that there was airborne spread of the organism from these cooling water systems which had not received conventional treatment to inhibit corrosion and organic growth. This is the first outbreak of legionnaires' disease to be recorded in an industrial setting in the United Kingdom. No cases of legionella infection have occurred on the site since the introduction of control measures. (author)

  5. Service hall in Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc

    International Nuclear Information System (INIS)

    Tawara, Shigesuke

    1979-01-01

    There are six BWR type nuclear power plants in the Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc. The service hall of the station is located near the entrance of the station. In the center of this service hall, there is the model of a nuclear reactor of full scale. This mock-up shows the core region in the reactor pressure vessel for the number one plant. The diameter and the thickness of the pressure vessel are about 5 m and 16 cm, respectively. The fuel assemblies and control rods are set just like the actual reactor, and the start-up operation of the reactor is shown colorfully and dynamically by pushing a button. When the control rods are pulled out, the boiling of water is demonstrated. The 1/50 scale model of the sixth plant with the power generating capacity of 1100 MWe is set, and this model is linked to the mock-up of reactor written above. The operations of a recirculating loop, a turbine and a condenser are shown by switching on and off lamps. The other exhibitions are shielding concrete wall, ECCS model, and many kinds of panels and models. This service hall is incorporated in the course of study and observation of civics. The good environmental effects to fishes and shells are explained in this service hall. Official buildings and schools are built near the service hall utilizing the tax and grant concerning power generation. This service hall contributes to give much freedom from anxiety to the public by the tour. (Nakai, Y.)

  6. Comparison of the economy of atomic power stations and fossil-fuel power stations under Danish conditions

    International Nuclear Information System (INIS)

    Daub, J.

    1977-06-01

    The report deals with the investment and financing aspects of extending the Danish electricity production system with central, base-load power stations. Technical and economic data for the plants are determined on the basis of an analysis of the information presently available. A description is given of the general problems connected with analysis of investment and finance relevant to power station expansion. Comparative calculations are given for alternative methods of expansion comprising a few stations to be put into operation in 1987 and for other alternative expansions that cover the period until 2000 as regards costs. For use in economic comparisons with a few plants, a new calculation method was developed that takes into account possible differences in the value of the plants in the electricity production system. This method is described in appendix 1. In a further two appendices are given the technical reasons for using, respectively, the present-value method in the investment analyses and the reserve power philosophy applied in the main report. (author)

  7. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  8. Hinkley Point 'C' power station public enquiry: proof of evidence on coal fired power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Fothergill, S.; Witt, S.

    1988-11-01

    The Coalfield Communities Campaign (CCC) has argued that if a new base-load power station is required it should be coal-fired rather than nuclear, and that it should use UK coal. Proposals for new power stations at both Hinkley Point and at Fawley have encountered very considerable local and regional opposition, and this is increasingly likely to be the case at many other sites especially in Southern England. In contrast the CCC has sought to demonstrate that its member authorities would generally welcome the development of new coal-fired capacity on appropriate sites within their areas. In particular, this proof establishes that there is a prima facie case for considering three sites - Thorpe Marsh, Hams Hall and Uskmouth - as potential locations for a new large coal-fired power station as an alternative to Hinkley Point C. The relevant local authorities have expressed their willingness to co-operate in more detailed planning or technical investigations to secure a coal-fired power station on these sites. The CCC considers this to be a major and unprecedented offer to the CEGB and its successor bodies, which could greatly speed the development of new power staion capacity and be of considerable economic and social benefit to coalfield communities.

  9. Plant computer system in nuclear power station

    International Nuclear Information System (INIS)

    Kato, Shinji; Fukuchi, Hiroshi

    1991-01-01

    In nuclear power stations, centrally concentrated monitoring system has been adopted, and in central control rooms, large quantity of information and operational equipments concentrate, therefore, those become the important place of communication between plants and operators. Further recently, due to the increase of the unit capacity, the strengthening of safety, the problems of man-machine interface and so on, it has become important to concentrate information, to automate machinery and equipment and to simplify them for improving the operational environment, reliability and so on. On the relation of nuclear power stations and computer system, to which attention has been paid recently as the man-machine interface, the example in Tsuruga Power Station, Japan Atomic Power Co. is shown. No.2 plant in the Tsuruga Power Station is a PWR plant with 1160 MWe output, which is a home built standardized plant, accordingly the computer system adopted here is explained. The fundamental concept of the central control board, the process computer system, the design policy, basic system configuration, reliability and maintenance, CRT display, and the computer system for No.1 BWR 357 MW plant are reported. (K.I.)

  10. To Construction of Expendable Hydroelectric Power Station Characteristics and Their Timely Correction

    Directory of Open Access Journals (Sweden)

    V. Kh. Nasibov

    2006-01-01

    Full Text Available The paper provides a technique of analytical construction of expendable characteristics and characteristics of a relative gain of water charge at a hydroelectric power station. Planning method and regression analysis have been applied for the construction of these characteristics.

  11. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  12. Technical limits on performance reserves and life expectancy in nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    Wanner, R.; Brosi, S.; Duijvestijn, G.

    1990-01-01

    The safety margin (i.e. the difference between the loads equipment can take and those actually imposed on components) in a reactor pressure vessel is a major factor in the life expectancy of a nuclear power station. This safety margin is reduced considerably by reductions in the toughness of equipment caused by neutron irradiation and growth of cracks. Once the minimum safety margin is infringed, the nuclear power station is at the end of its working life. 13 figs., 11 refs

  13. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  14. Biological investigations off the Oskarshamn nuclear power station during the 1980's

    International Nuclear Information System (INIS)

    Neuman, E.; Andersson, J.

    1990-11-01

    The Oscarshamn power station consists of three nuclear reactors, of which the first came into production in 1972 and the last in 1985. The power station uses large volumes of cooling-water; altogether 100 m 3 /s is heated 10 degrees C. During the 1970's, the investigations of the ecological effects of the use of cooling-water had a wide coverage, whereas during the 1980's, the years treated here, the investigations have mainly been concentrated on fish and bottom fauna. The temperature increase stimulates growth of many organisms and causes attraction. The cooling-water plume and the counter-currents it causes increase the transports of nutrients. The concentration of nutrients in different ways contributes to increased production further up in the food chains and strengthens the attraction of fish. The losses of fish in the cooling system have been relatively small. The parasitization frequency of eels in the receiving bay is extremely high, but otherwise there have been no abnormal disease or parasite attacks. Disturbances to the reproduction of fish in the heated water are present. The importance of this, particularly for surrounding areas, should be investigated within the continued monitoring. (authors)

  15. Lunar base thermoelectric power station study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  16. Fire safety in nuclear power stations

    International Nuclear Information System (INIS)

    Kench, R.L.

    1988-01-01

    This is the first of a three-part report on the fire hazards in nuclear power stations and some of the precautions necessary. This part lists the United Kingdom reactors, outlines how they work, the fuels used, the use of moderators and coolants and the control systems. Although the risk of fire is no higher than in fossil-fuel stations the consequences can be more serious. The radioactive materials used mean that there is biological shielding round the core, limitations on waste emissions allowed and limited access to some zones. Reliable shut-down systems are needed. Care in the use of water to fight fires must be exercised -it can act as a moderator and cause an otherwise safe core to go critical. The Wigner effect in graphite moderated reactors is explained. Fires in graphite can be extinguished by carbon dioxide. Argon, chlorine and sodium silicate can also be effective. In sodium cooled reactors fires can be allowed to burn themselves out, or TEC and argon could be used to extinguish the flame. (UK)

  17. The state of improvement of security management setup in the Japan Atomic Power Company and improvement of facilities in its Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    1982-01-01

    In connection with the series of accidents in the Tsuruga Nuclear Power Station of the Japan Atomic Power Company, the state of security management in JAPC and the safety of facilities in the Tsuruga Nuclear Power Station, which have resulted from improvement efforts, are described on the following items: security management setup - communication and reporting in emergency, the management of inspection and maintenance records, work control and supervision in repair, improvement, etc., functional authority and responsibility in maintenance management, operation management, radiation control, personnel education; improvement of facilities - feed water heaters, laundry waste-water filter room, radioactive waste treatment facility, general drainage, concentrated waste liquid storage tanks in newly-built waste treatment building, etc. (Mori, K.)

  18. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  20. A method and device allowing a more rational exploitation of electrical power-stations

    International Nuclear Information System (INIS)

    Mascarello, Jean.

    1974-01-01

    Description is given of a device permitting a more rational exploitation of electrical power-stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the thus pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, said hydrogen being stored in other tanks, combustion of the stored hydrogen by the stored air being used for generating electric power during electric power consumption peak-periods [fr

  1. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices

  2. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  3. Radioactivity leakage accidents in the feed water heater and the general drainage of the Tsuruga Nuclear Power Station of Japan Atomic Power Company

    International Nuclear Information System (INIS)

    1981-01-01

    In the Tsuruga Nuclear Power Station, JAPC on the shell on extracted-steam side in B system of No. 4 feed water heater, drain water leakage occurred twice in January, 1981. Then, 61 pCi/g cobalt-60 and 10 pCi/g manganese-54 were detected in soil at the outlet of general drainage on April 17, 1981. The cause was found to be the overflow of radioactive liquid waste in the filter sludge storage tank on March 8, the same year. On-the-spot inspection was subsequently made by the Agency of Natural Resources and Energy on both leakage accidents. The results of inspections are described as follows: the course of leakage accident, and also the measures taken to JAPC in connection with the two leakage accidents. (J.P.N.)

  4. Power station for producing hydrogen and oxygen under pressure by electrolysis of water at great depth, then transformation into energy by propulsion of the two gases and combustion of their mixture

    International Nuclear Information System (INIS)

    Imberteche, R.J.

    1974-01-01

    A description is given of water distillation and electric power accumulation systems. First, by modifying the gas exhaust orifice of the reactor, the steam emerging from it is recovered, transformed into water and its properties used. Second, the power station's possibility of accumulating energy and releasing it as desired is employed [fr

  5. Quality control of Ling'ao nuclear power station civil construction

    International Nuclear Information System (INIS)

    Lu Buliang; Ye Changyuan

    2001-01-01

    Based on the quality control model adopted during Ling'ao Nuclear Power Station construction, the author briefly introduces quality control process of some main civil construction activities (reinforced concrete, steel liner, steel works and prestressing force) of nuclear power station, and makes some descriptions on non-conformance control of civil works. These quality control processes described come from the concrete practice during civil construction of Ling'ao Nuclear Power Station, and are based on Daya Bay Nuclear Power Station construction experience

  6. Environmental implications of fossil-fuelled power stations

    International Nuclear Information System (INIS)

    Robson, A.

    1979-01-01

    The public health and environmental implications of electricity generation by fossil-fuelled power stations are discussed with respect to pollutant emission and the disposal of waste products. The following conclusions were deduced. The policy of using tall chimney stacks has ensured that acceptable concentrations of potential pollutants are observed in the vicinity of power stations. Large scale carbon dioxide emission may represent a problem in the future due to its effect on the climate. The effects of sulphur dioxide and the oxides of nitrogen need to be kept under review but it is likely that sources other than power stations will be of greater importance in this context. Pulverised fuel ash is a safe and useful by product of power production. Finally the radiation dose to man caused by the release of naturally occurring radioisotopes is negligible compared to the natural background levels. (UK)

  7. Transwaal - economic district heat from the Beznau nuclear power station

    International Nuclear Information System (INIS)

    Schatzmann, G.

    1986-01-01

    Initial study phases of the Transwaal project for distribution of heat from the Beznau nuclear power station via pipe lines to Aare and Limmat valley regions in Switzerland are presented. 500 MW heat availability through heat exchangers providing forward flow water temperature of 120 0 C, pipe line network and pumping station aspects, and the system energy flow diagram, are described. Considerations based on specific energy requirements in the year 2000 including alternative schemes showed economic viability. Investment and consumer costs and savings compared with oil and gas heating are discussed. Heat supply is guaranteed well into the 21st century and avoids environmental disadvantages. (H.V.H.)

  8. Process for improving the load factor of an electricity generating power station

    International Nuclear Information System (INIS)

    Rostaing, Michel.

    1974-01-01

    A description is given of a process for improving the load factor of an electricity generating power station feeding a supply network in which all or part of the power not required by the network during off-peak hours is used for producing hydrogen which is then stored. The stored hydrogen is then burned and the heat generated is employed for superheating the steam generated by the nuclear reactor of the power plant. This combustion is carried out permanently. The hydrogen is produced by water electrolysis. The oxygen also produced in this manner is used as a comburent in the combustion of the hydrogen. The reactor is of the pressurized water type [fr

  9. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Mawer, W.T.

    1982-11-01

    The cooling water system which would be needed for the proposed Sizewell B power station is described. The possible effects upon public safety, local fishing interests and the existing seabed are examined. Studies of the heat dispersion from outfalls, the location of offshore structures and the control of marine growth in the system are reported. Finally the essential service water system, the reserve ultimate heat sink, the discharge of liquid radioactive waste into the sea and the possible use of waste heat for agricultural and fish farming purposes are discussed. (U.K.)

  10. Influence of the cost development in power station construction and operation on power station planning with special regard to the effects on electricity supply

    International Nuclear Information System (INIS)

    Krieb, K.H.; Frenzel, P.; Vogel, J.

    1974-01-01

    A survey on the present structure of thermal power facilities in the FRG is followed by a discussion of the development of power plant costs in the last few years. Also mentioned are the findings of studies of costs as a function of the power station size and the effects of the overall cost increase on the power generation costs of the last few years. Finally, a model conception for the development of power stations is presented which makes predictions about the future size of power stations and their constructional parts. (UA/AK) [de

  11. The regional issues involved in the siting of power stations

    International Nuclear Information System (INIS)

    Livingstone, R.

    1980-01-01

    This paper deals with the regional implications of power station siting in England and Wales and refers to the procedures used by the CEGB to find and develop sites. The resources required for a power station are outlined both for conventional and nuclear stations and the possible development of uses for the rejected heat from power stations as a result of the energy crisis is discussed. (U.K.)

  12. The effect of fish impingement at Sizewell 'A' Power Station, Suffolk, on North Sea fish stocks

    International Nuclear Information System (INIS)

    Turnpenny, A.W.H.; Utting, N.J.; Millner, R.S.; Riley, J.D.

    1988-04-01

    Samples collected from the cooling water intake screens of Sizewell 'A' power station over a 12 month period contained 73 species of fish. Of these, only 20 species were present on more than 50% of sampling dates and only 7 commercially exploited species were caught in quantities of more than a few hundred over the year; namely sprat, herring, cod, whiting, sole, dab and plaice. These species formed the basis of analysis of the impact of the Power Station on commercial species. Commercial species found in the Sizewell area are part of major North Sea stocks. The impact of the losses due to the Power Station is spread over these stocks, hence the effect is minimal. The mortality rate caused by the Power Station is one thousandth to one hundred-thousandth, depending on species, of that caused by commercial fishing and the effect is less than that of a small, inefficient commercial trawler. (author)

  13. Simulations of thermal-hydraulic processes in heat exchangers- station of the cogeneration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studovic, M.; Stevanovic, V.; Ilic, M.; Nedeljkovic, S. [Faculty of Mechanical Engineering of Belgrade (Croatia)

    1995-12-31

    Design of the long district heating system to Belgrade (base load 580 MJ/s) from Thermal Power Station `Nikola Tesla A`, 30 km southwest from the present gas/oil burning boilers in New Belgrade, is being conducted. The mathematical model and computer code named TRP are developed for the prediction of the design basis parameters of heat exchangers station, as well as for selection of protection devices and formulation of operating procedures. Numerical simulations of heat exchangers station are performed for various transient conditions: up-set and abnormal. Physical model of multi-pass, shell and tube heat exchanger in the station represented is by unique steam volume, and with space discretised nodes both for water volume and tube walls. Heat transfer regimes on steam and water side, as well as hydraulic calculation were performed in accordance with TEMA standards for transient conditions on both sides, and for each node on water side. Mathematical model is based on balance equations: mass and energy for lumped parameters on steam side, and energy balances for tube walls and water in each node. Water mass balance is taken as boundary/initial condition or as specified control function. The physical model is proposed for (s) heat exchangers in the station and (n) water and wall volumes. Therefore, the mathematical model consists of 2ns+2, non-linear differential equations, including equations of state for water, steam and tube material, and constitutive equations for heat transfer on steam and water side, solved by the Runge-Kutt method. Five scenarios of heat exchangers station behavior have been simulated with the TRP code and obtained results are presented. (author)

  14. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  15. Present status of fish culture using warm waste water from power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The research of fish culture using warm waste water from power stations in Japan has history of over ten years. It is being gradually commercialized, but still various problems remain. Among the fish culture activities, those related to nuclear power generation are described as follows: Tokai ponds of Warm Water Fish Culture Development Society of Japan (culturing crimson sea bream, ear shell, flatfish, prawn, and eel); Fukui Prefectural Fisheries Experimental Station (culturing sweetfish and young yellowtail); and, Warm Water Utilization Center of Shizuoka Prefecture (culturing ear shell). (Mori, K.)

  16. Information relevant to ensuring that occupational radiation exposures at nuclear power stations will be as low as in reasonably achievable

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Regulations require that all reasonable efforts must be made to maintain exposure to radiation as far below the limits specified in 10 CFR Part 20 as is reasonably achievable. Information is provided relevant to attaining goals and objectives for planning, designing, constructing, operating and decommissioning a light-water-cooled nuclear power station to meet that criterion. Much of the information presented is also applicable to other than light-water-cooled nuclear power stations

  17. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  18. Water-related constraints to the development of geothermal electric generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, R.C.; Shepherd, A.D.; Rosemarin, C.S.; Mayfield, M.W.

    1981-06-01

    The water-related constraints, which may be among the most complex and variable of the issues facing commercialization of geothermal energy, are discussed under three headings: (1) water requirements of geothermal power stations, (2) resource characteristics of the most promising hydrothermal areas and regional and local water supply situations, and (3) legal issues confronting potential users of water at geothermal power plants in the states in which the resource areas are located. A total of 25 geothermal resource areas in California, New Mexico, Oregon, Idaho, Utah, Hawaii, and Alaska were studied. Each had a hydrothermal resource temperature in excess of 150/sup 0/C (300/sup 0/F) and an estimated 30-year potential of greater than 100-MW(e) capacity.

  19. A licence to discharge cooling waters in tidal rivers, examplified by the 'Nuclear Power Station Unterweser'

    International Nuclear Information System (INIS)

    Kunz, H.

    1976-01-01

    Illustrated by the example of the lower Weser, aspects for automatic control, supervision measurements, and measurements for the securing of evidence, all in connection with cooling water discharges, are presented. The particularities of tidal rivers and the conditions for measuring systems resulting therefrom are explained. The cooling water discharge of the Kernkraftwerk Unterweser has been assigned an extensive measurement system for the automatic compilation of hydrologic data. The measurement systems design, the measurement stations, and the central station are described. (orig.) [de

  20. Hinkley Point 'C' power station public inquiry: proof of evidence on local site related issues

    International Nuclear Information System (INIS)

    Gammon, K.M.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom, adjacent to an existing nuclear power station. The CEGB evidence to the Inquiry on local site related issues begins by setting the proposed development within the context of local authority planning policies for the area. The implications of the development in terms of overall land needs, construction, access, buildings and works both temporary and permanent, are described. Environmental impacts, aesthetic and socio-economic factors are considered including possible effects on agriculture, nature conservation, water supply, transport and employment. (UK)

  1. Qualification by analogy of the functional valving of French pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Grenet, M.

    1991-01-01

    In certain postulated accidental conditions (loss of coolant accident or secondary pipe rupture, earthquake, high energy pipe rupture) plant valving is called on the important functions to bring the reactor to and maintain it at a safe shutdown condition. ELWCTRICITE DE FRANCE has completed qualification tests of about forty valves to assure their operability. However, taking into account the costs and time required to obtain this qualification and the number of valves to be qualified, this method alone is not sufficient. For this reason, Electricite de France has developed the alternative qualification methodology by analogy for each postulated accidental situation. Feedback experience of these methods today is such that it can be they have achieved their objective; namely, to improve the safety of French pressurized water nuclear power stations, while at the same time avoiding the two dangers represented by excessive complexity resulting in unsatisfactory operation, and insufficient thoroughness not providing any real increase in safety. (author)

  2. Accumulation of 137Cs in commercial fish of the Belyarsk nuclear power station cooling supply

    International Nuclear Information System (INIS)

    Trapeznikova, V.N.; Kulikov, N.V.; Trapeznikov, A.V.

    1984-01-01

    Results are presented of a comparative study of the accumulation of 137 Cs in basic species of commercial fish of the Beloyarsk reservoir which is used as the cooling supply for the Beloyarsk nuclear power station. Possible reasons for interspecies differences in accumulation of the radionuclide are indicated, and the increased accumulation of 137 Cs by free-living fish in the zone of heated water effluent from the station and the reduced accumulation of the emitter in carp, which are cultivated on artificial food in cages, are noted. Levels of the content of the radionuclide are compared in roach and farm carp from the cooling supplies of the Beloyarsk station and the Reftinsk power plant in the Urals

  3. Method and device allowing a more rational exploitation of electrical power-stations. [energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Mascarello, J

    1974-04-12

    Description is given of a device permitting a more rational exploitation of electrical power stations characterized by the fact that, while electric power available during slack hours is used for pressurizing air (the pressurized air being stored in tanks), the electric power available during slack days is used for generating hydrogen from water, the hydrogen being stored in other tanks. Combustion of the stored hydrogen by the stored air is used for generating electric power during electric power consumption peak-periods.

  4. Perfection of design of soil dams of small hydroelectric power stations

    International Nuclear Information System (INIS)

    Inoyatov, M.B.; Rasulov, S.

    2008-01-01

    The important question connected with building of dams of smallhydroelectric power stations in rock conditions is water filtration throughthe side of dam containing as a rule the alluvial material. This process canbe accompanied by internal erosion long-term exposure of which lead tocarry-over more bigger particles with progressive increasing permeabilitytill catastrophic level. This question authors consider in this article

  5. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station

  6. Core power distribution measurement and data processing in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Hong

    1997-01-01

    For the first time in China, Daya Bay Nuclear Power Station applied the advanced technology of worldwide commercial pressurized reactors to the in-core detectors, the leading excore six-chamber instrumentation for precise axial power distribution, and the related data processing. Described in this article are the neutron flux measurement in Daya Bay Nuclear Power Station, and the detailed data processing

  7. Principle simulator for a PWR nuclear power station

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1975-05-01

    A report is given on a simulator developed for the training of operational and planning staff for the Lovisa nuclear power station in Finland. All main components of the power station are illustrated and trainees can operate the simulator in the power range 3-100 %. The model was originally developed for planning the control system of Lovisa I, for which reason the simulator project could be carried out on a relatively limited budget. (author)

  8. Distributed systems for protecting nuclear power stations

    International Nuclear Information System (INIS)

    Jover, P.

    1980-05-01

    The advantages of distributed control systems for the control of nuclear power stations are obviously of great interest. Some years ago, EPRI, (Electric Power Research Institute) showed that multiplexing the signals is technically feasible, that it enables the availability specifications to be met and costs to be reduced. Since then, many distributed control systems have been proposed by the manufacturers. This note offers some comments on the application of the distribution concept to protection systems -what should be distributed- and ends with a brief description of a protection system based on microprocessors for the pressurized power stations now being built in France [fr

  9. Station planning and design incorporating modern power system practice

    CERN Document Server

    Martin, PC

    1991-01-01

    The planning and design of new power stations can involve complex interaction between the many engineering disciplines involved as well as environmental, planning, economical, political and social pressures. This volume aims to provide a logical review of the procedures involved in power station development. The engineering aspects are outlined in detail, with examples, showing the basis of the relationships involved together with ""non-engineering"" factors so that the engineer can draw on the information provided for specific projects. The civil engineering and building of power stations are

  10. Oily wastewater treatment at Khartoum North Power Station

    International Nuclear Information System (INIS)

    Eltahir, M. M.; Taha, T. S.

    2009-01-01

    To a chief these goals a series of experimental procedure have been executed for the wastewater in sump tank at river side where all wastewater collected. This paper attempts to investigate the chemical and physical characteristics of Khartoum North Power Station waste water and to suggest methods for removing oil before being discharged to River Bule Nile. To achieve this goal numerous numbers of samples have been collected and examined to detect oil content, turbidity, suspended solids, total dissolved solids, pH, BOD, COD and conductivity, and average values of these parameters were 924.3 ppm, 554.2 NTU, 80 ppm, 559.5 ppm, 7.3 pH unit, 130 Pm, 443.14 ppm, 736.7 μs/cm respectively. The average values of these results were compared with [1] guide lines which are 15 ppm, 5 ppm, 60 ppm, <1000 ppm, 7.5 pH unit, 60 ppm, 100 ppm 500 μs/cm respectively. The outcome of the paper confirmed that waste water at Khartoum North Power Station (KNPS) is heavily polluted with oil and other pollutants. For this reason a second phase of experiments is carried out mainly to remove or reduce oil content to 6.7 ppm and other pollutants to levels which may comply with International Regulations and Local Authority acts. The treatment phase of experiment comprising different processing units arranged in a logical sequence starting with units for oil removal through a coagulation process, NaoH ending with air floatation and skimping to reduce oil content. Results obtained from second phase of experiments after waste water being treated are encouraging and a total reduction in contamination of not less than 80% has been achieved. (Author)

  11. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    Science.gov (United States)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  12. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  13. Hinkley Point 'C' power station public inquiry: proof of evidence on plant parameters

    International Nuclear Information System (INIS)

    George, B.V.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The overall economics of a nuclear power station depends on many factors which are determined by the design; the effectiveness with which the station is constructed; and the performance of the plant. In this respect the most significant factors are: construction time; capital cost; availability of the plant to produce electricity, taking account of those outages due to either planned or unplanned shutdowns; net electrical power output; and the working life of the plant. In this evidence to the Inquiry, the basis for the values chosen as ''targets'' for these parameters in the design of the plant and the control of the project is set out. The adjustment of the parameters to make them suitable for economic appraisal is explained. The design and project management arrangements are described. (author)

  14. Water Power Research | Water Power | NREL

    Science.gov (United States)

    Water Power Research Water Power Research NREL conducts water power research; develops design tools ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the

  15. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  16. Volumes of radionuclide into the basins of water while the accident at the Chernobyl nuclear power station and a specifics of radiation situation development in the post-accidents periods

    International Nuclear Information System (INIS)

    Standritchuk, O.Z.; Maksin, V.I.; Goncharuk, V.V.

    1996-01-01

    There was stated total content of radionuclide pollution, rejected to the environment in consequence of the accident at the Chernobyl nuclear power station, specifics of qualitative and quantitative change which supposes the division of post-accident period into five conventional post-accident periods. There were given the data about the levels of main fragmentation radionuclide activity in river water, atmospheric precipitation and sewage of the objects of sanitary treatment in May 1986. According to these data there were estimated the volumes of radioactive pollution rejection to the Kiev basins of water (1.56 centre dot 10 10 Ku, that is equal to 144,57 kg of radionuclides or 3,67 % of their mass in reactor) and their going into the Dnieper river. There was shown an interconnection of all season state of water basins which are near to Chernobyl nuclear power station, with specific development of radiation situation in them after the accident. There was proposed a probated variant of improvement of the traditional technology of drinking water preparation from the open water source within 1-2 post-accident periods

  17. Small hydroelectric power stations and their reality

    International Nuclear Information System (INIS)

    Kamenski, Miroslav

    1999-01-01

    Construction of a small hydroelectric power station provides additional amounts of electric energy, engages a private capital, revives investment activities and promotes the use of renewable energy sources. Transmission losses are reduced, a voltage of higher quality is achieved and idle power is compensated by the generation of electricity in the small hydroelectric power stations and at the place of consumption. Legislation and technical regulations, however, require a multidisciplinary approach, defining of complex spaces and environmental protection. Unfortunately, complete documents should be prepared for small,hydroelectric plants just as for big ones what is a long procedure and many of those papers are unnecessary or even superfluous. (Author)

  18. Emergency protection and nuclear power station remote monitoring

    International Nuclear Information System (INIS)

    Nowak, K.; Wolf, H.

    1986-01-01

    The States of the Federal Republic of Germany are planning emergency protection measures for the environment of nuclear power stations based on their statutory duty of care. In this connection the paper explains to what extent remote monitoring of nuclear power stations practised by the Federal Supervisory Authorities may support the design and implementation of emergency protection measures. (orig.) [de

  19. Prospect and problems of gas based power stations of NTPC

    International Nuclear Information System (INIS)

    Suryanarayana, A.

    1993-01-01

    The policy of the Government of India concerning utilisation of natural gas resources of the country has undergone changes over the last few years. The government decided in 1985 to allocate natural gas for power generation and in the year 1986 approved the setting up of the first series of three gas based combined cycle power projects of National Thermal Power Corporation (NTPC). The problems of gas power stations of NTPC are discussed. These are high cost of generation, completion of transmission line works to match with the commissioning of gas power stations, high price of natural gas, and fixation of tariff for sale of power from gas based power stations. (N.B.)

  20. Review of radioactive discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report is a review of the arisings and concludes that suitable technologies exist, which if applied, could reduce discharges from nuclear power plants in England and Wales in line with the rest of Europe. (author)

  1. Complex Mobile Independent Power Station for Urban Areas

    Science.gov (United States)

    Tunik, A. A.; Tolstoy, M. Y.

    2017-11-01

    A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.

  2. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  3. Services for nuclear power stations

    International Nuclear Information System (INIS)

    Fremann, M.; Ryckelynck

    1987-01-01

    This article gives an information as complete as possible about the activities of the french nuclear industry on the export-market. It describes the equipment and services available in the field of services for nuclear power stations [fr

  4. Mercury emissions from South Africa’s coal-fired power stations

    Directory of Open Access Journals (Sweden)

    Belinda L. Garnham

    2016-12-01

    Full Text Available Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016. Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mercury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations. Between 17 and 23 tons of mercury is calculated to have been emitted from Eskom’s coal-fired power stations in 2015. On completion of Eskom’s emission reduction plan, which includes fabric filter plant retrofits at two and a half stations and a flue gas desulphurisation retrofit at one power station, total mercury emissions from the fleet will potentially be reduced by 6-13% by 2026 relative to the baseline. Mercury emission reduction is perhaps currently not the most pressing air quality problem in South Africa. While the focus should then be on reducing emissions of other pollutants which have a greater impact on human health, mercury emission reduction

  5. Experiences of occupational dose reduction at the Fugen nuclear power station

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Nakao, Hiromi; Naoi, Yohsuke; Takei, Hiroaki

    1992-01-01

    Occupational radiation dose has been effectively suppressed by efforts against both internal and external exposure in the Fugen nuclear power station. The tritium internal dose is completely suppressed by developments of high sensitivity tritium monitors with hollow fiber radon filters, comfortable tritium protection suits, and established working procedure for equipment maintenance of the heavy water system. The internal occupational dose has been suppressed to a negligible level comparing to the external dose. The external occupational dose had increased with dose rates of the primary cooling system. Establishment of radiation work procedure for maintenance works and development of chemical decontamination has been effectively saving the external occupational dose. The chemical decontaminations carried out in 1989 and 1991 are the first applications to the whole primary cooling system of operating power stations in Japan. This paper describes these efforts and effects on occupational dose reduction in Fugen. (author)

  6. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  7. Design of photovoltaic central power station concentrator array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  8. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Socioeconomic impacts: nuclear power station siting

    International Nuclear Information System (INIS)

    1977-06-01

    The rural industrial development literature is used to gain insights on the socioeconomic effects of nuclear power stations. Previous studies of large industrial facilities in small towns have important implications for attempts to understand and anticipate the impacts of nuclear stations. Even a cursory review of the nuclear development literature, however, reveals that industrialization research in rural sociology, economic geography and agricultural economics has been largely ignored

  10. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    Six full-scale trials were conducted at three power stations in Denmark: Ensted, Funen, and Vendsyssel power stations. During these trials, pulverized coal, bottom ash, fly ash, and deposits from cooled probes were sampled and analyzed with various techniques. On the basis of SEM analyses...

  11. Physical decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Crimi, F.P.

    1988-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy (USDOE), and the turbine-generator and balance of plant which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by USDOE from the Duquesne Light Company. The Shippingport Station Decommissioning Project (SSDP) is being managed for the USDOE by the General Electric Company and its integated subcontractor, Morrison Knudsen-Ferguson (MK-F) Company. The objectives of the Shippingport Station Decommissioning Project (SSDP) are to: Demonstrate the safe and cost effective dismantlement of a large scale nuclear power plant; Provide useful data for future decommissioning projects

  12. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  13. Man-machine interface systems for the Sizewell B Nuclear Power Station

    International Nuclear Information System (INIS)

    Boettcher, D.B.

    2004-01-01

    Sizewell B is the first nuclear power station to be built in the United Kingdom using the Pressurised Water Reactor or PWR system. The design is based on stations operating in the United States, but many changes and new features have been introduced to bring it up to date, and to meet United Kingdom practice and regulatory requirements. The Man-Machine Interfaces (MMIs) in the control rooms have been newly designed from first principles, with special attention paid to human factors and the role of the operators. The instrumentation and control (1 and C) systems which interface the MMIs to the process plant, and automate the operation of the station, use advanced technology to achieve high performance and availability. This paper describes the development of the control rooms and 1 and C systems, explaining the thinking that lay behind the principal decisions. (author)

  14. Evaluating the radiation environment around a nuclear power station with unmonitored radionuclide release

    International Nuclear Information System (INIS)

    Bondarev, A.A.; Dibobes, I.K.; Pyuskyulan, K.I.

    1986-01-01

    This paper describes the radiation monitoring system at (RMS) at the Armenian nuclear power station; the environmental monitoring program includes measuring the gamma radiation around the station, determining radionuclide contents in air and fallout, and also in surface water and ground water, in water plants and bottom sediments, in soil and plants and also in local agricultural products. The RMS monitors gas-aerosol releases and effluents from the station. The radius of the monitored zone is 25 km. The gamma radiation is measured by IKS dosemeters and SRP-68-01 portable instruments. The air is monitored by six stationary aspriation systems at distances of 1, 5, 6, 11, 14, 15 and 50 km and 28 planchette cells. The RMS records virtually all the mean monthly and mean annual fluctuations in the global background. In seven years of operation at the Armenian station, only Ca 137 and Sr 90 from global fallout together with Be 7 of cosmogenic origin have been observed in air apart from two cases. In 1981, air samples taken with the aspirators and combined over a quarter showed Ce 141, Ce 144, Ru 106, Ru 103, Nb 95 and Zr 95. The concentrations of these are presented

  15. How to handle station black outs

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, Frigyes [Swedish Nuclear Power Inspectorate, S-10252 Stockholm (Sweden)

    1986-02-15

    Station black out is defined as the loss of ail high voltage alternating current at a nuclear power site. An international study was made to survey the practices in the different countries. The best way to handle station black out is to avoid it therefore briefly the normal off site and emergency on site power supplies are discussed. The ways in use to enhance nuclear power plants using Boiling Water Reactors or Pressurized Water Reactors to cope with a station black out are discussed in some detail. (author)

  16. How to handle station black outs

    International Nuclear Information System (INIS)

    Reisch, Frigyes

    1986-01-01

    Station black out is defined as the loss of ail high voltage alternating current at a nuclear power site. An international study was made to survey the practices in the different countries. The best way to handle station black out is to avoid it therefore briefly the normal off site and emergency on site power supplies are discussed. The ways in use to enhance nuclear power plants using Boiling Water Reactors or Pressurized Water Reactors to cope with a station black out are discussed in some detail. (author)

  17. Safety of Ikata Nuclear Power Station from the accident of Three Mile Island

    International Nuclear Information System (INIS)

    Nonaka, Hiroshi

    1979-01-01

    The leak of radioactive substances occurred on March 28, 1979, in the No. 2 plant of Three Mile Island Nuclear Power Station, and this accident must be put to use to prevent similar accidents and to secure safety hereafter in the nuclear power stations being operated in Japan. In the TMI accident, too many problems concerning the operation management seemed to exist in a series of events. In this paper, a few matters related to the TMI accident among the aspects of the operation management in Ikata Nuclear Power Station are reported. As the problems of operation management, it is considered that the operation of the TMI plant was continued as the exit valve of auxiliary feed line was closed, that it took long time to close the root valve for a pressurizer relief valve manually, and that the ECCS was stopped manually. In TMI, the abnormal phenomenon of losing main feed water has occurred 6 times since the attainment of criticality in March, 1978, and the opening and sticking of pressurizer relief valves occurred at least twice in about 150 times of their actuation in the nuclear reactors designed by Babcock and Wilcox Co. In Ikata Nuclear Power Station, these problems are detected early and the suitable measures are taken immediately, therefore it never happens to continue the operation as the problems are left as they are. It is not conceivable that similar troubles occur many times. (Kako, I.)

  18. Prospects of water desalination in conjunction with nuclear power stations in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.

    1978-01-01

    The paper reviews Pakistan's land and water resources vis-a-vis the present and projected demand of water to sustain its economy which is predominantly based on irrigated agriculture. As expected, the per capita agricultural land and the corresponding diversion of irrigation supplies per capita are all along declining due to increasing population pressure, however, it is shown that further development of irrigated agriculture will be increasingly constrained by water availability rather than the land resources. A glance at the nation's culturable land potential and the projected water budget would fully demonstrate this fact. In this context the paper discusses the likely role which the desalination technology can be called upon to play in supplementing the existing means of fresh water supply. Studies have also indicated fast-growing demands both for electric power and potable water in the Karachi area, on the sea coast, where the possibility of having dual-purpose nuclear power-cum-seawater desalination plant(s) in the late 1980's is being investigated. (author)

  19. Tarapur Atomic Power Station - - an overview of experience

    International Nuclear Information System (INIS)

    Shah, J.C.

    1979-01-01

    A broad overview of the experience and performance of the Tarapur Atomic Power Station (TAPS) in its role as the developing world's first foray in commercial atomic power has been attempted. The prime objective was not just generation of power but assimilation of an advanced technology on an economically viable basis in the underdeveloped environment compounded with governmental organisational culture. Scientific and technical advances registered through the TAPS experience in the area of design, operation and maintenance are mentioned. Aspects of station performance, management and even economics are also covered. (auth.)

  20. Electric machinery and drives in thermal power stations

    International Nuclear Information System (INIS)

    1974-01-01

    The following subjects were dealt with during the VDE meeting: 1) Requirements made by the electric network on the generators and their excitation equipment, and the influence thereof on their design; 2) requirements made by the power station process on the electric drives and the influence thereof on type and design; 3) requirements made on protective measures from the point of the electric power station machinery. (TK) [de

  1. Situation and future developments in the power station engineering of the GDR

    International Nuclear Information System (INIS)

    Effenberger, H.; Weidlich, H.G.

    1990-01-01

    Starting with the present state of power stations in the GDR and their evaluation in respect of energy and ecology, the authors have developed a concept for the future objectives and possibilities of the power stations. With regard to the modification of the power station engineering, considered as urgently required due to reasons of energy and environment, there was suggestions for modern plant conceptions, such as fluidized bed combustors, combined and gas/steam power plants, besides the retrofitting and the new building of proven conventional plants. It includes also the extension of combined heat and power systems, of nuclear energy, and the use of regenerative energy sources as parts of this concept. The power station modifications intended are shown in tables for the various power station locations. (orig.) [de

  2. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  3. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  4. A modular Space Station/Base electrical power system - Requirements and design study.

    Science.gov (United States)

    Eliason, J. T.; Adkisson, W. B.

    1972-01-01

    The requirements and procedures necessary for definition and specification of an electrical power system (EPS) for the future space station are discussed herein. The considered space station EPS consists of a replaceable main power module with self-contained auxiliary power, guidance, control, and communication subsystems. This independent power source may 'plug into' a space station module which has its own electrical distribution, control, power conditioning, and auxiliary power subsystems. Integration problems are discussed, and a transmission system selected with local floor-by-floor power conditioning and distribution in the station module. This technique eliminates the need for an immediate long range decision on the ultimate space base power sources by providing capability for almost any currently considered option.

  5. Water use/reuse and wastewater management practices at selected Canadian coal fired generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.

    1984-08-01

    Recommended Codes of Practice are currently being developed by Environment Canada aimed at ensuring that the aquatic environment is not significantly impacted upon by wastewater discharges from steam electric generating stations. A study was carried out to: develop a reliable data base of the physical and chemical characteristics of water and wastewater streams at representative generating stations; study advanced water reuse/recirculation and wastewater management to evaluate their potential future use in power generating stations; and to examine and evaluate the relevant aspects of best practical technology as proposed by Environment Canada in the Recommended Codes of Practice. Studies were carried out at Dalhousie Generating Station (GS), New Brunswick, Poplar River GS, Saskatchewan, Battle River GS, Alberta, and Milner GS, Alberta. The studies included on-site flow monitoring and sampling, chemical analyses, treatability studies and engineering analyses of water and wastewater systems. Extensive chemical characterizations of the water and wastewater streams were completed. Some problems were identified with the recirculating bottom ash system at Dalhousie which was a significant wastewater producer, coal pile runoff which caused significant wastewater, and iron which was the principal discharge criteria metal. 14 refs., 41 figs., 2 tabs.

  6. 47 CFR 74.707 - Low power TV and TV translator station protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.707 Low power TV and TV translator station protection. (a)(1) A low power TV or TV translator will be protected from interference from other...

  7. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [ed.

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  8. Operating Experience at the Aagesta Nuclear Power Station

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1966-09-01

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW t ) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965

  9. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S. (ed.)

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  10. The economic consequences of the Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Fothergill, S.; Gudgin, G.; Mason, N.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (the background to Sizewell 'B'); policy options (Sizewell 'B'; a new coal-fired station; the no-new-station option; a PWR programme); economic framework (direct effects; financing; final macroeconomic effects); the construction phase (capital costs; direct effects; final effects; summary); the operating phase (a new power station as a replacement for older stations; the period of base-load operation; the later years of operation; summary); conclusions and policy recommendations. The first recommendation is that if a new power station is built it should be a coal-fired station rather than a PWR. The second recommendation is that if a new coal station is built there is a case for building it early, ahead of demand. (U.K.)

  11. Organohalogen products from chlorination of cooling water at nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few μg/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 μg/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables

  12. The micro power station of Verbois; Ouvrage Micro-centrale de Verbois

    Energy Technology Data Exchange (ETDEWEB)

    Quercia, P.; Martinez, J.-L. [Services industriels de Geneve, Service de l' electricite, Geneva (Switzerland)

    2005-07-01

    The policy of the public utilities of the City of Geneva includes the promotion of renewable energy and the conservation of the environment. The erection of the most important hydroelectric power plant in the canton of Geneva at Verbois, on the Rhone River dates back to the years 1938 to 1944. Several retrofits have been made since then, the last dating from 1996 to 1998. In 2000, due to ecological considerations, a fish ladder was added, resulting in a loss of generated power equivalent to a water flow of 2 m{sup 3}/s at a height of 18.35 meters. In order to compensate for this energy loss, a micro hydropower station with a maximum output power of 316 kW was added. It is fitted with a Francis turbine with horizontal axis and fixed opening; the rotation speed is 605 rpm. A reduced power output could be traced back to the deposition of solids on the grids upstream of the water supply duct. The necessary modifications are discussed.

  13. Station black out of Fukushima Daiichi Nuclear Power Station Unit 1 was not caused by tsunamis

    International Nuclear Information System (INIS)

    Ito, Yoshinori

    2013-01-01

    Station black out (SBO) of Fukushima Daiichi Nuclear Power Station Unit 1 would be concluded to be caused before 15:37 on March 11, 2011 because losses of emergency ac power A system was in 15:36 and ac losses of B system in 15:37 according to the data published by Tokyo Electric Power Co. (TEPCO) in May 10, 2013. Tsunami attacked the site of Fukushima Daiichi Nuclear Power Station passed through the position of wave amplitude meter installed at 1.5 km off the coast after 15:35 and it was also recognized tsunami arrived at the coast of Unit 4 sea side area around in 15:37 judging from a series of photographs taken from the south side of the site and general knowledge of wave propagation. From a series of photographs and witness testimony, tsunami didn't attack Fukushima Daiichi Nuclear Power Station uniformly and tsunami's arrival time at the site of Unit 1 would be far later than arrival time at the coast of Unit 4 sea side area, which suggested it would be around in 15:39. TEPCO insisted tsunami passed through 1.5 km off the coast around in 15:33 and clock of wave amplitude meter was incorrect, which might be wrong. Thus SBO of Fukushima Daiichi Nuclear Power Station Unit 1 occurred before tsunami's arrival at the site of Unit 1 and was not caused by tsunami. (T. Tanaka)

  14. Design Provisions for Withstanding Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    2015-08-01

    International operating experience has shown that the loss of off-site power supply concurrent with a turbine trip and unavailability of the standby alternating current power system is a credible event. Lessons learned from the past and recent station blackout events, as well as the analysis of the safety margins performed as part of the ‘stress tests’ conducted on European nuclear power plants in response to the Fukushima Daiichi accident, have identified the station blackout event as a limiting case for most nuclear power plants. The magnitude 9.0 earthquake and consequential tsunami which occurred in Fukushima, Japan, in March 2011, led to a common cause failure of on-site alternating current electrical power supply systems at the Fukushima Daiichi nuclear power plant as well as the off-site power grid. In addition, the resultant flooding caused the loss of direct current power supply, which further exacerbated an already critical situation at the plant. The loss of electrical power resulted in the meltdown of the core in three reactors on the site and severely restricted heat removal from the spent fuel pools for an extended period of time. The plant was left without essential instrumentation and controls, and this made accident management very challenging for the plant operators. The operators attempted to bring and maintain the reactors in a safe state without information on the vital plant parameters until the power supply was eventually restored after several days. Although the Fukushima Daiichi accident progressed well beyond the expected consequences of a station blackout, which is the complete loss of all alternating current power supplies, many of the lessons learned from the accident are valid. A failure of the plant power supply system such as the one that occurred at Fukushima Daiichi represents a design extension condition that requires management with predesigned contingency planning and operator training. The extended loss of all power at a

  15. Sizewell B: consent application for Britain's first PWR power station

    International Nuclear Information System (INIS)

    1981-02-01

    The Central Electricity Generating Board has applied to the Secretary of State for Energy for consent and for other necessary permissions to construct a nuclear power station of about 1200 MW output capacity based on the pressurised water reactor (PWR) system on the Board's existing site at Sizewell (near Leiston) in Suffolk to be known as Sizewell B. Application has also been made to the Health and Safety Executive to extend the existing nuclear site licence to permit the use of the site for a pressurised water reactor. The Secretary of State for Energy has already stated that a Public Inquiry will be held into the application and this is expected to take place in 1982. The Board is making these applications now to give ample time for public discussion and consultation. Construction of the station could not begin until the outcome of the Public Inquiry is known and the necessary consents, nuclear licence and clearances have been given. The text of the application is presented. Some background information is given. (author)

  16. An examination on aseismatic design of civil engineering structures in nuclear power stations

    International Nuclear Information System (INIS)

    Aida, Masakazu; Nakamura, Haruaki; Suzuki, Hideya

    1990-01-01

    As for the aseismatic design of civil engineering structures in nuclear power stations, the basic way of thinking and the example design are shown in the technical guidelines and others, but when the aseismatic design is actually carried out, the techniques of aseismatic calculation and the modeling for structural analysis are left to the judgement of designers. Among such various problems, in this report, the applicability of response displacement method and response magnitude method as the aseismatic calculation techniques and the necessity of rigid region in rahmen members in structural analysis were examined, and those are described. As the structures in nuclear power stations, there are cooling water intake and discharge facilities, emergency water intake, breakwater, unloading quays, revetments, the foundations of tanks, machinery and equipment, piping and others, roads, bridges, tunnels and so on. The outline of their aseismatic design and the examination on the cases of aseismatic design are reported. These structures are frequently underground structures, which are different from those on the ground. (K.I.)

  17. Construction of Kashiwazaki-Kariwa Nuclear Power Station Results of manufacturing concrete

    International Nuclear Information System (INIS)

    Morishita, Hideki; Tsuchiya, Yoshimasa; Eguchi, Kiyoshi; Hosaka, Hiroshi

    1998-01-01

    The construction of Kashiwazaki-Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc. was completed in July, 1997. Seven nuclear power plants generate about 8.2 million kW, and it is the largest nuclear power station in the world. In the construction, from May, 1980 to August, 1996, the concrete of 2.42 million m 3 for architecture and 1.04 million m 3 for civil engineering, 3.46 million m 3 in total, and the mortar for artificial rock bed of 430,000 m 3 were manufactured and placed. The results of manufacturing concrete from beginning to finish are shown. The specification of concrete was different for No. 1 plant, No. 2 and 5 plants, No. 3 and 4 plants and No. 6 and 7 plants. As to the mixing of concrete, the specification and the materials used are reported. The features of the facilities for manufacturing concrete are explained. The flowchart of the quality control of materials and concrete is shown. The material testing of cement and aggregate, the test of water quality and the material testing of admixtures were carried out. As for concrete, the weight of unit volume, slump, air quantity, concrete temperature, chloride content, strength and alkali reactivity were examined. (K.I.)

  18. Nuclear power stations in August: information and commentary

    International Nuclear Information System (INIS)

    Rogozhin, Yu.

    1989-01-01

    A summary of events at nuclear power stations in the USSR in August 1989 is given. There were 44 nuclear power units in service which had 9 unplanned shutdowns and 13 unsanctioned power reductions. Gosatomenergonadzor SSSR is also responsible for all research and marine reactors. It is reported that there are currently (1989) six nuclear vessels in the USSR and no major accidents or damage to nuclear steam-generating units on these were reported. On-site inspectors maintain a constant presence at nuclear power stations to supervise operation and make sure safety requirements are enforced. Glasnost is opening up previously forbidden areas to the public to enable it to obtain information to allow objective assessment to be made. (author)

  19. Argentinian experience in selecting sites for nuclear power stations

    International Nuclear Information System (INIS)

    Csik, B.J.

    1975-01-01

    One nuclear power station is in operation in the Republic of Argentina, a second is under construction, and the decision to build a third has been taken. According to existing plans, about ten nuclear power stations should go into operation during the next decade. The present paper analyses the experience acquired in selecting sites for the first units, commenting on the criteria and methods applied, the studies that were carried out, the specific problems encountered and the solutions adopted, as well as on the question of acceptance of the chosen sites by the public. It goes on to describe the current programme of selection and study of sites for future nuclear power stations

  20. Aseismic foundation system for nuclear power stations

    International Nuclear Information System (INIS)

    Jolivet, F.; Richli, M.

    1977-01-01

    The aseismic foundation system, as described in this paper, is a new development, which makes it possible to build standard nuclear power stations in areas exposed to strong earthquakes. By adopting proven engineering concepts in design and construction of components, great advantages are achieved in the following areas: safety and reliability; efficiency; design schedule; cost. The need for an aseismic foundation system will arise more and more, as a large part of nuclear power station sites are located in highly seismic zones or must meet high intensity earthquake criteria due to the lack of historic data. (Auth.)

  1. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    Energy Technology Data Exchange (ETDEWEB)

    Goffin, C.; Duvivier, L.; Girasa, E. [LABORELEC, Chemistry of Water (Belgium); Brognez, J. [ELECTRABEL, TIHANGE Nuclear Power Station (Belgium)

    2002-07-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this

  2. Conditioning of cooling water in power stations. Feedback from twenty years of experience with acid feeding

    International Nuclear Information System (INIS)

    Goffin, C.; Duvivier, L.; Girasa, E.; Brognez, J.

    2002-01-01

    In the late 1970's and early 1980's, with the development of the nuclear programme in many European countries, the recirculation of cooling water in power stations became an issue which required urgent attention. The concentration of several plants of 1000 MW or more on sites along inland waterways actually made simple once-through cooling impossible, owing to the risk of an unacceptable rise in the river's water temperature. The chemical composition of natural freshwater in western European waterways is such that when it becomes slightly concentrated, scale is rapidly formed. The relatively low solubility of calcium carbonate and the degassing of the carbon dioxide during close contact between the water and air in the heat exchangers of the cooling tower explain this precipitation tendency. Fairly soon, experts in the electricity power generation companies highlighted the need for on-site, pilot loop simulations, in order to foresee the physico-chemical phenomena that could arise in industrial installations. The number of financially justifiable processing possibilities could be briefly summarised by the following three solutions: to adapt the concentration factor in order to be under the calcium carbonate solubility limit and thereby avoid the need for any water conditioning; to accept concentration factors of between 1.4 and 1.9 and control the calcium carbonate precipitation through controlled acid injection in the circulation water; to raise the concentration factor over 5 and soften the makeup water through the addition of lime and flocculant. The last of these solutions was rarely ever used in Belgium and France. It was however widely used in Germany. Its application requires a greater investment and leads to higher operating costs than acid injection. Furthermore, it leads to the problem of daily drying and disposal of several dozen tonnes of sludge, which have to be recycled or dumped. In an increasingly stringent environmental context, this solution is no

  3. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  4. Experience gained in the operation of the Beznau nuclear power station

    International Nuclear Information System (INIS)

    Kueffer, K. von.

    1976-01-01

    The 24th December 1969, when the Beznau 1 nuclear power station was placed in commercial operation, marked the beginning of electricity production from nuclear energy in Switzerland. Beznau 2 followed on the 15th March 1972. Together with the Muehleberg nuclear power station, nuclear energy accounts for approximately 20 percent of the total electricity production in Switzerland. Until the end of 1975, Switzerland's three nuclear power stations had a mean energy utilisation factor of 71.3 percent which, as compared with a mean energy utilization factor of 60.5 percent for all the nuclear power stations in the West, suggests fairly good operational results. Problems that arose during operation are discussed in detail. By way of summary it is stated that the operation of the Beznau nuclear power station has so far proved a success. The production of electrical energy has always remained within the limits imposed by the law and by the safety aspects. (Auth.)

  5. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  6. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  7. Present status of maintenance in nuclear power stations

    International Nuclear Information System (INIS)

    Fueki, Kensuke

    1982-01-01

    For nuclear power stations, the improvement of the rate of facility utilization is indispensable. As its means, the shortening of regular inspection period, the adoption of long term cycle operation, the shortening of plant shutdown period by the improvement of the reliability of installed equipment and so on are conceivable. In this paper, the maintenance techniques in nuclear power stations which constitute the basis of reliability improvement are explained. In nuclear power stations, the use of nuclear fuel, accordingly the existence of radioactivity are the remarkable features. At the time of an accident, the nuclear reaction in a reactor must be stopped, and the excessive heat must be removed. The radioactivity in nuclear fuel must not be released outside. The regular inspection of once a year is provided by the law, and routine tests are performed during normal operation. The check-up by operators also is a part of the safety measures. For the early detection of abnormality, the diagnosis system is developed, and the maintenance techniques during operation are examined for being taken into the safety test and standard. The improvement of reliability is attempted by the redundancy of systems. The activity of quality assurance, the organization for the maintenance of nuclear power stations and maintenance works, and the measures to raise the rate of operation are reported. (Kako, I.)

  8. Cycle for fuel elements. Uranium production, programs for nuclear power stations and capital expenditure involved

    International Nuclear Information System (INIS)

    Andriot, J.; Gaussens, J.

    1958-01-01

    A number of different possible programs for nuclear power stations of various types are presented in this survey. These programs are established in relation to the use of uranium and thorium in amounts similar to those that shall probably be produced in France during the next fifteen years. As it is possible to draw plans for nuclear power stations in which several processes exist simultaneously, an unlimited number of variations being thinkable, this survey is limited to successive analysis of the results obtained by use of only one of each of the following three systems: - system natural uranium-graphite, - system natural uranium-heavy water, -system enriched uranium-pressurised light water. All schemes are considered as assemblages of these three simple systems. The effects of plutonium recycling are also considered for each system. The electric power installed and the capacity of stations situated up-stream and down-stream have been calculated by this method and an attempt has been made to establish the sum to be invested during the fifteen years necessary for the launching of the programs scheduled. A table of timing for the investments groups the results obtained. Considering the fact that French availabilities in capital shall not be unlimited during the coming years, this way of presenting the results seems to be interesting. (author) [fr

  9. Sea-water intake tower works for Hamaoka Nuclear Power Station No. 2 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sataki, N; Sugaya, Y; Sugimoto, T [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1976-01-01

    It was determined to adopt tunnel system based on the conclusion of negotiation with local people, specifically fishermen, for the sea water intake arrangement in Hamaoka Nuclear Power Station. The main factors for determining the location of the intake tower included marine conditions such as waves and littoral sand drift, and the sea-bottom topographic features and geology of tunnel route, for which field examination, hydraulic experiments and the research and investigation on the method of construction were carried out. These results in the No.2 tower installation at the point 65 m to the east of the No.1 tower. The construction of the tower is described on the manufacture and conveyance of steel caisson, land works at Omaezaki and temporary assembly works on the sea. Then the details of tower installation and the works on site are reported. Fortunately the difficult sea works have been satisfactorily completed earlier than planned, without any accident. The construction facilities utilizing a pilot tunnel seem to have made the better achievement than expected. In spite of the results, the lifting up, off-shore conveyance, and installation of the intake tower caisson, a superheavy structure of weighting up to total 2900 ton, were critical works.

  10. Sea-water intake tower works for Hamaoka Nuclear Power Station No. 2 Plant

    International Nuclear Information System (INIS)

    Satake, Norimoto; Sugaya, Yoshinobu; Sugimoto, Tadao

    1976-01-01

    It was determined to adopt tunnel system based on the conclusion of negotiation with local people, specifically fishermen, for the sea water intake arrangement in Hamaoka Nuclear Power Station. The main factors for determining the location of the intake tower included marine conditions such as waves and littoral sand drift, and the sea-bottom topographic features and geology of tunnel route, for which field examination, hydraulic experiments and the research and investigation on the method of construction were carried out. These results in the No.2 tower installation at the point 65 m to the east of the No.1 tower. The construction of the tower is described on the manufacture and conveyance of steel caisson, land works at Omaezaki and temporary assembly works on the sea. Then the details of tower installation and the works on site are reported. Fortunately the difficult sea works have been satisfactorily completed earlier than planned, without any accident. The construction facilities utilizing a pilot tunnel seem to have made the better achievement than expected. In spite of the results, the lifting up, off-shore conveyance, and installation of the intake tower caisson, a superheavy structure of weighting up to total 2900 ton, were critical works. (Wakatsuki, Y.)

  11. Treatment of some power plant waters

    International Nuclear Information System (INIS)

    Konecny, C.; Vanura, P.; Franta, P.; Marhol, M.; Tejnecky, M.; Fidler, J.

    1987-01-01

    Major results are summed up obtained in 1986 in the development of techniques for the treatment of coolant in the fuel transport and storage tank, of reserve coolant in the primary circuit and of waste water from the special nuclear power plant laundries, containing new washing agent Alfa-DES. A service test of the filter filled with Czechoslovak-made cation exchanger Ostion KSN in the boric acid concentrate filter station showed that the filter can be used in some technological circuits of nuclear power plants. New decontamination agents are also listed introduced in production in Czechoslovakia for meeting the needs of nuclear power plants. (author). 6 refs

  12. Hindrances to upstream migration of atlantic salmon (Salmo salar) in a northern Swedish river caused by a hydroelectric power-station

    International Nuclear Information System (INIS)

    Rivinoja, P.; Lundqvist, H.

    2001-01-01

    Many Baltic salmon rivers have lost their natural juvenile production due to human activities blocking or reducing access to their spawning grounds, e.g. damming, power generation, partial hinders, etc.. One such hindrance is a hydroelectric complex located in the lower reaches of River Umeaelven in northern Sweden. Water from the forbay created by the dam Norrfors is directed to the Stornorrfors power-station. At times, 100 per cent of the river is directed to the power-station. Water from the power-station then flows via a tunnel and outlet channel to the river. From the point of the tunnel's discharge into the river, the old river bed acts as a bypass channel directing migrating adult fish to a fish ladder located at the base of the dam. In this study, the effect that an additional turbine, that was installed at the power-station in 1986, had on fish passage run-time was examined. Changes in run-time were compared for two periods 1974-1985 and 1986-1995. In 1997, 55 wild and 25 hatchery salmon were captured in the Umeaelven estuary, radio tagged with uniquely coded tags, and tracked upstream. Both manual and automatic loggers were used to locate fish daily. The main findings show that only 26 per cent of the wild salmon and none of the hatchery salmon found the fish ladder. It is suggested that the salmon followed the main water discharge from the power-station outlet and are thus directed away from the entrance to the bypass channel leading to the fish ladder. Salmon respond by moving upstream or downstream depending on the current flow regimes. The bypass channel consists of partial hinders that may explain why it takes on average 52 days for the salmon to migrate 32 km from the estuary to the fish ladder. Adding a fourth turbine at the power-station did not appear to have changed the timing of the migration or the seasonal distribution of the migrating wild salmon through the fish ladder. There was no significant effect of the fourth turbine on the duration

  13. Care management at Ikata Power Station

    International Nuclear Information System (INIS)

    Sakai, Koji

    1982-01-01

    For operating nuclear power stations safely and economically, it is necessary to control nuclear fuel itself and reactor cores. Nuclear fuel must be controlled consistently in view of quantitative balance and operational method over the whole nuclear fuel cycle of uranium ore, fabrication, burning in reactors and reprocessing, based on the plan of using fuel in electric power companies. The control of the burning in reactors is called core management, and it is important because the users of fuel execute it. For dealing with such core management works, Shikoku Electric Power Co., Inc., has developed the computer code system for grasping the state of fuel exchange and the burning condition in reactors and used it since 1972. The outline of the core management in Ikata Power Station is reported in this paper centering around computing works. The core management works are divided into those at the time of regular inspection and those in operation. In the regular inspection, fuel inspection, fuel exchange and reactor physics test are performed. In operation, the burning condition of fuel is grasped. The technical computations corresponding to these works are explained, and the examples of computations are shown. (Kako, I.)

  14. Risk of loss power for ATWT in Daya Bay and Ling'ao nuclear power stations

    International Nuclear Information System (INIS)

    Guo Cheng

    2010-01-01

    In order to analyze the differences between the Anticipated Transient Without Reactor Trip (ATWT) and other reactor protection methods, this paper analyzes in detail the realizing means of ATWT and the effect of lost of power supply on the units based on Daya Bay and Ling'ao Nuclear Power Stations by system wiring diagram. Based on the comprehensive analysis,this paper proposes the sequence for powering when recovering the power source after ATWT power supply (LCC/LNE) loss for Daya Bay and Ling'ao Nuclear Power Stations. (authors)

  15. The power control system of the Siemens-KWU nuclear power station of the PWR [pressurized water reactors] type

    International Nuclear Information System (INIS)

    Huber, Horacio

    1989-01-01

    Starting with the first nuclear power plant constructed by Siemens AG of the pressurized light water reactor line (PWR), the Obrigheim Nuclear Power Plant (340 MWe net), until the recently constructed plants of 1300 MWe (named 'Konvoi'), the design of the power control system of the plant was continuously improved and optimized using the experience gained in the operation of the earlier generations of plants. The reactor power control system of the Siemens - KWU nuclear power plants is described. The features of this design and of the Siemens designed heavy water power plants (PHWR) Atucha I and Atucha II are mentioned. Curves showing the behaviour of the controlled variables during load changes obtained from plant tests are also shown. (Author) [es

  16. Estimation of free-flowingmicro hydroelectric power stations in Krasnoyarsk region

    OpenAIRE

    Kachina, E.; Botcharova, E.

    2010-01-01

    The external factors defining expediency of using micro hydroelectric power stations are considered. Exploration of areas of Krasnoyarsk region, which are suitable for usage of micro hydroelectric power stations is carried out. The market of primary real small hydroelectric engineering in Krasnoyarsk region is defined.

  17. Research on application of knowledge engineering to nuclear power stations

    International Nuclear Information System (INIS)

    Umeda, Takeo; Kiyohashi, Satoshi

    1990-01-01

    Recently, the research on the software and hardware regarding knowledge engineering has been advanced eagerly. Especially the applicability of expert systems is high. When expert systems are introduced into nuclear power stations, it is necessary to make the plan for introduction based on the detailed knowledge on the works in nuclear power stations, and to improve the system repeatedly by adopting the opinion and request of those in charge upon the trial use. Tohoku Electric Power Co. was able to develop the expert system of practically usable scale 'Supporting system for deciding fuel movement procedure'. The survey and analysis of the works in nuclear power stations, the selection of the system to be developed and so on are reported. In No. 1 plant of Onagawa Nuclear Power Station of BWR type, up to 1/3 of the fuel is replaced at the time of the regular inspection. Some fuel must be taken to outside for ensuring the working space. The works of deciding fuel movement procedure, the development of the system and its evaluation are described. (K.I.)

  18. Measurements and modelling of base station power consumption under real traffic loads.

    Science.gov (United States)

    Lorincz, Josip; Garma, Tonko; Petrovic, Goran

    2012-01-01

    Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications) and UMTS (Universal Mobile Telecommunications System) base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  19. Measurements and Modelling of Base Station Power Consumption under Real Traffic Loads

    Directory of Open Access Journals (Sweden)

    Goran Petrovic

    2012-03-01

    Full Text Available Base stations represent the main contributor to the energy consumption of a mobile cellular network. Since traffic load in mobile networks significantly varies during a working or weekend day, it is important to quantify the influence of these variations on the base station power consumption. Therefore, this paper investigates changes in the instantaneous power consumption of GSM (Global System for Mobile Communications and UMTS (Universal Mobile Telecommunications System base stations according to their respective traffic load. The real data in terms of the power consumption and traffic load have been obtained from continuous measurements performed on a fully operated base station site. Measurements show the existence of a direct relationship between base station traffic load and power consumption. According to this relationship, we develop a linear power consumption model for base stations of both technologies. This paper also gives an overview of the most important concepts which are being proposed to make cellular networks more energy-efficient.

  20. Obrigheim nuclear power station. Annual report 1987

    International Nuclear Information System (INIS)

    Koerner, C.

    1988-01-01

    The Obrigheim nuclear power station was operated at full load during the year 1987; 7.351 operating hours procuded electrical energy of 2.607 GWh. This is the fifth best annual result during Obrigheim's operating period. Since commissioning in October 1968, 139.310 hours of operation have generated 46.681 GWh (gross) and from test operation in March 1969 until the end of 1987, 138.530 hours of operation have generated 46.569 GWh. This is an availability of power of 81.6% in this period and a time availability of 83.9%. In 1987, the plant was shut down for 1.222 hours for the 18th refueling including testing, inspection and repair work. Apart from refueling, the plant had a good time availability and therefore contributed 5% to the safe, economical and environmentally acceptable electricity supply of the Land Baden-Wuerttemberg. The power station is of great significance to the region, both in terms of power supply and the economy. (orig./HP) [de

  1. Burning issue of energy problem after Fukushima disaster of TEPCO's atomic power stations

    International Nuclear Information System (INIS)

    Harada, Shoji

    2012-01-01

    Strikes of unanticipated enormous earthquake and subsequent tsunami brought unbelievable disaster in eastern Japan on March 11, 2012. In particular, collapse of cooling system of TEPCO's Fukushima atomic power stations resulted in IAEA-defined level7 accident including heavy radiation, hydrogen explosion -induced collapse of the building of power station No.2 and No.4 and melt through of nuclear pressure vessel No1.3.4 At an initial stage of the disaster, nobody knew precisely what happened at the power stations. According to the recent report of the national investigation committee, precise reason of the collapse of the cooling system whether it was induced by the strike of huge earthquake or tsunami is still unclear. Due to poor risk management of the government and TEPCO and closure of the precise disaster information, people became suspicious and nervous about the atomic power station. Fifty four atomic power stations have been constructed for these forty years in Japan. On last May 04, all the atomic power stations were shut down due to periodic inspection. However, restart of them became hot discussion. Although atomic power station was regarded as a powerful tool to reduce carbon dioxide several years ago, this situation after March 11 completely changed. In many countries which possess atomic power station, making a road map to develop recyclable energy is a burning issue. It should be noted that German spent about thirty years to declare atomic energy free society. Finally necessity of succession of technology of utilizing atomic power is emphasized. Politics on depending atomic power differs in each country. Therefore, study from Fukushima disaster should be widely used to prevent from unexpected accident of atomic power station.

  2. Merchant funding for power stations

    International Nuclear Information System (INIS)

    Johnston, B.; Bartlam, M.

    1997-01-01

    The next frontier for project finance is merchant generation: the financing of IPPs without long-term offtake contracts. Banks are just beginning to finance merchant generation power stations. One of the first was Destec's Indian Queens project in Cornwall, UK. Bruce Johnston and Martin Bartlam of Wilde Sapte discuss the project. (UK)

  3. Hinkley Point 'C' power station public inquiry: proof of evidence on system considerations

    International Nuclear Information System (INIS)

    Eunson, E.M.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. This evidence to the Inquiry describes the CEGB system and the concepts of economy, security and quality of supply which underlie it. Attention is drawn to the present geographical imbalance between generation and demand on the CEGB system which leads to high power transfers at times of peak demand and for long periods at off-peak times. When there is a need to install new generating plant in the mid-1990s, system benefits can be achieved by siting plant in the South rather than in the North. The system benefits which would arise from the siting of a new PWR nuclear power station at Hinkley Point ''C'' rather than elsewhere are identified. The system benefits of other PWR sites and non-fossil options, such as a further link with France, interconnection with Iceland and the Severn Tidal Barrage, are reviewed. System benefits in terms of security and economics would accrue from locating a PWR station at Hinkley Point without the need for new transmission lines. (author)

  4. Nuclear power stations. Information paper no. 1. Controls on the building and running of nuclear power stations

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Controls and constraints which govern the development and running of nuclear power stations are briefly examined. Government policy, permission to build, authority to start building, site acquisition building, running and public opinion are briefly discussed.

  5. Safety principles and design criteria for nuclear power stations

    International Nuclear Information System (INIS)

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  6. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  7. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  8. Standard concerning the design of nuclear power stations in earthquake-prone districts

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Anbriashivili, Y.K.; Suvilova, A.V.

    1980-01-01

    The measures of security assurance against the effect of radioactive contamination has become more and more complex due to the construction of nuclear power stations of diverse types. The aseismatic measures for the nuclear power stations built in the districts where earthquakes of different intensity occur are important problems. All main machinery and equipments and emergency systems in power stations must be protected from earthquakes, and this makes the solution of problems difficult. At present in USSR, the provisional standard concerning the design of atomic energy facilities built in earthquake-prone districts is completed. The basic philosophy of the standard is to decide the general requirements as the conditions for the design of nuclear power stations built in earthquake-prone districts. The lowest earthquake activity in the construction districts is considered as magnitude 4, and in the districts where earthquake activity is magnitude 9 or more, the construction of nuclear power stations is prohibited. Two levels of earthquake action are specified for the design: design earthquake and the largest design earthquake. The construction sites of nuclear power stations must be 15 to 150 km distant from the potential sources of earthquakes. Nuclear power stations are regarded as the aseismatically guaranteed type when the safety of reactors is secured under the application of the standard. The buildings and installations are classified into three classes regarding the aseismatic properties. (Kako, I.)

  9. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  10. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  11. Annual report of operation management in nuclear power stations, fiscal year 1985

    International Nuclear Information System (INIS)

    1986-09-01

    Twenty years have elapsed since the first practical nuclear reactor in Japan started the operation. In the generated power in fiscal year 1985, that of nuclear power stations for the first time overtook that of thermal power stations, and now the age of nuclear power as the main and oil power as the subordinate has begun. As of the end of fiscal year 1985, there were 32 nuclear power plants in operation, having total output capacity of 24.521 million kW. In fiscal year 1985, nuclear power plants generated about 159 billion kWh, which is about 26 % of electric power supply. As to the capacity factor, 76 % was attained in fiscal year 1985, and this is ranked in the top group of LWR-operating countries in the world. It showed that the Japanese technology of nuclear power generation is at the top level in the world. However, in order to increase nuclear power generation and to accomplish the role of main electric power source hereafter, it is necessary to further increase the reliability and economical efficiency. The list of nuclear power stations in Japan, the state of operation of nuclear power stations, the state of accidents and troubles, the state of regular inspection, the management of radioactive wastes and the radiation exposure of workers in nuclear power stations, the operational management and others are reported. (Kako, I.)

  12. Benthos of a coastal power station thermal discharge canal

    Energy Technology Data Exchange (ETDEWEB)

    Bamber, R.N.; Spencer, J.F.

    1984-08-01

    Kingsnorth Power Station, on the river Medway Estuary, Kent, discharges cooling water into a canal comprising a 4 km creek system. A comprehensive investigation of the sublittoral benthic fauna of the discharge system was undertaken from January 1979 to September 1981. The macrofauna is significantly suppressed at sites along the discharge canal, representing a community with half the number of species comprising dense populations of a few dominant opportunistic species tolerant of thermal stress (e.g. Tubificoides, Cauleriella) and not those characteristic of organic pollution stress communities. The latter are regular summer immigrants in the creek, but persist only in low numbers if at all in the winter (e.g. Polydora ciliata). This suppression is the result of an approximately 10/sup 0/C temperature front between the heated discharge water and ambient estuarine water, passing over the sea bed with the ebbing and flooding tide four times each day. 39 references, 11 figures, 3 tables.

  13. On the troubles happened in nuclear power stations, 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The troubles which happened at the nuclear power stations of Japan in the fiscal year of 1995 are described in this report. The number of troubles in those power stations reported from the corporations of electric industry to Nuclear Safety Commission according to The Law for Regulation of Nuclear Fertile Material, Nuclear Fuel Material and Reactors and Utility Industry Law were 14 in the year and so, the number per reactor was 0.3. The details of the trouble cases were as follows; one and nine cases for automatic and manual shutdowns in operation, respectively and 4 cases found during a down-time of the reactor. But, there was no influence on the environment surrounding those nuclear power stations by the radioactive materials in either of the cases. (M.N.)

  14. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  15. Reviewing nuclear power station achievement

    International Nuclear Information System (INIS)

    Howles, L.R.

    1976-01-01

    For measurement of nuclear power station achievement against original purchase the usual gross output figures are of little value since the term loosely covers many different definitions. An authentically designed output figure has been established which relates to net design output plus house load at full load. Based on these figures both cumulative and moving annual load factors are measured, the latter measuring the achievement over the last year, thus showing trends with time. Calculations have been carried out for all nuclear stations in the Western World with 150 MW(e) gross design output and above. From these are shown: moving annual load factor indicating relative station achievements for all the plants; cumulative load factors from which return of investment can be calculated; average moving annual load factors for the four types of system Magnox, PWR, HWR, and BWR; and a relative comparison of achievement by country in a few cases. (U.K.)

  16. ANALYSIS OF SOLAR POWER STATION SCHEMES ON PHOTOELECTRIC MODULES FOR ELECTRIC CARS CHARGING STATIONS

    Directory of Open Access Journals (Sweden)

    A. Hnatov

    2017-12-01

    Full Text Available The analysis of existing schemes for building solar power stations on photoelectric modules with the revealing of their operation principles and functionality has been conducted. The specified technical characteristics of each of the analyzed schemes are given. The structural scheme of the solar charging station for electric cars with determining its functional capabilities and operation features is proposed. The practical application of this scheme will help to reduce the dependence on the general electric power supply network and will create conditions for its total rejection.

  17. 47 CFR 74.710 - Digital low power TV and TV translator station protection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.710 Digital low power TV and TV translator station protection. (a) An application to construct a new low power TV, TV translator, or TV...

  18. Reducing nitrogen oxides from power stations

    International Nuclear Information System (INIS)

    Scheller, W.

    1986-12-01

    The report contains 17 individual lectures of the seminar included in databanks. The lectures concern combustion and waste gas measures for reducing the sulfur dioxide and nitrogen oxide emission from coal-fired and gas-fired power stations. (PW) [de

  19. Leakage investigation in an underground cooling water pipeline at a thermal power station using radiotracer technique

    International Nuclear Information System (INIS)

    Khan, I.H.; Din, U.G.; Gul, S.; Farooq, M.; Qureshi, R.M.

    2004-05-01

    The objective of this study was to locate the leakage point(s) in an underground cooling water pipeline of a Thermal Power Station for pre-shutdown planning purposes. The internal diameter of the pipeline was 2240 mm with 12 mm with 12 (mild steel) wall thickness and it was buried under 1.0 meter reinforced concrete and 0.5-1.0 meter soil/sand cover. The volume flow rate of the pipeline was 29043 m/sup 3/hour at 2kg/cm/sup 2/ pressure. The linear speed of water flowing inside the pipeline was around 2 m/sec. This gave rise to a very high volume fast moving system. Radiotracer technique was used to investigate the problem under investigation. About 50 mCi of /sup 131/I radiotracer, in the form of NaI solution, was injected into the system and radiotracer evolution near suspected leakage point(s) was monitored using radiation detectors (NaI, 2 x 2 inch crystal size). Seven detectors were installed around three teeing off pipes (leakage area) inside the plant building and one at the injection point near the pump outlet. On line data acquisition system was used to acquire the radiotracer data. The leakage water was exiting from the floor just along the pipes carrying main flow of water. The time lag between the arrival, at detectors, of radiotracer flowing inside the pipeline and that present in the leakage water (outside the pipeline) was exploited to identify the position of leakage. The tracer test revealed that there was leakage at two points. The leakage at one point was small as compared at the other points. (author)

  20. Surry Power Station, Units 1 and 2. Semiannual operating report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Net electric power generated by Surry Unit 1 was 6,930,353 MWH with the generator on line for 10,417.7 hours. Net electric power generated by Unit 2 was 5,699,299 MWH with the generator on line for 8,384.2 hours. Information is presented concerning operation, radioactive effluent releases, solid radioactive wastes, fuel shipments, occurrences in which temperature limitations on the condenser cooling water discharge were exceeded, changes in station organization, occupational personnel radiation exposure, nonradiological monitoring including thermal, physical, and biological programs, and the radiological environmental monitoring program. (U.S.)

  1. Operating experience at Scottish Nuclear's power stations

    International Nuclear Information System (INIS)

    Blackburn, P.

    1991-01-01

    A brief history is presented of the design and operation of the four Scottish nuclear power stations currently run by Scottish Nuclear, namely Hunterston 'A' and 'B' and the Torness reactors. A design flaw in the Magnox reactor at Hunterston 'A' led to it being operated at lower than optimal temperature and hence producing less power. For Hunterston 'B' reactor the Advanced Gas Cooled design prototype was used. Operating setbacks and successes are noted. The design chosen for Torness embraced all the good points of Hunterston 'B' but sought to eliminate its faults. After 26 years of successful operation Hunterston 'A' is now being decommissioned, while the other three stations continue to generate electricity successfully. (UK)

  2. Potable Water Supply Feasibility Study for Summit Station, Greenland

    Science.gov (United States)

    2011-03-01

    station, Dronning Maud Land, Antarctica. Final comprehensive environmental evaluation report. British Antarctic Survey. 2007. Proposed construction...Troll in Dronning Maud Land, Antarctica to a permanent station. PolarPower.org. 2010. Examples: Princess Elisabeth Antarctica Station

  3. Public relations activities of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kono, T.

    1998-01-01

    This article includes information of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station. About 30% of the total electricity production in Japan is due to 16 power stations and 52 reactors. The service hall is a kind of atomic power pavilion for public relations. In Japan, each nuclear power station has such a pavilion, which acts a a center of public relations activities for the atomic power. (S. Grainger)

  4. Total life cycle cost model for electric power stations

    International Nuclear Information System (INIS)

    Cardullo, M.W.

    1995-01-01

    The Total Life Cycle Cost (TLCC) model for electric power stations was developed to provide a technology screening model. The TLCC analysis involves normalizing cost estimates with respect to performance standards and financial assumptions and preparing a profile of all costs over the service life of the power station. These costs when levelized present a value in terms of a utility electricity rate. Comparison of cost and the pricing of the electricity for a utility shows if a valid project exists. Cost components include both internal and external costs. Internal costs are direct costs associated with the purchase, and operation of the power station and include initial capital costs, operating and maintenance costs. External costs result from societal and/or environmental impacts that are external to the marketplace and can include air quality impacts due to emissions, infrastructure costs, and other impacts. The cost stream is summed (current dollars) or discounted (constant dollars) to some base year to yield a overall TLCC of each power station technology on a common basis. While minimizing life cycle cost is an important consideration, it may not always be a preferred method for some utilities who may prefer minimizing capital costs. Such consideration does not always result in technology penetration in a marketplace such as the utility sector. Under various regulatory climates, the utility is likely to heavily weigh initial capital costs while giving limited consideration to other costs such as societal costs. Policy makers considering external costs, such as those resulting from environmental impacts, may reach significantly different conclusions about which technologies are most advantageous to society. The TLCC analysis model for power stations was developed to facilitate consideration of all perspectives

  5. Increased wheeze but not bronchial hyperreactivity near power stations.

    Science.gov (United States)

    Halliday, J A; Henry, R L; Hankin, R G; Hensley, M J

    1993-08-01

    In a previous study a higher than expected prevalence of asthma was found in Lake Munmorah, a coastal town near two power stations, compared with another coastal control town. This study aimed to compare atopy, bronchial hyperreactivity, and reported symptoms of asthma in the power station town and a second control area with greater socioeconomic similarity. A cross sectional survey was undertaken. Lake Munmorah, a coastal town near two power stations, and Dungog, a country town in the Hunter Valley, NSW, Australia. All children attending kindergarten to year 6 at all schools in the two towns were invited to participate in 1990. The response rates for the questionnaire for reported symptoms and associated demographic data were 92% in Lake Munmorah and 93% in Dungog, with 84% and 90% of children respectively being measured for lung function, atopy, and bronchial reactivity. There were 419 boys and 432 girls aged 5 to 12 years. Main outcome measures were current wheeze and bronchial hyper-reactivity, defined as a fall in forced expiratory volume in 1 second (FEV1) or peak expiratory flow (PEF) of 20% or more. Current wheeze was reported in 24.8% of the Lake Munmorah children compared with 14.6% of the Dungog children. Bronchial hyper-reactivity was similar for both groups--25.2% in Lake Munmorah and 22.3% in Dungog. The mean baseline FEV1 was lower in Lake Munmorah than in Dungog (p power station town, but bronchial hyper-reactivity and skin test defined atopy were similar in the two communities. These results are consistent with the previous study and confirm the increased presence of reported symptomatic illness in the town near power stations.

  6. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Yoshio; Nakagami, Yasuo; Fujii, Hisashi; Shibanai, Hirooki.

    1980-01-01

    Two 1175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  7. Application of the minicomputer at Genkai Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, H [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1977-03-01

    Genkai Nuclear Power Station introduced a minicomputer system for the data control purpose in addition to a process control computer introduced in the same manner as other PWR nuclear power stations. This system employs two computers; the one for on-line data aquisition, and another for data processing. The control system introduced includes four systems amoung various data control businesses in the nuclear power station. The language used is mainly an assembler language. The first is the meteorological control system which collects, edits and transmits the weather data sent from the observation instruments around the power station. The second is the personal radiation exposure control system which is designed to realize the labor-saving in book-keeping, the speed-up and the improvement of accuracy in the preparation of the reports to the authorities and the head office and the data for exposure control, and the unification of data processing. The third is the waste control system composed of three subsystems of gas, liquid and solid waste control. The fourth is the maintenance and repair control system which gives inputs to the computer according to the classification written in the slips for maintenance and repair, and prepares a number of statistical tables for maintenance control.

  8. Water, energy and agricultural landuse trends at Shiroro hydropower station and environs

    Science.gov (United States)

    Adegun, Olubunmi; Ajayi, Olalekan; Badru, Gbolahan; Odunuga, Shakirudeen

    2018-02-01

    The study examines the interplay among water resources, hydropower generation and agricultural landuse at the Shiroro hydropower station and its environs, in north-central Nigeria. Non-parametric trend analysis, hydropower footprint estimation, reservoir performance analysis, change detection analysis, and inferential statistics were combined to study the water-energy and food security nexus. Results of Mann-Kendall test and Sen's slope estimator for the period 1960 to 2013 showed a declining rainfall trend at Jos, around River Kaduna headwaters at -2.6 mm yr-1, while rainfall at Kaduna and Minna upstream and downstream of the reservoir respectively showed no trend. Estimates of hydropower footprint varied between 130.4 and 704.1 m3 GJ-1 between 1995 and 2013. Power generation reliability and resilience of the reservoir was 31.6 and 38.5 % respectively with year 2011 being the most vulnerable and least satisfactory. In addition to poor reliability and resilience indices, other challenges militating against good performance of hydropower generation includes population growth and climate change issues as exemplified in the downward trend observed at the headwaters. Water inflow and power generation shows a weak positive relationship with correlation coefficient (r) of 0.48, indicating less than optimal power generation. Total area of land cultivated increased from 884.59 km2 in 1986 prior to the commissioning of the hydropower station to 1730.83 km2 in 2016 which signifies an increased contribution of the dam to ensuring food security. The reality of reducing upstream rainfall amount coupled with high water footprint of electricity from the reservoir, therefore requires that a long term roadmap to improve operational coordination and management have to be put in place.

  9. Operation and maintenance of thermal power stations best practices and health monitoring

    CERN Document Server

    Chanda, Pradip

    2016-01-01

    This book illustrates operation and maintenance practices/guidelines for economic generation and managing health of a thermal power generator beyond its regulatory life. The book provides knowledge for professionals managing power station operations, through its unique approach to chemical analysis of water, steam, oil etc. to identify malfunctioning/defects in equipment/systems much before the physical manifestation of the problem. The book also contains a detailed procedure for conducting performance evaluation tests on different equipment, and for analyzing test results for predicting maintenance requirements, which has lent a new dimension to power systems operation and maintenance practices. A number of real life case studies also enrich the book. This book will prove particularly useful to power systems operations professionals in the developing economies, and also to researchers and students involved in studying power systems operations and control. .

  10. Nuclear power station siting experience in the United Kingdom: past and present and proposals for the future

    International Nuclear Information System (INIS)

    Haire, T.P.; Usher, E.F.F.W.

    1975-01-01

    Foremost of the many factors in site selection considerations are population distribution, cooling-water availability and amenity. Others are safety of potable water sources, geological stability and the risk of external hazards. Where cooling-water supplies are a limiting factor, the choica of reactor system is of major importance. To determine as early as possible the effect a station might have on its environment, desk studies, visual surveys and wind-tunnel tests are carried out. The Central Electricity Generating Board places great importance on obtaining the fullest degree of acceptance by the public for its nuclear stations and ensures that full consultation is provided with the relevant authorities at all stages of power-station development. It also provides public exhibitions, public meetings and liaison with the local inhabitants. Recruitment of station staff where possible from the immediate area of the station and formation of sports and social clubs are two of the practical steps which help to integrate the station into the local community. Whilst the current energy crisis has reinforced the need for a substantial nuclear programme, possible ways of further reducing the impact of nuclear stations on the environment are being considered. The paper concludes that sufficient nuclear sites can be provided for future needs but that continuing effort will be required to ensure public acceptance. (author)

  11. Summary of commissioning of Hamaoka Nuclear Power Station Unit No.5

    International Nuclear Information System (INIS)

    Wakunaga, T.; Sekine, Y.; Yamada, K.; Nakamura, Y.; Kawahara, M.

    2006-01-01

    The Hamaoka Nuclear Power Station Unit No.5 was put into commercial operation in January 2005, which is the 1380 MWe advanced boiling water reactor (ABWR) incorporating design improvements and latest technologies of safer operation, reliability and maintenance. For example, S-FMCRD (Sealless Fine-Motion Control Rod Drive) was equipped to eliminate the use of seal housing by adopting a magnetic coupling and also ASD (Adjustable Speed Drive- the multiple drive power supply to reactor internal pumps) that can drive two or three Recirculation Internal Pumps with a large-capacity inverter. The reactor start-up tests were performed about for eleven months from February 2004 to confirm the plant's required performance including design change points. (T. Tanaka)

  12. Impact studies and nuclear power stations

    International Nuclear Information System (INIS)

    Chambolle, Thierry

    1981-01-01

    Impact studies form an essential part of environmental protection. The impact study discipline has enabled the EDF to have a better understanding of the effects of nuclear power stations on the environment and to remedy them at the project design stage [fr

  13. Pump station for radioactive waste water

    Science.gov (United States)

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  14. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  15. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  16. Reload Startup Physics Tests for Tianwan Nuclear Power station

    International Nuclear Information System (INIS)

    Yang Xiaoqiang; Li Wenshuang; Li Youyi; Yao Jinguo; Li Zaipeng Jiangsu

    2010-01-01

    This paper briefly describes the test purposes, test items, test schedules and test equipment's for reload startup physics test's on Unit 1 and 2 of Tianwan Nuclear Power station. Then, an overview of the previous thrice tests and evaluations on the tests results are presented. In the end, the paper shows the development and work direction of optimization project for reload startup physics tests on Unit 1 and 2 of Tianwan Nuclear Power station. (Authors)

  17. Safety planning for nuclear power stations

    International Nuclear Information System (INIS)

    Tadmor, J.

    1979-01-01

    The article shows that compared to the many industries and other human activities, nuclear power stations are among the safest. A short description of the measures taken to prevent accidents and of the additional safety means entering into action if an accident does occur is presented. It is shown that in nuclear plants the death frequency following malfunctioning is 1 death in 100.000 years whereas deaths following other human activities is 1 in 2 to 100 years and following natural calamities like earthquakes and floods is 1 in 10 years. As an example it is shown that for a population of 15.000.000 living in a radius of 40 km around 100 power stations the average number of deaths will be of 2 per year as compared to 4200 from road accidents with the corresponding number of injuries of 20 and 375.000 respectively. (B.G.)

  18. Proceedings of scientific-technical seminar: materials investigation for power stations and power grid

    International Nuclear Information System (INIS)

    1994-05-01

    This report is an assembly of the papers concerning the material problems occurring during the exploitation of power stations as well as power grid. The diagnostic methods are also discussed. (author)

  19. Hinkley Point 'C' power station public inquiry: proof of evidence on safety criteria

    International Nuclear Information System (INIS)

    Taylor, R.H.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The policy is to replicate the Sizewell ''B'' PWR design which was accepted as safe by an earlier enquiry. In this evidence to the Inquiry, subsequent developments are examined with a view to determining whether these would reverse the Sizewell decision. They are: the possible revision of radiation risk estimates upwards; whether cases of leukaemia occur with greater frequency around nuclear sites than elsewhere; publication of the Health and Safety Executive's consultative document ''The Tolerability of Risk from Nuclear Power Stations''. The overall conclusion is that these developments do not undermine the findings of the Sizewell ''B'' inquiry or the validity of the CEGB's safety criteria. (author)

  20. Planning and preparedness for radiological emergencies at nuclear power stations

    International Nuclear Information System (INIS)

    Thomson, R.; Muzzarelli, J.

    1996-01-01

    The Radiological Emergency Preparedness (REP) Program was created after the March 1979 accident at the Three Mile Island nuclear power station. The Federal Emergency Management Agency (FEMA) assists state and local governments in reviewing and evaluating state and local REP plans and preparedness for accidents at nuclear power plants, in partnership with the US Nuclear Regulatory Commission (NRC), which evaluates safety and emergency preparedness at the power stations themselves. Argonne National Laboratory provides support and technical assistance to FEMA in evaluating nuclear power plant emergency response exercises, radiological emergency plans, and preparedness

  1. Axial power deviation control strategy and computer simulation for Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Liao Yehong; Zhou Xiaoling, Xiao Min

    2004-01-01

    Daya Bay Nuclear Power Station has very tight operation diagram especially at its right side. Therefore the successful control of axial power deviation for PWR is crucial to nuclear safety. After analyzing various core characters' effect on axial power distribution, several axial power deviation control strategies has been proposed to comply with different power varying operation scenario. Application and computer simulation of the strategies has shown that our prediction of axial power deviation evolution are comparable to the measurement values, and that our control strategies are effective. Engineering experience shows that the application of our methodology can predict accurately the transient of axial power deviation, and therefore has become a useful tool for reactor operation and safety control. This paper presents the axial power control characteristics, reactor operation strategy research, computer simulation, and comparison to measurement results in Daya Bay Nuclear Power Station. (author)

  2. Routine radiation protection precautions in the turbine areas of nuclear power stations of the boiling water reactor type

    International Nuclear Information System (INIS)

    Meyer, U.; Slavitschek, G.

    1978-01-01

    The need for limiting access to turbine areas in BWR power stations is pointed out, and the advantages of closed circuit TV, aerosol measurements and lead glass windows are discussed. Reference is made to a 1000 MW station now under construction, a floor plan is shown and the need for making inspection/maintenance access as infrequent as possible is stated. Practical tests with CCTV are shown, and it is reported that attention was paid in the design of the station to achieving good visual contrast in areas which might have to be inspected for leaks. (G.M.E.)

  3. Shippingport Atomic Power Station decommissioning program and applied technology

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F P; Skavdahl, R E

    1985-01-01

    The Shippingport Station decommissioning project is the first decommissioning of a large scale nuclear power plant, and also the first nuclear power plant to be decommissioned which has continued the power operation as long as 25 years. The nuclear facilities which have been decommissioned so far have operated for shorter period and were small as compared with commercial power reactors, but the experience gained by those decommissionings as well as that gained by nuclear plant maintenance and modification has helped to establish the technology and cost basis for Shippingport and future decommissioning projects. In this paper, the current status of the preparation being made by the General Electric Co., its subcontractor and the US Department of Energy for starting the decommissioning phase of the Shippingport Atomic Power Station is described. Also remote metal cutting, decontamination, concrete removal, the volume reduction of liquids and solids and robotics which will be applied to the project are discussed. The Shippingport Station is a 72 MWe PWR plant having started operation in 1957, and permanently shut down in 1982, after having generated over 7.4 billion kWh of electricity.

  4. Space Station solar water heater

    Science.gov (United States)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  5. Natural radionuclides near a coal-fired power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Briggs, J L

    1984-06-15

    An experiment was carried out to measure the specific activity of Pb-210 and Po-210 in livers from cattle that had grazed in a field near Didcot coal-fired power station. Livers from cattle in the Cotswold region were measured for comparison. The specific activities of Pb-210 and Po-210 in soil and grass samples from both areas were also measured at 3-monthly intervals over a year. No statistically significant increases were observed in the Pb-210 and Po-210 levels in liver, soil or grass samples which could be attributed to the operation of the power station.

  6. Dynamics and control in nuclear power stations

    International Nuclear Information System (INIS)

    Butterfield, M.H.

    1992-01-01

    This volume presents a wide view of aspects of control of nuclear power stations by taking into consideration the plant as a whole and the protection systems employed therein. Authors with worldwide experience consider all aspects of dynamics and control in the context of both fast and thermal power stations. The topics discussed include the methods of development and applications within the analysis of plant behaviour, the validation of mathematical models, plant testing, and the design and implementation of controls. There are 27 papers all of which are indexed separately; steady states and model evolution (5 papers), control and protection systems (5 papers), transients (7 papers), testing and data (3 papers), model validation (6 papers) and commissioning and operation (1 paper). (author)

  7. Study of the legal problems raised by the siting of nuclear power stations in artificial islands

    International Nuclear Information System (INIS)

    Hebert, J.; Guieze, J.L.

    1975-01-01

    The creation and operation of a nuclear power station on an artificial island in French waters are governed by domestic law and are subject to two types of procedure: the first concerns erection of the artificial island and the second the control of the public authorities over creation and operation of the nuclear power station. At administrative level, the setting up of an artificial island requires that it be attached to a commune as well as permission for occupancy from the maritime authorities. Furthermore, setting up of a nuclear power station on an artificial island is subject to the licensing procedure for large nuclear installations and to delivery of the licenses required for release of gaseous and liquid radioactive effluents. Given the proximity of the high seas and eventually, the borders of other States, siting of a nuclear power station on an artificial island imposes obligations at international level. These requirements, which concern prevention of transfrontier pollution, stem from the London (1972) and Paris (1974) Conventions on marine pollution. The third party liability regime for a nuclear incident caused by an installation sited in territorial seas is that of the 1960 Paris Convention on third party liability in the nuclear field and the 1963 Brussels Supplementary Convention. Another problem likely to be raised is that of the right of innocent passage of ships near such installations [fr

  8. Algological studies on the site of the Fessenheim nuclear power station

    International Nuclear Information System (INIS)

    Pierre, J.F.

    1980-01-01

    Systematic study of the algal flora at five stations situated on both sides of the nuclear power station at Fessenheim (department of Haut-Rhin, France). The analysis of the diatomaceae populations in 1977 and 1978, i.e. before and after the start of the reactors, does not indicate, in the composition and abundance of algae, any modifications susceptible to be directly connected to the implantation of the nuclear power station [fr

  9. Development of a machine treating removed shells and others in thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Daiho, Koichi; Iwao, Takenobu

    1981-01-01

    The living things removed form the cooling water systems in thermal and nuclear power stations, such as shells and jelly fish, have been disposed by burying in the premises, but it is the actual situation that the occurrence of bad smell and the securing of land for burying are the worries. Accordingly, a machine for deodorizing the removed living things was manufactured for trial, and the treatment experiment was carried out in Chita Power Station. This treating machine dries the removed living things around 200 deg C, and makes the deodorizing treatment. The treated products can be utilized effectively as fertilizer, and the prospect to put this machine in practical use as a waste treatment machine of resource re-utilization type was obtained. General Technical Research Institute, Chubu Electric Power Co., Inc., has developed a machine treating abandoned fish for making organic fertilizer, and its principle was applied to the development of this treating machine. The treating capacity of this machine is 1 t/day, and the power consumption is 9.3 kW. The waste oil from power stations of about 15 l/h is used as the fuel. A crusher, a constant feed screw conveyer and a rotary kiln for drying are used. In the treating experiment, about 30 t of shells and others were treated during 51 days. The results are reported. (Kako, I.)

  10. 47 CFR 73.6019 - Digital Class A TV station protection of low power TV, TV translator, digital low power TV and...

    Science.gov (United States)

    2010-10-01

    ... power TV, TV translator, digital low power TV and digital TV translator stations. 73.6019 Section 73... low power TV, TV translator, digital low power TV and digital TV translator stations. An application... A TV station will not be accepted if it fails to protect authorized low power TV, TV translator...

  11. Controversial power station

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    When information on plans to build a power station in Trebisov first appeared reactions differed. A 40-billion investment in a town with more than 20% unemployment seemed attractive. But some people did not like the idea of having a power plant located in the town. Around one year after the investment was officially announced TREND returned to Trebisov. In the meantime the investor has managed to overcome one of the biggest obstacles on its way to building a new power plant. The ministry responsible gave the environmental study a positive rating. But objectors are still not sure that everything is fine. They claim that the study misinterprets data and that the ministry did not show expertise when evaluating it. 'Is it possible that a coal power plant located in a town would have twice as many positive effects on peoples' health than negative ones? Why don't we build them everywhere?'asked the chairman of the civic society, Trebisov nahlas, Gejza Gore. The developer of the project, Ceskoslovenska energeticka spolocnost (CES), Kosice is fighting back and claims that their counterpart lacks professional arguments. In the meantime it is preparing for area management proceedings. Trebisov is also involved in the discussion and claims that the town planning scheme does not include such a project. The Ministry of Construction has a different opinion. In the opinion of the Ministry the town planning scheme allows a 885-megawatt power plant to be built only a few hundred meters away from housing estates. (author)

  12. Design and field operation of 1175 MW steam turbine for Ohi Nuclear Power Station

    International Nuclear Information System (INIS)

    Hirota, Y.; Nakagami, Y.; Fujii, H.; Shibanai, H.

    1980-01-01

    Two 1,175 MW steam turbine and generator units have been successfully in commercial operation since March 1979 and December 1979 respectively at Ohi Nuclear Power Station of the Kansai Electric Power Company. Those units, the largest in their respective outputs in Japan, have also such remarkable design features as two-stage reheat, nozzle governing turbine, water cooled generator stator and turbine-driven feedwater pumps. This paper covers design features and some topics of various pre-operational tests of the above-mentioned units. (author)

  13. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  14. Kaiseraugst nuclear power station: meteorological effects of the cooling towers

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Considerations of water conservation persuaded the German Government in 1971 not to allow the use of the Aar and Rhine for direct cooling of nuclear power stations. The criticism is often made that the Kaiseraugst cooling towers were built without full consideration of the resulting meteorological effects. The criticism is considered unjustified because the Federal Cooling Tower Commission considered all the relevant aspects before making its recommendations in 1972. Test results and other considerations show that the effect of the kaiseraugst cooling towers on meteorological and climatic conditions is indeed minimal and details are given. (P.G.R.)

  15. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  16. STUDY OF INFLUENCE OF WIND-POWER STATIONS ON BIRDS: ANALYSIS OF INTERNATIONAL PRACTICES

    Directory of Open Access Journals (Sweden)

    Gorlov P. I.

    2012-06-01

    Full Text Available The world experience of bird collisions with wind-power stations was analyzed. The detailcharacteristics of principal threats to the birds during building and exploitation of wind-power stations was done. Comparative analysis of factors caused annual birds mortality was performed. Some proposals of negative influence minimization were suggested for wind-power stations utilization.

  17. Reload shutdown for Nuclear Power Stations in spain in 2003

    International Nuclear Information System (INIS)

    2004-01-01

    Regarding time reductions in fuel reloading at Spanish nuclear power stations, the Spanish Nuclear Security Council (CSN), at the request of the Spanish Finance and Treasury Department of the Chamber of Deputies, delivered an instruction, by which power station's owners were urged to establish a detailed planning of reload operations. This article includes the results of this instruction. (Author) 6 refs

  18. The main safety problems encountered at Creys-Malville power station

    International Nuclear Information System (INIS)

    Saitcevsky, Boris

    1980-01-01

    The 1200 MW. Creys-Malville nuclear power station, situated on the upper Rhone river, in the Isere department, is the largest unit in construction of the fast neutrons sodium-cooled reactor channel. Realized within a European framework, this power station of a specific character, requires special safety dispositions, owing to the utilization of sodium. Safety rests on a thorough preventive system, particularly at the level of the sodium circuits, the shut-down system and the devices for the evacuation of residual power [fr

  19. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  20. The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2007-01-01

    Hydropower is the most widely used renewable energy source worldwide, contributing almost with 18.5% to the fulfillment of the planet electricity generation. However, most locations in Europe appropriate for the installation of large hydro power stations have already been exploited. Furthermore, there is a significant local communities' opposition towards new large power stations; hence, small hydro power stations remain one of the most attractive opportunities for further utilization of the available hydro potential. Greece and more precisely the country's mainland possesses a significant hydro-power potential which is up to now only partially exploited. In parallel, a large number of private investors have officially expressed their interest in creating small hydro power stations throughout the country, encouraged by the significant Greek State subsidy opportunities for renewable energy applications. However, up to now a relatively small number of projects have been realized, mainly due to decision-making problems, like the administrative bureaucracy, the absence of a rational national water resources management plan and the over-sizing of the proposed installations. Certainly, if the above problems are suitably treated, small hydro-power plants can be proved considerably profitable investments, contributing also remarkably to the national electricity balance and replacing heavy polluting lignite and imported oil. In the context of the above interesting issues, the present study reviews in detail the existing situation of small hydropower plants in Greece and investigates their future prospects as far as the energy, economic and environmental contribution are concerned

  1. IMPLEMENTATION OF ENERGY LAW OF HYBRID POWER STATION FOR SOCIAL WELFARE

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Widowati

    2014-11-01

    Full Text Available This study was aimed to investigate the Implementation of Energy Law of Hybrid Power Station for Social Welfare in Pantai Baru. The problem formulations are the management and utilization of hybrid power station in Pantai Baru and implementation of energy law of hybrid power station for social welfare in the fields of economy and information in Pantai Baru. Based on data analysis it is concluded that the management of hybrid power station in Pantai Baru is performed collaboratively between government and the society. The existence of hybrid power station in pantai baru has positive impacts in economy and information. Penelitian ini meneliti Pelaksanaan Hukum Energi Pembangkit Listrik Tenaga Hibrid untuk Kesejahteraan Rakyat di Bidang Ekonomi dan Informasi di Pantai Baru. Masalah yang diteliti adalah bentuk pengelolaan dan pemanfaatan pembangkit listrik tenaga hibrid di Pantai Baru dan pelaksanaan hukum energi pembangkit listrik tenaga hibrid untuk kesejahteraan rakyat di bidang ekonomi dan informasi di Pantai Baru. Berdasarkan analisis data dapat disimpulkan bahwa pengelolaan pembangkit listrik tenaga hibrid yang ada di pantai baru dilakukan secara kolaboratif, antara pemerintah dengan masyarakat. Kehadiran pembangkit listrik tenaga hibrid yang ada di pantai baru telah memberikan dampak positif di bidang ekonomi dan informasi.

  2. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  3. Experiences of operation for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Kashimoto, Shigeyuki

    1979-01-01

    No. 1 plant in the Ikata Nuclear Power Station, Shikoku Electric Power Co., Inc., is a two-loop PWR unit with electric output of 566 MW, and it began the commercial operation on September 30, 1977, as the first nuclear power station in Shikoku. It is the 13th LWR and 7th PWR in Japan. The period of construction was 52 months since it had been started in June, 1973. During the period, it became the object of the first administrative litigation to seek the cancellation of permission to install the reactor, and it was subjected to the influence of the violent economical variation due to the oil shock, but it was completed as scheduled. After the start of operation, it continued the satisfactory operation, and generated about 2.35 billion KWh for 4300 operation hours. It achieved the rate of utilization of 96.7%. Since March 28, 1978, the first periodical inspection was carried out, and abnormality was not found in the reactor, the steam generator and the fuel at all. The period of inspection was 79 days and shorter than expected. The commercial operation was started again on June 14. The outline of the Ikata Nuclear Power Station, its state of operation, and the periodical inspection are reported. Very good results were able to be reported on the operation for one year, thanks to the valuable experiences offered by other electric power companies. (Kako, I.)

  4. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  5. Production and distribution of chlorination by-products in the cooling water system of a coastal power station

    International Nuclear Information System (INIS)

    Vinnitha, E.; Rajamohan, R.; Venugopalan, V.P.; Narasimhan, S.V.

    2008-01-01

    Employing chlorination as antifouling agent in cooling water circuits of coastal power plants can lead to the production of chlorination by-products (CBP), mainly due to chlorine's reactions with the organic compounds present in natural seawater. Important among the by products are trihalomethane, haloacetonitriles, halo acetic acids, halo phenols etc., with trihalomethanes (THM) generally being the predominant compounds. The THM species that are commonly observed are chloroform, mono bromodichloromethane, dibromochloro-methane and bromoform. The present work was carried out to understand the production and distribution of chlorination by products (mainly trihalomethanes) in the cooling water systems of Madras Atomic Power Station (MAPS). Field studies were carried out in which samples collected from the intake, forebay pump house, out fall point and mixing point were analysed for THM using gas chromatograph with electron capture detector. The results showed that bromoform was the dominant THM formed as a result of chlorination, followed by dibromochloromethane. Mono bromodichloromethane and chloroform were not observed in seawater throughout the study period. Moreover, no THM could be detected at the intake point. The total THM values at other stations ranged between 25-250 μgL -1 , the highest values were observed at the process seawater pump outlet and the lowest at the mixing point. The concentrations of CBP's formed were found to be related to the chlorine residuals measured. In addition, laboratory experiments were carried out to understand CBP formation as a function of chlorine dose and contact time. Chlorine doses ranging from 1 to 10 mgL -1 were added to unfiltered seawater and the various THMs formed were analysed after different time intervals. The results confirmed that bromoform was the dominant THM species, followed by dibromochloromethane, as observed in the field studies. As the chlorine doses increased, the other THMs, namely, mono

  6. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  7. The local economic and social effects of power station siting: anticipated, demonstrated and perceived

    International Nuclear Information System (INIS)

    Glasson, J.

    1980-01-01

    The paper discusses the economic and social effects of power station siting at a local level using material based on the interim research findings from a project commissioned by the Central Electricity Generating Board. The cases for and against power station development are outlined and a review of the actual economic and social effects is presented, drawn from a study of a conventional power station at Drax and a nuclear power station at Sizewell. (U.K.)

  8. Research on comprehensive decision-making of PV power station connecting system

    Science.gov (United States)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  9. 47 CFR 74.792 - Digital low power TV and TV translator station protected contour.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Digital low power TV and TV translator station... SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.792 Digital low power TV and TV translator station protected contour. (a) A digital low power TV or TV translator will be protected from...

  10. Discharges to the environment and environmental protection at CEGB power stations

    International Nuclear Information System (INIS)

    Wright, J.K.

    1981-01-01

    The subject is discussed under the headings: introduction (scope of paper will cover the principles, methods and results obtained in environmental protection in relation to atmospheric discharges made routinely during power generation); air pollution control; nuclear power stations (type of discharge, annual discharges, environmental monitoring); fossil fuelled power stations; health effects; trace elements; long range transport and acid rain; future coal fired plant; carbon dioxide. (U.K.)

  11. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  12. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  13. Valves and fittings for nuclear power stations

    International Nuclear Information System (INIS)

    1976-01-01

    The standard specifies technical requirements for valves and pipe fittings in nuclear power stations with PWR type reactors. Details of appropriate materials, welding, surface treatment for corrosion protection, painting, and complementary supply are given

  14. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    Science.gov (United States)

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  15. Dosimetry systems in nuclear power stations

    International Nuclear Information System (INIS)

    Weidmann, U.

    1992-01-01

    In the following paper the necessity of the use of electronic dosimetry systems in nuclear power stations is presented, also encompassing the tasks which this type of systems has to fulfill. Based on examples the construction principles and the application possibilities of a PC supported system are described. 5 figs

  16. Economic and financial benefits as a compensation for living near a nuclear power station. A case study of Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kato, Takaaki; Hatta, Masahisa; Matsumoto, Shiro; Nishikawa, Masashi

    2007-01-01

    Although dwellers living near a nuclear power station are entitled to economic/financial benefits such as increased job opportunities and local tax revenues pertaining to the power station, it is not clear whether such benefits are appreciated by the dwellers. Two findings of this study based upon a social survey of local dwellers living near the Kashiwazaki-Kariwa Nuclear Power Station are summarized as follows. First, an increase in the per capita sizes of the local tax revenue and national subsidies resulted in a larger share of respondents who thought that those revenues are beneficial. Therefore, local dwellers are aware of the sizes of economic/financial benefits. Second, given the same risk level of nuclear disaster, a larger per capita financial benefit resulted in a larger share of respondents who felt compensated for the nuclear risk. However, this increase in the number of compensated respondents is low relative to the increase in the amount of financial benefits. (author)

  17. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  18. Utilities respond to nuclear station blackout rule

    International Nuclear Information System (INIS)

    Rubin, A.M.; Beasley, B.; Tenera, L.P.

    1990-01-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC)

  19. Organohalogens in chlorinated cooling waters discharged from nuclear power stations

    International Nuclear Information System (INIS)

    Bean, R.M.; Mann, D.C.; Neitzel, D.A.

    1983-01-01

    For the power plant discharges studied to date, measured concentrations of trihalomethanes are lower than might be expected, particularly in cooling tower water, which can lose THMs to the atmosphere. In the cooling towers, where chlorine was added in higher concentrations and for longer residence times, halogenated phenols can contribute significantly to the total organic halogen content of the discharge. The way in which cooling towers are operated may also influence the production of halogenated phenols because they concentrate the incoming water by a factor of 4 or 5. In addition, the phenols, which act as a substrate for the halogenating agent, are also probably concentrated by the cooling tower operation and may be prevented from being biodegraded by addition of the same biocide that produces the halogenated phenols. 8 references, 4 tables

  20. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  1. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.

  2. Heavy density concrete for nuclear radiation shielding and power stations: [Part]2

    International Nuclear Information System (INIS)

    Singha Roy, P.K.

    1987-01-01

    This article is the second part of the paper entitled 'Heavy density concrete for nuclear radiation shielding and power stations'. In this part, some of the important properties of heavy density concrete are discussed. They include density, water retentivity, air content, permeability with special reference to concrete mixes used in India's nuclear power reactors. All these properties are affected to various extents by heating. Indian shield concrete is rarely subjected to temperatures above 60degC during its life, because of thermal shield protection. During placement, the maximum anticipated rise in temperature due to heat of hydration is restricted to around 45degC by chilling, if necessary to reduce shrinkage stresses and cracks. (M.G.B.)

  3. Extension of the Laufenburg power station on the Rhine with STRAFLO turbines

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, R.; Gyenge, J.; Fischer, F.

    1988-01-01

    The Laufenburg power station on the Rhine built at the beginning of this century, after a previous modernisation (increase in output from 40 to 81 MW), was now extended to a total output of 106 MW in a further modernisation phase. The existing Francis turbines are being replaced by 10 STRAFLO turbines. There is a generously illustrated report on the advantages of the STRAFLO solution and on the two previous stages of building and extension (tables of basic figures for machines, extension water flow, height of head, gross and house service power, average annual output) and on details of the contruction of the STRAFLO turbines (rotor, bearings, windings, seals, wall rings, oil supply, braking device, choice of material). (HWJ).

  4. Loss of cooling accident simulation of nuclear power station spent-fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.; Liang, K-S., E-mail: mlee@ess.nthu.edu.tw, E-mail: ksliang_1@hotmail.com [National Tsing Hua Univ., Hsinchu, Taiwan (China); Lin, K-Y., E-mail: syrup760914@gmail.com [Taiwan Power Company, Taiwan (China)

    2014-07-01

    The core melt down accident of Fukushima Nuclear Power Station on March 11th, 2011 alerted nuclear industry that the long term loss of cooling of spent fuel pool may need some attention. The target plant analyzed is the Chinshan Nuclear Power Station of Taiwan Power Company. The 3-Dimensional RELAP5 input deck of the spent fuel pool of the station is built. The results indicate that spent fuel of Chinshan Nuclear Power Station is uncovered at 6.75 days after an accident of loss cooling takes place and cladding temperature rises above 2,200{sup o}F around 8 days. The time is about 13 hours earlier than the results predicted using simple energy balance method. The results also show that the impact of Counter Current Flow Limitation (CCFL) and radiation heat transfer model is marginal. (author)

  5. Community reaction to noise from power stations

    International Nuclear Information System (INIS)

    Job, R.F.S.; Hede, A.J.

    1989-01-01

    Community reaction is a major consideration in noise control. The relationship between noise exposure and community reaction has received considerable attention in relation to railway, traffic, aircraft and impulsive noise. The results have shown a number of features in common, including: similarly shaped noise/reaction functions; similar results across different measurement techniques and cultures, noise/reaction correlations based on individual respondent data are low (mean r = 0.42 ± 0.12: Job, 1988), although correlations of .58 and above have been reported correlations based on data grouped by noise exposure are generally high and relatively unaffected by the type of noise studied whereas correlations based on individual data tend to be lower for impulsive noise than for transportation noise attitude to the noise source and sensitivity to noise shows strong correlations with reaction. This paper reports that the present study was undertaken in order toe establish over a wider range of noise exposure whether community reaction to power station noise is similar to reaction to other types of non-impulsive noise. It is possible that reaction is different given important differences in the source of the noise which may affect attitude. Attitudes towards power stations may be more positive than attitudes to aircraft or rail noise for example, because almost all respondents use electricity regularly every day. Further, the power stations in the present study provided employment for the relatively small surrounding communities

  6. Observations of Earth space by self-powered stations in Antarctica.

    Science.gov (United States)

    Mende, S B; Rachelson, W; Sterling, R; Frey, H U; Harris, S E; McBride, S; Rosenberg, T J; Detrick, D; Doolittle, J L; Engebretson, M; Inan, U; Labelle, J W; Lanzerotti, L J; Weatherwax, A T

    2009-12-01

    Coupling of the solar wind to the Earth magnetosphere/ionosphere is primarily through the high latitude regions, and there are distinct advantages in making remote sensing observations of these regions with a network of ground-based observatories over other techniques. The Antarctic continent is ideally situated for such a network, especially for optical studies, because the larger offset between geographic and geomagnetic poles in the south enables optical observations at a larger range of magnetic latitudes during the winter darkness. The greatest challenge for such ground-based observations is the generation of power and heat for a sizable ground station that can accommodate an optical imaging instrument. Under the sponsorship of the National Science Foundation, we have developed suitable automatic observing platforms, the Automatic Geophysical Observatories (AGOs) for a network of six autonomous stations on the Antarctic plateau. Each station housed a suite of science instruments including a dual wavelength intensified all-sky camera that records the auroral activity, an imaging riometer, fluxgate and search-coil magnetometers, and ELF/VLF and LM/MF/HF receivers. Originally these stations were powered by propane fuelled thermoelectric generators with the fuel delivered to the site each Antarctic summer. A by-product of this power generation was a large amount of useful heat, which was applied to maintain the operating temperature of the electronics in the stations. Although a reasonable degree of reliability was achieved with these stations, the high cost of the fuel air lift and some remaining technical issues necessitated the development of a different type of power unit. In the second phase of the project we have developed a power generation system using renewable energy that can operate automatically in the Antarctic winter. The most reliable power system consists of a type of wind turbine using a simple permanent magnet rotor and a new type of power

  7. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  8. Annual report on operational management of nuclear power stations, 1979-1980

    International Nuclear Information System (INIS)

    1981-04-01

    This report was compiled by the Agency of Natural Resoures and Energy. The commercial nuclear power stations in Japan started the operation in 1966 for the first time, and as of the end of March, 1981, 22 plants with more than 15.5 million kW capacity were in operation. Nuclear power generation is regarded as the top-rated substitute energy for petroleum, and the target of its development in 1990 is about 52 million kW. The government and the people are exerting utmost efforts to attain the target. The result of the rate of operation of nuclear power stations reached 60.8% in 1980, but it is important to maintain the good, stable state of operation by perfecting the operational management hereafter in order to establish the position of LWRs. At present, the operational management officers of the government stay in nationwide power stations, and supervise the state of operations, thus the system of operational management was strengthened after the Three Mile Island accident in the U.S., and the improvement in the rate of operation is expected. A table shows the nuclear power stations in operation and under construction. The state of operations of individual nuclear power plants in 1979 and 1980, the accidents and failures occurred in nuclear power plants from 1966 to 1980, the minor troubles, the conditions in the regular inspections of individual nuclear power plants, radioactive waste management and the radiation exposure of workers are reported. (Kako, I.)

  9. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  10. Utilization of artificial intelligence techniques for the Space Station power system

    Science.gov (United States)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  11. Capital cost: pressurized water reactor plant. Commerical electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate

  12. Utilization of hot exhaust water from power station to marine cultivation to increase product. Hatsudensho onhaisui no suisan zoyoshoku eno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, K [The University of Tokyo, Tokyo (Japan). Faculty of Agriculture

    1990-07-20

    A large quantity of waste sea water, exhausted after having been used as cooling water in the thermal and unclear power stations, is higher by about 7 centigrade in temperature than that when taken in. Its utilization to the marine cultivation to increase product was explained in present status and points of problem. Among aquatic animals to like high temperature, those, valuavle from the viewpoint of fishery, are bred in different places. Upon breeding spawn to fry young fish, there are two methods of using it, ie., as species to be cultivated or let go in the water flow, and for the production of edible fish, high in price, such as sea bream, yellowtail and lobster. In any case, hot exhaust water gives effect of having fish quickly grow, and stimulating spawn and fry young fish in sexual ripeness. For example, ear shell and prawn are 5 to 6 times in elongation of shell length and 9 times even in weight, respectively, as large as those in case of natural sea water. While there are problems in costing required for pumping hot exhaust water up in the cultivation on land, and temperature adjustment in summer and winter, and water quality control in the crawl cultivation at the water takeout, which must be going to be solved for the commercialization and industrialization. 10 figs., 1 tab.

  13. Implications of climate change on the heat budget of lentic systems used for power station cooling: Case study Clinton Lake, Illinois

    Science.gov (United States)

    Quijano, Juan C; Jackson, P. Ryan; Santacruz, Santiago; Morales, Viviana M; Garcia, Marcelo H.

    2016-01-01

    We use a numerical model to analyze the impact of climate change--in particular higher air temperatures--on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  14. Implications of Climate Change on the Heat Budget of Lentic Systems Used for Power Station Cooling: Case Study Clinton Lake, Illinois.

    Science.gov (United States)

    Quijano, Juan C; Jackson, P Ryan; Santacruz, Santiago; Morales, Viviana M; García, Marcelo H

    2016-01-05

    We use a numerical model to analyze the impact of climate change-in particular higher air temperatures-on a nuclear power station that recirculates the water from a reservoir for cooling. The model solves the hydrodynamics, the transfer of heat in the reservoir, and the energy balance at the surface. We use the numerical model to (i) quantify the heat budget in the reservoir and determine how this budget is affected by the combined effect of the power station and climate change and (ii) quantify the impact of climate change on both the downstream thermal pollution and the power station capacity. We consider four different scenarios of climate change. Results of simulations show that climate change will reduce the ability to dissipate heat to the atmosphere and therefore the cooling capacity of the reservoir. We observed an increase of 25% in the thermal load downstream of the reservoir, and a reduction in the capacity of the power station of 18% during the summer months for the worst-case climate change scenario tested. These results suggest that climate change is an important threat for both the downstream thermal pollution and the generation of electricity by power stations that use lentic systems for cooling.

  15. Cleanings of the silica scale settled in the transportation-pipes of the geothermal hot water of the Onuma Geothermal Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ito, J

    1978-09-01

    At the Onuma Geothermal Power Station, silica scale deposits in the hot water transportation pipes between production wells and injection wells, increased the thickness. The operations for cleaning the scale were effectively carried out by the following three methods. (1) Poli-Pig method: The shell-shaped plastic foam sponge mass named Poli-Pig was pressed in the pipes. Various shaped Poli-Pig such as armed by the steel spikes made scratches on the surface of the scale, and then stripped off. This method is effective when thickness of the scale is thinner than 20 mm. (2) Impact-Cutter method. Various shaped steel cutter blocks were attached at the end of a flexible shaft, and gave continuous impact by rotation on the scale and then smashing it away. This method is effective for various thickness, but pipes had to be cut off matched to the length of the flexible shaft. (3) Water-jet method. High pressured water jet through the special nozzle smashed away the scale. For this method the pipe had to be cut off at every joint.

  16. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  17. Natural radionuclides near a coal-fired power station

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1984-01-01

    A previous assessment of the radiological consequences of the emission of natural radionuclides from coal-fired power stations had indicated that 210 Pb was the main contributor to the maximum individual dose. This dose arose from the consumption of foodstuffs particularly cattle liver contaminated by deposited fly ash. Uncertainty surrounded some of the factors used in the assessment, and a limited environmental monitoring programme was recommended to improve it. An experiment has been performed to measure the specific activities of 210 Pb and 210 Po in livers from cattle that had grazed in a field near Didcot power station. Livers from cattle in the Cotswold region have been measured for comparison. The specific activities of 210 Pb and 210 Po in soil and grass samples from both areas have also been measured at three-monthly intervals over a year. No statistically significant increases were observed in the 210 Pb and 210 Po levels in liver, soil or grass samples which could be attributed to the operation of the power station. Transfer coefficients for 210 Pb from forage to liver were about two orders of magnitude less than that used in the original assessment, and the transfer coefficients for 210 Po about a factor a two less. (orig.)

  18. Anticorrosional protection in nuclear power station objects

    International Nuclear Information System (INIS)

    Czarnocki, A.; Kwiatkowski, A.

    1976-01-01

    The distribution and qualities of chemical protection and demands concerning preparation of the bottom for protecting coats in nuclear power station objects are discussed. The solutions of protections applied abroad and in the objects of ''MARIA'' reactor are presented. (author)

  19. Stade nuclear power station (KKS): four giants on tour

    International Nuclear Information System (INIS)

    Beverungen, M.; Viermann, J.

    2008-01-01

    The Stade nuclear power station was the first nuclear power plant in the Federal Republic of Germany to deliver heat in addition to electricity. Since 1984, district heat was distributed to a saltworks nearby. The power plant, which is situated on the banks of the river Elbe, was commissioned in 1972 after approximately 4 years of construction. Together with the Wuergassen plant, it was among the first commercial nuclear power plants in this country. E.ON Kernkraft holds a 2/3 interest, Vattenfall Europe a 1/3 interest in the nuclear power plant. The Stade nuclear power station was decommissioned on November 14, 2003 for economic reasons which, in part, were also politically motivated. In September 2005, the permit for demolition of the nuclear part was granted. The release from supervision under the Atomic Energy Act is expected for 2014. In the course of demolition, the 4 steam generators of the Stade nuclear power station were removed. These components, which have an aggregate weight of approx. 660 tons, are to be safely re-used in Sweden. In September 2007, the steam generators were loaded on board the Swedish special vessel, MS Sigyn, by means of a floating crane. After shipment to Sweden, heavy-duty trucks carried the components to the processing hall of Studsvik AB for further treatment. After 6 months of treatment, the contaminated inner surfaces of the tube bundles of the steam generators have been decontaminated successfully, among other items. This has increased the volume of material available for recycling and thus decreased the volume of residues. (orig.)

  20. Start-up of Hekni Power Station. 3. Investigation of the effects of particles on water chemistry, landlocked salmon and freshwater ecology; Igangkjoering av Hekni Kraftverk. 3. Undersoekelser av partikkeleffekter paa vannkjemi, Byglandsfjordbleke og vassdragsoekologi

    Energy Technology Data Exchange (ETDEWEB)

    Bjerknes, V.; Kvellestad, A.; Berntssen, M.

    1996-06-01

    The new Norwegian hydroelectric power station Hekni Power Station in the river Otra began operation in the autumn of 1995. Out of consideration for the landlocked salmon in the Byglandsfjord, valuable and nationally deserving of preservation as it is, the tunnel was gradually filled with water so as to avoid large amounts of suspended sediments downstream. During start-up, several environmental investigations were made, as discussed in this report: registrations and analyses of the water from Otra, experimental exposure of landlocked salmon, assessment of wild fish and collection of bottom animals from river stretches exposed to suspended sediments and from unexposed control stretches. Exposed salmon show clear evidence of typical gill changes due to acidification while there is no evidence of changes caused by suspended sediment particles. The changes in population densities of wild fish and bottom animals from before start-up to after start-up is primarily related to the altered water discharge. However, the absence of groups of particle sensitive bottom animals after exposure may be due to particle emission from the power station. The chemically unstable particles may have temporarily increased the pH and calcium concentration and reduced the concentration of unstable aluminium in the most affected part of the river system, while the particle level itself may have been too low to cause noticeable effects on fish. The extent to which the bottom ecology may have been damaged is not sufficiently well known. 34 refs., 8 figs., 6 tabs.

  1. Managing nuclear power stations for success

    International Nuclear Information System (INIS)

    Smith, G.

    2006-01-01

    Ontario Power Generation's (OPG) top operational priority is to manage its nuclear assets to ensure they operate as safely, efficiently and cost effectively as possible. In meeting these objectives, the company is focused on continuously improving its nuclear performance and benchmarking that performance against the best in North America. This presentation explores how OPG is improving its nuclear performance and the steps it is taking to sustain performance success going forward. Topics to be discussed include the measures OPG is taking to enhance human performance and station reliability as well as the company's preparations to determine if a business case exists for extending the lives of the Pickering B and eventually the Darlington nuclear stations. (author)

  2. Procedures for permission of installation of nuclear power stations

    International Nuclear Information System (INIS)

    Narita, Yoriaki

    1980-01-01

    The locations of atomic power stations are first selected by electric power enterprises in consultation with the Ministry of International Trade and Industry or under the guidance of authorities concerned. The surveys of the climate, topography, water and plants in the planned sites and the influences of nuclear power generation to the surrounding areas are made by the enterprisers under the administrative guidance of the MITI. Secondly, the basic project shall be submitted to and decided by the Power Resource Development Council headed by the Prime Minister (Article 10, the Power Resource Development Law). The Council shall, if necessary, call for the attendance of the governors of prefectures concerned and hear their opinions (Article 11, the Law). As the third and most complicated phase, various procedures include; (a) permission of the changes of electrical facilities under the Electricity Enterprises Act; (b) authorization of the installation of reactors under the Nuclear Reactor Regulation Law; (c) permission or authorization under other regulations including the Agricultural Land Act, etc.; (d) additional procedures related to the indemnification to fishery and so forth. Finally the reactors are to be operated after receiving the certificates of the Minister of ITI on the inspections of construction works, nuclear fuel materials used for the reactors and welding processes of reactor containment vessels, boilers, turbines, etc. (Okada, K.)

  3. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Arnold, P.J.

    1982-11-01

    The systems benefits of the selection of the Sizewell site for a PWR power station are dealt with. The transmission modifications which would be needed to provide effective connection of this station to the system are considered. (U.K.)

  4. Monitoring of radioactivity in the environs of Finnish nuclear power stations in 1986

    International Nuclear Information System (INIS)

    Ilus, E.; Sjoeblom, K.L.; Aaltonen, H.; Klemola, S.; Arvela, H.

    1987-06-01

    Results of the environmental programmes monitoring radioactivity around the Finnish nuclear power stations in 1986 are reported. After the end of April the fallout nuclides from the Chernobyl accident predominated in all samples taken from the environs of the two power stations Loviisa and Olkiluoto. Radionuclides originating from the Finnish power stations were detected mainly in samples taken from the aquatic environment. The concentrations of the locally discharged nuclides were very low in comparison with the fallout nuclides and their impact on the radiation doses of the population was insignificant. Both nuclear power stations are situated in the main fallout area in Finland. The results of these large monitoring programmes give a good picture of the behaviour of the Chernobyl fallout in the specific areas in Finland

  5. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Science.gov (United States)

    2012-08-21

    ....; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... search, select ``ADAMS Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems... Optimized ZIRLO\\TM\\ fuel rod cladding in future core reload applications for Millstone Power Station, Unit 3...

  6. Improvement and optimization for in-service inspection of M310 nuclear power station

    International Nuclear Information System (INIS)

    Wang Chen; Sun Haitao; Gao Chen; Deng Dong

    2015-01-01

    In-service inspection (ISI) is an important method to ensure the safety of the mechanical equipment in nuclear power stations. According to the in-service inspection experience feedback from the domestic nuclear power stations, the reasonableness of some provisions in the RSE-M code are discussed and the applications of risk-informed in-service inspection (RI-ISI) are introduced, and the advices for the optimization of the ISI of the domestic M310 nuclear power stations are proposed. (authors)

  7. A survey on the history of developing nuclear power station in Hunan Province

    International Nuclear Information System (INIS)

    Ren Dexi

    1993-01-01

    Sixteen years ago it was suggested that a nuclear power station should be built in Hunan Province, and a special document was reported to the State Council. Up to now, the idea has still been under consideration. The author discusses the development of nuclear power station in Hunan province. It mainly consists of four parts: the history, the necessity the barriers met in the course and the feasible way of developing nuclear power station in Hunan Province

  8. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Science.gov (United States)

    2011-08-12

    ... Draft Regulatory Guides in the ``Regulatory Guides'' collection of the NRC's Library at http://www.nrc... Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment... draft regulatory guide (DG), DG-4016, ``Terrestrial Environmental Studies for Nuclear Power Stations...

  9. The accident prevention regulation 'Thermal Power Stations' and its effects in practice

    International Nuclear Information System (INIS)

    Albert, O.

    1983-01-01

    The origin of the accident prevention regulation - ''Thermal Power Stations'' is attributable mainly to two tragic accidents. It has made organizational changes and interventions in the operational process necessary in thermal power stations. Emphasis is laid upon the consistent issue of written permits-to-work on plant components carrying a heating medium and operating under pressure and on written operating licences for the operation of boilers. The paper describes additional ways in which regulation influences the daily practices of the power station operator. Brief references is made to the draft of the revised regulation. (orig./HP) [de

  10. Intertidal ecology of the sea shore near Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Balani, M.C.

    1975-01-01

    Surveys were carried out between March 1969 and August 1970 to study the fauna and flora in the littoral zone of the sea shore near the Tarapur Atomic Power Station. The beach adjacent to the Station is rocky with a number of tidal pools inhabited by a variety of organisms whereas the beach to the south is mostly sandy and barren except for a small rocky stretch. The tidal range is 6 m and over a mile of beach is exposed during low tide. The near shore currents are very strong and have a clear northsouth oscillation with the changing tides. Less Atherina sp. fry were available near the Power Station in March 1970 than during the previous year. Possible reasons for these differences are discussed, including the effect of heated discharges on biota. The need is also emphasized to monitor the biota (Plankton, Nekton and Benthos) systematically for content of fission products released by the Power Station. (auth.)

  11. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    Science.gov (United States)

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with

  12. High system-safety level of nuclear power stations

    International Nuclear Information System (INIS)

    Lutz, H.R.

    1976-01-01

    A bluntly worded disquisition contrasting the incidence of death and harm to persons in the chemical industry with the low hazards in nuclear power stations. Quotes conclusions from a U.S. accident study that the risk from 100 large power stations is 100 times smaller than from chlorine manufacture and transport. The enclosure of a reactor in a safety container, the well understood effects of radioactivity on man, and the ease of measuring leakage well below safe limits, are safety features which he considers were not matched in the products and plant of the Seveso factory which suffered disaster. Questions the usefulness of warnings about nuclear dangers when chemical dangers are much greater and road dangers very much greater still. (R.W.S.)

  13. Innovations in PHWR design, integration of nuclear power stations into power systems and role of small size nuclear power plants in a developing country

    International Nuclear Information System (INIS)

    Mehta, S.K.; Kakodkar, A.; Balakrishnan, M.R.; Ray, R.N.; Murthy, L.G.K.; Chamany, B.F.; Kati, S.L.

    1977-01-01

    PHWR concept of thermal reactors has been considered with a view to exploiting the limited resources of natural uranium and keeping in mind the projected nuclear power programme covering fast breeder reactors. Experience in engineering of current PHWR units in India, gradual build up of necessary infrastructure and operational experience with one unit, have helped in building up design and technological capability in the country. The R and D facilities have been so planned that additional data required for the design of bigger reactor units (i.e.500/600 MWe) could be generated with minimal augmentation. Satisfactory operation of a nuclear power station demands certain prerequisites from the connected power system. The grid should have load patterns suitable for base load operation of these stations, should be stiff so far as voltage and frequency fluctuations are concerned and should have high reliability. A typical power grid in this country is characterised by heavy loads during peak hours and very light loads during night. Regional grids are of small size and the few interconnections existing between the regional grids consist of weak tie lines. Amongst all types of the power stations, it is the nuclear system which undergoes maximum strain and economic penalty while operating when connected to such a power system. Consistent with the above, phase installation of small-size power reactor units of about 200 MWe capacity may facilitate setting up of larger unit sizes at a later date. The effect of any possible reduction in the capital cost of a larger unit power station will enable the power station to partially meet the demand of the more productive types of loads. This paper deals with some of the major design changes that are being incorporated in the PHWR type power reactors currently being set up and the research and development back-up required for the purpose. Since the unit sizes of the power reactors presently contemplated are small compared to nuclear

  14. A modernized high-pressure heater protection system for nuclear and thermal power stations

    Science.gov (United States)

    Svyatkin, F. A.; Trifonov, N. N.; Ukhanova, M. G.; Tren'kin, V. B.; Koltunov, V. A.; Borovkov, A. I.; Klyavin, O. I.

    2013-09-01

    Experience gained from operation of high-pressure heaters and their protection systems serving to exclude ingress of water into the turbine is analyzed. A formula for determining the time for which the high-pressure heater shell steam space is filled when a rupture of tubes in it occurs is analyzed, and conclusions regarding the high-pressure heater design most advisable from this point of view are drawn. A typical structure of protection from increase of water level in the shell of high-pressure heaters used in domestically produced turbines for thermal and nuclear power stations is described, and examples illustrating this structure are given. Shortcomings of components used in the existing protection systems that may lead to an accident at the power station are considered. A modernized protection system intended to exclude the above-mentioned shortcomings was developed at the NPO Central Boiler-Turbine Institute and ZioMAR Engineering Company, and the design solutions used in this system are described. A mathematical model of the protection system's main elements (the admission and check valves) has been developed with participation of specialists from the St. Petersburg Polytechnic University, and a numerical investigation of these elements is carried out. The design version of surge tanks developed by specialists of the Central Boiler-Turbine Institute for excluding false operation of the high-pressure heater protection system is proposed.

  15. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    McInerny, P.T.

    1982-11-01

    A description is given of the policy and practices that would be adopted in the commissioning, operation and maintenance of the proposed Sizewell B PWR power station. The system of personnel recruitment and training required to staff the station is discussed. (U.K.)

  16. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  17. Tampa Electric Company Polk Power Station IGCC project: Project status

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D. [Tampa Electric Co., FL (United States)

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  18. Daya Bay Nuclear Power Station equipment reliability management system innovation

    International Nuclear Information System (INIS)

    Gao Ligang; Wang Zongjun

    2006-01-01

    Daya Bay Nuclear Power Station has achieved good performance since its commercial operation in 1994. The equipment reliability management system that features Daya Bay characteristics has been established through constant technology introduction, digestion and innovation. It is also based on the success of operational system, equipment maintenance system and technical support system. The system lays a solid foundation for the long-term safe operation of power station. This article emphasizes on the innovation part of equipment reliability management system in Daya Bay. (authors)

  19. Water chemistry in nuclear power stations with high-temperature reactors with particular reference to the AVR

    International Nuclear Information System (INIS)

    Nieder, R.; Resch, G.

    1976-01-01

    The water-steam cycle of a nuclear power plant with a helium-cooled high-temperature reactor differs in design data significantly and extensively from the corresponding cycles of light-water-cooled nuclear reactors and resembles to a great extent the water-steamcycle of a modern conventional power plant. The radioactive constituents of the water-steam cycle can be satisfactorily removed apart from Tritium by means of a pre-coat filter with powder-resisn, as comprehensive experiments have demonstrated. (orig.) [de

  20. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    International Nuclear Information System (INIS)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large [1175 MW(e)] pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1 1 / 2 years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period

  1. Monitoring of the operation of a nuclear power station with design problems in an importing country: The Almaraz power station

    International Nuclear Information System (INIS)

    Reig, J.

    1984-01-01

    The purpose of this paper is to describe the regulatory activities carried out in Spain as a result of the design problem occurring in the steam generators during operation of Unit I of the Almaraz nuclear power station. First, a brief introduction is given to the operating history and characteristics of Unit I of Almaraz. Particular attention is paid to the specific licences issued subsequent to commercial operation which place limitations on the operation of the station and to the operational incidents of which the Nuclear Safety Council (CSN) has been notified. Next, a description is provided of the safety evaluation carried out by the CSN. Three aspects merit particular attention: methodology, evaluation and conclusions. The methodology applied by an importing country is normally based on that of the country of origin of the design, so that the overall evaluation by the NRC has been considered sufficiently representative of aspects specific to the Almaraz power station. In this regard the importance of international collaboration is clearly seen as a principal instrument for performing the evaluation. In the evaluation a distinction is made between general and specific aspects and between inspection programmes and quality assurance requirements. In addition, the conclusions leading to the requirement of the imposition of additional limitations on the operating licence are stated. Apart from the safety evaluation carried out by the CSN, other regulatory activities have been performed over this two-year period. These activities, which include site inspections, audits of the principal supplier company, other independent calculations and so on, are described. Lastly, the paper refers to the lessons learned from the operation of the above-mentioned unit, which are immediately applicable to other Spanish nuclear power stations. (author)

  2. 76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations

    Science.gov (United States)

    2011-12-30

    ... guidelines in identifying suitable candidate sites for nuclear power stations. The decision that a station... combination and a cost-benefit analysis comparing it with alternative site-plant combinations, as discussed in...

  3. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  4. Report of NII investigation into allegations of faulty welding at Hinkley 'B' nuclear power station

    International Nuclear Information System (INIS)

    1987-01-01

    This reports the procedure and findings of the Nuclear Installations Inspectorate's investigation into allegations of welding and radiography malpractice at Hinkley Point-B power station. These concerned welds and their radiographic testing made on pipework carrying water or steam associated with one of the main electricity turbo generators, during construction in 1971. The water or steam is not radioactive and pipe failure would have no nuclear safety significance. Both the Central Electricity Generating Board and the NII investigated the allegations. Both investigations concluded that there was no evidence to support the allegations. (U.K.)

  5. Commissioning and operation of distillation column at Madras Atomic Power Station (Paper No. 1.10)

    International Nuclear Information System (INIS)

    Neelakrishnan, G.; Subramanian, N.

    1992-01-01

    In Madras Atomic Power Station (MAPS), an upgrading plant based on vacuum distillation was constructed to upgrade the downgraded heavy water collected in vapor recovery dryers. There are two distillation columns and each having a capacity of 77.5 tonne per annum of reactor grade heavy water with average feed concentration of 30% IP. The performance of the distillation columns has been very good. The column I and column II have achieved an operating factor of 92% and 90% respectively. The commissioning activities, and subsequent improvements carried out in the distillation columns are described. (author)

  6. Experimental research of variable rotation speed ICE-based electric power station

    Directory of Open Access Journals (Sweden)

    Dar’enkov Andrey

    2017-01-01

    Full Text Available Developing variable rotation speed ICE-based stand-alone electric power stations which can supply distant regions and autonomous objects with electricity are of scientific interest due to the insufficient study. The relevance of developing such electric power stations is determined by their usage is to provide a significant fuel saving as well as increase ICE motor service life. The article describes the electric station of autonomous objects with improved fuel economy. The article describes multivariate characteristic. Multivariate characteristic shows the optimal frequency of rotation of the internal combustion engine. At this rotational speed there is the greatest fuel economy.

  7. Exchange of pressurizer safeguarding system at Biblis nuclear power station

    International Nuclear Information System (INIS)

    Weber, D.; Hofbeck, W.

    1991-01-01

    Valves and piping of the pressurizer safeguarding system are exchanged and reset in such a way that they are suitable not only for discharging steam, but also for discharging a water-steam mixture and hot pressurized water; for the emergency measure of primary depressurization by hand (bleed) in the event of failure of the entire feedwater supply and station black-out, and in the event of operational transients with supposed failure of the reactor scram (ATWS). To achieve this, in addition to the requirements of the pressurizer discharging station, changes have to be made to the valve drive to dominate the water loads. During the 1990 inspection this exchange of the pressurizer discharging station was performed at the Biblis A unit as the first German plant. (orig.) [de

  8. On the marine fauna of the Anglesey coast adjacent to Wylfa power station

    International Nuclear Information System (INIS)

    Bamber, R.N.

    1989-04-01

    The findings of recent surveys of the marine fauna in the vicinity of Wylfa Power Station are collated and discussed in the context of previous studies on the biota of this coast. The surveys included a study of the mussel populations of the north Anglesey coast, general surveys of rocky shore and beach habitats and of Cemlyn Beach and Lagoon and a detailed quantification of cliff-dwelling species from which those influenced by the cooling water have been identified. (author)

  9. Mercury concentrations in water resources potentially impacted by coal-fired power stations and artisanal gold mining in Mpumalanga, South Africa.

    Science.gov (United States)

    Williams, Chavon R; Leaner, Joy J; Nel, Jaco M; Somerset, Vernon S

    2010-09-01

    Total mercury (TotHg) and methylmercury (MeHg) concentrations were determined in various environmental compartments collected from water resources of three Water Management Areas (WMAs) - viz. Olifants, Upper Vaal and Inkomati WMAs, potentially impacted by major anthropogenic mercury (Hg) sources (i.e coal-fired power stations and artisanal gold mining activities). Aqueous TotHg concentrations were found to be elevated above the global average (5.0 ng/L) in 38% of all aqueous samples, while aqueous MeHg concentrations ranged from below the detection limit (0.02 ng/L) to 2.73 +/- 0.10 ng/L. Total Hg concentrations in surface sediment (0-4 cm) ranged from 0.75 +/- 0.01 to 358.23 +/- 76.83 ng/g wet weight (ww). Methylmercury accounted for, on average, 24% of TotHg concentrations in sediment. Methylmercury concentrations were not correlated with TotHg concentrations or organic content in sediment. The concentration of MeHg in invertebrates and fish were highest in the Inkomati WMA and, furthermore, measured just below the US EPA guideline for MeHg in fish.

  10. Construction works of large scale impervious wall in construction of No.2 plant in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Ueda, Kozaburo; Sugeno, Yoshisada; Takahashi, Hitoshi

    1991-01-01

    The main buildings for No. 2 plant in Onagawa Nuclear Power Station are constructed on the bedrocks about 14 m below the sea surface. Therefore, for the purpose of executing the works by shutting seawater off and dry work, the large scale impervious wall of about 500 m extension was installed underground. The feature of this impervious wall is the depth of embedment of about 3 m into the hard bedrocks having the uniaxial compressive strength of 2000 kg/cm 2 at maximum, carried out with the newly developed hard rock excavator. The outline of these construction works is reported. No. 2 plant in Onagawa Nuclear Power Station is the BWR plant of 825 MWe output. The construction works of the power station were began in August, 1989, and the rate of progress in civil engineering works as of the end of September, 1990 was 21.3%. The planning of the impervious wall, the geological features at the site, the method of shutting seawater off, the selection of wall materials, the design of the wall body, the investigation of the quantity of spring water, the execution of the construction and execution management, and the confirmation of the effect of the wall are reported. (K.I.)

  11. Draft environmental impact statement. River Bend Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Federal financing of an undivided ownership interest of River Bend Nuclear Power Station Unit 1 on a 3293-acre site near St. Francisville, Louisiana is proposed in a supplement to the final environmental impact statement of September 1974. The facility would consist of a boiling-water reactor that would produce a maximum of 2894 megawatts (MW) of electrical power. A design level of 3015 MW of electric power could be realized at some time in the future. Exhaust steam would be cooled by mechanical cooling towers using makeup water obtained from and discharged to the Mississippi River. Power generated by the unit would be transmitted via three lines totaling 140 circuit miles traversing portions of the parishes of West Feliciana, East Feliciana, East Baton Rouge, West Baton Rouge, Pointe Coupee, and Iberville. The unit would help the applicant meet the power needs of rural electric consumers in the region, and the applicant would contribute significanlty to area tax base and employment rolls during the life of the unit. Construction related activities would disturb 700 forested acres on the site and 1156 acres along the transmission routes. Of the 60 cubic feet per second (cfs) taken from the river, 48 cfs would evaporate during the cooling process and 12 cfs would return to the river with dissolved solids concentrations increased by 500%. The terrace aquifer would be dewatered for 16 months in order to lower the water table at the building site, and Grants Bayou would be transformed from a lentic to a lotic habitat during this period. Fogging and icing due to evaporation and drift from the cooling towers would increase slightly. During the construction period, farming, hunting, and fishing on the site would be suspended, and the social infractructure would be stressed due to the influx of a maximum of 2200 workers

  12. Exploration and practice on contract management of Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Wang Yonggang

    2002-01-01

    In the market economy, Daya Bay Nuclear Power Station needs to out source or allow to suppliers among industries, while concentrating its core competitive capability, for safely and stable operation. By evaluating the features of contract management in Daya Bay Nuclear Power Station, set up the organization and process of the supply management

  13. Construction of a nuclear power station in one's locality: attitudes and salience

    NARCIS (Netherlands)

    van der Pligt, J.; Eiser, J.R.; Spears, R.

    1986-01-01

    Examined the attitudes toward the building of a nuclear power station in one's locality by surveying 290 residents (mean age 47.5 yrs) of 3 small rural communities that were listed as possible locations for a new nuclear power station. Results show that a large majority of Ss opposed the building of

  14. Stages in planning and construction of the Muelheim-Kaerlich nuclear power station

    International Nuclear Information System (INIS)

    Pracht, F.

    1975-01-01

    On October 23, 1972, RWE gave a letter of intent and on January 9, 1973 an order for the construction of a nuclear power plant on a turn-key basis to the consortium of BBC, BBR and Hochtief. The power plant in question was the Muelheim-Kaerlich nuclear power station with a pressurized-water reactor of a gross efficiency of 1,295 MWe. After considerable delay of the project, the first building permit was issued to the builder-owner on January 15, 1975, and the constructional work on the building site started immediately afterwards. As the planning and constructional work has so far been carried out according to schedule and the consortium intends to keep the effects of the belated license as small as possible, the start-off of the plant will probably be in summer 1979 if the constructional work is not interrupted. (orig./AK) [de

  15. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  16. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  17. Reinforcing method for littoral structures in thermal and nuclear power stations

    International Nuclear Information System (INIS)

    Oide, Kyuya; Matsuzaki, Katsuo

    1982-01-01

    Recently, the thermal and nuclear power stations in Japan are often exposed directly to severe sea condition owing to the situation of their location and construction. In this paper, underwater asphalt construction method (asphalt mats, sand mastic) and hydrocrete construction method (underwater unseparable concrete) are described as the reinforcing method for littoral structures such as breakwaters, protective banks, water intakes and discharge chennels. The asphalt mats are formed in precast state, burying reinforcing core materials such as glass fiber nets or wires in asphalt mastic, the mixture of asphalt, filler and aggregate. The sand mastic is the fluid asphalt compound, in which asphalt, stone dust and sand are heated and mixed, and is poured and solidified into the gaps in rubble mounds in water, to reinforce them. The hydrocrete is the underwater concrete of high quality made by blending special polymer compound to ordinary concrete, which does not separate during free descent in water, and the contamination of water quality is scarce. The features and applications of these construction methods are explained. Also, the examples of actual construction works are shown. (Kako, I.)

  18. Radiation safety practice at nuclear power stations and estimation of dose burdens to the USSR general public in the context of the country's nuclear power development plans

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Il'in, L.A.; Turovskij, V.D.; Buldakov, L.A.; Lusev, N.G.; Pavlovskij, O.A.; Parkhomenko, G.M.

    1983-01-01

    The paper sets forth the main features of the State system of health protection for staff and the general public, and likewise the essentials of environmental protection. The principles of standardizing radiation factors are given for power station personnel and for the general public, together with the main provisions of the health Standards and Rules for radiation protection at present valid in the USSR. Data are quoted on the radiation situation at nuclear power stations and on the size of releases of radioactive aerosols and liquid effluents to the environment. The paper pays particular attention to analyses of the radiation situation in districts where nuclear power stations are situated and also to the type and scope of monitoring of radioactive environmental contamination. An analysis of the coefficients achieved with Soviet pressurized water (WWER), high-power channel-type (RBMK) and fast (BN) reactors currently in large-scale use shows that in terms both of release levels of radioactive substances and of the dose burdens to staff and general public these reactors are comparable with the best foreign nuclear power installations. Values actually measured and values calculated for the basic parameters of the radiation situation in areas of the USSR where nuclear power stations are situated confirm the safety of these facilities as regards the health of the general public and the extremely low levels of their effects on the environment. In conclusion, the paper quotes estimates of the collective effective dose equivalent to the USSR population expected to result from implementation of the country's nuclear power programme up to the year 2000. Radiation safety problems associated with nuclear power production which still require solution are enumerated. (author)

  19. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  20. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    International Nuclear Information System (INIS)

    2014-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  1. Training of power station staff

    International Nuclear Information System (INIS)

    Dusserre, J.

    1993-01-01

    ELECTRICITE DE FRANCE currently operates 51 generating stations with 900 and 1300 MW Pressurized Water Reactors while, only 15 years ago, France possessed only a very small number of such stations. It was therefore vital to set up a major training organization to produce staff capable of starting, controlling and maintaining these facilities with a constant eye to improving quality and safety. Operator and maintenance staff training is based on highly-structured training plans designed to match both the post to be filled and the qualifications possessed by the person who is to fill it. It was essential to set up suitable high-performance training resources to handle this fast growth in staff. These resources are constantly being developed and allow EDF to make steady progress in a large number of areas, varying from the effects of human factors to the procedures to be followed during an accident

  2. Porto Tolle thermoelectric power station and aquatic environment of Po Delta (Italy): Synthesis of data

    International Nuclear Information System (INIS)

    Ambrogi, R.

    1990-01-01

    The 2400 MW, oil-fueled power station of Porto Tolle (Italy) potentially affects riverine, lagoon and marine sectors of the Po Delta. A synthesis is provided of the data gathered by several research lines, which studied different aspects of the environment during the pre-operational and operational period. Comparisons are made between the two periods and between stations more or less influenced by cooling water discharge. When river water is used for cooling (the majority of cases), some effects on water quality characteristics and on plankton community abundances are evident in the immediate vicinity of the outlet. In the lagoon (Sacca del Canarin) and in the stretch of sea in front of it, effects directly connected with the thermal effluent could not be detected. The geomorphological evolution of the lagoon, however, was influenced by the hydraulic modification brought about by the cooling circuit. This resulted in an enhancement of the biological production of the lagoon. The sea area is not affected in a significant way, but concern is raised about the interaction of cooling discharge and the eutrophic load from the Po River

  3. Experience in safeguarding nuclear material at the Rheinsberg nuclear power station

    International Nuclear Information System (INIS)

    Winkler, R.

    1976-01-01

    The three years' experience that has been gained in application of the Safeguards Agreement shows that the carrying out of inspections at the nuclear power plant has virtually no effect on operating conditions. In future it will be possible to reduce this effect even further and still maintain the operational reliability of the station. Verification of the transfer of nuclear material and detection of possible violations have proved relatively simple. The labour requirement of each unit at the station for the performance of inspections is not more that thirty man-days. Constructive collaboration between power station staff and inspectors is of great importance in improving the safeguards procedures. (author)

  4. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  5. Protection and safety of nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The extreme requirements for the safety of nuclear power stations set tasks to the civil engineer which, resulting from dynamic load assumptions, among other things also demand the development of novel special concrete steels with a high elastic limit (here: DYWIDAG thread tie rod) for singly reinforced members. (orig.) [de

  6. Lifetime management of Magnox power stations

    International Nuclear Information System (INIS)

    Smitton, C.

    1998-01-01

    Magnox Electric, which is, a subsidiary of BNFL, operates six nuclear power plants that have an average age of about 33 years. The procedures developed to maintain the plants and ensure nuclear safety in longer-term operation are reviewed. The technical limit on station lifetimes is expected to be determined by the effect of ageing on major reactor structures where replacement is impractical. Examination of the effect of ageing confirms that the stations are capable of operating to a life of at least 40 years. The economic factors affecting operation are reviewed, recognising the need to sell electricity in a competitive market. Recently Magnox Electric and BNFL have merged and all plant supporting Magnox operations are now within a single integrated company that will provide further opportunities for improved efficiency. (author)

  7. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Henderson, B.

    1982-11-01

    Architectural concepts and design proposals associated with the proposed Sizewell B power station are outlined. The figures are in a separate volume. They consist of the site layout plan, an axonometric drawing of the site, an elevations drawing and a colour perspective drawing of 'A', 'B' and 'C' stations. (U.K.)

  8. Insurance of nuclear power stations

    International Nuclear Information System (INIS)

    Debaets, M.

    1992-01-01

    Electrical utility companies have invested large sums in the establishment of nuclear facilities. For this reason it is normal for these companies to attempt to protect their investments as much as possible. One of the methods of protection is recourse to insurance. For a variety of reasons traditional insurance markets are unable to function normally for a number of reasons including, the insufficient number of risks, an absence of meaningful accident statistics, the enormous sums involved and a lack of familiarity with nuclear risks on the part of insurers, resulting in a reluctance or even refusal to accept such risks. Insurers have, in response to requests for coverage from nuclear power station operators, established an alternative system of coverage - insurance through a system of insurance pools. Insurers in every country unite in a pool, providing a net capacity for every risk which is a capacity covered by their own funds, and consequently without reinsurance. All pools exchange capacity. The inconvenience of this system, for the operators in particular, is that it involves a monopolistic system in which there are consequently few possibilities for the negotiation of premiums and conditions of coverage. The system does not permit the establishment of reserves which could, over time, reduce the need for insurance on the part of nuclear power station operators. Thus the cost of nuclear insurance remains high. Alternatives to the poor system of insurance are explored in this article. (author)

  9. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  10. Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System

    Science.gov (United States)

    Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.

    2016-12-01

    The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.

  11. Hygienic situation in the site of nuclear power stations in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sakka, Masatoshi

    1984-01-01

    In the Fukushima No. 1 Nuclear Power Station in Fukushima Prefecture, the hygienic statistics for ten years each before and after the start of the power station were compared between the surrounding radiation monitoring area and the reference area without such monitoring, both areas containing populations. There was no difference at all between the two areas. It was thus shown that the nuclear power generation had no adverse effect on the health of the people. The following statistics in both areas concerning the health of the populations are described: external exposure dose, internal exposure sources, whole-body exposure dose, the change of the hygienic state around the power station, the number of deaths and mortality in the areas, the deaths from cancer in the areas, the health of children, the causes of deaths in Fukushima Prefecture. (Mori, K.)

  12. Efforts toward enhancing seismic safety at Kashiwazaki Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Yamashita, Kazuhiko

    2009-01-01

    It has been two years since the Niigata-ken Chuetsu-oki Earthquake (NCOE) occurred in 2007. The earthquake brought a major disaster for Kashiwazaki, Kariwa, and the neighboring areas. First of all, we would like to give condolences to people in the devastated area and to pray for the immediate recovery. Our Kashiwazaki Kariwa Nuclear Power Station located in the same area was naturally caught up in the earthquake. The station was hit by a big tremor more than its intensity assumed to be valid at the station design stage. In spite of unexpected tremor, preventive functions for the station safety worked as expected as it designed. Critical facilities designed as high seismic class were not damaged, though considerable damages were seen in outside-facilities designed as low seismic class. We currently make efforts to inspect and recover damages. While we carefully carry out inspection and assessment to make sure the station integrity, we are also going forward restoration as well as construction for seismic safety enhancement in turn. This report introduces details of the following accounts, these are an outline of guidelines for seismic design evaluation that was revised in 2006, a situation at Kashiwazaki Kariwa Nuclear Power Station in the aftermath of the earthquake, and efforts toward enhancing seismic safety that the Tokyo Electric Power Company (TEPCO) has made since the seismic disaster, and our approach to evaluation of facility integrity. (author)

  13. Expansion potential for existing nuclear power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-09-26

    This report is a preliminary analysis of the expansion potential of the existing nuclear power sites, in particular their potential for development into nuclear energy centers (NECs) of 10 (GW(e) or greater. The analysis is based primarily on matching the most important physical characteristics of a site against the dominating site criteria. Sites reviewed consist mainly of those in the 1974 through 1976 ERDA Nuclear Power Stations listings without regard to the present status of reactor construction plans. Also a small number of potential NEC sites that are not associated with existing power stations were reviewed. Each site was categorized in terms of its potential as: a dispersed site of 5 GW(e) or less; a mini-NEC of 5 to 10 GW(e); NECs of 10 to 20 GW(e); and large NECs of more than 20 GW(e). The sites were categorized on their ultimate potential without regard to political considerations that might restrain their development. The analysis indicates that nearly 40 percent of existing sites have potential for expansion to nuclear energy centers.

  14. Expansion potential for existing nuclear power station sites

    International Nuclear Information System (INIS)

    Cope, D.F.; Bauman, H.F.

    1977-01-01

    This report is a preliminary analysis of the expansion potential of the existing nuclear power sites, in particular their potential for development into nuclear energy centers (NECs) of 10 (GW(e) or greater. The analysis is based primarily on matching the most important physical characteristics of a site against the dominating site criteria. Sites reviewed consist mainly of those in the 1974 through 1976 ERDA Nuclear Power Stations listings without regard to the present status of reactor construction plans. Also a small number of potential NEC sites that are not associated with existing power stations were reviewed. Each site was categorized in terms of its potential as: a dispersed site of 5 GW(e) or less; a mini-NEC of 5 to 10 GW(e); NECs of 10 to 20 GW(e); and large NECs of more than 20 GW(e). The sites were categorized on their ultimate potential without regard to political considerations that might restrain their development. The analysis indicates that nearly 40 percent of existing sites have potential for expansion to nuclear energy centers

  15. The decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Barker, F.

    1992-01-01

    This report has been commissioned by the National Steering Committee of Nuclear Free Local Authorities to provide: a comprehensive introduction to the technical, social, political, environmental and economic dimensions to nuclear power station decommissioning; an independent analysis of Nuclear Electric's recent change of decommissioning strategy; the case for wider public involvement in decision making about decommissioning; and a preliminary assessment of the potential mechanisms for achieving that essential wider public involvement

  16. Methods of selection and training of personnel for the Rajasthan atomic power station

    International Nuclear Information System (INIS)

    Sarma, M.S.R.; Wagadarikar, V.K.

    1975-01-01

    Personnel selected to work in a nuclear electric generating station rarely have the necessary knowledge and experience in all the related fields. A station can be operated and maintained and at the same time radiation doses absorbed by station personnel can be kept to a minimum only if the operating personnel are familiar with, and can be used for, all phases of station operation and the maintainers have more than one skill or trade. More technical knowledge and more diversified skills, in addition to those required in other industries, are needed because of the nature of the nuclear reactor and the associated radiation environment and high automation. A training programme has been developed at the Nuclear Training Centre (NTC) near the Rajasthan Atomic Power Station (RAPS), Kota, India, to cater to the needs of the operation and maintenance personnel for nuclear power stations including the Madras Atomic Power Station. This programme has been in operation for the last five years. The paper describes the method of recruitment/selection of various categories of personnel and the method of training them to meet the job requirements. (author)

  17. Plant diagnostics in power stations

    International Nuclear Information System (INIS)

    Sturm, A.; Doering, D.

    1985-01-01

    The method of noise diagnostics is dealt with as a part of plant diagnostics in nuclear power stations. The following special applications are presented: (1) The modular noise diagnostics system is used for monitoring primary coolant circuits and detecting abnormal processes due to mechanical vibrations, loose parts or leaks. (2) The diagnostics of machines and plants with antifriction bearings is based on bearing vibration measurements. (3) The measurement of the friction moment by means of acoustic emission analysis is used for evaluating the operational state of slide bearings

  18. Microprocessor control unit of thyristor regulator of microhydroelectric power station ballast load

    International Nuclear Information System (INIS)

    Nomokonova, Yu; Bogdanov, E

    2014-01-01

    The operational principle of microhydroelectric power station ballast load is presented. The comparative overview of the mathematical modeling methods is performed. The ranges of thyristors optimal work are shown as a result of the regulator regimes analysis. Shows the necessity of regulation the ballast load in microhydroelectric power station with help of developed algorithm of the program for microprocessor control

  19. The 'Lehn' small hydro-power station; KWKW Lehn Vorprojekt - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ruff, H.; Widmer, P.

    2009-02-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at the refurbishment of a small hydro-power station in the UNESCO biosphere region in the Entlebuch, Switzerland. The five grounds for the refurbishment are examined - repair of the water intake, flood protection, regulation of residual water, reduction of floating debris and sand and optimisation of the system by using automatic control. Figures on the cost of the refurbishment and electricity production are presented and discussed, as is the economic viability of the project. The existing installations are described and the hydrology of the stream is discussed, as are legal requirements and technical basics. Variants for the refurbishment are examined and operational aspects are looked at. A comprehensive appendix provides details on the proposal in graphical and tabular form.

  20. TEDS Base Station Power Amplifier using Low-Noise Envelope Tracking Power Supply

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael A. E.

    2009-01-01

    This paper demonstrates a highly linear and efficient TETRA enhanced data service (TEDS) base-station RF power amplifier (RFPA). Based on the well-known combination of an envelope tracking (ET) power supply and a linear class-A/B RFPA, adequate adjacent channel power ratio (ACPR) and wideband noise...... experimentally with a 9.6-dB peak-to-average 50-kHz 16 quadrature amplitude modulation TEDS carrier, the setup providing 44-dBm (25 W) average RF output power at 400 MHz with 44% dc-to-RF efficiency state-of-the-art ACPR of less than ${-}$67 dBc, switching noise artifacts around ${-}$ 85 dBc, and an overall rms...

  1. Training of engineers for nuclear power station operation

    International Nuclear Information System (INIS)

    Myerscough, P.B.

    1980-01-01

    The requirements for staffing and training of a nuclear electric utility are described. Current training facilities at the Central Electricity Generating Board are applicable to gas-cooled technology with the possibility of the introduction of a thermal water system and fast reactors in the future. The CEGB training centres provide for the initial training of operational staff, revision training of experienced operational staff, and training of non-operational staff from the stations and supporting departments. Details are given of the content of the training courses which also provide simulation facilities of the basic dynamics of the CEGB stations. Further developments in simulation will include dynamics of the boiler and turbine plants in Magnox stations. The flexibility of the AGR simulations will enable the training exercises to be adjusted to meet changing operating patterns for each AGR station. (U.K.)

  2. Insulation co-ordination aspects for power stations with generator circuit-breakers

    International Nuclear Information System (INIS)

    Sanders, M.; Koeppl, G.; Kreuzer, J.

    1995-01-01

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerning expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer

  3. Pilot solar hybrid power station in rural area, Rompin, Pahang, Malaysia

    International Nuclear Information System (INIS)

    Iszuan Shah Syed Ismail; Azmi Omar; Hamdan Hassan

    2006-01-01

    Malaysia has considerable number of widely deployed small rural area. These hamlets are very much associated with Orang Asli residents. They get their source of energy by candle or kerosene light while some richer community can afford a generator set. The usual or normal system using solar as a source for electricity at rural area is standalone system for each house. As for this project, a pilot centralized solar power station will be the source of electricity to light up the fifteen houses at Kampung Denai, Rompin, Pahang, Malaysia. This system will be the first ever built for the orang asli settlement at Pahang. The objectives of this project are to design and install the solar power station at remote location and to develop standard design of stand-alone solar power station suitable for Malaysia. Orang Asli residents at Kampung Denai was chosen because there is a school for the Orang Asli children. Moreover, the remote communities are living in stratification, which makes electrical wiring easier. Furthermore, the remote area is far from the last transmission line and cumbersome to bring diesel through the rough and unpredictable land road. The main domestic energy is for residential purposes (e.g. small lighting unit, radio, television, video, etc). The generator capacity is 18.6 kW. The solar sizing was done both for the home and school appliances at Kampung Denai. The maximum demand measured was 4195.35 kW. The pilot centralized solar power station consists of 10 kW photovoltaic panels, 10 kW inverter, 150 kWh battery and other balance of system. A generator set with capacity of 12.5 kVA is installed for back up and during monsoon season. This paper will present status of the system, operational and maintenance issues, load profile of the solar power station and economics and system design of the whole system

  4. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  5. The Chooz power station: ten years of operation

    International Nuclear Information System (INIS)

    Teste du Bailler, Andre

    1977-01-01

    The switching into actual service of the Chooz plant, the first pressurized water reactor ever built in France, occurred on 3rd april 1967. Ten years later, one can establish a highly positive balance schedule of plant's operation whose availability is satisfactory, except the mechanical failure which occurred during the startup. The behavior of the equipment, in particular of the components of the primary loop, was satisfactory in its whole since it allowed the gradual increase in capacity by 15% with respect to the initial design. It allowed also the achievment of noticeable progress in the design of equipment intended for the new power stations. Interesting results have also been obtained in radioprotection, working conditions of the staff and environment protection fields. Finally, the training of the operating teams has been closely followed, whether it concerned the operators directly affected by plant operation or the trainees gathered in a school specially organized for this purpose and transferred since to a training Center [fr

  6. Hinkley Point 'C' power station public inquiry: proof of evidence on emergency planning

    International Nuclear Information System (INIS)

    Western, D.J.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom, adjacent to an existing nuclear power station incorporating Magnox and Advanced Gas Cooled reactors. The CEGB evidence to the Inquiry presented here introduces the concept of the Reference Accident as the basis for emergency arrangements. The description which follows of the emergency arrangements at the Hinkley Point site include: the respective responsibilities and their co-ordination of bodies such as the CEGB, external emergency services and government departments; the site emergency organization; practical aspects of the emergency arrangements; and consideration of the extension of the arrangements to a PWR on the same site. Recent developments in emergency planning, such as those arising out of post Chernobyl reviews and the Sizewell ''B'' PWR Inquiry, are taken into account. The conclusion is reached that soundly based emergency arrangements already exist at Hinkley Point which would require relatively minor changes should the proposed PWR be constructed. (UK)

  7. BR3/Vulcain Nuclear Power Station. Construction and Operational Experience

    Energy Technology Data Exchange (ETDEWEB)

    Storrer, J. [Belgonucleaire, S.A., Brussels (Belgium)

    1968-04-15

    A full-scale reactor experiment was set out as the main objective of the Vulcain research and development programme agreed in May 1962 between the UKAEA and BelgoNucleaire, manager of ''Syndicat Vulcain''. Vulcain uses variable moderation as the long-term method to control reactivity: the reactor is cooled and moderated by a mixture of heavy and light water, the D{sub 2}O content being stepwise reduced to permit power operation with all control rods completely out of the core. To carry out the Vulcain power experiment it was decided to modify the BR3 nuclear power plant located at Mol, Belgium, which had operated from 1962 to 1964 as a conventional PWR with outputs of 40.9 MW(th) and 11.45 MW(e). The BR3/Vulcain plant was started in December 1966 and since then is running with a load factor around 90%. It is the first time that such a reactor type has been built and operated and the experience gained by its design, construction, commissioning and operation has proven to be most valuable. D{sub 2}O is being used at a pressure (2000 lb/in{sup 2} abs.) never before achieved in a heavy-water reactor and the leak rate from the HP primary systems to the atmosphere has been kept to a negligible value, around 1 to 2 grams/h. Commissioning of the primary plant had been carried out with light water first without fuel, and thereafter with fuel, at which time the water was poisoned with boric acid. The reactor vessel contains experimental devices such as 65 in-pile instrumentation detectors and four hydraulically operated Zircaloy control rods. They required the interposition of a collar between the vessel and its lid. Refuelling is performed under boronated light water, the interchange between the primary water and the H{sub 2}O being carried out by means of a draining and spraying system. The reactor had been operated for two years before its modifications for Vulcain: many lessons have therefore been learned about working on irradiated systems. The BR3/Vulcain core has a

  8. The monitoring of the terrestrial environment around Almirante Alvaro Alberto nuclear power station

    International Nuclear Information System (INIS)

    Tavares, P.G.; Souza, R.F.; Cardoso, S.N.M.

    2011-01-01

    The goal of this paper is to evaluate the environmental monitoring around Almirante Alvaro Alberto Nuclear Power Station after the beginning the operation of Unit II, in July 2000. The Environmental Monitoring Laboratory (EML) has, for purpose, to monitor the environment around the station to verify if there is a potential impact caused by the operation of the units. The EML collects several environmental samples and analyses radiometrically to determine the presence of artificial radionuclides. The types of the samples are marine samples (sea water, fish, algae, beach sand and sediments), terrestrial (milk, banana, soil, grass, superficial and underground water and river water and sediment) and aerial samples (rain water, airborne for iodine and particulate). This paper only describes the monitoring of terrestrial samples. At the EML, the samples are prepared and analysed following international procedures. The samples of milk, banana, soil, grass, surface and underground water, river water and river sediment are analysed by gamma spectrometry in a multi-channel analyser GENIE-2000 System with High-purity Germanium (HpGe) detectors to determine the activities of the detectable radionuclides. The EML also analyses tritium in surface water by liquid scintillation counting. In addition, analysis of 89 Sr/ 9 0 Sr, by beta counting and 131 I by gamma spectrometry are performed in the processed milk. The results are, then, compared with those obtained in pre-operational time of Angra 1 (1978 - 1982) and those obtained in operational time of the units until 2010. The results show us that, from 1982 until now, there is no impact in terrestrial environment caused by the operation neither of Angra 1 nor both Angra 1 and Angra 2. (author)

  9. The monitoring of the terrestrial environment around Almirante Alvaro Alberto nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, P.G.; Souza, R.F.; Cardoso, S.N.M., E-mail: pgtares@eletronuclear.gov.b, E-mail: rfsouza@eletronuclear.gov.b, E-mail: sergion@eletronuclear.gov.b [ELETROBRAS Eletronuclear S.A., Paraty, RJ (Brazil). Lab. de Monitoracao Ambiental

    2011-07-01

    The goal of this paper is to evaluate the environmental monitoring around Almirante Alvaro Alberto Nuclear Power Station after the beginning the operation of Unit II, in July 2000. The Environmental Monitoring Laboratory (EML) has, for purpose, to monitor the environment around the station to verify if there is a potential impact caused by the operation of the units. The EML collects several environmental samples and analyses radiometrically to determine the presence of artificial radionuclides. The types of the samples are marine samples (sea water, fish, algae, beach sand and sediments), terrestrial (milk, banana, soil, grass, superficial and underground water and river water and sediment) and aerial samples (rain water, airborne for iodine and particulate). This paper only describes the monitoring of terrestrial samples. At the EML, the samples are prepared and analysed following international procedures. The samples of milk, banana, soil, grass, surface and underground water, river water and river sediment are analysed by gamma spectrometry in a multi-channel analyser GENIE-2000 System with High-purity Germanium (HpGe) detectors to determine the activities of the detectable radionuclides. The EML also analyses tritium in surface water by liquid scintillation counting. In addition, analysis of {sup 89}Sr/{sup 90}Sr, by beta counting and {sup 131}I by gamma spectrometry are performed in the processed milk. The results are, then, compared with those obtained in pre-operational time of Angra 1 (1978 - 1982) and those obtained in operational time of the units until 2010. The results show us that, from 1982 until now, there is no impact in terrestrial environment caused by the operation neither of Angra 1 nor both Angra 1 and Angra 2. (author)

  10. 47 CFR 73.6012 - Protection of Class A TV, low power TV and TV translator stations.

    Science.gov (United States)

    2010-10-01

    ... translator stations. 73.6012 Section 73.6012 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... of Class A TV, low power TV and TV translator stations. An application to change the facilities of an... power TV and TV translator stations and applications for changes in such stations filed prior to the...

  11. Novel wind powered electric vehicle charging station with vehicle-to-grid (V2G) connection capability

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2017-01-01

    Highlights: • The only wind powered EV charging station reported in the literature. • The charging station maximally converts wind energy into electric energy. • Novel fast and highly accurate MPPT technique implemented in the EV charging station. • The charging station is grid-connected type with vehicle-to-grid (V2G) technology. • The charging station balances load demand in the grid connected to it. - Abstract: In this study, a novel grid-connected wind powered electric vehicle (EV) charging station with vehicle-to-grid (V2G) technology is designed and constructed. The wind powered EV charging station consists of a wind energy conversion system (WECS), a unidirectional DC/DC converter connected to the WECS, a maximum power point tracking (MPPT) controller, 15 bidirectional DC/DC converters dedicated to 15 charging stations provided for charging EVs, and a three-phase bidirectional DC/AC inverter connected to the grid. The contribution of this work is that the grid-connected wind powered EV charging station presented in this work is the only constructed EV charging station reported in the literature that uses wind energy as a renewable resource to produce electric energy for charging EVs, and moreover, it maximally converts wind energy into electric energy because it uses a novel fast and highly accurate MPPT technique proposed in this study. Other works are only simulated models without any new MPPT consideration. It is demonstrated that the constructed wind powered EV charging station is a perfect charging station that not only produces electric energy to charge EVs but also balances load demand in the grid connected to it.

  12. Efforts toward enhancing seismic safety at Kashiwazaki Kariwa nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kazuhiko

    2010-09-15

    Kashiwazaki-Kariwa Nuclear Power Station, 8212MW, was struck by M6.8 quakes in July 2007. TEPCO has steadily been conducting restoration and post-earthquake equipment integrity assessment, aiming to make it a disaster-resistant power station. 2 units among 7 resumed commercial operation by June 2010. This earthquake has provided a great deal of knowledge and information useful for nuclear safety improvement. It has also served as a valuable reference for the IAEA in developing earthquake-related guidelines. TEPCO would like to share the knowledge and information thereby contributing to improving the safety of nuclear power generation. We will introduce some of our activities.

  13. Increasing the efficiency of thermal power stations

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-01-01

    High energy prices and an increased investment of costs in power plants as well as the necessity to minimize all kinds of environmental pollution have severe consequences on the construction and operation of thermal power stations. One of the most promising measures to cope with the mentioned problems is to raise the thermal efficiency of power plants. With the example of an Austrian electric utility it can be shown that by application of high efficiency combined cycles primary energy can be converted into electricity in a most efficient manner. Excellent operating experience has proved the high reliability of these relatively complex systems. Raising the temperature of the gas topping process still higher will not raise the efficiency considerably. In this respect a Rankine cycle is superior to a Brayton cycle. In a temperature range of 850 to 900 0 C were conventional materials with known properties can still be used, only the alkali metals cesium and potassium have the necessary physical and thermodynamic properties for application in Rankine topping cycles. Building on experience gained in the Fast Breeder development and from the US space program, a potassium topping cycle linked to a conventional water steam cycle with an intermediate diphenyl vapour cycle has been proposed which should give thermal efficiencies in excess of 50%. In a multi-national program this so called Treble Rankine Cycle is being investigated under the auspices of the International Energy Agency. Work is in progress to investigate the technical and economic feasibility of this energy conversion system. Experimental investigations are already under way in the Austrian Research Center Seibersdorf where high temperature liquid metal test facilities have been operated since 1968. (Author)

  14. Papers of 6. Scientific-Technical Seminar Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1999-01-01

    The report is an assembly of the papers concerning the material problems occurring during the exploitation of power station. The normalization problems in power station and gas pipelines according to the prescription of UE are also discussed. (author)

  15. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  16. Practical design considerations for photovoltaic power station

    Science.gov (United States)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  17. The training and assessment of operations engineers at Hinkley Point 'B' nuclear power station

    International Nuclear Information System (INIS)

    Walsey, B.A.; Howard, J.D.

    1986-01-01

    The Nuclear Power Training Centre at Oldbury-on-Severn was established to provide a common training of staff at all nuclear power stations operated by the Central Electricity Generating Board, following the ''Standard Specification for the Nuclear Training of Staff at CEGB Nuclear Power Stations''. The paper deals with the following aspects of AGR Stations: The Legislation applicable to these stations. The current training requirements for Operations Staff. The development of training for operations staff at Hinkley Point 'B' including training for career progression within the Operations Department. A detailed explanation of the training package developed for Reactor Desk Drivers at Hinkley 'B'. Revision training of Operations staff to ensure that they continue to run the plant in a safe and commercially viable manner. The training of Shift Operations Engineers for their duties under the Station Emergency Plan. (author)

  18. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  19. Full scale model studies of nuclear power stations for earthquake resistance

    International Nuclear Information System (INIS)

    Kirillov, A.P.; Ambriashvili, Ju. K.; Kozlov, A.V.

    Behaviour of nuclear power plants and its equipments under seismic action is not well understood. In the absence of well established method for aseismic deisgn of nuclear power plants and its equipments, it is necessary to carry out experimental investigations on models, fragments and full scale structures. The present study includes experimental investigations of different scale models and on existing nuclear power stations under impulse and explosion effects simulating seismic loads. The experimental work was aimed to develop on model test procedure for nuclear power station and the evaluation of the possible range of dynamic stresses in structures and pipe lines. The results of full-scale investigations of the nuclear reactor show a good agreement of dynamic characteristics of the model and the prototype. The study confirms the feasibility of simulation of model for nuclear power plants. (auth.)

  20. About Economy of Fuel at Thermal Power Stations due to Optimization of Utilization Diagram of Power-Generating Equipment

    Directory of Open Access Journals (Sweden)

    M. V. Svechko

    2008-01-01

    Full Text Available Problems of rational fuel utilization becomes more and more significant especially for thermal power stations (TPS. Thermal power stations have complicated starting-up diagrams and utilization modes of their technological equipment. Method of diagram optimization of TPS equipment utilization modes has been developed. The method is based on computer analytical model with application of spline-approximation of power equipment characteristics. The method allows to economize fuel consumption at a rate of 15-20 % with accuracy of the predicted calculation not more than 0.25 %.

  1. 75 FR 63766 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2010-10-18

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... TV, TV Translator or TV Booster Station, FCC Form 346; 47 CFR 74.793(d); LPTV Out-of-Core Digital... collection requirements: 47 CFR 74.793(d) proposes that certain digital low power and TV translator stations...

  2. N-power needed

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    SA will have to build more nuclear power stations over the next 30 years if the change over from coal-fired stations is to be made successfully. There will have to be substantial growth in nuclear power. If new nuclear power stations are to be built it is likely they are to be on the coast. Studies of the existing and projected population density of the area and the infrastructure have to be done. The next nuclear power stations is likely to use the light water mounted and cooled fission reactor. The present situation with the Koeberg nuclear power plant is also discussed

  3. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  4. Fire protection equipment in the area of control of the Neckar Community Nuclear Power Station

    International Nuclear Information System (INIS)

    Bernhardt, S.; Grauf, E.

    1976-01-01

    In the Neckar Community Nuclear Power Station - an 805 MW pressurised water reactor shortly to reach the stage of nuclear operation - fire protection measures have been realised to an extent hitherto uncommon in German nuclear power plants. The reason is to be sought from the authorities who have become more sensitive because of a fire in a reactor vessel during the construction stage and the fire at Browns Ferry and have consequently become extremely expert. Apart from the fire regulations hitherto normal further subregulations have been created in order to be able to make better provision of extinguishing devices against fire hazards. (orig.) [de

  5. The appliction of project management in operations preparation of nuclear power station

    International Nuclear Information System (INIS)

    Tang Zhengrong; Zhang Zhixiong

    2001-01-01

    Concept, history, characteristics of the project management is introduced. Analysis is performed on the suitability of application of project management approach in nuclear power station operations preparation. Then the application of project management is detailed in order to present the readers our study and practice. Theory and practice indicate that the project management is a useful management tool for operations preparation of nuclear power station to achieve a good performance

  6. Improvements in operational safety performance of the Magnox power stations

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, C.J. [BNFL Magnox Generation, Berkeley (United Kingdom)

    2000-10-01

    In the 43 years since commencement of operation of Calder Hall, the first Magnox power station, there remain eight Magnox stations and 20 reactors still in operation, owned by BNFL Magnox Generation. This paper describes how the operational safety performance of these stations has significantly improved over the last ten years. This has been achieved against a background of commercial competition introduced by privatization and despite the fact that the Magnox base design belongs to the past. Finally, the company's future plans for continued improvements in operational safety performance are discussed. (author)

  7. An Implementation of Estimation Techniques to a Hydrological Model for Prediction of Runoff to a Hydroelectric Power-Station

    Directory of Open Access Journals (Sweden)

    Magne Fjeld

    1981-01-01

    Full Text Available Parameter and state estimation algorithms have been applied to a hydrological model of a catchment area in southern Norway to yield improved control of the household of water resources and better economy and efficiency in the running of the power station, as experience proves since the system was installed on-line in the summer of 1978.

  8. Floating nuclear power station of APWS-80 type for electricity generation and fresh water production

    International Nuclear Information System (INIS)

    Zverev, K.V.; Polunichev, V.I.; Sergeev, Yu.A.

    1997-01-01

    To solve the problem of seawater desalination and electric energy generation, the designing organizations of Russia have developed two variants of floating nuclear desalination plant. The KLT-40 type reactors, with maximum 160 MW thermal power, is used as the power source for such plant. Depending on the customer requirement one or two power unit could be installed in the floating desalination plant. There are APWS-80 with two reactors, producing 80,000 m 3 desalinated water per day and APWS-40 with one reactor, producing 40,000 m 3 desalinated water per day. The advantages of floating desalination plants are the possibility to build and test them at the ship-build plant of the supplier country and to hand them over on turnkey base. (author). 5 figs

  9. Ten-yearly report on operations at the Garigliano nuclear power station

    International Nuclear Information System (INIS)

    1977-01-01

    This document is the final report on operation of the Garigliano Nuclear Power Station as required under the participation contract between Enel and Euratom and refers to the first ten years of commercial operation (1 May 1964-31 December 1973) of the power station. In the decade in question the Garigliano Power Station has assumed an important position in the world spectrum of nuclear energy since it was the first thermal-power reactor in the world to have irradiated considerable quantities of plutonium as a fuel in its own core for the production of energy. An experimental programme on this was started in 1966 with theoretical study of plutonium recycling and was followed by the charging of the Garigliano reactor with some mixed oxide elements (PuO 2 -UO 2 ) in 1968 and 1970. The excellent performance of these prototype elements, which among other things were examined in detail at the end of each radiation cycle, prompted Enel to decide in favour of the use of entire batches of recycled fuel elements of the PuO 2 -UO 2 type in the reactor from 1975 onwards

  10. Fundamentals of asset management in an ageing nuclear power station

    International Nuclear Information System (INIS)

    Crook, B.

    2014-01-01

    In an ageing nuclear power station there are many challenges associated with implementing and refining an asset management program. Ageing nuclear power stations are faced with the formidable task of replacing and refurbishing major Structures, Systems, and Components (SSCs) in a managed and cost-effective way. This paper provides a brief background on equipment reliability and asset management, covers Bruce Power's methodology for implementing this complex and all-encompassing program, and describes one of the key challenges faced by Bruce Power and the industry. The effective scoping and identification of critical components is an on-going challenge which can affect the integrity of many processes built upon it. This is a fundamental building block to nearly all processes at Bruce Power and one that is at the centre of many improvement initiatives and projects. The consequences from lacking this baseline data, or worse relying upon incorrect data, can permeate the asset management process and hinder the organization's ability to assess risk properly and take the necessary steps to mitigate this risk in the short and long term. (author)

  11. Laser-light sailing and non-stationary power stations applied to robotic star probes

    International Nuclear Information System (INIS)

    Matloff, Gregory L.

    2000-01-01

    The light sail has emerged as a leading contender to propel extrasolar expeditions. Because solar-sail performance is limited by the inverse-square law, one-way expeditions to other stars requiring voyage durations of a few centuries or less may be propelled by radiation pressure from a laser beam originating from a location closer to the Sun than the space probe. Maintaining a stationary laser power station in position between Sun and spacecraft for years or decades presents many technical challenges. This paper presents a variation on the laser power station that may be simpler to implement, in which the Sun-pumped laser power station follows the spacecraft on a parabolic or slightly hyperbolic trajectory

  12. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  13. Different scenarios to reduce greenhouse gas emissions of thermal power stations in Canada

    International Nuclear Information System (INIS)

    Zabihian, F.; Fung, A.S.

    2009-01-01

    The purpose of this paper is to examine greenhouse gas (GHG) emission reduction potentials in the Canadian electricity generation sector through fuel switching and the adoption of advanced power generation systems. To achieve this purpose, six different scenarios were introduced. In the first scenario existing power stations' fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. (author)

  14. Proposed new regulations for the limitation of releases of radioactive substances from nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    1975-07-01

    In this publication the Swedish National Institute of Radiation Protection presents a proposed version of new regulations concerning the way in which the release of radioactive substances from nuclear power stations is to be limited. The regulations come into force on 1st January 1976. (Auth.)

  15. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  16. On site power generation protects water supply for Ajax, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Mohamed

    2011-01-15

    The Ajax water supply plant treats and distribute water for the town of Ajax and the nearby City of Pickering and the operations staff manages two other treatment plants supplying the City of Oshawa and the Town of Whitby, and a dozen pumping stations, reservoirs and elevated tanks. The plant requires around 2 MW of continuous power to supply its 150,000 customers. Although local utility power is reliable, standby generators are mandated by the Ontario Ministry of the Environment. When power goes out problems can result in the plant and system. To avoid these, the Ajax plant staff selected Cummins Power Generation who delivered one 350 kW and two 1500 kW generator sets with automatic transfer switches and paralleling switchgear. These digital systems parallel and synchronize the generator sets with each other and with the utility, which allows the plant to provide continuous service. The plant is designed for twice its current capacity and is ready to handle future requirements.

  17. Papers of 7. Scientific-Technical Seminar Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    2000-01-01

    The report is the assembly of the papers concerning the material problems occurring during the exploitation of power station and gas pipelines. The normalization problems in the power station and in the gas pipelines according to the prescription of UE are also discussed. (author)

  18. Forecasting Canadian nuclear power station construction costs

    International Nuclear Information System (INIS)

    Keng, C.W.K.

    1985-01-01

    Because of the huge volume of capital required to construct a modern electric power generating station, investment decisions have to be made with as complete an understanding of the consequences of the decision as possible. This understanding must be provided by the evaluation of future situations. A key consideration in an evaluation is the financial component. This paper attempts to use an econometric method to forecast the construction costs escalation of a standard Canadian nuclear generating station (NGS). A brief review of the history of Canadian nuclear electric power is provided. The major components of the construction costs of a Canadian NGS are studied and summarized. A database is built and indexes are prepared. Based on these indexes, an econometric forecasting model is constructed using an apparently new econometric methodology of forecasting modelling. Forecasts for a period of 40 years are generated and applications (such as alternative scenario forecasts and range forecasts) to uncertainty assessment and/or decision-making are demonstrated. The indexes, the model, and the forecasts and their applications, to the best of the author's knowledge, are the first for Canadian NGS constructions. (author)

  19. Design Provisions for Station Blackout at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Duchac, Alexander

    2015-01-01

    A station blackout (SBO) is generally known as 'a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and un-interruptible AC power supplies may be available as long as batteries can supply the loads. Alternate AC power supplies are available'. A draft Safety Guide DS 430 'Design of Electrical Power Systems for Nuclear Power Plants' provides recommendations regarding the implementation of Specific Safety Requirements: Design: Requirement 68 for emergency power systems. The Safety Guide outlines several design measures which are possible as a means of increasing the capability of the electrical power systems to cope with a station blackout, without providing detailed implementation guidance. A committee of international experts and advisors from numerous countries is currently working on an IAEA Technical Document (TECDOC) whose objective is to provide a common international technical basis from which the various criteria for SBO events need to be established, to support operation under design basis and design extension conditions (DEC) at nuclear power plants, to document in a comprehensive manner, all relevant aspects of SBO events at NPPs, and to outline critical issues which reflect the lessons learned from the Fukushima Dai-ichi accident. This paper discusses the commonly encountered difficulties associated with establishing the SBO criteria, shares the best practices, and current strategies used in the design and implementation of SBO provisions and outline the structure of the IAEA's SBO TECDOC under development. (author)

  20. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  1. Space water electrolysis: Space Station through advance missions

    Science.gov (United States)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  2. Atmosphere and water quality monitoring on Space Station Freedom

    Science.gov (United States)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  3. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  4. Requirement profile for nuclear power station personnel

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1984-01-01

    The starting point in deriving the requirement profile for the shift personnel in the control rooms of nuclear power stations is information of a technical, organisational and ergonomic kind. The technique used, the distribution of work to different work areas and the configuration of the workplace is determined by the tasks and the environmental conditions in which they have to be done. (orig./DG) [de

  5. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  6. Cause trending analysis for licensing operational events in Daya Bay Nuclear Power Station

    International Nuclear Information System (INIS)

    Wang Dewei

    2005-01-01

    The human causal factors for all human error licensing operational events on Daya Bay nuclear power station since 1993 to 2003 are categorized, the trend of these causal factors is analyzed. The emphasis is placed on analyzing the deficiencies on complying with and executing regulations and procedures. The results provide directional reference for nuclear power station to improve human performance. (author)

  7. Fish-Friendly Pumping Stations Principles, Practices and Outcomes in Dutch Water Management

    NARCIS (Netherlands)

    Moria, Laura

    2008-01-01

    In the Netherlands polder water levels are managed with almost 3000 pumping stations that pump excess water from polders to reservoir canals or sea. These pumping stations might threaten Dutch fish stocks. Migrating fish are often unable to pass a pumping

  8. The economic feasibility of renewable powered fast charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Benger, Ralf; Heyne, Raoul; Wenzl, Heinz; Beck, Hans-Peter

    2011-07-01

    Electric vehicles will make an important contribution for a sustainable energy supply in the public transport sector. Although it is not sure at the moment which role the different vehicle concepts and charging options will play, it is possible to act on following assumptions: There will be purely electrically operated vehicles (EV), which will need a charging infrastructure in the public domain. Even if the number of these vehicles in comparison with hybrid electric vehicles (HEV) or range extended electric vehicles (REV) will be low, in the long run an amount of some million vehicles can be reached (1 0 % of the vehicles in Germany corresponds to round about 4 million vehicles). Charging stations in parking areas, shopping malls, at home or at work do not require high charging power because the time available for charging is relative long. In contrast charging stations beside these in normal parking areas should have the ability to charge the car batteries in a very short time, e.g. 80% of the energy content in 15 minutes or less. Therefore every charging process requires 100-200 kW electric power. Such charging stations are necessary both in rural and in urban regions.

  9. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  10. Feasibility study and energy efficiency estimation of geothermal power station based on medium enthalpy water

    Directory of Open Access Journals (Sweden)

    Borsukiewicz-Gozdur Aleksandra

    2007-01-01

    Full Text Available In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 °C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 °C, Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .

  11. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  12. The application of project management in operations preparation of nuclear power station

    International Nuclear Information System (INIS)

    Zhang Zhixiong; Tang Zhengrong

    2000-01-01

    The author first presents a brief introduction of the concept, history, characteristics of project management. Analysis is performed on the suitability of application of project management approach in nuclear power station operations preparation. Then the application of project management is detailed in order to present the readers authors' study and practice. Theory and practice indicate that the project management is a useful management tool for operations preparation of nuclear power station to achieve a good performance

  13. Solar electricity power station building. A preliminary project investigation for “PIRIN TEX LTD.” – Gotze Delchgev using

    International Nuclear Information System (INIS)

    Kolev, Boyko; Todorieva, Vanja

    2009-01-01

    The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exa joules (EJ=1018 J) per year. In 2005, this was more energy in one hour than the world used in one year. Photosynthesis captures approximately 3,000 EJ per year in biomass. The amount of solar energy reaching the surface of the planet is so vast that in one year it is about twice as much as will ever be obtained from all of the Earth's non-renewable resources of coal, oil, natural gas, and mined uranium combined. Natural gas crisis such as this from January 2009 in Bulgaria turn into the best investments the development of technology for renewable energy sources using especially solar energy using for electricity production and water heating. The aims of this article are: To develop a preliminary project for solar electricity power station build-ing; To estimate the profits of solar energy used for electricity production and water heating. Keywords: renewable energy sources, solar energy accumulation, solar electricity power station, natural gas crisis

  14. Evaluation of zeolite mixtures for decontaminating high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    Collins, E.D.; Campbell, D.O.; King, L.J.; Knauer, J.B.; Wallace, R.M.

    1984-05-01

    Mixtures of Linde Ionsiv IE-96 and Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Unit 2 Nuclear Power Station to decontaminate approx. 2780 m 3 of high-activity-level water. The original SDS flowsheet was conservatively designed for removal of cesium and strontium and would have required the use of approx. 60 SDS columns. Mixed zeolite tests were made on a 10 -5 scale and indicated that the appropriate ratio of IE-96/A-51 was 3/2. A mathematical model was used to predict the performance of the mixed zeolite columns in the SDS configuration and with the intended method of operation. Actual loading results were similar to those predicted for strontium and better than those predicted for cesium. The number of SDS columns needed to process the HALW was reduced to approx. 10. 6 references, 4 figures, 2 tables

  15. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  16. The Space Station Module Power Management and Distribution automation test bed

    Science.gov (United States)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  17. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    Science.gov (United States)

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among

  18. 47 CFR 74.789 - Broadcast regulations applicable to digital low power television and television translator stations.

    Science.gov (United States)

    2010-10-01

    ... power television and television translator stations. 74.789 Section 74.789 Telecommunication FEDERAL... AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Low Power TV, TV Translator, and TV Booster Stations § 74.789 Broadcast regulations applicable to digital low power television and television translator...

  19. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  20. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  1. Duke Power Company - McGuire Nuclear Station: steam-generator hideout return and cleanup

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    McGuire Nuclear Station steam generator hideout return and cleanup are discussed. Hideout return data are presented for Unit 1 shutdowns that occurred on November 23, 1984, and April 19, 1985, and a Unit 2 shutdown on January 25, 1985. The data are presented as the concentrations of various species as a function of time after power reduction and primary water temperature. The steam generator blowdown as a function of time after power reduction is also presented. The concentrations of sodium, potassium, calcium, magnesium, aluminum, iron, and copper cations, and chloride, fluoride, sulfate, phosphate and nitrite anions were monitored during the each shutdown. Silica was also measured in the two 1985 shutdowns. The return of sulfate, phosphate, calcium and magnesium showed retrograde solubility. Silica concentrations showed an increase as the temperature decreased to about 450 to 500 0 F and then they decreased as the temperature decreased. McGuire has a holf point at 300 at 350 0 F to clean up the steam generator secondary water. The return of sulfates should occur within 4 to 6 hours. The blowdown is maximized to reduce the secondary water impurity concentrations. Cleanup continues until the sulfate concentration is reduced to below 100 ppb. At that point cooldown is continued

  2. Way to LWR nuclear power stations taking root

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1994-01-01

    In this report, as for BWR nuclear power stations, the countermeasures to initial troubles, the circumstances of making bold start for the improvement and standardization after the remarkable lowering of the rate of operation, the development of A-BWR aiming at the most excellent BWR plant and the effort to reduce the construction cost are looked back, and the opinion on advancing nuclear energy development hereafter is mentioned. As the initial troubles, the thermal fatigue of reactor feedwater nozzles, the cracking of return water nozzles in control rod drive, the damage of fuel elements and others occurred. The circumstances till starting the project of improvement and standardization, and the investigation by the ad hoc committee and the results are reported. The feasibility study on A-BWR was carried out from July, 1978 to October, 1979. The basic design and the research and development for verification and the optimization design were carried out till December, 1985, as the result, the improvement of the plant performance was obtained. The effort for reducing the construction cost was successful. (K.I.)

  3. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  4. India's nuclear power programme and constraints encountered in its implementation

    International Nuclear Information System (INIS)

    Sethna, H.N.; Srinivasan, M.R.

    1977-01-01

    Nuclear power development in India is based on the natural uranium fuelled pressurised heavy water reactors. However, in order to acquire early experience in operation and maintenance of nuclear power stations, India's first atomic power station comprised of two units of boiling water reactors. Subsequent nuclear power stations currently in operation or under construction employ natural uranium heavy water reactors and each of the stations is a two reactor installation. While the first two nuclear power stations employ reactors with an output of 235 MW. 500 MW heavy water reactors are visualised for the period beyond 1985. The first nuclear power station was essentially fully imported; the second nuclear power station which employs heavy water reactors already has a significant contribution of equipment manufactured in India. For the third nuclear power station and the subsequent one, practically all equipment is being manufactured indigenously. The nuclear power station at Narora is in a seismic region and hence the design is substantially more advanced than the ones at the earlier sites and also employs concepts which will be used in the 500 MW reactors. Efforts are being made in the country to integrate power generation systems into larger regional grids and eventually into a national grid; however, the distributed nature of power generation at present and other infrastructural limitations still favour small and medium size plants only. The paper brings out the efforts put in over the last ten years in establishing capability for design and manufacture of all equipment and systems required for nuclear power plants. A major constraint in expanding the nuclear power capacity is naturally related to the competing demands on available national resources. The paper also discusses other constraints than purely technological and financial and describes how efforts are being made to overcome these contraints

  5. Development of kit for detection of the larvae of fouling organisms flowing in the power station's water intake conduits

    International Nuclear Information System (INIS)

    Yanagawa, T.

    2009-01-01

    Massive settlement of the mussel Mytilus galloprovincialis and the barnacle Megabalanus rosa often causes serious problems in coastal industries: electric power stations, fisheries, marine services. This paper describes development of rapid and sensitive methods for on-site monitoring the larval settlement of the fouling species to make efficient the antifouling systems. (author)

  6. Capacity factor of nuclear power stations in Japan in fiscal year 1984

    International Nuclear Information System (INIS)

    Agawa, Takashi

    1985-01-01

    In Japan presently a total of 28 nuclear power plants are in operation with aggregate capacity 20,561 MW, 22 % of the total power generation. Around 1975 there occurred such as stress corrosion cracking and to repair them much time was consumed, leading to the low capacity factor. With such troubles removed, in fiscal 1984, the capacity factor on average of the nuclear power stations is 73.9 %, the highest so far. Contributing to this are long period of the continuous operation, short period of the periodical inspection and increase in the in-operation capacity factor. Contents are the following : construction state of nuclear power stations, operation state in fiscal 1984, causes leading to the high capacity factor, future directions. (Mori, K.)

  7. Radiation protection organization in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The French way of radiation protection management has been adopted by Guangdong Nuclear Power Station (GNPS) but there are some differences. In this paper author describes radiation protection organization in GNPS, special measures having been taken and the present status

  8. Development and implementation of the heavy water program at Bruce Power

    International Nuclear Information System (INIS)

    Davloor, R.; Bourassa, C.

    2014-01-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  9. Development and implementation of the heavy water program at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Bourassa, C., E-mail: ram.davloor@brucepower.com, E-mail: carl.bourassa@brucepower.com [Bruce Power, Tiverton, ON (Canada)

    2014-07-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  10. Nuclear safety review for qualification of class 1E motor inside containment for nuclear power stations

    International Nuclear Information System (INIS)

    Li Shixin; Wu Qi; Zhang Yunbo; Wu Caixia

    2013-01-01

    In nuclear power plants with pressurized water reactors, the review for class 1E motor inside containment qualification process and documents is an important aspect of nuclear safety equipment review, and the reviewers should make evaluations for the qualification test results in terms of the compliance with standard and regulation, and the consistency with inside containment environment. Firstly, this paper introduces the qualification test of class 1E motor inside containment for nuclear power generating stations, such as aging test and design-basis-event test. Second, there is a discussion about typical problems of review. At last, comparison of IEEE334 with RCC-E is conducted and explored. (authors)

  11. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  12. Engineering of electrical systems of nuclear power stations for improved reliability

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Ramanathan, K.; Choudhary, N.N.

    1977-01-01

    Operational problems experienced in electrical systems/equipment of the Tarapur Atomic Power Station (TAPS) and the Rajasthan Atomic Power Station (RAPS) and their solutions are dealt in detail. This experience has led to new design concepts which are being introduced for improved reliability in design of the Madras Atomic Power Project (MAPP) and the Narora Atomic Power Project (NAPP). Saline pollution on switchyard equipments was the major problem of the TAPS due to its coastal location. Saline pollution resulted in flash over of insulators and failure of clamps. The problem was solved by suitable changes in insulators, conductors, transformers, switches and arranging portable live line washing of the switchyard equipment. In MAPP which is also located on coast, an indoor switchyard is built. NAPP is located in a seismic zone, therefore, all equipment is specified for appropriate seismic duty. Various other improvements are described. (M.G.B.)

  13. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  14. Noise test system of rotating machinery in nuclear power station based on microphone array

    Science.gov (United States)

    Chang, Xincai; Guan, Jishi; Qi, Liangcai

    2017-12-01

    Rotating machinery plays an important role in all walks of life. Once the equipment fails, equipment maintenance and shutdown will cause great social harm and economic losses. Equipment safety operations at nuclear power stations have always been of top priority. It is prone to noise when the equipment is out of order or aging. Failure to find or develop equipment at the initial stage of equipment failure or ageing will pose a serious threat to the safety of the plant’s equipment. In this paper, sound imaging diagnosis technology is applied as a supplementary method to the condition monitoring and diagnosis system of rotating machinery in nuclear power stations. It provides a powerful guarantee for the condition monitoring and fault diagnosis of rotating machinery in nuclear power stations.

  15. A numerical study on the allowed sulpher content in fuel used by the power stations in Kuwait

    International Nuclear Information System (INIS)

    Ramadan, A. A.; AlsSdairawi, M.; AlHajraf, S.

    2006-01-01

    In Kuwait, most of the power stations use fuel oil as the prime source of energy. The sulphur content (S%) of the fuel used as well as other factors have a direct impact on the ground level concentration of sulphur dioxide (SO 2 ) released by the power stations into the atmosphere. The SO 2 ground level concentration has to meet the standards set by Kuwait Environmental Public Authority (KEPA). In this communication we present numerical results obtained using the Inustrial Sources Complex Short Team (ISC-ST) numerical model. The model calculated the SO 2 concentration resulting from existing power stations assuming a) zero background SO 2 concentration and b) entire reliance on Heavy Fuel Oil (HFO). Different scenarios represented by different S and, i.e. 0.5, 0.75, 1, 1.5, 2, 3, and 4% were simulated. For all power stations, the annual SO 2 concentrations for fuels with low sulphur content do not pose any risk on urban populations. Bubyan Islan and Subiya are considred ideal locations for future power stations. The majority of the pollutants around Kuwait City results from emissions from Doha East and Doha West power stations. The results are expected to benefit Kuwait Petroleum Corporation in improving the quality of the fuel produced for consumption by the power stations in Kuwait in order to maintain an acceptable ground level of SO 2 .(Author)

  16. Planning of cascade stations on the Maotiao He detailed

    Energy Technology Data Exchange (ETDEWEB)

    Guan, W

    1984-09-20

    Details of the hydroelectric power stations on the Maotiao He cascades and examples of how some problems were resolved begin with a description of the river basin survey for topographical features, hydrometeorological conditions, and geological conditions. The river characteristics survey was the basis for planning the cascade power stations and the selection of installed capacity at each station. The review also covers discharge and flood control planning based on rainfall data and the composition of flood areas. The overall development program emphasizes power generation, but also includes irrigation, industrial water supply, and tourism. 2 figures, 1 table.

  17. Measurement uncertainty recapture (MUR) power uprates operation at Kuosheng Nuclear Power Station

    International Nuclear Information System (INIS)

    Chang Chinjang; Wang Tunglu; Lin Chihpao

    2009-01-01

    Measurement Uncertainty Recapture PowerUprates (MUR PU) are achieved through the use of state-of-the-art feedwater flow measurement devices, i.e., ultrasonic flow meters (UFMs), that reduce the degree of uncertainty associated with feedwater flow measurement and in turn provide for a more accurate calculation of thermal power. The Institute of Nuclear Energy Research (INER) teamed with Sargent and Lundy, LLC (S and L), Pacific Engineers and Constructors, Ltd (PECL), and AREVA to develop a program and plan for the Kuosheng Nuclear Power Station (KNPS) MUR PU Engineering Service Project and for the assistance to Kuosheng MUR PU operation. After regulator's approval of the licensing requests, KSNPS conducted the power ascension test and switchover to the new rated thermal power for Unit 2 and Unit 1 on 7/7/2007 and 11/30/2007, respectively. From then on, KNPS became the first nuclear power plant implementing MUR PU operation in Taiwan and in Asia. (author)

  18. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1982-11-01

    The procedure for decommissioning a CEGB nuclear power station is described. Regulatory and licensing procedures in the UK are first listed. The principal sources of radioactivity in the station after final shutdown are classified. The three stages of the decommissioning procedure are then described. Finally the following topics are dealt with briefly: the management of decommissioning wastes, radiological protection during the operation, possible faults arising having radiological significance, design for decommissioning and costs. (U.K.)

  19. Fuel examination at SSEB Hunterston B power station

    International Nuclear Information System (INIS)

    Angell, I.; Oldfield, D.

    1988-01-01

    After a brief description of Hunterston 'B' Power Station and its fuel, the need for post irradiation examination is established. Means of providing this on site at various stages of the fuel route are described, i.e. refuelling machine, dismantling cell and storage pond. Techniques used include the human eye, video recording and endoscopy. (author)

  20. Hinkley Point 'C' power station public inquiry: proof of evidence on agriculture

    International Nuclear Information System (INIS)

    Worthington, T.R.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. Agricultural land will need to be acquired for the proposed construction both on a temporary and permanent basis. The CEGB evidence to the Inquiry identifies the land which will be permanently lost for agricultural purposes and that which could eventually be returned to agriculture. All the land required is on a single holding but should leave a viable area to be farmed. The farming business would be compensated for loss of profits. (UK)