WorldWideScience

Sample records for water oxidation chemistry

  1. Inorganic chemistry: Deconstructing water oxidation

    Science.gov (United States)

    Cook, Sarah A.; Borovik, A. S.

    2013-04-01

    During photosynthesis, the oxygen-evolving complex oxidizes water to produce molecular oxygen. Now, a possible role for the calcium ion in this complex has been proposed based on the electrochemical properties of a series of synthetic heterometallic clusters.

  2. Photosynthetic water oxidation: insights from manganese model chemistry.

    Science.gov (United States)

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  3. The aqueous chemistry of oxides

    CERN Document Server

    Bunker, Bruce C

    2016-01-01

    The Aqueous Chemistry of Oxides is a comprehensive reference volume and special topics textbook that explores all of the major chemical reactions that take place between oxides and aqueous solutions. The book highlights the enormous impact that oxide-water reactions have in advanced technologies, materials science, geochemistry, and environmental science.

  4. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxide/Water Interfaces: How the Surface Chemistry Modifies the Electronic Energy Alignment

    Science.gov (United States)

    Sprik, Michiel

    2014-03-01

    The minimum of the d-electron conduction band of an aqueous transition metal oxide electrode is typically no more than a few 100 mV away from the standard hydrogen electrode (SHE). Because of this favourable alignment of the electronic energy levels (near) metallic transition metal oxides with partly filled d bands can be used as electrocatalysts while the compounds with finite electronic gap can be used as photocatalysts. However, because of their ionic character, transition metal-oxide surfaces also show amphiphilic acid-base activity. At low pH the basic sites are protonated and at high pH the acidic sites deprotonated creating an electrical double layer with corresponding surface potential. The alignment of the electronic energy levels, and by implication their redox activity, is therefore pH dependent. In fact, even in absence of protonic surface charge, the coordination with water molecules is already capable of shifting the electronic energy levels of the oxide by 1 eV or more. Computation of the electronic energies in transition metal oxide electrodes requires therefore a detailed modeling of their aqueous surface chemistry. The solvation energy of the proton is the common energy reference for both redox potentials on the SHE scale and acidity constants (pKa). Computation of the H+ solvation energy is therefore a key component in a unified treatment of redox and acid-base chemistry. In this talk we outline the Density Functional Theory based Molecular Dynamics (DFTMD) method we have developed for this purpose. The central tool of our approach is a method for reversible insertion of protons in the aqueous part of the DFTMD model system. As an illustration we discuss the application to the rutile TiO2/water and MnO2/water interface.

  6. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    Science.gov (United States)

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  7. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    Science.gov (United States)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst

    2017-01-01

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect – oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level. PMID:28327642

  8. A computational chemistry investigation of the mechanism of the water-assisted decomposition of trichloroethylene oxide.

    Science.gov (United States)

    Huang, Jinqing; Yeung, Chi Shun; Ma, Jiani; Gayner, Emma R; Phillips, David Lee

    2014-03-06

    Trichloroethylene oxide is a downstream product in the oxidative metabolism of trichloroethylene (TCE) and it may be involved in cytochrome P450 inactivation, protein function destruction, and nucleic acid base alkalization. To explore the hydrolysis mechanism of the decomposition of TCE oxide, an investigation using Second-order Møller-Plesset perturbation theory in conjunction with density functional theory has been conducted to analyze the effect of the water solvation shell on probable reaction steps. The decomposition of TCE oxide is accelerated by coordinated water molecules (up to seven), which reveals that water molecules can help to solvate the TCE oxide molecule and activate the release of the Cl(-) leaving group. After the opening of the epoxide ring, several pathways are proposed to account for the dehalogenation step along with the formation of CO as well as three carboxylic acids (formic acid, glyoxylic acid, and dichloroacetic acid). The predominant pathways were examined by comparing the computed activation energies for the formation of the products to each other for the possible reaction steps examined in this work. After rationally analyzing the computational results, the ring-opening reaction has been identified as the rate-determining step. The rate constant estimated for the TCE oxide decomposition from the calculations performed here was found to be reasonably consistent with previous experimental observations reported in the literature.

  9. Water Chemistry: Seeking Information

    Science.gov (United States)

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  10. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    Science.gov (United States)

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  11. Water Chemistry Laboratory Manual.

    Science.gov (United States)

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  12. Supramolecular Chemistry in Water

    NARCIS (Netherlands)

    Oshovsky, Gennady V.; Reinhoudt, David N.; Verboom, Willem

    2007-01-01

    Supramolecular chemistry in water is a constantly growing research area because noncovalent interactions in aqueous media are important for obtaining a better understanding and control of the major processes in nature. This Review offers an overview of recent advances in the area of water-soluble sy

  13. The chemistry of graphene oxide.

    Science.gov (United States)

    Dreyer, Daniel R; Park, Sungjin; Bielawski, Christopher W; Ruoff, Rodney S

    2010-01-01

    The chemistry of graphene oxide is discussed in this critical review. Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure. Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed. This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references).

  14. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons

    National Research Council Canada - National Science Library

    Elçin Külah; Laurent Marot; Roland Steiner; Andriy Romanyuk; Thomas A Jung; Aneliia Wäckerlin; Ernst Meyer

    2017-01-01

    .... Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide...

  15. Removal of graphene oxide nanomaterials from aqueous media via coagulation: Effects of water chemistry and natural organic matter.

    Science.gov (United States)

    Duan, Lin; Hao, Rongjie; Xu, Zhu; He, Xizhen; Adeleye, Adeyemi S; Li, Yao

    2017-02-01

    With the increasing use of graphene oxide (GO) nanomaterials, its possible environmental release and human effects have received much attention. As GO may enter drinking or wastewater treatment systems like other carbonaceous nanomaterials, and have potential impact on human and/or environmental health, its removal efficiency during water treatment is important and requires investigation. In this study, the removal efficiency of GO during water treatment procedure via coagulation was evaluated, and the effects of solution chemistry and natural organic matter on the coagulation-based removal of GO nanomaterials were investigated. The results indicate that the removal efficiency of GO with alum coagulation can reach 80% with 20 mg/L alum dosage at neutral pH, and will not change significantly with higher concentration of alum. The coagulation mechanism and efficiency were strongly affected by the Al species in aqueous phase, which are controlled by pH. Co-existing cations (e.g. Na) may have minimal effect on GO removal efficiency, and the presence of humic acid (HA) suppresses coagulation remarkably at alum concentrations below 40 mg/L. The results from this study provide critical information for predicting the removal efficiency of GO nanomaterials during alum coagulation phase of water treatment procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Research in physical chemistry and chemical education: Part A: Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B: The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    Science.gov (United States)

    Maron, Marta Katarzyna

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water in the Earth's atmosphere has been of considerable interest due to its ability to impact chemistry and climate. Oxidized atmospheric molecules in the presence of water have the ability to form hydrogen bonded water complexes. The spectroscopic investigation of nitric acid-water complexes, outlined in Chapter III, was undertaken to characterize intermolecular hydrogen bonds in a water-restricted environment at ambient temperatures. Additionally, this characterization of nitric acid-water complexes allowed for the comparison of calculated overtone OH-stretching vibrational band frequencies, intensities, and anharmonicities of intermolecular hydrogen-bonded water complexes with experimental observations. Oxidized organic molecules, such as aldehydes and ketones, in addition to forming hydrogen-bonded water complexes can undergo a hydration reaction of the carbonyl group and form germinal diols in the presence of water. This chemistry has been studied extensively in bulk aqueous media, however little is known about this process in the gas-phase at low water concentrations. The focus of the studies outlined in Chapters IV and V is motivated by the ability of pyruvic acid and formaldehyde to form germinal diols and water complexes in water-restricted environment. This water-mediated chemistry changes the physical and chemical properties of these organic molecules, therefore, impacting the partitioning between gas and particle phase, as well as the chemistry and photochemistry of oxidized organic molecules in the Earth's atmosphere. The results presented in this dissertation may help resolve the significant discrepancy between

  17. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  18. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  19. Water chemistry and poultry processing water quality

    Science.gov (United States)

    This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

  20. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Science.gov (United States)

    Jégou, C.; Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S.; Vercouter, T.; Roudil, D.

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2®) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 °C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO 2 matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO 2 grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH) 4(am) phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  1. Understanding the Atomic-Level Chemistry and Structure of Oxide Deposits on Fuel Rods in Light Water Nuclear Reactors Using First Principles Methods

    Science.gov (United States)

    Rak, Zs.; O'Brien, C. J.; Brenner, D. W.; Andersson, D. A.; Stanek, C. R.

    2016-09-01

    The results of recent studies are discussed in which first principles calculations at the atomic level have been used to expand the thermodynamic database for science-based predictive modeling of the chemistry, composition and structure of unwanted oxides that deposit on the fuel rods in pressurized light water nuclear reactors. Issues discussed include the origin of the particles that make up deposits, the structure and properties of the deposits, and the forms by which boron uptake into the deposits can occur. These first principles approaches have implications for other research areas, such as hydrothermal synthesis and the stability and corrosion resistance of other materials under other extreme conditions.

  2. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  3. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  4. Green chemistry oriented organic synthesis in water.

    Science.gov (United States)

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective.

  5. Updating the EPRI guidelines (water chemistry)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.; Welty, C.S.; Wood, C.J.

    1988-03-01

    Significant improvements in water chemistry have been achieved in recent years at US nuclear plants, at least in part as a result of implementing water chemistry guidelines. These guidelines were prepared by industry committees, comprised of utilities and NSSS vendors and chaired by EPRI.

  6. Fog water chemistry in Shanghai

    Science.gov (United States)

    Li, Pengfei; Li, Xiang; Yang, Chenyu; Wang, Xinjun; Chen, Jianmin; Collett, Jeffrey L., Jr.

    2011-08-01

    With the aim of understanding the fog chemistry in a Chinese megacity, twenty-six fog water samples were collected in urban Shanghai from March 2009 to March 2010. The following parameters were measured: pH, electrical conductivity (EC), ten inorganic major ions ( SO42-, NO3-, NO2-, F -, Cl -, Na +, K +, Ca 2+, Mg 2+, NH4+) and four major organic acids (CH 3COO -, HCOO -, CO42-, MSA). The total ionic concentration (TIC) and EC of fog samples were one or two orders of magnitude higher than those often found in Europe, North America and other Asian countries. Pollutants were expected to be mainly from local sources, including factories, motor vehicle emissions and civil construction. Non-local sources such as moderate- and long-range transport of sea salt also contributed to pollution levels in fog events as indicated by back trajectory analysis. The pH of the fog water collected during the monitoring period varied from 4.68 to 6.58; acidic fogs represented about 30.8% of the total fog events during this period. The fog water was characterized by high concentrations of SO42- (20.0% of measured TIC), NO3- (17.1%), NH4+ (28.3%) and Ca 2+ (14.4%). SO42- and NO3-, the main precursors of fog acidity, were related to burning fossil fuels and vehicle emissions, respectively. NH4+, originating from the scavenging of gaseous ammonia and particulate ammonium nitrate and ammonium sulfate, and Ca 2+, originating from the scavenging of coarse particles, acted as acid neutralizers and were the main cause for the relatively high pH of fogs in Shanghai. The ratio of ( SO42- + NO3-)/( NH4+ + Ca 2+) was lower than 1, indicating the alkaline nature of the fog water. A high ratio of NO3-/ SO42- and low ratio of HCOO -/CH 3COO - were consistent with large contributions from vehicular emissions that produce severe air pollution in megacities.

  7. Environmental Chemistry: Air and Water Pollution.

    Science.gov (United States)

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  8. Cobalt oxides from crystal chemistry to physics

    CERN Document Server

    Raveau, Bernard

    2012-01-01

    Unparalleled in the breadth and depth of its coverage of all important aspects, this book systematically treats the electronic and magnetic properties of stoichiometric and non-stoichiometric cobaltites in both ordered and disordered phases. Authored by a pioneer and a rising star in the field, the monograph summarizes, organizes and streamlines the otherwise difficult-to-obtain information on this topic. An introductory chapter sets forth the crystal chemistry of cobalt oxides to lay the groundwork for an understanding of the complex phenomena observed in this materials class. Special emphasis is placed on a comprehensive discussion of cobaltite physical properties in different structural families. Providing a thorough introduction to cobalt oxides from a chemical and physical viewpoint as a basis for understanding their intricacies, this is a must-have for both experienced researchers as well as entrants to the field.

  9. Interstellar water chemistry: from laboratory to observations

    CERN Document Server

    van Dishoeck, Ewine F; Neufeld, David A

    2013-01-01

    Water is observed throughout the universe, from diffuse interstellar clouds to protoplanetary disks around young stars, and from comets in our own solar system and exoplanetary atmospheres to galaxies at high redshifts. This review summarizes the spectroscopy and excitation of water in interstellar space as well as the basic chemical processes that form and destroy water under interstellar conditions. Three major routes to water formation are identified: low temperature ion-molecule chemistry, high-temperature neutral-neutral chemistry and gas-ice chemistry. The rate coefficients of several important processes entering the networks are discussed in detail; several of them have been determined only in the last decade through laboratory experiments and theoretical calculations. Astronomical examples of each of the different chemical routes are presented using data from powerful new telescopes, in particular the Herschel Space Observatory. Basic chemical physics studies remain critically important to analyze ast...

  10. Analytical chemistry methods for mixed oxide fuel, March 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of materials used to produce mixed oxide fuel. These materials are ceramic fuel and insulator pellets and the plutonium and uranium oxides and nitrates used to fabricate these pellets.

  11. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  12. Understanding the molecular-level chemistry of water plasmas and the effects of surface modification and deposition on a selection of oxide substrates

    Science.gov (United States)

    Trevino, Kristina J.

    2011-12-01

    This dissertation first examines electrical discharges used to study wastewater samples for contaminant detection and abatement. Two different water samples contaminated with differing concentrations of either methanol (MeOH) or methyl tert-butyl ether (MTBE) were used to follow breakdown mechanisms. Emission from CO* was used to monitor the contaminant and for molecular breakdown confirmation through actinometric OES as it can only arise from the carbon-based contaminant in either system. Detection was achieved at concentrations as low as 0.01 ppm, and molecular decomposition was seen at a variety of plasma parameters. This dissertation also explores the vibrational (thetaV), rotational (thetaR) and translational (thetaT) temperatures for a range of diatomic species in different plasma systems. For the majority of the plasma species studied, thetaV are much higher than thetaR and thetaT. This suggests that more energy is partitioned into the vibrational degrees of freedom in our plasmas. The thetaR reported are significantly lower in all the plasma systems studied and this is a result of radical equilibration to the plasma gas temperature. thetaT values show two characteristics; (1) they are less than the thetaV and higher than the theta R and (2) show varying trends with plasma parameters. Radical energetics were examined through comparison of thetaR, thetaT, and thetaV, yielding significant insight on the partitioning of internal and kinetic energies in plasmas. Correlations between energy partitioning results and corresponding radical surface scattering coefficients obtained using our imaging of radicals interacting with surfaces (IRIS) technique are also presented. Another aspect of plasma process chemistry, namely surface modification via plasma treatment, was investigated through characterization of metal oxides (SiOxNy, nat-SiO2, and dep-SiO2) following their exposure to a range of plasma discharges. Here, emphasis was placed on the surface wettability

  13. Real time water chemistry monitoring and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreau, T.M.; Choi, S.S. [EPRIsolutions, Palo Alto, CA (United States)

    2002-07-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  14. Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-09-01

    The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  15. Initiation Chemistries in Hydrocarbon (Aut)Oxidation.

    Science.gov (United States)

    Sandhiya, Lakshmanan; Zipse, Hendrik

    2015-09-28

    For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical-generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS-QB3, G4, and G3B3 calculations. Homolytic O-O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite.

  16. Fenton Redox Chemistry: Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  17. Oxidation and Reduction Reactions in Organic Chemistry

    Science.gov (United States)

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  18. Oxidation and Reduction Reactions in Organic Chemistry

    Science.gov (United States)

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  19. Redox chemistry of H[sub 2]S oxidation in the British Gas Stretford Process. Pt. 1; Thermodynamics of sulphur-water systems at 298 K

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.H.; Thompson, I. (Imperial College, London (United Kingdom). Dept. of Mineral Resources Engineering)

    1993-04-01

    The objectives of the thermodynamic calculations reported here were to provide a framework to describe the redox chemistry of the S/HS-couple, and to help to explain the formation of thiosulphate ions, with a view to defining appropriate conditions to minimise its yield and maximise that of sulphur. (author)

  20. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    Science.gov (United States)

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.

  1. Montane wetland water chemistry, Uinta Mountains, Utah

    Science.gov (United States)

    Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.

    2009-12-01

    This study attempts to determine the relationship between surface and groundwater chemistry and wetland characteristics within the Reader Lakes watershed, Uinta Mountains. The dominant rock type in the study area is quartz sandstone of the Hades Pass formation, Unita Mountain Group (Middle Proterozoic). Minor amounts of interbedded arkose and illite-bearing shale are also present. Water chemistry data have been collected from more than one hundred locations during the 2008 and 2009 summer seasons. The Reader Creek watershed is approximately 9.8 km long and about 3.5 km wide in the central portion of the basin. Direct precipitation is the primary source of groundwater recharge and the area is typically covered by snow from November until May. Four distinct wetland complexes, designated as the upper, middle, lower and the sloping fen, constitute the major wetland environments in the study area. The chemistry of the melt water from the high-elevation snowfield is affected by weathering of incorporated atmospheric dust and surface rocks. Total dissolved solids in both years were between 7 and 9 mg/L. Major anions include HCO3 (averaging 4.0 mg/L), SO4 (1.3 mg/L), NO3 (0.9 mg/L), Cl (0.8 mg/L), F (0.07 mg/L), PO4 (0.03 mg/L), and Br(0.015 mg/L). Major cations include Na (1.1 mg/L), Ca (1.0 mg/L), K (0.28 mg/L), and Mg (0.15 mg/L). Groundwater concentrations in the lower meadow, as measured in piezomters, are distinctly different, with the following maximum concentrations of anions: HCO3 (36.7 mg/L), SO4 (5.0 mg/L), Cl (3.4 mg/L), NO3 (0.9 mg/L), PO4 (0.28 mg/L), F (0.23 mg/L), Br (0.12 mg/L), and cations: Ca (22 mg/L), Na (4.6 mg/L), Mg (3.4 mg/L), and K (1.8 mg/L)- with a maximum value of 83 mg/L for total dissolved solids. Waters in Reader Creek, the main trunk channel, are typically sodium-potassium and sodium -potassium bicarbonate, with some calcium-bicarbonate, mostly in the middle part of the watershed. Groundwater from springs is sodium-potassium in the upper

  2. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  3. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Joyce E. Penner

    2005-03-14

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near

  4. Surface Chemistry and Properties of Oxides as Catalyst Supports

    Energy Technology Data Exchange (ETDEWEB)

    DeBusk, Melanie Moses [ORNL; Narula, Chaitanya Kumar [ORNL; Contescu, Cristian I [ORNL

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  5. ENGINEERING BULLETIN: SUPERCRITICAL WATER OXIDATION

    Science.gov (United States)

    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  6. Oxidation Chemistry of Inorganic Benzene Complexes.

    Science.gov (United States)

    Fleischmann, Martin; Dielmann, Fabian; Balázs, Gábor; Scheer, Manfred

    2016-10-17

    The oxidation of the 28 VE cyclo-E6 triple-decker complexes [(Cp(R) Mo)2 (μ,η(6) :η(6) -E6 )] (E=P, Cp(R) =Cp(2 a), Cp*(2 b), Cp(Bn) (2 c)=C5 (CH2 Ph)5 ; E=As, Cp(R) =Cp*(3)) by Cu(+) or Ag(+) leads to cationic 27 VE complexes that retain their general triple-decker geometry in the solid state. The obtained products have been characterized by cyclic voltammetry (CV), EPR, Evans NMR, multinuclear NMR spectroscopy, MS, and structural analysis by single-crystal X-ray diffraction. The cyclo-E6 middle decks of the oxidized complexes are distorted to a quinoid (2 a) or bisallylic (2 b, 2 c, 3) geometry. DFT calculations of 2 a, 2 b, and 3 persistently result in the bisallylic distortion as the minimum geometry and show that the oxidation leads to a depopulation of the σ-system of the cyclo-E6 ligands in 2 a-3. Among the starting complexes, 2 c is reported for the first time including its preparation and full characterization.

  7. Computational Chemistry of Cyclopentane Low Temperature Oxidation

    KAUST Repository

    El Rachidi, Mariam

    2015-03-30

    Cycloalkanes are significant constituents of conventional fossil fuels, but little is known concerning their combustion chemistry and kinetics, particularly at low temperatures. This study investigates the pressure dependent kinetics of several reactions occurring during low-temperature cyclopentane combustion using theoretical chemical kinetics. The reaction pathways of the cyclopentyl + O2 adduct is traced to alkylhydroperoxide, cyclic ether, β-scission and HO2 elimination products. The calculations are carried out at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The barrierless entrance channel is treated using variable-reaction-coordinate transition state theory (VRC-TST) at the CASPT2(7e,6o) level of theory, including basis set, geometry relaxation and ZPE corrections. 1-D time-dependent multiwell master equation analysis is used to determine pressure-and temperature-dependent rate parameters of all investigated reactions. Tunneling corrections are included using Eckart barriers. Comparison with cyclohexane is used to elucidate the effect of ring size on the low temperature reactivity of naphthenes. The rate coefficients reported herein are suitable for use in cyclopentane and methylcyclopentane combustion models, even below ~900 K, where ignition is particularly sensitive to these pressure-dependent values.

  8. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  9. Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life

    Science.gov (United States)

    Xu, Jie; Sahai, Nita; Eggleston, Carrick M.; Schoonen, Martin A. A.

    2013-02-01

    The goal of our study is to identify free radical formation pathways on mineral surfaces. Organic molecules on early Earth might have been modified or decomposed by such pathways, thus affecting the total organic inventory for prebiotic synthesis reactions. Specifically, we evaluated several common oxide minerals under a range of environmental conditions and combinations of conditions (pH, O2 level, UV-wavelength, and particle loading), for formation of highly reactive oxygen species (ROS) at the oxide surfaces by quantifying the generated [OHrad ] and [H2O2]. We identified anatase/rutile (β-TiO2/α-TiO2) and hematite (α-Fe2O3) as active in ROS production and, importantly, found different dominant pathways for ROS formation on anatase/rutile versus hematite. Hydroxyl radicals (OHrad ) in anatase and rutile suspensions were generated mainly through the oxidation of OH- by photo-generated holes and H2O2 was generated through the combination of an OHrad radical with an OH- and a hole. This pathway for the TiO2 phases did not require the presence of O2, and was not shut down under anaerobic conditions. In contrast, formation of H2O2 and OHrad in hematite suspensions involved reduction of O2 by electrons, which was inhibited under anaerobic conditions. The surface ROS as well as free radicals formed by reactions with other gases on early Earth atmosphere were capable of destroying molecules such as lipids and pre-RNA or RNA essential to assembly of protocells and survival of the earliest cells. At the same time, surface associated ROS and other free radicals may also have promoted aminoamide formation. Thus, the surface ROS would have affected prebiotic organic compound inventory and protocell/early life evolution.

  10. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation...

  11. Bottled water, spas, and early years of water chemistry

    Science.gov (United States)

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  12. Water chemistry model development at Total EandP Canada: modeling uncertainty in ore chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, H.A.W.; Yoo, A.; Schaffer, M. [Total EandP Canada Ltd. (Canada)

    2011-07-01

    In oil sands mining operations, water chemistry is a key factor as it plays a role in the bitumen recovery and water discharge to the environment. Total Canada have developed a new water chemistry model combining the previous models developed by Rogers and Kasperski and making modifications to improve reliability of the results. Two challenges had to be addressed in the development of this model: making sure that the data used were appropriate, and accurately modeling uncertainty. The aim of this paper is to present the modifications made to the model and other water chemistry models. Laboratory tests were conducted using the double leach and the standard leach methods. Results showed that the standard leach method provides more accurate measurement on batch extraction tests. This paper outlined the challenges of developing a new prediction model; further tests are needed to determine the best method to use in describing ore chemistry.

  13. State of the art of water chemistry of Japanese BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Tokyo Univ. (Japan). Dept. of Quantum Eng. and Syst. Sci.

    1996-02-01

    Nuclear power generation is now one of the most important technologies in the energy supply in Japan. The operational experience of nuclear power plants for more than 20 years in Japan has shown that water chemistry is a key technology for safer and more economical operation of nuclear power plants. Extensive efforts have been made in the field of water chemistry to achieve the targets of radiation field control, to keep the integrities of piping and fuel elements and to reduce the radioactive waste generation. This paper briefly describes the present status of Japanese water chemistry technology with the main emphasis placed on BWRs. (orig.).

  14. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  15. Physical chemistry of high-temperature oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, T.V.; Rao, C.N.R. (Indian Institute of Science, Bangalore (India))

    1989-06-01

    The discovery of high-temperature superconductivity in metal cuprates has ushered in a new era in the chemistry and physics of solids. At the same time, it has also highlighted our inadequate knowledge of the electronic structures of metal oxides. In this Feature Article, we briefly discuss the structure and properties of the different families of oxide superconductors discovered since 1986, paying specific attention to the states of copper and oxygen in the cuprates. We list those experimental observations related to the superconducting and normal states that have to be explained by theoretical models and present an overview of the current theoretical models. We conclude by indicating possible future directions.

  16. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  17. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2013-03-01

    Full Text Available The main objective of this work is the grafting of polycaprolactone diol (PCL on the surface of oxidized nanocelluloses (ONC in order to enhance the compatibility between the hydrophilic cellulose nanofibres and the hydrophobic polymer matrix. This grafting was successfully realized with a new strategy known as click chemistry. In this context, the oxidized nanocelluloses bearing alkyl groups (ONC-PR were prepared by reacting amino groups of propargylamine (PR with carboxyl groups of ONC. In parallel, PCL was converted into azido-polycaprolactone (PCL-N3 in two steps: (i tosylation of polycaprolactone (PCL-OTs and (ii conversion of PCL-OTs into PCL-N3 by nucleophilic displacement using sodium azide. Finally, ONC-PR was reacted with PCL-N3 in heterogeneous conditions through click chemistry in order to prepare polycaprolactone grafted oxidized nanocellulose (ONC-g-PCL, which could be suitable for improving the interfacial adhesion in the composite materials. The grafted samples were characterized by transmission electron microscopy and by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and Carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR spectroscopic techniques.

  18. Green chemistry synthesis of nano-cuprous oxide.

    Science.gov (United States)

    Ceja-Romero, L R; Ortega-Arroyo, L; Ortega Rueda de León, J M; López-Andrade, X; Narayanan, J; Aguilar-Méndez, M A; Castaño, V M

    2016-04-01

    Green chemistry and a central composite design, to evaluate the effect of reducing agent, temperature and pH of the reaction, were employed to produce controlled cuprous oxide (Cu2O) nanoparticles. Response surface method of the ultraviolet-visible spectroscopy is allowed to determine the most relevant factors for the size distribution of the nanoCu2O. X-ray diffraction reflections correspond to a cubic structure, with sizes from 31.9 to 104.3 nm. High-resolution transmission electron microscopy reveals that the different shapes depend strongly on the conditions of the green synthesis.

  19. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    Directory of Open Access Journals (Sweden)

    Y. B. Lim

    2015-06-01

    Full Text Available Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq. Water-soluble organic compounds with small carbon numbers (C2-C3 are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS. Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  20. Water chemistry at RBMK plants: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mamet, V.; Yurmanov, V. [VNIIAES (Russian Federation)

    2002-07-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH{sub 25} value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH{sub 25} value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH{sub 25} maintenance in a slightly acid area. (authors)

  1. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-15

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  2. Water chemistry: fifty years of change and progress.

    Science.gov (United States)

    Brezonik, Patrick L; Arnold, William A

    2012-06-05

    Water chemistry evolved from early foundations in several related disciplines. Although it is difficult to associate a precise date to its founding, several events support the argument that the field as we know it today developed in the mid-20th century--at the dawn of the "environmental era"--that is, ∼1960. The field in its modern incarnation thus is about 50 years old. In celebration of this half-centenary, we examine here the origins of water chemistry, how the field has changed over the past 50 years, and the principal driving forces for change, focusing on both the "practice" of water chemistry and ways that teaching the subject has evolved.

  3. Surface chemistry of black phosphorus under a controlled oxidative environment

    Science.gov (United States)

    Luo, Wei; Zemlyanov, Dmitry Y.; Milligan, Cory A.; Du, Yuchen; Yang, Lingming; Wu, Yanqing; Ye, Peide D.

    2016-10-01

    Black phosphorus (BP), the bulk counterpart of monolayer phosphorene, is a relatively stable phosphorus allotrope at room temperature. However, monolayer phosphorene and ultra-thin BP layers degrade in ambient atmosphere. In this paper, we report the investigation of BP oxidation and discuss the reaction mechanism based on the x-ray photoelectron spectroscopy (XPS) data. The kinetics of BP oxidation was examined under various well-controlled conditions, namely in 5% O2/Ar, 2.3% H2O/Ar, and 5% O2 and 2.3% H2O/Ar. At room temperature, the BP surface is demonstrated not to be oxidized at a high oxidation rate in 5% O2/Ar nor in 2.3% H2O/Ar, according to XPS, with the thickness of the oxidized phosphorus layer <5 Å for 5 h. On the other hand, in the O2/H2O mixture, a 30 Å thickness oxide layer was detected already after 2 h of the treatment. This result points to a synergetic effect of water and oxygen in the BP oxidation. The oxidation effect was also studied in applications to the electrical measurements of BP field-effect transistors (FETs) with or without passivation. The electrical performance of BP FETs with atomic layer deposition (ALD) dielectric passivation or h-BN passivation formed in a glove-box environment are also presented.

  4. A pentanuclear iron catalyst designed for water oxidation

    Science.gov (United States)

    Okamura, Masaya; Kondo, Mio; Kuga, Reiko; Kurashige, Yuki; Yanai, Takeshi; Hayami, Shinya; Praneeth, Vijayendran K. K.; Yoshida, Masaki; Yoneda, Ko; Kawata, Satoshi; Masaoka, Shigeyuki

    2016-02-01

    Although the oxidation of water is efficiently catalysed by the oxygen-evolving complex in photosystem II (refs 1 and 2), it remains one of the main bottlenecks when aiming for synthetic chemical fuel production powered by sunlight or electricity. Consequently, the development of active and stable water oxidation catalysts is crucial, with heterogeneous systems considered more suitable for practical use and their homogeneous counterparts more suitable for targeted, molecular-level design guided by mechanistic understanding. Research into the mechanism of water oxidation has resulted in a range of synthetic molecular catalysts, yet there remains much interest in systems that use abundant, inexpensive and environmentally benign metals such as iron (the most abundant transition metal in the Earth’s crust and found in natural and synthetic oxidation catalysts). Water oxidation catalysts based on mononuclear iron complexes have been explored, but they often deactivate rapidly and exhibit relatively low activities. Here we report a pentanuclear iron complex that efficiently and robustly catalyses water oxidation with a turnover frequency of 1,900 per second, which is about three orders of magnitude larger than that of other iron-based catalysts. Electrochemical analysis confirms the redox flexibility of the system, characterized by six different oxidation states between FeII5 and FeIII5; the FeIII5 state is active for oxidizing water. Quantum chemistry calculations indicate that the presence of adjacent active sites facilitates O-O bond formation with a reaction barrier of less than ten kilocalories per mole. Although the need for a high overpotential and the inability to operate in water-rich solutions limit the practicality of the present system, our findings clearly indicate that efficient water oxidation catalysts based on iron complexes can be created by ensuring that the system has redox flexibility and contains adjacent water-activation sites.

  5. Par Pond Fish, Water, and Sediment Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  6. Analytical chemistry of industrial waste water

    Energy Technology Data Exchange (ETDEWEB)

    Lur' e, Yu.Yu.

    1984-01-01

    This book gives a detailed account of modern methods of analyzing waste water from industrial enterprises. It describes methods of analyzing both water which is formed directly in one or another technical process, and water which has come through purifying structures, where it has been purified by various chemical, physical-chemical and biochemical methods. Many new methods are presented which have been published in recent years and which have undergone massive testing in Soviet and foreign laboratories. The book is intended for workers of chemical-analytical laboratories of chemical, metallurgic and other sectors of industry, production of various organic products and also for workers of water inspection, sanitary-epidemiology stations and water-purifying structures.

  7. Water chemistry of Lake Albano (Italy)

    Science.gov (United States)

    Cioni, Roberto; Guidi, Massimo; Raco, Brunella; Marini, Luigi; Gambardella, Barbara

    2003-02-01

    Lake Albano was stratified at the time of our survey, in December 1997, in agreement with previous observations [Martini et al., Geochem. J. 28 (1994) 173-184; Cioni et al., Report for the Civil Protection Department (1995); Pedreschi, Accad. Lucch. Sci. Lett. Arti (1995) 39]. In the absence of phenomena induced by seismic activity, either local or regional, lake stratification may be perturbed by cooling of shallow waters below ˜8.5°C. Circulation is expected to homogenize lake waters and eventually to trigger gas exsolution when total gas pressure exceeds hydrostatic pressure. In December 1997, total gas pressure in lake water was very close to atmospheric pressure (0.9-1.3 bar) at all depths, possibly due to the occurrence of a recent episode of circulation and presumed gas exsolution. The state of saturation of Lake Albano waters and the similarity of the relative concentrations of Na, K, Mg, and Ca in lake waters, local groundwaters, and local volcanic rocks indicate that Na, K, Mg, and Ca concentrations in Lake Albano waters are mainly governed by incongruent dissolution of local volcanic rocks, coupled with minor calcite precipitation at shallow depths.

  8. Ethylene oxidation chemistry in a well-stirred reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, N. [Lawrence Livermore National Lab., CA (United States); Malte, P. [Univ. of Washington, Seattle, WA (United States). Dept. of Mechanical Engineering

    1994-09-01

    Ethylene is an important intermediate in the combustion of methane, larger aliphatic hydrocarbons, and aromatics. Detailed fuel-lean C{sub 2}H{sub 4}H{sub 2}O/air well-stirred reactor data by Thornton were used to analyze reported combustion chemistry mechanisms and the development of this study`s ethylene oxidation mechanism. The data set had been obtained for the temperature range 1,003 to 1,253 K and ethylene-oxygen equivalence ratio range 0.086 to 0.103, at atmospheric pressure. Mechanisms were derived from reaction sets of Westbrook and Pitz, and Dagaut, Cathonnet and Boettner. Examination of each reported mechanism indicated unusually large kinetic rates for the vinyl decomposition reaction were used in order to obtain agreement with the Thornton data set. An ethylene oxidation model was developed in order to address the mechanistic problems of the previous models. This study`s mechanism well simulated the overall rate of ethylene oxidation and concentration profiles of CO, CO{sub 2}, H{sub 2}, CH{sub 2}O, C{sub 2}H{sub 2}, CH{sub 3}OH, CH{sub 4}, and C{sub 2}H{sub 6}. Successful predictions by the model were dependent on a new high temperature vinyl oxidation reaction route, C{sub 2}H{sub 3} + O{sub 2} = CH{sub 2}CHO + O with a branching ratio of 1.19--1.21 at 1,053 K to 1.63--2.47 at 1,253 K. The branching ratio values were dependent upon the extent of fall-off for the C{sub 2}H{sub 3} + O{sub 2} = CH{sub 2}O + HCO reaction. 132 refs.

  9. Apparatus for ground water chemistry investigations in field caissons

    Energy Technology Data Exchange (ETDEWEB)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed.

  10. Radiation Chemistry in Ammonia-Water Ices

    Science.gov (United States)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  11. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory

    Science.gov (United States)

    Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.

    2012-01-01

    Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…

  12. Wildfires and water chemistry: effect of metals associated with wood ash.

    Science.gov (United States)

    Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J

    2016-08-10

    The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.

  13. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were...

  14. Water-stable fac-{TcO₃}⁺ complexes - a new field of technetium chemistry.

    Science.gov (United States)

    Braband, Henrik

    2011-01-01

    The development of technetium chemistry has been lagging behind that of its heavier congener rhenium, primarily because the inherent radioactivity of all Tc isotopes has limited the number of laboratories that can study the chemistry of this fascinating element. Although technetium is an artificial element, it is not rare. Significant amounts of the isotope (99)Tc are produced every day as a fission byproduct in nuclear power plants. Therefore, a fundamental understanding of the chemistry of (99)Tc is essential to avoid its release into the environment. In this article the chemistry of technetium at its highest oxidation state (+VII) is reviewed with a special focus on recent developments which make water-stable complexes of the general type [TcO(3)(tacn-R)](+) (tacn-R = 1,4,7-triazacyclononane or derivatives) accessible. Complexes containing the fac-{TcO(3)}(+) core display a unique reactivity. In analogy to [OsO(4)] and [RuO(4)], complexes containing the fac-{TcO(3)}(+) core undergo with alkenes metal-mediated, vicinal cis-dihydroxylation reactions (alkene-glycol interconversion) in water via a (3+2)-cycloaddition reaction. Therefore, water-stable fac-{(99m)TcO(3)}(+) complexes pave the way for a new labeling strategy for radiopharmaceutical applications, based on (3+2)-cycloaddition reactions. This new concept for the labeling of biomolecules with small [(99m)TcO(3)(tacn-R)](+)-type complexes by way of a (3+2)-cycloaddition with alkenes is discussed in detail. The herein reported developments in high-valent technetium chemistry create a new field of research with this artificial element. This demonstrates the potential of fundamental research to provide new impetus of innovation for the development of new methods for radiopharmaceutical applications.

  15. Biological water oxidation: lessons from nature.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Allakhverdiev, Suleyman I; Govindjee

    2012-08-01

    Hydrogen production by water splitting may be an appealing solution for future energy needs. To evolve hydrogen efficiently in a sustainable manner, it is necessary first to synthesize what we may call a 'super catalyst' for water oxidation, which is the more challenging half reaction of water splitting. An efficient system for water oxidation exists in the water oxidizing complex in cyanobacteria, algae and plants; further, recently published data on the Manganese-calcium cluster have provided details on the mechanism and structure of the water oxidizing complex. Here, we have briefly reviewed the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system. In short, to design an efficient water oxidizing complex for artificial photosynthesis, we must learn and use wisely the knowledge about water oxidation and the water oxidizing complex in the natural system. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  16. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    Science.gov (United States)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  17. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  18. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  19. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    Science.gov (United States)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  20. Tin Oxide Chemistry from Macquer (1758) to Mendeleeff (1891) as Revealed in the Textbooks and Other Literature of the Era

    Science.gov (United States)

    de Berg, Kevin C.

    2008-01-01

    Eight chemistry textbooks written from 1758 to 1891 have been analyzed for the way they present the chemistry of the oxides of tin. This analysis gives insight into the foundation of a number of chemical ideas such as nomenclature and composition used in modern chemistry. Four major preparation techniques for the production of tin oxides emerge…

  1. Reacting chemistry at the air-water interface

    Science.gov (United States)

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William

    2016-09-01

    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  2. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  3. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-02-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  4. Vertical Gradients in Water Chemistry and Age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    clay-mineral precipitation; organic-carbon and pyrite oxidation; oxygen reduction and denitrification; and cation exchange. Mixing with surface water affected the chemistry of ground water in alluvial sediments of the Platte River Valley. Radiocarbon ages in the aquifer, adjusted for carbon mass transfers, ranged from 1,800 to 15,600 14C years before present. These results have important implications with respect to development of ground-water resources in the Sand Hills. Most of the water in the aquifer predates modern anthropogenic activity so excessive removal of water by pumping is not likely to be replenished by natural recharge in a meaningful timeframe. Vertical gradients in ground-water age were used to estimate long-term average recharge rates in the aquifer. In most areas, the recharge rates ranged from 0.02 to 0.05 foot per year. The recharge rate was 0.2 foot per year in one part of the aquifer characterized by large downward hydraulic gradients. Nitrite plus nitrate concentrations at the water table were 0.13 to 3.13 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer. Dissolved- gas and nitrogen-isotope data indicate that denitrification in the aquifer removed 0 to 97 percent (average = 50 percent) of the nitrate originally present in recharge. The average amount of nitrate removed by denitrification in the aquifer north of the Platte River (Sand Hills) was substantially greater than the amount removed south of the river (66 as opposed to 0 percent), and the extent of nitrate removal appears to be related to the presence of thick deposits of sediment on top of the Ogallala Group in the Sand Hills that contained electron donors, such as organic carbon and pyrite, to support denitrification. Apparent rates of dissolved-oxygen reduction and denitrification were estimated on the basis of decreases in dissolved- oxygen concentrations and increases in concentrations of excess nitrogen gas and ground-

  5. Study on chemical control indicators for circulating cooling systems water chemistry at power plants

    OpenAIRE

    Кишневский, Виктор Афанасьевич; Чиченин, Вадим Валентинович

    2014-01-01

    An analysis of applied stability indices, used for water chemistry control of circulating cooling systems at TPP and NPP is given in the paper.The spectrum of controlled indicators of circulating and make-up water during long-term operation of various water chemistries on scale models of circulating cooling systems at TPP and NPP is investigated.The results of chemical control of water chemistry with dosing mineral acid to make-up water and acrylic water chemistry without dosing mineral acid ...

  6. Radical Chemistry and Cytotoxicity of Bioreductive 3-Substituted Quinoxaline Di-N-Oxides.

    Science.gov (United States)

    Anderson, Robert F; Yadav, Pooja; Shinde, Sujata S; Hong, Cho R; Pullen, Susan M; Reynisson, Jóhannes; Wilson, William R; Hay, Michael P

    2016-08-15

    The radical chemistry and cytotoxicity of a series of quinoxaline di-N-oxide (QDO) compounds has been investigated to explore the mechanism of action of this class of bioreductive drugs. A series of water-soluble 3-trifluoromethyl (4-10), 3-phenyl (11-19), and 3-methyl (20-21) substituted QDO compounds were designed to span a range of electron affinities consistent with bioreduction. The stoichiometry of loss of QDOs by steady-state radiolysis of anaerobic aqueous formate buffer indicated that one-electron reduction of QDOs generates radicals able to initiate chain reactions by oxidation of formate. The 3-trifluoromethyl analogues exhibited long chain reactions consistent with the release of the HO(•), as identified in EPR spin trapping experiments. Several carbon-centered radical intermediates, produced by anaerobic incubation of the QDO compounds with N-terminal truncated cytochrome P450 reductase (POR), were characterized using N-tert-butyl-α-phenylnitrone (PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps and were observed by EPR. Experimental data were well simulated for the production of strongly oxidizing radicals, capable of H atom abstraction from methyl groups. The kinetics of formation and decay of the radicals produced following one-electron reduction of the parent compounds, both in oxic and anoxic solutions, were determined using pulse radiolysis. Back oxidation of the initially formed radical anions by molecular oxygen did not compete effectively with the breakdown of the radical anions to form oxidizing radicals. The QDO compounds displayed low hypoxic selectivity when tested against oxic and hypoxic cancer cell lines in vitro. The results from this study form a kinetic description and explanation of the low hypoxia-selective cytotoxicity of QDOs against cancer cells compared to the related benzotriazine 1,4-dioxide (BTO) class of compounds.

  7. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  8. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  9. Simulation of Water Chemistry using and Geochemistry Code, PHREEQE

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.H. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    This report introduces principles and procedures of simulation for water chemistry using a geochemistry code, PHREEQE. As and example of the application of this code, we described the simulation procedure for titration of an aquatic sample with strong acid to investigate the state of Carbonates in aquatic solution. Major contents of this report are as follows; Concepts and principles of PHREEQE, Kinds of chemical reactions which may be properly simulated by PHREEQE, The definition and meaning of each input data, An example of simulation using PHREEQE. (author). 2 figs., 1 tab.

  10. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Science.gov (United States)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O ( 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to the troposphere. Working under low O2 (volume mixing

  11. Effects of selected water chemistry variables on copper pitting propagation in potable water

    Energy Technology Data Exchange (ETDEWEB)

    Ha Hung, E-mail: hmh2n@virginia.edu [Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA (United States); Taxen, Claes [SWEREA-KIMAB, Stockholm (Sweden); Williams, Keith [Department of Physics, University of Virginia, Charlottesville, VA (United States); Scully, John [Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA (United States)

    2011-07-01

    Highlights: > The effects of water composition on pit propagation kinetics on Cu were separated from pit initiation and stabilization using the artificial pit method in a range of dilute HCO{sub 3}{sup -}, SO{sub 4}{sup 2-} and Cl{sup -}-containing waters. > The effective polarization and Ohmic resistance of pits were lower in SO4{sup 2-}-containing solutions and greater in Cl{sup -}-containing solutions. > Relationship between the solution composition and the corrosion product identity and morphology were found. > These, in turn controlled the corrosion product Ohmic resistance and subsequently the pit growth rate. - Abstract: The pit propagation behavior of copper (UNS C11000) was investigated from an electrochemical perspective using the artificial pit method. Pit growth was studied systematically in a range of HCO{sub 3}{sup -}, SO{sub 4}{sup 2-} and Cl{sup -} containing-waters at various concentrations. Pit propagation was mediated by the nature of the corrosion products formed both inside and over the pit mouth (i.e., cap). Certain water chemistry concentrations such as those high in sulfate were found to promote fast pitting that could be sustained over long times at a fixed applied potential but gradually stifled in all but the lowest concentration solutions. In contrast, Cl{sup -} containing waters without sulfate ions resulted in slower pit growth and eventual repassivation. These observations were interpreted through understanding of the identity, amount and porosity of corrosion products formed inside and over pits. These factors controlled their resistive nature as characterized using electrochemical impedance spectroscopy. A finite element model (FEM) was developed which included copper oxidation kinetics, transport by migration and diffusion, Cu(I) and Cu(II) solid corrosion product formation and porosity governed by equilibrium thermodynamics and a saturation index, as well as pit current and depth of penetration. The findings of the modeling were

  12. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.

    Science.gov (United States)

    Canfield, Donald E; Poulton, Simon W; Knoll, Andrew H; Narbonne, Guy M; Ross, Gerry; Goldberg, Tatiana; Strauss, Harald

    2008-08-15

    Earth's surface chemical environment has evolved from an early anoxic condition to the oxic state we have today. Transitional between an earlier Proterozoic world with widespread deep-water anoxia and a Phanerozoic world with large oxygen-utilizing animals, the Neoproterozoic Era [1000 to 542 million years ago (Ma)] plays a key role in this history. The details of Neoproterozoic Earth surface oxygenation, however, remain unclear. We report that through much of the later Neoproterozoic (<742 +/- 6 Ma), anoxia remained widespread beneath the mixed layer of the oceans; deeper water masses were sometimes sulfidic but were mainly Fe2+-enriched. These ferruginous conditions marked a return to ocean chemistry not seen for more than one billion years of Earth history.

  13. Comparison of French and German NPP water chemistry programs

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, U. [VGB Powertech (Germany); Odar, S. [Framatome ANP GmbH (Germany); Stutzmann, A. [EDF/GDL (France)

    2002-07-01

    PWRs in the western hemisphere obey basically the same rules concerning design, choice of material and operational mode. In spite of these basic similarities, the manufacturers of PWRs in different countries developed different solutions in respect to single components in the steam/water cycle. Looking specifically at France and Germany, the difference in the tubing material of the steam generators (Inconel 600/690 chosen by Framatome and Incoloy 800 chosen by the former Siemens KWU) led to specific differences in the respective chemistry programs and in some respect to different 'philosophies' in operating the water/steam cycle. Compared to this, basic differences in operating the reactor coolant system cannot be observed. Nevertheless specific solutions as zinc injection and the use of enriched B-10 are applied in German PWRs. The application of such measures arises from a specific dose rate situation in older PWRs (zinc injection) or from economic reasons mainly (B-10). (authors)

  14. A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

    2006-04-18

    two to four times higher than expected from the commonly assumed primary sources. Such elevated abundances of HOx imply a more photochemically active troposphere than previously thought. This implies that rates of ozone formation in the lower region of the atmosphere and the oxidation of SO? can be enhanced, thus promoting the formation of new aerosol properties. Central to unraveling this chemistry is the ability to assess the photochemical product distributions resulting from the photodissociation of by-products of VOC oxidation. We propose to use state-of-the-art theoretical techniques to develop a detailed understanding of the mechanisms of aerosol formation in multicomponent (mixed chemical) systems and the photochemistry of atmospheric organic species. The aerosol studies involve an approach that determines homogeneous gas-particle nucleation rates from knowledge of the molecular interactions that are used to define properties of molecular clusters. Over the past several years we developed Dynamical Nucleation Theory (DNT), a novel advance in the theoretical description of homogeneous gas-liquid nucleation, and applied it to gas-liquid nucleation of a single component system (e.g., water). The goal of the present research is to build upon these advances by extending the theory to multicomponent systems important in the atmosphere (such as clusters containing sulfuric acid, water, ions, ammonia, and organics). In addition, high-level ab initio electronic structure calculations will be used to unravel the chemical reactivity of the OH radical and water clusters.

  15. Once-through steam generator (OTSG) materials and water chemistry. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Pocock, F.J.; Levstek, D.F.

    1974-01-01

    Materials and water chemistry research results associated with the development of the Oconee-1 Reactor steam generator are presented. A summary of water chemistry data acquired during preoperational testing and power operation to date is also included. These data confirm the operational practicality of the nuclear once-through concept using volatile water treatment and high purity condensate demineralized feedwater.

  16. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  17. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  18. Homogeneous and heterogenized iridium water oxidation catalysts

    Science.gov (United States)

    Macchioni, Alceo

    2014-10-01

    The development of an efficient catalyst for the oxidative splitting of water into molecular oxygen, protons and electrons is of key importance for producing solar fuels through artificial photosynthesis. We are facing the problem by means of a rational approach aimed at understanding how catalytic performance may be optimized by the knowledge of the reaction mechanism of water oxidation and the fate of the catalytic site under the inevitably harsh oxidative conditions. For the purposes of our study we selected iridium water oxidation catalysts, exhibiting remarkable performance (TOF > 5 s-1 and TON > 20000). In particular, we recently focused our attention on [Cp*Ir(N,O)X] (N,O = 2-pyridincarboxylate; X = Cl or NO3) and [IrCl(Hedta)]Na water oxidation catalysts. The former exhibited a remarkable TOF whereas the latter showed a very high TON. Furthermore, [IrCl(Hedta)]Na was heterogenized onto TiO2 taking advantage of the presence of a dandling -COOH functionality. The heterogenized catalyst maintained approximately the same catalytic activity of the homogeneous analogous with the advantage that could be reused many times. Mechanistic studies were performed in order to shed some light on the rate-determining step and the transformation of catalysts when exposed to "oxidative stress". It was found that the last oxidative step, preceding oxygen liberation, is the rate-determining step when a small excess of sacrificial oxidant is used. In addition, several intermediates of the oxidative transformation of the catalyst were intercepted and characterized by NMR, X-Ray diffractometry and ESI-MS.

  19. Supercritical Water Oxidation Data Acquisition Testing

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  20. Tunable water desalination across Graphene Oxide Frameworks

    Science.gov (United States)

    Nicolai, Adrien; Meunier, Vincent

    2014-03-01

    ``Water, water, everywhere, nor any drop to drink.'' wrote Samuel Taylor Coleridge in 1798. Today's scientific advances in water desalination promise to change the second part of the sentence into ``and every drop to drink,'' by transforming sea water into fresh water and quench the thirst of 1.2B people facing shortages of water. To achieve this, the design of nanoporous materials with high water permeability and coupled with high salt rejection capacity is crucial. Graphene Oxide Frameworks (GOF) materials are a class of porous materials consisting of layers of graphene oxide sheets interconnected by linear boronic acid linkers. Water desalination across GOF is studied using classical Molecular Dynamics simulations. We used quantum mechanically obtained boron-related force field parameters to study the diffusion of water molecules inside bulk GOF. Properties, such as the self-diffusion coefficient of water molecules increases linearly with linker concentration n. Further, the desalination performance of GOF membranes reveals that the water permeability of GOF is several orders of magnitude higher than conventional membranes and an high water permeability can be coupled with a 100% efficiency of salt rejection by choosing the appropriate concentration n and thickness h.

  1. Modeling chemistry in and above snow at Summit, Greenland - Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    OpenAIRE

    Thomas, J. L.; J. E. Dibb; Huey, L. G.; J. Liao; D. Tanner; B. Lefer; Glasow, R.; J. Stutz

    2012-01-01

    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the at...

  2. Graphene Oxide as Mine of Knowledge: Using Graphene Oxide to Teach Undergraduate Students Core Chemistry and Nanotechnology Concepts

    Science.gov (United States)

    Kondratowicz, Izabela; Z?elechowska, Kamila

    2017-01-01

    The aim of this laboratory experiment is to utilize graphene oxide (GO) material to introduce undergraduate students to many well-known concepts of general chemistry. GO is a new nanomaterial that has generated worldwide interest and can be easily produced in every well-equipped undergraduate chemical laboratory. An in-depth examination of GO…

  3. Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface

    Science.gov (United States)

    Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.

    2017-09-01

    The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.

  4. Supercritical water oxidation - Microgravity solids separation

    Science.gov (United States)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  5. Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water

    KAUST Repository

    Zou, Houbing

    2015-01-01

    © The Royal Society of Chemistry 2015. This work describes the design, synthesis and analysis of an amphiphilic hollow mesoporous shell encapsulating catalytically active Au@Pd bimetal nanoparticles. The particles exhibited excellent catalytic activity and stability in the aerobic oxidation of primary and secondary alcohols to their corresponding aldehydes or ketones in water when using air as an oxidizing agent under atmospheric pressure.

  6. Surface Chemistry of Nano-Structured Mixed Metal Oxide Films

    Science.gov (United States)

    2012-12-11

    Low Temperature Synthesis and Characterization of Nanocrystalline Titanium Carbide with Tunable Porous Architectures, Chemistry of Materials, (01...of the C–H bond to form carboxyl, both of which decompose via a COd 2 intermediate to evolve CO2 and H2. High surface area, porous titanium carbide films...characterization of nanocrystalline titanium carbide with tunable porous architectures” Chem. Mater. 22, 319-329 (2010). http://dx.doi.org/10.1021/cm902184m 3

  7. Pore water chemistry in the beach sands of central Tamil Nadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandrasekar, N.; Gujar, A.R.; Loveson, V.J.; Rajamanickam, G.V.; Moscow, S.; Manickaraj, D.S.; Chandrasekaran, R.; Chaturvedi, S.K.; Mahesh, R.; Sudha, V.; Josephine, P.J.; Deepa, V.

    As the pore water chemistry- has been considered as one of the prominent base parameters to infer the impact of coastal mining in introducing environmental deterioration, a study in pore water chemistry is planned here along the beaches for a length...

  8. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.;

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  9. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  10. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  11. On the interaction between fuel crud and water chemistry in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxin Chen [Studsvik Material AB, Nykoeping (Sweden)

    2000-01-01

    This report has surveyed the current understanding about the characteristics of fuel crud, its deposition and dissolution behaviour, the influences of water chemistry, and the radioactivity transport in nuclear power plants. The references were mainly sought for from the International Nuclear Information System (INIS) database and some internal reports of Studsvik Material AB. The characteristics of fuel crud from discharged fuel rods have been extensively investigated over the last three decades. Fuel crud mainly consists of iron, nickel and chromium oxides. For BWR fuel crud the main phases are hematite and nonstoichiometric nickel ferrite spinels. For PWR fuel crud the main phases are nonstoichiometric nickel ferrite and nickel metal or nickel oxide. Fuel crud is usually thin and relatively porous in the outer layer but dense in the inner layer. Important information is lacking about the adhesion property of crud particles or agglomerates on fuel rods. Little, if any, information is reported about the characteristics of fuel crud before discharging in pool. It is uncertain if the fuel crud can, after pool discharge, largely preserve its characteristics appearing during reactor operation. Deposition behaviour of corrosion products on fuel rods, in both solid particles and ionic forms in reactor water, has been well studied in the simulated reactor water environments without irradiation. The influences on deposition rate of pH, heat flux, particle size, crud concentration, and flow rate have also been studied in detail. Most of the experimental observations may be qualitatively explained by the theories developed. However, the importance of each influencing parameter remains largely unknown in the complicated reactor water environments, because irradiation, among various influencing factors, may play an important role. The behaviour of crud dissolution has been extensively studied in various reactor water environments. Generally speaking, the more easily crud

  12. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  13. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  14. Chemistry of snow and lake water in Antarctic region

    Indian Academy of Sciences (India)

    Kaushar Ali; Sunil Sonbawane; D M Chate; Devendraa Siingh; P S P Rao; P D Safai; K B Budhavant

    2010-12-01

    Surface snow and lake water samples were collected at different locations around Indian station at Antarctica, Maitri, during December 2004-March 2005 and December 2006-March 2007.Samples were analyzed for major chemical ions. It is found that average pH value of snow is 6.1. Average pH value of lake water with low chemical content is 6.2 and of lake water with high chemical content is 6.5.The Na+ and Cl− are the most abundantly occurring ions at Antarctica. Considerable amount of SO$^{2-}_{4}$ is also found in the surface snow and the lake water which is attributed to the oxidation of DMS produced by marine phytoplankton.Neutralization of acidic components of snow is mainly done by NH$^{+}_{4}$ and Mg2+. The Mg2+, Ca2+ and K+ are nearly equally effective in neutralizing the acidic components in lake water.The NH$^{+}_{4}$ and SO$^{2-}_{4}$ occur over the Antarctica region mostly in the form of (NH4)2SO4.

  15. Functional monolayers on oxide-free silicon surfaces via thiol-ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, M.A.; Paulusse, J.M.J.; Zuilhof, H.

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  16. The impact of oxidation on spore and pollen chemistry: an experimental study

    Science.gov (United States)

    Jardine, Phillip; Fraser, Wesley; Lomax, Barry; Gosling, William

    2016-04-01

    Sporomorphs (pollen and spores) form a major component of the land plant fossil record. Sporomorphs have an outer wall composed of sporopollenin, a highly durable biopolymer, the chemistry of which contains both a signature of ambient ultraviolet-B flux and taxonomic information. Despite the high preservation potential of sporopollenin in the geological record, it is currently unknown how sensitive its chemical signature is to standard palynological processing techniques. Oxidation in particular is known to cause physical degradation to sporomorphs, and it is expected that this should have a concordant impact on sporopollenin chemistry. Here, we test this by experimentally oxidizing Lycopodium (clubmoss) spores using two common oxidation techniques: acetolysis and nitric acid. We also carry out acetolysis on eight angiosperm (flowering plant) taxa to test the generality of our results. Using Fourier Transform infrared (FTIR) spectroscopy, we find that acetolysis removes labile, non-fossilizable components of sporomorphs, but has a limited impact upon the chemistry of sporopollenin under normal processing durations. Nitric acid is more aggressive and does break down sporopollenin and reorganize its chemical structure, but when limited to short treatments (i.e. ≤10 min) at room temperature sporomorphs still contain most of the original chemical signal. These findings suggest that when used carefully oxidation does not adversely affect sporopollenin chemistry, and that palaeoclimatic and taxonomic signatures contained within the sporomorph wall are recoverable from standard palynological preparations.

  17. Circular Dichroism Investigation of Dess-Martin Periodinane Oxidation in the Organic Chemistry Laboratory

    Science.gov (United States)

    Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G.

    2005-01-01

    Dess-Martin periodinane oxidation is an experiment that provides an avenue to the introduction of Circular Dichroism (CD) spectroscopy in organic chemistry curriculum as a diagnostic tool for examination of the results of a familiar reaction, and absolute configuration. From the experiment, students increased their understanding of CD theory and…

  18. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos Marie Johannes; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  19. Circular Dichroism Investigation of Dess-Martin Periodinane Oxidation in the Organic Chemistry Laboratory

    Science.gov (United States)

    Reed, Nicole A.; Rapp, Robert D.; Hamann, Christian S.; Artz, Pamela G.

    2005-01-01

    Dess-Martin periodinane oxidation is an experiment that provides an avenue to the introduction of Circular Dichroism (CD) spectroscopy in organic chemistry curriculum as a diagnostic tool for examination of the results of a familiar reaction, and absolute configuration. From the experiment, students increased their understanding of CD theory and…

  20. Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry

    NARCIS (Netherlands)

    Caipa Campos, Mabel A.; Paulusse, Jos M.J.; Zuilhof, Han

    2010-01-01

    Thiol–ene click chemistry was used for the attachment of a variety of functional molecules onto oxide-free Si(111) surfaces using very mild conditions; the efficient nature of this coupling strategy allowed for successful light-induced micropatterning and thus provides a novel route towards biofunct

  1. CHEMISTRY OF SO2 AND DESOX PROCESSES ON OXIDE NANOPARTICLES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ, J.A.

    2006-06-30

    On bulk stoichiometric oxides, SO{sub 2} mainly reacts with the O centers to form SO{sub 3} or SO{sub 4} species that decompose at elevated temperatures. Adsorption on the metal cations occurs below 300 K and does not lead to cleavage of the S-O bonds. In bulk oxides, the occupied cation bands are too stable for effective bonding interactions with the LUMO of SO{sub 2}. The effects of quantum confinement on the electronic properties of oxide nanoparticles and the structural defects that usually accompany these systems in general favor the bonding and dissociation of SO{sub 2}. Thus, nanoparticles of MgO, CaO, SrO, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CeO{sub 2} are all more efficient for sequestering SO{sub 2} than the corresponding bulk oxides. Structural imperfections in pure or metal-doped ceria nanoparticles accelerate the reduction of SO{sub 2} by CO by facilitating the formation and migration of O vacancies in the oxide surface.

  2. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry.

    Science.gov (United States)

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-06-04

    Metal oxides such as ferric or aluminum oxides can play an important role in the retention of bacteria in granular aquatic environments; however, their role in bacterial inactivation is not well understood. Herein, we examined the role of water chemistry and surface chemistry on the short-term inactivation rates of three bacteria when adhered to surfaces. To evaluate the role of water chemistry on the inactivation of attached bacteria, the loss in membrane integrity of bacteria attached to an iron oxide (Fe2O3) surface was measured over a range of water ionic strengths of either monovalent or divalent salts in the absence of a growth substrate. The influence of surface chemistry on the inactivation of attached bacteria was examined by measuring the loss in membrane integrity of cells attached to three surfaces (SiO2, Fe2O3, and Al2O3) at a specific water chemistry (10 mM KCl). Bacteria were allowed to attach onto the SiO2 or metal oxide coated slides mounted in a parallel-plate flow cell, and their inactivation rate (loss in membrane integrity) was measured directly without removing the cells from the surface and without disturbing the system. X-ray photoelectron spectroscopy analysis revealed a high correlation between the amounts of C-metal or O-metal bonds and the corresponding bacterial inactivation rates for each surface. Finally, for all three surfaces, a consistent increase in inactivation rate was observed with the type of bacterium in the order: Enterococcus faecalis, Escherichia coli O157:H7, and Escherichia coli D21f2.

  3. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Science.gov (United States)

    Grant, Rachel A.; Halliday, Tim; Balderer, Werner P.; Leuenberger, Fanny; Newcomer, Michelle; Cyr, Gary; Freund, Friedemann T.

    2011-01-01

    Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O− in a matrix of O2−. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals. PMID:21776211

  4. Ground water chemistry changes before major earthquakes and possible effects on animals.

    Science.gov (United States)

    Grant, Rachel A; Halliday, Tim; Balderer, Werner P; Leuenberger, Fanny; Newcomer, Michelle; Cyr, Gary; Freund, Friedemann T

    2011-06-01

    Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth's crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O- in a matrix of O2-. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth's surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L'Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals.

  5. Evolution of water chemistry in natural acidic environments in Yangmingshan, Taiwan.

    Science.gov (United States)

    Ezoe, Yuka; Lin, Cheng-Huang; Noto, Masami; Watanabe, Yoshihiro; Yoshimura, Kazuhisa

    2002-08-01

    In Yangmingshan National Park, located in the northern part of the Taiwan Island, there is a very rare area where fish (Channa asiatica) live in spite of acid environments. The origin of the acid in local acid ponds and rivers and the evolution of the water chemistry are discussed on the basis of sulfur stable isotope ratios and chemical equilibria. One of the sources of the acid is sulfuric acid, which is derived from the oxidation of hydrogen sulfide in volcanic gas gushing out from fumaroles around the area and from acid deposition supplied from Taipei City. It is also derived from the oxidation of pyrite: the sulfur stable isotope ratios of delta 34S of +1@1000 to +4@1000 (relative to CDT) of sulfate in acid pond waters (pH 3-4) could be related to those of hydrogen sulfide in volcanic gas, pyrite in local pond sediments and soils, and sulfate in rain water. One acid source is sulfuric and hydrochloric acids arising in springs from geothermal activity: the delta 34S values were characterised by +13@1000 to +17@1000 sulfate-S, which was provided by a disproportionation reaction of sulfur dioxide in the depths. Another acid source could be the oxidation of iron(II). Under acidic conditions, the water-rock reaction gives rise to high concentrations of aluminium and iron. While flowing down surface streams, iron(II) is oxidised to iron(III) and then hydrolysed to cause further acidification under oxic conditions. The concentrations of iron and aluminium are controlled by redox and dissolution equilibria.

  6. Ground Water Chemistry Changes before Major Earthquakes and Possible Effects on Animals

    Directory of Open Access Journals (Sweden)

    Friedemann T. Freund

    2011-06-01

    Full Text Available Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth’s crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O– in a matrix of O2–. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth’s surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L’Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals.

  7. Multiscale Modeling of Chemistry in Water: Are We There Yet?

    Science.gov (United States)

    Bulo, Rosa E; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe

    2013-12-10

    This paper critically evaluates the state of the art in combined quantum mechanical/molecular mechanical (QM/MM) approaches to the computational description of chemistry in water and supplies guidelines for the setup of customized multiscale simulations of aqueous processes. We differentiate between structural and dynamic performance, since some tasks, e.g., the reproduction of NMR or UV-vis spectra, require only structural accuracy, while others, i.e., reaction mechanisms, require accurate dynamic data as well. As a model system for aqueous solutions in general, the approaches were tested on a QM water cluster in an environment of MM water molecules. The key difficulty is the description of the possible diffusion of QM molecules into the MM region and vice versa. The flexible inner region ensemble separator (FIRES) approach constrains QM solvent molecules within an active (QM) region. Sorted adaptive partitioning (SAP), difference-based adaptive solvation (DAS), and buffered-force (BF) are all adaptive approaches that use a buffer zone in which solvent molecules gradually adapt from QM to MM (or vice versa). The costs of SAP and DAS are relatively high, while BF is fast but sacrifices conservation of both energy and momentum. Simulations in the limit of an infinitely small buffer zone, where DAS and SAP become equivalent, are discussed as well and referred to as ABRUPT. The best structural accuracy is obtained with DAS, BF, and ABRUPT, all three of similar quality. FIRES performs very well for dynamic properties localized deep within the QM region. By means of elimination DAS emerges as the best overall compromise between structural and dynamic performance. Eliminating the buffer zone (ABRUPT) improves efficiency and still leads to surprisingly good results. While none of the many new flavors are perfect, all together this new field already allows accurate description of a wide range of structural and dynamic properties of aqueous solutions.

  8. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    Science.gov (United States)

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  9. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols.

    Science.gov (United States)

    Zeb, A

    2015-05-01

    Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.

  10. Detecting oxidized contaminants in water using sulfur-oxidizing bacteria.

    Science.gov (United States)

    Van Ginkel, Steven W; Hassan, Sedky H A; Ok, Yong Sik; Yang, Jae E; Kim, Yong-Seong; Oh, Sang-Eun

    2011-04-15

    For the rapid and reliable detection of oxidized contaminants (i.e., nitrite, nitrate, perchlorate, dichromate) in water, a novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid in the presence of oxygen. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. When oxidized contaminants were added to the system, the effluent EC decreased and the pH increased due to the inhibition of the SOB. We found that the system can detect these contaminants in the 5-50 ppb range (in the case of NO(3)(-), 10 ppm was detected), which is lower than many whole-cell biosensors to date. At low pH, the oxidized contaminants are mostly in their acid or nonpolar, protonated form which act as uncouplers and make the SOB biosensor more sensitive than other whole-cell biosensors which operate at higher pH values where the contaminants exist as dissociated anions. The SOB biosensor can detect toxicity on the order of minutes to hours which can serve as an early warning so as to not pollute the environment and affect public health.

  11. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    Science.gov (United States)

    2015-06-23

    Characterization of these ligand- coated oxides included laser desorption mass spectrometry, infrared, Raman and UV - visible spectroscopy ...desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV - visible absorption and...clusters are studied with laser desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV

  12. Handbook of green chemistry, green solvents, reactions in water

    CERN Document Server

    Anastas, Paul T

    2014-01-01

    There has been dramatic growth in the community of researchers and industrialists working in the area of Green Chemistry. There has been an increasing recognition by a wide-range of scientists and engineers in the chemical enterprise that the framework of Green Chemistry is relevant and enabling to their work. There has been a significant body of work that has accumulated over the past decade that details the breakthroughs, innovation and creativity within Green Chemistry and Engineering. While there have been edited volumes on Green Chemistry that collect a limited number of papers often o

  13. Water Clustering on Nanostructured Iron Oxide Films

    Energy Technology Data Exchange (ETDEWEB)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule–molecule and molecule–surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire´-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire´ structure.

  14. Water clustering on nanostructured iron oxide films.

    Science.gov (United States)

    Merte, Lindsay R; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A; Zeuthen, Helene; Knudsen, Jan; Lægsgaard, Erik; Wendt, Stefan; Mavrikakis, Manos; Besenbacher, Flemming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing molecule-molecule and molecule-surface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moiré-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moiré structure.

  15. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  16. Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets

    Institute of Scientific and Technical Information of China (English)

    Liang Kou; Hongkun He; Chao Gao

    2010-01-01

    A facile “click chemistry” approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly (ethylene glycol) of different molecular weights, polystyrene, palmitic acid and various amino acids was presented. FTIR, TGA, Raman spectroscopy, XPS, XRD, TEM, AFM and SEM were utilized to characterize the products. High degree of functionalization was achieved on the flat surfaces of graphene oxide, affording polymer-grafted 2D brushes and amino acids-immobilized nanosheets, which show improved solubility in organic solvents. The click chemistry strategy reported herein provides a facile and general method for functionalization of graphene oxide with macromolecules and desired biomolecules.

  17. Surface Oxidation Phenomena of Ni-Based Alloy 600 in PWR Primary Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yun Soo; Hwang, Seong Sik; Kim, Sung Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    There is, nevertheless, growing evidence in support for the internal oxidation model by Scot, in which grain boundary oxidation is responsible for embrittlement and cracking. Grain boundaries can act as an enhanced diffusion path for oxidation, and grain boundary oxidation can be regarded as a precursor for crack initiation. Oxidation of the grain boundary in almost all nickel-based alloys exposed to primary water is known to be detrimental for grin boundary cohesion. Panter et al. showed that the crack initiation time is strongly reduced when the specimens are pre-exposed in a simulated PWR environment in the absence of applied stress. The changes of the grain boundary structure and chemistry owing to oxygen penetration can increase the sensitivity to PWSCC under a load since grain boundary oxidization significantly weakens the grain boundary strength. Most of the important experimental results obtained are believed to correlate with the oxidation penetration into the material. A spinel structure was detected by XRD in the oxide layers. Several different types of oxide scales were found by SEM examination on the corroded surface of Alloy 600 after an immersion test in the primary water environments. Surface grain boundaries were oxidized by oxygen penetration into the matrix through grain boundaries. Grain boundary oxidization is thought to be the main reason for intergranular cracking in this alloy in a primary water environment of a PWR.

  18. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.

    Science.gov (United States)

    Harvey, F E; Sibray, S S

    2001-01-01

    Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.

  19. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  20. Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US

    Directory of Open Access Journals (Sweden)

    S. Coburn

    2015-10-01

    Full Text Available The elevated deposition of atmospheric mercury over the Southeastern United States is currently not well understood. Here we measure partial columns and vertical profiles of bromine monoxide (BrO radicals, a key component of mercury oxidation chemistry, to better understand the processes and altitudes at which mercury is being oxidized in the atmosphere. We use the data from a ground-based MAX-DOAS instrument located at a coastal site ~ 1 km from the Gulf of Mexico in Gulf Breeze, FL, where we had previously detected tropospheric BrO (Coburn et al., 2011. Our profile retrieval assimilates information about stratospheric BrO from the WACCM chemical transport model, and uses only measurements at moderately low solar zenith angles (SZA to estimate the BrO slant column density contained in the reference spectrum (SCDRef. The approach has 2.6 degrees of freedom, and avoids spectroscopic complications that arise at high SZA; knowledge about SCDRef helps to maximize sensitivity in the free troposphere (FT. A cloud-free case study day with low aerosol load (9 April 2010 provided optimal conditions for distinguishing marine boundary layer (MBL: 0–1 km and free tropospheric (FT: 1–15 km BrO from the ground. The average daytime tropospheric BrO vertical column density (VCD of ~ 2.3 × 1013 molec cm−2 (SZA 5 molec cm−2 s−1 for bromine, while contributions from ozone (O3 and chlorine (Cl were 0.9 × 105 and 0.2 × 105 molec cm−2 s−1, respectively. The GOM formation rate is sensitive to recently proposed atmospheric scavenging reactions of the HgBr adduct by nitrogen dioxide (NO2, and to a lesser extent also HO2 radicals. Using a 3-D chemical transport model, we find that surface GOM variations are typical also of other days, and are mainly derived from the free troposphere. Bromine chemistry is active in the FT over Gulf Breeze, where it forms water-soluble GOM that is subsequently available for wet scavenging by thunderstorms or transport to

  1. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Science.gov (United States)

    Chen, Junjie; Xiao, Qian; Lu, Zhanpeng; Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan

    2017-06-01

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters.

  2. REDOX CHEMISTRY OF MOLYBDENUM IN NATURAL WATERS AND ITS INVOLVEMENT IN BIOLOGICAL EVOLUTION

    Directory of Open Access Journals (Sweden)

    Deli eWang

    2012-12-01

    Full Text Available The transition element molybdenum (Mo possesses diverse valances (+II to +VI, and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V been separated from Mo(VI in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferrigenous and sulfidic conditions, prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI became a selective advantage both for prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth’s history.

  3. Three-Carbon Planetary Chemistry - Propylene and Propylene Oxide

    Science.gov (United States)

    Hudson, Reggie L.; Yocum, Katarina; Loeffler, Mark

    2016-10-01

    We recently have published new studies of solid CO2, CH4, C2H2, C2H4, and C2H6, recording new, and in some cases the first, infrared (IR) spectra of the amorphous phases of these compounds and correcting multiple problems and contradictions in the literature that have persisted for several decades and influenced both planetary and interstellar studies (e.g., Hudson et al. 2014, 2015). We now extend this work by examining two three-carbon molecules, the acyclic propylene (C3H6) and the cyclic molecule propylene oxide (OC3H6). Both molecules have been detected in low-temperature astronomical environments (Titan, interstellar medium (ISM)) and are suspected in others. However, in contrast to the astronomical relevance of these compounds, there are almost no laboratory measurements of spectra and other properties for either of them at low temperatures. Here we report new results on ices containing propylene and propylene oxide including IR spectra of multiple solid phases and measurements of phase transition temperatures, IR band strengths, refractive indices, vapor pressures, and sublimation energies. Radiation-chemical reactions connecting propylene and propylene oxide have been investigated for possible applications to the moon, Europa, TNOs, comets, and the ISM, and first results will be presented. Propylene oxide is of particular interest as it recently was announced (McGuire et al. 2016) as the first chiral molecule identified in the ISM. [Our work was supported by NASA Goddard's DREAM2 center, funded by NASA's SSERVI program, and by the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  4. Produced water chemistry data for samples from four petroleum wells, Southern San Joaquin Valley, California, 2014

    Science.gov (United States)

    Davis, Tracy A.; Kulongoski, Justin; McMahon, Peter B.

    2016-01-01

    The U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board collected produced water samples from four petroleum wells in the southern San Joaquin Valley on November 5, 2014. This digital dataset contains the site information, analyzing laboratories and methods, and water chemistry and quality control results for these samples. Water chemistry results include concentrations of dissolved hydrocarbon gases and their isotopic composition; concentrations of inorganic constituents including salinity, major ions, and nutrients; dissolved organic carbon; and stable isotopes of water and strontium dissolved in water. Samples were analyzed by 5 laboratories operated or contracted by the USGS.

  5. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2016-10-17

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  6. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani; Ujjal Ghosh; Mohammad Saad Anis; Konstantinos Kakosimos; Rajesh Shende; Marc A. Rosen

    2016-01-01

    The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and wat...

  7. Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Michael P [ORNL; Fayek, Mostafa [ORNL; Keiser, James R [ORNL; Meyer III, Harry M [ORNL; More, Karren Leslie [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

    2011-01-01

    It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

  8. Results from an in-situ pore water chemistry experiment in opalinus clay: evidence of microbially mediated anaerobic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P.; Mettler, S. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Canniere, P. de [SCK-CEN, Mol (Belgium); Pearson, F.J. [Ground-Water Geochemistry, New Bern (United States); Gaucher, E. [BRGM, 75 - Paris (France); Hohener, P. [BioRem, CH (Switzerland); Eichinger, L. [Hydroisotop, Schweitenkirchen (Germany); Mader, U. [Bern Univ., CH (Switzerland); Vinsot, A. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Gabler, H.E. [Federal Institute for Geosciences and Natural Resources (BGR), Hannover (Germany); Hama, K. [JNC - Japan Nuclear Cycle Development Institute (JNC) Horonobe (Japan); Hernan, P. [ENRESA, Madrid (Spain)

    2005-07-01

    Low permeability argillaceous rocks are considered potential host rocks for radioactive waste disposal in a number of countries. Characterisation of pore water chemistry is important for assessing radionuclide behaviour, but technically challenging because of intimate clay-water association. The application of different techniques, such as in-situ extraction, squeezing and leaching has led to improved understanding. However, because of potential experimental artefacts (e.g. degassing of CO{sub 2}, ingress of O{sub 2} ), significant uncertainties remain, especially with regard to pH/pCO{sub 2} and Eh conditions. Moreover, the pore water chemistry may be perturbed by the drilling procedure itself, thus leading to oxidation and biodegradation effects. In order to reduce uncertainties mentioned above and to gain deeper insight into geochemical processes regulating pH and Eh, the internationally supported Pore water Chemistry (PC) experiment was started at the Mont Terri Rock Laboratory in 2002. The basis of the study is an in-situ experiment employing the diffusive equilibration method. The field study was complemented with lab investigations which include chemical analyses for principal inorganic solutes, for reduced sulphur species and for a variety of specific organic compounds, gas measurements of core samples and a core infiltration study based on advective displacement. (authors)

  9. Insights Into Atmospheric Aqueous Organic Chemistry Through Controlled Experiments with Cloud Water Surrogates

    Science.gov (United States)

    Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.

    2011-12-01

    There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.

  10. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  11. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  12. Malheur NWR: Initial Survey Instructions for Water Chemistry/Quality Collection of Water Bodies in Malheur National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This survey provides the baseline understanding of aquatic health in our rivers, lakes, and marshes. The Refuge staff lacks consistent water chemistry measurements,...

  13. Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers.

    Science.gov (United States)

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2014-03-14

    Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M(2+/3+)O2 triangular layers is reported.

  14. Evolution of the water chemistry of Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Gabriele A. TARTARI

    2001-02-01

    Full Text Available Since 1963 Lake Orta has been an emblematic case of industrial pollution by heavy metals and acidifying compounds (ammonium sulphate, to the extent that up to 1989 it was the largest acidified deep lake in the world. The low pH values of between 3.9 and 4.4 helped to keep high the levels of toxic compounds in solution, such as copper, aluminium, zinc and nickel. The liming performed in 1989-1990 brought the pH back to neutral values, determining the precipitation of the metals and the recovery of normal chemical conditions. The main results of researches conducted continuously on the lake water chemistry from 1988 to March 2000 are as follows. The whole water mass has been completely neutralised since the beginning of 1991; pH subsequently rose until in 1999-2000 it reached the values (6.7-6.9 units of the years when the lake was in a natural condition. The alkaline reserve showed a continuous increase after the lake water was neutralised, until March 2000, when total alkalinity values levelled off at 0.19 meq l-1. The increase in pH has allowed a full recovery of nitrification processes; in fact, during the liming period the concentration of ammonium was drastically reduced, by over 80%; ammonium has been practically absent since the end of 1992, and it may be affirmed that the primary cause of the acidification of the lake has been completely removed. The nitrate content in the lake has almost halved compared with the mean concentrations measured before the liming; in March 2000 mean values of 2.0 mg N l-1 were measured, and it is likely that these values will fall further in the next few years, to below 1.5 mg N l-1. The concentrations of toxic metals have shown a progressive reduction, to the extent that in 1999 the content of copper and aluminium was close to zero in the whole water mass. The situation of Lake Orta has therefore improved enormously, and is now very similar to the original condition of the lake before it was polluted

  15. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Directory of Open Access Journals (Sweden)

    Z. Peng

    2015-09-01

    Full Text Available Oxidation flow reactors (OFRs using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D, O(3P, and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH and external OH reactivity (OHRext, as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D, O(3P, and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab

  16. Efficient functionalization of oxide-free silicon(111) surfaces: thiol-yne versus thiol-ene click chemistry.

    Science.gov (United States)

    Bhairamadgi, Nagendra S; Gangarapu, Satesh; Caipa Campos, Mabel A; Paulusse, Jos M J; van Rijn, Cees J M; Zuilhof, Han

    2013-04-09

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol-ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbonyl cysteine, thio-β-d-glucose tetraacetate, thioacetic acid, thioglycerol, thioglycolic acid, and 1H,1H,2H,2H-perfluorodecanethiol was immobilized using TYC under photochemical conditions, and all modified surfaces were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy (including a simulation thereof by density functional calculations), and infrared absorption reflection spectroscopy. Surface-bound TYC proceeds with an efficiency of up to 1.5 thiols per alkyne group. This high surface coverage proceeds without oxidizing the Si surface. TYC yielded consistently higher surface coverages than TEC, due to double addition of thiols to alkyne-terminated monolayers. This also allows for the sequential and highly efficient attachment of two different thiols onto an alkyne-terminated monolayer.

  17. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    Science.gov (United States)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  18. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol-yne versus Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  19. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol–yne versus Thiol–ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  20. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol–yne versus Thiol–ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, Jos Marie Johannes; van Rijn, C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as

  1. Surface chemistry of the atomic layer deposition of metals and group III oxides

    Science.gov (United States)

    Goldstein, David Nathan

    Atomic Layer Deposition (ALD) is a thin-film growth technique offering precise control of film thickness and the ability to coat high-aspect-ratio features such as trenches and nanopowders. Unlike other film growth techniques, ALD does not require harsh processing conditions and is not limited by line-of-sight deposition. Emerging applications for ALD materials include semiconductor devices, gas sensors, and water-diffusion barriers. The chemistry behind ALD involves understanding how the precursors interact with surfaces to deposit the desired material. All ALD precursors need to be stable on the substrate to ensure self-limiting behavior yet reactive enough to be easily removed with the second reagent. Recent precursor development has provided many volatile organometallic compounds for most of the periodic table. As the number of precursors increases, proper precursor choice becomes crucial. This is because the film properties, growth rates, and growth temperature vary widely between the precursors. Many of the above traits can be predicted with knowledge of the precursor reaction mechanisms. This thesis aims to link surface reaction mechanisms to observed growth and nucleation trends in metal and oxide ALD systems. The first portion of this thesis explores the mechanisms of two ALD oxide systems. First, I examine the mechanism of ALD alumina with ozone. Ozone is used as an oxidant in the semiconductor industry because the deposited Al 2O3 films possess better insulating properties and ozone is easier to purge from a vacuum system. FT-IR analysis reveals a complicated array of surface intermediates such as formate, carbonate, and methoxy groups that form during Al2O3 growth with ozone. Next, a new method to deposit thin films of Ga2O3 is introduced. Gallium oxide is a transparent conducting oxide that needs expensive solid precursors to be deposited by ALD. I show that trimethylgallium is a good high-temperature ALD precursor that deposits films of Ga2O 3 with

  2. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  3. the systemic approach to teaching and learning: water chemistry

    African Journals Online (AJOL)

    unesco

    including tourism, commerce, economy, security, education etc. and after globalization became a reality .... of water & water in our environment, Water cycle, Water pollution , etc. ... The undefined relationships are developed systemically. After.

  4. Supercritical water oxidation of products of human metabolism

    Science.gov (United States)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  5. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    Energy Technology Data Exchange (ETDEWEB)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  6. Fe-Oxides in Water Remediation Technologies

    Science.gov (United States)

    Vaclavikova, M.; Stefusova, K.; Gallios, G. P.

    Water is essential for life, a strategic resource for every country and population. Its availability and sanitary safety is highly connected with the health and economic status of a population. The burden of disease due to polluted water is a major public health problem throughout the world. Many pollutants in water streams have been identified as toxic and harmful to the environment and human health, and among them arsenic, mercury and cadmium are considered those with the highest priority. Iron is the fourth most abundant element in the Earth's crust, and reactions involving iron play a major role in the environmental cycling of a range of important contaminants. Our earlier research has shown that Fe oxides/oxyhydroxides are particularly effective adsorbents of a range of contaminants (toxic metals), due to their high (reactive) specific surface area. It has been proven that Fe is particularly effective in As removal as a chemical bond is created on Fe surface and As is stabilised and can be safely deposited. Removal of contaminants from waste streams through precipitation with (hydrous) ferric oxides is an established methodology in a number of industrial processes (high density sludge systems for arsenic control in effluents from the mining industry, and in the treatment of textile dye effluent).

  7. Low-temperature combustion chemistry of n-butanol: principal oxidation pathways of hydroxybutyl radicals.

    Science.gov (United States)

    Welz, Oliver; Zádor, Judit; Savee, John D; Sheps, Leonid; Osborn, David L; Taatjes, Craig A

    2013-11-21

    Reactions of hydroxybutyl radicals with O2 were investigated by a combination of quantum-chemical calculations and experimental measurements of product formation. In pulsed-photolytic Cl-initiated oxidation of n-butanol, the time-resolved and isomer-specific product concentrations were probed using multiplexed tunable synchrotron photoionization mass spectrometry (MPIMS). The interpretation of the experimental data is underpinned by potential energy surfaces for the reactions of O2 with the four hydroxybutyl isomers (1-hydroxybut-1-yl, 1-hydroxybut-2-yl, 4-hydroxybut-2-yl, and 4-hydroxybut-1-yl) calculated at the CBS-QB3 and RQCISD(T)/cc-pV∞Z//B3LYP/6-311++G(d,p) levels of theory. The observed product yields display substantial temperature dependence, arising from a competition among three fundamental pathways: (1) stabilization of hydroxybutylperoxy radicals, (2) bimolecular product formation in the hydroxybutyl + O2 reactions, and (3) decomposition of hydroxybutyl radicals. The 1-hydroxybut-1-yl + O2 reaction is dominated by direct HO2 elimination from the corresponding peroxy radical forming butanal as the stable coproduct. The chemistry of the other three hydroxybutylperoxy radical isomers mainly proceeds via alcohol-specific internal H-atom abstractions involving the H atom from either the -OH group or from the carbon attached to the -OH group. We observe evidence of the recently reported water elimination pathway (Welz et al. J. Phys. Chem. Lett. 2013, 4 (3), 350-354) from the 4-hydroxybut-2-yl + O2 reaction, supporting its importance in γ-hydroxyalkyl + O2 reactions. Experiments using the 1,1-d2 and 4,4,4-d3 isotopologues of n-butanol suggest the presence of yet unexplored pathways to acetaldehyde.

  8. Supercritical water oxidation of landfill leachate.

    Science.gov (United States)

    Wang, Shuzhong; Guo, Yang; Chen, Chongming; Zhang, Jie; Gong, Yanmeng; Wang, Yuzhen

    2011-01-01

    In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N(2) is the main product, and the formation of NO(2) and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 °C, reaction time of 50-300s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH(3) conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH(3) is a refractory compound in supercritical water. The conversion of COD and NH(3) were higher in the presence of MnO(2) than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH(3) conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH(3). The activation energy with and without catalyst for NH(3) oxidation were 107.07 ± 8.57 kJ/mol and 83.22 ± 15.62 kJ/mol, respectively.

  9. Water defluoridation by aluminium oxide-manganese oxide composite material.

    Science.gov (United States)

    Alemu, Sheta; Mulugeta, Eyobel; Zewge, Feleke; Chandravanshi, Bhagwan Singh

    2014-08-01

    In this study, aluminium oxide-manganese oxide (AOMO) composite material was synthesized, characterized, and tested for fluoride removal in batch experiments. AOMO was prepared from manganese(II) chloride and aluminium hydroxide. The surface area of AOMO was found to be 30.7m2/g and its specific density was determined as 2.78 g/cm3. Detailed investigation of the adsorbent by inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry, and ion chromatography (for sulphate only) showed that it is composed of Al, Mn, SO4, and Na as major components and Fe, Si, Ca, and Mg as minor components. Thermogravimetric analysis was used to study the thermal behaviour of AOMO. X-ray diffraction analysis showed that the adsorbent is poorly crystalline. The point of zero charge was determined as 9.54. Batch experiments (by varying the proportion of MnO, adsorbent dose, contact time, initial F concentration, and raw water pH) showed that fluoride removal efficiency ofAOMO varied significantly with percentage of MnO with an optimum value of about I11% of manganese oxide in the adsorbent. The optimum dose of the adsorbent was 4 g/L which corresponds to the equilibrium adsorption capacity of 4.8 mg F-/g. Both the removal efficiency and adsorption capacity showed an increasing trend with an increase in initial fluoride concentration of the water. The pH for optimum fluoride removal was found to be in the range between 5 and 7. The adsorption data were analysed using the Freundlich, Langmuir, and Dubinirn-Radushkevich models. The minimum adsorption capacity obtained from the non-linear Freundlich isotherm model was 4.94 mg F-/g and the maximum capacity from the Langmuir isotherm method was 19.2mg F-/g. The experimental data of fluoride adsorption on AOMO fitted well to the Freundlich isotherm model. Kinetic studies showed that the adsorption is well described by a non-linear pseudo-second-order reaction model with an average rate constant of 3

  10. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    Indian Academy of Sciences (India)

    Chinmaya Maharana; Sandeep Kumar Gautam; Abhay Kumar Singh; Jayanth K Tripathi

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO$^{-}_{3}$ are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ∼6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km−2 yr−1, which is less than the reported 72 tons km−2 yr−1 of the Ganga River and higher than the global average of 36 tons km−2 yr−1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  11. Characteristics of meaningful chemistry education - The case of water quality

    NARCIS (Netherlands)

    Westbroek, Hanna Barbara

    2005-01-01

    This thesis addresses the question of how to involve students in meaningful chemistry education by a proper implementation of three characteristics of meaningful: a context, a need-to-know approach and attention for student input. The characteristics were adopted as solution strategies for

  12. An evaluation of design characteristics for the water chemistry for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. S.; Kim, J. P.; Kim, H. Y.; Yoon, J. H.; Lee, D. J

    1998-07-01

    SMART does not have boron as a chemical shim using boron and does not operate purification system in power operation. However, the water chemistry applied in SMART still needs to meet the integrity and reliable operation requirements. This report reviews the corrosion resistance of the construction materials for SMART and the chemistry operating parameters qualitatively by comparing with those of PWR. The review shows that the construction materials for SMART, such as titanium alloys for steam generator tube materials and zirconium alloy for fuel cladding have good guarantee the integrity and reliability of the primary circuit and fuel cladding as well as the secondary circuit. This review results can be utilized as input data for SMART chemistry design, such as chemistry design guide, and chemistry manual. (author). 25 refs., 8 tabs., 17 figs

  13. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    Science.gov (United States)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  14. State of the art of water chemistry relating to preventive maintenance in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shunji; Hirano, Hideo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2000-07-01

    Water chemistry of the light water reactors (LWRs) is conducted under aims at ensuring integrity of materials composing the primary system, ensuring integrity of fuel rods, suppressing radiation exposure dose on the plant workers, and ensuring volume reduction of the radioactive wastes. A variety of countermeasures, including modification of materials and structures have been taken for the above aims in addition to the water chemistry. Recently, countermeasures for SCC of in-core structures and control of scale deposition in the secondary system of SG are increasingly required as further countermeasures of preventive maintenance of the BWR and the PWR, respectively. As countermeasures from aspect of the water chemistry, some studies are in progress on application of hydrogen injection and noble metal chemical addition along it for in-core SCC of the BWR. Among 51 units of the LWR under operation in Japan at present, four units have been operated for more than 25 years. Studies have been in progress, therefore, on the water chemistry technology of the preventive maintenance for long-term aging. Here was also described on trends in the preventive maintenance water chemistry for the BWR in Japan. (G.K.)

  15. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations

    Directory of Open Access Journals (Sweden)

    Kostov A.

    2005-01-01

    Full Text Available Titanium and its alloys interstitially dissolve a large amount of impurities such as oxygen and nitrogen, which degrade the mechanical and physical properties of alloys. On the other hand crucible oxides based on CaO, ZrO2 Y2O3, etc., and their spinels (combination of two or more oxides can be used for melting titanium and its alloys. However, the thermodynamic behavior of calcium, zirconium, yttrium on the one side, and oxygen on the other side, in molten Ti and Ti-Al alloys have not been made clear and because of that, it is very interesting for research. Owing of literature data, as well as these crucibles are cheaper than standard crucibles for melting titanium and titanium alloys, in this paper will be presented the results of selection of thermo-chemistry analysis with the aim to determine the crucible oxide stability in contact with molten titanium and titanium-aluminum alloys.

  16. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.

    Science.gov (United States)

    Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E

    2011-01-01

    Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.

  17. Electrochemical water oxidation with carbon-grafted iridium complexes.

    Science.gov (United States)

    deKrafft, Kathryn E; Wang, Cheng; Xie, Zhigang; Su, Xin; Hinds, Bruce J; Lin, Wenbin

    2012-02-01

    Hydrogen production from water splitting provides a potential solution to storing harvested solar energy in chemical fuels, but this process requires active and robust catalysts that can oxidize water to provide a source of electrons for proton reduction. Here we report the direct, covalent grafting of molecular Ir complexes onto carbon electrodes, with up to a monolayer coverage. Carbon-grafted Ir complexes electrochemically oxidize water with a turnover frequency of up to 3.3 s(-1) and a turnover number of 644 during the first hour. Electrochemical water oxidation with grafted catalysts gave enhanced rates and stability compared to chemically driven water oxidation with the corresponding molecular catalysts. This strategy provides a way to systematically evaluate catalysts under tunable conditions, potentially providing new insights into electrochemical water oxidation processes and water oxidation catalyst design.

  18. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces.

    Science.gov (United States)

    Chapleski, Robert C; Zhang, Yafen; Troya, Diego; Morris, John R

    2016-07-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, researchers are developing an understanding for how surface structure and functionality affect interfacial chemistry with this class of highly oxidizing pollutants. Together with future research initiatives, these studies will provide a more complete description of atmospheric chemistry and help others more accurately predict the properties of aerosols, the environmental impact of interfacial oxidation, and the concentrations of tropospheric gases.

  19. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  20. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy;

    2015-01-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment ...

  1. Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network

    Science.gov (United States)

    Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen

    2013-01-01

    Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...

  2. An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.

    Science.gov (United States)

    Welch, Lawrence E.; Mossman, Daniel M.

    1994-01-01

    Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…

  3. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    Science.gov (United States)

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  4. Synthesis and Characterization of a Layered Manganese Oxide: Materials Chemistry for the Inorganic or Instrumental Methods Lab

    Science.gov (United States)

    Ching, Stanton; Neupane, Ram P.; Gray, Timothy P.

    2006-01-01

    A three-week laboratory project involving synthesis and characterization of a layered manganese oxide provides an excellent vehicle for teaching important concepts of inorganic chemistry and instrumental methods related to non-molecular systems. Na-birnessite is an easily prepared manganese oxide with a 7 A interlayer spacing and Na[superscript +]…

  5. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    Science.gov (United States)

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  6. Green chemistry perspectives of methane conversion via oxidative methylation of aromatics over zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adebajo, M.O. [University of Queensland, St Lucia, Qld. (Australia)

    2007-06-15

    This paper provides a general overview of the recent work that we and other researchers have done on the utilisation of methane for catalytic methylation of aromatic compounds and for direct coal liquefaction for the production of liquid hydrocarbons. In particular, the paper presents a detailed description of more recent substantial experimental evidence that we have provided for the requirement of oxygen as a stoichiometry reactant for benzene methylation with methane over moderately acidic zeolite catalysts. The reaction, which has been termed 'oxidative methylation', was thus postulated to involve a two-step mechanism involving intermediate methanol formation by methane partial oxidation, followed by benzene methylation with methanol in the second step. However, strongly acidic zeolites can cause cracking of benzene to yield methylated products in the absence of oxygen. The participation of methane and oxygen, and the effective use of zeolite catalysts in this methylation reaction definitely have some positive green chemistry implications. Thus, the results of these previous studies are also discussed in this review in light of the principles and tools of green chemistry. Various metrics were used to evaluate the greenness, cost-effectiveness, and material and energy efficiency of the oxidative methylation reaction.

  7. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    Science.gov (United States)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  8. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water

    Science.gov (United States)

    Ira A. Weinstock; Elena M. G. Barbuzzi; Michael W. Wemple; Jennifer J. Cowan; Richard S. Reiner; Dan M. Sonnen; Robert A. Heintz; James S. Bond; Craig L. Hill

    2001-01-01

    Although many enzymes can readily and selectively use oxygen in water--the most familiar and attractive of all oxidants and solvents, respectively–-the design of synthetic catalysts for selective water-based oxidation processes utilizing molecular oxygen remains a daunting task. Particularly problematic is the fact that oxidation of substrates by O2 involves radical...

  9. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  10. Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.

    2004-01-01

    The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a

  11. Exploiting the oxidizing capabilities of laccases exploiting the oxidizing capabilities of laccases for sustainable chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Cannatelli, Mark D. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-05-01

    Part one of this dissertation research has focused on harnessing the ability of laccases to generate reactive para-quinones in situ from the corresponding hydroquinones, followed by reaction with a variety of nucleophiles to perform novel carbon-carbon, carbon-nitrogen, and carbon-sulfur bond forming reactions for the synthesis of new and existing compounds. In part two of this dissertation, the fundamental laccase-catalyzed coupling chemistry developed in part one was applied to functionalize the surface of kraft lignin.

  12. Water and Life in the International Year of Chemistry

    Science.gov (United States)

    Bernal, Pedro J.

    2011-01-01

    This commentary talks about the worldwide health impact of lack of access to potable water. Household water treatment and storage (HWTS) is described as one approach to improving potable water accessibility in which students and educators can make a contribution to alleviate the problem of lack of access. The author suggests that, as chemists,…

  13. Water and Life in the International Year of Chemistry

    Science.gov (United States)

    Bernal, Pedro J.

    2011-01-01

    This commentary talks about the worldwide health impact of lack of access to potable water. Household water treatment and storage (HWTS) is described as one approach to improving potable water accessibility in which students and educators can make a contribution to alleviate the problem of lack of access. The author suggests that, as chemists,…

  14. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  15. Water chemistry influences the toxicity of silver to the green-lipped mussel Perna viridis.

    Science.gov (United States)

    Vijayavel, Kannappan

    2010-08-01

    The study determined the influence and relative importance of water chemistry parameters (pH, alkalinity, hardness) on the acute toxicity of silver to the green mussel Perna viridis. A preliminary bioassay revealed that 4 mg L(-1) of silver caused 50% mortality (LC50) in 96 h for mussels placed in seawater with pH 8.5, hardness 1,872 mg L(-1), and alkalinity 172 mg L(-1). Mortality of mussels increased with decreasing pH and increasing hardness and alkalinity variables. In contrast the mortality decreased with increasing pH and decreasing hardness and alkalinity values. The water chemistry also affected the concentration of silver in experimental seawater and bioaccumulation of silver in mussels. The results revealed that the chemical properties of seawater must be considered while conducting toxicity tests with metals like silver. The possible explanations for the influence of water chemistry on silver toxicity to P. viridis are discussed.

  16. Nanostructured transition metal oxides useful for water oxidation catalysis

    Science.gov (United States)

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  17. Electrochemical oxidation of perfluorinated compounds in water.

    Science.gov (United States)

    Niu, Junfeng; Li, Yang; Shang, Enxiang; Xu, Zesheng; Liu, Jinzi

    2016-03-01

    Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design).

  18. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate.

    Science.gov (United States)

    Fukuzumi, Shunichi; Jung, Jieun; Yamada, Yusuke; Kojima, Takahiko; Nam, Wonwoo

    2016-04-20

    Photocatalytic water oxidation by persulfate (Na2 S2 O8 ) with [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a photocatalyst provides a standard protocol to study the catalytic reactivity of water oxidation catalysts. The yield of evolved oxygen per persulfate is regarded as a good index for the catalytic reactivity because the oxidation of bpy of [Ru(bpy)3 ](2+) and organic ligands of catalysts competes with the catalytic water oxidation. A variety of metal complexes act as catalysts in the photocatalytic water oxidation by persulfate with [Ru(bpy)3 ](2+) as a photocatalyst. Herein, the catalytic mechanisms are discussed for homogeneous water oxidation catalysis. Some metal complexes are converted to metal oxide or hydroxide nanoparticles during the photocatalytic water oxidation by persulfate, acting as precursors for the actual catalysts. The catalytic reactivity of various metal oxides is compared based on the yield of evolved oxygen and turnover frequency. A heteropolynuclear cyanide complex is the best catalyst reported so far for the photocatalytic water oxidation by persulfate and [Ru(bpy)3 ](2+) , affording 100 % yield of O2 per persulfate.

  19. Radon, volatile organic compounds and water chemistry in springs around Popocatepetl volcano, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Pena, P.; Lopez, M.B.E.; Cisniega, G. [Inst. Nacional de Investigaciones Nucleares, Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Inst. de Geofisica, UNAM, Ciudad Univ., Mexico D.F. (Mexico)

    2003-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both to the meteorological and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period indicating differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (orig.)

  20. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide.

    Science.gov (United States)

    Zhou, Lifen; Shen, Qinpeng; Zhao, Peng; Xiang, Bingbing; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-12-15

    A novel DNA-templated click chemistry strategy for homogenous fluorescent detection of Cu(2+) has been developed based on click ligation-dependent DNA structure switch and the selective quenching ability of graphene oxide (GO) nanosheet. The clickable duplex probe consists of two DNA strands with alkyne and azide group, respectively, and Cu(+)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction can chemically ligate these two strands. Toehold sequence displacement was consequently exploited to achieve DNA structure transformation bearing fluorescent tag FAM. Cu(2+)-induced chemical ligation caused the probe transfer to hybrid structure with single stranded DNA (ssDNA) tail, while only duplex structure was obtained without Cu(2+). This structural difference can be probed by GO-based fluorescence detection due to the preferential binding of GO to ssDNA. Under the optimum conditions, this sensor can sensitively and specifically detect Cu(2+) with a low detection limit of 58 nM and a linear range of 0.1-10 μM. This new strategy is highly sensitive and selective for Cu(2+) detection because of the great specificity of click chemistry and super-quenching ability of GO. Moreover, with the aid of high efficient DNA templated synthesis, the detection process requires only about half an hour which is much quicker than previous click-chemistry-based Cu(2+) sensors.

  1. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  2. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  3. A First Principles Investigation of Proton Chemistry in Perovskite-Type Oxides

    Science.gov (United States)

    Tauer, Tania Allison

    Certain acceptor-doped perovskite-type oxides show significant promise for deployment into a number of electrochemical device applications, including fuel cells, batteries, and electrolyzers, owing to their rapid proton conductivities at high temperatures. However, limitations in bulk material hydration and slow grain boundary conductivities have reduced the viability of these materials in intermediate temperatures applications. This thesis work uses density functional theory to gain a fundamental understanding of proton and defect chemistry within various perovskite environments in order to identify strategies to increase proton concentration and improve overall proton conductivity. First, material hydration was probed within yttrium-doped barium cerate (BCY) to examine how the thermodynamics of material hydration are influenced by dopant concentration. A model was derived from solely first principle techniques to describe hydration within BCY as a function of dopant concentration, temperature, and partial pressure of water. The resulting model can be used to screen for favorable perovskite-dopant combinations with enhanced hydration capabilities. Next, defect segregation was investigated in the more complex interfacial environment to probe the origin of low proton conductivity across perovskite grain boundaries (GB). The results of this study suggest that screening for perovskite-dopant combinations with strong dopant-oxygen bond strengths may reduce the segregation of dopant ions and oxygen vacancies to the GB interface, mitigating the development of a positive GB core and enhancing proton conduction across the GB. Finally, proton stability was assessed at various interfacial regions within the perovskite material. An examination of proton adsorption at the BaZrO3-vacuum interface reveals a destabilization of protons in the first subsurface layer of the perovskite, yielding a potential barrier for proton diffusion into and out of the perovskite membrane. An

  4. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  5. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces

    OpenAIRE

    Chapleski, Robert C.; Zhang, Yafen; Troya, Diego; Morris, John R.

    2015-01-01

    Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials. Recent experimental and computational studies have begun to reveal the detailed reaction mechanisms and kinetics for gas-phase O3, NO3, and OH when they impinge on organic surfaces. Through new research approaches that merge the fields of traditional surface science with atmospheric chemistry, research...

  6. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    Science.gov (United States)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  7. Water chemistry and antimicrobial treatment in poultry processing

    Science.gov (United States)

    This study examined the influence of calcium and magnesium ions in process water on the solubility of trisodium phosphate. Water used in poultry processing operations may be treated with sanitizers such as trisodium phosphate to reduce microbial activity and the risk of contamination. This occurs wh...

  8. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  9. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  10. Aggregation of asbestos fibers in water: role of solution chemistry

    Science.gov (United States)

    Wu, L.; Ortiz, C. P.; Jerolmack, D. J.

    2016-12-01

    Aggregation kinetics and stability of colloidal particles have been extensively studied using bulk techniques such as dynamic light scattering; these techniques involve large ensembles of particles and interpretation of results is difficult when particles are non-spherical and poorly characterized, as is always the case with non-ideal natural hazardous materials such as asbestos fibers. These difficulties hinder greatly progress on fundamental understanding of whether the classic colloidal aggregation theories can be applied to natural materials and how the heterogeneity of particles (e.g., shape) affects the colloidal aggregation kinetics and structure. By using in-situ microscopy and particle tracking techniques, we were able to observe the particle-by-particle growth of aggregated formed by elongated particles (synthetic glass rods and natural asbestos fibers) and demonstrated the rod-shaped geometry induced novel structures and growth dynamics that challenge existing theory. In this study, we continue to use asbestos as model system of elongated colloidal contaminant, and investigate the effects of changing solution chemistry (e.g., ionic strength, pH, and natural organic matter (NOM)), on growth dynamics and aggregates structure. The results show that aggregate growth curves are self-similar with a characteristic timescale that increases with increasing pH. By varying ionic strength for fixed pH values, we determine that the ccc is sensitive to pH. Fractal dimension decreases slightly with increasing pH and decreasing ionic strength, indicating that stronger inter-particle repulsion create sparser aggregates; however, the magnitude of the solution chemistry effects is much smaller than that of colloid shape. In monovalent solutions, regardless of their concentration, HA drastically reduces the aggregation kinetics of asbestos fiber. This work may lead to enhanced prediction of the colloidal contaminants' mobility in the environment, bioavailability, and

  11. Electrocatalytic water oxidation with a copper(II) polypeptide complex.

    Science.gov (United States)

    Zhang, Ming-Tian; Chen, Zuofeng; Kang, Peng; Meyer, Thomas J

    2013-02-13

    A self-assembly-formed triglycylglycine macrocyclic ligand (TGG(4-)) complex of Cu(II), [(TGG(4-))Cu(II)-OH(2)](2-), efficiently catalyzes water oxidation in a phosphate buffer at pH 11 at room temperature by a well-defined mechanism. In the mechanism, initial oxidation to Cu(III) is followed by further oxidation to a formal "Cu(IV)" with formation of a peroxide intermediate, which undergoes further oxidation to release oxygen and close the catalytic cycle. The catalyst exhibits high stability and activity toward water oxidation under these conditions with a high turnover frequency of 33 s(-1).

  12. CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

    2000-07-09

    High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

  13. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  14. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  15. Analytical chemistry in water quality monitoring during manned space missions

    Science.gov (United States)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  16. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  17. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-01

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  18. Cloud water chemistry and the production of sulfates in clouds

    Science.gov (United States)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  19. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    -coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system.

  20. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)

    drinie

    2002-01-01

    Jan 1, 2002 ... the role of the Mkuze Wetland System in water quality enhancement is essential. ... bodies were identified using the multivariate techniques, classification and ...... physics, and also local topography in that local relief may be.

  1. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  2. The effect of water on discharge product growth and chemistry in Li-O2 batteries.

    Science.gov (United States)

    Kwabi, David G; Batcho, Thomas P; Feng, Shuting; Giordano, Livia; Thompson, Carl V; Shao-Horn, Yang

    2016-09-28

    Understanding what controls Li-O2 battery discharge product chemistry and morphology is key to enabling its practical deployment as a low-cost, high-specific-energy energy conversion technology. Several studies have recently shown that the addition of substantial quantities (hundreds to thousands ppm) of water and weak acids to dimethoxyethane (DME)-based electrolytes can significantly increase Li-O2 battery discharge capacity, without substantially changing the discharge product chemistry, which remains Li2O2. The exact mechanisms behind these device-level improvements, however, are not yet understood. In this study, we show that the presence of water in a DME-based electrolyte decreases the rate of Li2O2 nucleation on the electrode surface during Li-O2 battery discharge, using potentiostatic electrochemical measurements, and direct, ex situ observations of Li2O2 particles. We also show that adding water to an acetonitrile (MeCN)-based electrolyte results in LiOH upon discharge, as opposed to only Li2O2. Using first principles calculations, we propose that this change in discharge product chemistry is attributable to increased proton availability, as shown by a lower pKa for water in MeCN than in DME. This study combines kinetic and morphological analyses with first principles calculations, and elucidates relationships among electrolyte composition, discharge product chemistry and growth mechanisms for the rational design of efficient metal-air batteries.

  3. Coagulation chemistries for silica removal from cooling tower water.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  4. Removal of sediment and bacteria from water using green chemistry.

    Science.gov (United States)

    Buttice, Audrey L; Stroot, Joyce M; Lim, Daniel V; Stroot, Peter G; Alcantar, Norma A

    2010-05-01

    Although nearly all newly derived water purification methods have improved the water quality in developing countries, few have been accepted and maintained for long-term use. Field studies indicate that the most beneficial methods use indigenous resources, as they are both accessible and accepted by communities they help. In an effort to implement a material that will meet community needs, two fractions of mucilage gum were extracted from the Opuntia ficus-indica cactus and tested as flocculation agents against sediment and bacterial contamination. As diatomic ions are known to affect both mucilage and promote cell aggregation, CaCl(2) was studied in conjunction and compared with mucilage as a bacteria removal method. To evaluate performance, ion-rich waters that mimic natural water bodies were prepared. Column tests containing suspensions of the sediment kaolin exhibited particle flocculation and settling rates up to 13.2 cm/min with mucilage versus control settling rates of 0.5 cm/min. Bacillus cereus tests displayed flocculation and improved settling times with mucilage concentrations lower than 5 ppm and removal rates between 97 and 98% were observed for high bacteria concentration tests (>10(8) cells/ml). This natural material not only displays water purification abilities, but it is also affordable, renewable and readily available.

  5. Understanding the interplay between water chemistry and electrochemical properties of copper

    Science.gov (United States)

    Cong, Hongbo

    The pitting behavior of UNS C11000 copper was investigated in a synthetic potable water found to cause pitting using both driven electrochemical methods and under natural conditions at OCP. The latter was monitored with coupled multi-electrode arrays (CMEA). Tests were also conducted in several HCO 3-, SO42- and Cl- containing-waters with systematic variations in the concentrations of these species. Empirical equations that forecast pitting (EPit) and repassivation (ERp) potential as a function of selected water chemistry variables were developed. OCP was a strong function of water chemistry, pH and time. Maximum OCPs were found to increase with both pH and Cl2. Empirical equations that forecast the OCP as a function of pH and Cl2 were also developed. Natural pitting was tested in different pH synthetic waters (6-10) at various Cl2 levels (0-5 ppm). The CMEA method successfully detected the formation of persistent anodes (pitting sites) in pH ≥7 synthetic waters compared to formation of switchable anodes at pH 6. A pitting factor was determined as a function of water chemistry. Pit events were statistically analyzed and potential excursions were compared to EPit and E Rp. Natural pitting events occurred on a percentage of electrodes once the OCP rose above ERp and this could be rationalized based on the statistical spread in EPit. Pits stopped growing once the OCP dropped below ERp Pitting severity increased with Cl2 level and pH. The cathodic capacity of adjacent cathodic sites as a function of water chemistry and the nature of the cathodic sites was also factored into this analysis. Lastly, the possible roles of deposited aluminum solids in pit initiation were also examined using several diagnostic methods.

  6. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  7. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  8. Interstitial water chemistry and nutrients fluxes from tropical intertidal sediment

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Zingde, M.D.

    (Fig. 4) throughout the core lengths rules out the possibility of sulphate reduction that can also result in high alkalinity. The pH of the coastal seawater normally falls be- tween 7.8 and 8.3 and is controlled22 by the buffering action of HCO3... the surficial interstitial water and the overlying seawater (Fig. 4). The concentration of NO3-N in interstitial water of the surface sediment increased from 51 ?mol l-1 in core 1 to 140 ?mol l-1 in core 5 except for a marginal decrease (83 ?mol l-1) in core 4...

  9. Aespoe Hard Rock Laboratory. Prototype Repository. Analyses of microorganisms, gases and water chemistry in buffer and backfill, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara (Microbial Analytics Sweden AB (Sweden))

    2010-09-15

    The Prototype repository is an international project to build and study a full-scale model of the planned Swedish final repository for spent nuclear fuel. The Prototype repository differs from a real storage in that it is drained. For example, this makes the swelling pressure lower in the Prototype repository compared with a real storage. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and one of the specific aims is to monitor the microbial consumption of oxygen in situ in the Prototype repository. This document describes the results of the analyses of microbes, gases, and chemistry inside and outside the Prototype in 2009. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed in the following sampling points in the Prototype repository: KBU10001, KBU10002, KBU10004, KBU10006, KBU10008, KFA01 and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e., the biovolume), cultivable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), autotrophic acetogens (AA) and in some cases iron-reducing bacteria (IRB). Cultivation methods were also compared with qPCR molecular techniques to evaluate these before next year's decommission of the Prototype repository. The collected pore water from the Prototype repository was subject to chemistry analysis (as many analyses were conducted as the amount of water allowed). In addition, groundwater from two borehole sections in the rock surrounding the Prototype was analysed regarding its gas composition, microbiology and redox. Chemistry data from a previous investigation of the groundwater outside the Prototype repository were compared with the pore water

  10. Water oxidation with holes: what we learn from operando "synchrotron" studies(Conference Presentation)

    Science.gov (United States)

    Braun, Artur

    2016-10-01

    Photoelectron holes are key players in photoelectrochemical water oxidation. They provide the basis for direct solar fuel production in photoelectrochemical cells. Physics and chemistry in semiconductor photoelectrochemistry are probably the most complex known in physical chemistry. Therefore it is not surprising that the science of solar water splitting rests still on some speculative elements. Thanks to progress in synchrotron instrumentation, x-rays and electrons as probes for chemical and physical processes arenow used in complex experiments during device operation. The studies which were impossible until recently are spectacular. We show how we assess with x-ray based ligand and valence band NEXAFS and AP-XPS spectroscopy the density of hole states in photoelectrodes as a function of electrochemical parameters and at the same time find quantitative information on surface intermediates. We can resolve the interaction of the photoelectrode with the electrolyte down to the Fe3d and O2p orbitals with bias parametrized energetic and spatial depth resolution, including the charge carrier accumulation layer, the electrode surface and the Helmholtz layer. The x-ray electronic structure data are in full alignment with the charge carrier dynamics probed with electroanalytical methods. Noteworthy is that we verify and confirm a historically speculated second electron hole, which corresponds to a transition into the charge transfer band, which precedes the water splitting and coincides with the formation of a hydroxyl intermediate. Latter disappears when water oxidation sets on.

  11. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  12. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  13. Integrating Biology, Chemistry, and Mathematics to Evaluate Global Water Problems

    Science.gov (United States)

    Kosal, Erica; Lawrence, Carol; Austin, Rodney

    2010-01-01

    An interdisciplinary and context-driven course focused on global water issues was developed and taught at the college level. Students designed a semester-long research project, collected and analyzed data, and ultimately presented their results and conclusions to the larger community. As a result of the course, students' science literacy improved…

  14. Photocatalytic water splitting with acridine dyes: Guidelines from computational chemistry

    Science.gov (United States)

    Liu, Xiaojun; Karsili, Tolga N. V.; Sobolewski, Andrzej L.; Domcke, Wolfgang

    2016-01-01

    The photocatalytic splitting of water into Hrad and OHrad radicals in hydrogen-bonded chromophore-water complexes has been explored with computational methods for the chromophores acridine orange (AO) and benzacridine (BA). These dyes are strong absorbers within the range of the solar spectrum. It is shown that low-lying charge-transfer excited states exist in the hydrogen-bonded AOsbnd H2O and BAsbnd H2O complexes which drive the transfer of a proton from water to the chromophore, which results in AOHradsbnd OHrad or BAHradsbnd OHrad biradicals. The AOHrad and BAHrad radicals possess bright ππ∗ excited states with vertical excitation energies near 3.0 eV which are predissociated by a low-lying repulsive πσ∗ state. The conical intersections of the πσ∗ state with the ππ∗ excited states and the ground state provide a mechanism for the photodetachment of the H-atom by a second photon. Our results indicate that AO and BA are promising chromophores for water splitting with visible light.

  15. Integrating Biology, Chemistry, and Mathematics to Evaluate Global Water Problems

    Science.gov (United States)

    Kosal, Erica; Lawrence, Carol; Austin, Rodney

    2010-01-01

    An interdisciplinary and context-driven course focused on global water issues was developed and taught at the college level. Students designed a semester-long research project, collected and analyzed data, and ultimately presented their results and conclusions to the larger community. As a result of the course, students' science literacy improved…

  16. A porphyrin-stabilized iridium oxide water oxidation catalyst

    National Research Council Canada - National Science Library

    Pillai, Smitha; Gust, Devens; Moore, Ana L; Kodis, Gerdenis; Mallouk, Thomas E; Moore, Thomas A; Bergkamp, Jesse; Sherman, Benjamin D

    2011-01-01

    Colloidal solutions of iridium oxide hydrate (IrO 2 ·nH 2 O) were formed using porphyrin stabilizers bearing malonate-like functional groups at each of the four meso positions of the porphyrin ring...

  17. Tuning microstructure and surface chemistry of reduced graphene oxide by mild reduction

    Institute of Scientific and Technical Information of China (English)

    冷娴; 刘如铁; 邹俭鹏; 熊翔; 何捍卫

    2016-01-01

    Reduced graphene oxide (RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with larged spacing (0.852 nm) of graphene oxide (GO), the (002) plane distance decreases to 0.358−0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. TheID/IG ratio of RGOs is about 1.0−1.15, indicating that reconstructed sp2 domains have smaller sizes and larger quantity. The content of sp2 bonded C in GO (36.93%, molar fraction) increases to 45.48%−72.92% (molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.

  18. A spatial and seasonal assessment of river water chemistry across North West England.

    Science.gov (United States)

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important

  19. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen...... evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  20. Relations between topography, wetlands, vegetation cover and stream water chemistry in boreal headwater catchments in Sweden

    Directory of Open Access Journals (Sweden)

    J.-O. Andersson

    2008-05-01

    Full Text Available A large part of the spatial variation of stream water chemistry is found in headwater streams and small catchments. To understand the dominant processes, taking place in small and heterogeneous catchments, spatial and temporal data with high resolution is needed. In most cases available map data has too low quality and resolution to successfully be used in environmental assessments and modelling. In this study 18 forested catchments (1–4 km2 were selected within a 120×50 km area in the county of Värmland in western Sweden. The aim was to test if topographic and vegetation variables derived from official datasets were correlated to stream water chemistry, represented by DOC, Al, Fe and Si content. A GIS was used to analyse the elevation characteristics, generate topographic indices and calculate the percentage of wetlands and a number of vegetation classes. The results clearly show that the topography has a major influence on the occurrence of wetlands, which has a major influence on stream water chemistry. There were very strong correlations between mean slope and percentage wetland, percentage wetland and DOC, mean slope and DOC and mean topographic wetness index and DOC. The conclusion was that official topographic data, despite uncertain or low quality and resolution, could be useful in the prediction of headwater chemistry in boreal forested catchments.

  1. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    Science.gov (United States)

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  2. Effect of resuspension on the release of heavy metals and water chemistry in anoxic and oxic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung-Yup; Kim, Hong-Seok; Hwang, Inseong [School of Civil and Environmental Engineering, Pusan National University, Busan (Korea, Republic of)

    2011-10-15

    Two types of river sediments with contrasting characteristics (anoxic or oxic) were resuspended and the release of heavy metals and changes in water chemistry were investigated. During resuspension of the anoxic sediment, the dissolved oxygen (DO) concentration and redox potential of the water layer decreased abruptly within the first 1 min, followed by increases toward the end of the resuspension period. Heavy metals were released rapidly in the first 6 h, probably due to the oxidation of acid volatile sulfide (AVS) of the anoxic sediment, and then the aqueous phase concentrations of the heavy metals decreased due to resorption onto the sediment until the 12-h point. During resuspension of the oxic sediment, the DO concentration and redox potential remained relatively constant in the oxic ranges. The heavy metals were released from the oxic sediment gradually during a 24-h resuspension period. The temporal maximum concentrations of Ni, Cu, Zn, and Cd in the aqueous phases in both experiments frequently exceeded the USEPA water quality criteria or the water quality guidelines of Australia and New Zealand. This suggests that a resuspension event could bring about temporal water quality deterioration in the two sediment environments. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Governing chemistry of cellulose hydrolysis in supercritical water.

    Science.gov (United States)

    Cantero, Danilo A; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    At extremely low reaction times (0.02 s), cellulose was hydrolyzed in supercritical water (T=400 °C and P=25 MPa) to obtain a sugar yield higher than 95 wt%, whereas the 5-hydroxymethylfurfural (5-HMF) yield was lower than 0.01 wt %. If the reaction time was increased to 1 s, the main product was glycolaldehyde (60 wt%). Independently of the reaction time, the yield of 5-HMF was always lower than 0.01 wt%. To evaluate the reaction mechanism of biomass hydrolysis in pressurized water, several parameters (temperature, pressure, reaction time, and reaction medium) were studied for different biomasses (cellulose, glucose, fructose, and wheat bran). It was found that the H(+) and OH(-) ion concentration in the reaction medium as a result of water dissociation is the determining factor in the selectivity. The reaction of glucose isomerization to fructose and the further dehydration to 5-HMF are highly dependent on the ion concentration. By an increase in the pOH/pH value, these reactions were minimized to allow control of 5-HMF production. Under these conditions, the retroaldol condensation pathway was enhanced, instead of the isomerization/dehydration pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson,, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  5. Dominant processes controlling water chemistry of the Pecos River in American southwest

    Science.gov (United States)

    Yuan, Fasong; Miyamoto, Seiichi

    2005-09-01

    Here we show an analysis of river flow and water chemistry data from eleven gauging stations along the Pecos River in eastern New Mexico and western Texas, with time spanning 1959-2002. Analysis of spatial relationship between the long-term average flow and total dissolved solids (TDS) concentration allows us to illuminate four major processes controlling river chemistry, namely saline water addition, evaporative concentration with salt gain or loss, dilution with salt gain or loss, and salt storage. Of the 10 river reaches studied, six reaches exhibit the process dominated by evaporative concentration or freshwater dilution with little change in salt load. Four reaches show considerable salt gains or losses that are induced by surface-ground water interactions. This analysis suggests that the evaporative concentration and freshwater dilution are the prevailing mechanisms, but local processes (e.g., variations in hydrologic flowpath and lithologic formation) also play an important role in regulating the hydrochemistry of the Pecos River.

  6. Characterization of Passive Film Formed on 304 SS in Simu-lated Alkaline Water Chemistries Containing Sulfur at 300℃

    Institute of Scientific and Technical Information of China (English)

    夏大海; 孙毅飞; 范洪强

    2015-01-01

    Passivity degradation of 304 stainless steel(SS) in simulated alkaline water chemistries at 300,℃was investigated using polarization curve, scanning electron microscope, time-of-flight secondary ion mass spectrome-try(SIMS) and X-ray photoelectron spectroscopy(XPS). Experimental results indicated that 304,SS was self-passive in the test solution and the thickness of passive film was about 500 nm. Hydroxide was enriched in the outer layer whereas oxide was enriched in the inner layer. Sulfur in thiosulfate could be reduced into lower valence of sulfur and enter the passive film so that the composition of passive film was modified by sulfur. Fe and Cr were enriched in the passive film whereas Ni was depleted in the passive film.

  7. Modeling chemistry in and above snow at Summit, Greenland − Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    Directory of Open Access Journals (Sweden)

    B. Lefer

    2012-02-01

    Full Text Available The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Chemistry on snow grains is simulated assuming a liquid-like layer (LLL, treated as an aqueous layer on the snow grain surface. The model has been recently compared with BrO and NO data taken on 10 June–13 June 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX. In the present study, we use the same focus period to investigate the influence of snowpack derived chemistry on OH and HOx + RO2 in the boundary layer. We compare model results with chemical ionization mass spectrometry (CIMS measurements of the hydroxyl radical (OH and of the hydroperoxyl radical (HO2 plus the sum of all organic peroxy radicals (RO2 taken at Summit during summer 2008. Using sensitivity runs we show that snowpack influenced nitrogen cycling and bromine chemistry both increase the oxidation capacity of the boundary layer and that together they increase the mid-day OH concentrations by approximately a factor of 2. We show for the first time, using an unconstrained coupled one-dimensional snowpack-boundary layer model, that air-snow interactions impact the oxidation capacity of the boundary layer and that it is not possible to match measured OH levels without snowpack NOx and halogen emissions. Model predicted HONO compared with mistchamber measurements suggests there may be an unknown HONO source at Summit. Other model predicted HOx precursors, H2O2 and HCHO, compare well with measurements taken in summer 2000. Over 3 days, snow sourced NOx contributes an additional 2 ppb to

  8. Chemistry, Toxicity and Health Risk Assessment of Drinking Water Disinfection ByProducts

    Science.gov (United States)

    Disinfection byproducts (DBPs) are formed by the reaction of oxidizing chemicals (such as chlorine, ozone and chloramines) used to control waterborne pathogens with natural organic material and other substances in water. DBP mixture composition varies as a function of geographic ...

  9. Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils

    NARCIS (Netherlands)

    Pan, Y.; Koopmans, G.F.; Bonten, L.T.C.; Song, J.; Luo, Y.; Temminghoff, E.J.M.; Comans, R.N.J.

    2014-01-01

    The primary purpose of this study was to determine how flooding and draining cycles affect the redox chemistry of metal (hydr)oxides and organic matter in paddy soils and how the pH influences these processes. Our secondary purpose was to determine to what extent a geochemical thermodynamic

  10. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    NARCIS (Netherlands)

    Dalslet, Bjarke Thomas

    2008-01-01

    The mixed ionic and electronic conducting fluorite and perovskite materials examined in this thesis are all oxide ion conducting materials. The defect chemistry and transport properties of a number of these materials are measured using: 1) a measurement technique using an oxygen pump and an electrol

  11. Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils

    NARCIS (Netherlands)

    Pan, Y.; Koopmans, G.F.; Bonten, L.T.C.; Song, J.; Luo, Y.; Temminghoff, E.J.M.; Comans, R.N.J.

    2014-01-01

    The primary purpose of this study was to determine how flooding and draining cycles affect the redox chemistry of metal (hydr)oxides and organic matter in paddy soils and how the pH influences these processes. Our secondary purpose was to determine to what extent a geochemical thermodynamic equilibr

  12. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    Science.gov (United States)

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-04-16

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  13. Kinugasa Reactions in Water: From Green Chemistry to Bioorthogonal Labelling

    Directory of Open Access Journals (Sweden)

    Mariya Chigrinova

    2015-04-01

    Full Text Available The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  14. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fulger, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania)], E-mail: manuela.fulger@nuclear.ro; Ohai, D.; Mihalache, M.; Pantiru, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Malinovschi, V. [University of Pitesti, Research Center for Advanced Materials, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2009-03-31

    For a correct design of supercritical water-cooled reactor (SCWR) components, data regarding the behavior of candidate materials in supercritical water are necessary. Corrosion has been identified as a critical problem because the high temperature and the oxidative nature of supercritical water may accelerate the corrosion kinetics. The goal of this paper is to investigate the oxidation behavior of Incoloy 800 exposed in autoclaves under supercritical water conditions for up to 1440 h. The exposure conditions (thermal deaerated water, temperatures of 723, 773, 823 and 873 K and a pressure of 25 MPa) have been selected as relevant for a supercritical power plant concept. To investigate the structural changes of the oxide films, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and electrochemical impedance spectroscopy (EIS) analyses were used. Results show changes in the oxides chemical composition, microstructure and thickness versus testing conditions (pressure, temperature and time). The oxide films are composed of two layers: an outer layer enriched in Fe oxide and an inner layer enriched in Cr and Ni oxides corresponding to small cavities supposedly due to internal oxidation.

  15. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin

    Science.gov (United States)

    Geyer, Andreas; Alicke, BjöRn; Konrad, Stephan; Schmitz, Thomas; Stutz, Jochen; Platt, Ulrich

    2001-04-01

    The nitrate radical is in many situations the most important nighttime oxidizing species, removing, for example, hydrocarbons, which would otherwise be available to daytime ozone formation. In spite of its importance in the night and probably also under certain conditions during the day, our understanding of the NO3 chemistry and its impact on the oxidation capacity of the atmosphere is still incomplete. Here we present measurements of NO3 by differential optical absorption spectroscopy (DOAS) and a number of other atmospheric trace gases performed during the Berliner Ozonexperiment (BERLIOZ) campaign at Pabstthum near Berlin, Germany, to quantify the contribution of NO3 to the atmospheric oxidation rate of volatile organic compounds (VOCs) and NOx removal. The measurements show that only two NO3 sinks were of importance: (1) About 50-30% (depending on the distance (0.1-3 km) to a near forest) of the NO3 was lost due to reaction with biogenic hydrocarbons. (2) The major part of the remaining loss probably can be attributed to the indirect loss via the reaction of N2O5 on aerosol surfaces. Assuming that heterogeneous hydrolysis of N2O5 is occurring, the nonphotolytical conversion of NOx to HNO3 via N2O5 was found to be comparable with daytime conversion by the reaction of OH with NO2. In combination with measurements of the OH concentration, it was possible for the first time to derive a relative contribution of 28% (24-hour average) for the NO3-initiated oxidation to the total VOC degradation.

  16. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Miroslaw, E-mail: miroslaw.zelazny@uj.edu.pl [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Astel, Aleksander, E-mail: astel@apsl.edu.pl [Environmental Chemistry Research Unit, Biology and Environmental Protection Institute, Pomeranian Academy, 22a Arciszewskiego Str., Slupsk, 76-200 (Poland); Wolanin, Anna [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Malek, Stanislaw, E-mail: rlmalek@cyf-kr.edu.pl [Department of Forest Ecology, Forest Faculty, Agricultural University of Cracow, 46 29 Listopada Ave., Cracow, 31-425 (Poland)

    2011-05-15

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: > We use SOM approach to explore physiochemical data for mountain waters. > Geologic structure and hydrological events impact water chemistry. > Limited leaching, typical of crystalline core, reflects in low water mineralization. > Sedimentary rocks are susceptible for leaching. > Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  17. Nano-sized Mn oxide/agglomerated silsesquioxane composite as a good catalyst for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Madadkhani, Sepideh

    2016-12-01

    Water splitting to hydrogen and oxygen is an important reaction to store sustainable energies, and water oxidation is identified as the bottleneck for water splitting because it requires the high activation energy to perform. Herein a nano-sized Mn oxide/agglomerated silsesquioxane composite was used to synthesize an efficient catalyst for water oxidation. The composite was synthesized by a straightforward and simple procedure and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, X-ray diffraction spectrometry, and electrochemical methods. Silsesquioxane causes good dispersion of Mn in the composite. The water-oxidizing activity of this composite was studied in the presence of cerium(IV) ammonium nitrate. The composite at the best calcination temperature (300 °C) shows a turnover frequency 0.3 (mmol O2/mol Mn.s). Regarding the low-cost, environmentally friendly precursors, simple synthesis, and efficiency for water oxidation, the composite is a promising catalyst that can be used in artificial photosynthetic systems for water splitting. We used Agglomerated silsesquioxane as a support for nano-sized Mn oxide to synthesize a good water-oxidizing catalyst.

  18. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    Science.gov (United States)

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  19. On the pore water chemistry effect on spectral induced polarization measurements in the presence of pyrite

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Slater, Lee D.

    2016-12-01

    In order to expand the application of the induced polarization (IP) method as a technique for monitoring metallic mineral dissolution and precipitation mechanisms, we studied the effects of variations in pore water chemistry on the spectral induced polarization (SIP) response of a mixture of silica-sand and pyrite particles in the laboratory. We investigated the dependence of the SIP response on both pore water conductivity and pH for various chemical compositions: redox-passive (P) versus redox-active (A) ions, using CaCl2 as P-ions, and FeSO4 and FeCl3 as A-ion brines. The effect of pore water chemistry was evaluated by means of a recently proposed volumetric specific capacitance model. The SIP response (IP-effect) was primarily determined by the pore water conductivity and the specific capacitance was only weakly dependent on the chemical composition and pHw. We found that the specific capacitance varies to first order over a limited range and approximates a single value (≈ 302 F m- 3 in average). However, variations in the specific capacitance as a function of active versus inactive ion chemistry might be important to consider when using IP to monitor specific mineral dissolution and precipitation processes.

  20. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  1. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-06-15

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were

  2. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  3. Analysis of meteorological data and water chemistry of Latir Lakes, Taos County, New Mexico, 1985-88

    Science.gov (United States)

    Anderholm, S.K.; Roybal, R.G.; Risser, D.W.; Somers, Georgene

    1994-01-01

    Data were analyzed to determine the chemistry of atmospheric deposition and water of the Latir Lakes in Taos County New Mexico, from 1985 to 1988. The Latir Lakes consist of a series of nine paternoster lakes that range in altitude from 11,061 to 11,893 feet above sea level. The pH of wet precipitation generally ranged from 4.6 to 5.5 and the specific conductance of wet precipitation ranged from 1 to 18 microsiemens per centimeter at 25 degrees Celsius from December 1985 through September 1988. Snowpack chemistry data indicate a change in the specific conductance, pH, and alkalinity of the snowpack from month to month. The dominant cation in the snowpack is calcium, and the dominant anions are nitrate and sulfate. The samples having the smallest values of specific conductance generally did not contain measurable alkalinity. When the snowpack starts to melt in the spring, specific conductance of the entire snowpack decreases, consistent with the hypothesis that the initial fluid draining from the snowpack transports a large amount of dissolved material out of the snowpack. Water chemistries in the Latir Lakes are similar although specific conductance increases downstream from lake 9 to lake 1. Calcium is the dominant cation and the ions that produce alkalinity are the dominant anions. Concentrations of sodium, magnesium, chloride, and sulfate do not vary substantially from year to year or during the year in a particular lake. Alkalinity and calcium concentration, however, do vary from year to year and during the year. The pH of outflow from the Latir Lakes varies from lake to lake and from year to year. In 1986, the range in pH in the lakes was less than 1 unit in mid-June, but was greater than 2.5 units by late October. The pH generally was larger than 7.0 in all of the lakes and was as large as 9.9 in several of the lakes during the period of study. The pH of outflow water generally increases from early spring to late summer in the Latir Lakes, and snowmelt does

  4. Design study of water chemistry control system for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yuichiro; Ide, Hiroshi; Nabeya, Hideaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In relation to the aging of Light Water Reactor (LWR), the Irradiation Assisted Stress Corrosion Cracking (IASCC) has been regarded as a significant and urgent issue for the reliability of in-core components of LWR, and the irradiation research on the IASCC is now under schedule. With the progress of the irradiation research on reactor materials, well-controlled environment conditions during irradiation testing are required. Especially for irradiation testing of IASCC studies, water chemistry control is essential in addition to the control of neutron fluence and irradiation temperature. According to these requirements, at the Japan Atomic Energy Research Institute (JAERI), an irradiation testing facility that simulates in-core environment of Boiling Water Reactor (BWR) has been designed to be installed in the Japan Materials Testing Reactor (JMTR). This facility is composed of the Saturated Temperature Capsules (SATCAP) that are installed into the JMTR's core to irradiate material specimens, the Water Control Unit that is able to supply high-temperature and high-pressure chemical controlled water to SATCAP, and other components. This report describes the design study of water chemistry control system of the Water Control Unit. The design work has been performed in the fiscal year 1999. (author)

  5. An introduction to serious nuclear accident chemistry

    OpenAIRE

    Mark Russell St. John Foreman

    2015-01-01

    A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  6. Supercritical water oxidation data acquisition testing. Final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  7. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    Science.gov (United States)

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  8. Introduction of Mass Spectrometry in an First-Semester General Chemistry Laboratory Course: Quantification of Mtbe or Dmso in Water

    Science.gov (United States)

    Solow, Mike

    2004-01-01

    Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.

  9. Introduction of Mass Spectrometry in an First-Semester General Chemistry Laboratory Course: Quantification of Mtbe or Dmso in Water

    Science.gov (United States)

    Solow, Mike

    2004-01-01

    Quantification of a contaminant in water provides the first-year general chemistry students with a tangible application of mass spectrometry. The relevance of chemistry to assessing and solving environmental problems is highlighted for students when they perform mass spectroscopy experiments.

  10. 2015 AAAR Conference Symposium: "The Role of Water in Aerosol Chemistry"

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States); Weber, Rodney [Georgia Inst. of Technology, Atlanta, GA (United States)

    2015-10-16

    The DOE-sponsored symposium, "The Role of Water in Aerosol Chemistry" was held at the 2015 Annual meeting of AAAR. The funding supported, in part, travel, lodging, and registration expenses for invited symposium speakers, and travel and lodging expenses allowing students to attend and make presentations at a special conference symposium that focuses on topics of interest to the U.S. DOE Atmospheric System Research (ASR) program.

  11. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    OpenAIRE

    Mena, M.; Cisniega, G.; Lopez, B.; M. A. Armienta; Valdés, C; Peña, P.; N. Segovia

    2005-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration d...

  12. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminates (GOAL) Sub-nanometer-spacing and Water Transport.

    Science.gov (United States)

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad David

    2017-03-23

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example is graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties, in particular the GO chemistry, can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photo-reduction and sonication techniques and were quantitatively correlated offering a valuable tool to speed up characterization. Chemical GO modification allows for fine control of GO oxidation state enabling control of a GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOAL characterized by different GOAL chemistry and morphology, and indicate that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (>1000s nm2) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GO and can be used to rationally design more effective and efficient GO membranes.

  13. The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth.

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann

    Full Text Available The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly

  14. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  15. Safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, K.; Williams, D.T.; Benoit, F.M.

    1979-01-01

    The safety of water treatment by chlorine dioxide oxidation of aromatic hydrocarbons commonly found in water and industrial wastewaters in the US was studied by observing the reactions of naphthalene and methylnaphthalenes in essentially chlorine-free, aqueous chlorine dioxide solutions. Naphthalene and methylnaphthalenes yielded chlorinated derivatives and oxidation products. Further research is recommended.

  16. Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2014-05-01

    Full Text Available The 38.5 m deep Lake Accesa is a sinkhole located in southern Tuscany (Italy that shows a peculiar water composition, being characterized by relatively high total dissolved solids (TDS values (2 g L-1 and a Ca(Mg-SO4 geochemical facies. The presence of significant amounts of extra-atmospheric gases (CO2 and CH4, which increase their concentrations with depth, is also recognized. These chemical features, mimicking those commonly shown by volcanic lakes fed by hydrothermal-magmatic reservoirs, are consistent with those of mineral springs emerging in the study area whose chemistry is produced by the interaction of meteoric-derived waters with Mesozoic carbonates and Triassic evaporites. Although the lake has a pronounced thermocline, water chemistry does not show significant changes along the vertical profile. Lake water balance calculations demonstrate that Lake Accesa has >90% of its water supply from sublacustrine springs whose subterranean pathways are controlled by the local structural assessment that likely determined the sinking event, the resulting funnel-shape being then filled by the Accesa waters. Such a huge water inflow from the lake bottom (~9·106 m3 yr-1 feeds the lake effluent (Bruna River and promotes the formation of water currents, which are able to prevent the establishment of a vertical density gradient. Consequently, a continuous mixing along the whole vertical water column is established. Changes of the drainage system by the deep-originated waters in the nearby former mining district have strongly affected the outflow rates of the local mineral springs; thus, future intervention associated with the ongoing remediation activities should carefully be evaluated to preserve the peculiar chemical features of Lake Accesa.

  17. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water.

    Science.gov (United States)

    Wang, Jinlong; Zhang, Pengyi; Li, Jinge; Jiang, Chuanjia; Yunus, Rizwangul; Kim, Jeonghyun

    2015-10-20

    Layered manganese oxide, i.e., birnessite was prepared via the reaction of potassium permanganate with ammonium oxalate. The water content in the birnessite was adjusted by drying/calcining the samples at various temperatures (30 °C, 100 °C, 200 °C, 300 °C, and 500 °C). Thermogravimetry-mass spectroscopy showed three types of water released from birnessite, which can be ascribed to physically adsorbed H2O, interlayer H2O and hydroxyl, respectively. The activity of birnessite for formaldehyde oxidation was positively associated with its water content, i.e., the higher the water content, the better activity it has. In-situ DRIFTS and step scanning XRD analysis indicate that adsorbed formaldehyde, which is promoted by bonded water via hydrogen bonding, is transformed into formate and carbonate with the consumption of hydroxyl and bonded water. Both bonded water and water in air can compensate the consumed hydroxyl groups to sustain the mineralization of formaldehyde at room temperature. In addition, water in air stimulates the desorption of carbonate via water competitive adsorption, and accordingly the birnessite recovers its activity. This investigation elucidated the role of water in oxidizing formaldehyde by layered manganese oxides at room temperature, which may be helpful for the development of more efficient materials.

  18. Mine-water chemistry: the good, the bad and the ugly

    Energy Technology Data Exchange (ETDEWEB)

    Banks, B.; Banks, S.B. [Norges Geologiske Undersoekelse, Trondheim (Norway); Younger, P.L. [Newcastle Univ. (United Kingdom). Dept. of Civil Engineering; Arnesen, R.T.; Iversen, E.R. [Norwegian Inst. for Water Research (NIVA), Oslo (Norway)

    1997-10-01

    Contaminative mine drainage waters have become one of the major hydrogeological and geochemical problems arising from mankind`s intrusion into the geosphere. Mine drainage waters in Scandinavia and the United Kingdom are of three main types: (1) saline formation waters; (2) acidic, heavy-metal-containing, sulphate waters derived from pyrite oxidation, and (3) alkaline, hydrogen-sulphide-containing, heavy-metal-poor waters resulting from buffering reactions and/or sulphate reduction. Mine waters are not merely to be perceived as problems, they can be regarded as industrial or drinking water sources and have been used for sewage treatment, tanning and industrial metals extraction. Mine-water problems may be addressed by isolating the contaminant source, by suppressing the reactions releasing contaminants, or by active or passive water treatment. Innovative treatment techniques such as galvanic suppression, application of bactericides, neutralising or reducing agents (pulverised fly ash-based grouts, cattle manure, whey, brewers` yeast) require further research. (orig.)

  19. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  20. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  1. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  2. Steam chemistry - interaction of chemical species with water, steam, and materials during evaporation, superheating, and condensation. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Topics of this proceedings are: steam chemistry, supercritical water, effects of chemicals in steam (acetic acid, formic acid, phosphoric acid or other impurities); solubility and deposition, condensation processes and effect of impurities; nucleation; gas-liquid interfaces; steam treatment. (SR)

  3. Exposure assessment of metal-based nanoparticles in aquatic environments: interactive influence of water chemistry and nanopaticle characteristics

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2014-09-01

    Full Text Available in aquatic environments: interactive influence of water chemistry and nanopaticle characteristics Thwala M; Radebe N; Tancu Y and Musee N Abstract Transformation and bioavailability information of engineered nanoparticles (ENPs) in environmental...

  4. Nonmethane hydrocarbons at Pico Mountain, Azores: 1. Oxidation chemistry in the North Atlantic region

    Science.gov (United States)

    Helmig, D.; Tanner, D. M.; Honrath, R. E.; Owen, R. C.; Parrish, D. D.

    2008-10-01

    Measurements of nonmethane hydrocarbons (NMHC) at the Pico Mountain observatory at 2225 m asl on Pico Island, Azores, Portugal, from August 2004 to August 2005 (in part overlapping with the field campaign of the International Consortium on Atmospheric Research on Transport and Transformation study) were used to investigate NMHC sources and seasonal oxidation chemistry in the central North Atlantic region. Levels of anthropogenic NMHC were characteristic of the marine free troposphere. Their concentrations were low compared to continental sites at higher northern latitudes, but higher than data reported from a similarly located Pacific mountain site at Mauna Loa Observatory, Hawaii. These higher NMHC levels are indicative of a greater influence of the adjacent continents on air composition at Pico. Substantially enhanced NMHC concentrations during the summers of 2004 and 2005 were attributed to long-range transport of biomass burning plumes originating from fires in northern Canada, Alaska, and Siberia. This finding exemplifies the continuing impact of biomass burning plumes on atmospheric composition and chemistry many days downwind of these emission sources. Seasonal cycles with lower NMHC concentrations and lower ratios of more reactive to less reactive NMHC during summer reflect the higher degree of photochemical processing occurring during transport. The NMHC concentrations indicate no significant role of chlorine atom oxidation on NMHC. Ozone above 35 ppbv was measured at Pico Mountain throughout all seasons. Enhanced ozone levels were observed in air that had relatively "fresh" photochemical signatures (e.g., ln [propane]/[ethane] > -2.5). During spring-summer air that was more processed ("older" air with ln [propane]/[ethane] < -2.5) on average had lower ozone levels (down to <20 ppbv). This relationship indicates that conditions in the lower free troposphere over the mid-North Atlantic during the spring and summer lead to net photochemical ozone destruction

  5. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    Science.gov (United States)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  6. Silicon and tungsten oxide nanostructures for water splitting

    Science.gov (United States)

    Reyes Gil, Karla R.; Spurgeon, Joshua M.; Lewis, Nathan S.

    2009-08-01

    Inorganic semiconductors are promising materials for driving photoelectrochemical water-splitting reactions. However, there is not a single semiconductor material that can sustain the unassisted splitting of water into H2 and O2. Instead, we are developing a three part cell design where individual catalysts for water reduction and oxidation will be attached to the ends of a membrane. The job of splitting water is therefore divided into separate reduction and oxidation reactions, and each catalyst can be optimized independently for a single reaction. Silicon might be suitable to drive the water reduction. Inexpensive highly ordered Si wire arrays were grown on a single crystal wafer and transferred into a transparent, flexible polymer matrix. In this array, light would be absorbed along the longer axial dimension while the resulting electrons or holes would be collected along the much shorter radial dimension in a massively parallel array resembling carpet fibers on a microscale, hence the term "solar carpet". Tungsten oxide is a good candidate to drive the water oxidation. Self-organized porous tungsten oxide was successfully synthesized on the tungsten foil by anodization. This sponge-like structure absorbs light efficiently due to its high surface area; hence we called it "solar sponge".

  7. Oxidation and photo-oxidation of water on TiO2 surface

    DEFF Research Database (Denmark)

    Valdes, A.; Qu, Z.W.; Kroes, G.J.

    2008-01-01

    The oxidation and photo-oxidation of water on the rutile TiO2(110) surface is investigated using density functional theory (DFT) calculations. We investigate the relative stability of different surface terminations of TiO2 interacting with H2O and analyze the overpotential needed...

  8. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.

    Science.gov (United States)

    Wei, Jie; Feng, Yingying; Zhou, Panpan; Liu, Yan; Xu, Jingyin; Xiang, Rui; Ding, Yong; Zhao, Chongchao; Fan, Linyuan; Hu, Changwen

    2015-08-24

    To overcome the bottleneck of water splitting, the exploration of efficient, selective, and stable water oxidation catalysts (WOCs) is crucial. We report an all-inorganic, oxidatively and hydrolytically stable WOC based on a polyoxometalate [(A-α-SiW9 O34)2Co8(OH)6(H2O)2(CO3)3](16-) (Co8 POM). As a cobalt(II)-based cubane water oxidation catalyst, Co8POM embeds double Co(II)4O3 cores. The self-assembled catalyst is similar to the oxygen evolving complex (OEC) of photosystem II (PS II). Using [Ru(bpy)3](2+) as a photosensitizer and persulfate as a sacrificial electron acceptor, Co8POM exhibits excellent water oxidation activity with a turnover number (TON) of 1436, currently the highest among bioinspired catalysts with a cubical core, and a high initial turnover frequency (TOF). Investigation by several spectroscopy, spectrometry, and other techniques confirm that Co8POM is a stable and efficient catalyst for visible light-driven water oxidation. The results offer a useful insight into the design of water oxidation catalysts.

  9. Defatted Soy Flour Supplementation of Wheat Bread ameliorates Blood Chemistry and Oxidative Stress in Wistar rats.

    Science.gov (United States)

    Ebuehi, O A T; Okafor, H K

    2015-01-01

    Bread is a convenience food made from wheat flour, which is derived from wheat and whose technology of which dates back to the ancient Egyptians. It is therefore of economic advantage if wheat importation to Nigeria can be reduced by substitution with other suitable materials. This led to the whole idea of composite flour, which is a mixture of wheat with other materials to form suitable flour for baking'purposes. The study is to ascertain the effect of supplementation of bread with defatted soy flour on blood chemistry and oxidative stress in Wistar rats. Wheat flour mixed with high quality defatted Soy flour at several ratios: 90:10, 80:20, 70:30, and 60:40. The 90:10, 80:20, 70:30, and 60:40 flour mixtures were used to prepare 10%, 20%, 30%, and 40% Soya bread, respectively. The control bread (100%) was prepared with 100% wheat flour. Bread produced with these blends compared with regular 100% wheat bread and was tested for chemical and. organoleptic characteristics. Sixteen rats were randomly given codes and allocated to 2 different groups via tables with random numbers to feed on the 100% wheat blend and soy supplemented bread (90% wheat flour/10% soy flour) for 28 days. The weights and feedintake of the rats were computed on dailybasis. Blood was taken for biochemical assays and liver was used for antioxidant assay, that is activities of catalase, super oxider dismutase (SOD) and reduced glutathine level. The activities of serum SOD and catalase were significantly increase (pbread as compared to the control, (wheat bread) and a significant decrease (pbread as compared to the control. There was a significant decrease (pbread.

  10. Structural Characterization of Biogenic Manganese Oxides Produced in Sea Water

    Science.gov (United States)

    Webb, S. M.; Bargar, J. R.; Tebo, B. M.

    2003-12-01

    Manganese oxides have been coined as the "scavengers of the sea" and play important roles in both marine and freshwater systems. Natural manganese oxide nanoparticles and grain coatings are ubiquitous in the environment and profoundly impact the quality of sediments via their ability to degrade and sequester contaminants. These oxides are believed to form dominantly via oxidation of Mn(II) by marine and freshwater bacteria and have extremely high sorptive capacities for heavy metals. We have used XANES, EXAFS, and synchrotron (SR)-XRD techniques to study biogenic manganese oxides produced by spores of the marine Bacillus sp., strain SG-1 in seawater as a function of reaction time under fully in-situ conditions. The primary biogenic solid-phase Mn oxide product is a hexagonal layered phyollomanganate with an oxidation state similar to that in delta-MnO2. XRD data show the biooxides to have a phyllomanganate 10 basal plane spacing, suggesting the interlayer is hydrated and contains calcium. As the experiment continues, the initial biooxide changes to show triclinic symmetry. Fits to these EXAFS spectra suggest the octahedral layers have low Mn octahedral site vacancies in the lattice and the latyers bend to accommodate Jahn-Teller distortions creating the change in symmetry. The oxides observed in this study as models of Mn(II) bio-oxidation may be representative of the most abundant manganese oxide phase suspended in the oxic and sub-oxic zones of the oceanic water column.

  11. Selective electrochemical generation of hydrogen peroxide from water oxidation

    CERN Document Server

    Viswanathan, Venkatasubramanian; Nørskov, Jens K

    2015-01-01

    Water is a life-giving source, fundamental to human existence, yet, over a billion people lack access to clean drinking water. Present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH$^*$ can be used as a descriptor to screen for selectivity trends between the 2e$^-$ water oxidation to H$_2$O$_2$ and the 4e$^-$ oxidation to O$_2$. We show that materials that bind oxygen intermediates sufficiently weakly, such as SnO$_2$, can activate hydrogen peroxide evolution. We present a rati...

  12. Controls on Surface Water Chemistry in the Upper Merced River Basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, David W.; Alisa Mast, M.; Campbell, Donald H.

    1996-05-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 equiv. l-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 equiv. l-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from Happy Isles gauge from 1968 to 1990 was 26 equiv. l-1, which was five times higher than in atmospheric deposition (4-5 equiv. l-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 equiv. l-1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation, suggesting that sulphate may

  13. On the relevance of the methane oxidation cycle to ozone hole chemistry

    Science.gov (United States)

    Mueller, Rolf; Crutzen, Paul J.

    1994-01-01

    High concentrations of active chlorine are clearly responsible for the observed ozone depletion during the Antarctic polar spring. However, the mechanism behind the activation of chlorine from the reservoirs species HCl and ClONO2 and the maintenance of extremely high levels of active chlorine after polar sunrise is less well understood. Here, we focus on the influence of the methane oxidation cycle on 'ozone hole' chemistry through its effect on HOx and ClOx radicals. We demonstrate the great potential importance of the heterogeneous reaction HCl + HOCl yields Cl2 + H2O and the gasphase reaction ClO + CH3O2 yields ClOO + CH3O under sunlight conditions in polar spring. Under these conditions, the heterogeneous reaction is the main sink for HOx radicals. Through this channel, the HCl reservoir may be almost completely depleted. The gas phase reaction may control the levels of the CH3O2 radical, provided that high levels of ClO exist. Otherwise this radical initiates a sequence of reactions leading to a considerable loss of active chlorine. Moreover, the production of HOx radicals is reduced, and thereby the efficiency of the heterogeneous reaction limited. The two reactions together may accomplish the complete conversion of HCl into active chlorine, thereby leading to a rapid destruction of ozone.

  14. Al-doped and undoped zinc oxide films obtained by soft chemistry

    Directory of Open Access Journals (Sweden)

    Suzana M. Mihaiu

    2009-06-01

    Full Text Available Zinc oxide with a hexagonal wurzite type structure is an unique material that exhibits semiconducting, piezoelectric and pyroelectric properties. These properties play a key role for applications in optoelectronic devices. In the present work Al-doped and undoped ZnO films were obtained by soft chemistry starting with zinc acetate dihydrate and Al(III isopropoxide in absolute ethyl alcohol. Trietanolamine was used as chelating agent. The fi lms were deposited by dip coating technique on the silicon substrate and thermally treated at 500°C for one hour. The morphological characteristics of the films were investigated by Atomic Force Microscopy (AFM. Optical constants, such as refractive index (n and extinction coeffi cient (k, were established by Spectroellipsometry measurements. Electrical conductivity of the studied fi lms was determined in the 20–500°C temperature range by “the four point method”. The morphology of the fi lms is infl uenced by the starting sol composition, as found from AFM. According to the ellipsometric spectral data, more porous and thinner films, with smaller refractive index were obtained in the case of Al-doped ZnO fi lms as compared with ZnO films. Both ZnO and Al-doped ZnO fi lms presented high electrical resistivity.

  15. Mentha suaveolens Ehrh. (Lamiaceae Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry

    Directory of Open Access Journals (Sweden)

    Mijat Božović

    2015-05-01

    Full Text Available Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO, the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  16. Simple coupling chemistry linking carboxyl-containing organic molecules to silicon oxide surfaces under acidic conditions.

    Science.gov (United States)

    Schmidt, Sebastian W; Christ, Timo; Glockner, Christian; Beyer, Martin K; Clausen-Schaumann, Hauke

    2010-10-05

    The coupling chemistry of carboxymethylated amylose with organo-silanized silicon oxide surfaces at pH 7.4 and 2.0 was investigated using atomic force microscopy (AFM) based single-molecule force spectroscopy. At close to neutral pH, carbodiimide activation of a carboxylic acid affords formation of an amide bond with an amino surface linker. At pH 2.0, no activation with carbodiimide was required to anchor carboxymethylated amylose between an AFM tip and a glass substrate. At the same time, the mean bond rupture force f(r) dropped from 1.65 ± 0.37 nN at pH 7.4 to 1.39 ± 0.30 nN at pH 2.0 without carbodiimide, indicating that a different link to the surface can be formed at low pH. The coupling mechanism at pH 2.0 was elucidated by a series of experiments, in which the surface was functionalized with four different organosilanes, each containing characteristic functional groups. The results are rationalized with an acid-catalyzed ester condensation between a carboxyl group and a free, unreacted silanol group in the surface anchor or on the surface.

  17. Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry.

    Science.gov (United States)

    Božović, Mijat; Pirolli, Adele; Ragno, Rino

    2015-05-13

    Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS) is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO), the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  18. Changing carbonate chemistry in ocean waters surrounding coral reefs in the CMIP5 ensemble

    Science.gov (United States)

    Ricke, K.; Schneider, K.; Cao, L.; Caldeira, K.

    2012-12-01

    Coral reefs comprise some of the most biodiverse ecosystems in the world. Today they are threatened by a number of stressors, including pollution, bleaching from global warming and ocean acidification. In this study, we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs. We use results from 13 Earth System Models included in the Coupled Model Intercomparison Project 5 (CMIP5) to examine the changing aragonite saturations (Ωa) of open ocean waters surrounding approximately 6,000 coral reefs. These 13 Earth System Models participating in CMIP5 each have interactive ocean biogeochemistry models that output state variables including DIC, alkalinity, SST, and salinity. Variation in these values were combined with values from the GLODAP database to calculate aragonite, the form of calcium carbonate that corals use to make their skeletons. We used reef locations from ReefBase that were within one degree (in latitude or longitude) of water masses represented both in the GLODAP database and in the climate models. Carbonate chemistry calculations were performed by Dr. James C. Orr (IPSL) as part of a separate study. We find that in preindustrial times, 99.9 % of coral reefs were located in regions of the ocean with aragonite saturations of 3.5 or more. The saturation threshold for viable reef ecosystems in uncertain, but the pre-industrial distribution of water chemistry surrounding coral reefs may nevertheless provide some indication of viability. We examine the fate of coral reefs in the context of several potential aragonite saturation thresholds, i.e., when Ωa_crit equals 3, 3.25, or 3.5. We show that under a business-as-usual scenario Representative Concentration Pathway (RCP) 8.5, the specific value of Ωa_crit does not affect the long-term fate of coral reefs -- by the end of the 21st century, no coral reef considered is surrounded by water with Ωa> 3. However, under scenarios with significant CO2 emissions

  19. Uncertainties in water chemistry in disks: An application to TW Hydrae

    Science.gov (United States)

    Kamp, I.; Thi, W.-F.; Meeus, G.; Woitke, P.; Pinte, C.; Meijerink, R.; Spaans, M.; Pascucci, I.; Aresu, G.; Dent, W. R. F.

    2013-11-01

    Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims: The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods: We use a previously published thermo-chemical Protoplanetary Disk Model (ProDiMo) of the disk around TW Hya and study a range of chemical modeling uncertainties: metallicity, C/O ratio, and reaction pathways and rates leading to the formation of water. We provide results for the simplified assumption of Tgas = Tdust to quantify uncertainties arising for the complex heating/cooling processes of the gas and elaborate on limitations due to water line radiative transfer. Results: We report new line detections of p-H2O (322-211) at 89.99 μm and CO J = 18-17 at 144.78 μm for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([O i], [C ii]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [O i] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions: Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide

  20. Assessing Changes in Water Chemistry Along the Mountain to Urban Gradient

    Science.gov (United States)

    Gabor, R. S.; Brooks, P. D.; Neilson, B. T.; Barnes, M. L.; Stout, T.; Millington, M. R.; Gelderloos, A.; Tennant, H.; Eiriksson, D.

    2015-12-01

    Throughout the western US, growing population centers rely on mountain watersheds that are already sensitive to hydrologic stressors. We examined rivers along Utah's Wasatch Front over a range of spatial and discharge scales, confusing on the mountain-to-urban transition to identify how urbanization impacts water resources. The rivers we studied all originate in canyons with impact level ranging from minimal human disturbance to roads and open grazing cattle. Each river enters an urban area after leaving the canyon, where there is significantly more anthropogenic impact on the system. As part of an interdisciplinary effort with the iUTAH project, sample sites were selected at intervals along each river and a variety of measurements were made, including basic water chemistry along with discharge, water isotopes, nutrients, and organic matter analysis. By combining physical and chemical parameters we were able to quantify groundwater influence in gaining reaches and how those differ between the mountain and urban environments. We also identified how the urban system impacted hydrologic and biogeochemical processes in the catchment. For example, in Red Butte Creek discharge tripled through gaining reached in the canyon with only small corresponding changes in conductivity or nitrate levels. However in the urban stretch a gaining reach that tripled the discharge corresponded with a doubling in the conductivity and order of magnitude increase in nitrate. The fact that we first see this change in chemistry during a gaining reach, and not in an area full of storm culverts, suggests that urban impact to stream chemistry predominately occurs through the groundwater. Further work will incorporate ecological and climatic data along with the hydrologic and chemical datasets to identify how controls on water resources change along the mountain to urban gradient. By combining this physical information with sociological data we can identify green infrastructure solutions to

  1. Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes.

    Science.gov (United States)

    Kent, Caleb A; Concepcion, Javier J; Dares, Christopher J; Torelli, Daniel A; Rieth, Adam J; Miller, Andrew S; Hoertz, Paul G; Meyer, Thomas J

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29,000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of ~5.

  2. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    Science.gov (United States)

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port.

  3. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States); Frei, Heinz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Univ. of California, Berkeley, CA (United States)

    2017-02-22

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. In conclusion, combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.

  4. Glyoxal as a tracer of VOC oxidation chemistry: Comparison of measurements with model results for Blodgett Forest, California

    Science.gov (United States)

    Huisman, Andrew; Carlton, Annmarie; Keutsch, Frank

    2010-05-01

    We present a study investigating Volatile Organic Compound (VOC) oxidation chemistry in the context of regional ozone (O3) production during the BEARPEX 2007 and 2009 campaigns at Blodgett Forest Research Station (BFRS) in the Sierra Nevada mountains, CA. Measurements are compared with results from a regional model (US EPA CMAQ) and a zero dimensional (0-D) box model based on the Master Chemical Mechanism (MCM). We use glyoxal (CHOCHO) and formaldehyde (HCHO) as tracers for generalized oxidation processes and employ ratios of compounds (e.g. CHOCHO / HCHO, CHOCHO / MPAN) to study plume evolution as doing so attenuates the influence of meteorology. One of the goals of this study is to investigate the utility of glyoxal as a tracer of VOC oxidation chemistry for measurement/model comparisons, for which formaldehyde has served in the past. In this context, we investigate the discrepancies between models and measurements, and the degree to which these can be attributed to the representation of glyoxal chemistry (e.g. yields) or whether these discrepancies reflect VOC-HOx-NOx oxidation more generally, which has implications for ozone and secondary organic aerosol formation. Model results from CMAQ and the 0-D box model substantially overestimate the absolute measured concentration of CHOCHO at BFRS, and the CMAQ model also shows poor agreement with the diurnal profile. The 0-D box model also overestimates CHOCHO in data taken at the Caltech Indoor Air Chambers, suggesting that 2nd- and/or higher-generation yields of CHOCHO from isoprene are substantially overestimated in the MCM. 0-D model results that use attenuated 2nd- and higher-generation production of CHOCHO from isoprene show enhanced agreement with chamber results. We will present model results of the 0-D Box Model from BFRS employing these reduced yields that show improved agreement with measurements and also compare these results with the other models. We also present results obtained with two modifications of

  5. Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Salimi, Saeideh; Madadkhani, Sepideh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2016-12-01

    Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 3(3+) as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O2/(mol Mn·s)) in the presence of Ru(bpy) 3(3+) and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.

  6. A biomimetic copper water oxidation catalyst with low overpotential.

    Science.gov (United States)

    Zhang, Teng; Wang, Cheng; Liu, Shubin; Wang, Jin-Liang; Lin, Wenbin

    2014-01-08

    Simply mixing a Cu(II) salt and 6,6'-dihydroxy-2,2'-bipyridine (H2L) in a basic aqueous solution afforded a highly active water oxidation catalyst (WOC). Cyclic voltammetry of the solution at pH = 12-14 shows irreversible catalytic current with an onset potential of ~0.8 V versus NHE. Catalytic oxygen evolution takes place in controlled potential electrolysis at a relatively low overpotential of 640 mV. Experimental and computational studies suggest that the L ligand participates in electron transfer processes to facilitate the oxidation of the Cu center to lead to an active WOC with low overpotential, akin to the use of the tyrosine radical by Photosystem II to oxidize the CaMn4 center for water oxidation.

  7. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    OpenAIRE

    A. Bobrowski; Kmita, A.; Starowicz, M.; B. Stypuła; B. Hutera

    2012-01-01

    An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide onthe structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgOin propanol and ethanol were introduced in the same mass content (5wt.%) and structural changes were determined by measurement of theFT-IR absorption spectra.

  8. Supercritical water oxidation of wastewater and sludges - design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M.J.C.; Sanchez, E.A.; Fernandez-Polanco, F. [Dept. Ingenieria Quimica, Univ. de Valladolid, Valladolid (Spain)

    2002-07-01

    The supercritical water oxidation (SCWO) process is a promising technology for the treatment of industrial wastewaters and sludges. It has been shown to be effective in destroying recalcitrant, xenobiotic or nonbiodegradable compounds and is an interesting alternative to conventional chemical and biological oxidation processes. This paper describes the basic concepts and state of the art of the SCWO technology and presents the flow sheets and energy and mass balances for diluted wastewater and sludge treatment. (orig.)

  9. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-07-01

    Full Text Available As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed.

  10. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Kim, Jin-Hoi

    2013-02-01

    Graphene and graphene related materials are an important area of research in recent years due to their unique properties. The extensive industrial application of graphene and related compounds has led researchers to devise novel and simple methods for the synthesis of high quality graphene. In this paper, we developed an environment friendly, cost effective, simple method and green approaches for the reduction of graphene oxide (GO) using Escherichia coli biomass. In biological method, we can avoid use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The biomass of E. coli reduces exfoliated GO to graphene at 37°C in an aqueous medium. The E. coli reduced graphene oxide (ERGO) was characterized with UV-visible absorption spectroscopy, particle analyzer, high resolution X-ray diffractometer, scanning electron microscopy and Raman spectroscopy. Besides the reduction potential, the biomass could also play an important role as stabilizing agent, in which synthesized graphene exhibited good stability in water. This method can open up the new avenue for preparing graphene in cost effective and large scale production. Our findings suggest that GO can be reduced by simple eco-friendly method by using E. coli biomass to produce water dispersible graphene.

  11. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...

  12. Subcritical and supercritical water oxidation of CELSS model wastes

    Science.gov (United States)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  13. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-06-15

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were

  14. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.; Foucher, J.P. (Institut Francais de Recherche et d' Exploitation de la Mer, Plouzane (France)); von Stackelberg, U.; Wiedicke, M. (Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover (Germany)); Erzinger, J. (Justus-Liebig-Universitat, Giessen (Germany)); Herzig, P. (Rheinish-Westfalische Technische Hochschule, Aachen (Germany)); Muhe, R. (Universitat Kiel (Germany)); Soakai, S. (Ministry of Lands Survey and Natural Resources, Nuku' Alofa (Tonga)); Whitechurch, H. (Ecole et Observatoire de Physique du Globe de Strasbourg (France))

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all for areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  15. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    Science.gov (United States)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  16. Progress in base-metal water oxidation catalysis.

    Science.gov (United States)

    Parent, Alexander Rene; Sakai, Ken

    2014-08-01

    This minireview provides a brief overview of the progress that has been made in developing homogeneous water oxidation catalysts based on base metals (manganese, iron, cobalt, nickel, and copper) from the 1990s to mid-2014. The impact of each contribution is analyzed, and opportunities for further improvement are noted. In addition, the relative stabilities of the base-metal catalysts that have been reported are compared to illustrate the importance of developing more robust catalytic systems by using these metals. This manuscript is intended to provide a firm foundation for researchers entering the field of water oxidation based on base metals and a useful reference for those currently involved in the field.

  17. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Hurwitz, Shaul; Hunt, Andrew G.; Evans, William C.

    2012-01-01

    Geysers are rare features that reflect a delicate balance between an abundant supply of water and heat and a unique geometry of fractures and porous rocks. Between April 2007 and September 2008, we sampled Old Faithful, Daisy, Grand, Oblong, and Aurum geysers in Yellowstone National Park's Upper Geyser Basin and characterized temporal variations in major element chemistry and water isotopes (δ18O, δD, 3H). We compare these temporal variations with temporal trends of Geyser Eruption Intervals (GEI). SiO2 concentrations and geothermometry indicate that the geysers are fed by waters ascending from a reservoir with temperatures of ∼190 to 210°C. The studied geysers display small and complex chemical and isotopic seasonal variations, and geysers with smaller volume display larger seasonal variations than geysers with larger volumes. Aurum and Oblong Geysers contain detectable tritium concentrations, suggesting that erupted water contains some modern meteoric water. We propose that seasonal GEI variations result from varying degrees of evaporation, meteoric water recharge, water table fluctuations, and possible hydraulic interaction with the adjacent Firehole River. We demonstrate that the concentrations of major dissolved species in Old Faithful Geyser have remained nearly constant since 1884 despite large changes in Old Faithful's eruption intervals, suggesting that no major changes have occurred in the hydrothermal system of the Upper Geyser Basin for >120 years. Our data set provides a baseline for monitoring future changes in geyser activity that might result from varying climate, earthquakes, and changes in heat flow from the underlying magmatic system.

  18. Does water chemistry limit the distribution of New Zealand mud snails in Redwood National Park?

    Science.gov (United States)

    Vazquez, Ryan; Ward, Darren M.; Sepulveda, Adam

    2016-01-01

    New Zealand mud snails (NZMS) are exotic mollusks present in many waterways of the western United States. In 2009, NZMS were detected in Redwood Creek in Redwood National Park, CA. Although NZMS are noted for their ability to rapidly increase in abundance and colonize new areas, after more than 5 years in Redwood Creek, their distribution remains limited to a ca. 300 m reach. Recent literature suggests that low specific conductivity and environmental calcium can limit NZMS distribution. We conducted laboratory experiments, exposing NZMS collected from Redwood Creek to both natural waters and artificial treatment solutions, to determine if low conductivity and calcium concentration limit the distribution of NZMS in Redwood National Park. For natural water exposures, we held NZMS in water from their source location (conductivity 135 μS/cm, calcium 13 mg/L) or water from four other locations in the Redwood Creek watershed encompassing a range of conductivity (77–158 μS/cm) and calcium concentration (4 months) in the lowest conductivity waters from Redwood Creek and all but the lowest-conductivity treatment solutions, regardless of calcium concentration. However, reproductive output was very low in all natural waters and all low-calcium treatment solutions. Our results suggest that water chemistry may inhibit the spread of NZMS in Redwood National Park by reducing their reproductive output.

  19. Effects of flow and water chemistry on lead release rates from pipe scales.

    Science.gov (United States)

    Xie, Yanjiao; Giammar, Daniel E

    2011-12-01

    Lead release from pipe scales was investigated under different water compositions, stagnation times, and flow regimes. Pipe scales containing PbO(2) and hydrocerussite (Pb(3)(OH)(2)(CO(3))(2)) were developed on lead pipes by conditioning the pipes with water containing free chlorine for eight months. Water chemistry and the composition of the pipe scales are two key factors affecting lead release from pipe scales. The water rarely reached equilibrium with pipe scales within one day, which makes solid-water contact time and corrosion product dissolution rates the controlling factors of lead concentrations for the conditions tested. Among five water compositions studied, a solution with orthophosphate had the lowest dissolved lead release rate and highest particulate lead release rate. Free chlorine also decreased the dissolved lead release rate at stagnant conditions. Water flow increased rates of release of both dissolved and particulate lead by accelerating the mass transfer of lead out of the porous pipe scales and by physically destabilizing pipe scales. Dissolved lead comprised the majority of the lead released at both stagnant and laminar flow conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  1. Cumulative soil chemistry changes from land application of saline-sodic waters

    Energy Technology Data Exchange (ETDEWEB)

    Ganjegunte, G.K.; King, L.A.; Vance, G.F. [University of Wyoming, Laramie, WY (United States). Department for Renewable Resources

    2008-09-15

    Management of large volumes (60,000 ha-m) of co-production water associated with coal bed natural gas (CBNG) water extraction is a potential concern in the Powder River Basin (PRB) of Wyoming and Montana due to elevated water salinity and sodicity levels. Land application of saline-sodic CBNG water is a common water management method being practiced in the PRB, which can result in deterioration in soil quality. The objective of this study was to evaluate effects from 1 to 4 yr of land application with CBNG water on soil chemical properties at six study sites (fine to loamy, mixed to smectitic, mesic, Ustic Ardisols and Entisols) in the Wyoming PRB region. Changes in chemistry of soils collected from six depths irrigated with CBNG water were compared with representative non-irrigated soils. Applications of CBNG water significantly increased soil EC, SAR, and ESP values (up to 21, 74, and 24 times, respectively) compared with non-irrigated soils. Differences in soil chemical properties between an irrigated and non-irrigated coarse-textured soil were less than that of fine-textured soils, emphasizing texture as an important factor for salinity buildup. Pretreatment of CBNG water using a sulfur burner and application of gypsum and elemental S soil amendments reduced soil pH but did not prevent the build-up of salts and sodium. Study results suggest that current CBNG water management strategies are not as effective as projected. Additional research is needed to develop management strategies appropriate for mitigating adverse effects of CBNG water irrigation.

  2. Cumulative soil chemistry changes from land application of saline-sodic waters.

    Science.gov (United States)

    Ganjegunte, Girisha K; King, Lyle A; Vance, George F

    2008-01-01

    Management of large volumes (60,000 ha-m) of co-production water associated with coal bed natural gas (CBNG) water extraction is a potential concern in the Powder River Basin (PRB) of Wyoming and Montana due to elevated water salinity and sodicity levels. Land application of saline-sodic CBNG water is a common water management method being practiced in the PRB, which can result in deterioration in soil quality. The objective of this study was to evaluate effects from 1 to 4 yr of land application with CBNG water on soil chemical properties at six study sites (fine to loamy, mixed to smectitic, mesic, Ustic Ardisols and Entisols) in the Wyoming PRB region. Changes in chemistry of soils collected from six depths irrigated with CBNG water were compared with representative nonirrigated soils. Applications of CBNG water significantly increased soil EC, SAR, and ESP values (up to 21, 74, and 24 times, respectively) compared with nonirrigated soils. Differences in soil chemical properties between an irrigated and nonirrigated coarse-textured soil were less than that of fine-textured soils, emphasizing texture as an important factor for salinity buildup. Pretreatment of CBNG water using a sulfur burner and application of gypsum and elemental S soil amendments reduced soil pH but did not prevent the build-up of salts and sodium. Study results suggest that current CBNG water management strategies are not as effective as projected. Additional research is needed to develop management strategies appropriate for mitigating adverse effects of CBNG water irrigation.

  3. Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Sedigh, Davood Jafarian

    2013-09-14

    We, for the first time, report that many Mn oxides (Mn3O4, α-Mn2O3, β-MnO2, CaMnO3, Ca2Mn3O8, CaMn3O6 and CaMn4O8) in the presence of cerium(IV) ammonium nitrate, in the water oxidation, convert to layered Mn oxide. This layered Mn oxide is an efficient water oxidizing catalyst.

  4. Source Water Flow Pathways In Forested, Mountain, Headwater Streams: A Link Between Sediment Movement Patterns And Stream Water Chemistry.

    Science.gov (United States)

    Martin, S.; Conklin, M. H.; Liu, F.

    2015-12-01

    Three years of continuous and discrete sediment and water quality data, from four forested, mountain, headwater catchments in the Sierra Nevada, is used to identify water sources, determine the importance of sub-surface flow pathways, detect any changes in source waters due to seasonal variation or drought, and link flow pathways with observed patterns of in-channel sediment movement within the study watersheds. Patterns in stream chemistry and turbidity point to infiltration as the dominant flow pathway within these catchments. Data support a flow pathway conceptual model in which precipitation water infiltrates into the shallow or deeper subsurface, increasing the hydraulic head of the water table and pushing pre-event water into the stream ahead of event water. Study catchments contain perennial streams and are characterized by a Mediterranean climate with a distinct wet and dry season. Sites are located in the rain-snow transition zone with snow making up 40 to 60 percent of average annual precipitation. Barring human disturbances such as logging/grazing (compaction) or fire (hydrophobicity), catchment soils have high infiltration capacities. Springs and seeps maintain baseflow during the summer low-flow season, and shifting chemical signals within the streams indicate the increased importance of sub-surface water sources during drought years. End-member mixing analysis was conducted to identify possible water end members. Turbidity hysteresis patterns described by previous studies show in-channel sources are dominant for discharge events year round, and there is no difference in fine sediment delivery to streams with or without a soil protecting layer of snow on the land surface. The dominance of sub-surface water sources and evidence for infiltration flow fits with turbidity data, as little material is reaching the stream due to erosive overland flow. An understanding of flow pathways provides a foundation for sustainable land use management in forested

  5. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    Science.gov (United States)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  6. Presidential Green Chemistry Challenge: 2010 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2010 award winners, Dow and BASF, jointly developed a route to make propylene oxide from hydrogen peroxide that eliminates almost all waste and greatly reduces water and energy use.

  7. Presidential Green Chemistry Challenge: 2016 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2016 award winner, Dow Agrosciences LLC, developed Instinct®, a technology that reduces fertilizer nitrate leaching to ground and surface waters and atmospheric nitrous oxide emissions. More corn and reduces CO2.

  8. Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001)-Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-04-30

    The interaction of Fe(II) with ferric oxide/oxyhydroxide phases is central to the biogeochemical redox chemistry of iron. Molecular simulation techniques were employed to determine the mechanisms and quantify the rates of Fe(II) oxidative adsorption at the hematite (001)-water interface. Molecular dynamics potential of mean force calculations of Fe(II) adsorbing on the hematite surface revealed the presence of three free energy minima corresponding to Fe(II) adsorbed in an outersphere complex, a monodentate innersphere complex, and a tridentate innersphere complex. The free energy barrier for adsorption from the outersphere position to the monodentate innersphere site was calculated to be similar to the activation enthalpy for water exchange around aqueous Fe(II). Adsorption at both innersphere sites was predicted to be unfavorable unless accompanied by release of protons. Molecular dynamics umbrella sampling simulations and ab initio cluster calculations were performed to determine the rates of electron transfer from Fe(II) adsorbed as an innersphere and outersphere complex. The electron transfer rates were calculated to range from 10^-4 to 10^2 s-1, depending on the adsorption site and the potential parameter set, and were generally slower than those obtained in the bulk hematite lattice. The most reliable estimate of the rate of electron transfer from Fe(II) adsorbed as an outersphere complex to lattice Fe(III) was commensurate with the rate of adsorption as an innersphere complex suggesting that adsorption does not necessarily need to precede oxidation.

  9. Tectonic, climatic and hydrothermal control on sedimentation and water chemistry of northern Lake Malawi (Nyasa), Tanzania

    Science.gov (United States)

    Branchu, Philippe; Bergonzini, Laurent; Delvaux, Damien; De Batist, Marc; Golubev, Vladimir; Benedetti, Marc; Klerkx, Jean

    2005-11-01

    This paper presents a multi-disciplinary characterisation of processes that influence sedimentation and lake water chemistry in the northern part of the Lake Malawi (or Lake Nyasa), East Africa. This characterisation is based on geophysical (heat-flow), tectonic, hydrological, hydrochemical (major elements, stable isotopes) and sedimentological (seismic profiles, core mineralogy) studies of data acquired from 1990 to 1994 during the CASIMIR project (Comparative Analysis of Sedimentary Infill Mechanisms in Rifts). Sub-surface activity is expressed through seismic and volcanic activity, as well as elevated heat-flow values, both beneath the lake and the surrounding area; hydrothermal activity is observed in the watershed however it was not clearly identified in the sub-lacustrine environment. Relatively high heat-flow values (80-90 mW/m 2) and the chemical composition of hydrothermal fluids in hot springs suggest the presence of a magmatic body at depth. The influence of Quaternary tectonic activity on sedimentary dynamics and infilling is observed not only on land but also in the lake through high-resolution seismic profiles. The main feature is a general tilting of the Kyela Plain as shown by a shift in the river course. The Quaternary stacking pattern of seven sedimentary sequences identified on a grid of high-resolution seismic reflection profiles represents a complete long-term lake-level cycle, from a lake lowstand at about 320 m below the present level to the present-day lake highstand. The North-Kiwira and Songwe River delta systems, composed of a number of stacked lobes, were developed in response to the interplay between gradual lake-level rise, tectonic movement and sediment input. The river dynamics is also recorded in a short core by a mineralogical evolution probably due to a decrease of detrital inputs from the Songwe River in response to hydroclimatic changes. Such changes are very important as this northern part of the watershed is considered as a

  10. Visible light water splitting using dye-sensitized oxide semiconductors.

    Science.gov (United States)

    Youngblood, W Justin; Lee, Seung-Hyun Anna; Maeda, Kazuhiko; Mallouk, Thomas E

    2009-12-21

    Researchers are intensively investigating photochemical water splitting as a means of converting solar to chemical energy in the form of fuels. Hydrogen is a key solar fuel because it can be used directly in combustion engines or fuel cells, or combined catalytically with CO(2) to make carbon containing fuels. Different approaches to solar water splitting include semiconductor particles as photocatalysts and photoelectrodes, molecular donor-acceptor systems linked to catalysts for hydrogen and oxygen evolution, and photovoltaic cells coupled directly or indirectly to electrocatalysts. Despite several decades of research, solar hydrogen generation is efficient only in systems that use expensive photovoltaic cells to power water electrolysis. Direct photocatalytic water splitting is a challenging problem because the reaction is thermodynamically uphill. Light absorption results in the formation of energetic charge-separated states in both molecular donor-acceptor systems and semiconductor particles. Unfortunately, energetically favorable charge recombination reactions tend to be much faster than the slow multielectron processes of water oxidation and reduction. Consequently, visible light water splitting has only recently been achieved in semiconductor-based photocatalytic systems and remains an inefficient process. This Account describes our approach to two problems in solar water splitting: the organization of molecules into assemblies that promote long-lived charge separation, and catalysis of the electrolysis reactions, in particular the four-electron oxidation of water. The building blocks of our artificial photosynthetic systems are wide band gap semiconductor particles, photosensitizer and electron relay molecules, and nanoparticle catalysts. We intercalate layered metal oxide semiconductors with metal nanoparticles. These intercalation compounds, when sensitized with [Ru(bpy)(3)](2+) derivatives, catalyze the photoproduction of hydrogen from sacrificial

  11. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  12. Chemosensory deprivation in juvenile coho salmon exposed to dissolved copper under varying water chemistry conditions.

    Science.gov (United States)

    McIntyre, Jenifer K; Baldwin, David H; Meador, James P; Scholz, Nathaniel L

    2008-02-15

    Dissolved copper is an important nonpoint source pollutant in aquatic ecosystems worldwide. Copper is neurotoxic to fish and is specifically known to interfere with the normal function of the peripheral olfactory nervous system. However,the influence of water chemistry on the bioavailability and toxicity of copper to olfactory sensory neurons is not well understood. Here we used electrophysiological recordings from the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch) to investigate the impacts of copper in freshwaters with different chemical properties. In low ionic strength artificial fresh water, a short-term (30 min) exposure to 20 microg/L dissolved copper reduced the olfactory response to a natural odorant (10(-5) M L-serine) by 82%. Increasing water hardness (0.2-1.6 mM Ca) or alkalinity (0.2-3.2 mM HCO3-) only slightly diminished the inhibitory effects of copper. Moreover, the loss of olfactory function was not affected by a change in pH from 8.6 to 7.6. By contrast, olfactory capacity was partially restored by increasing dissolved organic carbon (DOC; 0.1-6.0 mg/L). Given the range of natural water quality conditions in the western United States, water hardness and alkalinity are unlikelyto protect threatened or endangered salmon from the sensory neurotoxicity of copper. However, the olfactory toxicity of copper may be partially reduced in surface waters that have a high DOC content.

  13. Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, Rebecca J.; Phelan, Brian T.; Reynal, Anna; Margulies, Eric A.; Shoer, Leah E.; Durrant, James R.; Wasielewski, Michael R.

    2016-01-01

    Perylene-3,4-dicarboximide (PMI) based chromophores have demonstrated the ability to inject electrons into TiO2 for dye-sensitized solar cell applications and to accept electrons from metal complexes relevant to water oxidation, but they are nearly unexplored for use in photoelectrochemical cells (PECs) for solar fuels generation. A series of related PMIs with high oxidation potentials and carboxylate binding groups was synthesized and investigated for this purpose. Charge injection and recombination dynamics were measured using transient absorption (TA) spectroscopy on the picosecond to second timescales. The dynamics and electron injection yields were correlated with the PMI energetics and structures. Injection began in less than 1 ps for the dye with the best performance and a significant charge-separated state yield remained at long times. Finally, this chromophore was used to oxidize a covalently bound water oxidation precatalyst following electron injection into TiO2 to demonstrate the utility of the dyes for use in PECs.

  14. Pulsed-laser deposition of nanostructured iron oxide catalysts for efficient water oxidation.

    Science.gov (United States)

    Orlandi, Michele; Caramori, Stefano; Ronconi, Federico; Bignozzi, Carlo A; El Koura, Zakaria; Bazzanella, Nicola; Meda, Laura; Miotello, Antonio

    2014-05-14

    Amorphous iron oxide nanoparticles were synthesized by pulsed-laser deposition (PLD) for functionalization of indium-tin oxide surfaces, resulting in electrodes capable of efficient catalysis in water oxidation. These electrodes, based on earth-abundant and nonhazardous iron metal, are able to sustain high current densities (up to 20 mA/cm2) at reasonably low applied potential (1.64 V at pH 11.8 vs reversible hydrogen electrode) for more than 1 h when employed as anodes for electrochemical water oxidation. The good catalytic performance proves the validity of PLD as a method to prepare nanostructured solid-state materials for catalysis, enabling control over critical properties such as surface coverage and morphology.

  15. Oxidation of Carbon Fibers in Water Vapor Studied

    Science.gov (United States)

    Opila, Elizabeth J.

    2003-01-01

    T-300 carbon fibers (BP Amoco Chemicals, Greenville, SC) are a common reinforcement for silicon carbide composite materials, and carbon-fiber-reinforced silicon carbide composites (C/SiC) are proposed for use in space propulsion applications. It has been shown that the time to failure for C/SiC in stressed oxidation tests is directly correlated with the fiber oxidation rate (ref. 1). To date, most of the testing of these fibers and composites has been conducted in oxygen or air environments; however, many components for space propulsion, such as turbopumps, combustors, and thrusters, are expected to operate in hydrogen and water vapor (H2/H2O) environments with very low oxygen contents. The oxidation rate of carbon fibers in conditions representative of space propulsion environments is, therefore, critical for predicting component lifetimes for real applications. This report describes experimental results that demonstrate that, under some conditions, lower oxidation rates of carbon fibers are observed in water vapor and H2/H2O environments than are found in oxygen or air. At the NASA Glenn Research Center, the weight loss of the fibers was studied as a function of water pressure, temperature, and gas velocity. The rate of carbon fiber oxidation was determined, and the reaction mechanism was identified.

  16. Water as Life, Death, and Power: Building an Integrated Interdisciplinary Course Combining Perspectives from Anthropology, Biology, and Chemistry

    Science.gov (United States)

    Willermet, Cathy; Mueller, Anja; Juris, Stephen J.; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2013-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power", brought together topics from the fields of anthropology, biology and chemistry to explore…

  17. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    Science.gov (United States)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  18. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...

  19. Microbiology of broiler carcasses and chemistry of chiller water as affected by water reuse.

    Science.gov (United States)

    Northcutt, J K; Smith, D; Huezo, R I; Ingram, K D

    2008-07-01

    A study was conducted to determine the effects of treating and reusing poultry chiller water in a commercial poultry processing facility. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management System to recycle water in sections 2 and 3 of two 3-compartment chillers. In this system, reused water is blended with fresh water to maintain the chiller volume. Carcasses were sampled prechill and postchill (final exit), and chiller water was sampled from the beginning and end of each of the 3 sections. Carcasses were subjected to a whole carcass rinse (WCR) in 0.1% peptone. Numbers of Escherichia coli (EC), coliforms (CF), and Campylobacter (CPY) were determined from the WCR and chiller water samples. Prevalence of Salmonella (SAL) was also determined on the WCR and chiller water samples. On average, prechill levels of bacteria recovered from rinses were 2.6, 2.9, and 2.6 log10 cfu/mL for EC, CF, and CPY, respectively. Ten out of 40 (25%) prechill carcasses were positive for SAL. After chilling, numbers of EC, CF, and CPY recovered from carcass rinses decreased by 1.5, 1.5, and 2.0 log10 cfu/mL, respectively. However, 9 out of 40 (22%) postchill carcasses were positive for SAL. When the chiller water samples were tested, counts of EC, CF, and CPY were found only in water collected from the first section of the chiller (inlet and outlet). Two of 4 water samples collected from the inlet of the first section tested positive for SAL. This study shows that fresh and reused water can be used to cool poultry in chiller systems to achieve a reduction in numbers of bacteria (EC, CF, and CPY) or equivalent prevalence (SAL) of bacteria recovered from broiler carcasses.

  20. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.

    Science.gov (United States)

    Elmaci, Gökhan; Frey, Carolin E; Kurz, Philipp; Zümreoğlu-Karan, Birgül

    2015-03-16

    In this work, magnetic nanocomposite particles were prepared for water oxidation reactions. The studied catalysts consist of maghemite (γ-Fe2O3), magnetite (Fe3O4), and manganese ferrite (MnFe2O4) nanoparticles as cores coated in situ with birnessite-type manganese oxide shells and were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal, chemical, and surface analyses, and magnetic measurements. The particles were found to be of nearly spherical core-shell architectures with average diameter of 150 nm. Water oxidation catalysis was examined using Ce(4+) as the sacrificial oxidant. All core-shell particles were found to be active water oxidation catalysts. However, the activity was found to depend on a variety of factors like the type of iron oxide core, the structure and composition of the shell, the coating characteristics, and the surface properties. Catalysts containing magnetite and manganese ferrite as core materials displayed higher catalytic activities per manganese ion (2650 or 3150 mmolO2 molMn(-1) h(-1)) or per mass than nanoiron oxides (no activity) or birnessite alone (1850 mmolO2 molMn(-1) h(-1)). This indicates synergistic effects between the MnOx shell and the FeOx core of the composites and proves the potential of the presented core-shell approach for further catalyst optimization. Additionally, the FeOx cores of the particles allow magnetic recovery of the catalyst and might also be beneficial for applications in water-oxidizing anodes because the incorporation of iron might enhance the overall conductivity of the material.

  1. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  2. SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS

    Science.gov (United States)

    Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...

  3. The physical chemistry of nucleation of sub-micrometer non-oxide ceramic powders via sub-oxide vapor-phase reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jha, A. [Brunel Univ., Uxbridge (United Kingdom). Dept. of Materials Technology

    1996-10-01

    Fine ceramic powders (< 500 nm) exhibit exceptional physical and mechanical properties in engineered structural ceramics. The production of fine powders, in particular the non-oxide ceramics, via a cheaper route than the organic solvent route has been rather elusive. This paper examines the physical chemistry of sub-oxide vapor-phase reduction reaction for the nucleation of non-oxide ceramic phase. Well known vapor species eg SiO and BO in the production of technical ceramic powders (SiC, BN) are particularly discussed for understanding the nucleation process of SiC and BN ceramic phases respectively. The regimes of partial pressures and temperatures are particularly identified. The calculated nucleation rate as a function of the temperature is compared with the experimental results on powder morphology. The production of amorphous and nanocrystalline h-BN powders is discussed in the context of substrate structure and thermodynamic parameters.

  4. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    Science.gov (United States)

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  5. Application of an industrial gas supply system to a hydrogen water chemistry installation

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.; Kuberka, K.A.

    1988-01-01

    Equipment for a hydrogen gas supply and an oxygen gas supply was adapted to meet operating safety criteria for a hydrogen water chemistry (HWC) application at a boiling water reactor (BWR) plant. The oxygen and hydrogen gases are supplied by vaporizing cryogenic liquid drawn from storage tanks. Cryogenic storage tanks consist of an inner vessel supported within an outer vessel, with insulation in the space between vessels. The supports and product lines on the inner container are small and flexible for heat transfer and thermal flexibility considerations. Cryogenic storage tank systems inherently have low natural frequencies and must be analyzed for dynamic response to site seismic criteria. Equipment modifications to meet application criteria were made without compromising performance. The guidelines for HWC installations were supplemented by a comprehensive design safety review to assess the equipment safeguards required to control potential product releases.

  6. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment approach based on natural removal of contaminants due to physical, chemical and biological processes. In this article, an analytical model is developed by using Green's function method to simulate the effects of pumping well and microbial activity that occurs in riverbed sediments on contaminant transport and evolution of water chemistry. The model is tested with data collected previously for RBF site in France. The results are compared with numerical simulation conducted in the literature by using finite difference method. Graphically, it is noticed that both numerical and analytical results have almost the same behavior. Also it is found that the model can simulate the decreasing of one pollutant concentration at the zone where the bacteria starts to consume this pollutant.

  7. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  8. Water chemistry in heat and cold supply (district heating/cooling)

    Energy Technology Data Exchange (ETDEWEB)

    Deelen-Bremer, Marga van; Vos, Frank de; Heijboer, Rob [KEMA Nederland B.V. (Netherlands)

    2010-07-01

    District heating is seen as an important pillar in the CO{sub 2} reduction. Since the Kyoto protocol with the target for reduction of greenhouse gases, a renewed interest in district heating is visible. District heating and increasingly district cooling can be used for heating/cooling of houses, but also for large buildings and greenhouses. Combined heat and power (CHP), waste incinerator, but also rest heat of industry can provide the heat for district heating. On the other hand cold surface water, groundwater, but also rest heat can be used for district cooling. With the growing heat/cold supply market, also an even larger growth in cases of damages in district heating systems is wittnessed. Damages were chemistry can play an preventing role. A good conditioning of the district heating water, combined with proper monitoring, will safeguard the integrity of the system. (orig.)

  9. Destruction of energetic materials by supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-10-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400{degrees}C and 650{degrees}C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600{degrees}C. The reactions produce primarily N{sub 2}, N{sub 2}O,CO{sub 2}, and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525{degrees}C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100{degrees}C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented.

  10. Physical chemistry of water droplets in wafer cleaning with low water use

    NARCIS (Netherlands)

    Donck, J.C.J. van der; Bakker, J.; Smeltink, J.A.; Kolderweij, R.B.J.; Zon, B.C.M.B. van der; Kleef, M.H. van

    2015-01-01

    Reduction of water and energy consumption is of importance for keeping viable industry in Europe. In 2012 the Eniac project Silver was started in order to reduce water and energy consumption in the semiconductor industry by 10% [1]. Cleaning of wafers is one of the key process steps that require a h

  11. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  12. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    Science.gov (United States)

    Peters, C.A.; Striegl, R.G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois. Chemical data were evaluated to determine the principal naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on- site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rain water or snowmelt changed to an ionic canposition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The

  13. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    Science.gov (United States)

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  14. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream.

    Science.gov (United States)

    Arimoro, Francis O; Odume, O Nelson; Uhunoma, Samson I; Edegbene, Augustine O

    2015-02-01

    The Ogba River in southern Nigeria is an important water resource for its riparian communities. This study evaluates impact of anthropogenic influences on the Ogba River using water chemistry and macroinvertebrate data sets obtained over a period of 6 months between January and June 2012. Four stations, stations 1-4, characterised by various human activities were chosen along the river. Organic wastes from domestic and industrial sources were the major point sources of pollutants. Station 2 where the municipal wastewater drains into the river had elevated values of flow velocity, BOD5, sulphate, phosphate, nitrate and sodium. Based on the canonical correspondence analysis (CCA), 5-day biochemical oxygen demand (BOD5), sulphate, nitrate and phosphate were the main factors that help to shape the macroinvertebrate assemblage structure of the Ogba River. Macroinvertebrates clustered strongly by stations than by seasons indicating that water quality differences between the stations were responsible for the observed differences in the biotic assemblage. The preponderance of naidid oligochaetes, baetid nymphs and certain tolerant dipteran taxa including chironomids and ceratopogonids at all four stations was an indication that the entire water body was stressed. The odonates were the single most abundant taxa; their dominance could be attributed to the vegetative nature of the stream, favouring odonate colonisation. Overall, the responses of macroinvertebrates to stress were reflected by the different assemblage structures recorded at the four study stations. Substrate and microhabitat obliteration and poor water quality appeared to be the factors responsible for the observed assemblage structure in the Ogba River.

  15. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    Science.gov (United States)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  16. Dominance of interface chemistry over the bulk properties in determining the electronic structure of epitaxial metal/perovskite oxide heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Scott A.; Du, Yingge; Gu, Meng; Droubay, Timothy C.; Hepplestone, Steven; Sushko, Petr

    2015-06-09

    We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr and Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.

  17. Impact of Water Chemistry, Pipe Material and Stagnation on the Building Plumbing Microbiome.

    Directory of Open Access Journals (Sweden)

    Pan Ji

    Full Text Available A unique microbiome establishes in the portion of the potable water distribution system within homes and other buildings (i.e., building plumbing. To examine its composition and the factors that shape it, standardized cold water plumbing rigs were deployed at the treatment plant and in the distribution system of five water utilities across the U.S. Three pipe materials (copper with lead solder, CPVC with brass fittings or copper/lead combined pipe were compared, with 8 hour flush cycles of 10 minutes to simulate typical daily use patterns. High throughput Illumina sequencing of 16S rRNA gene amplicons was employed to profile and compare the resident bulk water bacteria and archaea. The utility, location of the pipe rig, pipe material and stagnation all had a significant influence on the plumbing microbiome composition, but the utility source water and treatment practices were dominant factors. Examination of 21 water chemistry parameters suggested that the total chlorine concentration, pH, P, SO42- and Mg were associated with the most of the variation in bulk water microbiome composition. Disinfectant type exerted a notably low-magnitude impact on microbiome composition. At two utilities using the same source water, slight differences in treatment approaches were associated with differences in rare taxa in samples. For genera containing opportunistic pathogens, Utility C samples (highest pH of 9-10 had the highest frequency of detection for Legionella spp. and lowest relative abundance of Mycobacterium spp. Data were examined across utilities to identify a true universal core, special core, and peripheral organisms to deepen insight into the physical and chemical factors that shape the building plumbing microbiome.

  18. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    Science.gov (United States)

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  19. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  20. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  1. Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment

    Science.gov (United States)

    Angelidis, Christine

    2013-04-01

    Remote assessment of instantaneous changes in water chemistry after liming in a Nova Scotia catchment ANGELIDIS, C.1, STERLING, S.1, BREEN, A.2, BIAGI, K.1., and CLAIR, T.A.1 1Dalhousie University, christine.angelidis@dal.ca, 2Bluenose Coastal Action Foundation, andrew@coastalaction.org Southwestern Nova Scotia has some of the most acidic freshwaters in North America due to its location downwind of the major emission sources in eastern Canada and the US and due to a resistant geology which offers little acid buffering capacity (Clair et al. 2007). Because of the poor buffering and regionally high runoff values, hydrological events such as snowmelt and rain storms are frequent and can cause sudden changes in water chemistry which can have devastating effects on freshwater biota due to increases in acidity and metals (Dennis and Clair in press). Clair et al. (2001) have estimated the potential frequency of acidic episodes in this region based on a number of hydrological factors, though the technology available at the time to monitor short-term changes was not dependable. Recent advances in equipment have made the assessment of the frequency and severity of acidic episodes easier and more accurate, allowing better interpretation and prediction of hydrogeochemical changes with variations in weather and deposition patterns. Here we take advantage of these recent advances to monitor water chemistry in an experimental catchment, and explore the response to catchment liming. Catchment liming is one way of mitigating the effects of acid deposition in sensitive areas. We limed a 50 ha catchment at a rate of 5 t/ha in the Gold River watershed of southwest Nova Scotia to examine the interactions between application of lime with the geological and climatological conditions of this region and acid episode frequency. In order to assess changes of episode frequency caused by liming, we established two mobile environmental monitoring platforms in the catchment: a control site

  2. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Science.gov (United States)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-03-01

    Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  3. H02 WETLAND TREATMENT SYSTEM WATER CHEMISTRY SAMPLING AND RESULTS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Bach, M; Michael Serrato, M; Eric Nelson, E

    2008-02-15

    The H-02 Wetland Treatment System (Figure 1) is used to remove heavy metals (e.g., copper and zinc) from the H-Area process and storm water discharge. Routine flow enters an equalization basin by inlets on either the east (Location 1) or west end (Location 2). The west end influent constitutes 75% of the average flow into the basin which has an average residence time of approximately 3 days at low pool (i.e., 120 gal/min. through a volume of 0.5 million gallons). The water then exits via the basin outlet on the east end. Next, the water flows to a splitter box (Location 3) which evenly separates the flow between two wetland cells for a design flow of 60 gal/min. per wetland cell with a residence time in the cell of approximately 2 days. The wetland effluent is then combined (Location 4) and flows through a spillway before reaching the National Pollution Discharge Elimination System (NPDES) measurement point near Road 4. During initial operation, it was observed that the pH of the water leaving the equalization basin was elevated compared to the influent pH. Furthermore, the elevated pH remained through the wetland cells so that there was an average pH of 10 leaving the wetland cells during the daytime which exceeds the upper NPDES limit of 8.5. The purpose of the current study was to evaluate the cause of the increase in pH within the equalization basin of the H-02 Wetland Treatment System. Possible mechanisms included algal activity and inorganic chemistry interactions (e.g., interactions with the clay and/or bentonite liner). Water quality parameters were evaluated throughout the H-02 Wetland Treatment system and over time in order to determine the cause of high pH values measured in the basin and wetland. Fluctuations in dissolved oxygen (DO) and accompanying changes in pH would be expected in systems where algae are an influencing factor. An unexpected increase or decrease in the concentration of inorganic substances may indicate operational changes or an

  4. Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign

    Directory of Open Access Journals (Sweden)

    T. M. Butler

    2008-03-01

    Full Text Available The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this "missing OH" is due to an as-yet undiscovered mechanism for recycling OH during the oxidation chain of isoprene, we determine that an OH recycling of about 40–50% (compared with 5–10% in current generation isoprene oxidation mechanisms is necessary in order for our modelled OH to approach the lower error bounds of the OH observed during GABRIEL. Such a large amount of OH in our model leads to unrealistically low mixing ratios of isoprene. In order for our modelled isoprene mixing ratios to match those observed during the campaign, we also require that the effective rate constant for the reaction of isoprene with OH be reduced by about 50% compared with the lower bound of the range recommended by IUPAC. We show that a reasonable explanation for this lower effective rate constant could be the segregation of isoprene and OH in the mixed layer. Our modelling results are consistent with a global, annual isoprene source of about 500 Tg(C yr−1, allowing experimentally derived and established isoprene flux rates to be reconciled with global models.

  5. Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign

    Directory of Open Access Journals (Sweden)

    T. M. Butler

    2008-08-01

    Full Text Available The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this "missing OH" is due to an as-yet undiscovered mechanism for recycling OH during the oxidation chain of isoprene, we determine that an OH recycling of about 40–50% (compared with 5–10% in current generation isoprene oxidation mechanisms is necessary in order for our modelled OH to approach the lower error bounds of the OH observed during GABRIEL. Such a large amount of OH in our model leads to unrealistically low mixing ratios of isoprene. In order for our modelled isoprene mixing ratios to match those observed during the campaign, we also require that the effective rate constant for the reaction of isoprene with OH be reduced by about 50% compared with the lower bound of the range recommended by IUPAC. We show that a reasonable explanation for this lower effective rate constant could be the segregation of isoprene and OH in the mixed layer. Our modelling results are consistent with a global, annual isoprene source of about 500 Tg(C yr−1, allowing experimentally derived and established isoprene flux rates to be reconciled with global models.

  6. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  7. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    Science.gov (United States)

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  8. Artificial photosynthesis challenges: water oxidation at nanostructured interfaces.

    Science.gov (United States)

    Carraro, Mauro; Sartorel, Andrea; Toma, Francesca Maria; Puntoriero, Fausto; Scandola, Franco; Campagna, Sebastiano; Prato, Maurizio; Bonchio, Marcella

    2011-01-01

    Innovative oxygen evolving catalysts, taken from the pool of nanosized, water soluble, molecular metal oxides, the so-called polyoxometalates (POMs), represent an extraordinary opportunity in the field of artificial photosynthesis. These catalysts possess a highly robust, totally inorganic structure, and can provide a unique mimicry of the oxygen evolving center in photosynthetic II enzymes. As a result POMs can effect H₂O oxidation to O₂ with unprecedented efficiency. In particular, the tetra-ruthenium based POM [Ru(IV) ₄(μ-OH)₂(μ-O)₄(H₂O)₄(γ-SiW(10)O(36))₂](10-), Ru₄(POM), displays fast kinetics, electrocatalytic activity powered by carbon nanotubes and exceptionally light-driven performance. A broad perspective is presented herein by addressing the recent progress in the field of metal-oxide nano-clusters as water oxidation catalysts, including colloidal species. Moreover, the shaping of the catalyst environment plays a fundamental role by alleviating the catalyst fatigue and stabilizing competent intermediates, thus responding to what are the formidable thermodynamic and kinetic challenges of water splitting. The design of nano-interfaces with specifically tailored carbon nanostructures and/or polymeric scaffolds opens a vast scenario for tuning electron/proton transfer mechanisms. Therefore innovation is envisaged based on the molecular modification of the hybrid photocatalytic center and of its environment.

  9. Using water chemistry time series to model dissolved inorganic carbon dynamics in the western Amazon basin

    Science.gov (United States)

    Vihermaa, Leena; Waldron, Susan; Newton, Jason

    2013-04-01

    Two small streams (New Colpita and Main Trail) and two rivers (Tambopata and La Torre), in the Tambopata National Reserve, Madre de Dios, Peru, were sampled for water chemistry (conductivity, pH and dissolved oxygen) and hydrology (stage height and flow velocity). In the small streams water chemistry and hydrology variables were logged at 15 minute intervals from Feb 2011 to November 2012. Water samples were collected from all four channels during field campaigns spanning different seasons and targeting the hydrological extremes. All the samples were analysed for dissolved inorganic carbon (DIC) concentration and δ13C (sample size ranging from 77 to 172 depending on the drainage system) and a smaller subset for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. Strong positive relationships were found between conductivity and both DIC concentration and δ13C in the New Colpita stream and the La Torre river. In Tambopata river the trends were less clear and in the Main Trail stream there was very little change in DIC and isotopic composition. The conductivity data was used to model continuous DIC time series for the New Colpita stream. The modelled DIC data agreed well with the measurements; the concordance correlation coefficients between predicted and measured data were 0.91 and 0.87 for mM-DIC and δ13C-DIC, respectively. The predictions of δ13C-DIC were improved when calendar month was included in the model, which indicates seasonal differences in the δ13C-DIC conductivity relationship. At present, continuous DIC sampling still requires expensive instrumentation. Therefore, modelling DIC from a proxy variable which can be monitored continuously with ease and at relatively low cost, such as conductivity, provides a powerful alternative method of DIC determination.

  10. Pilot-scale laboratory waste treatment by supercritical water oxidation.

    Science.gov (United States)

    Oshima, Yoshito; Hayashi, Rumiko; Yamamoto, Kazuo

    2006-01-01

    Supercritical water oxidation (SCWO) is a reaction in which organics in an aqueous solution can be oxidized by O2 to CO2 and H2O at a very high reaction rate. In 2003, The University of Tokyo constructed a facility for the SCWO process, the capacity of which is approximately 20 kl/year, for the purpose of treating organic laboratory waste. Through the operation of this facility, we have demonstrated that most of the organics in laboratory waste including halogenated organic compounds can be successfully treated without the formation of dioxines, suggesting that SCWO is useful as an alternative technology to the conventional incineration process.

  11. The role of water in resistive switching in graphene oxide

    Science.gov (United States)

    Rogala, M.; Kowalczyk, P. J.; Dabrowski, P.; Wlasny, I.; Kozlowski, W.; Busiakiewicz, A.; Pawlowski, S.; Dobinski, G.; Smolny, M.; Karaduman, I.; Lipinska, L.; Kozinski, R.; Librant, K.; Jagiello, J.; Grodecki, K.; Baranowski, J. M.; Szot, K.; Klusek, Z.

    2015-06-01

    The resistive switching processes are investigated at the nano-scale in graphene oxide. The modification of the material resistivity is driven by the electrical stimulation with the tip of atomic force microscope. The presence of water in the atmosphere surrounding graphene oxide is found to be a necessary condition for the occurrence of the switching effect. In consequence, the switching is related to an electrochemical reduction. Presented results suggest that by changing the humidity level the in-plane resolution of data storage process can be controlled. These findings are essential when discussing the concept of graphene based resistive random access memories.

  12. Mechanism of catalytic oxidation of water-lipid substrate

    Science.gov (United States)

    Kraynik, V. V.; Ushkalova, V. N.

    2010-05-01

    The processes of ethyl oleate water-emulsion oxidation in the presence of copper (II) complexes with α-alanine as a catalyst were investigated spectroscopically. UV spectra of the samples revealed the competitive nature of the formation and decomposition of hydroperoxides in the course of oxidation. Vis spectra of the aqueous phase revealed the constant presence of copper (II) complex with α-alanine and the formation of a similar complex with copper (I) in organic phase. The involvement of these complexes in the reactions of chain nucleation and decay of hydroperoxides is suggested.

  13. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  14. Transtion metal oxides for solar water splitting devices

    Science.gov (United States)

    Smith, Adam M.

    Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials. This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and

  15. Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug.

    Science.gov (United States)

    Puri, Vibha; Dantuluri, Ajay K; Kumar, Mahesh; Karar, N; Bansal, Arvind K

    2010-05-12

    The present study compares energetics of wetting behavior of crystalline and amorphous forms of a poorly water soluble drug, celecoxib (CLB) and attempts to correlate it to their surface molecular environment. Wettability and surface free energy were determined using sessile drop contact angle technique and water vapor sorption energetics was measured by adsorption calorimetry. The surface chemistry was elucidated by X-ray photoelectron spectroscopy (XPS) and crystallographic evaluation. The two solid forms displayed distinctly different wetting with various probe liquids and in vitro dissolution media. The crystalline form surface primarily exhibited dispersive surface energy (47.3mJ/m(2)), while the amorphous form had a slightly reduced dispersive (45.2mJ/m(2)) and a small additional polar (4.8mJ/m(2)) surface energy. Calorimetric measurements, revealed the amorphous form to possess a noticeably high differential heat of absorption, suggesting hydrogen bond interactions between its polar energetic sites and water molecules. Conversely, the crystalline CLB form was found to be inert to water vapor sorption. The relatively higher surface polarity of the amorphous form could be linked to its greater oxygen-to-fluorine surface concentration ratio of 1.27 (cf. 0.62 for crystalline CLB), as determined by XPS. The crystallographic studies of the preferred cleavage plane (020) of crystalline CLB further supported its higher hydrophobicity. In conclusion, the crystalline and amorphous forms of CLB exhibited disparate surface milieu, which in turn can have implications on the surface mediated events.

  16. Investigation of adsorption of surfactant at the air-water interface with quantum chemistry method

    Institute of Scientific and Technical Information of China (English)

    CHEN MeiLing; WANG ZhengWu; WANG HaiJun; ZHANG GeXin; TAO FuMing

    2007-01-01

    Density functional theory (DFT) of quantum chemistry was used to optimize the configuration of the anionic surfactant complexes CH3(CH2)7OSO-3(H2O)n (n=0-6) and calculate their molecular frequencies at the B3LYP/6-311+G* level. The interaction of CH3(CH2)7OSO-3 with 1 to 6 water molecules was investigated at the air-water interface with DFT. The results revealed that the hydration shell was formed in the form of H-bond between the hydrophilic group of CH3(CH2)7OSO-3 and 6 waters. The strength of H-bonds belongs to medium. Binding free energy revealed that the hydration shell was stable. The increase of the number of water molecules will cause increases of the total charge of hydrophilic group and S10-O9-C8 bond angle, but decreases of the alkyl chain length and the bond lengths of S10-O11,S10-O12 as well as S10-O13, respectively.

  17. Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes

    Directory of Open Access Journals (Sweden)

    Jennyfer Miot

    2016-03-01

    Full Text Available As biominerals are good tracers of microbial interactions with the environment, they may provide signatures of microbial evolution and paleoenvironmental conditions. Since modern analogues of past environments help with defining proxies and biosignatures, we explored microbe mineral interactions in the water column of a maar lake, located in France: Lake Pavin. This lake is considered as a potential Precambrian ocean analogue, as it is ferruginous and meromictic, i.e., stratified with a superficial O2-rich layer (mixolimnion and a deeper permanently anoxic layer (monimolimnion. We combined bulk chemical analyses of dissolved and particulate matter in combination with electron microscopy analyses of the particulate matter at different depths along the water column. The mineralogy changed along with water chemistry, and most of the minerals were intimately associated with microorganisms. Evolution of the redox conditions with depth leads to the successive precipitation of silica and carbonates, Mn-bearing, Fe-bearing and S-containing phases, with a predominance of phosphates in the monimolimnion. This scheme parallels the currently-assessed changes of microbial diversity with depth. The present results corroborate previous studies that suggested a strong influence of microbial activity on mineralogical diversity through extracellular and intracellular biomineralization. This paper reports detailed data on mineralogical profiles of the water column and encourages extended investigation of these processes.

  18. Lake Bolsena (Central Italy: an updating study on its water chemistry

    Directory of Open Access Journals (Sweden)

    Piero BRUNI

    2004-02-01

    Full Text Available In spite of its importance as regards size (volume 9.2 106 m3, max depth 151 m and as a source of drinking water, Lake Bolsena has not been studied from a hydrochemical point of view since the second half of the 60s, when a group of researchers from the Istituto Italiano di Idrobiologia co-ordinated a complete study of the limnology of the Latium lakes Bolsena, Albano, Vico, and Bracciano. In the following years analyses were performed sporadically; since the 90s, temperature and oxygen profiles and other studies were made by the Associazione Lago di Bolsena. Based on chemical profiles made in 2001-2003, this paper discusses the present chemical composition of Lake Bolsena waters, and compares them with those of other volcanic lakes in Latium (Bracciano, Albano, Nemi and Vico. The paper briefly considers the main factors influencing the water chemistry of Lake Bolsena, the variations observed from the analyses of the 60s, and the main sources of risk to water quality.

  19. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, M.F., E-mail: mfchiang@iner.gov.tw [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China); Young, M.C.; Huang, J.Y. [Institute of Nuclear Energy Research, Division of Nuclear Fuels and Materials, Lungtan, Taoyuan 325, Taiwan (China)

    2011-04-15

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  20. Effects of hydrogen water chemistry on corrosion fatigue behavior of cold-worked 304L stainless steel in simulated BWR coolant environments

    Science.gov (United States)

    Chiang, M. F.; Young, M. C.; Huang, J. Y.

    2011-04-01

    Corrosion fatigue behavior of stainless steel 304L (SS304L) in a simulated BWR coolant with hydrogen injection was investigated. Hydrogen water chemistry slightly mitigated the corrosion fatigue degradation of the as-received SS304L specimens, but, on the contrary, it slightly increased the corrosion fatigue crack growth rates (CFCGRs) of the cold-worked specimens. All the CFCGR-tested specimens showed similar fracture features, except for the amounts of deposited corrosion debris. The results indicated that decreasing the oxygen concentration of water environment is not an effective measure to suppress the fatigue crack growth rate of cold-worked SS304L. The CFCGRs of the SS304L were determined by an interaction between corrosion, oxide-induced crack closure and cold work in corrosive environments. At a specific level of reduction, cold work could enhance the corrosion fatigue resistance of SS304 both in the air-saturated and HWC coolant environments.

  1. Crystal chemistry of volcanic allanites indicative of naturally induced oxidation-dehydrogenation

    Science.gov (United States)

    Hoshino, Mihoko; Kimata, Mitsuyoshi; Chesner, Craig A.; Nishida, Norimasa; Shimizu, Masahiro; Akasaka, Takeshi

    2010-05-01

    The crystal chemistry of volcanic allanites from both the Youngest Toba Tuff (YTT), Sumatra, Indonesia and SK100 volcanic ash beds (SK100-VAB), Niigata, Japan has been examined by electron microprobe analysis (EMPA), Fourier-transform infrared spectroscopic analysis (FTIR), and single-crystal structure analysis. In the FTIR study, based on the Diamond ATR accessory, YTT and SK100- VAB allanites were observed to have different OH contents, respectively: the former has 0.64 wt% H2O (OH: 0.40 apfu.), while the latter has 1.65 wt% H2O (OH: 1.00 apfu.). The crystal structures of these two allanites have been refined to individual R indices (3.64 and 4.25) based on 1350 observed reflections (|Fo| > 4sig|Fo|) measured using a single-crystal diffractometer with MoKα X-radiation. The OH-poor YTT allanite has a shorter b axis, a longer c axis, and larger β value than the relatively OH-rich SK100-VAB one. The bond valence sums of O4 (accepter oxygen for H atom) and O10 (donor oxygen for H atom) are 1.962 and 1.709 v.u. for YTT allanite (valence sum: 3.671 v.u.) and 1.754 and 1.271 v.u. for SK100-VAB one (valence sum: 3.025 v.u.). The difference from the ideal total bond valence value (4.00 v.u.) of O4 and O10 in YTT allanite (0.33 v.u.) is smaller than that in SK100-VAB (0.98 v.u.). These difference values are also broadly consistent with the corresponding differences in OH content between the YTT (OH: 0.40 apfu.) and SK100-VAB allanites (OH: 1.00 apfu.) determined by FTIR- ATR. Chemical analyses, FTIR-ATR and crystal structure refinement of YTT and SK100-VAB allanites yielded the following crystal chemical formula: YTT: (Ca0.83Mn2+ 0.06Fe2+ 0.11)(La0.24Ce0.32Pr0.04Nd0.11Sm0.02Th0.04Ca0.21)(Al0.73Fe3+ 0.19Ti0.08)(Al0.89Fe3+ 0.11)(Fe2+ 0.22Fe3+ 0.62Mg0.16)(SiO4)Si2O7O1.6(OH)0.4, SK100-VAB: (Ca0.81Fe2+ 0.13Mn2+ 0.06)(La0.22Ce0.34Pr0.05Nd0.13Sm0.02Th0.02Ca0.22)(Al0.76Fe3+ 0.19Ti0.05)Al1.00(Fe2+ 0.73Fe3+ 0.17Mg0.10)(Si0.96Al0.04O4)Si2O7O(OH). Therefore, it is concluded that

  2. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    Science.gov (United States)

    Kronawitter, Coleman Xaver

    Photoelectrochemistry and its associated technologies show unique potential to facilitate the large-scale production of solar fuels—those energy-rich chemicals obtained through conversion processes driven by solar energy, mimicking the photosynthetic process of green plants. The critical component of photoelectrochemical devices designed for this purpose is the semiconductor photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with respect to the redox couple of the electrolyte to drive the relevant electrochemical reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient and stable conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions. The unique range of functional properties of oxides, and especially the oxides of transition metals, relates to their associated diversity of cation oxidation states, cation electronic configurations, and crystal structures. In this dissertation, the use of metal oxide films, nanomaterials, and heterostructures in photoelectrodes enabling the solar-driven oxidation of water and generation of hydrogen fuel is examined. A range of transition- and post-transition-metal oxide material systems and nanoscale architectures is presented. The first chapters present results related to electrodes based on alpha-phase iron(III) oxide, a promising visible-light-active material widely investigated for this application. Studies of porous films fabricated by physical vapor deposition reveal the importance of structural quality, as determined by the deposition substrate temperature, on photoelectrochemical performance. Heterostructures with nanoscale feature dimensionality are explored and reviewed in a later chapter

  3. Diversity-Oriented Synthesis of a Library of Substituted Tetrahydropyrones Using Oxidative Carbon-Hydrogen Bond Activation and Click Chemistry

    Directory of Open Access Journals (Sweden)

    Paul E. Floreancig

    2011-05-01

    Full Text Available Eighteen (2RS,6RS-2-(4-methoxyphenyl-6-(substituted ethyldihydro-2H-pyran-4(3Hones were synthesized via a DDQ-mediated oxidative carbon-hydrogen bond activation reaction. Fourteen of these tetrahydropyrans were substituted with triazoles readily assembled via azide-alkyne click-chemistry reactions. Examples of a linked benzotriazole and pyrazole motif were also prepared. To complement the structural diversity, the alcohol substrates were obtained from stereoselective reductions of the tetrahydropyrone. This library provides rapid access to structurally diverse non-natural compounds to be screened against a variety of biological targets.

  4. Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates

    Science.gov (United States)

    Giner, Ignacio; Maxisch, Michael; Kunze, Christian; Grundmeier, Guido

    2013-10-01

    Water adsorption on plasma modified oxyhydroxide covered aluminum surfaces was analyzed by means of a set-up combining in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance (QCM) in a low-temperature plasma cell. The chemical structure of the surface before and after the plasma treatment was moreover characterized by means of X-ray photoelectron spectroscopy (XPS) analysis. The surface chemistry of oxide covered aluminum was modified by oxidative and reductive low-temperature plasma pre-treatments. The Ar-plasma treatment reduced the surface hydroxyl density and effectively removed adsorbed organic contaminations. Surface modification by means of a water plasma treatment led to an increased surface hydroxyl density as well as an increase of the thickness of the native oxide film. The adsorption of water at atmospheric pressures on plasma modified aluminum surfaces led to a superimposition of reversible water layer adsorption and a simultaneous increase of the oxyhydroxide film thickness as a result of a chemisorption process. The amount of physisorbed water increased with the surface hydroxyl density whereas the chemisorption process was most significant for the surface after Ar-plasma treatment and almost negligible for the already water plasma treated surface.

  5. A pinch of salt is all it takes: chemistry at the frozen water surface.

    Science.gov (United States)

    Kahan, Tara F; Wren, Sumi N; Donaldson, D James

    2014-05-20

    Chemical interactions at the air-ice interface are of great importance to local atmospheric chemistry but also to the concentrations of pollutants deposited onto natural snow and ice. However, the study of such processes has been hampered by the lack of general, surface-specific probes. Even seemingly basic chemical properties, such as the local concentration of chemical compounds, or the pH at the interface, have required the application of assumptions about solute distributions in frozen media. The measurements that have been reported have tended for the most part to focus on entire ice or snow samples, rather than strictly the frozen interface with the atmosphere. We have used glancing-angle laser spectroscopy to interrogate the air-ice interface; this has yielded several insights into the chemical interactions there. The linear fluorescence and Raman spectra thus measured have the advantage of easy interpretability; careful experimentation can limit their probe depth to that which is relevant to atmospheric heterogeneous processes. We have used these techniques to show that the environment at the interface between air and freshwater ice surfaces is distinct from that at the interface between air and liquid water. Acids such as HCl that adsorb to ice surfaces from the gas phase result in significantly different pH responses than those at liquid water surfaces. Further, the solvation of aromatic species is suppressed at freshwater ice surfaces compared with that at liquid water surfaces, leading to extensive self-association of aromatics at ice surfaces. Photolysis kinetics of these species are much faster than at liquid water surfaces; this can sometimes (but not always) be explained by red shifts in the absorption spectra of self-associated aromatics increasing the extent to which solar radiation is absorbed. The environment presented by frozen saltwater surfaces, in contrast, appears to be reasonably well-described by liquid water. The extent of hydrogen

  6. Using initial field campaigns for optimal placement of high resolution stable water isotope and water chemistry measurements

    Science.gov (United States)

    Sahraei, Amirhossein; Kraft, Philipp; Windhorst, David; Orlowski, Natalie; Bestian, Konrad; Holly, Hartmut; Breuer, Lutz

    2017-04-01

    composition and groundwater is not reactive to the annual precipitation cycle. Consecutive runoff measurements revealed bidirectional water exchange between stream and groundwater where influent and effluent conditions occur at different stream sections during baseflow conditions. Moreover, stream water quality responds to land use with significant variation of nitrate concentration due to agricultural land use. The a priori assessment of information from various sources and methods will allow us to guide the placement of high resolution stable water isotope and water chemistry measurements. We will report on the merits and drawbacks of each approach. Results will be used to select up to 12 sampling sites for a novel self-sufficient measurement system and guide the method selection for other researchers facing a similar challenge.

  7. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    Science.gov (United States)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-09-01

    Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.

  8. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    Directory of Open Access Journals (Sweden)

    Y. B. Lim

    2013-09-01

    Full Text Available Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2, methylglyoxal (C3, and acetic acid have great potential to form secondary organic aerosol (SOA via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1 provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2 uses this and a previously published glyoxal mechanism (Lim et al., 2010 to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012. This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010, and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10−6 − ~ 10−3 M; Munger et al., 1995 of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M, the major oxidation products are oligomers formed via organic radical–radical reactions, and simulated SOA yields (by mass are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium could enhance yields.

  9. Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods

    OpenAIRE

    2013-01-01

    This research studied the synthesis of graphene oxide and graphene via a low-cost manufacturing method. The process started with the chemical oxidation of commercial graphite powder into graphite oxide by modified Hummer’s method, followed by the exfoliation of graphite oxide in distilled water using the ultrasound frequency from a laboratory ultrasonic bath. Finally, the oxygen functional groups on exfoliated graphite oxide or graphene oxide were eliminated by stirring in hot distilled water...

  10. Treatment of surfactant stabilized oil-in-water emulsions by means of chemical oxidation and coagulation.

    Science.gov (United States)

    Kulik, N; Trapido, M; Veressinina, Y; Munter, R

    2007-12-01

    The model wastewater samples investigated in the current study represented oil-in-water (O/W) emulsions with small oil (diesel/black oil) and high surfactant (Anrol/Decon90) concentrations generated during washing of oil tankers or tank-wagons. Coagulation with aluminium sulphate, ferric chloride and lime milk, and chemical oxidation by hydrogen peroxide catalyzed ferrous ions were applied as traditional and advanced treatment processes, respectively. Coagulation proved more feasible for oil content removal than for COD reduction. Both COD and oil content removal, were higher if Anrol was used as a surface active agent. The comparison of wastewater samples with different oil products but the same detergent showed more effective black oil removal. Coagulation was found ineffective as a pre-treatment technology for biodegradability improvement and toxicity reduction in surfactant stabilized O/W emulsion wastewater samples. The application of Fenton chemistry showed significant COD, UV absorbance and BOD removal, but no improvement in wastewater samples biodegradability. The maximum COD reduction and oil content removal from wastewater samples was above 90%. The oxidation of wastewater containing Decon90 required higher dosages of the Fenton reagent than wastewater with Anrol. Both Anrol and Decon90 contaminated wastewater samples were found to be detoxified even after moderate hydrogen peroxide dosages had been applied in the oxidation step.

  11. A new method for the investigation of mercury redox chemistry in natural waters utilizing deflatable Teflon[reg] bags and additions of isotopically labeled mercury

    Energy Technology Data Exchange (ETDEWEB)

    Whalin, Lindsay M. [Chesapeake Biological Laboratory, University of Maryland, Solomons, MD 20688 (United States); Mason, Robert P. [Chesapeake Biological Laboratory, University of Maryland, Solomons, MD 20688 (United States)]. E-mail: robert.mason@uconn.edu

    2006-02-03

    The toxicity and behavior of mercury (Hg) varies greatly between its chemical species, yet the mechanisms which control the redox chemistry of Hg in natural waters are still poorly understood. Previous studies have identified these processes and compared the Hg redox chemistry between water types but have been hampered by errors associated primarily with the type of reaction vessels utilized, and the inability of the methods to simultaneously measure oxidation and reduction. Presented here are the results of experiments which demonstrate the validity of a new method that addresses both these issues through the design and use of a new reaction vessel, a 5 L PFA Teflon[reg] incubation bag, and by the addition of isotopically labeled inorganic Hg species (both Hg{sup II} and Hg{sup 0}). The method development showed that mm thick FEP Teflon[reg] is permeable to Hg{sup 0}, and therefore unsuitable. Application of this method showed that both oxidation and reduction occurred simultaneously in natural waters exposed to ambient sunlight and that the rate of these transformations were of similar order (10{sup -3} to 10{sup -4} s{sup -1}). Given such reaction rates, the characteristic time to equilibrium is rapid, on the order of hours. The method is applicable for tracer studies, and the method was able to quantify rate constants of greater than 10{sup -5} s{sup -1}. Overall, this study suggests that the rates of reaction are faster than previously predicted primarily because previous studies did not account for the fact that both reactions are occurring simultaneously in natural waters.

  12. Effect of water chemistry upsets on the dynamics of corrective reagent dosing systems at thermal power stations

    Science.gov (United States)

    Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min

    2016-12-01

    Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.

  13. Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Fisher, D.; Thomas, J.

    2011-02-18

    The International Atomic Energy Agency (IAEA) and the government of Serbia have led the project cosponsored by the U.S, Russia, European Commission, and others to repackage and repatriate approximately 8000 spent fuel elements from the RA reactor fuel storage basins at the VIN?A Institute of Nuclear Sciences to Russia for reprocessing. The repackaging and transportation activities were implemented by a Russian consortium which includes the Sosny Company, Tekhsnabeksport (TENEX) and Mayak Production Association. High activity of the water of the fuel storage basin posed serious risk and challenges to the fuel removal from storage containers and repackaging for transportation. The risk centered on personnel exposure, even above the basin water, due to the high water activity levels caused by Cs-137 leached from fuel elements with failed cladding. A team of engineers from the U.S. DOE-NNSA's Global Threat Reduction Initiative, the Vinca Institute, and the IAEA performed the design, development, and deployment of a compact underwater water chemistry control system (WCCS) to remove the Cs-137 from the basin water and enable personnel safety above the basin water for repackaging operations. Key elements of the WCCS system included filters, multiple columns containing an inorganic sorbent, submersible pumps and flow meters. All system components were designed to be remotely serviceable and replaceable. The system was assembled and successfully deployed at the Vinca basin to support the fuel removal and repackaging activities. Following the successful operations, the Cs-137 is now safely contained and consolidated on the zeolite sorbent used in the columns of the WCCS, and the fuel has been removed from the basins. This paper reviews the functional requirements, design, and deployment of the WCCS.

  14. Effects on water chemistry, benthic invertebrates and brown trout following forest fertilization in central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, L.; Soederberg, H.; Sjoelander, E. (County Administrative Board of Vaesternorrland, Haernoesand (Sweden). Environmental Unit); Nohrstedt, H.Oe. (Inst. for Forest Improvement, Uppsala (Sweden))

    1993-01-01

    Two coniferous forest drainage areas in central Sweden were partially fertilized with ammonium nitrate and calcium ammonium nitrate respectively, both at a dose of 150 kg N per ha. During the following years observations were made on stream water chemistry, invertebrates and brown trout (Salmo trutta L.). Upstream stations were used as controls. Very high concentrations of inorganic N (up to 45 mg l[sup -1]) were recorded immediately after the fertilization. Thereafter, concentration decreased rapidly but remained elevated during the whole study period. Acidity conditions (pH, alkalinity, aluminium) were unaffected by both treatments. The only registered effect on the benthic fauna was a three- to five-fold increase of drifting invertebrates during the first four-five days after the treatment. However, this did not reduce the population density at the treated stations. No effects on population of trout were recorded. (22 refs., 6 figs., 3 tabs.).

  15. Uptake of Water Onto Organic Films Containing Oxidized Functional Groups

    Science.gov (United States)

    Demou, E.; Donaldson, D. J.

    There is increasing evidence that atmospheric particles may contain significant mass fractions of organic compounds. Such particles may be predominantly organic (as in SOA condensates) or may have mixed aqueous-organic character. In either case, the particle surface exposed to the atmosphere, if it has organic character, is subject to oxidation by OH, O3 and NO3 gas phase molecules. Surface oxidation is expected to alter the hydrophobic nature of an organic surface layer, and thus perhaps facilitate the particle's ability to act as a cloud condensation nucleus. We have used a quartz crystal microbalance (QCM) to measure the mass uptake of water by organic films as a func- tion of the ambient relative humidity. Results for the room-temperature condensation of water onto films composed of aliphatic hydrocarbons, mono- and di-alcohols and mono- and di-acids will be presented.

  16. Treatment of gasoline-contaminated waters by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tiburtius, Elaine Regina Lopes [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil); Peralta-Zamora, Patricio [Departamento de Quimica, Universidade Federal do Parana, CP 19081, 81531-990 Curitiba, PR (Brazil)]. E-mail: zamora@quimica.ufpr.br; Emmel, Alexandre [Centro Integrado de Tecnologia e Educacao Profissional, 81310-010 Curitiba, PR (Brazil)

    2005-11-11

    In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at reaction times of about 30 min. Preliminary investigations using water contaminated by gasoline suggest a good potentiality of the process for the treatment of large volumes of aqueous samples containing these polluting species. Heterogeneous photocatalysis and H{sub 2}O{sub 2}/UV system show lower degradation efficiency, probably due to the heterogeneous character of the TiO{sub 2}-mediated system and lost of photonic efficiency of the H{sub 2}O{sub 2}/UV system in the presence of highly colored intermediated.

  17. Electrochemical Oxidation of PAHs in Water from Harbor Sediment Purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    to contamination by PAH, heavy metals, TBT etc. In Denmark, contaminated harbor sediment is pumped ashore to inland lakes or upland sites where treatment of the runoff water is required before discharge to the recipient. In this study, electrochemical oxidation (EO) has been investigated as a method for treatment...... of the discharge water addressing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs are by-products of incomplete combustion of organic materials with recalcitrant and strong mutagenic/carcinogenic properties, due to their benzene analogue structures. PAHs are hydrophobic compounds and their persistence...... in the environment is mainly due to their low water solubility. The experimental study was performed in laboratory scale with volumes of water from 3 to 10 L in a batch recirculation experimental setup at constant temperature with a commercial one-compartment cell of tubular design with Ti/Pt90-Ir10 anode (60 cm2...

  18. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-01

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations.

  19. Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si.

    Science.gov (United States)

    Gokce, Bilal; Adles, Eric J; Aspnes, David E; Gundogdu, Kenan

    2010-10-12

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG.

  20. Stream Water and Soil Water Chemistry Following the Table Mountain Wildfire, Washington

    Science.gov (United States)

    Roccanova, V. J.; Gazis, C. A.

    2013-12-01

    Severe wildfire occurrence in the Western United States increased throughout the 20th century and has continued to increase into the 21st century. Global climate change resulting from natural and anthropogenic sources is considered a contributor to this increase in wildfire severity. Fire suppression techniques developed in the early 20th century are also a factor in increased severe wildfire occurrence as they augment available fuel loads. Biomass burning releases nutrients that are held within trees and plants. Nitrogen, phosphorous, and calcium levels have been documented as increasing in stream waters as a result of wildfire. As severe wildfire occurrence increases, so does the likelihood that stream, and to a lesser extent groundwater, will be loaded with nutrients and sediments as a result of wildfire activity. Increased nutrient loads can cause algal blooms that deplete streams of oxygen, important to aquatic plants and animals that reside in these streams. These changes in water quality can also affect humans who depend on these streams for irrigation and drinking water purposes. The Table Mountain wildfire in Washington State was started by a lightning strike that occurred at approximately 8:00 PM on Saturday September 8th, 2012. The fire burned for approximately one month and was declared to be 100% contained on Friday October 5th, 2012. Over this period the fire burned a total of 171 square kilometers of forest. In this study multiple stream and soil water samples were collected from three types of area in the winter through summer following the fire: severely burned, moderately burned, and unburned. All areas sampled have similar bedrock and vegetation cover. These samples were analyzed for major ions and trace element concentrations. Select samples will also be analyzed for strontium isotope ratios. The results of these geochemical analyses will be presented. Because calcium and strontium have similar properties, their concentrations can be combined

  1. The separation of particulates from supercritical water oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Dell`Orco, P.C.; Li, L.; Gloyna, E.F. [Univ. of Texas, Austin (United States)

    1993-01-01

    Small hydrocyclones with batch underflow receivers were assessed for their ability to separate micron-sized particulates from near-critical water solutions. Such particulates are expected from the effluent of a supercritical water oxidation reactor. The separation of micron-sized quartz silica, zirconia, and titania particles was investigated. An empirical expression was developed for the prediction of gross removal efficiencies as a function of a Stokes` number. Particle size distributions provided grade efficiencies for all experiments, and from these data, cut sizes were determined. Gross efficiencies up to 99% were observed for zirconia; cut sizes (d{sub 90} and d{sub 95}) near one micron were measured.

  2. Oxidation of Alcohols by N-bromosuccinimide in Water

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    XIE Min, MIAO Cheng-xia, WANG Shou-feng, SUN Wei J. Mol. Catal. (China) 2012, 26(2), 099-104 A series of alcohols were oxidatized to the correspondinl ketones or aldehydes in high yields by N-bromosuccinimide un-der catalyst-free conditions in water, except for some alcohols bearing donating substituents. However, the oxidation of less ef- fective alcohols could be carried out smoothly with Salen-Co (III) complex as a catalyst in a medium of water and CH2 C12 mixture.

  3. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.

    Science.gov (United States)

    Tian, Jia; Chen, Lan; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-05-11

    The development of homogeneous, water-soluble periodic self-assembled structures comprise repeating units that produce porosity in two-dimensional (2D) or three-dimensional (3D) spaces has become a topic of growing interest in the field of supramolecular chemistry. Such novel self-assembled entities, known as supramolecular organic frameworks (SOFs), are the result of programmed host-guest interactions, which allows for the thermodynamically controlled generation of monolayer sheets or a diamondoid architecture with regular internal cavities or pores under mild conditions. This feature article aims at propagating the conceptually novel SOFs as a new entry into conventional supramolecular polymers. In the first section, we will describe the background of porous solid frameworks and supramolecular polymers. We then introduce the self-assembling behaviour of several multitopic flexible molecules, which is closely related to the design of periodic SOFs from rigid multitopic building blocks. This is followed by a brief discussion of cucurbit[8]uril (CB[8])-encapsulation-enhanced aromatic stacking in water. The three-component host-guest pattern based on this stacking motif has been utilized to drive the formation of most of the new SOFs. In the following two sections, we will highlight the main advances in the construction of 2D and 3D SOFs and the related functional aspects. Finally, we will offer our opinions on future directions for both structures and functions. We hope that this article will trigger the interest of researchers in the field of chemistry, physics, biology and materials science, which should help accelerate the applications of this new family of soft self-assembled organic frameworks.

  4. Tunable water desalination across Graphene Oxide Framework membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Adrien [Rensselaer Polytechnic Institute (RPI); Sumpter, Bobby G [ORNL; Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.

  5. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    Science.gov (United States)

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-11-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants.

  6. Destruction of representative submarine food waste using supercritical water oxidation.

    Science.gov (United States)

    Chen, Shiying; Qu, Xuan; Zhang, Rong; Bi, Jicheng

    2015-03-01

    In this study, 13 types of organic materials were oxidized using H2O2 in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99% at temperature of 460 °C and TN conversion reaching 94% at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99% obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100%, the quality of treated water attained levels commensurate with China's Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge-Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol.

  7. Destruction of Navy Hazardous Wastes by Supercritical Water Oxidation

    Science.gov (United States)

    1994-08-01

    voltmeters and scanning thermocouple meters. The data are acquired, analyzed, filed, and displayed using software written for the LabWindows data...acquisition software from National Instruments Corporation. The code was written by NFESC in the C computer language and compiled to achieve rapid program...Hazards and operability ( HAZOP ) study of a supercritical water oxidation (SCWO) bench scale system. Cambridge, MA, Aug 1992. 8. Arthur D. Little, Inc

  8. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  9. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  10. Hydrograph Separation in the Headwaters of the Shule River Basin: Combining Water Chemistry and Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Jiaxin Zhou

    2015-01-01

    Full Text Available The runoff components were identified in the headwater area of Shule River Basin, using isotopic and chemical tracing with particular focus on the temporal variations of catchment sources. A total of 95 samples, including precipitation, groundwater, and glacial meltwater, were collected and analyzed for stable water isotopes (18O and 2H and major chemical ion parameters (potassium, sodium, calcium, magnesium, sulfate, chloride, and bicarbonate. Based on the isotope and water chemistry data, we applied end member mixing analysis (EMMA to identify and quantify the major runoff generating sources and their contributions. The contributions of groundwater, precipitation, and glacial meltwater were 66.7%, 19.9%, and 13.4%, respectively. The study indicated that groundwater dominated runoff in the headwater area of Shule River Basin. The roles of glacier meltwater should be remarkable in water resource management in this basin. The uncertainties of the EMMA method were summarized and estimated via a classical Gaussian error propagation technique. Analyses suggested that the uncertainty in the measurement method was less important than that in the temporal and spatial variations of tracer concentrations. The uncertainty was sensitive when the difference between mixing components was small. Therefore, the variation of tracers and the difference of mixing components should be considered when hydrograph separation was applied in the basin.

  11. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    Science.gov (United States)

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation.

  12. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    Science.gov (United States)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  13. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  14. Treatment of whey wastewater by supercritical water oxidation.

    Science.gov (United States)

    Söğüt, Onur Ö; Kıpçak, Ekin; Akgün, Mesut

    2011-01-01

    Whey wastewater is a by-product of cheese industry, which causes environmental pollution problems due to its containment of heavy organic pollutants. Conventional methods such as biological treatment and physico-chemical treatment are insufficient or ineffective. In this paper, the treatment of cheese whey wastewater has been carried out by supercritical water oxidation, using hydrogen peroxide as oxidant. The reaction conditions ranged between temperatures of 400-650°C and residence times of 6-21 s under a pressure of 25 MPa. Treatment efficiencies based on TOC removal were obtained between 75.0% and 99.81%. An overall reaction rate model, which consists of the hydrothermal and the oxidation reactions, was determined for the hydrothermal decomposition of the wastewater with an activation energy of 50.022 (±1.7) kJmol(-1) and a pre-exponential factor of 107.72 (±4.1) s(-1). The oxidation reaction rate orders for the TOC and the oxidant were 1.2 (±0.4) and 0.4 (±0.1) respectively, with an activation energy of 20.337 (±0.9) kJmol(-1), and a pre-exponential factor of 1.86 (±0.5) mmol(-0.6)L(0.6)s(-1) in a 95% confidence level.

  15. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?

    Science.gov (United States)

    Yuan, Dandan; Shen, Xiaoling; Li, Wei; Li, Shuhua

    2016-06-28

    Fragment-based quantum chemistry methods are either based on the many-body expansion or the inclusion-exclusion principle. To compare the applicability of these two categories of methods, we have systematically evaluated the performance of the generalized energy based fragmentation (GEBF) method (J. Phys. Chem. A, 2007, 111, 2193) and the electrostatically embedded many-body (EE-MB) method (J. Chem. Theory Comput., 2007, 3, 46) for medium-sized water clusters (H2O)n (n = 10, 20, 30). Our calculations demonstrate that the GEBF method provides uniformly accurate ground-state energies for 10 low-energy isomers of three water clusters under study at a series of theory levels, while the EE-MB method (with one water molecule as a fragment and without using the cutoff distance) shows a poor convergence for (H2O)20 and (H2O)30 when the basis set contains diffuse functions. Our analysis shows that the neglect of the basis set superposition error for each subsystem has little effect on the accuracy of the GEBF method, but leads to much less accurate results for the EE-MB method. The accuracy of the EE-MB method can be dramatically improved by using an appropriate cutoff distance and using two water molecules as a fragment. For (H2O)30, the average deviation of the EE-MB method truncated up to the three-body level calculated using this strategy (relative to the conventional energies) is about 0.003 hartree at the M06-2X/6-311++G** level, while the deviation of the GEBF method with a similar computational cost is less than 0.001 hartree. The GEBF method is demonstrated to be applicable for electronic structure calculations of water clusters at any basis set.

  16. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na{sup +}, Ca{sup 2+}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -}, and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author).

  17. Study on technetium-99m labeling of graphene oxide nanosheets through click chemistry-99mTc labeling of graphene oxide nanosheets

    Institute of Scientific and Technical Information of China (English)

    江大卫; 彭程; 孙艳红; 贾丽娜; 李剑波; 张岚

    2015-01-01

    Graphene oxide (GO) nanosheets possess several advantages, such as a large surface, outstanding bio-compatibility, and straightforward chemical modification capability. They also have great potential as a drug-carrier. In this article, we radiolabeled GO nanosheets with 99mTc, which satisfies the potential needs of micro-SPECT imaging probes in pre-clinical and clinical research. GO nanosheets were synthesized through the modified Hummers’ method, then GO nanosheets with azide group covalently functionalized in two steps were conjugated to DOTA (1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraacetic acid) and functionalized with an alkynyl group by means of click chemistry. Then through the addition and reduction of technetium-99m, the 99mTc-DOTA-GO were attained. DOTA-conjugated GOs with lateral dimensions of 500–600 nm were synthe-sized. Both atomic force microscopy (AFM) and FT-IR were performed to characterize the GO-DOTA. Labeling efficiency of GO-DOTA with 99mTc was>90%and radiochemical purities were>96%with purification. We successfully synthesized graphene oxide derivatives, DOTA-conjugated GOs, via Click Chemistry, and it was labeled with 99mTc for SPECT imaging. High radiolabeling efficiency makes GO nanosheets suitable platforms for future molecular imaging research.

  18. The role of groundwater chemistry in the transport of bacteria to water-supply wells

    Science.gov (United States)

    Harvey, R.W.; Metge, D.W.

    1999-01-01

    Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.

  19. ICON-ART-ISO: Water isotopologues implemented in the chemistry- transport model ICON-ART

    Science.gov (United States)

    Eckstein, Johannes; Ruhnke, Roland; Reinert, Daniel; Pfahl, Stephan

    2017-04-01

    Stable isotopes of water can help to understand processes that have influenced the distribution of water in the atmosphere. Isotope enabled models, capable of simulating the distribution of HDO and H218O, can be a very useful tool for understanding these processes and the distribution of isotope ratios which are observed. We present ICON-ART-ISO, the implementation of water isotopes into the chemistry-transport model ICON-ART. The core of this global model is the ICOsahedral Non-hydrostatic (ICON) modelling framework (Zaengl et al, 2015 (Q. J. R. Meteorol. Soc.)), a joint development of the German Weather Service (DWD) and the Max Planck Institute for Meteorology. The model system ICON-ART (Aerosols and Reactive Trace gases, Rieger et al, 2015 (GMD)) is a two-way coupled extension to ICON, which allows to study the influence of aerosols, trace gases and their chemistry on the atmosphere. We set up ICON-ART-ISO within this framework, profitting from the model infrastructure. We follow the implementation of COSMOiso (Pfahl et al., 2012 (ACP)), the isotope-enabled version of the COSMO model, the predecessor of ICON. In order to include the isotopes in the model, the water cycle is doubled diagnostically for each isotope. By the choice of physical parameters, these modelled isotopes are set to HDO and H218O, but the simulation of a purely diagnostic H2O is also possible. Fractionation, i.e. the change of the isotope ratio changes during phase changes, is considered in evaporation, grid-scale precipitation and convection. For the source of evaporation, a constant isotope ratio is currently used. To consider grid scale precipitation, the processes in the two-moment microphysical scheme by Seifert and Beheng, 2005 (Meteorol. Atmos. Phys.) are diagnostically applied to the isotopes. For convection, the Tiedtke-Bechtold scheme (Bechtold et al., 2013 (JAS)) is used. We present the current status of the model system. All processes have been implemented and we show first

  20. Impact of long term wetting on pore water chemistry in a peat bog in Ontario, Canada

    Science.gov (United States)

    Schaper, Jonas; Blodau, Christian; Holger Knorr, Klaus

    2013-04-01

    Peatlands of the northern hemisphere store a remarkable amount of carbon but also contribute to global methane emissions. As large areas in the boreal and subarctic zone are considered to undergo significant climate change it is necessary to understand how these ecosystems react to altered environmental conditions. Since not only temperatures but also precipitation is likely to increase in these regions, it is of particular interest to understand the impact of raised water tables and changing local hydrological flow patterns on peatlands' carbon cycle. We chose a pristine bog that was partly flooded by a reservoir lake created 60 years ago in Ontario, Canada. Water management in the reservoir resulted in seasonal flooding, shifting hydrological flow patterns and vegetation gradients. The impact of partial flooding on pore water chemistry and DIC and CH4 concentrations were studied within surface peat layers. Samples were taken with pore water peepers along the vegetation- and flooding gradient. Turnover rates of DIC and methane were calculated from obtained concentration profiles and peat porosity under the assumption that transport is dominated by diffusion. Values of pH changed remarkably from 4 within the undisturbed bog part to almost 8 at the lake shore. Ca2+ and Mg2+ were the only ions that showed significant distribution patterns with readily increasing concentrations towards the lake water body. CH4 and DIC concentrations also increased towards the lake and peaked in around 100 cm depth right at the shore with maximum concentrations being 2766 μmol L-1 for CH4 and 7543 μmol L-1 for DIC, respectively. Turnover rates also increased towards the shore albeit some uncertainty lies in this finding as steady state condition required for calculations were probably not established and transport was not only dominated by diffusion. Maximum CH4 production rates were modeled to be 36 nmol cm-3 d-1 and maximum DIC production was calculated to 64 nmol cm-3 d-1. Ca2

  1. An Introduction to Boiler Water Chemistry for the Marine Engineer: A Text of Audio-Tutorial Instruction.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    Presented is a manuscript for an introductory boiler water chemistry course for marine engineer education. The course is modular, self-paced, audio-tutorial, contract graded and combined lecture-laboratory instructed. Lectures are presented to students individually via audio-tapes and 35 mm slides. The course consists of a total of 17 modules -…

  2. Improved prediction of vegetation composition in NW European softwater lakes by combining location, water and sediment chemistry

    DEFF Research Database (Denmark)

    Pulido Pérez, Cristina; Jensen, Kaj Sand; Lucassen, Esther C.H.E.T.;

    2012-01-01

    composition. This complex analysis can also account for high sediment variability in the littoral zone of individual lakes, by using site-specific physico-chemical sediment factors, and offer better predictions of vegetation composition when lake water chemistry is relatively homogeneous among lakes within...

  3. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  4. Influence of bedrock geology on water chemistry of slope wetlands and headwater streams in the southern Rocky Mountains

    Science.gov (United States)

    Monique LaPerriere Nelson; Charles C. Rhoades; Kathleen A. Dwire

    2011-01-01

    We characterized the water chemistry of nine slope wetlands and adjacent headwater streams in Colorado subalpine forests and compared sites in basins formed on crystalline bedrock with those formed in basins with a mixture of crystalline and sedimentary bedrock. The pH, Ca2+, Mg2+, NH4 +, acid neutralizing capacity, and electrical conductivity of wetland porewater and...

  5. The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry

    Science.gov (United States)

    Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz

    2015-01-01

    The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…

  6. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  7. Stability of commercial metal oxide nanoparticles in water.

    Science.gov (United States)

    Zhang, Yang; Chen, Yongsheng; Westerhoff, Paul; Hristovski, Kiril; Crittenden, John C

    2008-04-01

    The fate of commercial nanoparticles in water is of significant interest to health and regulatory authorities. This research investigated the dispersion and stability of metal oxide nanoparticles in water as well as their removal by potable water treatment processes. Commercial nanoparticles were received as powder aggregates, and in water neither ultrasound nor chemical dispersants could break them up into primary nanoparticles. Lab-synthesized hematite was prepared as a primary nanoparticle (85 nm) suspension; upon drying and 1-month storage, however, hematite formed aggregates that could not be dispersed completely as primary nanoparticles in water. This observation may explain why it is difficult to disperse dry commercial nanoparticles. Except for silica, other nanoparticles rapidly aggregated in tap water due to electric double layer (EDL) compression. The stability of silica in tap water is related to its low Hamaker constant. For all these nanoparticles, at an alum dosage of 60 mg/L, coagulation followed by sedimentation could remove 20-60% of the total nanoparticle mass. Filtration using a 0.45 microm filter was required to remove more than 90% of the nanoparticle mass.

  8. Preliminary assessment of water chemistry related to groundwater flooding in Wawarsing, New York, 2009-11

    Science.gov (United States)

    Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony

    2012-01-01

    Water-quality samples collected in an area prone to groundwater flooding in Wawarsing, New York, were analyzed and assessed to better understand the hydrologic system and to aid in the assessment of contributing water sources. Above average rainfall over the past decade, and the presence of a pressurized water tunnel that passes about 700 feet beneath Wawarsing, could both contribute to groundwater flooding. Water samples were collected from surface-water bodies, springs, and wells and analyzed for major and trace inorganic constituents, dissolved gases, age tracers, and stable isotopes. Distinct differences in chemistry exist between tunnel water and groundwater in unconsolidated deposits and in bedrock, and among groundwater samples collected from some bedrock wells during high head pressure and low head pressure of the Rondout-West Branch Tunnel. Samples from bedrock wells generally had relatively higher concentrations of sulfate (SO42-), strontium (Sr), barium (Ba), and lower concentrations of calcium (Ca) and bicarbonate (HCO3-), as compared to unconsolidated wells. Differences in stable-isotope ratios among oxygen-18 to oxygen-16 (δ18O), hydrogen-2 to hydrogen-1 (δ2H), sulfur-34 to sulfur-32(δ34S) of SO42-, Sr-87 to Sr-86 (87Sr/86Sr), and C-13 to C-12 (δ13C) of dissolved inorganic carbon (DIC) indicate a potential for distinguishing water in the Delaware-West Branch Tunnel from native groundwater. For example, 87Sr/86Sr ratios were more depleted in groundwater samples from most bedrock wells, as compared to samples from surface-water sources, springs, and wells screened in unconsolidated deposits in the study area. Age-tracer data provided useful information on pathways of the groundwater-flow system, but were limited by inherent problems with dissolved gases in bedrock wells. The sulfur hexafluoride (SF6) and (or) chlorofluorocarbons (CFCs) apparent recharge years of most water samples from wells screened in unconsolidated deposits and springs ranged

  9. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  10. Dry deposition parameterization of sulfur oxides in a chemistry and general circulation

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Lelieveld, J.; Roelofs, G.J.

    1998-01-01

    A dry deposition scheme, originally developed to calculate the deposition velocities for the trace gases O3, NO2, NO, and HNO3 in the chemistry and general circulation European Centre Hamburg Model (ECHAM), is extended to sulfur dioxide (SO2) and sulfate (SO42-). In order to reduce some of the short

  11. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  12. Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul; Worsnop, D R; Jayne, J T; Colb, C E

    2013-02-13

    The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions

  13. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing.

    Science.gov (United States)

    Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T

    2016-05-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the

  14. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  15. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  16. Environmental control on aerobic methane oxidation in coastal waters

    Science.gov (United States)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  17. The Mn₄Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser.

    Science.gov (United States)

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K

    2014-07-17

    The structure of photosystem II and the catalytic intermediate states of the Mn₄CaO₅ cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.

  18. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  19. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  20. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2015-03-01

    Full Text Available Oxidation of unsymmetrical dimethylhydrazine (UDMH during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of chemical oxidants in respect to main metabolites of UDMH – 1-formyl-2,2-dimethylhydrazine, dimethylaminoacetontrile, N-nitrosodimethylamine and 1-methyl-1H-1,2,4-triazole. Experiments on chemical oxidation by Fenton's reagent, potassium permanganate and sodium nitrite were conducted. Quantitative determination was performed by HPLC. Oxidation products were identified by gas chromatography-mass spectrometry in combination with solid-phase microextraction. 1-Formyl-2,2-dimethylhydrazine was completely oxidized by Fenton's reagent with formation of formaldehyde N-formyl-N-methyl-hydrazone, 1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-one by the action of potassium permanganate and N-methyl-N-nitro-methanamine in the presence of sodium nitrite. Oxidation of 1-formyl-2,2-dimethylhydrazine also resulted in formation of N-nitrosodimethylamine. Oxidation of dimethylaminoacetontrile proceeded with formation of hydroxyacetonitrile, dimethylformamide and 1,2,5-trimethylpyrrole. After 30 days, dimethylaminoacetontrile was not detected in the presence of Fenton’s reagent and potassium permanganate, but it’s concentration in samples with sodium nitrite was 77.3 mg/L. In the presence of Fenton’s reagent, potassium permanganate and sodium nitrite after 30 days, N-nitrosodimethylamine concentration decreased by 85, 80 and 50%, respectively. In control sample, N-nitrosodimethylamine concentration decreased by 50%, indicating that sodium nitrite has no effect of on N-nitrosodimethylamine concentration. Only Fenton's reagent allowed to reduce the concentration of 1-methyl-1H-1,2,4-triazole to 50% in 30 days. In the presence of other oxidants, 1-methyl-1H-1,2,4-triazole

  1. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    Science.gov (United States)

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  2. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    Science.gov (United States)

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  3. Visible light induced oxidation of water by rare earth manganites, cobaltites and related oxides

    Science.gov (United States)

    Naidu, B. S.; Gupta, Uttam; Maitra, Urmimala; Rao, C. N. R.

    2014-01-01

    A study of the visible light induced oxidation of water by perovskite oxides of the formula LaMO3 (M = transition metal) has revealed the best activity with LaCoO3 which contains Co3+ in the intermediate-spin (IS) with one eg electron. Among the rare earth manganites, only orthorhombic manganites with octahedral Mn3+ ions exhibit good catalytic activity, but hexagonal manganites are poor catalysts. Interestingly, not only the perovskite rare earth cobaltites but also solid solutions of Co3+ in cubic rare earth sesquioxides exhibit catalytic activity comparable to LaCoO3, the Co3+ ion in all these oxides also being in the IS t2g5eg1 state.

  4. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    Science.gov (United States)

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h.

  5. Water-soluble chemistry and weathering characteristics of some tills in Western Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    Lintinen, P.

    1997-12-01

    Full Text Available The water-soluble chemistry and weathering characteristics of tills were studied on three nunataks with differing bedrock characteristics in the Vestfjella and Heimefrontfjella areas of the Western Dronning Maud Land, Antarctica. The chemical analyses were performed using ion chromatography and ICP-AES. The relative weathering characteristics of the till surface boulders was assessed in study locations. No colour differences were observed in test pits dug in Basen and Utpostane nunataks at Vestfjella, whereas the till in Mygehenget nunatak at Heimefrontfjella has a pronounced soil profile in which the surface part has a banded rusty brown and light-coloured accumulations. The highest concentrations of readily soluble ions were recorded in the Mygehenget samples characterized by high (SO42- (5800-39000 ppm and Mg concentrations (540-6000 ppm, while the Basen samples had the highest concentrations of Fe2+(23-390 ppm, Al3+ (60-1000 ppm and Si4+ (23-1700 ppm and the Utpostane samples the lowest ones. The SO4/Na+, Na+/CI- and Mg2+/Na+ ratios for the samples differ markedly from those typically encountered in sea water. The presence of the highest concentrations of many of the analysed ions in the Mygehenget soil samples is in line with the advanced weathering of the surface boulders. The high Fe2+ , Si4+ and Al3+ concentrations in the Basen samples may be attributable to the weathering of olivine alteration products.

  6. "Click" and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles.

    Science.gov (United States)

    Lipshutz, Bruce H; Bošković, Zarko; Crowe, Christopher S; Davis, Victoria K; Whittemore, Hannah C; Vosburg, David A; Wenzel, Anna G

    2013-11-12

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide-alkyne "click" reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide-alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis).

  7. “Click” and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles

    Science.gov (United States)

    Lipshutz, Bruce H.; Bošković, Zarko; Crowe, Christopher S.; Davis, Victoria K.; Whittemore, Hannah C.; Vosburg, David A.; Wenzel, Anna G.

    2013-01-01

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide–alkyne “click” reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide–alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis). PMID:24324282

  8. Investigation into the effect of water chemistry on corrosion product formation in areas of accelerated flow

    Science.gov (United States)

    McGrady, John; Scenini, Fabio; Duff, Jonathan; Stevens, Nicholas; Cassineri, Stefano; Curioni, Michele; Banks, Andrew

    2017-09-01

    The deposition of CRUD (Chalk River Unidentified Deposit) in the primary circuit of a Pressurised Water Reactor (PWR) is known to preferentially occur in regions of the circuit where flow acceleration of coolant occurs. A micro-fluidic flow cell was used to recreate accelerated flow under simulated PWR conditions, by flowing water through a disc with a central micro-orifice. CRUD deposition was reproduced on the disc, and CRUD Build-Up Rates (BUR) in various regions of the disc were analysed. The effect of the local environment on BUR was investigated. In particular, the effect of flow velocity, specimen material and Fe concentration were considered. The morphology and composition of the deposits were analysed with respect to experimental conditions. The BUR of CRUD was found to be sensitive to flow velocity and Fe concentration, suggesting that mass transfer is an important factor. The morphology of the deposit was affected by the specimen material indicating a dependence on surface/particle electrostatics meaning surface chemistry plays an important role in deposition. The preferential deposition of CRUD in accelerated flow regions due to electrokinetic effects was observed and it was shown that higher Fe concentrations in solution increased BURs within the orifice whereas increased flow velocity reduced BURs.

  9. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks.

    Science.gov (United States)

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.

  10. Phenol Oxidation by Combined Cavitation Water Jet and Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    卢义玉; 刘勇; 夏彬伟; 左伟芹

    2012-01-01

    The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.

  11. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona--2004-05

    Science.gov (United States)

    2006-02-27

    upper part of the upper Triassic Chinle Formation and the lower Jurassic Wingate Sandstone, northwestern New Mexico and northeastern Arizona, in...Director, Arizona Water Science Center U.S. Geological Survey, 520 N. Park Avenue, Suite 221 Tucson, Arizona 85719 http://az.water.usgs.gov OFR

  12. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    Science.gov (United States)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on

  13. Tin Oxide Chemistry from the Last Decade of the Nineteenth Century to the First Decade of the Twenty-First Century: Towards the Development of a Big-Picture Approach to the Teaching and Learning of Chemistry while Focussing on a Specific Compound or Class of Compounds

    Science.gov (United States)

    de Berg, Kevin C.

    2010-01-01

    The discovery of the electron in 1897 deeply impacted the nature of chemistry in the twentieth century. A revolution in the theoretical structure of chemistry as well as in the instrumental tools used in chemical analysis occurred as a result of this discovery. The impact of this revolution on tin oxide chemistry over approximately a 100 year…

  14. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.

    Science.gov (United States)

    Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jürgen

    2015-11-01

    To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed.

  15. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    Science.gov (United States)

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  16. Photocatalytic polyoxometalate compositions of tungstovanadates and uses as water oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Iourii V.; Song, Jie; Lv, Hongjin; Musaev, Djamaladdin; Luo, Zhen

    2017-08-22

    This disclosure relates to photocatalytic polyoxometalate compositions of tungstovanadates and uses as water oxidation catalysts. In certain embodiments, the disclosure relates to compositions comprising water, a complex of a tetra-metal oxide cluster and VW.sub.9O.sub.34 ligands, and a photosensitizer. Typically, the metal oxide cluster is Co. In certain embodiments, the disclosure relates to electrodes and other devices comprising water oxidation catalysts disclosed herein and uses in generating fuels and electrical power from solar energy.

  17. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular str

  18. Understanding the Chemistry of Uncommon Americium Oxidation States for Application to Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Leigh Martin; Bruce J. Mincher; Nicholas C. Schmitt

    2007-09-01

    A spectroscopic study of the stability of Am(V) and Am(VI) produced by oxidizing Am(III) with sodium bismuthate is presented, varying the initial americium concentration, temperature and length of the oxidation was seen to have profound effects on the resultant solutions.

  19. Phospha-scorpionate complexes by click chemistry using phenyl azide and ethynylphosphine oxides

    NARCIS (Netherlands)

    van Assema, S.G.A.; Tazelaar, C.G.J.; de Jong, G.B.; van Maarseveen, J.H.; Schakel, M.; Lutz, M.; Spek, A.L.; Slootweg, J.C.; Lammertsma, K.

    2008-01-01

    The copper-catalyzed Click reaction of phenyl azide with ethynylphosphine oxides provides new P-substituted triazoles. With tris(ethynyl)phosphine oxide this route affords a versatile scorpionate ligand that coordinates to RhCl3 as a tripodal N ligand. Upon reduction, the same ligand can act as a P

  20. Using official map data on topography, wetlands and vegetation cover for prediction of stream water chemistry in boreal headwater catchments

    Directory of Open Access Journals (Sweden)

    J.-O. Andersson

    2009-04-01

    Full Text Available A large part of the spatial variation of stream water chemistry can be related to inputs from headwater streams. In order to understand and analyse the dominant processes taking place in small and heterogeneous catchments, accurate data with high spatial and temporal resolution is necessary. In most cases, the quality and resolution of available map data are considered too poor to be used in environmental assessments and modelling of headwater stream chemistry. In this study 18 forested catchments (1–4 km2 were selected within a 120×50 km region in the county of Värmland in western Sweden. The aim was to test if topographic and vegetation variables derived from official datasets were correlated to stream water chemistry, primarily the concentration of dissolved organic carbon (DOC, but also Al, Fe and Si content. GIS was used to analyse the elevation characteristics, generate topographic indices, and calculate the percentage of wetlands and a number of vegetation classes. The results clearly show that topography has a major influence on stream water chemistry. There were strong correlations between mean slope and percentage wetland, percentage wetland and DOC, mean slope and DOC, and a very strong correlation between mean topographic wetness index (TWI and DOC. The conclusion was that official topographic data, despite uncertain or of low quality and resolution, could be useful in the prediction of headwater DOC-concentration in boreal forested catchments.

  1. Minor components in food oils: a critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions.

    Science.gov (United States)

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2011-12-01

    Food oils are primarily composed of triacylglycerols (TAG), but they may also contain a variety of other minor constituents that influence their physical and chemical properties, including diacylglycerols (DAG), monoacylglycerols (MAG), free fatty acids (FFA), phospholipids (PLs), water, and minerals. This article reviews recent research on the impact of these minor components on lipid oxidation in bulk oils and oil-in-water emulsions. In particular, it highlights the origin of these minor components, the influence of oil refining on the type and concentration of minor components present, and potential physicochemical mechanisms by which these minor components impact lipid oxidation in bulk oils and emulsions. This knowledge is crucial for designing food, pharmaceutical, personal care, and other products with improved stability to lipid oxidation.

  2. Study on Supercritical Water Oxidation of Oily Wastewater with Ethanol

    Directory of Open Access Journals (Sweden)

    Ma Wenbing

    2013-06-01

    Full Text Available The conventional treatments are unable to effectively remove the Chemical Oxygen Demand (COD of oily wastewater, which has seriously threatened the environment and the normal production of oil field. In this paper, an advanced method was proposed for oily wastewater treatment, Supercritical Water Oxidation (SCWO. The co-oxidative effect of ethanol on oily wastewater is characterized for the initial COD of oily wastewater (4000 mg/L and ethanol concentration (20 mg/L for a range of temperatures (390°C-450°C, a pressure of 23 Mpa for the complete combustion of both ethanol and oily wastewater. High concentrations of ethanol caused an increase in the conversion of oily wastewater at T = 450°C, p = 23 MPa and t = 9 min, the oily wastewater removal increases 8%.

  3. Corrosion of titanium in supercritical water oxidation environments

    Institute of Scientific and Technical Information of China (English)

    卢建树; 毛志远; 张九渊; 马淳安; 毛信表; 李肖华

    2002-01-01

    Supercritical water oxidation (SCWO) can effectively destroy many kinds of civilian and military wastes. The high temperature and high pressure SCWO operation conditions generate very corrosive environment that many engineering materials fail to withstand. Preliminary test shows that titanium may be a promising material in most of SCWO conditions. Commercially pure titanium is tested in four kinds of SCWO environments. Phenol, sodium dodecyl-benzosulfonate, n-amine phenol, and chlorpyrifos were chosen as typical target pollutants. The results show that titanium is only superficially attacked in the first three SCWO environments while in chlorpyrifos SCWO medium titanium is corroded. The corrosion is temperature dependent, with heavier corrosion occurring at near critical temperature. X-ray diffraction analysis shows that the corrosion products consist of titanium oxy- phosphates and titanium oxide, in which Ti5O4(PO4)4 is the main phase.

  4. Effects of alloy chemistry, cold work, and water chemistry on corrosion fatigue and stress corrosion cracking of nickel alloys and welds.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Soppet, W. K.; Shack, W. J.; Energy Technology

    2001-04-01

    Reactor vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking (EAC). A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. The objective of this work is to evaluate and compare the resistance of Alloys 600 and 690 and their welds, such as Alloys 82, 182, 52, and 152, to EAC in simulated light water reactor environments. The existing crack growth rate (CGR) data for these alloys under cyclic and constant loads have been evaluated to establish the effects of alloy chemistry, cold work, and water chemistry. The experimental fatigue CGRs are compared with CGRs that would be expected in air under the same mechanical loading conditions to obtain a qualitative understanding of the degree and range of conditions for significant environmental enhancement in growth rates. The existing stress corrosion cracking (SCC) data on Alloys 600 and 690 and Alloy 82, 182, and 52 welds have been compiled and analyzed to determine the influence of key parameters on growth rates in simulated PWR and BWR environments. The SCC data for these alloys have been evaluated with correlations developed by Scott and by Ford and Andresen.

  5. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  6. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Franklin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering. Dept. of Chemistry

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  7. Water oxidation using a cobalt monolayer prepared by underpotential deposition.

    Science.gov (United States)

    Marsh, David A; Yan, Wenbo; Liu, Yu; Hemminger, John C; Penner, Reginald M; Borovik, A S

    2013-11-26

    Development of electrocatalysts for the conversion of water to dioxygen is important in a variety of chemical applications. Despite much research in this field, there are still several fundamental issues about the electrocatalysts that need to be resolved. Two such problems are that the catalyst mass loading on the electrode is subject to large uncertainties and the wetted surface area of the catalyst is often unknown and difficult to determine. To address these topics, a cobalt monolayer was prepared on a gold electrode by underpotential deposition and used to probe its efficiency for the oxidation of water. This electrocatalyst was characterized by atomic force microscopy, grazing-incidence X-ray diffraction, and X-ray photoelectron spectroscopy at various potentials to determine if changes occur on the surface during catalysis. An enhancement of current was observed upon addition of PO4(3-) ions, suggesting an effect from surface-bound ligands on the efficiency of water oxidation. At 500 mV overpotential, current densities of 0.20, 0.74, and 2.4 mA/cm(2) for gold, cobalt, and cobalt in PO4(3-) were observed. This approach thus provided electrocatalysts whose surface areas and activity can be accurately determined.

  8. Pore water chemistry reveals gradients in mineral transformation across a model basaltic hillslope

    Science.gov (United States)

    Pohlmann, Michael; Dontsova, Katerina; Root, Robert; Ruiz, Joaquin; Troch, Peter; Chorover, Jon

    2016-06-01

    The extent of weathering incongruency during soil formation from rock controls local carbon and nutrient cycling in ecosystems, as well as the evolution of hydrologic flow paths. Prior studies of basalt weathering, including those that have quantified the dynamics of well-mixed, bench-scale laboratory reactors or characterized the structure and integrated response of field systems, indicate a strong influence of system scale on weathering rate and trajectory. For example, integrated catchment response tends to produce lower weathering rates than do well mixed reactors, but the mechanisms underlying these disparities remain unclear. Here we present pore water geochemistry and physical sensor data gathered during two controlled rainfall-runoff events on a large-scale convergent model hillslope mantled with 1 m uniform depth of granular basaltic porous media. The dense sampler and sensor array (1488 samplers and sensors embedded in 330 m3 of basalt) showed that rainfall-induced dissolution of basaltic glass produced supersaturation of pore waters with respect to multiple secondary solids including allophane, gibbsite, ferrihydrite, birnessite and calcite. The spatial distribution of saturation state was heterogeneous, suggesting an accumulation of solutes leading to precipitation of secondary solids along hydrologic flow paths. Rapid dissolution of primary silicates was widespread throughout the entire hillslope, irrespective of up-gradient flowpath length. However, coherent spatial variations in solution chemistry and saturation indices were observed in depth profiles and between distinct topographic regions of the hillslope. Colloids (110-2000 nm) enriched in iron (Fe), aluminum (Al), and phosphorus (P) were mobile in soil pore waters.

  9. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    Science.gov (United States)

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization.

  10. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    Science.gov (United States)

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  11. Support on water chemistry and processes for nuclear power plant auxiliary systems

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, M.; Becquart, E.; La Gamma, A.M.; Schoenbrod, B. [Unidad de Actividad Quimica, Gcia. Centro Atomico Constituyentes, Comision Nacional de Energia, Buenos Aires (Argentina); Allemandi, W.; Fernandez, A.N.; Ovando, L. [Central Nuclear Embalse, Nucleoelectrica Argentina S.A. (Argentina)

    2002-07-01

    In particular PHWRs have a system devoted to the purification and upgrading of the collected heavy water leaks. The purification train is fed with different degradation ratios (D{sub 2}O/H{sub 2}O), activities and impurities. The water is distilled in a packed bed column filled with a mesh type packing. The mesh wire is made of a bronze substrate covered by copper oxides whose current composition has been determined by Moessbauer spectroscopy. With the purpose of minimizing the column stack corrosion, the water is pre-treated in a train consisting of an activated charcoal bed-strong cationic-anionic resin and a final polishing mixed bed resin. Ionic chemicals like acetic acid (whose provenance is suspected to come from the air treatment/D{sub 2}O recovery system where the regeneration is performed at high temperature) are detected by the conductivity and ion chromatography when they concentrate at the column bottom. Traces of oils are retained by the charcoal bed but some compounds extracted by the aqueous phase are suspected to be responsible for the resins fouling or precursors of potentially aggressive agents inside the distillation column. Those species have been detected and identified by gaseous chromatography-mass spectrometry (GC-MS). In the present work, the identification, evaluation of alternatives for the retention and results compared to the original products present in the water upgrading purification train have been summarized. (authors)

  12. Interactions of Water Vapor with Oxides at Elevated Temperatures

    Science.gov (United States)

    Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight

    2003-01-01

    Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.

  13. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    Science.gov (United States)

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-01

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  14. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol.

    Science.gov (United States)

    Kroll, Jesse H; Donahue, Neil M; Jimenez, Jose L; Kessler, Sean H; Canagaratna, Manjula R; Wilson, Kevin R; Altieri, Katye E; Mazzoleni, Lynn R; Wozniak, Andrew S; Bluhm, Hendrik; Mysak, Erin R; Smith, Jared D; Kolb, Charles E; Worsnop, Douglas R

    2011-02-01

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number.

  15. The separation of particulates from supercritical water oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, P.C.; Li, L.; Gloyna, E.F.

    1991-01-01

    Small hydrocyclones with batch underflow receivers were assessed for their ability to separate micron-sized particulates from near-critical water solutions. Such particulates are expected from the effluent of a supercritical water oxidation reactor. The separation of micron-sized quartz silica, zirconia, and titania particles was investigated. A model was developed for the prediction of gross removal efficiencies as a function of a Stokes' number. Particle size distributions provided grade efficiencies for all experiments, and from these data, cut sizes were determined. Gross efficiencies up to 99% were observed for zirconia; cut sizes (d{sub 90} and d{sub 95}) near one micron were measured. 19 refs., 5 figs.

  16. The separation of particles from supercritical water oxidation effluents

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Orco, P.C.

    1991-08-01

    The development of a solids separation system is essential to the implementation of supercritical water oxidation as a commercial process. Like all waste disposal processes, supercritical water oxidation produces a residue. This final ash must eventually be removed from the effluent stream. Limited studies have investigated solids separations near supercritical water conditions (374.2 {degrees}C, 3205 psi). Therefore, a ten millimeter diameter hydrocyclone with an underflow receiver was evaluated for its ability to achieve the separation of fine particles from water. Temperature was varied from 20{degrees}C to 389{degrees}C while pressure was maintained at 3600 psi (24.8 MPa). Mass flow rates varied from 0.015 to 0.049 kg/s. Particle concentrations in feed streams ranged from 400 to 1200 mg/L. Three different particulates, Min-U-Sil 5 (quartz SiO{sub 2}), zirconium dioxide (ZrO{sub 2}), and titanium dioxide (TiO{sub 2}) were studied. These particles ranged in diameter from below one micron to ten microns. Low pressure (0-200 psi), room temperature (20{degrees}C) studies were also conducted where flow rate and feed concentration were variables. Solids removal efficiencies were determined for all experiments. Solid removals were as high as 99% at elevated temperatures. Particle size distributions provided information on particle sizes separated. Particles removed with efficiencies of 50, 90, and 95 per cent (cut sizes) were determined. Ninety per cent cut sizes below one micron were reported for several elevated temperature experiments. Empirical models for use in engineering design were developed for the prediction of solid removal efficiencies and pressure drops.

  17. Collaboration Between Environmental Water Chemistry Students and Hazardous Waste Treatment Specialists on the University of Colorado-Boulder Campus

    Science.gov (United States)

    Dittrich, T. M.

    2012-12-01

    semester, the students conduct a bench-scale laboratory exercise where they study part of the treatment process. Several small start-up companies are testing components in the lab, which adds to the colaboration of the project.; Figure 1. Students in Environmental Water Chemistry lab conducting a titration.

  18. Photoelectrochemical water splitting for hydrogen production with metal oxide (hematite and cupric oxide) based photocatalysts

    Science.gov (United States)

    Tang, Houwen

    Solar hydrogen is one ideal energy source to replace fossil fuel, as it is sustainable and environmentally friendly. Solar hydrogen can be generated in a number of ways. Photoelectrochemical (PEC) water splitting is one of the most promising methods for solar-to-chemical energy conversion. In this research project, metal oxide-based photocatalysts, especially hematite (α-Fe 2O3) and cupric oxide (CuO), were investigated for use as electrodes in PEC water splitting for solar hydrogen production. In our research project of hematite-based electrodes, we started with the incorporation of transition metal, particularly titanium (Ti), in hematite thin films to modify the valence and conduction band edges of hematite. We found that Ti impurities improve the electron conductivity of hematite and consequently lead to significantly enhanced photocurrents. We further investigated the Ti and Mg co-alloyed hematite. In this case, Ti is the donor and Mg is the acceptor in hematite. The co-alloying approach enhanced the solubility of Mg and Ti, which led to reduced electron effective mass and therefore increased electron mobility. Also, co-alloying tunes the carrier density and therefore allows the optimization of electrical conductivity. The densities of charged defects were found to be reduced, and therefore carrier recombinations were reduced. As a result, the Ti and Mg co-alloyed hematite thin films exhibited much improved performance in PEC water splitting as compared to pure hematite thin films. For the study of cupric oxide-based electrodes, we first investigated the possibility of reducing the electrode corrosion of cupric oxide in aqueous solutions by incorporating Ti as an electrode corrosion inhibitor. We found that Ti alloying can enhance the stability of cupric oxide in base solutions at the cost of reducing its crystallinity and optical absorption, and consequently lowering its photon-to-electron conversion efficiency. In order to balance the stability and the

  19. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.

    Science.gov (United States)

    Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P

    2010-07-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  20. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    Science.gov (United States)

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration.

    Science.gov (United States)

    Pan, Bo; Ghosh, Saikat; Xing, Baoshan

    2008-03-01

    Water chemistry and concentration of dissolved organic matter (DOM) have been reported to affect DOM conformation and binding properties with hydrophobic organic contaminants (HOCs). However, relationship between DOM conformation and its binding properties remains unclear. We designed a multibag equilibration system (MBES) to investigate the variation of carbon-normalized sorption coefficients (K(DOC)) of pyrene at different DOM concentrations based on an identical free solute concentration at different pHs and in the presence of Al ions. In addition, we studied the conformation of DOM under different conditions via atomic force microscopy (AFM) imaging, dynamic light scattering, and zeta potential measurements. Zeta potential measurements indicated that intra- and intermolecular interaction was facilitated at low pH or with the presence of Al ions, and a more organized molecular aggregate (such as a micelle-like structure) could form, thus, enhancing K(DOC). As DOM concentration increased, DOM molecular aggregation was promoted in a way reducing K(DOC). This research is a first attempt to correlate DOM conformation with K(DOC). Aggregation of DOM molecules resulting from increased zeta potential (less negative) generally led to an increased K(DOC). Further study in this area will provide valuable information on HOC-DOM interactions, thus, leading to more accurate predictions of K(DOC).

  2. Supercritical water oxidation of spent extraction solvent simulants

    Institute of Scientific and Technical Information of China (English)

    王帅; 秦强; 陈土方方; 夏晓彬; 马洪军; 乔延波; 何柳斌

    2015-01-01

    The rapid development of nuclear technology has led to more liquid organic radioactive wastes. Different from the regular aqueous radioactive wastes, these liquids possess a higher hazard potential and cannot be disposed through the conventional methods due to their radioactivity and chemical nature. Spent extraction solvent is a kind of common liquid organic radioactive wastes. In this work, tri-butyl phosphate (TBP), which is more difficult to degrade in the spent extraction solvent, was used as the model compound. Influences of reaction conditions on total organic carbon (TOC) removal and the volume percentage of each gas component under supercritical water oxidation (SCWO) were studied. The SCWO behaviors of spent extraction solvent simulants were studied under the optimal conditions derived from the TBP experiment. The SCWO experiments were studied at 400–550◦C, oxidant stoichiometric ratio of 0–200%, feed concentration of 1.5%–4%and pressure of 25 MPa for 15–75 s. The results show that the TOC removal of the simulants was greater than 99.7%and CH4, H2 and CO were not detected at 550◦C, 25 MPa, oxidant stoichiometric ratio of 150%, feed concentration of 3%, and residence time of 30 s.

  3. A teacher as researcher study of high school chemistry student ideas about the particulate nature of water

    Science.gov (United States)

    Kruckeberg, Robert Fredrick

    The objective of this study was to advance the pedagogical content knowledge base for teaching high school chemistry by conducting qualitative research on students' scientific understanding of water prior to, during, and after formal instruction on the particulate nature of matter. The study was conducted within a constructivist theoretical framework, with an emphasis on John Dewey's pragmatic social constructivism. The teacher-as-researcher conducted three sets of clinical interviews based on three related contexts: representation of water in the liquid state, interaction of water with a solute, and water vaporizing and condensing. Interviews and class work were analyzed to determine the extent to which students used the particulate nature of matter to reorganize their understanding of water. Findings present student responses in terms of four different aspects of the particulate model, where students frequently emphasized certain aspects of the model to the exclusion of others. These aspects were identified as "Simple Particles," "Mechanical Kinetic," "Differential Chemical", and "Electrostatic Interactive." Students exhibited significant difficulty in extending micro-mechanical aspects of the model into an electrostatic-interactive understanding of water. Applications of the particulate model were often highly context dependent. Students showed a variety of unique, alternative interpretations of the particulate nature of water that were supported by rich qualitative interview responses. Student difficulties understanding the particulate nature of water were attributed to alternative conceptions prior to instruction as well as the content and sequencing of the traditional biology-chemistry-physics science curriculum. The study recommends changes in curriculum sequencing, improved instruction in the nature of science and scientific models, and the need for introducing students to ideas in physics, especially electrostatics, prior to the study of introductory

  4. Photo-Oxidation of Water Using Nanocrystalline Tungsten Oxide under Visible Light

    Directory of Open Access Journals (Sweden)

    J. W. J. Hamilton

    2008-01-01

    Full Text Available The photoelectrolysis of water to yield hydrogen and oxygen using visible light has enormous potential for solar energy harvesting if suitable photoelectrode materials can be developed. Few of the materials with a band gap suitable for visible light activation have the necessary band-edge potentials or photochemical stability to be suitable candidates. Tungsten oxide (bg 2.8 eV is a good candidate with absorption up to ≈440 nm and known photochemical stability. Thin films of tungsten oxide were prepared using an electrolytic route from peroxo-tungsten precursors. The tungsten oxide thin films were characterised by FESEM, Auger electron spectroscopy, and photoelectrochemical methods. The magnitude of the photocurrent response of the films under solar simulated irradiation showed a dependence on precursor used in the film preparation, with a comparatively lower response for samples containing impurities. The photocurrent response spectrum of the tungsten oxide films was more favourable than that recorded for titanium dioxide (TiO2 thin films. The WO3 photocurrent response was of equivalent magnitude but shifted into the visible region of the spectrum, as compared to that of the TiO2.

  5. Wet peroxide oxidation and catalytic wet oxidation of stripped sour water produced during oil shale refining.

    Science.gov (United States)

    Prasad, Jaidev; Tardio, James; Jani, Harit; Bhargava, Suresh K; Akolekar, Deepak B; Grocott, Stephen C

    2007-07-31

    Catalytic wet oxidation (CWO) and wet peroxide oxidation (WPO) of stripped sour water (SSW) from an oil shale refinery was investigated. Greater than 70% total organic carbon (TOC) removal from SSW was achieved using Cu(NO(3))(2) catalysed WO under the following conditions using a glass lined reaction vessel: 200 degrees C, pO(2)=0.5MPa, 3h, [Cu(NO(3))(2)]=67mmol/L. Significant TOC removal ( approximately 31%) also occurred in the system without added oxygen. It is proposed that this is predominantly due to copper catalysed oxidative decarboxylation of organics in SSW based on observed changes in copper oxidation state. Greater than 80% TOC removal was achieved using WPO under the following conditions: 150 degrees C, t=1.5h, [H(2)O(2)]=64g/L. Significantly more TOC could be removed from SSW by adding H(2)O(2) in small doses as opposed to adding the same total amount in one single dose. It was concluded that WPO was a far more effective process for removing odorous compounds from SSW.

  6. Dynamics of ozone and nitrogen oxides at Summit, Greenland. II. Simulating snowpack chemistry during a spring high ozone event with a 1-D process-scale model

    NARCIS (Netherlands)

    Murray, K.A.; Kramer, L.J.; Doskey, P.V.; Ganzeveld, L.N.; Seok, B.; Dam, van B.; Helmig, D.

    2015-01-01

    Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a

  7. Defect Chemistry and Electrical Conductivity of Sm-Doped La1-xSrxCoO3-δ for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Björketun, Mårten; Castelli, Ivano Eligio; Rossmeisl, Jan

    2017-01-01

    We have calculated the electrical conductivity of the solid oxide fuel cell (SOFC) cathode contact material La1-xSrxCoO3-δ at 900 K. Experimental trends in conductivity against x, and against δ for fixed x, are correctly reproduced for x ≲ 0.8. Furthermore, we have studied the chemistry of neutral...

  8. Dynamics of ozone and nitrogen oxides at Summit, Greenland. II. Simulating snowpack chemistry during a spring high ozone event with a 1-D process-scale model

    NARCIS (Netherlands)

    Murray, K.A.; Kramer, L.J.; Doskey, P.V.; Ganzeveld, L.N.; Seok, B.; Dam, van B.; Helmig, D.

    2015-01-01

    Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a

  9. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  10. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  11. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  12. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 27 August 1973 - 27 November 1974 (NODC Accession 7600777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from August 27, 1973 to November 7,...

  13. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 21 May 1963 - 08 July 1975 (NODC Accession 7601561)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from May 21, 1963 to July 8, 1975....

  14. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 08 March 1974 - 13 May 1974 (NODC Accession 7501210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from March 8, 1974 to May 13, 1974....

  15. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 05 November 1973 to 06 June 1974 (NODC Accession 7500931)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from November 5, 1973 to June 6,...

  16. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 10 April 1978 - 09 August 1978 (NODC Accession 7900249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from April 10, 1978 to August 9,...

  17. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project from 12 April 1976 - 13 September 1976 (NODC Accession 7700770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from April 12, 1976 to September 13,...

  18. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 09 April 1979 - 23 August 1979 (NODC Accession 8100440)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from April 9, 1979 to August 23,...

  19. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  20. In-plant material test experience under hydrogen water chemistry at a Japanese BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami; Koshiishi, Masato; Kato, Takahiko [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Abe, Ayumi; Sekiguchi, Masahiko; Takiguchi, Hideki

    1999-07-01

    Hydrogen injection technology has been applied to Japanese domestic aged BWR plants since 1994 to mitigate corrosive environment regarding Intergranular Stress Corrosion Cracking (IGSCC) of Reactor Internals (RINs). The Tsuruga Unit-1 plant has also been operated with this technology since 1997, considering suppression of radiation increase in the main steam piping system besides mitigation of corrosive environment in the reactor; the hydrogen injection rate in the feed water was about 0.5 ppm. In order to confirm the effects of the hydrogen injection on suppression of SCC susceptibility of the RIN materials, several in-plant material tests have been conducted using the reactor water clean up system (RWCU). Cyclic-Slow Strain Rate Tensile (C-SSRT) test, Slow Strain Rate Tensile (SSRT) test and Compact Tension (CT) test were performed in the test facilities which were installed at the sampling line from the RWCU. Evaluation of SCC life by means of the C-SSRT test was the first application as an accelerated SCC test for in-plant material tests. It was confirmed that the hydrogen injection in the feed water has a good mitigation effects on IGSCC performance of the RIN materials. Results will be discussed from a viewpoint of the test condition such as total oxidant, ECP, conductivity and loading/unloading. (author)