WorldWideScience

Sample records for water marine aquaculture

  1. Use of sunlight to degrade oxytetracycline in marine aquaculture's waters

    International Nuclear Information System (INIS)

    Leal, J.F.; Esteves, V.I.; Santos, E.B.H.

    2016-01-01

    Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC. - Highlights: • Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. • OTC photolysis in marine aquaculture's water is faster than in deionised water. • The sunlight radiation quickly remove the OTC from aquaculture's water. • Outdoor half-life for a midsummer day is 21–25 min in aquaculture's water. • High pH's and salinities increase the OTC photo-degradation. - This work

  2. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  3. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    International Nuclear Information System (INIS)

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography

  4. Update to the Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    Science.gov (United States)

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  5. Japanese aquaculture with thermal water from power plants

    International Nuclear Information System (INIS)

    Kuroda, T.

    1977-01-01

    The present level of thermal aquaculture, utilizing thermal water which is waste cooling water from nuclear power plant, in Japan is reported. There are 13 major potential areas for thermal aquaculture in cooperation with conventional type thermal power plants, seven of which are actually operating. Aquaculture facilities of all these are on land, none in the sea. Of these seven centers, those that have already commercialized their nursery methods or are approaching that stage of research and development, are Tohoku Hatsuden Kogyo Ltd., Tsuruga Hama Land Ltd. and Kyushu Rinsan Ltd. Major problems faced specialists in Japanese thermal aquaculture are water temperature, water quality, radioactivity and costs. For keeping the water temperature constant all seasons, cooling or heating by natural sea water may be used. Even negligible amounts of radioactivity that nuclear power plants release into the sea will concentrate in the systems of marine life. A strict precautionary checking routine is used to detect radioactivity in marine life. (Kobatake, H.)

  6. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma; Xiong, Yanghui; Alam, Aftab; Croue, Jean-Philippe; Hong, Pei-Ying

    2017-01-01

    at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction

  7. ZONING OF COASTAL AREA FOR MARINE AQUACULTURE Š PRESENT SITUATIONS AND PROBLEMS

    Directory of Open Access Journals (Sweden)

    Lav Bavčević

    2001-12-01

    , with an adequate program of monitoring, and implementation of corrective measures has to be applied. Living resources quality in zones for marine aquaculture must be control and protected from pollutant of others activities, by controlling of polluted water in zone, controlling of emission in land in zone (pesticides and fertilizers, and sanitary control of sea.

  8. Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

    Science.gov (United States)

    Buschmann, Alejandro H.; Tomova, Alexandra; López, Alejandra; Maldonado, Miguel A.; Henríquez, Luis A.; Ivanova, Larisa; Moy, Fred; Godfrey, Henry P.; Cabello, Felipe C.

    2012-01-01

    Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments. PMID:22905164

  9. Salmon aquaculture and antimicrobial resistance in the marine environment.

    Directory of Open Access Journals (Sweden)

    Alejandro H Buschmann

    Full Text Available Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

  10. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  11. Disease in marine aquaculture

    Science.gov (United States)

    Sindermann, C. J.

    1984-03-01

    It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such as Vibrio, Pseudomonas and Aeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured

  12. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites.

    Science.gov (United States)

    Shah, Syed Q A; Cabello, Felipe C; L'abée-Lund, Trine M; Tomova, Alexandra; Godfrey, Henry P; Buschmann, Alejandro H; Sørum, Henning

    2014-05-01

    Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Japanese aquaculture: use of thermal water from power plant

    International Nuclear Information System (INIS)

    Kuroda, Takeya

    1983-01-01

    There is some merit of thermal water from power plants in the effect to marine life. Since 1963, the research and development on the aquaculture using this warm water have been carried out at some twenty power plants, seven nuclear and thirteen thermal, some of which are now in the commercial stage. These fish farming projects are operated variously from seed to adult fish production. They can also be classified as land and sea facilities, conforming to the characteristics of the respective sea areas. The current situation in this field and the future prospect are described: thermal aquaculture including seed production and adult fish farming; the projects in nuclear and thermal power plants, respectively; future problems in the facilities, breeding environment and marine life for cultivation. (Mori, K.)

  14. Ocean modelling for aquaculture and fisheries in Irish waters

    Science.gov (United States)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2016-01-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. The authors give an overview of a shellfish model developed in-house and that was designed to predict the growth, the physiological interactions with the ecosystem, and the level of coliform contamination of the blue mussel. As such, this model is applicable in studies on the carrying capacity of embayments, assessment of the impacts of pollution on aquaculture grounds, and the determination of shellfish water classes. Further services include the assimilation of the model-predicted shelf water movement into a new harmful algal bloom alert system used to inform end users of potential toxic shellfish events and high biomass blooms that include fish-killing species. Models are also used to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish, and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the resources of marine fisheries. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  15. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina -like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gieseke, Armin; Schwermer, Carsten

    2008-01-01

    Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a re......Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated...

  16. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    Science.gov (United States)

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying

  17. Mariniradius saccharolyticus gen. nov., sp. nov., a member of the family Cyclobacteriaceae isolated from marine aquaculture pond water, and emended descriptions of the genus Aquiflexum and Aquiflexum balticum

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Srinivas, T.N.R.; Ravinder, K.; AnilKumar, P.

    A novel marine, Gram-stain-negative, oxidase- and catalase- positive, rod-shaped bacterium, designated strain AK6 sup(T), was isolated from marine aquaculture pond water collected in Andhra Pradesh, India. The fatty acids were dominated by iso-C sub...

  18. Genomic Approaches in Marine Biodiversity and Aquaculture

    Directory of Open Access Journals (Sweden)

    Jorge A Huete-Pérez

    2013-01-01

    Full Text Available Recent advances in genomic and post-genomic technologies have now established the new standard in medical and biotechnological research. The introduction of next-generation sequencing, NGS,has resulted in the generation of thousands of genomes from all domains of life, including the genomes of complex uncultured microbial communities revealed through metagenomics. Although the application of genomics to marine biodiversity remains poorly developed overall, some noteworthy progress has been made in recent years. The genomes of various model marine organisms have been published and a few more are underway. In addition, the recent large-scale analysis of marine microbes, along with transcriptomic and proteomic approaches to the study of teleost fishes, mollusks and crustaceans, to mention a few, has provided a better understanding of phenotypic variability and functional genomics. The past few years have also seen advances in applications relevant to marine aquaculture and fisheries. In this review we introduce several examples of recent discoveries and progress made towards engendering genomic resources aimed at enhancing our understanding of marine biodiversity and promoting the development of aquaculture. Finally, we discuss the need for auspicious science policies to address challenges confronting smaller nations in the appropriate oversight of this growing domain as they strive to guarantee food security and conservation of their natural resources.

  19. The impact and control of biofouling in marine aquaculture: a review.

    Science.gov (United States)

    Fitridge, Isla; Dempster, Tim; Guenther, Jana; de Nys, Rocky

    2012-01-01

    Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  20. Bioethical Considerations of Advancing the Application of Marine Biotechnology and Aquaculture.

    Science.gov (United States)

    Harrell, Reginal M

    2017-06-24

    Normative ethical considerations of growth of the marine biotechnology and aquaculture disciplines in biopharming, food production, and marine products commercialization from a bioethical perspective have been limited. This paucity of information begs the question of what constitutes a bioethical approach (i.e., respect for individuals or autonomy; beneficence, nonmaleficence, and justice) to marine biotechnology and aquaculture, and whether it is one that is appropriate for consideration. Currently, thoughtful discussion on the bioethical implications of use, development, and commercialization of marine organisms or their products, as well as potential environmental effects, defaults to human biomedicine as a model. One must question the validity of using human bioethical principlism moral norms for appropriating a responsible marine biotechnology and aquaculture ethic. When considering potential impacts within these disciplines, deference must be given to differing value systems in order to find common ground to advance knowledge and avoid emotive impasses that can hinder the science and its application. The import of bioethical considerations when conducting research and/or production is discussed. This discussion is directed toward applying bioethical principles toward technology used for food, biomedical development (e.g., biopharming), or as model species for advancement of knowledge for human diseases.

  1. Bioethical Considerations of Advancing the Application of Marine Biotechnology and Aquaculture

    Directory of Open Access Journals (Sweden)

    Reginal M. Harrell

    2017-06-01

    Full Text Available Normative ethical considerations of growth of the marine biotechnology and aquaculture disciplines in biopharming, food production, and marine products commercialization from a bioethical perspective have been limited. This paucity of information begs the question of what constitutes a bioethical approach (i.e., respect for individuals or autonomy; beneficence, nonmaleficence, and justice to marine biotechnology and aquaculture, and whether it is one that is appropriate for consideration. Currently, thoughtful discussion on the bioethical implications of use, development, and commercialization of marine organisms or their products, as well as potential environmental effects, defaults to human biomedicine as a model. One must question the validity of using human bioethical principlism moral norms for appropriating a responsible marine biotechnology and aquaculture ethic. When considering potential impacts within these disciplines, deference must be given to differing value systems in order to find common ground to advance knowledge and avoid emotive impasses that can hinder the science and its application. The import of bioethical considerations when conducting research and/or production is discussed. This discussion is directed toward applying bioethical principles toward technology used for food, biomedical development (e.g., biopharming, or as model species for advancement of knowledge for human diseases.

  2. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    Science.gov (United States)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  3. Antibacterial activity of oxytetracycline photoproducts in marine aquaculture's water.

    Science.gov (United States)

    Leal, J F; Henriques, I S; Correia, A; Santos, E B H; Esteves, V I

    2017-01-01

    Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. The main concern related to its use is the bacterial resistance, when ineffective treatments are applied for its removal or inactivation. OTC photo-degradation has been suggested as an efficient complementary process to conventional methods used in intensive fish production (e.g.: ozonation). Despite this, and knowing that the complete mineralization of OTC is difficult, few studies have examined the antibacterial activity of OTC photoproducts. Thus, the main aim of this work is to assess whether the OTC photoproducts retain the antibacterial activity of its parent compound (OTC) after its irradiation, using simulated sunlight. For that, three Gram-negative bacteria (Escherichia coli, Vibrio sp. and Aeromonas sp.) and different synthetic and natural aqueous matrices (phosphate buffered solutions at different salinities, 0 and 21‰, and three different samples from marine aquaculture industries) were tested. The microbiological assays were made using the well-diffusion method before and after OTC has been exposed to sunlight. The results revealed a clear effect of simulated sunlight, resulting on the decrease or elimination of the antibacterial activity for all strains and in all aqueous matrices due to OTC photo-degradation. For E. coli, it was also observed that the antibacterial activity of OTC is lower in the presence of sea-salts, as demonstrated by comparison of halos in aqueous matrices containing or not sea-salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Aquaculture in Coastal and Marine US Waters

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aquaculture, also known as aquafarming, is the farming of aquatic organisms such as fish, crustaceans, mollusks, and aquatic plants. The presence and location of...

  6. Public attitudes towards marine aquaculture: A comparative analysis of Germany and Israel

    International Nuclear Information System (INIS)

    Freeman, Shirra; Vigoda-Gadot, Eran; Sterr, Horst; Schultz, Michael; Korchenkov, Irina; Krost, Peter; Angel, Dror

    2012-01-01

    We report on bi-national (Germany–Israel) research on relationships between public attitudes, behaviours and preferences related to marine aquaculture. Aquaculture's world-wide market share accounts for over half of all aquatic products. In many places, the sector's explosive growth has outstripped scientific knowledge and governance provisions. Small producers such as Israel and Germany seeking to expand domestic production must address environmental challenges posed by fish farming, stakeholder competition in crowded coastal zones and public/consumer receptiveness. Based on survey data obtained from both the countries, correlation analysis (Pearson's r-statistic) was used to test four hypotheses. Of these, one (positive relationship between coastal tourism and aquaculture attitudes) was supported in both countries. The hypothesis of positive relationships between lifestyle (environment/health) behaviours and aquaculture attitudes was supported only in Germany and the hypothesis of negative relationships between concern for the environment and aquaculture attitudes was supported only in Israel. These results are significant for policy, business, NGO and other stakeholders. Moreover, they point to the importance of this type of comparative research in improving our understanding of local factors influencing attitude-formation and inter-relationships. First, the tourism–aquaculture relationship found indicates potential synergies between two sectors reliant on the coastal zone that should be taken into account by planning authorities. The divergent environment–aquaculture results were especially interesting since in both countries, the primary concern regarding aquaculture expansion was environmental impacts. Closer inspection of the survey results revealed that this relationship may have been influenced by the orientation of environmental concerns in each population. Germans focus on depletion of wildstocks and Israelis on cage effluent and marine pollution

  7. The use of marine aquaculture solid waste for nursery production of the salt marsh plants Spartina alterniflora and Juncus roemerianus

    Directory of Open Access Journals (Sweden)

    H.M. Joesting

    2016-05-01

    Full Text Available Recent technological advances in marine shrimp and finfish aquaculture alleviate many of the environmental risks associated with traditional aquaculture, but challenges remain in cost-effective waste management. Liquid effluent from freshwater aquaculture systems has been shown to be effective in agricultural crop production (i.e., aquaponics, but few studies have explored the potential for reuse of marine aquaculture effluent, particularly the solid fraction. The purpose of this study was to investigate the use of marine aquaculture solid waste as a nutrient source for the nursery production of two salt tolerant plants commonly used in coastal salt marsh restoration, Spartina alterniflora (smooth cordgrass and Juncus roemerianus (black needlerush. Specifically, measurements of plant biomass and tissue nitrogen and phosphorus allocation were compared between plants fertilized with dried shrimp biofloc solids and unfertilized controls, as well as between plants fertilized with dried fish solids and unfertilized controls. In both experiments, S. alterniflora plants fertilized with marine aquaculture solids showed few significant differences from unfertilized controls, whereas fertilized J. roemerianus plants had significantly greater biomass and absorbed and incorporated more nutrients in plant tissue compared to unfertilized controls. These results suggest that J. roemerianus may be a suitable plant species for the remediation of marine aquaculture solid waste. Keywords: Marine aquaculture, Salt marsh plants, Solid waste, Phytoremediation

  8. Marine Spatial Planning Makes Room for Offshore Aquaculture in a Crowded Coastal Zone

    Science.gov (United States)

    Stevens, J.

    2016-12-01

    Offshore aquaculture is an emerging industry predicted to contribute significantly to global seafood production and food security. However, aquaculture farms can generate conflicts by displacing existing ocean user groups and impacting ecosystems. Further, there are multiple farm types with different seafood species, productivity levels and impacts. Thus, it is important to strategically and simultaneously plan farm type and location in relation to the seascape in order to most effectively maximize aquaculture value while also minimizing conflicts and environmental impacts. We address this problem and demonstrate the value of multi-objective planning with a case study that integrates bioeconomic modeling with ecosystem service tradeoff analysis to inform the marine spatial planning (MSP) of mussel, finfish and kelp aquaculture farms in the already-crowded Southern California Bight (SCB) ecosystem. We considered four user groups predicted to conflict with or be impacted by the three types of aquaculture: wild-capture fisheries, ocean viewshed from coastal properties, marine benthic habitat protection, and risk of disease outbreak between farms. Results indicate that significant conflicts and impacts, expected under conventional planning, can be reduced by strategic planning. For example, 28% of potential mussel farm sites overlap with wild-capture halibut fishery grounds, yet MSP can enable mussel aquaculture to generate up to a third of its total potential industry value without impacting halibut fishery yield. Results also highlight hotspot areas in the SCB most appropriate for each type of aquaculture under MSP, as well as particular mussel, finfish and kelp aquaculture spatial plans that align with legislative regulations on allowable impacts from future aquaculture farms in California. This study comprehensively informs aquaculture farm design in the SCB, and demonstrates the value of multi-objective simultaneous planning as a key component in MSP.

  9. Background paper on aquaculture research

    DEFF Research Database (Denmark)

    Wenblad, Axel; Jokumsen, Alfred; Eskelinen, Unto

    due to the availability of vast water resources of good quality (both marine and fresh water), a high veterinary status and generally well developed public infrastructure. Swedish aquaculture has the potential to develop into a green business producing environmentally sustainable healthy food with low...... vattenbruket and the strategy Svenskt vattenbruk – en grön näring på blå åkrar, Strategi 2012–2020. Implementing the strategy will require a real management of aquaculture that secures the balance between responsibility for the environment and development of aquaculture production. For a significant......, products, etc. 2. Environmental efficient production with trapping of solid waste and balanced nutrient management (recirculation technology, waste heat/green energy/integrated production systems). 3. Policy instruments: legislation, economic incentives, socioeconomic...

  10. Hydrogen peroxide decomposition kinetics in aquaculture water

    DEFF Research Database (Denmark)

    Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    during the HP decomposition. The model assumes that the enzyme decay is controlled by an inactivation stoichiometry related to the HP decomposition. In order to make the model easily applicable, it is furthermore assumed that the COD is a proxy of the active biomass concentration of the water and thereby......Hydrogen peroxide (HP) is used in aquaculture systems where preventive or curative water treatments occasionally are required. Use of chemical agents can be challenging in recirculating aquaculture systems (RAS) due to extended water retention time and because the agents must not damage the fish...... reared or the nitrifying bacteria in the biofilters at concentrations required to eliminating pathogens. This calls for quantitative insight into the fate of the disinfectant residuals during water treatment. This paper presents a kinetic model that describes the HP decomposition in aquaculture water...

  11. Modelling for an improved integrated multi-trophic aquaculture system for the production of highly valued marine species

    Directory of Open Access Journals (Sweden)

    Luana Granada

    2014-05-01

    Full Text Available Integrated multi-trophic aquaculture (IMTA is regarded as a suitable approach to limit aquaculture nutrients and organic matter outputs through biomitigation. Here, species from different trophic or nutritional levels are connected through water transfer. The co-cultured species are used as biofilters, and each level has its own independent commercial value, providing both economic and environmental sustainability. In order to better understand and optimize aquaculture production systems, dynamic modelling has been developed towards the use of models for analysis and simulation of aquacultures. Several models available determine the carrying capacity of farms and the environmental effects of bivalve and fish aquaculture. Also, in the last two decades, modelling strategies have been designed in order to predict the dispersion and deposition of organic fish farm waste, usually using the mean settling velocity of faeces and feed pellets. Cultured organisms growth, effects of light and temperature on algae growth, retention of suspended solids, biodegradation of nitrogen and wastewater treatment are examples of other modelled parameters in aquaculture. Most modelling equations have been developed for monocultures, despite the increasing importance of multi-species systems, such as polyculture and IMTA systems. The main reason for the development of multi-species models is to maximize the production and optimize species combinations in order to reduce the environmental impacts of aquaculture. Some multi-species system models are available, including from the polyculture of different species of bivalves with fish to more complex systems with four trophic levels. These can incorporate ecosystem models and use dynamic energy budgets for each trophic group. In the proposed IMTA system, the bioremediation potential of the marine seaweed Gracilaria vermiculophylla (nutrient removal performance and the Mediterranean filter-feeding polychaete Sabella

  12. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure

    International Nuclear Information System (INIS)

    Chen, Hui; Liu, Shan; Xu, Xiang-Rong; Liu, Shuang-Shuang; Zhou, Guang-Jie; Sun, Kai-Feng; Zhao, Jian-Liang; Ying, Guang-Guo

    2015-01-01

    Highlights: • Thirty-seven antibiotics were systematically investigated in typical marine aquaculture farms. • Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g). • ETM-H 2 O in the adult shrimp samples may pose a potential risk to human safety. • TMP was bioaccumulative in fish muscles. • Antibiotics were weakly bioaccumulated in mollusks. - Abstract: The occurrence, bioaccumulation, and human dietary exposure via seafood consumption of 37 antibiotics in six typical marine aquaculture farms surrounding Hailing Island, South China were investigated in this study. Sulfamethoxazole, salinomycin and trimethoprim were widely detected in the water samples (0.4–36.9 ng/L), while oxytetracycline was the predominant antibiotic in the water samples of shrimp larvae pond. Enrofloxacin was widely detected in the feed samples (16.6–31.8 ng/g) and erythromycin–H 2 O was the most frequently detected antibiotic in the sediment samples (0.8–4.8 ng/g). Erythromycin–H 2 O was the dominant antibiotic in the adult Fenneropenaeus penicillatus with concentrations ranging from 2498 to 15,090 ng/g. In addition, trimethoprim was found to be bioaccumulative in young Lutjanus russelli with a median bioaccumulation factor of 6488 L/kg. Based on daily intake estimation, the erythromycin–H 2 O in adult F. penicillatus presented a potential risk to human safety

  13. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China.

    Science.gov (United States)

    Cao, Ling; Wang, Weimin; Yang, Yi; Yang, Chengtai; Yuan, Zonghui; Xiong, Shanbo; Diana, James

    2007-11-01

    Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of

  14. Comment on 'Water footprint of marine protein consumption—aquaculture's link to agriculture'

    NARCIS (Netherlands)

    Troell, M.; Metian, M.; Beveridge, M.; Verdegem, M.C.J.; Deutsch, L.

    2014-01-01

    In their article ‘Freshwater savings from marine protein consumption’ (2014 Environ. Res. Lett. 9 014005), Gephart and her colleagues analyzed how consumption of marine animal protein rather than terrestrial animal protein leads to reduced freshwater allocation. They concluded that future water

  15. Marketing netcoatings for aquaculture.

    Science.gov (United States)

    Martin, Robert J

    2014-10-17

    Unsustainable harvesting of natural fish stocks is driving an ever growing marine aquaculture industry. Part of the aquaculture support industry is net suppliers who provide producers with nets used in confining fish while they are grown to market size. Biofouling must be addressed in marine environments to ensure maximum product growth by maintaining water flow and waste removal through the nets. Biofouling is managed with copper and organic biocide based net coatings. The aquaculture industry provides a case study for business issues related to entry of improved fouling management technology into the marketplace. Several major hurdles hinder entry of improved novel technologies into the market. The first hurdle is due to the structure of business relationships. Net suppliers can actually cut their business profits dramatically by introducing improved technologies. A second major hurdle is financial costs of registration and demonstration of efficacy and quality product with a new technology. Costs of registration are prohibitive if only the net coatings market is involved. Demonstration of quality product requires collaboration and a team approach between formulators, net suppliers and farmers. An alternative solution is a vertically integrated business model in which the support business and product production business are part of the same company.

  16. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi

    2017-04-21

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3\\'s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  17. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi; Agusti, Susana; Lin, Fang; Li, Ke; Pan, Yaoru; Yu, Yan; Zheng, Yuhan; Wu, Jiaping; Duarte, Carlos M.

    2017-01-01

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3's of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  18. Microplastics in the context of regulation of commercial shellfish aquaculture operations.

    Science.gov (United States)

    Schoof, Rosalind A; DeNike, Jesse

    2017-05-01

    Shellfish aquaculture in the Salish Sea (encompassing the Strait of Juan de Fuca, Puget Sound, and the Georgia Strait) is a major source of clams, oysters, and mussels in the United States and Canada. Plastic gear is necessary for the viability of many of these operations. During the past few years, shellfish farm permits issued in Washington State have been challenged on various bases that have included allegations that the plastic gear is releasing microplastics, commonly defined as particles less than 5 mm in diameter. Published survey data on sources of marine plastic debris demonstrate the very limited contribution of aquaculture gear. Both permits and industry codes of practice provide procedures to minimize loss of gear to the marine environment. Plastic gear is also designed specifically to maintain its integrity and not degrade in the marine environment. Plastic degradation is greatest on beaches with high UV exposure, whereas aquaculture gear is mostly underwater and/or covered by biofoulants. Available data for microplastics in water, sediment, and biota of the Salish Sea do not suggest significant release of microplastics from shellfish aquaculture operations. Integr Environ Assess Manag 2017;13:522-527. © 2017 SETAC. © 2017 SETAC.

  19. Holographic Aquaculture

    Science.gov (United States)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  20. Infectious diseases affect marine fisheries and aquaculture economics

    Science.gov (United States)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jonathan M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  1. Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species.

    Science.gov (United States)

    Kusche, Henrik; Hillgruber, Nicola; Rößner, Yvonne; Focken, Ulfert

    2017-06-01

    Brittle stars (Ophiura spp.) and other benthic macrofauna were collected in a prospective mariculture area in the North Sea to determine if these taxa could be used as indicator species to track nutrients released from future offshore aquaculture sites. We analysed natural carbon and nitrogen stable isotopic signatures in tissues from macrofauna and compared these to six feed ingredients and four experimental diets made thereof, as well as to a commercial feed with and without lipid and carbonate removal. Our data suggest practicability of using isotopic signatures of Ophiura spp. to track aquaculture-derived organic material if plant-based fish diet ingredients and commercial feed were used for fish farming in the German Exclusive Economic Zone. Diets with high fish meal content would not be detected in Ophiura spp. using isotopic measures due to the similarity with the marine background. Our data provide valuable baseline information for studies on the impact of offshore aquaculture on the marine environment.

  2. A Project Approach to Teaching Aquaculture and Entrepreneurial Skills in the Cage Culture of Salmonids Program at the Marine Institute.

    Science.gov (United States)

    Churchill, Edgar; Smith, Boyd

    Between September and December 1986, the Marine Institute in Newfoundland, Canada, used a "projects approach" to train aquaculture workers for 10 new salmon farms to be opened in spring 1987 by a producers' cooperative. The projects approach combined instruction in the aquaculture skills needed to operate a salmon farm and the entrepreneurial…

  3. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA

    Directory of Open Access Journals (Sweden)

    Bela H. Buck

    2018-05-01

    Full Text Available By moving away from coastal waters and hence reducing pressure on nearshore ecosystems, offshore aquaculture can be seen as a possible step towards the large-scale expansion of marine food production. Integrated multi-trophic aquaculture (IMTA in nearshore water bodies has received increasing attention and could therefore play a role in the transfer of aquaculture operations to offshore areas. IMTA holds scope for multi-use of offshore areas and can bring environmental benefits from making use of waste products and transforming these into valuable co-products. Furthermore, they may act as alternative marine production systems and provide scope for alternative income options for coastal communities, e.g., by acting as nodes for farm operation and maintenance requirements. This paper summarizes the current state of knowledge on the implications of the exposed nature of offshore and open ocean sites on the biological, technological and socio-economic performance of IMTA. Of particular interest is improving knowledge about resource flows between integrated species in hydrodynamic challenging conditions that characterize offshore waters.

  4. Bacillus Probiotic Enzymes: External Auxiliary Apparatus to Avoid Digestive Deficiencies, Water Pollution, Diseases, and Economic Problems in Marine Cultivated Animals.

    Science.gov (United States)

    Olmos Soto, Jorge

    Exploitation of marine fishes is the main source of several life-supporting feed compounds such as proteins, lipids, and carbohydrates that maintain the production of most trading marine organisms by aquaculture. However, at this rate the marine inventory will go to the end soon, since fishery resources are finite. In this sense, the availability of the principal ingredients obtained from marine fishes is going to decrease considerably, increasing the diet prices and affecting the economy of this activity. Therefore, aquaculture industry needs to find nonexpensive land unconventional resources of protein, carbohydrates, and lipids and use bacterial probiotics to improve digestion-assimilation of these unfamiliar compounds. Bacillus subtilis is a cosmopolitan probiotic bacterium with a great enzymatic profile that could improve nutrient digestion-assimilation, induce healthy growth, and avoid water pollution, decreasing economic problems and increasing yields in the aquaculture industry. In this chapter, we present how Bacillus enzymes can help marine animals to assimilate nutrients from unconventional and economic plant resources. © 2017 Elsevier Inc. All rights reserved.

  5. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    Science.gov (United States)

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  6. Global Aquaculture Performance Index (GAPI: The First Global Environmental Assessment of Marine Fish Farming

    Directory of Open Access Journals (Sweden)

    Jenna M.S. Stoner

    2013-09-01

    Full Text Available “Sustainable” is among the most sought after of all seafood product adjectives. Ironically it is also one of the most poorly defined and understood. The Global Aquaculture Performance Index (GAPI is the first tool to assess environmental performance of global marine aquaculture production, permitting direct comparison of disparate species, production methods and jurisdictions. Clear patterns emerge from this analysis; significant variation of environmental performance is driven by the species being farmed, significant room for improvement exists across the entire sector, the worst performing players are also the fastest growing, particularly within Asia, and perhaps most importantly, this work highlights the potential trap awaiting policy makers who focus too narrowly on farm production efficiency alone as a solution to diminishing seafood availability.

  7. Steroids accumulate in the rearing water of commercial recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, V.C.; Martins, C.I.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J.

    2014-01-01

    Little information is available on steroid concentrations in the rearing water of aquaculture systems and whether they accumulate in recirculating aquaculture systems (RAS). Therefore this study aimed at determining (1) the concentrations and variation of cortisol and sex steroids in RAS, (2) the

  8. Aquaculture Information Package

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, T.; Rafferty, K. [editors

    1998-01-01

    This package of information is intended to provide background to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements.

  9. Toxicity of three antibiotics used in aquaculture on the marine microalgae Tetraselmis suecica (Kylin Butch.

    Directory of Open Access Journals (Sweden)

    Marta Seoane

    2014-06-01

    Full Text Available Aquaculture facilities are a potential source of antibiotics to the aquatic ecosystems. The presence of these compounds in the environment may have deleterious effects on non-target aquatic organisms such as microalgae, which are often used as biological indicators of pollution. Therefore, the aim of the present study was to evaluate the toxicity induced by chloramphenicol (CHL, florfenicol (FLO and oxytetracycline (OTC, three antibiotics widely used in aquaculture, on the marine microalgae Tetraselmis suecica, a species also used in aquacultural practices. Toxicity was evaluated taking into account alterations on growth and cellular viability and activity, being these parameters monitored using flow cytometry technique. Results showed that all three antibiotics assayed inhibit growth of T. suecica with 96 h IC50 values of 11.16, 9.03 and 17.25 mg l-1 for CHL, FLO and OTC, respectively. After 24 hours of exposure, the integrity of the cell membrane, related with cellular viability and assessed by propidium iodide staining (PI, was not altered; therefore cells remained viable. However, FLO and OTC were found to significant reduce the metabolic activity at higher concentrations assayed, as indicated the fluorescein diacetate assay (FDA. Since growth inhibition and significant physiological alterations were observed, it can be concluded that T. suecica was sensitive to the three antibiotics tested, thus the use of these antibiotics should be carefully monitored to reduce the potential risk of contamination of the marine environment.

  10. BACTERIOLOGICAL PROPERTIES OF MARINE WATER IN ADRIATIC FISH FARMS: ENUMERATION OF HETEROTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Emin Teskeredžić

    2012-12-01

    Full Text Available Aquaculture is currently one of the fastest growing food production sectors in the world. Increase in nutrients and organic wastes lead to general deterioration of water quality. The problem of water quality is associated with both physical and chemical factors, as well as microbiological water quality. Heterotrophic bacteria play an important role in the process of decomposition of organic matter in water environment and indicate eutrophication process. Here we present our experience and knowledge on bacterial properties of marine water in the Adriatic fish farms with European sea bass (Dicentrarchus labrax L., 1758, with an emphasis on enumeration of heterotrophic bacteria in marine water. We applied two temperatures of incubation, as well as two methods for enumeration of heterotrophic bacteria: substrate SimPlate® test and spread plate method on conventional artificial media (Marine agar and Tryptic Soy agar with added NaCl. The results of analysis of bacteriological properties of marine water in the Adriatic fish farms showed that enumeration of heterotrophic bacteria in marine water depends on the applied incubation temperature and media for enumeration. At the same time, the incubation temperature of 22C favours more intense growth of marine heterotrophic bacteria, whereas a SimPlate test gives higher values of heterotrophic bacteria. Volatile values of heterotrophic bacteria during this research indicate a possible deterioration of microbiological water quality in the Adriatic fish farms and a need for regular monitoring of marine water quality.

  11. Aquaculture information package

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, T.; Rafferty, K.

    1998-08-01

    This package of information is intended to provide background information to developers of geothermal aquaculture projects. The material is divided into eight sections and includes information on market and price information for typical species, aquaculture water quality issues, typical species culture information, pond heat loss calculations, an aquaculture glossary, regional and university aquaculture offices and state aquaculture permit requirements. A bibliography containing 68 references is also included.

  12. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    Science.gov (United States)

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  13. Integrated multi-trophic aquaculture (combined production of fish, mussels and seaweed)

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Silva Marinho, Goncalo; Angelidaki, Irini

    2014-01-01

    The Danish marine aquaculture has, despite the huge potential, only been slowly increasing the last 25 years because of the imposed limits to the nitrogen (N) released to the environment. Mussels, seaweed and other organisms have been successfully tested as biofilters in integrated multi-trophic ......The Danish marine aquaculture has, despite the huge potential, only been slowly increasing the last 25 years because of the imposed limits to the nitrogen (N) released to the environment. Mussels, seaweed and other organisms have been successfully tested as biofilters in integrated multi......, mineral and vitamin content and profiles were monitored to evaluate the nutritional value and harvest time of the seaweed biomass. Sugarkelp showed to be efficient for bioremediation of nitrogen, with environmental and potentially economic benefits (e.g. waste water management and for production...

  14. Green and technical efficient growth in Danish fresh water aquaculture

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2011-01-01

    growth can be achieved by introducing new environmentally friendly water purification systems in Danish fresh water aquaculture. Data Envelopment Analysis is used to investigate whether different water purification systems and farm size influence technical efficiency. The empirical results indicate...

  15. Mariniradius saccharolyticus gen. nov., sp. nov., a member of the family Cyclobacteriaceae isolated from marine aquaculture pond water, and emended descriptions of the genus Aquiflexum and Aquiflexum balticum.

    Science.gov (United States)

    Bhumika, V; Srinivas, T N R; Ravinder, K; Kumar, P Anil

    2013-06-01

    A novel marine, Gram-stain-negative, oxidase- and catalase- positive, rod-shaped bacterium, designated strain AK6(T), was isolated from marine aquaculture pond water collected in Andhra Pradesh, India. The fatty acids were dominated by iso-C15:0, iso-C17:1ω9c, iso-C15:1 G, iso-C17:0 3-OH and anteiso-C15:0. Strain AK6(T) contained MK-7 as the sole respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and seven unidentified lipids as polar lipids. The DNA G+C content of strain AK6(T) was 45.6 mol%. Phylogenetic analysis showed that strain AK6(T) formed a distinct branch within the family Cyclobacteriaceae and clustered with Aquiflexum balticum DSM 16537(T) and other members of the family Cyclobacteriaceae. 16S rRNA gene sequence analysis confirmed that Aquiflexum balticum DSM 16537(T) was the nearest neighbour, with pairwise sequence similarity of 90.1%, while sequence similarity with the other members of the family was balticum are also proposed.

  16. Modelling receiving water quality responses to brackishwater shrimp aquaculture farm effluents

    International Nuclear Information System (INIS)

    Roy Chaudhury, R.K.; Ramana Murty, V.; Ravindran, M.

    1999-01-01

    The objective was to perform a waste load allocation and determine the extent of aquaculture that the creeks can sustain, by meeting the water quality criteria for both the creek ecosystem and pond culture. Based on these results, similar assessments may be performed for other sites supporting large scale aquaculture activities. This paper introduces the sampling program and modelling methodology of the study

  17. Bacterial Colonization of Cod (Gadus morhua L.) and Halibut (Hippoglossus hippoglossus) Eggs in Marine Aquaculture

    OpenAIRE

    Hansen, Geir Høvik; Olafsen, Jan A.

    1989-01-01

    Aquaculture has brought about increased interest in mass production of marine fish larvae. Problems such as poor egg quality and mass mortality of fish larvae have been prevalent. The intensive incubation techniques that often result in bacterial overgrowth on fish eggs could affect the commensal relationship between the indigenous microflora and opportunistic pathogens and subsequently hamper egg development, hatching, larval health, and ongrowth. Little information about the adherent microf...

  18. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea.

    Science.gov (United States)

    Kim, Woojung; Lee, Yunho; Kim, Sang Don

    2017-11-01

    The overuse of oxytetracycline (OTC) in aquaculture has become a problem because of its chronic toxic effects on marine ecosystems. The present study assessed the ecological risk of OTC in the coastal waters near the Jangheung Flatfish Farm using a site-specific multimedia fate model to analyze exposure. Before the model was applied, its performance was validated by comparing it with field data. The coastal waters in the testbed were sampled and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by solid-phase extraction (SPE). The concentrations of OTC measured varied from 7.05 to 95.39ng/L. The results of validating the models showed that the site-specific multimedia fate model performed better (root mean square error (RMSE): 24.217, index of agreement (IOA): 0.739) than conventional fugacity approaches. This result demonstrated the utility of this model in supporting effective future management of aquaculture effluent. The results of probabilistic risk assessment indicated that OTC from aquaculture effluent did not cause adverse effects, even in a maximum-use scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Water quality management in shrimp aquaculture ponds using remote water quality logging system

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Kulkarni, S.; Suryavanshi, U.; Ingole, B.S.; Drensgstig, A.; Braaten, B.

    Currently an institutional co-operation project funded by NORAD is evaluating different environmental management strategies for sustainable aquaculture in India. A brief description of a remote water quality logging system installed in shrimp ponds...

  20. Aquaculture Thesaurus: Descriptors Used in the National Aquaculture Information System.

    Science.gov (United States)

    Lanier, James A.; And Others

    This document provides a listing of descriptors used in the National Aquaculture Information System (NAIS), a computer information storage and retrieval system on marine, brackish, and freshwater organisms. Included are an explanation of how to use the document, subject index terms, and a brief bibliography of the literature used in developing the…

  1. Control methodologies based on geothermal recirculating aquaculture system

    International Nuclear Information System (INIS)

    Farghally, Hanaa M.; Atia, Doaa M.; El-madany, Hanaa T.; Fahmy, Faten H.

    2014-01-01

    One of the most common uses of geothermal heat is in RAS (recirculation aquaculture systems) where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and plate type heat exchanger to be used with geothermal energy as a source of heating water. A well at Umm Huweitat on the Red Sea is used as a source of geothermal energy. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon–NTU (number of transfer units) analysis method. For optimal growth and abundance of production, a different techniques of control system are applied to control the water temperature. The total system is built in MATLAB/SIMULINK to study the overall performance of control unit. Finally, a comparison between PI, Fuzzy-PID, and Fuzzy Logic Control has been done. - Highlights: • Design recirculating aquaculture system using geothermal energy. • Design a PI controller for water temperature control. • Design a Fuzzy logic controller for water temperature control. • Design a Fuzzy-PID controller for water temperature control. • Comparison between different control systems

  2. [Microbial community in nitrogen cycle of aquaculture water of the Pearl River Delta].

    Science.gov (United States)

    Cai, Xiaolong; Luo, Jianfei; Lin, Weitie; Tian, Guoliang

    2012-05-04

    In order to study the characteristic of nitrogen transport, the community structure and diversity of related microorganisms in aquaculture water of the Pearl River Delta. We established an artificial aquaculture ecosystem to study the microbial community of 15N-stable isotope probing (15N-SIP) labeled nitrogen transport microorganisms. The 15N-labeled DNA was separated by CsCl-ethidium bromide density gradient centrifugation, and was used to construct 16S rRNA gene clone libraries of bacteria and archaea. Phylogenetic analysis shows that 19 Operational Taxonomic Units (OTUs) from bacterial library were clustered in Proteobacteria and Planctomycetes. Proteobacteria (99.2%) was the dominant group, mainly consisted of Comamonas (15.7%), Nitrosomonas (12.4%), Enterobacteriaceae (11.5%) and Nitrobacter (11.5%). From archaeal library 9 OTUs were divided into 3 phyla: Thaumarchaeota, Crenarchaeota and Euryarchaeota. We successfully elucidated the microbial community of nitrogen transport microorganisms in aquaculture water of Pearl River Delta by using 15N-SIP. The data of the community will provide essential information for isolating nitrogen degrading microorganism, and provide scientific basis for creating a healthy aquaculture environment.

  3. Optimizing Ocean Space: Co-siting Open Ocean Aquaculture

    Science.gov (United States)

    Cobb, B. L.; Wickliffe, L. C.; Morris, J. A., Jr.

    2016-12-01

    In January of 2016, NOAA's National Marine Fisheries Service released the Gulf Aquaculture Plan (GAP) to manage the development of environmentally sound and economically sustainable open ocean finfish aquaculture in the Gulf of Mexico (inside the U.S. Exclusive Economic Zone [EEZ]). The GAP provides the first regulatory framework for aquaculture in federal waters with estimated production of 64 million pounds of finfish, and an estimated economic impact of $264 million annually. The Gulf of Mexico is one of the most industrialized ocean basins in the world, with many existing ocean uses including oil and natural gas production, shipping and commerce, commercial fishing operations, and many protected areas to ensure conservation of valuable ecosystem resources and services. NOAA utilized spatial planning procedures and tools identifying suitable sites for establishing aquaculture through exclusion analyses using authoritative federal and state data housed in a centralized geodatabase. Through a highly collaborative, multi-agency effort a mock permitting exercise was conducted to illustrate the regulatory decision-making process for the Gulf. Further decision-making occurred through exploring co-siting opportunities with oil and natural gas platforms. Logistical co-siting was conducted to reduce overall operational costs by looking at distance to major port and commodity tonnage at each port. Importantly, the process of co-siting allows aquaculture to be coupled with other benefits, including the availability of previously established infrastructure and the reduction of environmental impacts.

  4. Fisheries And Aquaculture Resources And Their Interactions With Environment in Turkey

    Science.gov (United States)

    Deniz, H.

    2003-04-01

    Turkey, with 8333 km of coast line, 151 080 sq. km economic sea area, many rivers with 177 714 total length, nearly, 1 million ha of natural lakes, 500 000 ha of dam reservoirs has rich marine and inland aquatic resource potential. Despite of these large resources, Turkish fisheries has the characteristics of small-scale fisheries and in general it can be considered as coastal fisheries. There is also great potential for inland fisheries and aquaculture. Being in half closed position, these seas have different characteristics in respect of biological, physical, chemical and ecological points. In addition; Turkey has favourable geographic position between the Black Sea and Mediterranean Sea. Nevertheless, this potential seems not to be fully utilised and therefore fisheries is not a major sector in the economy. According to the statistics of the fisheries for 2000 published by the Turkish government, Turkey's total fisheries production was 582.376 tons. Total catch consists sea fish (441 690 tons, crustaceans and molluscs (18 831 tons), freshwater fish (42.824 tons) and aquaculture (79. 031 tons). The Ministry of Agriculture and Rural Affairs (MARA) is the Ministry responsible for the overall fisheries and aquaculture development, administration, regulation, promotion and technical assistance. In the past two decades, marine fish farming using net cages has developed in the coastal waters throughout Turkey. Such fish farming has allowed the production of large amounts of valuable fish and their supply to the internal and external markets on a regular basis. However, fish farming is sometimes fallowed by organic pollution of the water and bottom sediment in the vicinity of the cages. A comprehensive land and coastal planning survey of almost the whole coast of Turkey is currently being conducted. This master plan designates areas to be developed for forestry, agriculture, industry, urbanisation, environmentally protected areas, etc. The plan was undertaken before the

  5. Diffusion of Nitrogen and Phosphorus Across the Sediment-Water Interface and In Seawater at Aquaculture Areas of Daya Bay, China

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-01-01

    Full Text Available With the yearly increasing marine culture activities in floating cages in Daya Bay, China, the effects of pollution may overlap and lead to more severe water environmental problems. In order to track the impacts of the marine culture in floating cages on water environment, sediments and overlying water were sampled by cylindrical samplers at three representative aquaculture areas of Daya Bay. The water content, porosity, density of sediments as well as the vertical distributions of ammonia nitrogen and active phosphate in pore water along sediments depth were measured. The release rate and annual released quantity of the nutrients across sediment-water interface were calculated using Fick’s Law. A horizontal two-dimensional mathematical model was developed to compute the spatial and temporal distributions of the nutrients in seawater after being released across the sediment-water interface. The results showed that the sediments, with a high content and a large annual released quantity of nitrogen and phosphorus, constitute a potential inner source of seawater pollution. Influenced by tide and water depth, the scope of diffusion and migration of the nutrients appears as a long belt which is about 1 km long and 50 m wide. Seawater in this area is vulnerable to eutrophication.

  6. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H. II; Polka, R.; Schoenmackers, R.

    1995-12-04

    Aquaculture, the farming and husbandry of freshwater and marine organisms, is the newest and fastest growing US agricultural sector. In New Mexico, low winter temperatures and limited freshwater sources narrow culture production possibilities; however, it has long been recognized that the state has abundant supplies of both saline and geothermal ground waters. The purpose of this project was to demonstrate the achievable energy savings and value enhancement of the byproduct geothermal energy by cascading fluids for the production of commercial aquaculture species. Specifically the project involved evaluating the heating systems performance in terms of heating budget for the geothermal assist, determine the total quantity of water used for culture and heating, amount of geothermal byproduct heat extracted, and ability of the system to maintain culture water temperatures during critical heating periods of the year. In addition, an analysis was conducted to determine the compatibility of this new system with existing greenhouse heating requirements.

  7. Ozonation control and effects of ozone on water quality in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Rojas-Tirado, Paula Andrea; Chetri, Ravi K.

    2018-01-01

    To address the undesired effect of chemotherapeutants in aquaculture, ozone has been suggested as an alternative to improve water quality. To ensure safe and robust treatment, it is vital to define the ozone demand and ozone kinetics of the specific water matrix to avoid ozone overdose. Different...... ozone dosages were applied to water in freshwater recirculating aquaculture systems (RAS). Experiments were performed to investigate ozone kinetics and demand, and to evaluate the effects on the water quality, particularly in relation to fluorescent organic matter. This study aimed at predicting...... a suitable ozone dosage for water treatment based on daily ozone demand via laboratory studies. These ozone dosages will be eventually applied and maintained at these levels in pilot-scale RAS to verify predictions. Selected water quality parameters were measured, including natural fluorescence and organic...

  8. Recent Major Advances of Biotechnology and Sustainable Aquaculture in China

    Science.gov (United States)

    Xiang, Jianhai

    2015-01-01

    Background: Global aquaculture production has increased continuously over the last five decades, and particularly in China. Its aquaculture has become the fastest growing and most efficient agri-sector, with production accounting for more than 70% of the world’s aquaculture output. In the new century, with serious challenges regarding population, resources and the environment, China has been working to develop high-quality, effective, healthy, and sustainable blue agriculture through the application of modern biotechnology. Sound knowledge related to the biology and ecology of aquatic organisms has laid a solid foundation and provided the innovation and technology for rapid development of the aquaculture industry. Marine biotechnology, which is enabling solutions for ocean productivity and sustainability, has been promoted since the last decades of the 20th Century in China. Objective: In this article, priority areas of research, mainly genetic breeding, omics studies, novel production systems, biosecurity, bioprocesses and biorefinery, as well as the major progress of marine biotechnology R&D in China are reviewed. Conclusion: Current innovative achievements in China are not enough and the level and frequency of academic advancements must be improved. International cooperation and assistance remain crucial for the success of marine biotechnology. PMID:28553577

  9. Field Guide to Nonindigenous Marine Fishes of Florida

    OpenAIRE

    Schofield, Pamela J.; Morris, Jr., James A.; Akins, Lad

    2009-01-01

    The purpose of this field guide is to provide information on nonindigenous (i.e., non-native) fishes that have been observed in Florida’s marine waters. Introductions of non-native marine fishes into Florida’s waters could be intentional or unintentional, and are likely from a variety of sources, including aquarium releases, escape from aquaculture, loss due to extreme weather events (e.g., flooding from hurricanes), and possibly transfer with ballast water or hull-fouling. Presently the lion...

  10. Characteristics of Bacterial Communities in Cyanobacteria-Blooming Aquaculture Wastewater Influenced by the Phytoremediation with Water Hyacinth

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-12-01

    Full Text Available Cyanobacterial blooms often occur in aquaculture wastewater in China. A floating plant, water hyacinth has been widely used to treat this wastewater. Little is known, however, about bacterial community characteristics and the risk of potential pathogens in cyanobacteria-blooming aquaculture wastewater remediated by water hyacinth. In wastewater treated with water hyacinth, we used culture enumeration and high-throughput sequencing to explore the characteristics of bacterial communities, the status of coliform bacteria, and pathogenic bacteria potentially conducive to human disease. Our results indicated that the relative abundance of Acidobacteria, Planctomycetes, Actinobacteria, Chlorobi, Cyanobacteria, Proteobacteria, and phylum OD1 in cyanobacteria-blooming aquaculture wastewater were significantly influenced by water hyacinth. After 30 days, the relative abundance of Proteobacteria and phylum OD1 in the water hyacinth treatments increased remarkably, while the relative abundance of the other 5 phyla in treatment was significantly reduced compared with the controls. In 21 major families, the relative abundance of Comamonadaceae, Oxalobacteraceae, Rhodocylclaceae, and an unnamed group from phylum OD1 increased significantly in the water hyacinth treatments compared with the controls. The number of total coliforms in wastewater treated by water hyacinth was significantly elevated and higher than controls during the first 6–18 days, with the maximum reaching 23,800 MPN/L. The level of potential pathogenic bacteria in wastewater treated by water hyacinth significantly reduced compared with the controls after 18 days, but it significantly increased from the initial level. It appears that water hyacinth by itself is not an effective treatment for reducing potential pathogens in aquaculture water.

  11. Aquaculture in the ecosystem

    National Research Council Canada - National Science Library

    Holmer, M; Black, K; Duarte, C.M; Marba, N; Kakakassis, I

    2008-01-01

    ... aquaculture is one of the fastest growing industries in the world, comparable to the computer technology industry (Chapters 9 and 10). The demand for marine products is controlled by a complexity of factors in our society, not least the increasing human population and the increasing global affluence that allows the consumer to buy higher price...

  12. Aquaculture practices and the coastal marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Ansari, Z.A.; Sreepada, R.A.

    . The size of the industry which is now beginning to emerge, the scale of its individual production units, raise questions concerning the high input rate of feed and chemical and a correspondingly high production of wastes. In intensive aquaculture system...

  13. A GIS-based tool for an integrated assessment of spatial planning trade-offs with aquaculture.

    Science.gov (United States)

    Gimpel, Antje; Stelzenmüller, Vanessa; Töpsch, Sandra; Galparsoro, Ibon; Gubbins, Matthew; Miller, David; Murillas, Arantza; Murray, Alexander G; Pınarbaşı, Kemal; Roca, Guillem; Watret, Robert

    2018-06-15

    The increasing demand for protein from aquaculture will trigger a global expansion of the sector in coastal and offshore waters. While contributing to food security, potential conflicts with other traditional activities such as fisheries or tourism are inevitable, thus calling for decision-support tools to assess aquaculture planning scenarios in a multi-use context. Here we introduce the AquaSpace tool, one of the first Geographic Information System (GIS)-based planning tools empowering an integrated assessment and mapping of 30 indicators reflecting economic, environmental, inter-sectorial and socio-cultural risks and opportunities for proposed aquaculture systems in a marine environment. A bottom-up process consulting more than 350 stakeholders from 10 countries across southern and northern Europe enabled the direct consideration of stakeholder needs when developing the GIS AddIn. The AquaSpace tool is an open source product and builds in the prospective use of open source datasets at a European scale, hence aiming to improve reproducibility and collaboration in aquaculture science and research. Tool outputs comprise detailed reports and graphics allowing key stakeholders such as planners or licensing authorities to evaluate and communicate alternative planning scenarios and to take more informed decisions. With the help of the German North Sea case study we demonstrate here the tool application at multiple spatial scales with different aquaculture systems and under a range of space-related development constraints. The computation of these aquaculture planning scenarios and the assessment of their trade-offs showed that it is entirely possible to identify aquaculture sites, that correspondent to multifarious potential challenges, for instance by a low conflict potential, a low risk of disease spread, a comparable high economic profit and a low impact on touristic attractions. We believe that a transparent visualisation of risks and opportunities of aquaculture

  14. Water quality, seasonality, and trajectory of an aquaculture-wastewater plume in the Red Sea

    KAUST Repository

    Hozumi, Aya; Hong, Pei-Ying; Kaartvedt, S; Rø stad, Anders; Jones, Burton

    2017-01-01

    As aquaculture activity increases globally, understanding water mass characteristics of the aquaculture-wastewater plume, its nutrients, and its organic matter load and spatial distribution in the coastal recipient, is critical to develop a more sustainable aquaculture operation and to improve coastal management. We examined wastewater (estimated 42-48 m3 s-1) discharged from the largest aquaculture facility in the Red Sea and surveyed the area around the aquaculture outfall to characterize the biogeochemical properties of the wastewater plume and its spatial distribution. In addition, we assessed its associated microbial community structure. The plume was characterized by elevated levels of salinity, density, and turbidity, and traveled along paths determined by the bathymetry to form a dense, 1-3 m thick layer above the seafloor. The effluent was observed at least 3.8 km from the outfall throughout the year, but up to 8 km in early autumn. The total nitrogen concentration in the plume was more than 4 times higher than in surface waters 1.4 km from the outfall. High-throughput sequencing data revealed that bacterial and cyanobacterial communities significantly differed, and flow cytometry results showed that total cell counts were significantly higher at the outfall. Arcobacter, a genus associated with opportunistic pathogenic species (e.g. A. butzleri), was more abundant, while Prochlorococcus sp. was significantly less abundant at the outfall. This dense, bottom-flowing plume may have a detrimental impact on benthic and demersal communities.

  15. Water quality, seasonality, and trajectory of an aquaculture-wastewater plume in the Red Sea

    KAUST Repository

    Hozumi, Aya

    2017-12-28

    As aquaculture activity increases globally, understanding water mass characteristics of the aquaculture-wastewater plume, its nutrients, and its organic matter load and spatial distribution in the coastal recipient, is critical to develop a more sustainable aquaculture operation and to improve coastal management. We examined wastewater (estimated 42-48 m3 s-1) discharged from the largest aquaculture facility in the Red Sea and surveyed the area around the aquaculture outfall to characterize the biogeochemical properties of the wastewater plume and its spatial distribution. In addition, we assessed its associated microbial community structure. The plume was characterized by elevated levels of salinity, density, and turbidity, and traveled along paths determined by the bathymetry to form a dense, 1-3 m thick layer above the seafloor. The effluent was observed at least 3.8 km from the outfall throughout the year, but up to 8 km in early autumn. The total nitrogen concentration in the plume was more than 4 times higher than in surface waters 1.4 km from the outfall. High-throughput sequencing data revealed that bacterial and cyanobacterial communities significantly differed, and flow cytometry results showed that total cell counts were significantly higher at the outfall. Arcobacter, a genus associated with opportunistic pathogenic species (e.g. A. butzleri), was more abundant, while Prochlorococcus sp. was significantly less abundant at the outfall. This dense, bottom-flowing plume may have a detrimental impact on benthic and demersal communities.

  16. Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use

    NARCIS (Netherlands)

    Verdegem, M.C.J.; Bosma, R.H.

    2009-01-01

    This paper reviews freshwater use in inland and coastal pond aquaculture, and focuses on options to increase productivity while reducing water use. Total freshwater use depends on system-associated and feed-associated water losses. System-associated water losses depend on total area, evaporation,

  17. Freshwater savings from marine protein consumption

    International Nuclear Information System (INIS)

    Gephart, Jessica A; Pace, Michael L; D’Odorico, Paolo

    2014-01-01

    Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km 3  yr −1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km 3  yr −1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture. (paper)

  18. Microscreen effects on water quality in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2015-01-01

    This study investigated the effects of three microscreen mesh sizes (100, 60 and 20 μm) on water quality and rainbow trout (Oncorhynchus mykiss) performance compared to a control group without microscreens, in triplicated recirculating aquaculture systems (RAS). Operational conditions were kept....... Fish performed similarly in all treatments. Preliminary screening of trout gills did not reveal any pathological changes related to microscreen filtration and the resulting water quality. Biofilter performance was also unaffected, with 0′-order nitrification rates (k0a) being equivalent for all twelve...

  19. Attitudinal Factors and Personal Characteristics Influence Support for Shellfish Aquaculture in Rhode Island (US) Coastal Waters.

    Science.gov (United States)

    Dalton, Tracey M; Jin, Di

    2018-05-01

    This study explores public interests associated with shellfish aquaculture development in coastal waters of Rhode Island (US). Specifically, we examine (1) the levels of public support for (or opposition to) shellfish aquaculture development and (2) factors driving the levels of support, using survey data and ordinal logistic regressions. Results of the analysis identify several key attitudinal factors affecting individual's support for shellfish aquaculture in Rhode Island (RI). The level of support is positively associated with attitudes related to shellfish aquaculture's benefits to the local economy and its role as a nutritional food option, and negatively influenced by attitudes related to aquaculture farms' effects on aesthetic quality and their interference with other uses. Findings highlight that support for (or opposition to) aquaculture in RI is driven more by attitudes associated with social impacts than by those associated with environmental impacts. The level of support is also affected by personal characteristics related to an individual's participation in recreational activities. For instance, bicycle riders tend to be supportive of shellfish aquaculture while respondents who participate in sailing and birding are less supportive. By identifying the broader public's interests in shellfish aquaculture, findings from this study and others like it can be used to address public concerns, incorporate public perceptions and attitudes into permitting decisions, and develop outreach targeted at specific stakeholder groups.

  20. Aquaculture. Second Edition. Teacher Edition.

    Science.gov (United States)

    Walker, Susan S.; Crummett, Dan

    This teacher and student guide for aquaculture contains 15 units of instruction that cover the following topics: (1) introduction to aquaculture; (2) the aquatic environment; (3) fundamental fish biology; (4) marketing; (5) site selection; (6) facility design and layout; (7) water quality management; (8) fish health management; (9) commercial…

  1. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    Science.gov (United States)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  2. Hybrid governance of aquaculture: Opportunities and challenges.

    Science.gov (United States)

    Vince, Joanna; Haward, Marcus

    2017-10-01

    The development of third party assessment and certification of fisheries and aquaculture has provided new forms of governance in sectors that were traditionally dominated by state based regulation. Emerging market based approaches are driven by shareholder expectations as well as commitment to corporate social responsibility, whereas community engagement is increasingly centered on the questions of social license to operate. Third party assessment and certification links state, market and community into an interesting and challenging hybrid form of governance. While civil society organizations have long been active in pursuing sustainable and safe seafood production, the development of formal non-state based certification provides both opportunities and challenges, and opens up interesting debates over hybrid forms of governance. This paper explores these developments in coastal marine resources management, focusing on aquaculture and the development and operation of the Aquaculture Stewardship Council. It examines the case of salmonid aquaculture in Tasmania, Australia, now Australia's most valuable seafood industry, which remains the focus of considerable community debate over its siting, operation and environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Ground water pollution due to aquaculture in east coast region of ...

    African Journals Online (AJOL)

    Abstract. Ground water quality parameters were studied for pollution due to aquaculture in the east coast region of district Andhrapradesh, India. Over a period of two years, 46 groundwater samples were collected for analyses. The results showed that the alkalinity ranged from 120 - 482 mg/L, and pH ranged from 7.1 to 8.6.

  4. Effects of nanoparticles in species of aquaculture interest.

    Science.gov (United States)

    Khosravi-Katuli, Kheyrollah; Prato, Ermelinda; Lofrano, Giusy; Guida, Marco; Vale, Gonçalo; Libralato, Giovanni

    2017-07-01

    Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety. Graphical abstract ᅟ.

  5. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential.

    Science.gov (United States)

    Little, D C; Newton, R W; Beveridge, M C M

    2016-08-01

    The status and potential of aquaculture is considered as part of a broader food landscape of wild aquatic and terrestrial food sources. The rationale and resource base required for the development of aquaculture are considered in the context of broader societal development, cultural preferences and human needs. Attention is drawn to the uneven development and current importance of aquaculture globally as well as its considerable heterogeneity of form and function compared with established terrestrial livestock production. The recent drivers of growth in demand and production are examined and the persistent linkages between exploitation of wild stocks, full life cycle culture and the various intermediate forms explored. An emergent trend for sourcing aquaculture feeds from alternatives to marine ingredients is described and the implications for the sector with rapidly growing feed needs discussed. The rise of non-conventional and innovative feed ingredients, often shared with terrestrial livestock, are considered, including aquaculture itself becoming a major source of marine ingredients. The implications for the continued expected growth of aquaculture are set in the context of sustainable intensification, with the challenges that conventional intensification and emergent integration within, and between, value chains explored. The review concludes with a consideration of the implications for dependent livelihoods and projections for various futures based on limited resources but growing demand.

  6. Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm.

    Science.gov (United States)

    Sipaúba-Tavares, L H; Dias, S G

    2014-05-01

    Plankton communities and macrofauna associated to aquatic macrophyte stands in a shallow water-supply reservoir (21°14'09″S; 48°18'38″W) on an aquaculture farm were compared to evaluate the relationship between organism densities and some abiotic features of the reservoir. Water and communities associated were sampled at two sites, one in an area with the predominance of Eichhornia azurea (Sw.) Kunth and the other with the predominance of Salvinia auriculata Aublet. Communities associated with macrophytes were sampled with floating quadrants (0.5 m2); the macrophytes were washed and plankton and macrofauna were fixated with 4% formalin and 1% lugol iodine; the specimens were then identified and counted. Plankton and macrofauna communities associated with S. auriculata and E. azurea had a similar diversity of species but different (pmacrophytes presence in the shallow reservoir is a strong predictor of favourable conditions to maintain great diversity plankton community and macrofauna associated with plants. The role of macrophytes is important for not only stabilising the clear-water state and maintaining high diversity of organisms associated, but also it seems to be a good alternative to maintaining desirable water-supply quality for aquaculture farms.

  7. Predicting shifting sustainability tradeoffs in marine finfish aquaculture under climate change.

    Science.gov (United States)

    Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, M Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto

    2018-05-03

    Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 gC m -2 d -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Carbon sequestration capacity of sediments, algae, and zooplankton from fresh water aquaculture ponds.

    Science.gov (United States)

    Anikuttan, K K; Adhikari, S; Kavitha, M; Jayasankar, P

    2016-07-01

    The contribution of aquaculture and allied activities to the emission of green house gases and consequently to global warming is an emerging concern among environmentalists in the recent past. However, there exists ample scope for aquaculture activities to sequester carbon and thus compensate for the carbon emissions linked to aquaculture. This article attempts to elucidate the carbon sequestration capacity of sediments, algae, and zooplankton from fresh water aquaculture ponds. The percent organic carbon in the pond sediments ranged from 0.39 to 1.31 with an average value of 0.912 ± 0.321 whereas the carbon sequestration capacity ranged from 0.442 to 1.882 MgC/ha (1 Mg = 10(6) g) with an average value of 1.018 ± 0.447 MgC/ha. In the case of zooplankton and algae from pond, the percent organic carbon was 7.688 ± 0.196 and 2.354 ± 0.047, respectively, whereas the total estimated carbon burial rate was 0.009 ± 0.005 and 0.150 ± 0.003 MgC/ha, respectively. These findings are discussed with the previous reports available at present and are found to be in comparable ranges.

  9. Aquaculture Asia, Vol. 8, No. 1, pp.1-58, January-March 2003

    OpenAIRE

    2003-01-01

    *Table of Contents* Sustainable Aquaculture Fertilization, soil and water quality management in small-scale ponds part II:Soil and water quality management S. Adhikari Fisheries and aquaculture activities in Nepal Tek Gurung Peter Edwards writes on rural aquaculture: A knowledge-base for rural aquaculture Farmers as Scientists: Commercialization of giant freshwater prawn culture in India M.C. Nandeesha Aquaculture in reservoir fed canal based irrigation systems of I...

  10. Aquaculture as a part of a multi-use platform

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Svenstrup Petersen, Ole; Aarup Ahrensberg, Nick

    2014-01-01

    European oceans will be subject to massive development of marine infrastructure in the near future. The most obvious is the energy facilities e.g. offshore wind farms, exploitation of wave energy, expansion of electricity connections, and also further development and implementation of marine...... aquaculture. These developments urgently require effective marine technology and governance solutions to facilitate installation, operation and maintenance of these novel offshore activities. Simultaneously, both economic costs and environmental impact have to remain within acceptable limits, in order...

  11. Antimicrobial peptides in marine invertebrate health and disease

    OpenAIRE

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-01-01

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as ‘marine invertebrates’. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remark...

  12. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities

    International Nuclear Information System (INIS)

    Zou Shichun; Xu Weihai; Zhang Ruijie; Tang Jianhui; Chen Yingjun; Zhang Gan

    2011-01-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. - Highlights: → Some antibiotics were ubiquitous with high concentration in the Bohai bay, North China. → The antibiotics were mainly from the six rivers discharge around the Bay. → Antibiotics are commonly used in aquaculture activities around the Bay. → Aquaculture was suggested to be an important antibiotics source in the Bay. - River discharge and aquaculture were suggested to be important sources for antibiotics occurred in the coastal water of the Bohai Bay, North China.

  13. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  14. A critical assessment of marine aquarist biodiversity data and commercial aquaculture: identifying gaps in culture initiatives to inform local fisheries managers.

    Directory of Open Access Journals (Sweden)

    Joanna M Murray

    Full Text Available It is widely accepted that if well managed, the marine aquarium trade could provide socio-economic stability to local communities while incentivising the maintenance of coral reefs. However, the trade has also been implicated as having potentially widespread environmental impacts that has in part driven developments in aquaculture to relieve wild collection pressures. This study investigates the biodiversity in hobbyist aquaria (using an online survey and those species currently available from an aquaculture source (commercial data and hobbyist initiatives in the context of a traffic light system to highlight gaps in aquaculture effort and identify groups that require fisheries assessments. Two hundred and sixty nine species including clown fish, damsels, dotty backs, angelfish, gobies, sea horses and blennies, have reported breeding successes by hobbyists, a pattern mirrored by the European and US commercial organisations. However, there is a mismatch (high demand and low/non-existent aquaculture for a number of groups including tangs, starfish, anemones and hermit crabs, which we recommend are priority candidates for local stock assessments. Hobbyist perception towards the concept of a sustainable aquarium trade is also explored with results demonstrating that only 40% of respondents were in agreement with industry and scientists who believe the trade could be an exemplar of a sustainable use of coral reefs. We believe that a more transparent evidence base, including the publication of the species collected and cultured, will go some way to align the concept of a sustainable trade across industry stakeholders and better inform the hobbyist when purchasing their aquaria stock. We conclude by proposing that a certification scheme established with government support is the most effective way to move towards a self-regulating industry. It would prevent industry "greenwashing" from multiple certification schemes, alleviate conservation concerns

  15. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  16. Oyster Aquaculture Site Selection Using Landsat 8-Derived Sea Surface Temperature, Turbidity, and Chlorophyll a

    Directory of Open Access Journals (Sweden)

    Jordan Snyder

    2017-06-01

    Full Text Available Remote sensing data is useful for selection of aquaculture sites because it can provide water-quality products mapped over large regions at low cost to users. However, the spatial resolution of most ocean color satellites is too coarse to provide usable data within many estuaries. The Landsat 8 satellite, launched February 11, 2013, has both the spatial resolution and the necessary signal to noise ratio to provide temperature, as well as ocean color derived products along complex coastlines. The state of Maine (USA has an abundance of estuarine indentations (~3,500 miles of tidal shoreline within 220 miles of coast, and an expanding aquaculture industry, which makes it a prime case-study for using Landsat 8 data to provide products suitable for aquaculture site selection. We collected the Landsat 8 scenes over coastal Maine, flagged clouds, atmospherically corrected the top-of-the-atmosphere radiances, and derived time varying fields (repeat time of Landsat 8 is 16 days of temperature (100 m resolution, turbidity (30 m resolution, and chlorophyll a (30 m resolution. We validated the remote-sensing-based products at several in situ locations along the Maine coast where monitoring buoys and programs are in place. Initial analysis of the validated fields revealed promising new areas for oyster aquaculture. The approach used is applicable to other coastal regions and the data collected to date show potential for other applications in marine coastal environments, including water quality monitoring and ecosystem management.

  17. Can greening of aquaculture sequester blue carbon?

    Science.gov (United States)

    Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S

    2017-05-01

    Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.

  18. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update

    Directory of Open Access Journals (Sweden)

    Lauren V Weatherdon

    2016-04-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC Fifth Assessment Report (AR5 states that climate change and ocean acidification are altering the oceans at a rate that is unprecedented compared with the recent past, leading to multifaceted impacts on marine ecosystems, associated goods and services, and human societies. AR5 underlined key uncertainties that remain regarding how synergistic changes in the ocean are likely to affect human systems, and how humans are likely to respond to these events. As climate change research has accelerated rapidly following AR5, an updated synthesis of available knowledge is necessary to identify emerging evidence, and to thereby better inform policy discussions. This paper reviews the literature to capture corroborating, conflicting, and novel findings published following the cut-off date for contribution to AR5. Specifically, we highlight key scientific developments on the impacts of climate-induced changes in the ocean on key socioeconomic sectors, including fisheries, aquaculture and tourism. New evidence continues to support a climate-induced redistribution of benefits and losses at multiple scales and across coastal and marine socio-ecological systems, partly resulting from species and ecosystem range shifts and changes in primary productivity. New efforts have been made to characterize and value ecosystem services in the context of climate change, with specific relevance to ecosystem-based adaptation. Recent studies have also explored synergistic interactions between climatic drivers, and have found strong variability between impacts on species at different life stages. Although climate change may improve conditions for some types of freshwater aquaculture, potentially providing alternative opportunities to adapt to impacts on wild capture fisheries, ocean acidification poses a risk to shellfish fisheries and aquaculture. The risk of increased prevalence of disease under warmer temperatures is

  19. Exploring attitudes towards aquaculture development in the UK: A consultative stakeholder approach

    OpenAIRE

    Memery, Juliet; Birch, Dawn

    2016-01-01

    This study explores attitudes towards aquaculture development as a way of providing a sustainable source of seafood through a consultative stakeholder approach. Given aquaculture is a less familiar concept within South West England, gaining insight of the views and perspectives of such a development in the region is required to facilitate stakeholder engagement. In-depth qualitative interviews investigate attitudes across five stakeholder sectors: government, fishing/marine, business/catering...

  20. Issues, impacts, and implications of shrimp aquaculture in Thailand

    Science.gov (United States)

    Dierberg, Forrest E.; Kiattisimkul, Woraphan

    1996-09-01

    Water quality impacts to and from intensive shrimp aquaculture in Thailand are substantial. Besides the surface and subsurface salinization of freshwaters, loadings of solids, oxygen-consuming organic matter, and nutrients to receiving waters are considerable when the cumulative impacts from water exchange during the growout cycle, pond drainage during harvesting, and illegal pond sediment disposal are taken into account. Although just beginning to be considered in Thailand, partial recirculating and integrated intensive farming systems are producing promising, if somewhat limited, results. By providing on-site treatment of the effluent from the shrimp growout ponds, there is less reliance on using outside water supplies, believed to be the source of the contamination. The explosion in the number of intensively operated shrimp farms has not only impacted the coastal zone of Thailand, but has also resulted in an unsustainable aquaculture industry. Abandonment of shrimp ponds due to either drastic, disease-caused collapses or more grandual, year-to-year reductions in the productivity of the pond is common. To move Thailand towards a more sustainable aquaculture industry and coastal zone environment, integrated aquaculture management is needed. Components of integrated aquaculture management are technical and institutional. The technical components involve deployment of wastewater treatment and minimal water-use systems aimed at making aquaculture operations more hydraulically closed. Before this is possible, technical and economic feasibility studies on enhanced nitrification systems and organic solids removal by oxidation between production cycles and/or the utilization of plastic pond liners need to be conducted. The integration of semi-intensive aquaculture within mangrove areas also should be investigated since mangrove losses attributable to shrimp aquaculture are estimated to be between 16 and 32% of the total mangrove area destroyed betweeen 1979 and 1993

  1. Coral aquaculture: applying scientific knowledge to ex situ production

    NARCIS (Netherlands)

    Leal, M.C.; Ferrier-Pagès, C.; Petersen, D.; Osinga, R.

    2016-01-01

    Coral aquaculture is an activity of growing interest due to the degradation of coral reefs worldwide and concomitant growing demand for corals by three industries: marine ornamental trade, pharmaceutical industry and reef restoration. Although captive breeding and propagation of corals is a

  2. Risks of Using Antifouling Biocides in Aquaculture

    Science.gov (United States)

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407

  3. Risks of Using Antifouling Biocides in Aquaculture

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2012-02-01

    Full Text Available Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT. The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®, Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine, zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  4. Fishery and Aquaculture Relationship in the Mediterranean: Present and Future

    Directory of Open Access Journals (Sweden)

    G. RELINI

    2003-12-01

    Full Text Available Although the Mediterranean represents only 0.8% of the world seas, it is the site of a very long-established fishing activity, characterized mainly by multispecific catch and by artisanal or coastal activity, resulting from a mosaic of very diversified structures and gears, along more than 45,000 km of coastline. Two main biological features of this sea are the occurrence of a large richness of species (it represents 5.5% - 7% of world marine fauna and 16.6% of macrophyta, which stands in contrast with its ‘trophic poverty’ and the absence of large monospecific fishery, except for some small and large pelagic fish. Another biological characteristic of Mare Nostrumis the high invasion of exotic species, some exploited by fishery and aquaculture, some others quite dangerous. For the entire Mediterranean and Black Sea, the production (catch + aquaculture had been steadily increasing over the period 1972-1988 from 1,140,000 t to 2,080,000 t . The period 1988-1991 has shown a drastic drop in catches (in 1991: 1,400,000 t. From 1990 to 1995 the total catch increased to 1,701,379 t then decreased and in 2000 reached 1,485,046 t . In 2000 Turkey had the first place with 496,174 t, 26.9% of the total value (1,846,026 t, including fishing and aquaculture, followed by Italy with 25%, Greece 9%, Spain 7.6% and Algeria 5.4%. As in many parts of the world, aquaculture production in the Mediterranean is rapidly expanding. In 1970 the total aquaculture production was about 18,297 t of which 74.3% produced in Italy. In 2000 a value of 358,614 t was reached, about 1/4 of the total fishery catch, while the world aquaculture production corresponds to half of the world total catch. Italy is still the main producer with 46.7% , followed by Greece with 21.5%, Turkey 9.9% and France 6.7%. A sharp drop in the production of the European eel ( Anguilla anguilla and of the European flat oyster ( Ostrea edulis is recorded. Positive and negative interactions between

  5. Three-dimensionally spiral structure of the water stream induced by a centrifugal stirrer in large aqua-cultural ponds

    Science.gov (United States)

    Itano, Tomoaki; Inagaki, Taishi; Nakamura, Choji; Sugihara-Seki, Masako; Hyodo, Jinsuke

    2017-11-01

    We have conducted measurements of the water stream produced by a mechanical stirrer (diameter 2.4[m], electric power 50[W]) located in shallow rectangular reservoirs (small 0.7[ha], large 3.7[ha]), which may be employed as a cost-efficient aerator for the aqua-cultural purpose, with the aid of both particle tracking velocimetry by passive tracers floating on the surface and direct measurement by electro-magnetic velocimeter under the surface. The present measurements indicate that the stirrer drives primarily the horizontally rotating water stream and secondarily the vertical convection between the surface and the bottom of the reservoir, which results in the three-dimensionally spiral-shaped water streams scaled vertically by just a meter but horizontally by more than ten meters. It is suggested that the spiral structure driven by the stirrer may activate the underwater vertical mixing and enhance dissolved oxygen at the bottom of aqua-cultural pond more effectively than the paddle-wheel aerators commonly used in aqua-cultural ponds. This research was financially supported in part by the Kansai University Fund for Supporting Young Scholars, 2016-2017.

  6. Inland Aquaculture and Adaptation to Climate Change in Northern ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Documents. Modeling the effects of weather and climate on thermal stratification and the risks of low dissolved oxygen episodes in aquaculture ponds. Documents. Impacts of climate change and water uses on availability of water for aquaculture in the Lower Nan Basin. Documents. The role of middlemen networks and ...

  7. [Rapid determination of COD in aquaculture water based on LS-SVM with ultraviolet/visible spectroscopy].

    Science.gov (United States)

    Liu, Xue-Mei; Zhang, Hai-Liang

    2014-10-01

    Ultraviolet/visible (UV/Vis) spectroscopy was studied for the rapid determination of chemical oxygen demand (COD), which was an indicator to measure the concentration of organic matter in aquaculture water. In order to reduce the influence of the absolute noises of the spectra, the extracted 135 absorbance spectra were preprocessed by Savitzky-Golay smoothing (SG), EMD, and wavelet transform (WT) methods. The preprocessed spectra were then used to select latent variables (LVs) by partial least squares (PLS) methods. Partial least squares (PLS) was used to build models with the full spectra, and back- propagation neural network (BPNN) and least square support vector machine (LS-SVM) were applied to build models with the selected LVs. The overall results showed that BPNN and LS-SVM models performed better than PLS models, and the LS-SVM models with LVs based on WT preprocessed spectra obtained the best results with the determination coefficient (r2) and RMSE being 0. 83 and 14. 78 mg · L(-1) for calibration set, and 0.82 and 14.82 mg · L(-1) for the prediction set respectively. The method showed the best performance in LS-SVM model. The results indicated that it was feasible to use UV/Vis with LVs which were obtained by PLS method, combined with LS-SVM calibration could be applied to the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  8. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    Science.gov (United States)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  9. Marine biodiversity in Japanese waters.

    Directory of Open Access Journals (Sweden)

    Katsunori Fujikura

    Full Text Available To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness, the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans.

  10. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Pedersen, Lars-Flemming

    2017-01-01

    tMicrobial water quality in recirculating aquaculture systems (RAS) is important for successful RAS opera-tion but difficult to assess and control. There is a need to identify factors affecting changes in the bacterialdynamics – in terms of abundance and activity – to get the information needed...

  11. Certify Sustainable Aquaculture?

    DEFF Research Database (Denmark)

    Bush, Simon; Belton, Ben; Hall, Derek

    2013-01-01

    ) fisheries production stagnating, aquaculture may help close the forecast global deficit in fish protein by 2020 (2). This so-called “blue revolution” requires addressing a range of environmental and social problems, including water pollution, degradation of ecosystems, and violation of labor standards....

  12. Proximate analyses - Utilization of Marine Process Waste for Aquaculture Feeds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Limited amounts of forage fish are available as an ingredient in feeds for the expanding aquaculture industry. Work is being conducted on a variety of underutilized...

  13. Probiotics as Antiviral Agents in Shrimp Aquaculture

    Directory of Open Access Journals (Sweden)

    Bestha Lakshmi

    2013-01-01

    Full Text Available Shrimp farming is an aquaculture business for the cultivation of marine shrimps or prawns for human consumption and is now considered as a major economic and food production sector as it is an increasingly important source of protein available for human consumption. Intensification of shrimp farming had led to the development of a number of diseases, which resulted in the excessive use of antimicrobial agents, which is finally responsible for many adverse effects. Currently, probiotics are chosen as the best alternatives to these antimicrobial agents and they act as natural immune enhancers, which provoke the disease resistance in shrimp farm. Viral diseases stand as the major constraint causing an enormous loss in the production in shrimp farms. Probiotics besides being beneficial bacteria also possess antiviral activity. Exploitation of these probiotics in treatment and prevention of viral diseases in shrimp aquaculture is a novel and efficient method. This review discusses the benefits of probiotics and their criteria for selection in shrimp aquaculture and their role in immune power enhancement towards viral diseases.

  14. Contact zoonosis related to aquaculture: a growing concern

    Science.gov (United States)

    Aquaculture develops fast worldwide, with new cultured species and increased global transport of live aquaculture products. There is a growing recognition of zoonotic disease agents causing epidemics and carrier states in cultured fish and shellfish, especially from warm water systems, transmitted t...

  15. Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    Science.gov (United States)

    Ellis, Robert P; Urbina, Mauricio A; Wilson, Rod W

    2017-06-01

    Exponentially rising CO 2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO 2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO 2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO 2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO 2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO 2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO 2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO 2 on future aquatic ecosystems and the sustainability of fish and shellfish

  16. Problems of large-scale vertically-integrated aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Webber, H H; Riordan, P F

    1976-01-01

    The problems of vertically-integrated aquaculture are outlined; they are concerned with: species limitations (in the market, biological and technological); site selection, feed, manpower needs, and legal, institutional and financial requirements. The gaps in understanding of, and the constraints limiting, large-scale aquaculture are listed. Future action is recommended with respect to: types and diversity of species to be cultivated, marketing, biotechnology (seed supply, disease control, water quality and concerted effort), siting, feed, manpower, legal and institutional aids (granting of water rights, grants, tax breaks, duty-free imports, etc.), and adequate financing. The last of hard data based on experience suggests that large-scale vertically-integrated aquaculture is a high risk enterprise, and with the high capital investment required, banks and funding institutions are wary of supporting it. Investment in pilot projects is suggested to demonstrate that large-scale aquaculture can be a fully functional and successful business. Construction and operation of such pilot farms is judged to be in the interests of both the public and private sector.

  17. Offshore Aquaculture: I Know It When I See It

    Directory of Open Access Journals (Sweden)

    Halley E. Froehlich

    2017-05-01

    Full Text Available Offshore aquaculture is increasingly viewed as a mechanism to meet growing protein demand for seafood, while minimizing adverse consequences on the environment and other uses in the oceans. However, despite growing interest in offshore aquaculture, there appears to be no consensus as to what measures commonly define an offshore site or how effects of offshore aquaculture—relative to more nearshore practices—are assessed. This lack of agreement on what constitutes offshore aquaculture has the potential to convolute communication, create uncertainty in regulatory processes, and impede understanding of the ecological implications of offshore farming. To begin addressing these issues, we reviewed and analyzed biologically-focused primary and gray literature (Ntotal = 70 that categorize and quantify characteristics of offshore aquaculture from around the world. We found that many “offshore” descriptions are relatively close to shore (<3 nm and significantly shallower (minimum depth ≤30 m than may be assumed. We also uncovered an overall lack of consistent reporting of even the most common location-focused metrics (distance from shore, depth, current, a dearth of impact related studies (n = 17, and narrow scope of the studies themselves (i.e., 82% nutrient pollution. Of the finite subset of articles that investigated negative ecological impacts of offshore aquaculture, we found the probability of any measurable impact from an offshore farm appears to significantly decrease with distance from the farm (probability of measurable response at 90 m ± SE = 0.01 ± 0.03. Such general, but informative points of reference could be more robustly quantified with better systematic and standardized reporting of physical farm characteristics and a broader scope of ecological investigation into the effects of marine aquaculture. With offshore aquaculture still in its infancy, consistent metrics are needed for a comparable framework to guide sustainable

  18. Solar greenhouse aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Toever, W V

    1979-01-01

    Rainbow and Speckled Trout have been successfully hatched and reared in a recirculating aquaculture system. The system is integrated into the Ark greenhouse providing thermal mass for temperature regulation and supplying nutrient-rich water for plants. The system incorporates bacterial, algal and hydroponic water filtration. Various vegetable crops have been raised in the hydroponic troughs. A scaled-down system suitable for domestic solar greenhouse application is also under development.

  19. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculation aquaculture systems

    Science.gov (United States)

    Two studies were conducted to determine if accumulating water quality parameters would negatively impact rainbow trout Oncorhynchus mykiss health and welfare within water recirculation aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and ...

  20. An Intelligent Four-Electrode Conductivity Sensor for Aquaculture

    OpenAIRE

    Zhang , Jiaran; Li , Daoliang; Wang , Cong; Ding , Qisheng

    2012-01-01

    International audience; Conductivity is regard as a key technical parameter in modern intensive fish farming management. The water conductivity sensors are sophisticated devices used in the aquaculture monitoring field to understand the effects of climate changes on fish ponds. In this paper a new four-electrode smart sensor is proposed for water conductivity measurements of aquaculture monitoring.The main advantages of these sensors include a high precision, a good stability and an intrinsic...

  1. Monitoring and managing microbes in aquaculture - Towards a sustainable industry

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Sonnenschein, Eva; Gram, Lone

    2016-01-01

    protect fish and larvae against disease. Hence, monitoring and manipulating the microbial communities in aquaculture environments hold great potential; both in terms of assessing and improving water quality, but also in terms of controlling the development of microbial infections. Using microbial...... communities to monitor water quality and to efficiently carry out ecosystem services within the aquaculture systems may only be a few years away. Initially, however, we need to thoroughly understand the microbiomes of both healthy and diseased aquaculture systems, and we need to determine how to successfully...

  2. A critical review of records of alien marine species from the Maltese Islands and surrounding waters (Central Mediterranean

    Directory of Open Access Journals (Sweden)

    M. SCIBERRAS

    2007-06-01

    Full Text Available An updated list of alien marine species recorded from the Maltese Islands and surrounding waters, compiled from scientific and ‘grey’ literature and from authenticated unpublished reports to the authors, is presented. The listed species are classified in one of four categories as regards establishment status: established, casual, invasive and questionable. Doubtful records are listed as ‘?’. A total of 48 species, including nine dubious ones, are included in the list. Of the accepted records, 64% are established, of which 15.4% are invasive, 18% are casual and 18% are questionable. The most represented groups are molluscs (14 species, fish (13 species and macrophytes (10 species. Six species are classified as invasive in Maltese waters: Lophocladia lallemandii, Womersleyella setacea, Caulerpa racemosa var. cylindracea, Percnon gibbesi, Fistularia commersonii and Sphoeroides pachygaster; impacts of some of these species on local ecosystems are discussed. Since the early 1900s, there has been an increasing trend in the number of alien marine species reported from the Maltese Islands. Transportation via shipping and in connection with aquaculture, as well as the range expansion of Lessepsian immigrants, appear to be the most common vectors for entry, accounting for 20%, 11% and 32% respectively of the alien species included in this review. The general warming trend of Mediterranean waters and increasing marine traffic may be facilitating the spread of warm-water Atlantic and Indo-Pacific species to the central Mediterranean, including the Maltese Islands.

  3. Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment?

    Science.gov (United States)

    Langford, Katherine H; Øxnevad, Sigurd; Schøyen, Merete; Thomas, Kevin V

    2014-07-15

    Aquaculture production is an important industry in many countries and there has been a growth in the use of medicines to ensure the health and cost effectiveness of the industry. This study focused on the inputs of sea lice medication to the marine environment. Diflubenzuron, teflubenzuron, emamectin benzoate, cypermethrin, and deltamethrin were measured in water, sediment, and biota samples in the vicinity of five aquaculture locations along the Norwegian coast. Deltamethrin and cypermethrin were not detected above the limits of detection in any samples. Diflubenzuron, teflubenzuron, and emamectin benzoate were detected, and the data was compared the UK Environmental Quality Standards. The concentrations of emamectin benzoate detected in sediments exceed the environmental quality standard (EQS) on 5 occasions in this study. The EQS for teflubenzuron in sediment was exceeded in 67% of the samples and exceeded for diflubenzuron in 40% of the water samples collected. A crude assessment of the concentrations detected in the shrimp collected from one location and the levels at which chronic effects are seen in shrimp would suggest that there is a potential risk to shrimp. It would also be reasonable to extrapolate this to any species that undergoes moulting during its life cycle.

  4. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    Science.gov (United States)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  5. Occurrence of four species of algae in the marine water of Hong Kong.

    Science.gov (United States)

    Chai, Yemao; Deng, Wen-Jing; Qin, Xing; Xu, Xiangrong

    2017-11-30

    Harmful algal blooms (HABs) have broken out frequently throughout the world in recent decades; they are caused by the rapid multiplication of algal cells in near-coastal waters polluted with nitrogen and phosphorus and greatly affect the quality of marine water and human health. Over the past several decades, climate change and increasing environmental degradation have provided favourable growth conditions for certain phytoplankton species. Therefore, it is essential to rapidly identify and enumerate harmful marine algae to control these species. In this study, quantitative PCR (qPCR) was used to detect four representative species of HABs that are widespread in the marine water of Hong Kong, namely, Alexandrium catenella, Pseudo-nitzschia spp., Karenia mikimotoi and Heterosigma akashiwo. We applied qPCR with the dye SYBR Green to detect Alexandrium spp. and Pseudo-nitzschia spp. and used TaqMan probe for the enumeration of Karenia mikimotoi and Heterosigma akashiwo. The total genomic DNA of these algae from Hong Kong marine water was extracted successfully using the CTAB method, and for each kind of alga, we constructed a ten-fold series of recombinant plasmid solutions containing certain gene fragments of 18S rDNA and ITS1-5.8S-ITS2 as standard samples. Ten-fold dilutions of the DNA of known numbers of the extracted algal cells were also used to create an additional standard curve. In this way, the relationship between the cell number and the related plasmid copy number was established. The qPCR assay displayed high sensitivity in monitoring marine water samples in which the low concentrations of harmful algae were not detected accurately by traditional methods. The results showed that the cell numbers of the four species were all in low abundance. For Alexandrium catenella, the cell abundances at 12 sites ranged from 3.8×10 2 to 4.3×10 3 cellsL -1 , while H. akashiwo, K. mikimotoi and Pseudo-nitzschia ranged from 1.1×10 2 to 1.3×10 3 , from 23 to 6.5×10 2

  6. Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2016-08-01

    Full Text Available Coastal zones support fisheries that provide food for humans and feed for animals. The decline of fisheries worldwide has fostered the development of aquaculture. Recent research has shown that extracellular polymeric substances (EPS synthesized by microorganisms contribute to sustainable aquaculture production, providing feed to the cultured species, removing waste and contributing to the hygiene of closed systems. As ubiquitous components of coastal microbial habitats at the air–seawater and seawater–sediment interfaces as well as of biofilms and microbial aggregates, EPS mediate deleterious processes that affect the performance and productivity of aquaculture facilities, including biofouling of marine cages, bioaccumulation and transport of pollutants. These biomolecules may also contribute to the persistence of harmful algal blooms (HABs and their impact on cultured species. EPS may also exert a positive influence on aquaculture activity by enhancing the settling of aquaculturally valuable larvae and treating wastes in bioflocculation processes. EPS display properties that may have biotechnological applications in the aquaculture industry as antiviral agents and immunostimulants and as a novel source of antifouling bioproducts.

  7. Nutrients valorisation via Duckweed-based wastewater treatment and aquaculture

    NARCIS (Netherlands)

    Mohamed El-Shafai, S.A.A.

    2004-01-01

    Development of a sustainable wastewater treatment scheme to recycle sewage nutrients and water in tilapia aquaculture was the main objective of this PhD research. Use of an Integrated UASB-duckweed ponds system for domestic wastewater treatment linked to tilapia aquaculture was investigated.

  8. Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Gößner, Anita S.; Drake, Harold L.

    2007-01-01

    A Gram-negative, strictly aerobic, diplococcoid bacterium (strain D2-3T) was isolated from the biofilter of a recirculating marine aquaculture system. Phylogenetic analysis of the 16S rRNA gene sequence of D2-3T indicated that the new organism occupied a novel lineage within the α-1 subclass...... of the DNA was 60.3±0.1 mol%. Phylogenetic, morphological, physiological, and biochemical analyses demonstrated that D2-3T represented a new aerobic phototrophic genus, for which the name Geminicoccus roseus gen. nov., sp. nov. is proposed for the type species (D2-3T=DSM 18922T=ATCC BAA-1445T)....

  9. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture

    DEFF Research Database (Denmark)

    Foesel, Bärbel U.; Drake, Harold L.; Schramm, Andreas

    2011-01-01

    Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemoorganoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor......, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3T = DSM...

  10. An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts

    OpenAIRE

    Cranford, Peter J.; Kamermans, Pauline; Krause, Gesche; Mazurie, Joseph; Buck, Bela H.; Dolmer, Per; Fraser, David; Van Nieuwenhove, Kris; O'Beirn, Francis X.; Sanchez-mata, Adoracion; Thorarinsdottir, Gudrun G.; Strand, Oivind

    2012-01-01

    An ecosystem-based approach to bivalve aquaculture management is a strategy for the integration of aquaculture within the wider ecosystem, including human aspects, in such a way that it promotes sustainable development, equity, and resilience of ecosystems. Given the linkage between social and ecological systems, marine regulators require an ecosystem-based decision framework that structures and integrates the relationships between these systems and facilitates communication of aquaculture–en...

  11. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals.

    Science.gov (United States)

    Tuševljak, N; Dutil, L; Rajić, A; Uhland, F C; McClure, C; St-Hilaire, S; Reid-Smith, R J; McEwen, S A

    2013-09-01

    There is limited published information regarding antimicrobial use (AMU) and antimicrobial resistance (AMR) in aquaculture. Our objective was to determine the opinions of aquaculture-allied professionals around the world on the frequency of AMU and AMR in common aquatic species. The study questionnaire included five sections: respondent demographics, extent of AMU in aquaculture, frequency of observations of AMR in aquaculture, AMR monitoring and surveillance and antimicrobial susceptibility testing in various jurisdictions. It was administered in English and Spanish to 604 professionals in 25 countries and with varying expertise in aquaculture. The response rate was 33% (199/604). Over half of the participants had >10 years of experience in aquaculture: 70% (140/199) were involved in fish health/clinical work and their primary experience was with salmon, tilapia, trout, shrimp (including prawn) and/or catfish. Tetracycline use was reported by 28%, 46%, 18%, 37% and 9% of respondents working with catfish, salmon, tilapia, trout and shrimp, respectively. Resistance to tetracycline in one or more species of bacteria was reported as 'frequent-to-almost always' for the same aquaculture species by 39%, 28%, 17%, 52% and 36% of respondents, respectively. 'Frequent-to-almost always' use of quinolone was reported by 70% (32/46) and 67% (8/12) of respondents from the United States and Canada, respectively, where quinolone products are not approved for aquaculture, and extra-label fluoroquinolone use is either prohibited (United States) or discouraged (Canada). Similar frequencies of quinolone use were also reported by the majority of respondents from Europe [70% (7/10)] and Asia [90% (9/10)] where labelled indications exist. This baseline information can be used to prioritize research or surveillance for AMU and AMR in aquaculture. © 2012 Blackwell Verlag GmbH.

  12. Biogeochemical ecology of aquaculture ponds

    International Nuclear Information System (INIS)

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put? Are organically loaded aquaculture ponds autotrophic? How do rates of organic production vary temporally? Are there diurnal changes in respiration rates? Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of 14 C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two

  13. Observation of Wild Seaweed Species in Labuhanbua Waters, Indonesia: a preliminary assessment for aquaculture development

    Directory of Open Access Journals (Sweden)

    Erlania .

    2017-05-01

    Full Text Available Seaweed industry has been growing up and is supplied by either wild or cultivated seaweed crops. This study was aimed to present relevant information regarding ecological availability of wild seaweed in Labuhanbua coastal waters, Sumbawa Regency, West Nusa Tenggara and potential use of important species as candidate species for aquaculture. 46 sampling stations were determined along line transects perpendicular to coastal line; and seaweeds sampling were conducted during low tide by using 1 x 1 m2 quadrat transect. Field data consist of in-situ parameter including number of seaweed species and coverage area of each species; and ex-situ parameters consist of carbohydrate, protein, total C, total N, and total P content of seaweeds. The results showed that 33 species were found and three species has the most widely distribu tion, i.e. Padina sp., Dictyota dichotoma, and Gracilaria salicornia. Turbinaria, Dictyota, Padina, Stoechospermum, Hydroclathrus, Halimeda, and Chaetomorpha might be some important species that could be develop as aquaculture species candidates among other uncultivated species that were found along this study location. They have potencies as human food, livestock feed, neutraceuicals, cosmetics, pulp, textile, biofuel and any other industries; but conversely, they were found in lower density at Labuhanbua coastal waters. These species should be develop through aquaculture technology, involve genetic improvement and possibly genetic engineering. Commercial scale cultivation of those important seaweed species will contribute to industrial needs and prevent decreasing of wild seaweed availability in natural ecosystem.

  14. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    Science.gov (United States)

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  15. Integration of a wind farm with a wave- and an aquaculture farm

    DEFF Research Database (Denmark)

    He, W.; Weissenberger, J.; Bergh, Ø.

    with other marine energy producers such as wave energy and other maritime users such as aquaculture farms may result in significant benefits in terms of economics, optimising spatial utilization, and minimising the environmental impact. In this research project, the integration benefits and disadvantages...

  16. Bivalve aquaculture transfers in Atlantic Europe. Part A: Transfer activities and legal framework

    DEFF Research Database (Denmark)

    Muehlbauer, F.; Fraser, D.; Brenner, M.

    2014-01-01

    environment and address economic considerations remains unanswered. This study provides the first overview of bivalve transfer activities for aquaculture purposes along the European Atlantic coast. Existing international and EU legislation is described, and potential weaknesses in the existing legislative......Intentional transfers of numerous bivalve species have had a long tradition and are commonly conducted along the European Atlantic coast. However numerous studies have concluded that intentional transfer of species for aquaculture purposes is one of the most principal vectors for the introduction...... frameworks are discussed. Recommendations for the development of integrated risk assessment methods are given. These may help to minimize the intrinsic threats of transfer activities in marine environments. The resulting impacts and effects of transfer activities of bivalves for aquaculture purpose...

  17. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  18. Biopotentiality of High Efficient Aerobic Denitrifier Bacillus megaterium S379 for Intensive Aquaculture Water Quality Management.

    Science.gov (United States)

    Gao, Junqian; Gao, Dan; Liu, Hao; Cai, Jiajai; Zhang, Junqi; Qi, Zhengliang

    2018-05-24

    Excessive nitrite accumulation is a very tough issue for intensive aquaculture. A high efficient aerobic denitrifier Bacillus megaterium S379 with 91.71±0.17% of NO 2 - -N (65 mg L -1 ) removal was successfully isolated for solving the problem. Denitrification of S379 showed excellent environment adaptation that it kept high nitrite removal ratio (more than 85%) when temperature ranged from 25°C to 40°C and pH varied between 7.0 and 9.0, and could endure as high as 560 mg L -1 of NO 2 - -N. Immobilization of S379 could enhance denitrification even when NO 2 - -N adding amount got to 340 mg L -1 . Immobilized cells also showed well pollutants removal performance in aquaculture wastewater treatment. Moreover, S379 possessed positive hydrolase activities for starch, casein, cellulose and fat and bore more than 60 ppt of salinity. Totally, all the results revealed significant potentiality of immobilized S379 applied in aquaculture water quality management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Disease and health management in Asian aquaculture.

    Science.gov (United States)

    Bondad-Reantaso, Melba G; Subasinghe, Rohana P; Arthur, J Richard; Ogawa, Kazuo; Chinabut, Supranee; Adlard, Robert; Tan, Zilong; Shariff, Mohamed

    2005-09-30

    Asia contributes more than 90% to the world's aquaculture production. Like other farming systems, aquaculture is plagued with disease problems resulting from its intensification and commercialization. This paper describes the various factors, providing specific examples, which have contributed to the current disease problems faced by what is now the fastest growing food-producing sector globally. These include increased globalization of trade and markets; the intensification of fish-farming practices through the movement of broodstock, postlarvae, fry and fingerlings; the introduction of new species for aquaculture development; the expansion of the ornamental fish trade; the enhancement of marine and coastal areas through the stocking of aquatic animals raised in hatcheries; the unanticipated interactions between cultured and wild populations of aquatic animals; poor or lack of effective biosecurity measures; slow awareness on emerging diseases; the misunderstanding and misuse of specific pathogen free (SPF) stocks; climate change; other human-mediated movements of aquaculture commodities. Data on the socio-economic impacts of aquatic animal diseases are also presented, including estimates of losses in production, direct and indirect income and employment, market access or share of investment, and consumer confidence; food availability; industry failures. Examples of costs of investment in aquatic animal health-related activities, including national strategies, research, surveillance, control and other health management programmes are also provided. Finally, the strategies currently being implemented in the Asian region to deal with transboundary diseases affecting the aquaculture sector are highlighted. These include compliance with international codes, and development and implementation of regional guidelines and national aquatic animal health strategies; new diagnostic and therapeutic techniques and new information technology; new biosecurity measures including

  20. Survival and growth of fish (Lates calcarifer under integrated mangrove-aquaculture and open-aquaculture systems

    Directory of Open Access Journals (Sweden)

    Shanmugaarasu Venkatachalam

    2018-02-01

    Full Text Available The potential use of mangrove swamp for fish farming industry is not clearly known. Therefore, current study was conducted to assess the growth performance of the Asian Seabass, Lates calcarifer cultivated in integrated mangrove-aquaculture system (IMAS and open aquaculture system without mangroves (OAS. Fish survival and biomass production were higher by 11% and 12.5% respectively in the IMAS than those in the OAS. The fish growth performance was higher in monsoon than that in other seasons. It was in association with water quality parameters such as, high levels of DO, chlorophylls-a,b, nitrate-N, DOC, TOC; low levels of light intensity, temperature (air, water, SPM, chlorophyll-c, nitrite-N, ammonia, total phosphate, reactive silicate, and POC; as well with moderate salinity. The water quality seemed to be favourable for growth and survival of the fish. Therefore, integrating the mangroves with fish farming of the Asian seabass is beneficial for better fish survival and biomass production.

  1. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.

    Directory of Open Access Journals (Sweden)

    Daniel McCoy

    Full Text Available Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016. We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009 and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009. We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.

  2. Potential Impact of Mediterranean Aquaculture on the Wild Predatory Bluefish

    OpenAIRE

    Miralles, Laura; Mrugala, Agata; Sanchez-Jerez, Pablo; Juanes, Francis; Garcia-Vazquez, Eva

    2016-01-01

    Aquaculture impacts on wild populations of fish have been considered principally due to farm escapes. The Bluefish Pomatomus saltatrix, which exhibits two distinct genetic units in the Mediterranean Sea, is a voracious predator and is attracted to aquaculture cages to prey on farmed fish, particularly Gilthead Seabream Sparus aurata and European Sea Bass Dicentrarchus labrax. We compared the genetic diversity of adult Bluefish caught inside one aquaculture farm located in Spanish waters of th...

  3. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  4. 40 CFR 227.31 - Applicable marine water quality criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  5. Drama of the commons in small-scale shrimp aquaculture in northwestern, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Eranga Kokila Galappaththi

    2015-03-01

    Full Text Available Aquaculture, and shrimp aquaculture in particular, can have major social and environmental impacts. However, aquaculture remains an understudied area in commons research. Can aspects of commons theory be applied to solve problems of aquaculture? We examined three coastal community-based shrimp aquaculture operations in northwestern Sri Lanka using a case study approach. These shrimp farms were individually owned by small producers and managed under local-level rules designed by cooperatives (samithis. The common-pool resource of major interest was water for aquaculture ponds, obtained from an interconnected common water body. We evaluated the shrimp farming social-ecological system by using Ostrom’s design principles for collective action. Key elements of the system were: clearly defined boundaries; collaboratively designed crop calendar, bottom-up approach involving community associations, multi-level governance, and farmers-and-government collaborative structures. Together, these elements resolved the excludability and subtractability problems of commons by establishing boundary and membership rules and collective choice rules.

  6. Evaluation of the use of fresh water by four Egyptian farms applying integrated aquaculture – agriculture

    NARCIS (Netherlands)

    Heijden, van der P.G.M.; Nasr-Alla, A.; Kenawy, D.; El-Naggar, G.; Beveridge, M.

    2012-01-01

    This report describes a study done in 2010 by researchers of the WorldFish Center on water use in Egyptian farms that apply aquaculture – agriculture integration. Two of the four farms that were monitored derived the main income from farming and selling fish, the two other farms were mainly

  7. Deep Water, Shallow Water: Marine Animal Homes.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  8. Public Perceptions of Aquaculture: Evaluating Spatiotemporal Patterns of Sentiment around the World.

    Directory of Open Access Journals (Sweden)

    Halley E Froehlich

    Full Text Available Aquaculture is developing rapidly at a global scale and sustainable practices are an essential part of meeting the protein requirements of the ballooning human population. Locating aquaculture offshore is one strategy that may help address some issues related to nearshore development. However, offshore production is nascent and distinctions between the types of aquatic farming may not be fully understood by the public-important for collaboration, research, and development. Here we evaluate and report, to our knowledge, the first multinational quantification of the relative sentiments and opinions of the public around distinct forms of aquaculture. Using thousands of newspaper headlines (Ntotal = 1,596 from developed (no. countries = 26 and developing (42 nations, ranging over periods of 1984 to 2015, we found an expanding positive trend of general 'aquaculture' coverage, while 'marine' and 'offshore' appeared more negative. Overall, developing regions published proportionally more positive than negative headlines than developed countries. As case studies, government collected public comments (Ntotal = 1,585 from the United States of America (USA and New Zealand mirrored the media sentiments; offshore perception being particularly negative in the USA. We also found public sentiment may be influenced by local environmental disasters not directly related to aquaculture (e.g., oil spills. Both countries voiced concern over environmental impacts, but the concerns tended to be more generalized, rather than targeted issues. Two factors that could be inhibiting informed discussion and decisions about offshore aquaculture are lack of applicable knowledge and actual local development issues. Better communication and investigation of the real versus perceived impacts of aquaculture could aid in clarifying the debate about aquaculture, and help support future sustainable growth.

  9. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the ... between humans and the coastal and marine environment. ... exploitation for timber, fuel wood, aquaculture, urban. Abstract. Given the high dependence of coastal communities on natural resources, mangrove conservation is a challenge in.

  10. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    Science.gov (United States)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidityfiltered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  11. Aquaculture disturbance impacts the diet but not ecological linkages of a ubiquitous predatory fish

    Science.gov (United States)

    McPeek, Kathleen C.; McDonald, P. Sean; VanBlaricom, Glenn

    2015-01-01

    Aquaculture operations are a frequent and prominent cause of anthropogenic disturbance to marine and estuarine communities and may alter species composition and abundance. However, little is known about how such disturbances affect trophic linkages or ecosystem functions. In Puget Sound, Washington, aquaculture of the Pacific geoduck clam (Panopea generosa) is increasing and involves placing nets and polyvinyl chloride (PVC) tubes in intertidal areas to protect juvenile geoducks from predators. Initial studies of the structured phase of the farming cycle have documented limited impacts on the abundance of some species. To examine the effect of geoduck aquaculture on ecological linkages, the trophic relationships of a local ubiquitous consumer, Pacific staghorn sculpin (Leptocottus armatus), to its invertebrate prey were compared between geoduck aquaculture sites and nearby reference areas with no aquaculture. Mark-recapture data indicated that sculpin exhibit local site fidelity to cultured and reference areas. The stomach contents of sculpin and stable isotope signatures of sculpin and their prey were examined to study the trophic ecology of cultured and reference areas. Results showed that the structured phase of geoduck aquaculture initiated some changes to staghorn sculpin ecology, as reflected in sculpin diet through stomach content analysis. However, carbon and nitrogen stable isotopes revealed that the general food web function of sculpin remained unchanged. The source of carbon at the base of the food web and the trophic position of sculpin were not impacted by geoduck aquaculture. The study has important implications for geoduck aquaculture management and will inform regulatory decisions related to shellfish aquaculture policy.

  12. Shrimp aquaculture in low salinity water feeded with worm flavor

    Directory of Open Access Journals (Sweden)

    Wenceslao Valenzuela Quiñónez

    2012-09-01

    Full Text Available Shrimp aquaculture in Sinaloa is one of the top economic enterprises, generating many jobs and earns significant incomes every year. Shrimp feed is an essential part of maintaining healthy production. In this initial approach of shrimp growth in low salinity water, were tested two formulas of animal protein composed of 40% (APL1 and 20% (APL2 worm protein, a commercial diet, and no supplementary feed. Physicochemical parameters did not have a direct influence in shrimpbehavior. After six weeks of experimentation, shrimp fed with commercial diet had a weight gain 20% higher than those feed with worm protein. There were no significantly differences between sizes with respect to 40% animal protein and 20% animal protein with the commercial diet (P  0.05. However, shrimp fed worm protein had lower mortality. The use of worm protein could be an option to maintain a high quantity of shrimp reared in low salinity waters.

  13. Probiotic effects on cobia Rachycentron canadum larvae reared in a recirculating aquaculture system

    Directory of Open Access Journals (Sweden)

    M. Angélica Garrido-Pereira

    2014-11-01

    Full Text Available Cobia (Rachycentron canadum is a marine finfish with good potential for mariculture. This study analyzes the effects of probiotic Bacillus spp. on the performance of cobia larvae reared in a recirculating aquaculture system (RAS. Larvae were stocked into two independent RAS for 26 days after hatching. One of the systems (Probiotic treatment received the addition of a commercial probiotic consisting of B. subtilis, B. licheniformis and B. pumilus directly into the water and by live feed. Survival, final weight and water quality were not affected by probiotics. Results showed larvae of the probiotic treatment demonstrated a greater resistance to salinity stress. Immunohistochemical analysis showed a higher expression of CD4 in probiotic treatment. These results suggest that Bacillus spp. probiotics used in RAS have a potential stimulating impact on immune system differentiation and increases salinity stress resistance of cobia larvae.

  14. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems

    Science.gov (United States)

    Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...

  15. Characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture

    Science.gov (United States)

    Triyatmo, B.; Rustadi; Priyono, S. B.

    2018-03-01

    The purpose of this study were to determine characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture. This study was conducted in 2015 by characterizing land and water dynamics, land use, and the suitability of coastal environments for aquaculture. Evaluation on the coastal environments suitability for aquaculture ponds was based on the landforms, soil properties, water quality and land. Selection of coastal locations for aquaculture development was based on the level of suitability of coastal environment. The results showed that the coastal in Kulon Progo and Bantul Regencies were characterized by sand dune and beach ridge with sandy soil texture, while in Gunungkidul Regency was characterized by limestone hill with rocky texture. Water sources of the coastal area were the sea, river, and ground water with the salinity of 31–37, 7–11, 7–31 ppt and pH of 7.4–8.4 7.0–8.2 and 7.4–9.9, respectively. The coastal lands were used for seasonal/annual planting, ponds, fish landing sites, tourism areas and conservation areas. The coastal carrying capacity was rather suitable for aquaculture, especially in the sandy soil area. Aquaculture in that area can be done intensively for shrimp (Litopenaeus vannamei), using biocrete (biological material) or plastic sheet.

  16. An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts

    DEFF Research Database (Denmark)

    Cranford, Peter J.; Kamermans, Pauline; Krause, Gesche

    2012-01-01

    for bivalve aquaculture be based on a tiered indicator monitoring system that is structured on the principle that increased environmental risk requires increased monitoring effort. More than 1 threshold for each indicator would permit implementation of predetermined impact prevention and mitigation measures......An ecosystem-based approach to bivalve aquaculture management is a strategy for the integration of aquaculture within the wider ecosystem, including human aspects, in such a way that it promotes sustainable development, equity, and resilience of ecosystems. Given the linkage between social...... and ecological systems, marine regulators require an ecosystem-based decision framework that structures and integrates the relationships between these systems and facilitates communication of aquaculture–environment interactions and policy-related developments and decisions. The Drivers-Pressures-State Change-Impact-Response...

  17. Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Zachritz, W.H., II; Polka, R.; Schoenmackers

    1996-04-01

    A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

  18. Aquaculture; Acquacoltura

    Energy Technology Data Exchange (ETDEWEB)

    De Murtas, I D [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-12-01

    This paper attempts an overview of the progress made in the field of aquaculture. Aquaculture is a system of techniques strongly influenced by natural environmental conditions. Aquaculture as a biological technique oriented towards the production of useful aquatic organisms, is reaching a stage of consolidation which will place it on an equal footing which agriculture and animal husbandry. Aquaculture provides important economic and nutritional benefits to many regions of developing world. In 1994, over 90 percent of total aquaculture production was in Asia, with China, India, Japan, Indonesia, Thailand, Philippines and Republic of Korea as the seven leader producers. [Italiano] L`acquacoltura, vale a dire l`arte di riprodurre artificialmente pesci, alghe, molluschi e crostacei ed altri organismi acquatici utili all`uomo, si presenta oggi come un`attivita` di assoluto rilievo nell`insieme dei vari comparti di produzione alimentare. L`aumento della produzione e` costante anche se cinque paesi asiatici (Cina, India, Giappone, Filippine e Corea del Sud) contribuiscono per l`80% al volume della produzione mondiale. Nel presente lavoro vengono descritti lo stato dell`acquacoltura e della maricoltura nel mondo e le filiere di allevamento delle principali specie.

  19. adoption of improved aquaculture practices by shrimp farmers

    African Journals Online (AJOL)

    Dr.Adesope

    use of check trays and adjustment of feed accordingly (95.0%), formation of ... Key words: adoption, improved aquaculture, shrimp farmers ... Brackish water shrimp farming is getting more attention because of high profitability ..... water and pond water whereas 52.5% of farmers did not observe the actual acclimatisation.

  20. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture.

    Science.gov (United States)

    Seiler, Claudia; Berendonk, Thomas U

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.

  1. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    Directory of Open Access Journals (Sweden)

    Claudia eSeiler

    2012-12-01

    Full Text Available The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as copper (Cu and zinc (Zn. If those metals reach the environment and accumulate to selective concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Cu and Zn as selecting heavy metals. Furthermore, results of the general selection mechanisms need to be carefully evaluated and the respective environmental background has to be taken into account.

  2. Economic Analysis on Key Challenges for Sustainable Aquaculture Development

    DEFF Research Database (Denmark)

    Gedefaw Abate, Tenaw

    challenges that could obstruct its sustainable development, such as a lack of suitable feed, which includes fishmeal, fish oil and live feed, and negative environmental externalities. If the aquaculture industry is to reach its full potential, it must be both environmentally and economically sustainable...... environmental externalities. A sustainable supply of high-quality live feeds at reasonable prices is absolutely essential for aquaculture hatcheries because many commercially produced high-value marine fish larval species, such as flounder, grouper, halibut, tuna and turbot, require live feed for their early...... developmental stage. The key challenge in this regard is that the conventional used live feed items, Artemia and rotifers, are nutritionally deficient. Thus, the first main purpose of the thesis is carrying out an economic analysis of the feasibility of commercial production and the use of an alternative live...

  3. Purification Performance and Production of a Re-circulating Pond Aquaculture System Based on Paddy Field

    OpenAIRE

    Gu Li; Shi-yang Zhang; Ling Tao; Xiao-li Li; Jing-hua Song; Chun-xue Zhang; Jian-qiang Zhu

    2012-01-01

    Developing improved aquaculture systems with a more efficient use of water and less environmental impact is becoming a crying need. A re-circulating aquaculture system consisting of paddy field and fish pond is a new culture mode due to aquaculture combing with agriculture. The present study focused on the purification capacity of the paddy field on nitrogen, phosphorus and organic matter, the fluctuation trend of water quality conditions during the whole rearing process and the culture effic...

  4. The use of probiotics in aquaculture.

    Science.gov (United States)

    Hai, N V

    2015-10-01

    This study aims to present comprehensive notes for the use of probiotics in aquaculture. Probiotics have been proven to be positive promoters of aquatic animal growth, survival and health. In aquaculture, intestines, gills, the skin mucus of aquatic animals, and habitats or even culture collections and commercial products, can be sources for acquiring appropriate probiotics, which have been identified as bacteria (Gram-positive and Gram-negative) and nonbacteria (bacteriophages, microalgae and yeasts). While a bacterium is a pathogen to one aquatic animal, it can bring benefits to another fish species; a screening process plays a significant role in making a probiotic species specific. The administration of probiotics varies from oral/water routine to feed additives, of which the latter is commonly used in aquaculture. Probiotic applications can be either mono or multiple strains, or even in combination with prebiotic, immunostimulants such as synbiotics and synbiotism, and in live or dead forms. Encapsulating probiotics with live feed is a suitable approach to convey probiotics to aquatic animals. Dosage and duration of time are significant factors in providing desired results. Several modes of actions of probiotics are presented, while some others are not fully understood. Suggestions for further studies on the effects of probiotics in aquaculture are proposed. © 2015 The Society for Applied Microbiology.

  5. Comparing the effects of feeding a grain- or a fish meal-based diet on water quality, waste production, and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems

    Science.gov (United States)

    Feeding a fish meal-free grain-based diet (GB) was compared to feeding a fish meal-based diet (FM) relative to water quality criteria, waste production, water treatment process performance, and rainbow trout Oncorhynchus mykiss performance within six replicated water recirculating aquaculture system...

  6. The Microbiome of Seriola lalandi of Wild and Aquaculture Origin Reveals Differences in Composition and Potential Function

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez

    2017-09-01

    Full Text Available Seriola lalandi is an economically important species that is globally distributed in temperate and subtropical marine waters. Aquaculture production of this species has had problems associated with intensive fish farming, such as disease outbreaks or nutritional deficiencies causing high mortalities. Intestinal microbiota has been involved in many processes that benefit the host, such as disease control, stimulation of the immune response, and the promotion of nutrient metabolism, among others. However, little is known about the potential functionality of the microbiota and the differences in the composition between wild and aquacultured fish. Here, we assayed the V4-region of the 16S rRNA gene using high-throughput sequencing. Our results showed that there are significant differences between S. lalandi of wild and aquaculture origin (ANOSIM and PERMANOVA, P < 0.05. At the genus level, a total of 13 genera were differentially represented between the two groups, all of which have been described as beneficial microorganisms that have an antagonistic effect against pathogenic bacteria, improve immunological parameters and growth performance, and contribute to nutrition. Additionally, the changes in the presumptive functions of the intestinal microbiota of yellowtail were examined by predicting the metagenomes using PICRUSt. The most abundant functional categories were those corresponding to the metabolism of cofactors and vitamins, amino acid metabolism and carbohydrate metabolism, revealing differences in the contribution of the microbiota depending on the origin of the animals. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of S. lalandi of wild and aquaculture origin using high-throughput sequencing.

  7. The Microbiome of Seriola lalandi of Wild and Aquaculture Origin Reveals Differences in Composition and Potential Function.

    Science.gov (United States)

    Ramírez, Carolina; Romero, Jaime

    2017-01-01

    Seriola lalandi is an economically important species that is globally distributed in temperate and subtropical marine waters. Aquaculture production of this species has had problems associated with intensive fish farming, such as disease outbreaks or nutritional deficiencies causing high mortalities. Intestinal microbiota has been involved in many processes that benefit the host, such as disease control, stimulation of the immune response, and the promotion of nutrient metabolism, among others. However, little is known about the potential functionality of the microbiota and the differences in the composition between wild and aquacultured fish. Here, we assayed the V4-region of the 16S rRNA gene using high-throughput sequencing. Our results showed that there are significant differences between S. lalandi of wild and aquaculture origin (ANOSIM and PERMANOVA, P < 0.05). At the genus level, a total of 13 genera were differentially represented between the two groups, all of which have been described as beneficial microorganisms that have an antagonistic effect against pathogenic bacteria, improve immunological parameters and growth performance, and contribute to nutrition. Additionally, the changes in the presumptive functions of the intestinal microbiota of yellowtail were examined by predicting the metagenomes using PICRUSt. The most abundant functional categories were those corresponding to the metabolism of cofactors and vitamins, amino acid metabolism and carbohydrate metabolism, revealing differences in the contribution of the microbiota depending on the origin of the animals. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of S. lalandi of wild and aquaculture origin using high-throughput sequencing.

  8. National Strategic Environmental Assessment for aquaculture development in South Africa: GIS analysis for identifying optimal areas for marine and freshwater aquaculture development

    CSIR Research Space (South Africa)

    Snyman-van der Walt, Luanita

    2017-06-01

    Full Text Available The Department of Environmental Affairs and the Department of Agriculture, Forestry and Fisheries commissioned the Council for Scientific and Industrial Research to conduct a Strategic Environmental Assessment (SEA) for Aquaculture Development...

  9. Marine Mammals :: NOAA Fisheries

    Science.gov (United States)

    Resources Habitat Conservation Science and Technology International Affairs Law Enforcement Aquaculture Application Types Apply Online (APPS) Endangered Species Permits Marine Mammal Permits Public Display of : NMFS Pacific Islands Fisheries Science Center North Atlantic right whales North Atlantic Right whales

  10. EFFECT OF DYNAMICAL WATER QUALITY ON SHRIMP CULTURE IN THE INTEGRATED MULTITROPIC AQUACULTURE (IMTA

    Directory of Open Access Journals (Sweden)

    Brata Pantjara

    2015-06-01

    Full Text Available One of the technologies to improve the productivity of shrimp farms are environmentally friendly shrimp farming multitrophic integrated system known as Integrated Multitrophic Aquaculture (IMTA. The aims of the study were to observe the water quality dynamic on the integrated multitrophic aquaculture and the effect on the production. This study was used four plots which each of pond had 4,000 m2 in sizing, located in experiment pond, at Research and Development Institute for Coastal Aquaculture, Maros. The main commodities used were tiger and vannamei shrimp. In the A pond was cultivated the tiger shrimp with density 12 ind./m2, in B pond was tiger shrimp with density 8 ind./m2, C pond was vannamei shrimp with density 50 ind./m2, and D pond was vannamei shrimp with density 25 ind./m2. Other commodities were red tilapia (Oreochromis niloticus. Each pond had stocking density 2,400 ind./plot which was divided into 5 hapas having a size of (6 m x 4 m x 1.2 m/each, mangrove oysters (Crassostrea iredalei and Saccostrea cucullata with density 7,500 ind./4,000 m2 and seaweed (Gracilaria verrucosa of 500 kg/4,000 m2. The observation of dynamic water quality in the pond was conducted every day i.e. temperature, dissolved oxygen, salinity, and measured pH, while the total organic matter total (TOM, total ammonia nitrogen (TAN, nitrite, nitrate, phosphate were taken every two weeks. The measurements methods of water quality in laboratory was refered to APHA (2008; and Boyd (1990. During the study, absorption of N and P in seaweed were measured, the obtained plankton was identified and the ratio of carbon and nitrogen during the observation was also calculated. To determine the effect of dominant water quality on production was used the principal component analysis (PCA. The result showed that water quality during the study was suitable for shrimp and red tilapia culture. The dominant water qualities which effected the shrimp production in

  11. A Sustainability Index of potential co-location of offshore wind farms and open water aquaculture

    DEFF Research Database (Denmark)

    Bennassai, G.; Mariani, Patrizio; Stenberg, Claus

    2014-01-01

    This paper presents the definition of a Sustainability Index for the co-location in marine areas of offshore wind farms and aquaculture plans. The development of the index is focused on the application of MCE technique based on physical constraints and biological parameters that are directly linked...... to the primary production. The relevant physical factors considered are wind velocity and depth range (which directly governs the choice of the site for energy production and for offshore technology), the relevant biological parameters are SST, SST anomaly and CHL-a concentration (as a measurement...... the computation of the Sustainability Index (SI) was identified in the Danish portion of the Baltic Sea and in the western part of the Danish North Sea. Results on the spatial distribution of the SI underline different responses as a function of the physical and biological main influencing parameters...

  12. Molecular detection of Kudoa septempunctata (Myxozoa: Multivalvulida in sea water and marine invertebrates

    Directory of Open Access Journals (Sweden)

    Alagesan Paari

    2017-08-01

    Full Text Available Abstract The exportation of cultured olive flounder (Paralichthys olivaceus in Korea has been recently decreasing due to the infections with a myxozoan parasite Kudoa septempunctata, and there is a strong demand for strict food safety management because the food poisoning associated with consumption of raw olive flounder harbouring K. septempunctata has been frequently reported in Japan. The life cycle and infection dynamics of K. septempunctata in aquatic environment are currently unknown, which hamper establishment of effective control methods. We investigated sea water and marine invertebrates collected from olive flounder farms for detecting K. septempunctata by DNA-based analysis, to elucidate infection dynamics of K. septempunctata in aquaculture farms. In addition, live marine polychaetes were collected and maintained in well plates to find any possible actinosporean state of K. septempunctata. The level of K. septempunctata DNA in rearing water fluctuated during the sampling period but the DNA was not detected in summer (June–July in farm A and August in farm B. K. septempunctata DNA was also detected in the polychaetes Naineris laevigata intestinal samples, showing decreased pattern of 40 to 0%. No actinosporean stage of K. septempunctata was observed in the polychaetes by microscopy. The absence of K. septempunctata DNA in rearing water of fish farm and the polychaetes N. laevigata intestinal samples during late spring and early summer indicate that the infection may not occur during this period. N. laevigata was suspected as the possible alternate invertebrate host of K. septempunctata, but the actinosporean stage was not found by well plate method and further studies will be necessary. This research provides important baseline information for understanding the infection dynamics of K. septempunctata in olive flounder farms and further establishment of control strategies.

  13. Chemical and Sensory Quantification of Geosmin and 2-Methylisoborneol in Rainbow Trout (Oncorhynchus mykiss) from Recirculated Aquacultures in Relation to Concentrations in Basin Water

    DEFF Research Database (Denmark)

    Petersen, Mikael A.; Hyldig, Grethe; Strobel, Bjarne W.

    2011-01-01

    Globally, aquaculture systems with water recirculation experience increasing problems with microbial taste and odor compounds (TOCs) such as geosmin and 2-methylisoborneol (MIB). This study investigated the content of geosmin and MIB in water and the flesh of 200 rainbow trouts from eight...... recirculated aquaculture systems in Denmark. TOC content in the fish flesh was measured by a dynamic headspace extraction method and was evaluated by a sensory panel. The results showed significant correlations between TOC content in water and fish and between chemical analysis and sensory perception. When...... geosmin exceeded 20 ng/L in the water, 96% of the fish had an intense muddy flavor, but below 10 ng geosmin/L, 18% of the fish (only 3% in special depuration ponds) had an intense muddy flavor. The results indicate that TOC levels...

  14. Nutrient compensation as management tool– Sugar kelp production in sustainable aquaculture

    DEFF Research Database (Denmark)

    Schmedes, Peter Søndergaard; Boderskov, Teis; Silva Marinho, Goncalo

    Integrated multi-trophic aquaculture (IMTA) is theoretically a sustainable production form, which minimizes waste products from e.g. fish farms, by the co-production of bivalves or/and seaweed. For the Danish fish farmers the extractive organisms could be the solution for increasing fish production...... and robust mitigation tool for nitrogen removal and hopefully allow for future expansion of sustainable marine fish production in Denmark....

  15. Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration

    Directory of Open Access Journals (Sweden)

    Dzulqornain Muhammad Iskandar

    2018-01-01

    Full Text Available The internet of things technology (IoT is growing very rapidly. IoT implementation has been conducted in several sectors. One of them is for aquaculture. For the traditional farmers, they face problems for monitoring water quality and the way to increase the quality of the water quickly and efficiently. This paper presents a real-time monitoring and controlling system for aquaculture based on If This Then That (IFTTT model and cloud integration. This system was composed of smart sensor module which supports modularity, smart aeration system for controlling system, local network system, cloud computing system and client visualization data. In order to monitor the water condition, we collect the data from smart sensor module. Smart sensor module consists of sensor dissolved oxygen, potential of hydrogen, water temperature and water level. The components of smart aeration system are microcontroller NodeMCU v3, relay, power supply, and propeller that can produce oxygen. The system could set the IFTTT rules for the ideal water condition for the pond in any kinds of aquaculture based on its needs through the web and android application. The experimental result shows that use IFTTT model makes the aquaculture monitoring system more customizable, expandable and dynamic.

  16. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.

    Science.gov (United States)

    Shao, Yanan; Pan, Zihan; Rong, Chuan; Wang, Yinghui; Zhu, Hongxiang; Zhang, Yuanyuan; Yu, Kefu

    2018-05-21

    During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min -1 , 2.067 min -1 and 2.592 min -1 , respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br - ) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br - could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?

    Directory of Open Access Journals (Sweden)

    Ariel E. Turcios

    2014-02-01

    Full Text Available Many aquaculture systems generate high amounts of wastewater containing compounds such as suspended solids, total nitrogen and total phosphorus. Today, aquaculture is imperative because fish demand is increasing. However, the load of waste is directly proportional to the fish production. Therefore, it is necessary to develop more intensive fish culture with efficient systems for wastewater treatment. A number of physical, chemical and biological methods used in conventional wastewater treatment have been applied in aquaculture systems. Constructed wetlands technology is becoming more and more important in recirculating aquaculture systems (RAS because wetlands have proven to be well-established and a cost-effective method for treating wastewater. This review gives an overview about possibilities to avoid the pollution of water resources; it focuses initially on the use of systems combining aquaculture and plants with a historical review of aquaculture and the treatment of its effluents. It discusses the present state, taking into account the load of pollutants in wastewater such as nitrates and phosphates, and finishes with recommendations to prevent or at least reduce the pollution of water resources in the future.

  18. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque dÓrbcastel, E.; Verreth, J.A.J.

    2010-01-01

    The dual objective of sustainable aquaculture, i.e., to produce food while sustaining natural resources is achieved only when production systems with a minimum ecological impact are used. Recirculating aquaculture systems (RASs) provide opportunities to reduce water usage and to improve waste

  19. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Directory of Open Access Journals (Sweden)

    M. M. Kathleen

    2016-01-01

    Full Text Available The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture’s surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n=20, while the lowest resistance was towards gentamicin (1.1%, n=90. The multiple antibiotic resistant (MAR index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n=94 which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  20. Field validation of Tasmania's aquaculture industry bounce-diving schedules using Doppler analysis of decompression stress.

    Science.gov (United States)

    Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David

    2014-09-01

    Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw

  1. Marine biotechnology: Opportunities for India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.

    manipulation is now reality. High yielding, fast growing and disease resistant strains of fish, shellfish and algae will boost the aquaculture industry. There may be a solution for all the problems of waste disposal in the marine environment. Considering...

  2. The Application of Integrated Multi Trophic Aquaculture (IMTA Using Stratified Double Net Rounded Cage (SDFNC for Aquaculture Sustainability

    Directory of Open Access Journals (Sweden)

    Sapto P. Putro

    2015-12-01

    Full Text Available The increase of fishery production nationally and internationally may impact on the potential emergence of a variety of environmental problems. The application of sustainable aquaculture is urgently needed by breeding fish for commercial purposes in a manner such that it has a minimum impact on the environment, contributing to the development of local communities and generating economic benefits. The design of the cage and farming practice in aquaculture activities are the important steps to ensure that farming activity is still observed in order to anticipate the risk of organic enrichment caused by the activities. The application of Integrated Multi-Trophic Aquaculture  (IMTA on the Stratified Double Floating Net Cage  (SDFNC integrated with biomonitoring are an appropriate solution to the ongoing productive farming practices. IMTA is an aquaculture practice using more than one species of biotas which have ecologically mutual relationship as a part of the food chain in the area at the same time. The application of IMTA allows farmers to get several aquaculture products in the same area without increasing the horizontal area of the farms. At first, the SDFNC has been applied for farming Cyprinus carpio and Tilapia niloticus as polyculture system in freshwater ecosystem of Rawapening Lake, Central Java. Its operation has been able to increase the production capacity of at least 75% of conventional cages. The application of SDFNC-IMTA using milkfish (Chanos Chanos, seaweed (Kappaphycus alvarezii, and white shrimp (Litopenaeus vannamei has been able to minimize the impact and maintain the water ecosystem in the Gulf Awerange, South Sulawesi.

  3. Optical detectors for integration into a low cost radiometric device for in-water applications: A feasibility study

    CSIR Research Space (South Africa)

    Ramkilowan, A

    2013-04-01

    Full Text Available such phenomena have on marine and freshwater systems threaten aquaculture, agriculture and tourism industries on a global scale (Bernard, 2010, unpublished). An innovative research project, Safe Waters Earth Observation Systems (SWEOS) proposes the use of space...

  4. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities.

    Science.gov (United States)

    Zou, Shichun; Xu, Weihai; Zhang, Ruijie; Tang, Jianhui; Chen, Yingjun; Zhang, Gan

    2011-10-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. An efficient water conditioning system for land-based abalone aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.P. [University of Edinburgh (United Kingdom). School of GeoSciences; Carrington, C.G. [University of Otago, Dunedin (New Zealand). Dept. of Physics

    2005-07-01

    Data collected from a single grow-out tank in an abalone farm in southern New Zealand has highlighted hygiene maintenance problems in the use of semi-closed water conditioning systems for the aquaculture of New Zealand black foot abalone Haliotis iris. The data shows that semi-closed systems can have high concentrations of un-ionized ammonia, which is harmful to the animals. In this paper an alternative open flow-through system is suggested where energy demand is limited by heat recovery at the grow-out tank outlet. Using temperature data collected over 1 year, and a previously obtained expression for standing losses, a simple energy model is presented for an open system with heat recovery. To compliment the energy model, a function has been established for abalone production with respect to the concentration of un-ionized ammonia and water temperature. The energy model and production function are combined to determine the impact of plant design and tank conditions on the economics of the operation for the southern New Zealand climate. It is demonstrated that temperature control is financially preferable to an open system with no temperature control, and estimates of optimum operating conditions are given. (author)

  6. Dependency on aquaculture in northern Vietnam

    DEFF Research Database (Denmark)

    Le Minh, Hanh; Phan, Van Thi; Nghia, Nguyen Huu

    2017-01-01

    a substantial reliance on aquaculture of farmers in the study area with at least half of their income generated by aquaculture. Our analyses highlight that the educational background of farmers explain their engagement in aquaculture better than how long they have worked as aquaculture farmers. Freshwater fish...... the dependence on aquaculture in these two provinces and amongst farmers specializing in shrimp and freshwater fish production, respectively. Further, we tested the ability of different socio-economic variables to explain the observed reliance on aquaculture using an ANCOVA model. The study identifies...

  7. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture.

    Science.gov (United States)

    Blanchard, Julia L; Watson, Reg A; Fulton, Elizabeth A; Cottrell, Richard S; Nash, Kirsty L; Bryndum-Buchholz, Andrea; Büchner, Matthias; Carozza, David A; Cheung, William W L; Elliott, Joshua; Davidson, Lindsay N K; Dulvy, Nicholas K; Dunne, John P; Eddy, Tyler D; Galbraith, Eric; Lotze, Heike K; Maury, Olivier; Müller, Christoph; Tittensor, Derek P; Jennings, Simon

    2017-09-01

    Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.

  8. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.

    Science.gov (United States)

    Liu, Shuwei; Hu, Zhiqiang; Wu, Shuang; Li, Shuqing; Li, Zhaofu; Zou, Jianwen

    2016-01-19

    Aquaculture is an important source of atmospheric methane (CH4) and nitrous oxide (N2O), while few direct flux measurements are available for their regional and global source strength estimates. A parallel field experiment was performed to measure annual CH4 and N2O fluxes from rice paddies and rice paddy-converted inland crab-fish aquaculture wetlands in southeast China. Besides N2O fluxes dependent on water/sediment mineral N and CH4 fluxes related to water chemical oxygen demand, both CH4 and N2O fluxes from aquaculture were related to water/sediment temperature, sediment dissolved organic carbon, and water dissolved oxygen concentration. Annual CH4 and N2O fluxes from inland aquaculture averaged 0.37 mg m(-2) h(-1) and 48.1 μg m(-2) h(-1), yielding 32.57 kg ha(-1) and 2.69 kg N2O-N ha(-1), respectively. The conversion of rice paddies to aquaculture significantly reduced CH4 and N2O emissions by 48% and 56%, respectively. The emission factor for N2O was estimated to be 0.66% of total N input in the feed or 1.64 g N2O-N kg(-1) aquaculture production in aquaculture. The conversion of rice paddies to inland aquaculture would benefit for reconciling greenhouse gas mitigation and agricultural income increase as far as global warming potentials and net ecosystem economic profits are of concomitant concern. Some agricultural practices such as better aeration and feeding, and fallow season dredging would help to lower CH4 and N2O emissions from inland aquaculture. More field measurements from inland aquaculture are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.

  9. Design & Test of Radio Communication and Control System for Aquaculture

    Directory of Open Access Journals (Sweden)

    Fengrong Jia

    2013-05-01

    Full Text Available Aiming at low automation degree and backward aquatic product management of current aquaculture in China, this paper designed a set of radio communication and control system which consists of 3 parts of information collection module, control module and radio communication module. This system both realizes wireless monitoring of quality parameters of water for aquaculture and realizes wireless control of water level and dissolved oxygen value through radio communication. Test results show that data transfer is more accurate and reliable after adding customized protocol and answer signals in radio communication. The highest error and missing rate within 1000 m is 0.36, the lowest error and missing rate is 0.05 and the longest response time is 49 ms. The dissolved oxygen value detection system designed in this paper is close to the testing value of existing dissolved oxygen value transmitter DO6309. With wireless data transfer mode, it has higher practicality. The wireless control of dissolved oxygen value and water level can be controlled within the appropriate range with stable and precise control. The study results can provide intelligent aquaculture model with simple operation and precise control for enormous aquatic breeders

  10. Evaluation of ozonation on levels of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout Oncorhynchus mykiss from water recirculation aquaculture systems

    Science.gov (United States)

    Common “off-flavors” in fish cultured in water recirculation aquaculture systems (WRAS) are “earthy” and “musty” due to the presence of the off-flavor metabolites geosmin and 2-methylisoborneol (MIB), respectively. Previously, ozone addition has been applied to WRAS at relatively low doses to break...

  11. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.

    Science.gov (United States)

    Amara, Intissar; Miled, Wafa; Slama, Rihab Ben; Ladhari, Neji

    2018-01-01

    The production infrastructure in aquaculture invariably is a complex assortment of submerged components with cages, nets, floats and ropes. Cages are generally made from polyamide or high density polyethylene (PEHD). All of these structures serve as surfaces for biofouling. However, cage nets and supporting infrastructure offer fouling organisms thousands of square meters of multifilament netting. That's why, before immersing them in seawater, they should be coated with an antifouling agent. It helps to prevent net occlusion and to increase its lifespan. Biofouling in marine aquaculture is a specific problem and has three main negative effects. It causes net occlusion and so restricts water and oxygen exchange. Besides, the low dissolved oxygen levels from poor water exchange increases the stress levels of fish, lowers immunity and increases vulnerability to disease. Also, the extra weight imposed by fouling causes cage deformation and structural fatigue. The maintenance and loss of equipment cause the increase of production costs for the industry. Biocides are chemical substances that can prohibit or kill microorganisms responsible for biofouling. The expansion of the aquaculture industry requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. Unfortunately, the use of biocides in the aquatic environment has proved to be harmful as it has toxic effects on the marine environment. The most commonly used biocides in antifouling paints are Tributyltin (TBT), Chlorothalonil, Dichlofluanid, Sea-Nine 211, Diuron, Irgarol 1051 and Zinc Pyrithione. Restrictions were imposed on the use of TBT, that's why organic booster biocides were recently introduced. The replacement products are generally based on copper metal oxides and organic biocides. This paper provides an overview of the effects of antifouling biocides on aquatic organisms. It will focus on the eight booster biocides in

  12. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimizing nitrate removal in woodchip beds treating aquaculture effluents

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Hoffmann, Carl Christian

    2016-01-01

    Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical...... and/or economic reasons.A potential alternative technology for removing nitrate currently applied for treating surface and drainage water is based on using wood by-products as a carbon source for denitrification. Using lab-scale horizontal-flow woodchip filters, the current study investigated...... the potential of optimizing woodchip reactors for treating aquaculture effluent. A central composite design (CCD) was applied to assess the effects of simultaneously changing the empty bed contact time (EBCTs of 5.0-15.0 h; corresponding to theoretical hydraulic retention times of 3.3-9.9 h) and bicarbonate...

  14. Implications of water pollution for aquacultural development in Nigeria

    African Journals Online (AJOL)

    Pollution is an age – long problem which has become wide spread due to increase in human population, expanding human settlement and advances in production technologies. Similarly, aquaculture is also on the increase but as a result of increase in the demand of cheap, high quality protein necessitated by high ...

  15. Impact of aquaculture on coastal marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Abidi, S.A.H.

    expanding marine fish and shellfish farming, world over. Accelerated development in techniques and equipment in the last three decades has created negative environmental impact and the subject of increasing heated debate in the advanced countries...

  16. Fish production practices and use of aquaculture technologies ...

    African Journals Online (AJOL)

    The study investigated types of improved aquaculture technologies used by the ... fish farmers culture fish in earthen ponds, for commercial and home consumption ... fishes/m2 (98.3%), water quality management (99.1%) and fish ...

  17. Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens.

    Science.gov (United States)

    Peng, Xuan-Xian

    2013-01-01

    China is the largest fishery producer worldwide in term of its aquaculture output, and plays leading and decisive roles in international aquaculture development. To improve aquaculture output further and promote aquaculture business development, infectious diseases and immunity of fishes and other aquaculture species must be studied. In this regard, aquaculture proteomics has been widely carried out in China to get a better understanding of aquaculture host immunity and microbial pathogenesis as well as host-pathogen interactions, and to identify novel disease targets and vaccine candidates for therapeutic interventions. These proteomics studies include development of novel methods, assays, and advanced concepts in order to characterize proteomics mechanisms of host innate immune defense and microbial pathogenesis. This review article summarizes some recently published technical approaches and their applications to aquaculture proteomics with an emphasis on the responses of aquaculture animals to bacteria, viruses, and other aqua-environmental stresses, and development of broadly cross-protective vaccine candidates. The reviewed articles are those that have been published in international peer reviewed journals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Antimicrobial peptides in marine invertebrate health and disease.

    Science.gov (United States)

    Destoumieux-Garzón, Delphine; Rosa, Rafael Diego; Schmitt, Paulina; Barreto, Cairé; Vidal-Dupiol, Jeremie; Mitta, Guillaume; Gueguen, Yannick; Bachère, Evelyne

    2016-05-26

    Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  19. Economic impacts of marine ecological change: Review and recent contributions of the VECTORS project on European marine waters

    Science.gov (United States)

    Groeneveld, Rolf A.; Bartelings, Heleen; Börger, Tobias; Bosello, Francesco; Buisman, Erik; Delpiazzo, Elisa; Eboli, Fabio; Fernandes, Jose A.; Hamon, Katell G.; Hattam, Caroline; Loureiro, Maria; Nunes, Paulo A. L. D.; Piwowarczyk, Joanna; Schasfoort, Femke E.; Simons, Sarah L.; Walker, Adam N.

    2018-02-01

    Marine ecological change is likely to have serious potential economic consequences for coastal economies all over the world. This article reviews the current literature on the economic impacts of marine ecological change, as well as a number of recent contributions to this literature carried out under the VECTORS project. We focus on three main types of change, namely invasive alien species; outbreak-forming species, such as jellyfish and toxic algae; and gradual changes in species distribution and productivity. The case studies available in the literature demonstrate that the impacts of invasions and outbreaks on fisheries, aquaculture, and tourism can potentially amount to several tens of millions of dollars each year in some regions. Moreover, stated preference studies suggest a substantial impact on coastal tourism and non-use values that is likely not visible in case studies of specific outbreak events. Climate-driven gradual changes in distribution and productivity of commercial fish stocks will have an impact on fisheries, although these impacts are likely to be overshadowed by much larger changes in prices of seafood and fuel.

  20. Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems

    Science.gov (United States)

    Raised rainbow trout Oncorhynchus mykiss in six replicated water recirculation aquaculture systems (WRAS), and manipulated environmental conditions to promote bacterial gill disease (BGD). For each episode of BGD, gill tissue was sampling from affected fish, unaffected fish within the same WRAS, and...

  1. An integrated fish-plankton aquaculture system in brackish water.

    Science.gov (United States)

    Gilles, S; Fargier, L; Lazzaro, X; Baras, E; De Wilde, N; Drakidès, C; Amiel, C; Rispal, B; Blancheton, J-P

    2013-02-01

    Integrated Multi-Trophic Aquaculture takes advantage of the mutualism between some detritivorous fish and phytoplankton. The fish recycle nutrients by consuming live (and dead) algae and provide the inorganic carbon to fuel the growth of live algae. In the meanwhile, algae purify the water and generate the oxygen required by fishes. Such mechanism stabilizes the functioning of an artificially recycling ecosystem, as exemplified by combining the euryhaline tilapia Sarotherodon melanotheron heudelotii and the unicellular alga Chlorella sp. Feed addition in this ecosystem results in faster fish growth but also in an increase in phytoplankton biomass, which must be limited. In the prototype described here, the algal population control is exerted by herbivorous zooplankton growing in a separate pond connected in parallel to the fish-algae ecosystem. The zooplankton production is then consumed by tilapia, particularly by the fry and juveniles, when water is returned to the main circuit. Chlorella sp. and Brachionus plicatilis are two planktonic species that have spontaneously colonized the brackish water of the prototype, which was set-up in Senegal along the Atlantic Ocean shoreline. In our system, water was entirely recycled and only evaporation was compensated (1.5% volume/day). Sediment, which accumulated in the zooplankton pond, was the only trophic cul-de-sac. The system was temporarily destabilized following an accidental rotifer invasion in the main circuit. This caused Chlorella disappearance and replacement by opportunist algae, not consumed by Brachionus. Following the entire consumption of the Brachionus population by tilapias, Chlorella predominated again. Our artificial ecosystem combining S. m. heudelotii, Chlorella and B. plicatilis thus appeared to be resilient. This farming system was operated over one year with a fish productivity of 1.85 kg/m2 per year during the cold season (January to April).

  2. Aquaculture Simulator

    OpenAIRE

    Bøe, Trond Anders

    2015-01-01

    Salmon fish farming has evolved to become a multi-billion dollar industry for Norway, with a significant growth in the last 10 years. With the introduction of modern and advanced technical equipment and higher environmental demands, follows a need for further training of experienced fish farmers and aquaculture students. Spreading knowledge about aquaculture and get people interested in the industry is important in order to secure future growth. This project will continue the development o...

  3. Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate

    International Nuclear Information System (INIS)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.; Chang, Y.-F.; Chen, Y.-M.; Shih, K.-C.

    2005-01-01

    A water treatment unit, mainly consisting of free water surface (FWS) and subsurface flow (SF) constructed wetland cells, was integrated into a commercial-scale recirculating aquaculture system for intensive shrimp culture. This study investigated performance of the treatment wetlands for controlling water quality. The results showed that the FWS-SF cells effectively removed total suspended solids (55-66%), 5-day biochemical oxygen demand (37-54%), total ammonia (64-66%) and nitrite (83-94%) from the recirculating water under high hydraulic loading rates (1.57-1.95 m/day). This led to a water quality that was suitable for shrimp culture and effluent that always satisfied the discharge standards. The area ratios of wetlands to culture tank being demonstrated (0.43) and calculated (0.096) in this study were both significantly lower than the reported values. Accordingly, a constructed wetland was technically and economically feasible for managing water quality of an intensive aquaculture system. - A constructed wetland was found to be technically and economically feasible for managing water quality of an intensive recirculating aquaculture system

  4. Levels of dioxin (PCDD/F) and PCBs in a random sample of Australian aquaculture-produced Southern Bluefin Tuna (Thunnus maccoyii)

    Energy Technology Data Exchange (ETDEWEB)

    Padula, D.; Madigan, T.; Kiermeier, A.; Daughtry, B.; Pointon, A. [South Australian Research and Development Inst. (Australia)

    2004-09-15

    To date there has been no published information available on the levels of dioxin (PCDD/F) and PCBs in Australian aquaculture-produced Southern Bluefin Tuna (Thunnus maccoyii). Southern Bluefin Tuna are commercially farmed off the coast of Port Lincoln in the state of South Australia, Australia. This paper reports the levels of dioxin (PCDD/F) and PCBs in muscle tissue samples from 11 randomly sampled aquaculture-produced Southern Bluefin Tuna collected in 2003. Little published data exists on the levels of dioxin (PCDD/F) and PCBs in Australian aquacultureproduced seafood. Wild tuna are first caught in the Great Australian Bight in South Australian waters, and are then brought back to Port Lincoln where they are ranched in sea-cages before being harvested and exported to Japan. The aim of the study was to identify pathways whereby contaminants such as dioxin (PCDD/F) and PCBs may enter the aquaculture production system. This involved undertaking a through chain analysis of the levels of dioxin (PCDD/F) and PCBs in wild caught tuna, seafloor sediment samples from the marine environment, levels in feeds and final harvested exported product. Detailed study was also undertaken on the variation of dioxin (PCDD/F) and PCBs across individual tuna carcases. This paper addresses the levels found in final harvested product. Details on levels found in other studies will be published elsewhere shortly.

  5. Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study

    Directory of Open Access Journals (Sweden)

    József Popp

    2018-01-01

    Full Text Available This article presents the history of integrated farming in aquaculture through a Hungarian case study. The development of Hungarian integrated aquaculture is aligned with global trends. In the previous millennium, the utilization of the nutrients introduced into the system was the main aspect of the integration. In Hungary, technologies that integrated fish production with growing crops and animal husbandry appeared, including for example: large-scale fish-cum-rice production; fish-cum-duck production; and integrated pig-fish farming which were introduced in the second half of the 20th century. Today, the emphasis is on integrating the use of the kind of feed where the main goal is to minimize nutrient loads in the surrounding natural ecosystems and to maximize the utilization of the unit’s water resources. The various modern integrated freshwater aquaculture systems, such as intensive fish production combined with wetland, recirculation aquaculture system and multi-functional aquaculture, have proved their viability. However, the future opportunities for these systems have not always been properly recognized and acknowledged when the future of European aquaculture is discussed.

  6. Silicon Isotopes of Marine Pore Water: Tracking the Destiny of Marine Biogenic Opal

    Science.gov (United States)

    Cassarino, L.; Hendry, K. R.

    2017-12-01

    Silicon isotopes (δ30Si) are a powerful tool for the studying of the past and present silicon cycles, which is closely linked to the carbon cycle. Siliceous phytoplankton, such as diatoms, as one of the major conveyors of carbon to marine sediments. δ30Si from fossil diatoms has been shown to represent past silicic acid (DSi) utilization in the photic zone, since the lighter isotope is preferentially incorporated in their skeleton, the frustule. This assumes that species in the sediments depict past blooms and that frustules are preserved in their initial state during burial. Here we present new silicon isotopes data of sea water and pore water of deep marine sediments from two contrasted environments, the Equatorial Atlantic and West Antarctic Peninsula. δ30Si and DSi concentration, of both sea water and pore water, are negatively correlated. Marine biogenic opal dissolution can be tracked using δ30Si signature of pore water as lighter signals and high DSi concentrations are associated with the biogenic silica. Our data enhances post depositional and diagenesis processes during burial with a clear highlight on the sediment water interface exchanges.

  7. Sustainable aquaculture of Asian arowana--a review.

    Science.gov (United States)

    Medipally, S R; Yusoff, F M; Sharifhuddin, N; Shariff, M

    2016-07-01

    Asian arowana, Scleropages formosus is a highly valued aquarium fish in the world, particularly in Asian countries, and has been listed as one of the most highly endangered species. This is a freshwater, carnivorous, fairly large mouth breeding fish belonging to the family Osteoglossidae. Arowana can be found in different colour varieties such as green, red, silver and golden. Among these varieties, Malaysian golden is the most valuable fish and is endemic to the Krian riverine system, Malaysia. However, overexploitation, habitat change and pollution have caused a serious decline of this arowana variety. Recently, arowana aquaculture industry is expanding rapidly in Southeast Asian countries. However, difficulties in an accurate differentiation of sex and strains, causing imbalanced stocking ratios for optimum spawning, remain major obstacles in maximizing arowana production. In addition, problems in sustainable water sources of suitable quality and prevention of diseases need to be addressed. Recirculating aquaculture system (RAS) and bioremediation are two possible technologies that could be used to minimize pollution and ensure adequate high-quality water for arowana culture. In addition, the application of appropriate molecular markers for sex and strain identification is also an important strategy required for the improvement of captive breeding. This review discusses several issues such as the importance of arowana as an aquarium fish, its market demand, current problems in the arowana aquaculture industry and the possible technologies to enhance reproductive capacity and increase culture production. ?

  8. The effect of recirculating aquaculture systems on the concentrations of heavy metals in culture water and tissues of Nile tilapia Oreochromis niloticus

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verreth, J.A.J.

    2011-01-01

    To date, farming fish in recirculating aquaculture systems (RAS) is one of the most environmentally friendly ways of producing fish. However, with the trend towards intensification, and consequently decrease in water exchange rates, these systems may accumulate substances, such as heavy metals, in

  9. [Effect of water storage and aquaculture on Oncomelania hupensis control in tidal flats wetlands of islet-beach type area of Dantu section of lower reaches of Yangtze River].

    Science.gov (United States)

    Li, Ye-fang; Huang, Yi-xin; Wang, He-sheng; Hang, De-rong; Chen, Xiang-ping; Xie, Yi-feng; Zhang, Lian-heng

    2015-12-01

    To evaluate the effect and the benefits of the projects of water storage and aquaculture on Oncomelania hupensis snail control in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River. The projects of water storage and aquaculture on 0. hupensis snail control were implemented in the tidal flats wetlands of islet-beach type of lower reaches of the Yangtze River. The breed situation of the snails was investigated by the conventional method before and after the project implementation and the effect of control and elimination of the snails by the projects were evaluated. At the same time, the cost-benefit analysis of two projects among them was performed by the static benefit-cost ratio method. All of 0. hupensis snails were eliminated in the first year after the implementation of seven water storage and aquaculture projects. The costs of detection and control of snails saved by each project was 69.20 thousand yuan a year on average. The annual net benefits of the "Nanhao Group 10 beach" project and "Wutao Group 6-14 beach" project were 2 039.40 thousand yuan and 955.00 thousand yuan respectively, and the annual net benefit-cost ratios were 1.09: 1 and 1.07: 1 respectively. The O. hupensis snails could be rapidly eliminated by the water storage and aquaculture, and the economic benefit is obvious, but the wetland ecological protection and flood control safety should be considered in the tidal flats wetlands of islet-beach type area of lower reaches of the Yangtze River.

  10. The Governance of Multi-Use Platforms at Sea for Energy Production and Aquaculture: Challenges for Policy Makers in European Seas

    NARCIS (Netherlands)

    Stuiver, Marian; Soma, Katrine; Koundouri, Phoebe; Burg, Van Den Sander; Gerritsen, Alwin; Rockmann, C.

    2016-01-01

    European seas are encountering an upsurge in competing marine activities and infrastructures. Traditional exploitation such as fisheries, tourism, transportation, and oil production are accompanied by new sustainable economic activities such as offshore windfarms, aquaculture, and tidal and wave

  11. Introducing a new disinfectant for U.S. aquaculture - peracetic acid

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  12. Study on method and mechanism of deep well circulation for the growth control of Microcystis in aquaculture pond.

    Science.gov (United States)

    Cong, Haibing; Sun, Feng; Wu, Jun; Zhou, Yue; Yan, Qi; Ren, Ao; Xu, Hu

    2017-06-01

    In order to control the growth of Microcystis in aquaculture ponds and reduce its adverse effect on water quality and aquaculture, a production-scale experiment of deep well circulation treatment was carried out in an aquaculture pond with water surface area of 63,000 m 2 and water depth of 1.6-2.0 m. Compared with the control pond, the experiment pond had better water quality as indicated by 64.2% reduction in chlorophyll a, and 81.1% reduction in algal cells. The chemical oxygen demand, total nitrogen, and total phosphorus concentration were reduced by 55.1%, 57.5%, and 50.8%, respectively. The treatment efficiency is mainly due to the growth control of Microcystis (i.e. cell reduction of 96.4%). The gas vesicles collapsing because of the water pressure was suggested to be the mechanism for Microcystis suppression by the deep well circulation treatment. The Microcystis lost its buoyancy after gas vesicles collapsed and it settled to the bottom of the aquaculture pond. As a result, the algae reproduction was suppressed because algae could only grow in the area with enough sunlight (i.e. water depth less than 1 m).

  13. Histopathology of Marine and Freshwater Fish Lymphocytosis Disease Virus (LCDV)

    International Nuclear Information System (INIS)

    Hossain, M.; Myung-Joo, Oh

    2011-01-01

    Lymphocytosis disease (LCD) in fishes is caused by the agent called lymphocytosis disease virus (LCDV). LCDV is a chronic and benign virus. The disease affects 96 species of marine and fresh water fishes ranged among 34 families in the world. Affected fish with LCD has a typical external symptom with clusters consisted of enormously hypertrophied dermal cells on the skin and fins. The hypertrophied cells, generally named lymphocytosis cells, have a thick hyaline capsule, an enlarged nucleus and prominent basophilic cytoplasmic inclusions. Among the four species of fishes, olive flounder Paralichthys olivaceus, and rockfish Sebastes schlegeli were marine cultured fish, and gourami Trichogaster leeri and painted glass fish Channa baculis were freshwater ornamental fish. Although LCD causes low mortality, the disfigurement of infected fish can make them unsellable. Thus LCD has resulted in an important economic loss in the aquaculture industry. This study of histopathology may be adequate for a presumptive diagnosis of lymphocytosis diseases both in marine and freshwater fish species. (author)

  14. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  15. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China

    Science.gov (United States)

    Wu, Shuang; Hu, Zhiqiang; Hu, Tao; Chen, Jie; Yu, Kai; Zou, Jianwen; Liu, Shuwei

    2018-02-01

    Inland aquaculture ponds have been documented as important sources of atmospheric methane (CH4) and nitrous oxide (N2O), while their regional or global source strength remains unclear due to lack of direct flux measurements by covering more typical habitat-specific aquaculture environments. In this study, we compared the CH4 and N2O fluxes from rice paddies and nearby inland fish aquaculture wetlands that were converted from rice paddies in southeast China. Both CH4 and N2O fluxes were positively related to water temperature and sediment dissolved organic carbon, but negatively related to water dissolved oxygen concentration. More robust response of N2O fluxes to water mineral N was observed than to sediment mineral N. Annual CH4 and N2O fluxes from inland fish aquaculture averaged 0.51 mg m-2 h-1 and 54.78 μg m-2 h-1, amounting to 42.31 kg CH4 ha-1 and 2.99 kg N2O-N ha-1, respectively. The conversion of rice paddies to conventional fish aquaculture significantly reduced CH4 and N2O emissions by 23% and 66%, respectively. The emission factor for N2O was estimated to be 0.46% of total N input in the feed or 1.23 g N2O-N kg-1 aquaculture production. The estimate of sustained-flux global warming potential of annual CH4 and N2O emissions and the net economic profit suggested that such conversion of rice paddies to inland fish aquaculture would help to reconcile the dilemma for simultaneously achieving both low climatic impacts and high economic benefits in China. More solid direct field measurements from inland aquaculture are in urgent need to direct the overall budget of national or global CH4 and N2O fluxes.

  16. From aquaculture goals to real social and ecological impacts: carp introduction in rural Central Mexico.

    Science.gov (United States)

    Tapia, Mónica; Zambrano, Luis

    2003-06-01

    Aquaculture has been seen as a solution to food/protein availability in rural populations of poor countries. It is mainly based on exotic species, that produce changes in host system dynamics once introduced. Aquaculture not only changes the ecology of freshwater systems, but can also lead to modification of social relations. Until now, aquaculture programs have not been adequately analyzed no questioned enough. We evaluate both ecological effects and local social benefits of common carp aquaculture programs in shallow ponds of rural areas, using a municipality in Central Mexico as a case study. Using an "environmental entitlements" approach, our findings suggest that: i) carp aquaculture increases water turbidity and depletes native species reducing the poor people's access to them; ii) aquaculture mainly benefits pond owners rather than poor peasants. This mainly results from changes in fishing rights. We conclude that aquaculture policy goals and assumptions of benefits should be reviewed, if the negative ecological effects are to be decreased and conditions for people in rural areas are to be improved.

  17. Chinese aquaculture in light of green growth

    OpenAIRE

    Leilei Zou; Shuolin Huang

    2015-01-01

    Over China’s long history of aquaculture development, great achievements have been made by enhancing aquaculture as the major contributor to aquatic products supply, while lessons have also been learnt that aquaculture has been developing at the cost of environment. Priority is now given to the aquaculture development in the light of green growth, which attaches importance to both environment protection and high productivity. To sustain Chinese aquaculture in a green-growth manner, polices ch...

  18. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    Science.gov (United States)

    Martinez-Porchas, Marcel; Martinez-Cordova, Luis R.

    2012-01-01

    Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice. PMID:22649291

  19. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    Directory of Open Access Journals (Sweden)

    Marcel Martinez-Porchas

    2012-01-01

    Full Text Available Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice.

  20. Effects of semi-continous peracetic acid dosing on rainbow trout Oncorhynchus mykiss performance, water quality, and off-flavor compounds in recirculation aquaculture systems

    Science.gov (United States)

    Water clarifying and disinfection techniques such as ozonation and ultraviolet irradiation are commonly used in recirculation aquaculture systems (RAS); however, the capital and operating costs of these technologies are expensive. Cost-effective treatment options that maintain fish health and simult...

  1. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability

    Science.gov (United States)

    Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.

    2018-02-01

    Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.

  2. AQUACULTURE AS A MEXICAN STRATEGY FOR ECONOMIC DEVELOPMENT OF COASTAL AND RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Antonio Mártir Mendoza

    2006-09-01

    Full Text Available SUMMARYAquaculture is one of the worldwide economic activities which has grown in the last 30 years at an annual rate of 9-10.0 %. Poultry, pork, lamb and beef meat production have increased only at an annual rate of 3.0 % in the same period, and in the last five years has decreased due to aviar fever and other viral difficulties. While aquaculture growth takes place in far away countries as China near by countries as Costa Rica, Honduras, Brazil and Chile keeps the same tendency. As far as Mexico´s aquaculture is concerned, it has grown steadily, missing, even its way out. On the one hand fish catches do not grow since the middle of the 80´s when fish production reached 1.5 million tones. On the other hand aquaculture in fresh waters and in sea waters are almost staging due to the loss of authority and governmental management capacity to make decisions. The recently elected federal government which will take office next December 1st, has on its hands the opportunity to favor aquaculture production and doing so, to develop Mexican coastal and rural areas.

  3. Sustainable aquaculture in ponds: Principles, practices and limits

    NARCIS (Netherlands)

    Bosma, R.H.; Verdegem, M.C.J.

    2011-01-01

    The global aquaculture production of crustaceans, shellfish and fish has to increase to satisfy the growing demand and also to compensate for the reduced capture from overexploited fisheries. Extending the area of brackish and fresh water ponds is constrained by the limited availability of land and

  4. Background paper on aquaculture research

    OpenAIRE

    Wenblad, Axel; Jokumsen, Alfred; Eskelinen, Unto; Torrissen, Ole

    2013-01-01

    The Board of MISTRA established in 2012 a Working Group (WG) on Aquaculture to provide the Board with background information for its upcoming decision on whether the foundation should invest in aquaculture research. The WG included Senior Advisor Axel Wenblad, Sweden (Chairman), Professor Ole Torrissen, Norway, Senior Advisory Scientist Unto Eskelinen, Finland and Senior Advisory Scientist Alfred Jokumsen, Denmark. The WG performed an investigation of the Swedish aquaculture sector including ...

  5. Isotopes in aquaculture research

    International Nuclear Information System (INIS)

    Ayyappan, S.; Dash, B.; Ghosh, A.S.

    1996-01-01

    The applications of isotopes in aquaculture research include areas like aquatic production process, nutrient cycles and food chain dynamics, fish nutrition, fish physiology, genetics and immunology. The radioisotopes commonly used are beta emitters. The use of different radioisotopes in aquaculture research are presented. 2 tabs

  6. Environmental impact analysis of aquaculture in net cages in a ...

    African Journals Online (AJOL)

    Environmental impact analysis of aquaculture in net cages in a Brazilian water reservoir, based in zooplankton communities. Maria Cristina Crispim, Karla Patrícia Ponte Araújo, Hênio do Nascimento Melo Júnior ...

  7. A Sociotechnical Systems Approach To Coastal Marine Spatial Planning

    Science.gov (United States)

    2016-12-01

    SYSTEMS APPROACH TO COASTAL MARINE SPATIAL PLANNING by Tyler B. McDonald December 2016 Thesis Advisor: Karen Holness Co-Advisor: Tom...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE A SOCIOTECHNICAL SYSTEMS APPROACH TO COASTAL MARINE SPATIAL PLANNING...engineering perspective and specifically used a sociotechnical systems approach . The research investigated aquaculture permitting from the

  8. Derivation of a water quality guideline for aluminium in marine waters.

    Science.gov (United States)

    Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J

    2015-01-01

    Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.

  9. Potential for use of condenser cooling waters from fossil fuel and nuclear power generating stations for freshwater aquaculture in cold climates

    International Nuclear Information System (INIS)

    Armstrong, G.C.

    1976-01-01

    Some limiting factors to the future development of freshwater aquaculture are considered. The most important of these are the need for new and improved technology for the production of better quality products at lower cost and for the promotion and establishment of new markets. The use of relatively small amounts of heated effluent water from power generating stations to optimize water temperatures is one feasible method for increasing growth and lowering the cost of production. (author)

  10. Behavioral observations of the endangered Rio Grande silvery minnow in a conservation aquaculture facility

    Directory of Open Access Journals (Sweden)

    Tave Douglas

    2018-03-01

    Full Text Available A major reason why conservation aquaculture is needed to improve the success of aquaculture-assisted fisheries is that traditional production aquaculture produces fish with mal-adaptive behaviors. These behaviors can be produced via domestication and culture techniques, and preventing these mal-adaptive behaviors requires integrating improvements in genetic management and culture protocols. The genetic protocols needed to minimize hatchery-induced genetic changes have received considerable attention, but changing the way fish are raised has received less effort. Conservation aquaculture cultures fish in environments that resemble their native habitats so that when stocked, they behave like wild fish rather than hatchery fish. A purpose built-conservation aquaculture facility can also be used to learn about a species’ behavior and how it reacts to changes in the environment, something which can be difficult or expensive to study in the wild. These observations can then be used to help direct both propagation and recovery management. This paper provides the rationale for why genetic management, culture systems, and management practices need to be altered to produce fish that are behaviorally similar to wild fish for aquaculture-assisted fisheries programs. It then provides a description of some of the behaviors of the endangered Rio Grande silvery minnow Hybognathus amarus that were observed at the Los Lunas Silvery Minnow Refugium, a purpose-built conservation aquaculture facility, and explains how some of these behaviors can be used in culture and recovery management. Behaviors described are: schooling; predator avoidance; feeding behavior; use of vegetation for cover and predator avoidance; habitat use by bottom substrate; location in the water column; upstream movement via a fish ladder; movement upstream in a high-velocity channel; response to changes in water level; spawning behavior; seine avoidance; and Kaah-chee-nyee Srkaash, a behavior

  11. Potential drivers of virulence evolution in aquaculture

    Science.gov (United States)

    Kennedy, David A.; Kurath, Gael; Brito, Ilana L.; Purcell, Maureen K.; Read, Andrew F.; Winton, James R.; Wargo, Andrew R.

    2016-01-01

    Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.

  12. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge

    2012-01-01

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous...... growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance...... questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined...

  13. Proceedings of the Third Annual Student Symposium on Marine Affairs (University of Hawaii, Manoa Campus, January 13, 1978).

    Science.gov (United States)

    1978

    This volume of the proceedings of the Third Annual Student Symposium on Marine Affairs contains 32 papers in eight categories: (1) coastal zone management; (2) marine resources; (3) aquaculture; (4) alternative marine energy sources; (5) ocean engineering; (6) recreational facilities; (7) marine biology; and (8) options. The papers are the…

  14. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    OpenAIRE

    Seiler, Claudia; Berendonk, Thomas U.

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance ...

  15. Integration of a wind farm with a wave- and an aquaculture farm

    OpenAIRE

    He, J.; Weissenberger, J.; Bergh, Øivind; Hjøllo, Solfrid Sætre; Wehde, Henning; Agnalt, Ann-Lisbeth; Chen, Z.; Olason, D.; Thorsteinson, B.; Fosso, O.B.

    2011-01-01

    There is a growing interest in placing wind farms offshore. 140 GW of offshore wind are currently being planned to reach the EU energy 2020 goal. However, an offshore wind farm occupies a large area and competes with other users of the maritime space. The integration of an offshore wind farm with other marine energy producers such as wave energy and other maritime users such as aquaculture farms may result in significant benefits in terms of economics, optimising spatial utilization, and mini...

  16. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems

    Science.gov (United States)

    The effect of feeding three commercially available diets manufactured by three U.S. feed companies on production characteristics and body composition of juvenile cobia Rachycentron canadum reared in recirculating aquaculture systems (RAS) was evaluated in a 57 d growth trial. Juvenile cobia (26.7 +...

  17. Increased competition for aquaculture from fisheries

    DEFF Research Database (Denmark)

    Jensen, Frank; Nielsen, Max; Nielsen, Rasmus

    2014-01-01

    ; and supplies from aquaculture have grown continuously. In this paper, the impact of improved fisheries management on aquaculture growth is studied assuming perfect substitution between farmed and wild fish. We find that improved fisheries management, ceteris paribus, reduces the growth potential of global...... aquaculture in markets where wild fisheries constitute a large share of total supply....

  18. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  19. Potential use of power plant reject heat in commercial aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10/sup 5/ kg/year of fish, 1.5 x 10/sup 6/ kg/year of clam meat, and 1.5 x 10/sup 4/ kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated.

  20. Potential use of power plant reject heat in commercial aquaculture

    International Nuclear Information System (INIS)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10 5 kg/year of fish, 1.5 x 10 6 kg/year of clam meat, and 1.5 x 10 4 kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated

  1. A summary of global 129I in marine waters

    International Nuclear Information System (INIS)

    He Peng; Aldahan, A.; Possnert, G.; Hou, X.L.

    2013-01-01

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic 129 I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on 129 I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on 129 I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic 129 I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about 129 I distribution in the marine waters.

  2. Shallow waters: social science research in South Africa's marine ...

    African Journals Online (AJOL)

    Shallow waters: social science research in South Africa's marine ... certain issues and social interactions in the marine environment but this work is limited ... Keywords: coastal development, economics, governance, human dimensions, society

  3. Growth and Histopathological Effects of Chronic Exposition of Marine Pejerrey Odontesthes argentinensis Larvae to Petroleum Water-Soluble Fraction (WSF)

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, Emeline Pereira; Rodrigues, Ricardo Vieira; Moreira, Caue Bonucci [Programa de Pos-Graduacao em Aquicultura, Laboratorio de Piscicultura Estuarina e Marinha, Universidade Federal do Rio Grande, Rio Grande (Brazil); Romano, Luis Alberto; Sampaio, Luis Andre [Laboratorio de Piscicultura Estuarina e Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande (Brazil); Miranda-Filho, Kleber Campos [Escola de Veterinaria, Departamento de Zootecnia, Laboratorio de Aquacultura, Universidade Federal de Minas Gerais, Belo Horizonte (Brazil)], e-mail: kmiranda2010@ufmg.br

    2012-07-15

    The water-soluble fraction (WSF) of petroleum contains a mixture of polycyclic aromatic hydrocarbons, volatile hydrocarbons, phenols, and heterocyclic compounds, considered deleterious to aquatic biota. Marine 'pejerrey' Odontesthes argentinensis (Teleostei: Atherinopsidae) has a great commercial importance in local fisheries and a high potential for aquaculture. The aim of this study was to evaluate the histopathological effects in 'pejerrey' larvae exposed to different concentrations of petroleum WSF. The chronic toxicity test was conducted with newly hatched larvae exposed for 21 days to sublethal concentrations of WSF (2.5, 5, 10, and 20 % of WSF), plus one control. Survival and growth were significantly lower in the highest concentration. Several histopathological changes were found in the gills (e.g., hyperplasia, aneurysms, edema, and necrosis), kidney (e.g., nuclear alterations, decrease in the hematopoietic cells), and liver (e.g., hypertrophy, karyorrhexis, and karyopyknosis). An index of branchial lesion was proposed to standardize gill lesions to different pollutants.

  4. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    Science.gov (United States)

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  5. The crowded sea: incorporating multiple marine activities in conservation plans can significantly alter spatial priorities.

    Directory of Open Access Journals (Sweden)

    Tessa Mazor

    Full Text Available Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes. We applied the marine zoning decision support tool Marxan to each planning scenario and tested a the ability of each scenario to reach biodiversity targets, b the change in opportunity cost and c the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and

  6. The Environmentally Sound Aquaculture Strategies Based on Bioaccumulation of Heavy Metal of Lead (Pb) on Seaweed of Gracilaria verrucosa on Aquaculture Areas of MuararejaVillage, Tegal City

    Science.gov (United States)

    Nurjanah; Ambariyanto; Supriharyono; Yulianto, Bambang

    2018-02-01

    Community activities such as industry, trade, animal husbandry and agriculture and ssettlements resulting in heavy metals of lead (Pb) can be accumulated in water, sediment and seaweed Gracillaria verrucosa. It can contaminate ponds and affect aquaculture activities in Tegal. Seaweed Gracilaria verrucosa is afisheries commodity that has economical value and cultivated in the area of aquaculture MuararejaTegal. It can serve as fitoremedian that will help reduce the impact of heavy metal pollution due to its ability to accumulate pollutants. The objective of this study was to analyze bioaccumulation of heavy metals of lead (Pb) and its relationship with water quality management in order to develop seaweed cultivation of Gracillaria verrucosa in ponds in the area of aquaculture MuararejaTegal. The method used in this study is a survey, analysis of heavy metals of lead (Pb) in pond water, sediment and seaweed using Atomic Absorption Spectrophotometer (AAS) and the data were analyzed by descriptive quantitative. Bioconcentration of lead (Pb) during the dry season in pond water, sediment and seaweed Gracillaria verrucosa was measured from 0.003 to 0.025 ppm,5.543 to 23.699 ppm and 0.209 to 0.326 ppm respectively. While in the rainy season bioconcentration of lead (Pb) are from 0.003 to 0.015 ppm, sediment from 6.377 to 9.858 ppm and 0.209 to 0.326 ppm respectively. Bioconcentration of Pb in dry season was higher than in the rainy season and the biggest bioconcentration was found in the sediment pond waters. Pb bioaccumulation low and still below the quality standards of the Ministry of Environment decision 51 of 2004 so that the product is safe for consumption.

  7. Stringency of environmental regulation and aquaculture growth

    DEFF Research Database (Denmark)

    Gedefaw Abate, Tenaw; Nielsen, Rasmus; Tveterås, Ragnar

    2016-01-01

    remarkable growth in aquaculture while others have stagnated or even declined have not been determined. In this article, we investigate whether environmental regulations have an impact on aquaculture growth. Using a cross-country regression analysis, we show that stringent environmental regulations......During the last three decades, aquaculture has been the fastest growing animal-food-producing sector in the world, accounting for half of the present seafood supply. However, there is a significant growth disparity among aquaculture-producing countries. The reasons why some countries have achieved...... are negatively related to aquaculture growth, whereas GDP growth has a positive effect. Countries often face a difficult balancing act between growth and environmental considerations when devising regulations. Our empirical results suggest that stricter environmental regulations in developed countries have...

  8. High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture.

    Science.gov (United States)

    Jung, Jaejoon; Jee, Seung Cheol; Sung, Jung-Suk; Park, Woojun

    2016-01-01

    The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

  9. Performance evaluation of pumping systems used in commercial-scale, split-pond aquaculture

    Science.gov (United States)

    Split-pond aquaculture systems have been adopted widely by United States catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two b...

  10. Meeting the Needs for More Fish Through Aquaculture

    Science.gov (United States)

    Giap, D. H.; Lam, T. J.

    2015-10-01

    Fish is one of the major sources of animal protein. Due to rising world populations, increasing income and urbanization, demand for fish has been increasing. In order to meet the need for more fish, aquaculture has become increasingly important as wild populations and production from capture fisheries have declined due to overfishing and poor management. In recent years, production from aquaculture has increased rapidly to address the shortfalls in capture fisheries, especially in Asia where aquaculture production accounts for about 90% of world aquaculture production by volume. This paper reviews the status of the world’s fish production, provides an update on Asian aquaculture, and highlights developments that are contributing to sustainable fish production, particularly integrated multi-trophic aquaculture and aquaponics.

  11. Water cortisol and testosterone in Nile tilapia (Oreochromis niloticus) recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, Vasco C.; Martins, Catarina I.M.; Eding, Ep H.; Canário, Adelino V.M.; Verreth, Johan A.J.

    2017-01-01

    The accumulation of steroids released by fish in recirculating aquaculture systems (RAS) may potentially influence their physiology and behavior. The present study examined the release rate of cortisol and testosterone by Nile tilapia, Oreochromis niloticus, and their accumulation in six identical

  12. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  13. Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology

    Directory of Open Access Journals (Sweden)

    Yosmina H Tapilatu

    2016-05-01

    Full Text Available Indonesian vast marine waters, which constitute 81% of the country’s total area, have a great potential in terms of marine bacteria biodiversity. However, marine bacteria are still under-explored in Indonesia, especially in its eastern area. Known as one of the biodiversity hotspots worldwide, this area surely harbors various marine bacteria of particular interest. Despite the growing number of oceanic expeditions carried out in this area, only little attention has been attributed to marine bacteria. Limited literatures exist on the isolation of marine bacteria producing compounds with potential biotechnological applications from the aforementioned waters. There are two main causes of this problem, namely lack of infrastructures and limited competent human resources. In this paper, I will highlight the preliminary results of isolation and bioprospecting attempts on this group of bacteria during the last fifteen years. These results indicate that research activities on marine bacteria in this area need to be intensified, to uncover their potential applications in various biotechnological fields. Keywords: marine bacteria, eastern Indonesian waters, biotechnological application

  14. THE DEVELOPMENT OF THE ORGANIC AQUACULTURE. CASE STUDY: ROMANIA

    Directory of Open Access Journals (Sweden)

    Silvius STANCIU

    2015-12-01

    Full Text Available Aquaculture contribute ever more to the production of aquatic food worldwide, even if the sustainable limits for majority of wild fish stocks, are now almost reached or even exceeded. In the EU, aquaculture is an important economic activity in many coastal and continental regions. Aquaculture plays an important role in terms of access to food resources and it is necessary to use its potential to contribute to sustainable development, food security, economic growth and employment. In this regard, starting from EU aquaculture objectives, the paper intend to make an analysis of the national situation of aquaculture and its current potential. The paper presented the progress of Romanian investments in aquaculture, identifying needs and opportunities for the Romanian aquaculture development. Taking into consideration the natural resources available and the growth of global request of organic product, the development of ecologic aquaculture might represent o niche market for local producers.

  15. Identifikasi Penyakit Aeromonad pada Budi Daya Ikan Air Tawar di Bali (IDENTIFICATION OF AEROMONAD DISEASE IN FRESH WATER AQUACULTURE IN DENPASAR, BALI

    Directory of Open Access Journals (Sweden)

    Surya Amanu

    2015-05-01

    Full Text Available Fresh water and marine fish horticulture in Bali is often harmed by the outbreak of diseases such asthose caused by Aeromonas sp (aeromonad disease.Aims ofstudy were 1 to find out the primary agent ofthe aeomonad disease in the fresh water aquaculture in Bali based on conventional and molecularidentification, 2 to find out the genetic variability of Aeromonas species, 3 to determine the effectiveantibiotic against the agent. Samples of fishes were collected from 5 different locations of fresh wateraquaculture that had high number of morbidity and mortality. Many different fishes which showed clinicalsign such as skin lesion and exophthalmus were collected.Aeromonas hydrophila and A. salmonicida wereisolated and identified from fishes, they were then identified molecularly with DNA extraction, DNAamplification in 16S rRNA gene, purification and sequencing. Sequences of both Aeromonas species fromdifferent location were analysed to create the phylogenetic tree with Maximum Parsimony and NeighborJoining method. Sensitivity of 5 antibiotics to both species of Aeromonas were done to determine the bestantibiotic against the disease. Aeromonad disease were found only in 3 regions in Bali. As many as 10isolates of A.salmonicida and 11 isolates of A.hydrophila were examined. The histopathological examinationshowed dermatitis, epicarditis, retinitis, liver and kidney congestion in fish.There were two clusters ofA.salmonicida, subspecies smithiaand subspecies achromogenes.Aeromomas hydrophyla had a close relationwith A. veronii.Aeromonas salmonicida subspecies salmonicida has not been found in Bali. Enrofloxacineand gentamycin was the best antibiotic for treating the Aeromonad disease which were more effective ascompared to3 other antibiot ics (Ampicillin, Doxycycline, and Eritromycin.

  16. An integrated approach to national marine resources development

    OpenAIRE

    Levy, Jean-Pierre

    1984-01-01

    A review is presented of the various marine resources and their potential, concerning fishing, aquaculture, transportation, pollution, hydrocarbons and solid minerals, renewable energy and ocean thermal energy conversion. Administrative problems confronting their rational management in Sri Lanka are examined, considering coastal area management and development, management issues, and alternatives.

  17. Variation in some quality attributes of Atlantic salmon fillets from aquaculture related to geographic origin and water temperature

    DEFF Research Database (Denmark)

    Johansson, Gine Ørnholt; Frosch, Stina; Jørgensen, Bo Munk

    2017-01-01

    an efficient use of the information gathered in the different links of the value chain, a deeper knowledge of the correlations between the various quality attributes and factors like the geographical origin of the salmon, the company and the water temperature of the fish farm, is needed. In the present study......It is well know that factors like fat content and texture affect the yield when making products from Atlantic salmon (Salmo salar L.). The relation between these factors and other quality attributes like water holding capacity and protein content, however, has received limited attention. To enable...... a multivariate approach was taken to investigate the variation in some quality parameters (fat, protein, texture, water holding capacity, weight) amongst salmon samples (n = 136) from Norwegian aquaculture in order to establish which parameters were accounting for most of the variation seen in relation...

  18. From fresh to marine waters

    DEFF Research Database (Denmark)

    Gonçalves-Araujo, Rafael; Stedmon, Colin; Heim, Birgit

    2015-01-01

    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region...... demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation...

  19. MANAGEMENT OF SUSTAINABLE SEAWEED (Kappaphycus alvarezii AQUACULTURE IN THE CONTEXT OF CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Erlania Erlania

    2014-06-01

    Full Text Available Seaweed is an important aquaculture commodity that could contribute on climate change mitigation, related to its ability on absorbing CO2, as one of the green house gases, through photosynthesis. This study aimed to analyze seaweed potencies on carbon sequestration in the context of climate change mitigation while still resulting optimum production as primary purpose and to analyze the carrying capacity of Gerupuk Bay in order to manage sustainability of seaweed aquaculture. Seaweed, (Kappaphycus alvarezii was cultivated with long-line system in Gerupuk Bay, West Nusa Tenggara, during five months for three cultivation cycles. Samplings were conducted at days-15, 30, and 45 with CO2 absorption rates as main parameters. Water carrying capacity was calculated to determine the ability of Gerupuk Bay waters for supporting development of sustainable seaweed aquaculture. The results showed that absorption rates of CO2 by seaweed (K. alvarezii were different at each sampling days of cultivation periods; the highest value was at 10-20 days of cultivation. CO2 absorption analysis resulted based on sampling days of cultivation period could be appl ied to formulate the strategies for management of sustainable seaweed aquaculture, with optimal production and positively contributed to the environment. However, waters carrying capacity should also be considered as major aspect in the application of seaweed cultivation management, thus it can run continuously without causing conflicts with other interests.

  20. Feasibility analysis of the utilization of moderator heat for agricultural and aquacultural purposes, Bruce nuclear power development

    International Nuclear Information System (INIS)

    1977-12-01

    A study is presented of the feasibility of using moderator reject heat from the Bruce nuclear power development either to heat greenhouses or to aid in a warm water hatchery or aquaculture operation. The study examines heat extraction and delivery plans, reliability of supply, pricing schedules, the Ontario greenhouse industry, site selection criteria, water transmission and distribution, costs, approvals required, and a construction timetable. Total system analysis shows that a greenhouse facility would be viable but the aquaculture/hatchery scheme is more cost-effective. (E.C.B.)

  1. The introduction of peracetic acid as a new disinfectant for U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It is being increasingly used to ...

  2. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio

    NARCIS (Netherlands)

    Martins, C.I.; Pristin, M.G.; Ende, S.S.W.; Eding, E.H.; Verreth, J.A.J.

    2009-01-01

    The accumulation of substances in Recirculating Aquaculture Systems (RAS) may impair the growth and welfare of fish. To test the severity of contaminants accumulated in RAS, early-life stages of fish were used. Ultrafiltered water from two Recirculating Aquaculture Systems (RAS), one RAS with a high

  3. Exploration of indigenous bacteria in an intensive aquaculture system of African catfish (Clarias sp.) in Banyuwangi, Indonesia

    Science.gov (United States)

    Prayogo; Rahardja, B. S.; Asshanti, A. N.; Dewi, N. N.; Santanumurti, M. B.

    2018-04-01

    Intensive African catfish culture in tarpaulin pond was popular in Banyuwangi, Indonesia since the government supported the fisheries sector. Unfortunately, the failure of African catfish culture still occurred since the waste from fish metabolite process and feed residue decreased the water quality. Bacteria in the water could be the solution to increase the success rate of aquaculture by improving the water quality. This study purpose was to obtained indigenous bacteria in intensive aquaculture system of African catfish to improve water quality. This study successfully isolated bacteria contained with amylase, protease and lipase characteristic. Isolated bacteria in this study were identified as Pseudomonas pseudomallei (97.81%), Bacillus subtilis (95.81%) and Pseudomonas stutzeri (61.21%).

  4. The use of Probiotics in Aquaculture

    African Journals Online (AJOL)

    JOSEPH

    Addressing health questions with both pro-active and reactive programmes has thus .... Rationale for selecting and developing probiotics in aquaculture: The ... of probiotics in aquaculture could be regarded as a kind of insurance since it may ...

  5. Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems

    Science.gov (United States)

    Previous research indicates that rainbow trout (Oncorhynchus mykiss) begin to exhibit health and welfare problems when cultured within water recirculating aquaculture systems (WRAS) operated at low exchange (6.7 days hydraulic retention time) and a mean feed loading rate of 4.1 kg feed/m3 daily make...

  6. A NEW MODULA TYPO-DIMENSIONAL, CONSTRUCTIVE AND FUNCTIONAL CONCEPT OF VIVA DON EXPERT® FLOATABLE FISH CAGES FOR INTENSIVE AQUACULTURE IN INLAND WATERS

    Directory of Open Access Journals (Sweden)

    D. ONEA

    2009-10-01

    Full Text Available This scientific work presents succinct information about the trials which takes place between 2005-2009 in Constanta (fish farm Canalul Rompetrol. This trials includes the fish farming in cages and leads to finishing off and elaboration of a new modular typo-dimensional, constructive and functional concept of viva don Expert® floatable fish cages for intensive aquaculture in inland waters from Romania like an efficient solution for the qualitative and quantitative increase of local fish production’s (by water volume optimizations, plants, fish farms and technologies optimizations.

  7. Adoption of Recirculating Aquaculture Systems in Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.T.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2015-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  8. Application of Machine Learning Techniques in Aquaculture

    OpenAIRE

    Rahman, Akhlaqur; Tasnim, Sumaira

    2014-01-01

    In this paper we present applications of different machine learning algorithms in aquaculture. Machine learning algorithms learn models from historical data. In aquaculture historical data are obtained from farm practices, yields, and environmental data sources. Associations between these different variables can be obtained by applying machine learning algorithms to historical data. In this paper we present applications of different machine learning algorithms in aquaculture applications.

  9. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system.

    Science.gov (United States)

    Paudel, Shukra Raj; Choi, Ohkyung; Khanal, Samir Kumar; Chandran, Kartik; Kim, Sungpyo; Lee, Jae Woo

    2015-06-15

    This study examines the effects of temperature on nitrous oxide (N2O) emissions in a bench-scale intensive aquaculture system rearing Koi fish. The water temperature varied from 15 to 24 °C at interval of 3 °C. Both volumetric and specific rate for nitrification and denitrification declined as the temperature decreased. The concentrations of ammonia and nitrite, however, were lower than the inhibitory level for Koi fish regardless of temperature. The effects of temperature on N2O emissions were significant, with the emission rate and emission factor increasing from 1.11 to 1.82 mg N2O-N/d and 0.49 to 0.94 mg N2O-N/kg fish as the temperature decreased from 24 to 15 °C. A global map of N2O emission from aquaculture was established by using the N2O emission factor depending on temperature. This study demonstrates that N2O emission from aquaculture is strongly dependent on regional water temperatures as well as on fish production. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Does Aquaculture Support the Needs of Nutritionally Vulnerable Nations?

    Directory of Open Access Journals (Sweden)

    Christopher D. Golden

    2017-05-01

    Full Text Available Aquaculture now supplies half of the fish consumed directly by humans. We evaluate whether aquaculture, given current patterns of production and distribution, supports the needs of poor and food-insecure populations throughout the world. We begin by identifying 41 seafood-reliant nutritionally vulnerable nations (NVNs, and ask whether aquaculture meets human nutritional demand directly via domestic production or trade, or indirectly via purchase of nutritionally rich dietary substitutes. We find that a limited number of NVNs have domestically farmed seafood, and of those, only specific aquaculture approaches (e.g., freshwater in some locations have the potential to benefit nutritionally vulnerable populations. While assessment of aquaculture's direct contribution via trade is constrained by data limitations, we find that it is unlikely to contribute substantially to human nutrition in vulnerable groups, as most exported aquaculture consists of high-value species for international markets. We also determine that subpopulations who benefit from aquaculture profits are likely not the same subpopulations who are nutritionally vulnerable, and more research is needed to understand the impacts of aquaculture income gains. Finally, we discuss the relationship of aquaculture to existing trends in capture fisheries in NVNs, and suggest strategies to create lasting solutions to nutritional security, without exacerbating existing challenges in access to food and land resources.

  11. 76 FR 9210 - Draft DOC National Aquaculture Policy

    Science.gov (United States)

    2011-02-16

    ... DEPARTMENT OF COMMERCE Draft DOC National Aquaculture Policy AGENCY: Commerce. ACTION: Notice of availability of draft aquaculture policy; request for comments. SUMMARY: The Department of Commerce (DOC) is... United States. The intent of the policy is to guide DOC's actions and decisions on aquaculture and to...

  12. Preliminary investigation on the conversion of aquaculture solid ...

    African Journals Online (AJOL)

    Conversion of aquaculture solid wastes into single cell protein (SCP) for fish feed through solid state fermentation using three fungi species, Aspergilus niger, Trichodema viride and Rhizopus species were investigated. Solid aquaculture waste was collected from the sedimentation unit of a re-circulating aquaculture farm in ...

  13. A summary of global {sup 129}I in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    He Peng, E-mail: peng.he@geo.uu.se [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Aldahan, A. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551, Al Ain (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, P.O. Box 529, 751 20 Uppsala (Sweden); Hou, X.L. [Riso National Laboratory for Sustainable Energy, NUK-202, Technical University of Denmark, DK-4000 Roskilde (Denmark)

    2013-01-15

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic {sup 129}I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on {sup 129}I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on {sup 129}I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic {sup 129}I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about {sup 129}I distribution in the marine waters.

  14. Enzymatic Processes in Marine Biotechnology.

    Science.gov (United States)

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  15. Aquaculture Production

    African Journals Online (AJOL)

    Peninah

    strategies for ensuring that Kenya becomes one of the leading producers of fish from aquaculture in ... been only marginally included in the international debate on food security and nutrition. [13]. ... stocked trout into rivers for sport fishing [15].

  16. Measuring Macrobenthos Biodiversity at Oyster Aquaculture Sites in the Delaware Inland Bays

    Science.gov (United States)

    Fuoco, M. J.; Ozbay, G.

    2016-12-01

    The Delaware Inland Bays consists of three shallow coastal bays located in the southern portion of Delaware. Anthropogenic activities have led to the degradation of water quality, because the bays are surrounded by highly developed areas and have low flushing rates. This results in loss of biodiversity and abundance of organisms. Ongoing degradation of the bays has led to a dramatic decline in local oyster populations since the late 1800s. Oysters are keystone species, which provide habitats for organisms and help to improve water quality. This study aims to find if the introduction of oyster aquaculture improves local biodiversity and abundance of macrobenthos. The study was conducted in Rehoboth Bay, Indian River Bay and Little Assawoman Bay. Aquaculture gear was placed at one location in each of the bays and 24 sediment core samples were taken once a month. From these core samples all worms were fixed and stained in a 10% Formalin Rose Bengal solution and preserved in 70% Ethanol for later identification. Stable carbon and nitrogen isotope analysis of oyster tissue will also be performed to assess the health of the bay. The goals of this research are to better understand the role of oyster aquaculture in restoring the viability and health of the Delaware Inland Bays.

  17. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  18. Use of ozone for sustainable brackishwater industrial aquaculture and management of environment

    Digital Repository Service at National Institute of Oceanography (India)

    Dwivedi, S.N.

    The use of ozones for sustainable brakish water industrial aquaculture and the management of the environment is discussed. In sample survey conducted in the farms, it was seen that oxygen level was not adequate for high production. Replacement...

  19. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment.

    Science.gov (United States)

    Luo, Liang; Zhao, Zhigang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng; Xu, Qiyou

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L -1 of glucose and 0.5 g L -1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L -1 . The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology.

  20. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks.

    Science.gov (United States)

    Sadeghi-Nassaj, Seyed Mohammad; Catalá, Teresa S; Álvarez, Pedro A; Reche, Isabel

    2018-01-01

    Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM). A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named "extractive" species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM). However, the effects of sea cucumbers on CDOM are still unknown. During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (-holothurian) only contained around 810 individuals of Anemonia sulcata , whereas the other tank (+holothurian) also included 90 individuals of Holothuria tubulosa and Holothuria forskali . We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm) and qualitative (spectral slopes) optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H) and -holothurians (-H). We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four -H tanks that contained only 80 individuals of A. sulcata . In the time-series, absorption coefficients at 325 nm ( a 325 ) and spectral slopes from 275 to 295 nm ( S 275-295 ) were significantly lower in the effluent of the +holothurian tank (average: 0.33 m -1 and 16 µm -1 , respectively) than in the effluent of the -holothurian tank (average: 0.69 m -1 and 34 µm -1 , respectively), the former being similar to those found in the inlet

  1. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production.

    Science.gov (United States)

    Pahlow, M; van Oel, P R; Mekonnen, M M; Hoekstra, A Y

    2015-12-01

    As aquaculture becomes more important for feeding the growing world population, so too do the required natural resources needed to produce aquaculture feed. While there is potential to replace fish meal and fish oil with terrestrial feed ingredients, it is important to understand both the positive and negative implications of such a development. The use of feed with a large proportion of terrestrial feed may reduce the pressure on fisheries to provide feed for fish, but at the same time it may significantly increase the pressure on freshwater resources, due to water consumption and pollution in crop production for aquafeed. Here the green, blue and gray water footprint of cultured fish and crustaceans related to the production of commercial feed for the year 2008 has been determined for the major farmed species, representing 88% of total fed production. The green, blue and gray production-weighted average feed water footprints of fish and crustaceans fed commercial aquafeed are estimated at 1629 m3/t, 179 m3/t and 166 m3/t, respectively. The estimated global total water footprint of commercial aquafeed was 31-35 km3 in 2008. The top five contributors to the total water footprint of commercial feed are Nile tilapia, Grass carp, Whiteleg shrimp, Common carp and Atlantic salmon, which together have a water footprint of 18.2 km3. An analysis of alternative diets revealed that the replacement of fish meal and fish oil with terrestrial feed ingredients may further increase pressure on freshwater resources. At the same time economic consumptive water productivity may be reduced, especially for carnivorous species. The results of the present study show that, for the aquaculture sector to grow sustainably, freshwater consumption and pollution due to aquafeed need to be taken into account. Copyright © 2015. Published by Elsevier B.V.

  2. Valuation of the marine and coastal resources in Colombia

    International Nuclear Information System (INIS)

    Newmark Umbreit, Federico; Santos Acevedo, Marisol

    2002-01-01

    The paper it is about the current state of the marine and coastal resources, a diagnostic is done in fisheries and aquaculture and on the cultivation of bivalve in the Colombian Caribbean; the authors mention that the use conflicts have been given by ignorance of the structure and the natural operation of highly dynamic and complex ecological systems as the marine and coastal areas, which has propitiated the accumulative environmental deterioration, incorporating elements of ecological risk permanently in the ecosystems

  3. “AquaTrace” The development of tools for tracing and evaluating the genetic impact of fish from aquaculture

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Bekkevold, Dorte; Svåsand, Terje

    2012-01-01

    Aquaculture represents a key solution to meet the escalating demand for fish. Accordingly, development of appropriate legislation within the European Union aquaculture sector underpinned by cutting‐edge research and technology is required. This necessitates implementation of breeding programmes...... to identify of the genetic origin of both wild and farmed fish (assignment and genetic traceability), as well as for the detection of interbreeding genetic introgression between farmed and wild stocks. This work will be carried out on three marine fish of economic significance: the European sea bass...... (Dicentrarchus labrax), gilthead sea bream (Sparus aurata), and turbot (Scophthalmus maximus). To address quantitative effects of farm introgression, the rationale is to examine links between key fitness and life‐history traits and specific functional genetic variation between wild and farmed fish, using...

  4. Enhancing Profitability of Pond Aquaculture in Ghana through Resource Management and Environmental Best Management Practices

    OpenAIRE

    Ansah, Yaw Boamah

    2014-01-01

    The accelerating pace of growth of aquaculture in sub-Saharan Africa has received much positive appraisal because of the potential of the industry to contribute to economic development and food security by providing jobs and animal protein. Adoption of best management practices (BMPs) holds the potential to ameliorate the related environmental impacts of aquaculture, such as in the amounts of nutrients and sediment that will enter natural water bodies from earthen pond effluents. The goals of...

  5. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Sharma, Keshab; Khanal, Samir Kumar

    2014-02-01

    Aquaculture is one of the fastest-growing segments of the food economy in modern times. It is also being considered as an important source of greenhouse gas (GHG) emissions. To date, limited studies have been conducted on GHG emissions from aquaculture system. In this study, daily addition of fish feed and soluble starch at a carbon-to-nitrogen (C/N) ratio of 16:1 (w/w) was used to examine the effects of carbohydrate addition on nitrogen transformations and GHG emissions in a zero-water exchange intensive aquaculture system. The addition of soluble starch stimulated heterotrophic bacterial growth and denitrification, which led to lower total ammonia nitrogen, nitrite and nitrate concentrations in aqueous phase. About 76.2% of the nitrogen output was emitted in the form of gaseous nitrogen (i.e., N2 and N2O) in the treatment tank (i.e., aquaculture tank with soluble starch addition), while gaseous nitrogen accounted for 33.3% of the nitrogen output in the control tank (i.e., aquaculture tank without soluble starch addition). Although soluble starch addition reduced daily N2O emissions by 83.4%, it resulted in an increase of daily carbon dioxide (CO2) emissions by 91.1%. Overall, starch addition did not contribute to controlling the GHG emissions from the aquaculture system. © 2013.

  6. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture.

    Science.gov (United States)

    Øverland, Margareth; Skrede, Anders

    2017-02-01

    The global expansion in aquaculture production implies an emerging need of suitable and sustainable protein sources. Currently, the fish feed industry is dependent on high-quality protein sources of marine and plant origin. Yeast derived from processing of low-value and non-food lignocellulosic biomass is a potential sustainable source of protein in fish diets. Following enzymatic hydrolysis, the hexose and pentose sugars of lignocellulosic substrates and supplementary nutrients can be converted into protein-rich yeast biomass by fermentation. Studies have shown that yeasts such as Saccharomyces cerevisiae, Candida utilis and Kluyveromyces marxianus have favourable amino acid composition and excellent properties as protein sources in diets for fish, including carnivorous species such as Atlantic salmon and rainbow trout. Suitable downstream processing of the biomass to disrupt cell walls is required to secure high nutrient digestibility. A number of studies have shown various immunological and health benefits from feeding fish low levels of yeast and yeast-derived cell wall fractions. This review summarises current literature on the potential of yeast from lignocellulosic biomass as an alternative protein source for the aquaculture industry. It is concluded that further research and development within yeast production can be important to secure the future sustainability and economic viability of intensive aquaculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Waste production and regional growth of marine activities an econometric model.

    Science.gov (United States)

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Peracetic acid: the long road to introduction of this disinfectant into U.S. aquaculture

    Science.gov (United States)

    Peracetic acid (PAA) is a promising disinfectant for biosecurity in the US aquaculture industry to prevent disease outbreaks from fish pathogens. PAA is a stabilized mixture of acetic acid, hydrogen peroxide and water that breaks down quickly to water and vinegar. It has replaced chlorine in some ...

  9. NALYSIS OF ROMANIAN FISHERIES AND AQUACULTURE IN REGIONAL CONTEXT

    Directory of Open Access Journals (Sweden)

    Mihaela\tNECULITA

    2015-06-01

    Full Text Available Integration in European Union assumes obtaining certain benefits. Fisheries and aquaculture can provide a key contribution to food security and poverty alleviation. Employment in the sector has grown faster than the world’s population, providing jobs and supports the livelihoods of hundreds of millions. Fish continues to be one of the most- traded food commodities worldwide being very important for developing countries. However, productivity gains in fisheries do not always imply long-term increases in supply. Developing countries are continuing their efforts to clarify the linkage between development activities and sustainable resource use. Both population and economic growth are putting enormous additional pressures on inland and marine fisheries resources as contributors to food security and providers of a social safety net. At the same time, the use of domestic fisheries to generate foreign exchange is exacerbating allocation issues between artisan and industrial fleets. The actual fisheries legislation was influence by social, economic and environmental considerations. The paper proposes an integrated analysis of Romanian situation by means of data and statistics provided by European and national statistics institutions. Fisheries in general and aquaculture sector in particular could be regarded as an advantage for Romania in the European competition. The main problem of the Romanian fisheries is its unsatisfactory competitiveness both regarding the domestic and European market.

  10. Merging remotely sensed data, models and indicators for a sustainable development of coastal aquaculture in Algeria

    Science.gov (United States)

    Brigolin, Daniele; Venier, Chiara; Amine Taji, Mohamed; Lourguioui, Hichem; Mangin, Antoine; Pastres, Roberto

    2014-05-01

    Finfish cage farming is an economically relevant activity, which exerts pressures on coastal systems and thus require a science-based management, based on the Ecosystem Approach, in order to be carry out in a sustainable way. Within MEDINA project (EU 282977), ocean color data and models were used for estimating indicators of pressures of aquaculture installations along the north African coast. These indicators can provide important support for decision makers in the allocation of new zones for aquaculture, by taking into account the suitability of an area for this activity and minimizing negative environmental effects, thus enhancing the social acceptability of aquaculture. The increase in the number of farms represents a strategic objective for the Algerian food production sector, which is currently being supported by different national initiatives. The case-study presented in this work was carried out in the Gulf of Bejaia. Water quality for aquaculture was first screened based on ocean color CDOM data (http://www.globcolour.info/). The SWAN model was subsequently used to propagate offshore wave data and to derive wave height statistics. On this basis, sub-areas of the Gulf were ranked, according their optimality in respect to cage resistance and fish welfare requirements. At the three best sites an integrated aquaculture impact assessment model was therefore applied: this tool allows one to obtain a detailed representation of fish growth and population dynamics inside the rearing cages, and to simulate the deposition of uneaten food and faeces on the sediment and the subsequent mineralization of organic matter. This integrated model was used to produce a set of indicators of the fish cages environmental interaction under different scenarios of forcings (water temperature, feeding, currents). These model-derived indicators could usefully contribute to the implementation of the ecosystem approach for the management of aquaculture activities, also required by the

  11. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  12. At the Intersection of Urbanization, Water, and Food Security: Determination of Select Contaminants of Emerging Concern in Mussels and Oysters from Hong Kong.

    Science.gov (United States)

    Burket, S Rebekah; Sapozhnikova, Yelena; Zheng, J S; Chung, Shan Shan; Brooks, Bryan W

    2018-05-23

    Aquaculture, which is growing 3-5 times faster than terrestrial agriculture, will play an important role to meet future global food production needs. However, over 80% of global sewage production is returned to the environment untreated or poorly treated. In developing nations, these nontraditional waters of diverse quality are being recycled for aquaculture, yet chemical residues are differentially studied. Here, we examined pharmaceuticals, pesticides, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and flame retardants in marine bivalves using isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and low-pressure gas chromatography-tandem mass spectrometry (LP GC-MS/MS). Green-lipped mussels from the field and oysters from aquaculture net pens, which are harvested as food products, were collected adjacent to point source municipal wastewater and landfill leachate effluent discharges, respectively, in Hong Kong, the fourth most densely populated country in the world. Multiple classes of pharmaceutical, pesticides, PAHs, and phosphorus-based flame retardants were detected at low μg/kg levels. Acceptable servings per week indicated minimal risk for a number of chemicals; however, such calculations could not be performed for other contaminants of emerging concern. Future efforts are needed to better understand contaminant influences on marine bivalve populations and aquaculture product safety, particularly in rapidly urbanizing regions of developing countries with limited wastewater infrastructure.

  13. Technology Model of Aquaculture Production System

    Science.gov (United States)

    Hor, K. W.; Salleh, S. M.; Abdullah; Ezree, Mohd; Zaman, I.; Hatta, M. H.; Ahmad, S.; Ismail, A. E.; Mahmud, W. A. W.

    2017-10-01

    The high market demand has led to the rapid growth in fish farming. The young generation are inexperienced in determining the estimated results of fish farming and the preparation of fish pond during the period of fish farming. These need a complete guide as their reference which includes the knowledge of fish farming. The main objective of this project is to develop a practical design of real pond appropriate with aquaculture technology and fish farming production. There are three parts of study in this project which include fish farming cage, growth of fish and water quality of fish farming pond. Few of experiments were carried out involved the collection data in terms of growth of fish and parameters of water quality.

  14. Selection of sustainable seaweed and grouper aquaculture development strategy: a case of Pulau Panjang, Serang Regency Banten Province

    Science.gov (United States)

    Soejarwo, P. A.; Fitriyanny, W. P.; Heriati, A.; Hakim, A. R.

    2018-03-01

    Due to their high-income contribution, seaweed and grouper aquacultures are important activities in Pulau Panjang community. Determining alternative strategies in developing sustainable aquaculture for seaweed and grouper and their priority factors from theses aquaculture activities are done using TOPSIS and AHP analysis. It was found that the development strategy that must be taken is the option to maintain aquaculture activities, while, environment factor is the highest priority to maintain seaweed and grouper aquaculture in Pulau Panjang. Then three priorities are obtained from environment factor. The first is to maintain the water quality by the growth requirements of seaweed and grouper by encouraging the formation of “Environmental Community Awareness” that involved the active participation of the community to maintain quality and carrying capacity of the environment. Second is to use of natural or artificial coastal protectors (soft structure). The third priority strategy is integration and real implementation of heavy metal pollution control between government, industry sector and society.

  15. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  16. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  17. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  18. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  19. Adoption of Recirculating Aquaculture Systems in Large Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.C.; Verreth, J.A.J.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2016-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  20. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  1. The effects of long-term 20 mg/L carbon dioxide exposure on the health and performance of Atlantic salmon Salmo salar post-smolts in water recirculation aquaculture systems

    Science.gov (United States)

    Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems...

  2. Seacage aquaculture in a World Heritage Area: The environmental footprint of a Barramundi farm in tropical Australia

    International Nuclear Information System (INIS)

    McKinnon, A. David; Trott, Lindsay A.; Brinkman, Richard; Duggan, Samantha; Castine, Sarah; O'Leary, Rebecca A.; Alongi, Daniel M.

    2010-01-01

    The fate of aquaculture wastes from a seacage farm within a pristine mangrove environment was studied. Seasonal and tidal differences were most important in determining water quality within receiving waters and obscured any nutrient enrichment effect by the farm. Farm wastes added significantly to the N budget status of the creek system, but overall water quality conformed to Queensland EPA Water Quality standards. Mangrove trees throughout the creek system contained 15 N signatures traceable to aquaculture feeds, but the footprint of the farm itself was best indicated by the ratio of Zn:Li in sediments. The creek became hypoxic ( -1 ) during wet season low tides. Consequently, we recommended monitoring of water-column oxygen concentrations to warn of hypoxic conditions threatening to fish health, as well as Zn:Li ratios in sediment accumulation zones to determine the area of influence of the farm.

  3. Total mercury levels in commercial fish species from Italian fishery and aquaculture.

    Science.gov (United States)

    Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena

    2017-06-01

    Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.

  4. Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae

    NARCIS (Netherlands)

    Boelen, Peter; Van Mastrigt, Audrey; Van De Bovenkamp, Henk H.; Heeres, Hero J.; Buma, Anita G. J.

    Microalgae are the principal producers of long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine ecosystems. Algae are used in aquaculture systems as direct or indirect feed for zooplankton, filter-feeding mollusks and larval

  5. Characterisation of aroma-active and off-odour compounds in German rainbow trout (Oncorhynchus mykiss). Part I: Case of aquaculture water from earthen-ponds farming.

    Science.gov (United States)

    Mahmoud, Mohamed Ahmed Abbas; Buettner, Andrea

    2016-11-01

    Comprehensive analyses were accomplished to explore the odorous molecules responsible for off-odour development in earthen-ponds rainbow trout (Oncorhynchus mykiss) aquaculture farming in Germany. In this part of the study, water odorants were extracted using solvent-assisted flavour evaporation (SAFE); then, extracts were analysed by one- and two- dimensional high resolution gas chromatography coupled with olfactometry and mass spectrometry using two columns with different polarity (DB-FFAP and DB-5). Aroma extract dilution analysis (AEDA) of the solvent extract samples revealed 54 odorants, and 47 of them were identified. In this study, a series of compounds is described for the first time in German earthen-ponds rainbow trout aquaculture water including, amongst others, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol), vanillin, (E)-4,5-epoxy-(E)-2-decenal, 4-ethyloctanoic acid, 3-methylindole (skatole), 5α-androst-16-en-3-one (androstenone), and 2-(2-butoxyethoxy) ethanol. Moreover, the sensory experiment indicated that (E)-4,5-epoxy-(E)-2-decenal, (E,E)-2,4-octadienal, and 1-octen-3-one are the main contributors to the metallic, cucumber, and mushroom notes of the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Distinguishing between natural and aquaculture-derived sediment concentrations of heavy metals in the Broughton Archipelago, British Columbia

    International Nuclear Information System (INIS)

    Sutherland, T.F.; Petersen, S.A.; Levings, C.D.; Martin, A.J.

    2007-01-01

    Marine sediment samples were collected in the Broughton Archipelago, British Columbia, to assess the use of a geochemical normalization technique in the identification of a chemical tracer of aquaculture waste material. Zinc and copper were suggested as tracers of feed pellets, while copper was considered an indicator of anti-foulant agents used on netpen systems. The sediment samples were analyzed for carbon, nitrogen, organic matter, water, trace-element, and free sulfide concentrations, and sediment grain-size distribution. Sediment texture analysis revealed a wide range of substrate types from sand to silty loam categories. Strong relationships between sediment texture, sediment porosity, and organic content were observed across both near-field and far-field stations. Excess zinc and copper sediment concentrations, identified using a lithium-normalization technique, were restricted to near-field sampling stations (0 and 30 m from netpen systems). The relationships between these metal tracers and organic content and sulfur concentrations were explored to account for variations in sediment concentrations of zinc and copper

  7. Antibacterial Resistance in African Catfish Aquaculture: a Review

    Directory of Open Access Journals (Sweden)

    Madubuike U. ANYANWU

    2016-03-01

    Full Text Available Antibacterial resistance (AR is currently one of the greatest threats to mankind as it constitutes health crisis. Extensive use of antibacterial agents in human and veterinary medicine, and farm crops have resulted in emergence of antibacterial-resistant organisms in different environmental settings including aquaculture. Antibacterial resistance in aquaculture is a serious global concern because antibacterial resistance genes (ARGs can be transferred easily from aquaculture setting to other ecosystems and the food chain. African catfish (ACF aquaculture has increased at a phenomenal rate through a continuous process of intensification, expansion and diversification. Risk of bacterial diseases has also increased and consequently there is increased use of antibacterial agents for treatment. Antibacterial resistance in ACF aquaculture has huge impact on the food chain and thus represents risk to public and animal health. In “one health” approach of curbing AR, knowledge of the sources, mechanisms and magnitude of AR in ACF aquaculture and its potential impact on the food chain is important in designing and prioritizing monitoring programs that may generate data that would be relevant for performing quantitative risk assessments, implementation of antibacterial stewardship plans, and developing effective treatment strategies for the control of ACF disease and reducing risk to public health. This review provides insight on the sources, mechanisms, prevalence and impact of antibacterial resistance in ACF aquaculture environment, a setting where the impact of AR is neglected or underestimated.

  8. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adsorptive performance of granular activated carbon in aquaculture and aquaria: a simplified method

    DEFF Research Database (Denmark)

    Taylor, Daniel; Kuhn, David D.; Smith, Stephen

    2017-01-01

    used to comparatively test adsorptive performance between two filter groups (i.e. sources of granular activated carbon) by tracking spectral absorbance with non-linear regression statistics, and validating removal trends against mature aquaculture water. Greater adsorptive capacities were consistently...

  10. Sea cucumbers reduce chromophoric dissolved organic matter in aquaculture tanks

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Sadeghi-Nassaj

    2018-02-01

    Full Text Available Background Mono-specific aquaculture effluents contain high concentrations of nutrients and organic matter, which affect negatively the water quality of the recipient ecosystems. A fundamental feature of water quality is its transparency. The fraction of dissolved organic matter that absorbs light is named chromophoric dissolved organic matter (CDOM. A sustainable alternative to mono-specific aquaculture is the multitrophic aquaculture that includes species trophically complementary named “extractive” species that uptake the waste byproducts. Sea cucumbers are recognized as efficient extractive species due to the consumption of particulate organic matter (POM. However, the effects of sea cucumbers on CDOM are still unknown. Methods During more than one year, we monitored CDOM in two big-volume tanks with different trophic structure. One of the tanks (−holothurian only contained around 810 individuals of Anemonia sulcata, whereas the other tank (+holothurian also included 90 individuals of Holothuria tubulosa and Holothuria forskali. We routinely analyzed CDOM absorption spectra and determined quantitative (absorption coefficients at 325 nm and qualitative (spectral slopes optical parameters in the inlet waters, within the tanks, and in their corresponding effluents. To confirm the time-series results, we also performed three experiments. Each experiment consisted of two treatments: +holothurians (+H and –holothurians (−H. We set up three +H tanks with 80 individuals of A. sulcata and 10 individuals of H. tubulosa in each tank and four –H tanks that contained only 80 individuals of A. sulcata. Results In the time-series, absorption coefficients at 325 nm (a325 and spectral slopes from 275 to 295 nm (S275−295 were significantly lower in the effluent of the +holothurian tank (average: 0.33 m−1 and 16 µm−1, respectively than in the effluent of the −holothurian tank (average: 0.69 m−1 and 34 µm−1, respectively, the former

  11. Public Health Perspectives on Aquaculture.

    Science.gov (United States)

    Gormaz, Juan G; Fry, Jillian P; Erazo, Marcia; Love, David C

    2014-01-01

    Nearly half of all seafood consumed globally comes from aquaculture, a method of food production that has expanded rapidly in recent years. Increasing seafood consumption has been proposed as part of a strategy to combat the current non-communicable disease (NCD) pandemic, but public health, environmental, social, and production challenges related to certain types of aquaculture production must be addressed. Resolving these complicated human health and ecologic trade-offs requires systems thinking and collaboration across many fields; the One Health concept is an integrative approach that brings veterinary and human health experts together to combat zoonotic disease. We propose applying and expanding the One Health approach to facilitate collaboration among stakeholders focused on increasing consumption of seafood and expanding aquaculture production, using methods that minimize risks to public health, animal health, and ecology. This expanded application of One Health may also have relevance to other complex systems with similar trade-offs.

  12. A NEW MODULA TYPO-DIMENSIONAL, CONSTRUCTIVE AND FUNCTIONAL CONCEPT OF VIVA DON EXPERT® FLOATABLE FISH CAGES FOR INTENSIVE AQUACULTURE IN INLAND WATERS

    OpenAIRE

    D. ONEA; V. CRISTEA

    2009-01-01

    This scientific work presents succinct information about the trials which takes place between 2005-2009 in Constanta (fish farm Canalul Rompetrol). This trials includes the fish farming in cages and leads to finishing off and elaboration of a new modular typo-dimensional, constructive and functional concept of viva don Expert® floatable fish cages for intensive aquaculture in inland waters from Romania like an efficient solution for the qualitative and quantitative increase of local fish prod...

  13. Research findings from the use of probiotics in tilapia aquaculture: A review.

    Science.gov (United States)

    Hai, Ngo Van

    2015-08-01

    This study aims to present research findings from the use of probiotics in tilapia aquaculture. In omnivorous species of tilapia aquaculture, intestines and gonads, rearing water and sediments or even commercial products, can be sources for acquiring appropriate probiotics. Administration of probiotics varies from direct oral/water routine to feed additives, of which the latter is most commonly used. Probiotic applications can be either mono or multiple strains. Dosage and duration of time are significant factors in providing desired results. As probiotics have been proven to be either immune enhancers and/or growth promoters in aquatic animals, several modes of actions of probiotics in enhancement of immune responses, and an improvement of growth and survival rates of tilapia are presented, while the effects of others are not yet understood to the same degree as for other fish species. Some points extracted from the research findings are emphasised for further investigation and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A SWOT analysis of aquaculture development in rural areas of Iran, an application to Rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Roxana Moogouei

    2014-03-01

    Full Text Available In this study various important indices were selected to assess the sustainable aquaculture strategies in rural areas of Iran. In addition the government officials, consultants and managers were surveyed to assess the indices of aquaculture development. The strengths, weaknesses, opportunities and threats   analyses were used to make a comprehensive evaluation on internal and external factors, participating the development of aquaculture strategies. The sum of the attractiveness scores from the Internal Factor Evaluation Matrix was approximately 2.55, being larger than 2.5, indicating that the strengths exceed the weaknesses. The sum of the External Factor Evaluation Matrix scores was 3.49, indicating that opportunities were higher than threats. This analysis showed that the development of aquaculture, promotion of new cold-water species production, productivity enhancement, establishment of hatchery facilities and formation of an effective support organization are the most important strategies that should be considered in the studied area. Results obtained on this research help decision makers on work of the aquaculture sector in rural areas of Iran.

  15. Occupational Health and Safety in Aquaculture: Insights on Brazilian Public Policies.

    Science.gov (United States)

    de Oliveira, Pedro Keller; Cavalli, Richard Souto; Kunert Filho, Hiran Castagnino; Carvalho, Daiane; Benedetti, Nadine; Rotta, Marco Aurélio; Peixoto Ramos, Augusto Sávio; de Brito, Kelly Cristina Tagliari; de Brito, Benito Guimarães; da Rocha, Andréa Ferretto; Stech, Marcia Regina; Cavalli, Lissandra Souto

    2017-01-01

    Aquaculture has many occupational hazards, including those that are physical, chemical, biological, ergonomic, and mechanical. The risks in aquaculture are inherent, as this activity requires particular practices. The objective of the present study was to show the risks associated with the aquaculture sector and present a critical overview on the Brazilian public policies concerning aquaculture occupational health. Methods include online research involved web searches and electronic databases including Pubmed, Google Scholar, Scielo and government databases. We conducted a careful revision of Brazilian labor laws related to occupational health and safety, rural workers, and aquaculture. The results and conclusion support the idea that aquaculture requires specific and well-established industry programs and policies, especially in developing countries. Aquaculture still lacks scientific research, strategies, laws, and public policies to boost the sector with regard to occupational health and safety. The establishment of a safe workplace in aquaculture in developing countries remains a challenge for all involved in employer-employee relationships.

  16. Interactions Between Prokaryotes and Dissolved Organic Matter in Marine Waters

    DEFF Research Database (Denmark)

    Traving, Sachia Jo

    organic bound carbon equal in size to atmospheric carbon dioxide. Prokaryotes mediate the fate of a large part of marine DOM, which is their principal source of energy and substrate. However, a large fraction is also left behind in the water column persisting for millennia, and prokaryotes may hold...... the key to understanding the mechanisms controlling the cycling of DOM within marine waters. In the thesis presented here, the aim was to investigate the activity and composition of prokaryotes to determine their functional role in DOM utilization. The thesis incorporates a range of study systems...

  17. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity, and regulation in marine waters

    DEFF Research Database (Denmark)

    Riemann, Lasse; Farnelid, H.; Steward, G.F.

    2010-01-01

    Marine waters are generally considered to be nitrogen (N) limited and are therefore favourable environments for diazotrophs, i.e. organisms converting atmospheric N2 into ammonium or nitrogen oxides available for growth. In some regions, this import of N supports up to half of the primary...... productivity. Diazotrophic Cyanobacteria appear to be the major contributors to marine N2 fixation in surface waters, whereas the contribution of heterotrophic or chemoautotrophic diazotrophs to this process is usually regarded inconsequential. Culture-independent studies reveal that non......-cyanobacterial diazotrophs are diverse, widely distributed, and actively expressing the nitrogenase gene in marine and estuarine environments. The detection of nifH genes and nifH transcripts, even in N-replete marine waters, suggests that N2 fixation is an ecologically important process throughout the oceans. Because...

  18. Planktonic Crustacean Culture - Live Planktonic Crustaceans as Live Feed for Finfish and Shrimps in Aquaculture

    DEFF Research Database (Denmark)

    Jepsen, Per Meyer; Syberg, Kristian; Drillet, Guillaume

    2018-01-01

    The cultivation of planktonic crustaceans as live feed is of paramount importance for the aquaculture and aquarium industries. The use of live cladocerans as feed for freshwater fish is limited to the aquarium industry, whereas Artemia and copepods are used to feed edible marine fish larvae...... assessments for hazardous chemicals. Cladocerans are widely used for ecotoxicology testing but Artemia and copepods are emerging new model species. In the present chapter, we review the culturing procedures of these important planktonic crustaceans: Artemia, cladocerans and copepods and discuss their use...

  19. Bivalve aquaculture-environment interactions in the context of climate change.

    Science.gov (United States)

    Filgueira, Ramón; Guyondet, Thomas; Comeau, Luc A; Tremblay, Réjean

    2016-12-01

    Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve-phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is

  20. Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2018-01-01

    Full Text Available Since the two devastating tsunamis in 2004 (Indian Ocean and 2011 (Great East Japan, new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay from the 2011 Japan tsunami. This study has three main components: (1 reproduction of the 2011 tsunami, (2 damage investigation, and (3 fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s−1 (aquaculture raft and 3.0 m s−1 (eelgrass. This finding is consistent with the previously proposed damage criterion of 1 m s−1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.

  1. Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami

    Science.gov (United States)

    Suppasri, Anawat; Fukui, Kentaro; Yamashita, Kei; Leelawat, Natt; Ohira, Hiroyuki; Imamura, Fumihiko

    2018-01-01

    Since the two devastating tsunamis in 2004 (Indian Ocean) and 2011 (Great East Japan), new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay) from the 2011 Japan tsunami. This study has three main components: (1) reproduction of the 2011 tsunami, (2) damage investigation, and (3) fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage) of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s-1 (aquaculture raft) and 3.0 m s-1 (eelgrass). This finding is consistent with the previously proposed damage criterion of 1 m s-1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.

  2. Direct use of low temperature geothermal water by Aquafarms International, Inc. for freshwater aquaculture (prawns and associated species). An operations and maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    Broughton, R.; Price, M.; Price, V.; Grajcer, D.

    1984-04-01

    In connection with an ongoing commercial aquaculture project in the Coachella Valley, California; a twelve month prawn growout demonstration project was conducted. This project began in August, 1979 and involved the use of low temperature (85/sup 0/F) geothermal waters to raise freshwater prawns, Macrobrachium rosenbergii (deMan), in earthen ponds. The following publication is an operations and maintenance guide which may by useful for those interested in conducting similar enterprises.

  3. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1994-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  4. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  5. Downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent

    CSIR Research Space (South Africa)

    Lalloo, R

    2010-03-01

    Full Text Available , 604 Robertson JL (1998) The use of probiotics in the diet of dogs. 605 J Nutri 128:2730S–2732S 606 Brar SK, Verma M, Tyagi RD, Valéro JR (2006) Recent advances in 607 downstream processing and formulations of Bacillus thuringien- 608 sis based..., Menasveta P (2000) Some recent issues and innovations in 630 marine shrimp pond culture. Rev Fish Sci 8:151–233 631 Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquacul- 632 ture 180:147–165 633 Guetsky R, Shtienberg Y, Elad Y, Fischer E...

  6. Exploring Aquaculture. Curriculum Guide for Agriscience 282.

    Science.gov (United States)

    Texas A and M Univ., College Station. Dept. of Agricultural Education.

    This curriculum guide provides materials for teachers to use in developing a course in "Exploring Aquaculture, Agriscience 282," one of 28 semester courses in agricultural science and technology for Texas high schools. This introductory course is designed to acquaint students with the growing industry of aquaculture; it includes…

  7. Peracetic acid is a suitable disinfectant for recirculating fish-microalgae integrated multi-trophic aquaculture systems

    Directory of Open Access Journals (Sweden)

    Dibo Liu

    2016-11-01

    Full Text Available Integrated multi-trophic aquaculture (IMTA is a promising direction for the sustainable development of aquaculture. Microalgae have good potential to be integrated with recirculating aquaculture systems because they can use the nitrogen excreted from fish and share the same optimal pH value as in aquaculture. As a byproduct, the microalgae biomass can be used for fish feed or biofuel. However, the recirculating fish-microalgae IMTA system is under constant threat from fish pathogens and phytoplankton-lytic bacteria. Therefore, it is necessary to apply proper disinfectants as prophylaxis or treatment which are effective against these threats, but safe to fish and microalgae. For this purpose, peracetic acid (PAA is a valid option because it is highly effective against fish pathogens and bacteria at low concentrations and degrades spontaneously to harmless residues. In the present study, we exposed the culture of a marine microalgae Tetraselmis chuii once per day for four days to four PAA products with differing hydrogen peroxide (H2O2/PAA proportions at two concentrations (1 and 2 mg L−1 PAA. The H2O2 solutions at equivalent total peroxide (H2O2 + PAA concentrations were tested in parallel. The results show that the growth and photosynthesis of T. chuii were not affected by three of the PAA products (Wofasteril® E400, Wofasteril® E250 and Applichem® 150 and equivalent H2O2 solutions at both concentrations. In contrast, Wofasteril® Lspez and an equivalent H2O2 solution at both concentrations caused irreversible culture collapse, photosynthesis dysfunction and irreversible cell damage. In conclusion, PAA products with low proportions of H2O2 are optimal disinfectants for fish-microalgae IMTA systems.

  8. Use of hydrodynamic and benthic models for managing environmental impacts of marine aquaculture

    DEFF Research Database (Denmark)

    Henderson, A.; Gamito, S.; Karakassis, I.

    2001-01-01

    technical descriptions use of good and appropriate data; calibration; validation; sensitivity analysis; quality assurance; auditability and consideration of the operational needs of the user, the grower and/or the regulator. Models should have simplicity and clarity; be fit for purpose, be open to scrutiny......; be accessible, user-friendly and be used with caution. Current models are considered to be limited in scope but do cover the main hydrodynamic and particulate processes. The regulation and monitoring of finfish aquaculture involving the direct use of models is apparently restricted to relatively few countries...... on the transport of in-feed medicines is required. Keys to future developments across Europe include accessibility, setting of Environmental Quality Standards or targets, training and support for users, resources and structured research....

  9. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  10. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.

    Science.gov (United States)

    Coen, Loren D; Bishop, Melanie J

    2015-10-01

    Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to

  11. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  12. Hydroecological condition and potential for aquaculture in lakes of the arid region of Khorezm, Uzbekistan

    Science.gov (United States)

    Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom

    2015-01-01

    With >400 small (water resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.

  13. A research update for the Stuttgart National Aquaculture Research Center

    Science.gov (United States)

    Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2016 totaled 90 million tons valued at $180 billion. The production of food-fish from aquaculture...

  14. A portable analyser for the measurement of ammonium in marine waters.

    Science.gov (United States)

    Amornthammarong, Natchanon; Zhang, Jia-Zhong; Ortner, Peter B; Stamates, Jack; Shoemaker, Michael; Kindel, Michael W

    2013-03-01

    A portable ammonium analyser was developed and used to measure in situ ammonium in the marine environment. The analyser incorporates an improved LED photodiode-based fluorescence detector (LPFD). This system is more sensitive and considerably smaller than previous systems and incorporates a pre-filtering subsystem enabling measurements in turbid, sediment-laden waters. Over the typical range for ammonium in marine waters (0–10 mM), the response is linear (r(2) = 0.9930) with a limit of detection (S/N ratio > 3) of 10 nM. The working range for marine waters is 0.05–10 mM. Repeatability is 0.3% (n =10) at an ammonium level of 2 mM. Results from automated operation in 15 min cycles over 16 days had good overall precision (RSD = 3%, n = 660). The system was field tested at three shallow South Florida sites. Diurnal cycles and possibly a tidal influence were expressed in the concentration variability observed.

  15. Bivalve aquaculture transfers in Atlantic Europe. Part B: Environmental impacts of transfer activities

    NARCIS (Netherlands)

    Brenner, M.; Fraser, D.; Nieuwenhove, van K.; Kamermans, P.

    2014-01-01

    For centuries human populations have moved live shellfish around the world for consumption or aquaculture purposes; being relayed from their area of origin for growout or sale. This is in contrast to the inadvertent anthropogenic spreading of species via e.g. ballast waters. There are inherent risks

  16. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  17. Does aquaculture add resilience to the global food system?

    Science.gov (United States)

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

  18. PROTEOMICS in aquaculture: applications and trends.

    Science.gov (United States)

    Rodrigues, Pedro M; Silva, Tomé S; Dias, Jorge; Jessen, Flemming

    2012-07-19

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Aquaculture in South Africa: A cooperative research programme

    CSIR Research Space (South Africa)

    Safriel, O

    1984-06-01

    Full Text Available the industry on a sound footing. An Aquaculture Working Group was appointed by the CSIR in 1981, which developed a research strategy, identified needs and suggested priorities for research on major problem areas in aquaculture....

  20. Feeding aquaculture in an era of finite resources

    Science.gov (United States)

    Naylor, Rosamond L.; Hardy, Ronald W.; Bureau, Dominique P.; Chiu, Alice; Elliott, Matthew; Farrell, Anthony P.; Forster, Ian; Gatlin, Delbert M.; Goldburg, Rebecca J.; Hua, Katheline; Nichols, Peter D.

    2009-01-01

    Aquaculture's pressure on forage fisheries remains hotly contested. This article reviews trends in fishmeal and fish oil use in industrial aquafeeds, showing reduced inclusion rates but greater total use associated with increased aquaculture production and demand for fish high in long-chain omega-3 oils. The ratio of wild fisheries inputs to farmed fish output has fallen to 0.63 for the aquaculture sector as a whole but remains as high as 5.0 for Atlantic salmon. Various plant- and animal-based alternatives are now used or available for industrial aquafeeds, depending on relative prices and consumer acceptance, and the outlook for single-cell organisms to replace fish oil is promising. With appropriate economic and regulatory incentives, the transition toward alternative feedstuffs could accelerate, paving the way for a consensus that aquaculture is aiding the ocean, not depleting it. PMID:19805247

  1. Water quality and emergy evaluation of two freshwater aquacultural systems for eutrophic water in the Controlling by Biological Chains

    Science.gov (United States)

    Xi, L. M.; Liu, C. Q.; Liu, D. F.; Huang, W. L.; Sun, Y.

    2017-08-01

    According to the ecological restoration theory, this experiment establishes aquaculture systems controlled by biological chains in both Xiaoxidian area and Dujiadian area of Baiyangdian Lake separately in order to improve the environment and bring economic benefits. The appearance of Emergy Theory provides a new method for the quantitative analysis of ecological economic system. Based on the analysis of Emergy Theory, this thesis compares the eco-economic systems under different polyculture models between Xiaoxidian area and Dujiadian area. The result demonstrates that Xiaoxidian ecological system is of high Emergy Transformity with higher emergy output and economic income per unit area compared with Dujiadian area. While Dujiadian area has higher Emergy Yield Rate and lower Environment Load Rate. So Dujiadian area is more sustainable due to the overload non-renewable energy of Xiaoxidian area devoted by human. Therefore, it will be better if we adjust and optimize the management of aquaculture system in Xiaoxidian area in order to find a stable equilibrium point between environmental sustainability and economic benefits.

  2. First testing of an AUV mission planning and guidance system for water quality monitoring and fish behavior observation in net cage fish farming

    Directory of Open Access Journals (Sweden)

    D. Karimanzira

    2014-12-01

    Full Text Available Recently, underwater vehicles have become low cost, reliable and affordable platforms for performing various underwater tasks. While many aquaculture systems are closed with no harmful output, open net cage fish farms and land-based fish farms can discharge significant amounts of wastewater containing nutrients, chemicals, and pharmaceuticals that impact on the surrounding environment. Although aquaculture development has often occurred outside a regulatory framework, government oversight is increasingly common at both the seafood quality control level, and at baseline initiatives addressing the basic problem of pollution generated by culture operations, e.g. the European marine and maritime directives. This requires regular, sustainable and cost-effective monitoring of the water quality. Such monitoring needs devices to detect the water quality in a large sea area at different depths in real time. This paper presents a concept for a guidance system for a carrier (an autonomous underwater vehicle of such devices for the automated detection and analysis of water quality parameters.

  3. Role and functions of beneficial microorganisms in sustainable aquaculture.

    Science.gov (United States)

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  4. An Overview of Aquaculture in the Nordic Countries

    DEFF Research Database (Denmark)

    Paisley, Larry; Ariel, Ellen; Lyngstad, T. M.

    2010-01-01

    in the Nordic countries has a long history; beginning in the 1850s when hatcheries for restocking of salmon and trout were established in Norway. Nowadays, Atlantic salmon is the dominant cultured species in Norway and the Faroe Islands, whereas rainbow trout dominate in Denmark, Finland, and Sweden. Arctic......The goal of this review was to describe in some detail the Nordic aquaculture industries in order to illuminate the similarities and differences. Information that was gathered for each country includes aquaculture history, aquaculture acts and regulations, production and production systems...

  5. THE FISHERIES AND AQUACULTURE COMPONENT OF RURAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adrian ZUGRAVU

    2006-01-01

    Full Text Available Fisheries and aquaculture can provide a key contribution to food security and poverty alleviation. Fisheries and aquaculture policy is an instrument for the conservation and management of fisheries and aquaculture. It was created with the aims of managing a common resource. Fisheries policies and management strategies the world over is in a state of flux, continued attempts to use fisheriesas the key to solving a complex web of social and economic issues threaten to overwhelm the basic fact that, if this resources are overfished, they will not sustain either social or development.

  6. Evaluation of Alternative Technologies to Supply Drinking Water to Marines in Forward Deployed Locations

    Science.gov (United States)

    2010-03-01

    Afghanistan.” 2009. http://www.coleparmer.com/techinfo/techinfo.asp?htmlfile= water - afghanistan.htm&ID=964. Christ- wasser . “RO, EDI and optional UF...Cover, Single-Author Thesis EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED...AFIT/GES/ENV/10-M02 EVALUATION OF ALTERNATIVE TECHNOLOGIES TO SUPPLY DRINKING WATER TO MARINES IN FORWARD DEPLOYED

  7. Barium in produced water: Is it a toxicological hazard to the marine environment?

    International Nuclear Information System (INIS)

    Neff, J.M.

    1993-01-01

    Produced water is a complex aqueous mixture of organic and inorganic chemicals that often is generated in large volumes as a by-product of production of oil and gas. Produced water from offshore oil production platforms sometimes is treated to remove particulate oil and then discharged to the ocean. Barium often is the most abundant inorganic chemical, other than the dominant sea salts, in produced water. Some concern has been expressed that the large amounts of barium discharged to the ocean in produced water may have adverse effects on marine biological communities. The ecological risks associated with discharge to the ocean in produced water may have adverse effects on marine biological communities. The ecological risks associated with discharge to the ocean of barium in produced water were evaluated. Concentrations of barium in produced water from different sources range from less than 1.0 to about 2,000 mg/L, and are inversely correlated with concentrations of sulfate. Concentrations of barium in the ocean usually are in the range of 10 to 20 μg/L; the ocean is undersaturated with respect to barite (BaSO 4 ). During mixing and dilution of a produced water plume in the ocean, barium reacts with the abundant sulfate in seawater and precipitates as barite. Barite is completely nontoxic to marine organisms. Because of the high concentration of sulfate in the ocean, ionic barium can not reach concentrations high enough to be toxic to marine organisms

  8. Tritium in the Savannah River Estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1978-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing, and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is 5 pCi/ml, whereas other rivers in the southeastern United States average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the River and from sea water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary, respectively

  9. STUDY ON IMPACT OF SALINE WATER INUNDATION ON FRESHWATER AQUACULTURE IN SUNDARBAN USING RISK ANALYSIS TOOLS

    Directory of Open Access Journals (Sweden)

    B.K Chand

    2012-11-01

    Full Text Available The impact of saline water inundation on freshwater aquaculture was evaluated through risk assessment tools. Fishponds in low-lying areas of Sagar and Basanti block are prone to saline water flooding. Respondents of Sagar block considered events like cyclone and coastal flooding as extreme risk; erratic monsoon, storm surge and land erosion as high risk; temperature rise, sea level rise, hot & extended summer and precipitation as medium risk. Likewise, in Basanti block the respondents rated cyclone as extreme risk; erratic monsoon, storm surge as high risk; temperature rise, hot & extended summer, land erosion, and precipitation as medium risk; coastal flooding and sea level rise as low risk. Fish farmers of Sagar block classified the consequences of saline water flooding like breach of pond embankment and mass mortality of fishes as extreme risk; escape of existing fish stock and diseases as high risk; entry of unwanted species, retardation of growth and deterioration of water quality as medium risk; and damage of pond environment as low risk. Farmers of Basanti block categorised breach of pond dyke, mass mortality of fishes and entry of unwanted species as extreme risk; escape of fish and diseases as high risk; retardation of growth as medium risk; deterioration of water quality and damage of pond environment as low risk. To reduce the threats against saline water ingression, farmers are taking some coping measures like increase in pond dyke height; repair and strengthening of dyke; plantation on dyke; dewatering and addition of fresh water; application of chemicals/ lime/ dung; addition of tree branches in pond for hide outs etc.

  10. Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed El-Otify

    2015-12-01

    Full Text Available Water quality, nutritional characteristics and phytoplankton biomass in aquaculture of Oreochromis niloticus (L. simultaneously with its water source supply (Lake Nasser, were monthly investigated over a one-year period (July 2009–2010. Analysis of the results showed that application of fertilizers and environmental conditions appeared to be the principal factors influencing the spatio-temporal variations of water quality and productivity. The data obtained revealed differences between the fish pond and its water supply. Monthly fluctuations in the availability of the major nutrients reflected the occasional supply of the fish pond with different nutrients. Phytoplankton biomass in terms of chlorophyll-a concentrations were always of relatively higher values in the fish pond than those in Lake Nasser's water. Elevation of pH values and dissolved oxygen saturation levels appeared concomitantly with the increase of chlorophyll-a concentrations due to the phytoplankton photosynthetic assimilation activities. The observations of the present study highlighted the chlorophyll-a concentrations as an indicator of phytoplankton biomass reflecting water quality in the Nile tilapia aquaculture ecosystem.

  11. Program to monitor and evaluate a passive solar greenhouse/aquaculture system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A temperature monitoring program of Amity's solar greenhouse demonstrated that air, soil, and water temperatures can be maintained at optimal levels without supplemental heat. A foil reflector placed in front of the greenhouse glazing at an angle of between 0 and 5/sup 0/ above horizontal enhanced direct light entering the greenhouse by as much as 22%. Aquaculture in the water heat storage of a solar greenhouse has been a success. Fish reached harvest size in about seven months. The two species that were received the best by the public were African perch (Tilapia mossambica) and channel catfish (Ictalurus punctatus). Although carp (Cyprinus carpio) were the fastest growers they were not well received by the public. Linking hydroponics to greenhouse aquaculture shows a lot of promise. Different support medias were examined and tomatoes and European cucumbers were raised successfully. A savonius windmill was successfully linked to an aquaculture aeration system but because of the wind pattern in the Willamette valley the windmill system did not provide air in the evening when it was needed most. Alternate designs are discussed. Locally grown fish diets were evaluated for their ability to promote fish growth. Diets such as water hyacinth, duckweed, earthworms, beans, and comfrey were raised on the Amity site, pelleted with a hand grinder and solar dried. Duckweed and earthworms appear to hold promise for a nutritous, easy to grow and pelletize, food source. Amity's solar greenhouse, three coldframe designs and a PVC tunnel cloche were compared in a vegetable growing trial. Most impressive was the cloche design because it provided adequate protection, was inexpensive and very easy to build.

  12. Hydroecological condition and potential for aquaculture in lakes of the arid region of Khorezm, Uzbekistan

    Science.gov (United States)

    Crootof, Africa; Mullabaev, Nodirbek; Saito, Laurel; Atwell, Lisa; Rosen, Michael R.; Bekchonova, Marhabo; Ginatullina, Elena; Scott, Julian; Chandra, Sudeep; Nishonov, Bakhriddin; Lamers, John P.A.; Fayzieva, Dilorom

    2015-01-01

    With >400 small (resources to provide a local food supply could increase fish consumption while improving the rural economy. Hydroecological (biological and physical) and chemical characteristics (including legacy pesticides ΣDDT and ΣHCH) of four representative drainage lakes in Khorezm from 2006 to 2008 were analyzed for the lakes’ capability to support healthy fish populations. Lake characteristics were categorized as “optimal” (having little or no effect on growth and development), “tolerable” (corresponding to chronic or sub-lethal toxicity) and “lethal” (corresponding to acute toxicity). Results indicate that three lakes are likely well-suited for raising fish species, with water quality meeting World Bank aquaculture guidelines. However, the fourth lake often had salinity concentrations > optimal levels for local fish species. Pesticide concentrations in water of all four lakes were within tolerable aquaculture ranges. Although water ΣDDT concentrations were >optimal limits, results from chemical analysis of fish tissues and semi-permeable membrane devices indicated that study lake ΣDDT concentrations were not accumulating in fish or posing a human health threat. Land and water management to maintain adequate lake water quality are imperative for sustaining fish populations for human consumption.

  13. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?

    Science.gov (United States)

    Clarke, Jihong Liu; Waheed, Mohammad Tahir; Lössl, Andreas G; Martinussen, Inger; Daniell, Henry

    2013-09-01

    Aquaculture, the fastest growing food-producing sector, now accounts for nearly 50 % of the world's food fish (FAO in The state of world fisheries and aquaculture. FAO, Rome, 2010). The global aquaculture production of food fish reached 62.7 million tonnes in 2011 and is continuously increasing with an estimated production of food fish of 66.5 million tonnes in 2012 (a 9.4 % increase in 1 year, FAO, www.fao.org/fishery/topic/16140 ). Aquaculture is not only important for sustainable protein-based food fish production but also for the aquaculture industry and economy worldwide. Disease prevention is the key issue to maintain a sustainable development of aquaculture. Widespread use of antibiotics in aquaculture has led to the development of antibiotic-resistant bacteria and the accumulation of antibiotics in the environment, resulting in water and soil pollution. Thus, vaccination is the most effective and environmentally-friendly approach to combat diseases in aquaculture to manage fish health. Furthermore, when compared to >760 vaccines against human diseases, there are only about 30 fish vaccines commercially available, suggesting the urgent need for development and cost-effective production of fish vaccines for managing fish health, especially in the fast growing fish farming in Asia where profit is minimal and therefore given high priority. Plant genetic engineering has made significant contributions to production of biotech crops for food, feed, valuable recombinant proteins etc. in the past three decades. The use of plants for vaccine production offers several advantages such as low cost, safety and easy scaling up. To date a large number of plant-derived vaccines, antibodies and therapeutic proteins have been produced for human health, of which a few have been made commercially available. However, the development of animal vaccines in plants, especially fish vaccines by genetic engineering, has not yet been addressed. Therefore, there is a need to exploit

  14. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens.

    Science.gov (United States)

    Zhao, J; Chen, M; Quan, C S; Fan, S D

    2015-09-01

    In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action. © 2014 John Wiley & Sons Ltd.

  15. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    Full Text Available Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M, tet(L, tet(O] and macrolide [erm(A, erm(B and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M and tet(L in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O, erm(B and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an

  16. Information fusion in aquaculture: a state-of the art review

    Directory of Open Access Journals (Sweden)

    Shahbaz Gul HASSAN,Murtaza HASAN,Daoliang LI

    2016-09-01

    Full Text Available Efficient fish feeding is currently one of biggest challenges in aquaculture to enhance the production of fish quality and quantity. In this review, an information fusion approach was used to integrate multi-sensor and computer vision techniques to make fish feeding more efficient and accurate. Information fusion is a well-known technology that has been used in different fields of artificial intelligence, robotics, image processing, computer vision, sensors and wireless sensor networks. Information fusion in aquaculture is a growing field of research that is used to enhance the performance of an industrialized ecosystem. This review study surveys different fish feeding systems using multi-sensor data fusion, computer vision technology, and different food intake models. In addition, different fish behavior monitoring techniques are discussed, and the parameters of water, pH, dissolved oxygen, turbidity, temperature etc., necessary for the fish feeding process, are examined. Moreover, the different waste management and fish disease diagnosis techniques using different technologies, expert systems and modeling are also reviewed.

  17. Stensund wastewater aquaculture. Studies of key factors for its optimization

    Energy Technology Data Exchange (ETDEWEB)

    Guterstam, B.; Forsberg, L.E. [Stensund Ecological Center, Stensunds Fold Center, S-61991 Trosa (Sweden); Buczynska, A. [Faculty of Process and Environmental Engineering, Technical University of Lodz, 175 Wolczanska strasse, PL-90942 Lodz (Poland); Frelek, K. [Department of Analytical Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, PL-80416 Gdansk (Poland); Pilkaityte, R. [Natural Science Faculty, University of Klaipeda, LT-5813 Klaipeda (Lithuania); Reczek, L. [Department of Water Supply and Sewage Systems, Warsaw Agricultural University, 166 Nowoursynowska strasse, PL-02787 Warsaw (Poland); Rucevska, I. [Latvian Environmental Data Center, Straumes 2, Jurmala LV 2015 (Latvia)

    1998-10-21

    This paper is a summary of an in-depth study of key factors in the function of a 7-year-old aquaculture system designed for treatment and recycling of domestic wastewater at Stensund, Trosa, Sweden. The reported areas are: wastewater flows, reduction of biochemical oxygen demand (BOD), chemical oxygen demand (COD), phosphorus, nitrogen, and fecal bacteria. Plant production is recorded as harvested biomass, and energy results are given as generated heat and electricity consumption. Special studies were conducted on the reduction of copper by anaerobic treatment. Nitrification was studied with different filter media. Microalgal autofocculation of phosphorus was studied in relation to pH and water hardness for the green algal genus Scenedesmus. Limiting factors for the growth of Daphnia magna in the zooplankton step of the constructed aquatic food-web was studied in a specially designed reproduction test. The results are analyzed in order to optimize the function of the wastewater aquaculture

  18. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  19. Feed Additives for Aquaculture and Aquarium Culture

    OpenAIRE

    Barata, Eduardo N.; Velez, Zélia

    2011-01-01

    The presente invention refers of feed additives for aquaculture and aquarium culture. These additives comprise the amino acid, 1-methyl-L-tryptophane, or its isomers with the objective of improving the attractiveness of feeds used in aquaculture and aquaria for fish, as well as other aquatic organisms, under culture conditions. Therefore, this invention has applications in the agriculture-food industry.

  20. Aquaculture in mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    vegetation forms an integral part of most productive and presently underutilised coastal ecosystem. It needs to be used in controlled manner. This would offer immense opportunities for generating food resources through aquaculture...

  1. Tritium in the Savannah River estuary and adjacent marine waters

    International Nuclear Information System (INIS)

    Hayes, D.W.

    1979-01-01

    The tritium distribution in the Savannah River estuary and adjacent marine waters was measured to provide information on the dilution, mixing and movement of Savannah River water in this region. The Savannah River marine region was chosen because the average tritium concentration in this river is approximately 5 pCi/ml, whereas other rivers in the southeastern United States of America average less than 0.5 pCi/ml. The increased tritium concentration in the Savannah River is due to releases from the Savannah River Plant of the Department of Energy. Tritium measurements have proved particularly effective in estimating the flushing time of the Savannah River estuary (2.4 days) and in delineating the relative contribution to the water masses in Ossabaw and Port Royal Sounds from the river and from sea-water. Ossabaw and Port Royal Sounds are located approximately 20 km south and north of the Savannah River estuary respectively. (author)

  2. Possibilities for marker-assisted selection in aquaculture breeding schemes

    International Nuclear Information System (INIS)

    Sonesson, A.K.

    2007-01-01

    FAO estimates that there are around 200 species in aquaculture. However, only a few species have ongoing selective breeding programmes. Marker-assisted selection (MAS) is not used in any aquaculture breeding scheme today. The aim of this chapter, therefore, is to review briefly the current status of aquaculture breeding schemes and to evaluate the possibilities for MAS of aquaculture species. Genetic marker maps have been published for some species in culture. The marker density of these maps is, in general, rather low and the maps are composed of many amplified fragment length polymorphism (AFLP) markers anchored to few microsatellites. Some quantitative trait loci (QTL) have been identified for economically important traits, but they are not yet mapped at a high density. Computer simulations of within-family MAS schemes show a very high increase in genetic gain compared with conventional family-based breeding schemes, mainly due to the large family sizes that are typical for aquaculture breeding schemes. The use of genetic markers to identify individuals and their implications for breeding schemes with control of inbreeding are discussed. (author)

  3. Towards sustainable coexistence of aquaculture and fisheries in the coastal zone

    DEFF Research Database (Denmark)

    Bergh, Øjvind; Gomez, Emma Bello; Børsheim, Knut Yngve

    2012-01-01

    Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include ......, both industries represent human activities strongly influencing, and influenced by, the environment. Management of aquaculture and fisheries, as well as other uses of the coastal zone, should be considered integral parts with local variations in their respective importance.......Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include...

  4. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system.

    Science.gov (United States)

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-02-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4(+)-N, and TN, and MSL 4 showed significantly improved NH4(+)-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4(+)-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4(+)-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4.

  5. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  6. Safety in Aquaculture

    Science.gov (United States)

    Durborow, Robert M.; Myers, Melvin L.

    2016-01-01

    In this article, occupational safety interventions for agriculture-related jobs, specifically in aquaculture, are reviewed. Maintaining quality of life and avoiding economic loss are two areas in which aquaculturists can benefit by incorporating safety protocols and interventions on their farms. The information in this article is based on farm…

  7. Daily micro particle distribution of an experimental recirculating aquaculture system – A case study

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2014-01-01

    The particle size distribution (PSD) in a recirculating aquaculture system (RAS) was investigated duringa 24-h cycle. PSD was analyzed in water sampled at several locations in a recirculation loop containing a60-m drum filter, a submerged fixed-bed biofilter and a trickling filter.In relation...

  8. Alien species in aquaculture and biodiversity: a paradox in food production.

    Science.gov (United States)

    De Silva, Sena S; Nguyen, Thuy T T; Turchini, Giovanni M; Amarasinghe, Upali S; Abery, Nigel W

    2009-02-01

    Aquaculture is seen as an alternative to meeting the widening gap in global rising demand and decreasing supply for aquatic food products. Asia, the epicenter of the global aquaculture industry, accounts for over 90% of the global aquaculture production quantity and about 80% of the value. Asian aquaculture, as with global aquaculture, is dependent to a significant extent on alien species, as is the case for all the major food crops and husbanded terrestrial animals. However, voluntary and or accidental introduction of exotic aquatic species (alien species) is known to negatively impact local biodiversity. In this relatively young food production industry, mitigating the dependence on alien species, and thereby minimizing potential negative impacts on biodiversity, is an imperative for a sustainable future. In this context an attempt is made in this synthesis to understand such phenomena, especially with reference to Asian inland finfish, the mainstay of global aquaculture production. It is pointed out that there is potential for aquaculture, which is becoming an increasingly important food production process, not to follow the past path of terrestrial food crops and husbanded animals in regard to their negative influences on biodiversity.

  9. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters

    International Nuclear Information System (INIS)

    Alldredge, A.L.; Cole, J.J.; Caron, D.A.

    1986-01-01

    Macroscopic detrital aggregates, known as marine snow, are a ubiquitous and abundant component of the marine pelagic zone. Descriptions of microbial communities occurring at densities 2-5 orders of magnitude higher on these particles than in the surrounding seawater have led to the suggestion that marine snow may be a site of intense heterotrophic activity. The authors tested this hypothesis using incorporation of [ 3 H]thymidine into macromolecules as a measure of bacterial growth occurring on marine snow from oceanic waters in the North Atlantic and from neritic waters off southern California. Abundances of marine snow ranged from 0.1 to 4.3 aggregates per liter. However, only 0.1-4% ration per cell on aggregates was generally equal to or lower than that of bacteria found free-living in the surrounding seawater, indicating that attached bacteria were not growing more rapidly than free-living bacteria. Bacteria inhabiting aggregates were up to 25 times larger than free-living forms

  10. 7 CFR 1437.303 - Aquaculture, including ornamental fish.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Aquaculture, including ornamental fish. 1437.303... ASSISTANCE PROGRAM Determining Coverage Using Value § 1437.303 Aquaculture, including ornamental fish. (a... human consumption as determined by CCC. (2) Fish raised as feed for other fish that are consumed by...

  11. Bacteriophage interactions with Vibrio anguillarum and the potential for phage therapy in marine aquaculture

    DEFF Research Database (Denmark)

    Rørbo, Nanna Iben

    is widespread in the Vibrio community which underscore the lysogenic phages influence on bacterial evolution and functional properties. Highly genetically similar Vibrio phages, termed H20-like prophages, were isolated across large geographical scales being present both as freeliving phages and as prophages...... in V. anguillarum genomes. The H20-like phages’ widespread presence suggests a mutualistic interaction which selects for co-existence with V. anguillarum. In aquaculture, especially the larvae and fry are vulnerable to pathogens, and they are not susceptible to alternatives to antibiotics, e...

  12. Structured ecosystem-scale approach to marine water quality management

    CSIR Research Space (South Africa)

    Taljaard, Susan

    2006-10-01

    Full Text Available and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in response to recent advances in policies...

  13. Aquaculture. Teacher Edition.

    Science.gov (United States)

    Walker, Susan S.

    This color-coded guide was developed to assist teachers in helping interested students plan, build, stock, and run aquaculture facilities of varied sizes. The guide contains 15 instructional units, each of which includes some or all of the following basic components: objective sheet, suggested activities for the teacher, instructor supplements,…

  14. Aquaculture Asia, Vol. 7, No. 3, pp.1-60, July - September 2002

    OpenAIRE

    2002-01-01

    CONTENTS: Sustainable Aquaculture - Peter Edwards writes on rural aquaculture: Aquaculture for Poverty Alleviation and Food Security - Part II. Shrimp pond waste management by U Win Latt. The role of rural extension in the sustainable development of Chinese aquaculture by Min Kuanhong. Farmers as Scientists: Diversity enhances profitability and sustainability by M.C. Nandeesha. Properties of Liming Materials by Claude E. Boyd, Mali Boonyaratpalin & Taworn Thunjai. Seed Produc...

  15. Major constraints affecting aquaculture development in Akwa Ibom ...

    African Journals Online (AJOL)

    The study contributes to nationwide attempts to enhance the contributions of aquaculture to the fishery subsector, and consequent overall gross domestic product of Nigeria, as well as to the protein intake of her citizenry. The focus is on the determination of the magnitude of constraints affecting aquaculture development in ...

  16. Bio-accumulation kinetics of radioruthenium in marine bivalves. Laboratory study

    International Nuclear Information System (INIS)

    Mu, D.H.; Yan, S.P.; Gu, Y.J.; Li, D.J.; Du, J.Z.

    2007-01-01

    Three kinds of marine bivalves (wild Saccostrea cucullata, aquacultured Perna viridis and aquacultured Pinctada martens), collected from Daya Bay, the South China Sea, were used to investigate the bio-accumulation of radioruthenium in the glass aquarium with natural seawater (pH 8.20, 35 per mille salinity, filtered by 0.45 μm) at ambient temperature under laboratory feeding conditions. The experimental results show that the stead-state of biology concentration factor (BCF, ml/g) of radioruthenium was approached around 6 days for most species of bivalves. The values of BCF in shells are the highest in organs all the three bivalves. The orders of BCF values (ml x g -1 ) are as: Perna viridis (33.2) < Saccostrea cucullata (47.0) < Pinctada martensi (208.4) for shells and Saccostrea cucullata (1.5) < Pinctada martensi (2.2) ∼ Perma viridis (2.4) for soft tissues, respectively, after exposed for 14 days. The rate constants of uptake and elimination of radioruthenium on marine bivalves were also discussed by first-order kinetics model. The Pinctada martensi may be applicable to be an indictor for monitoring radioruthenium among the three bivalves. (author)

  17. Key Performance Characteristics of Organic Shrimp Aquaculture in Southwest Bangladesh

    Directory of Open Access Journals (Sweden)

    Christian Reinhard Vogl

    2012-05-01

    Full Text Available In Bangladesh, black tiger shrimp (Penaeus monodon; Fabricius, 1798 aquaculture has come to be one of the most important sectors in both the rural and national economies. Likewise, organic shrimp aquaculture has emerged as an alternative farming enterprise for farmers especially in the southwestern districts of Bangladesh. The present study aims to show key performance characteristics of organic shrimp farmers and farming in a prototypical shrimp farming area in Bangladesh. Data was collected in 2009 from organic shrimp farmers in the Kaligonj and Shyamnagar sub-districts through questionnaire interviews, transect walks and focus group discussions. The mean productivity of organic shrimp farming in the area is 320 kg ha−1 yr−1 (ranging from 120 to 711 kg ha−1year−1. Organic farmers are more likely to have a higher monthly income and less aquaculture experience. Moreover, suitable landholdings and classified labor distribution have been found to play an important role in the development of organic shrimp aquaculture. The most common assets of organic shrimp aquaculture are high yield, low production cost, available post larvae and high market prices. Small business farmers are likely to earn more income benefits from organic shrimp aquaculture than their larger-scale counterparts. Finally, the paper suggests that more research is needed to stimulate the success of organic shrimp aquaculture.

  18. Sécurité alimentaire, pêches et aquaculture en Amazonie bolivienne ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-03-01

    Food security, fisheries and aquaculture in the Bolivian Amazon : final technical report (March 1, 2011 to February 28, 2014). Download PDF. Briefs. Pêches, aquaculture et bien vivre en Bolivie : contributions à la sécurité alimentaire. Download PDF. Briefs. Fisheries, aquaculture and living well in Bolivia : contributions to ...

  19. Aqua-Topics. Aquaculture for Youth and Youth Educators.

    Science.gov (United States)

    McVey, Eileen

    This booklet contains information on aquaculture and ideas for aquaculture projects. The information provided is for students at upper elementary through high school learning levels. Recommended activities at the end of the text are organized by level of difficulty. The activities can be modified depending on area and availability of resources. A…

  20. Analysis of economic and energy utilization aspects for waste heat aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.; Wilson, J. V.

    1978-01-01

    A waste heat aquaculture system using extensive culture techniques to produce fin and shellfish is currently under investigation at the Oak Ridge National Laboratory. The system uses nutrients in waste water streams to grow algae and zooplankton which are fed to fish and clams. A tilapia polyculture association and the freshwater clam Corbicula are the animals cultured in the system. The investigations were performed to determine the economic feasibility of the system and examine energy utilization in the system. A net energy analysis was performed to identify the energy saving potential for the system. This analysis includes all energy costs (both direct and indirect) associated with building and operating the system. The results of the economic study indicated that fish production costs of $0.55/kg ($0.25/lb) were possible. This cost, however, depends upon the fish production rate and food conversion efficiency and could rise to as much as $1.65/kg ($0.75/lb). Clam production costs were found to be in the neighborhood of $0.37/kg of clam meat ($1.24/bushel). The energy utilization study results indicated that, when all energy costs are included, fish from the aquaculture system may require only 35% of the net energy now required for fish products from the ocean. However, the energy requirements also depend on system parameters and could be as large as the energy required for ocean caught products. Clams can be produced in the aquaculture system using only about 25% of the net energy required by traditional means. The results of the analysis indicate that the system appears to be economically feasible. They also indicate that significant energy savings are possible if waste heat aquaculture products replace ocean caught products.

  1. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline

    Science.gov (United States)

    Seyfried, Erin E.; Newton, Ryan J.; Rubert, Kennedy F.; Pedersen, Joel A.; McMahon, Katherine D.

    2014-01-01

    The contribution of human activities to environmental reservoirs of antibiotic resistance is poorly understood. The purpose of this study was to determine if oxytetracycline (OTC) use in aquaculture facilities increased the detection frequency (i.e. prevalence) of tetracycline resistance genes relative to facilities with no recent OTC treatment. We used PCR to screen water and sediment from four non-commercial fish farms in northwestern Wisconsin for the presence of ten tetracycline resistance determinants (tetR): tet(A), tet(B), tet(D), tet(E), tet(G), tet(M), tet(O), tet(Q), tet(S) and tet(W). Water from farms with recent OTC use had significantly higher tetR detection frequencies than did water from farms without recent OTC use, with prevalence in raceways and rearing ponds of farms with recent OTC use exceeded by more than two-fold that of farms not using OTC. Effluent from all farms, regardless of treatment regime, had higher tetR detection frequencies than their corresponding influent for all genes, but the specific combinations of tetR genes detected in a sample were not different from their corresponding influent. Although OTC use was associated with the increased occurrence and diversity of tetR genes in water samples, it was not found to relate to tetR gene occurrence in sediment samples. Sediment samples from facilities with no recent OTC use had significantly higher frequencies of tetR gene detection than did samples from facilities with recent OTC use. All of the tetR genes were detected in both the medicated and non-medicated feed samples analyzed in this study. These findings suggest that both OTC treatment in aquaculture facilities, and the farms themselves, may be sources of tetR gene introduction to the environment. To our knowledge, this is the first study to use genotypic and cultivation-independent methods to examine tetR gene occurrence associated with OTC use in aquaculture. PMID:20217406

  2. Freshwater Institute: Focused on improving recirculating aquaculture system technology

    Science.gov (United States)

    Recirculating aquaculture system (RAS) technologies help to overcome barriers to domestic aquaculture expansion and enhance the sustainability of the modern fish farming industry through reduction in environmental impacts. With RAS, fish farm expansion is no longer highly constrained by competition ...

  3. Does aquaculture add resilience to the global food system?

    NARCIS (Netherlands)

    Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crepin, A.S.; Ehrlich, P.; Gren, R.; Kautsky, N.; Levin, S.A.; Nyborg, K.; Osterblom, H.; Polasky, S.; Scheffer, M.; Walker, B.H.; Xepapadeas, T.; Zeeuw, de A.

    2014-01-01

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment

  4. The effects of aquaculture noise on hearing, growth and disease resistance of rainbow trout Oncorhynchus mykiss

    Science.gov (United States)

    Intensive aquaculture production often utilizes equipment (e.g., aerators, air and water pumps, harvesters, blowers, filtration systems, and maintenance machinery) that increases noise levels in fish culture tanks. Consequently, chronic exposure to elevated noise levels in tanks could negatively imp...

  5. Technology Foresight in Emerging Maritime & Marine Economies

    DEFF Research Database (Denmark)

    Spaniol, Matthew Jon; Rohrbeck, René

    . The technologies are organized to support innovation and the development of new business areas, and sustains discussion via an online portal. The upshot for technology developers is the organization of the technological landscape. The upshot for academics is the expanded horizon of emerging technologies...... for anticipatory projects, development efforts, and policy considerations. An early iteration of the Radar covers: • Renewable ocean energy • Seabed mining & offshore technology • Marine biotechnology & aquaculture • Specialized vessels & infrastructure • Servicing emerging maritime & offshore activities...

  6. Offshore Aquaculture Development in Ecuador

    Directory of Open Access Journals (Sweden)

    Julio López Alvarado

    2016-03-01

    Full Text Available Ecuador has a long tradition in aquaculture, mainly related to the cultivation of shrimp and tilapia in earthen ponds. Land-based production methods have a large environmental, economic and social impact due to the extensive use of land and its effects on the ecosystems. In order to increase the production of fish without further land use and with a lower environmental impact, a good alternative is the culture of fish in floating cages, adopting technologies used successfully in many other countries. This article analyses the current situation of offshore aquaculture (the production of fish and other aquatic organisms in the open sea in Ecuador, and the prospects for the future of this sector in the country.

  7. Sécurité alimentaire, pêches et aquaculture en Amazonie bolivienne ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-03-01

    Food security, fisheries and aquaculture in the Bolivian Amazon : final technical report (March 1, 2011 to February 28, 2014). Téléchargez le PDF. Dossiers. Pêches, aquaculture et bien vivre en Bolivie : contributions à la sécurité alimentaire. Téléchargez le PDF. Dossiers. Fisheries, aquaculture and living well in Bolivia ...

  8. Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways

    OpenAIRE

    Reisser, Julia Wiener; Shaw, Jeremy; Wilcox, Chris; Hardesty, Britta Denise; Proietti, Maíra Carneiro; Thums, Michele; Pattiaratchi, Charitha

    2013-01-01

    Plastics represent the vast majority of human-made debris present in the oceans. However, their characteristics, accumulation zones, and transport pathways remain poorly assessed. We characterised and estimated the concentration of marine plastics in waters around Australia using surface net tows, and inferred their potential pathways using particle-tracking models and real drifter trajectories. The 839 marine plastics recorded were predominantly small fragments ("microplastics", median lengt...

  9. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    Science.gov (United States)

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  10. Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science.

    Science.gov (United States)

    Blaylock, Reginald B; Bullard, Stephen A

    2014-12-01

    Aquaculture is the fastest-growing segment of food production and is expected to supply a growing portion of animal protein for consumption by humans. Because industrial aquaculture developed only recently compared to industrial agriculture, its development occurred within the context of a growing environmental awareness and acknowledgment of environmental issues associated with industrial farming. As such, parasites and diseases have become central criticisms of commercial aquaculture. This focus on parasites and diseases, however, has created a nexus of opportunities for research that has facilitated considerable scientific advances in the fields of parasitology and aquaculture. This paper reviews Myxobolus cerebralis , Lepeophtheirus salmonis , white spot syndrome virus, and assorted flatworms as select marquee aquaculture pathogens, summarizes the status of the diseases caused by each and their impacts on aquaculture, and highlights some of the significant contributions these pathogens have made to the science of parasitology and aquaculture.

  11. An econometric viability model for ongrowing sole (Solea senegalensis) in tanks using pumped well sea water

    OpenAIRE

    García García, J.; García García, B.

    2006-01-01

    Sole (Solea senegalensis) is of great interest to marine aquaculture in the Mediterranean because of its relatively fast growth and good commercial prospects (high price). However, the wide mean annual variation in the temperature of Mediterranean sea water (14-26 deg C) is a limiting factor for the ongrowing of this species; the optimum for this process is 19-20 deg C. One of the possible mid-term solutions for ensuring a constant year-round temperature is to ongrow these fish in tanks conta...

  12. A regression model using sediment chemistry for the evaluation of marine environmental impacts associated with salmon aquaculture cage wastes

    International Nuclear Information System (INIS)

    Chou, C.L.; Haya, K.; Paon, L.A.; Moffatt, J.D.

    2004-01-01

    This study was undertaken to develop an approach for modelling changes of sediment chemistry related to the accumulation of aquaculture waste. Metal composition of sediment Al, Cu, Fe, Li, Mn, and Zn; organic carbon and 2 =0.945 compared to R 2 =0.653 for the regression model using unadjusted EMP for assessing the environmental conditions

  13. Does aquaculture add resilience to the global food system?

    Science.gov (United States)

    Troell, Max; Naylor, Rosamond L.; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H.; Folke, Carl; Arrow, Kenneth J.; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R.; Gren, Åsa; Kautsky, Nils; Levin, Simon A.; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H.; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-01-01

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111

  14. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Waste production and regional growth of marine activities an econometric model

    International Nuclear Information System (INIS)

    Bramati, Maria Caterina

    2016-01-01

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. - Highlights: • We use an econometric model as a tool for assessing the effects of regional policies on the development of economic activities related to the use of the sea and on the impact on the marine environment. • Through scenario simulation we provide strategic guidelines for policy makers and economic planners • The model features feedback effects of economic and demographic expansion on the pollution of coastal areas.

  16. Aquaculture intérieure et adaptation aux changements climatiques ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Risk Management Practices. Briefs. Aquaculture and Climate. Journal articles. River-based cage aquaculture of tilapia in Northern Thailand : sustainability of rearing and business practices. Journal articles. Learning about climate-related risks: decisions of Northern Thailand fish farmers in a role-playing simulation game ...

  17. Potential hazards and risks associated with the aquaculture industry ...

    African Journals Online (AJOL)

    Aquaculture, the farming of aquatic organisms, is fraught with potential hazards and risks which are categorized into occupational, environmental, food safety and public health. This paper reviewed major hazards and risks associated with the aquaculture industry and proffered strategies for their management and control.

  18. Marine nitrous oxide emissions: An unknown liability for the international water sector

    International Nuclear Information System (INIS)

    Short, Michael D.; Peters, Gregory M.; Peirson, William L.; Ashbolt, Nicholas J.

    2013-01-01

    Highlights: • IPCC methodology for indirect marine nitrous oxide (N 2 O) emissions does not exist. • The water sector has an unknown N 2 O emissions liability from marine sewage disposal. • We model global sewage-nitrogen (N) emissions to coastal oceans during 1970–2050. • Emission factors for marine N 2 O will enable water sector N 2 O emissions accounting. • Industry benefits will include future revenue streams and better N emissions policy. -- Abstract: Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N 2 O) emissions from sewage management are both highly uncertain and incomplete; a major methodological gap relates to the calculation of indirect N 2 O emissions from sewage disposed to marine environments. Here we apply a novel approach to estimate past and future global sewage-nitrogen emissions to coastal oceans and the potential marine N 2 O emissions linked to this nitrogen source. Then, by estimating the future cost associated with this largely uncharacterized emission source, we demonstrate the industry significance of developing a methodology for estimating N 2 O emissions from marine receiving environments. The capacity to accurately estimate, monitor and report GHG emissions has important consequences for informing future policy decisions regarding both mitigation and adaptation. A robust N 2 O emissions estimation methodology for sewage-nitrogen disposed to coastal oceans will allow the international water sector to more accurately and comprehensively inventory its N 2 O emissions. This will in turn allow for proper accounting of related future emissions liabilities while also enabling the sector to capitalize on any future economic returns linked to this source – providing much-needed capital to support the sector's future infrastructure and climate change adaptation challenges

  19. Offshore finfish aquaculture in the United States: An examination of federal laws that could be used to address environmental and occupational public health risks.

    Science.gov (United States)

    Fry, Jillian P; Love, David C; Shukla, Arunima; Lee, Ryan M

    2014-11-19

    Half of the world's edible seafood comes from aquaculture, and the United States (US) government is working to develop an offshore finfish aquaculture industry in federal waters. To date, US aquaculture has largely been regulated at the state level, and creating an offshore aquaculture industry will require the development of a new regulatory structure. Some aquaculture practices involve hazardous working conditions and the use of veterinary drugs, agrochemicals, and questionable farming methods, which could raise environmental and occupational public health concerns if these methods are employed in the offshore finfish industry in the US. This policy analysis aims to inform public health professionals and other stakeholders in the policy debate regarding how offshore finfish aquaculture should be regulated in the US to protect human health; previous policy analyses on this topic have focused on environmental impacts. We identified 20 federal laws related to offshore finfish aquaculture, including 11 that are relevant to preventing, controlling, or monitoring potential public health risks. Given the novelty of the industry in the US, myriad relevant laws, and jurisdictional issues in an offshore setting, federal agencies need to work collaboratively and transparently to ensure that a comprehensive and functional regulatory structure is established that addresses the potential public health risks associated with this type of food production.

  20. The growth of finfish in global open-ocean aquaculture under climate change.

    Science.gov (United States)

    Klinger, Dane H; Levin, Simon A; Watson, James R

    2017-10-11

    Aquaculture production is projected to expand from land-based operations to the open ocean as demand for seafood grows and competition increases for inputs to land-based aquaculture, such as freshwater and suitable land. In contrast to land-based production, open-ocean aquaculture is constrained by oceanographic factors, such as current speeds and seawater temperature, which are dynamic in time and space, and cannot easily be controlled. As such, the potential for offshore aquaculture to increase seafood production is tied to the physical state of the oceans. We employ a novel spatial model to estimate the potential of open-ocean finfish aquaculture globally, given physical, biological and technological constraints. Finfish growth potential for three common aquaculture species representing different thermal guilds-Atlantic salmon ( Salmo salar ), gilthead seabream ( Sparus aurata ) and cobia ( Rachycentron canadum )-is compared across species and regions and with climate change, based on outputs of a high-resolution global climate model. Globally, there are ample areas that are physically suitable for fish growth and potential expansion of the nascent aquaculture industry. The effects of climate change are heterogeneous across species and regions, but areas with existing aquaculture industries are likely to see increases in growth rates. In areas where climate change results in reduced growth rates, adaptation measures, such as selective breeding, can probably offset potential production losses. © 2017 The Author(s).

  1. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture

    Directory of Open Access Journals (Sweden)

    S. Sumoharjo

    2013-06-01

    Full Text Available Integrated multi-trophic aquaculture pays more attention as a bio-integrated food production system that serves as a model of sustainable aquaculture, minimizes waste discharge, increases diversity and yields multiple products. The objectives of this research were to analyze the efficiency of total ammonia nitrogen biofiltration and its effect on carrying capacity of fish rearing units. Pilot-scale bioreactor was designed with eight run-raceways (two meters of each that assembled in series. Race 1-3 were used to stock silky worm (Tubifex sp as detrivorous converter, then race 4-8 were used to plant three species of leaf-vegetable as photoautotrophic converters, i.e; spinach (Ipomoea reptana, green mustard (Brassica juncea and basil (Ocimum basilicum. The three plants were placed in randomized block design based on water flow direction. Mass balance of nutrient analysis, was applied to figure out the efficiency of bio-filtration and its effect on carrying capacity of rearing units. The result of the experiment showed that 86.5 % of total ammonia nitrogen removal was achieved in 32 days of culturing period. This efficiency able to support the carrying capacity of the fish tank up to 25.95 kg/lpm with maximum density was 62.69 kg/m3 of fish biomass productionDoi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85 [How to cite this article: Sumoharjo, S.  and Maidie, A. (2013. Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture.  International Journal of  Science and Engineering, 4(2,80-85. Doi: http://dx.doi.org/10.12777/ijse.4.2.2013.80-85

  2. The importance of live-feed traps - farming marine fish species

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Nielsen, Max; Abate, Tenaw Gedefaw

    2017-01-01

    This article analyses the challenges of different live-feed regimes for the rearing of marine finfish larvae and discusses the potential alternative live feeds to avert a future live-feed trap. Live feeds are indispensable for the successful rearing of larvae of most marine fish species. Brine...... shrimps (Artemia) and rotifers comprise the live feeds of choice in marine aquaculture today. However, their nutritional composition is deficient in especially essential fatty acids, and enrichment with fish oil is needed. Fish oil is considered a limited resource owing to its origin in fully exploited...... wild fish stocks. Moreover, fluctuations of the natural population of Artemia will, most likely, influence future availability and prices. This emphasizes the need for optimal exploitation of available live-feed resources and development of new sustainable alternatives, such as copepods. An array...

  3. Parasites and diseases in marine copepods: Challenges for future mass-production of live feed for fish larva production

    DEFF Research Database (Denmark)

    Skovgaard, Alf

    Copepods are the natural food for many marine fish larvae, and the use of cultured copepods as life feed is, therefore, becoming increasingly important as more marine fish species are being produced in aquaculture. Large-scale cultivation of copepods may be challenged by diseases and parasites....... In nature, marine copepods are hosts for parasitic organisms of many different taxonomic groups, including e.g. dinoflagellates, ciliates, paramyxans, nematodes and even other crustaceans. In addition, several parasites of copepods have yet not been investigated in relation to their taxonomic affiliation...

  4. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Science.gov (United States)

    2012-02-27

    ..., recreational, conservation, research, educational, and aesthetic values, and are becoming increasingly more... sewage; and (2) it will improve California marine waters for commercial fisheries, tourism, aesthetics...-out facilities, educational outreach, and establishment of small NDZs under CWA Section 312(f)(3) in...

  5. Streptomyces bacteria as potential probiotics in aquaculture

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2016-02-01

    Full Text Available In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effective in improving the growth, survival and health status of the aquatic livestock. This review aims to highlight the genus Streptomyces can be a good candidate for probiotics in aquaculture. Studies showed that the feed supplemented with Streptomyces could protect fish and shrimp from pathogens as well as increase the growth of the aquatic organisms. Furthermore, the limitations of Streptomyces as probiotics in aquaculture is also highlighted and solutions are discussed to these limitations.

  6. A structured ecosystem-scale approach to marine water quality ...

    African Journals Online (AJOL)

    These, in turn, created the need for holistic and integrated frameworks within which to design and implement environmental management programmes. A structured ecosystem-scale approach for the design and implementation of marine water quality management programmes developed by the CSIR (South Africa) in ...

  7. Concentration factors for Cs-137 in marine algae from Japanese coastal waters

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Koyanagi, Taku.

    1994-01-01

    Concentration factors (CF: Bq·kg -1 in wet algae/Bq·kg -1 in filtered seawater) for Cs-137 in Japanese coastal algae, were investigated during 1984-1990. Cs-137/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of Cs-137 in marine algae and sea water. The CFs in marine algae were within the range of 5.4-92, and the geometric mean of CF was 28±2 (standard error) in Japanese coastal species. The CFs in edible species were within the range of 5.4-67, and the geometric means of CF was 26±4 (standard error). The values of Cs-137/Cs atom ratios in marine algae and sea water indicated that Cs-137 reached an equilibrium state in partition between algae and sea water. Therefore, the CF value obtained in the present study can be regarded as an equilibrated value. Our results showed that hte CF for Cs-137 in Japanese coastal algae were consistent with the Japanese guideline CFs, but were smaller than the recommended value by IAEA. (author)

  8. Genetically modified organisms (GMOs) and aquaculture.

    Science.gov (United States)

    Beardmore, J A; Porter, Joanne S

    2003-01-01

    This paper reviews the nature of genetically modified organisms (GMOs), the range of aquatic species in which GMOs have been produced, the methods and target genes employed, the benefits to aquaculture, the problems attached to use of GMOs in aquatic species and the regulatory and other social frameworks surrounding them. A set of recommendations aimed at best practice is appended. This states the potential value of GMOs in aquaculture but also calls for improved knowledge particularly of sites of integration, risk analysis, progress in achieving sterility in fish for production and better dissemination of relevant information.

  9. Recent advances within intensive Recirculated Aquaculture System cultivation of the calanoid copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Jepsen, Per Meyer; Højgaard, Jacob Kring; Drillet, Guillaume

    2014-01-01

    ) was constructed as a part of the IMPAQ project “IMProvement of AQuaculture high quality fish fry production”. We present recent advance within RAS culture for copepods, and lesson learned from rearing the specie. Further we present physical and biological culture restrictions in terms of water quality (NH3...

  10. The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon Salmo salar

    Science.gov (United States)

    A controlled 3-month study was conducted in 6 replicated water recirculation aquaculture systems (RAS) containing a mixture of sexually mature and immature Atlantic salmon Salmo salar to determine whether water ozonation is associated with a reduction in waterborne hormones. Post-smolt Atlantic salm...

  11. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.

    2009-01-01

    industry in many regions of the world and the widespread, intensive, and often unregulated use of antimicrobial agents in this area of animal production, efforts are needed to prevent development and spread of antimicrobial resistance in aquaculture to reduce the risk to human health....... in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...

  12. Marine Hydrokinetic Projects for US Waters as of January 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pending or issued preliminary permits or issued licenses for marine hydrokinetic projects that produce energy from waves or directly from the flow of water in ocean...

  13. A review of the major marine environmental concerns off the Canadian East Coast in the 1980s

    International Nuclear Information System (INIS)

    Harding, G.C.

    1992-01-01

    The natural environmental features of the Canadian east coast marine waters are described and anthropogenic influences that affect this environment are reviewed, with extensive reference to the literature. Effects from pollutants such as halogenated and aromatic hydrocarbons, trace metals, and radioactive materials are included, as well as effects from ozone depletion, greenhouse gas emissions, hydroelectric development, dredging and dumping, municipal sewage disposal, and coastal development in general. The most concentrated pollution in the Atlantic region is the St. Lawrence River valley and estuary, although there are a number of smaller sites associated with population centers such as St. John, New Brunswick and Halifax, Nova Scotia. Specific industries located along the coast have polluted local environments more than other activities. Sewage discharges have seriously affected expansion of the aquaculture industry. Hydroelectric development may have altered marine biological production, but more directed research is needed to assess the problem. Offshore exploration for oil and gas has had no observed adverse effects on the ecosystem to date, although the possibility for an environmental disaster from a well blowout or marine accident still exists. 177 refs., 3 figs

  14. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    Directory of Open Access Journals (Sweden)

    Leonilde Roselli

    Full Text Available Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape. We tested the hypothesis focusing on resource availability (nutrients and light and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  15. Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Suhr, Karin Isabel; Dalsgaard, Anne Johanne Tang

    2012-01-01

    This study investigated the effects of applying four fixed feed loadings to three replicated recirculating aquaculture systems (RAS) on water quality changes, nitrogenous balances and growth performance of rainbow trout (Oncorhynchus mykiss).Feed loadings ranged from 1.6 to 6.3kgfeed/m3 make-up...... water, with a constant make-up water renewal of 4.7% of total water volume per day in all twelve RAS. Fish densities ranged from 14 to 92kg/m3 during the prolonged trial of 10weeks. Selected water quality parameters were measured during two intensive sampling campaigns, evaluating biofilter...

  16. Success Stories in Asian Aquaculture | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    13 oct. 2009 ... Sena S. De Silva is Director General of the Network of Aquaculture Centres in Asia- Pacific and Honorary Professor of Aquaculture and Fisheries Biology at the School of Life and Environmental Sciences, Deakin University, Victoria, Australia. F. Brian Davy is Senior Fellow at the International Institute for ...

  17. Water and Electricity Do Mix: Studying Plates, Petroleum, and Permafrost using Marine Electromagnetism

    Science.gov (United States)

    Constable, S.

    2015-12-01

    Marine magnetotelluric (MT) and controlled-source electromagnetic (CSEM) sounding methods were developed in the early 1980's as deep-water academic tools to study the oceanic lithosphere and mantle. Electrical conductivity is a strong function of porosity, temperature, melting, and volatile content, and so marine MT and CSEM data can be used to address a variety of geological questions related to plate tectonics. These include the distribution of melt at mid-ocean ridges, the fate of fluids in subduction zones, and the nature of the lithosphere-asthenosphere boundary. With the advent of deepwater oil and gas drilling in the late 1990's, marine EM methods were embraced by the exploration community, and are now routinely used to assist in exploration and make drilling decisions for wells costing $100M or more. For countries without conventional hydrocarbon resources, gas hydrate offers the potential for energy production, and marine CSEM methods may be the only effective way to explore for and characterize this resource. The use of EM methods to map geothermal, groundwater, and mineral resources also has application in the marine environment. Water and electricity has proved to be a very successful mix!

  18. Optical properties of marine waters and the development of bio-optical algorithms

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    This paper presents the primary optical variables used in the measurement of the optical properties of marine waters. How can in-situ measurements be used in the optical recognition of coastal and open ocean waters. We then look at bio...

  19. D5.10 - Interaction of the tsunami with the seabed. Implications for wind farms, aquaculture, coastal ecosystems and marine protected areas

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Eltard-Larsen, Bjarke; Sumer, B. Mutlu

    2015-01-01

    (Food and Agriculture organization of the United Nations) report titled “The State of the World Fisheries and Aquaculture” released in May 2014.] For this purpose, we first briefly provide and introductory summary on aquaculture. This is followed by the section “Vulnerability of Fisheries...

  20. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds.

    Directory of Open Access Journals (Sweden)

    Panos G Kalatzis

    Full Text Available Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.

  1. Evaluating genetic traceability methods for captive-bred marine fish and their applications in fisheries management and wildlife forensics

    DEFF Research Database (Denmark)

    Bylemans, Jonas; Maes, Gregory E.; Diopere, Eveline

    2016-01-01

    Growing demands for marine fish products is leading to increased pressure on already depleted wild populations and a rise in aquaculture production. Consequently, more captive-bred fish are released into the wild through accidental escape or deliberate releases. The increased mixing of captive-br...

  2. Marine ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Studies on marine ecology included marine pollution; distribution patterns of Pu and Am in the marine waters, sediments, and organisms of Bikini Atoll and the influence of physical, chemical, and biological factors on their movements through marine biogeochemical systems; transfer and dispersion of organic pollutants from an oil refinery through coastal waters; transfer of particulate pollutants, including sediments dispersed during construction of offshore power plants; and raft culture of the mangrove oysters

  3. Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters

    Directory of Open Access Journals (Sweden)

    Sinigalliano Christopher D

    2011-01-01

    Full Text Available Abstract Background Staphylococcus aureus including methicillin resistant S. aureus, MRSA, are human colonizing bacteria that commonly cause opportunistic infections primarily involving the skin in otherwise healthy individuals. These infections have been linked to close contact and sharing of common facilities such as locker rooms, schools and prisons Waterborne exposure and transmission routes have not been traditionally associated with S. aureus infections. Coastal marine waters and beaches used for recreation are potential locations for the combination of high numbers of people with close contact and therefore could contribute to the exposure to and infection by these organisms. The primary aim of this study was to evaluate the amount and characteristics of the shedding of methicillin sensitive S. aureus, MSSA and MRSA by human bathers in marine waters. Results Nasal cultures were collected from bathers, and water samples were collected from two sets of pools designed to isolate and quantify MSSA and MRSA shed by adults and toddlers during exposure to marine water. A combination of selective growth media and biochemical and polymerase chain reaction analysis was used to identify and perform limited characterization of the S. aureus isolated from the water and the participants. Twelve of 15 MRSA isolates collected from the water had identical genetic characteristics as the organisms isolated from the participants exposed to that water while the remaining 3 MRSA were without matching nasal isolates from participants. The amount of S. aureus shed per person corresponded to 105 to 106 CFU per person per 15-minute bathing period, with 15 to 20% of this quantity testing positive for MRSA. Conclusions This is the first report of a comparison of human colonizing organisms with bacteria from human exposed marine water attempting to confirm that participants shed their own colonizing MSSA and MRSA into their bathing milieu. These findings clearly

  4. Food intake rate and delivery strategy in aquaculture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In aquaculture, it is important to estimate in advance how much food cultured animals would take. The rate of food consumption by cultured animals to available food amount is defined as the food intake rate (FIR) in this paper. To some extents, FIR reflects the quality of food, the health of cultured animals and the delivery efficiency. In practice, it is difficult to estimate in advance the accurate quantity of food that cultured animal needs. Usually, food is provided more than the need by animals, causing excess food that may pollute water and environment. Our experiments in past years show that FIR at 80% is recommended.

  5. Promoting Women Participation in Aquaculture as a Viable Tool for ...

    African Journals Online (AJOL)

    Promoting Women Participation in Aquaculture as a Viable Tool for Poverty Alleviation in the Rural Areas of Nigeria. ... Open Access DOWNLOAD FULL TEXT ... a source of income, also the paper focus on the roles of women in aquaculture, ...

  6. Cobia (Rachycentron canadum hatchery-to-market aquaculture technology: recent advances at the University of Miami Experimental Hatchery (UMEH Tecnologia da criação de beijupirá (Rachycentron canadum: recentes avanços do Laboratório de Larvicultura Experimental da Universidade de MIAMI (UMEH

    Directory of Open Access Journals (Sweden)

    Daniel Benetti

    2010-07-01

    Full Text Available Among warm-water marine fishes, cobia is one of the best aquaculture candidate species in the world. Currently there are commercial culture operations in several Asian countries and the industry has started developing elsewhere, including the Western Central Atlantic region. Significant research has been conducted at the University of Miami's Aquaculture Program / University of Miami Experimental Hatchery (UMEH during the last eight years, involving research to develop and optimize advanced technology to demonstrate the viability of raising hatchery-reared cobia in collaboration with the private sector. This paper reviews some of this recent advances for the development of Hatchery-to-Market Aquaculture Technology for commercial production of cobia.Dentre os peixes marinhos de águas quentes, o bijupirá é um dos grandes candidatos para a aquacultura no mundo. Atualmente, existem operações comerciais em vários países Asiáticos e a indústria iniciou suas operações em outros locais, incluindo a região do Atlântico Central. Pesquisas têm sido realizadas no "University of Miami's Aquaculture Program / University of Miami Experimental Hatchery (UMEH" durante os últimos oito anos envolvendo o desenvolvimento e otimização de tecnologia avançada para demonstrar a viabilidade da criação de bijupirá com colaboração com o setor privado. Este artigo revisa alguns destes avanços recentes para o desenvolvimento da tecnologia da larvicultura para o mercado para a produção comercial de bijupirá.

  7. Aquaculture: global status and trends.

    Science.gov (United States)

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-09-27

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems.

  8. Aquaculture: global status and trends

    Science.gov (United States)

    Bostock, John; McAndrew, Brendan; Richards, Randolph; Jauncey, Kim; Telfer, Trevor; Lorenzen, Kai; Little, David; Ross, Lindsay; Handisyde, Neil; Gatward, Iain; Corner, Richard

    2010-01-01

    Aquaculture contributed 43 per cent of aquatic animal food for human consumption in 2007 (e.g. fish, crustaceans and molluscs, but excluding mammals, reptiles and aquatic plants) and is expected to grow further to meet the future demand. It is very diverse and, contrary to many perceptions, dominated by shellfish and herbivorous and omnivorous pond fish either entirely or partly utilizing natural productivity. The rapid growth in the production of carnivorous species such as salmon, shrimp and catfish has been driven by globalizing trade and favourable economics of larger scale intensive farming. Most aquaculture systems rely on low/uncosted environmental goods and services, so a critical issue for the future is whether these are brought into company accounts and the consequent effects this would have on production economics. Failing that, increased competition for natural resources will force governments to allocate strategically or leave the market to determine their use depending on activities that can extract the highest value. Further uncertainties include the impact of climate change, future fisheries supplies (for competition and feed supply), practical limits in terms of scale and in the economics of integration and the development and acceptability of new bio-engineering technologies. In the medium term, increased output is likely to require expansion in new environments, further intensification and efficiency gains for more sustainable and cost-effective production. The trend towards enhanced intensive systems with key monocultures remains strong and, at least for the foreseeable future, will be a significant contributor to future supplies. Dependence on external feeds (including fish), water and energy are key issues. Some new species will enter production and policies that support the reduction of resource footprints and improve integration could lead to new developments as well as reversing decline in some more traditional systems. PMID:20713392

  9. Offshore Finfish Aquaculture in the United States: An Examination of Federal Laws That Could be Used to Address Environmental and Occupational Public Health Risks

    Directory of Open Access Journals (Sweden)

    Jillian P. Fry

    2014-11-01

    Full Text Available Half of the world’s edible seafood comes from aquaculture, and the United States (US government is working to develop an offshore finfish aquaculture industry in federal waters. To date, US aquaculture has largely been regulated at the state level, and creating an offshore aquaculture industry will require the development of a new regulatory structure. Some aquaculture practices involve hazardous working conditions and the use of veterinary drugs, agrochemicals, and questionable farming methods, which could raise environmental and occupational public health concerns if these methods are employed in the offshore finfish industry in the US. This policy analysis aims to inform public health professionals and other stakeholders in the policy debate regarding how offshore finfish aquaculture should be regulated in the US to protect human health; previous policy analyses on this topic have focused on environmental impacts. We identified 20 federal laws related to offshore finfish aquaculture, including 11 that are relevant to preventing, controlling, or monitoring potential public health risks. Given the novelty of the industry in the US, myriad relevant laws, and jurisdictional issues in an offshore setting, federal agencies need to work collaboratively and transparently to ensure that a comprehensive and functional regulatory structure is established that addresses the potential public health risks associated with this type of food production.

  10. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Science.gov (United States)

    Fehling, Johanna; Davidson, Keith; Bolch, Christopher J S; Brand, Tim D; Narayanaswamy, Bhavani E

    2012-01-01

    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN:DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of

  11. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Directory of Open Access Journals (Sweden)

    Johanna Fehling

    Full Text Available Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA, of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS demonstrating spatial variability in its composition. Redundancy analysis (RDA was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community, and both salinity and DIN:DSi (diatoms alone. Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi

  12. Commercial production of tiger puffer ( Takifugu rubripes) in winter using a recirculating aquaculture system

    Science.gov (United States)

    Lin, Zhongling; Wang, Hua; Yu, Chunyan; Lv, Fenghe; Liu, Hengming; Zhang, Tao

    2017-02-01

    Tiger puffer ( Takifugu rubripes) is a promising species for aquaculture production because of its high value and limited supply. However, in the north of China, using sea cages to culture this species in winter is hampered by the fact that the seawater temperature is extremely low. Here, a large scale commercial production of tiger puffer has been successfully realized using a recirculating aquaculture system (RAS) from 3 October 2012 to 31 May 2013. The RAS was comprised of nine culture tanks (total water volume 200 m3) and stocked with approximately a total of 14400 fish (initial mean weight 160 g). The tiger puffer was hand-fed at a rate of 0.7% of total body weight per day, and the feed conversion rate was (1.21 ± 0.3) kg kg-1. The recycle water in RAS was treated by a sieve bend screen, a foam fractionator, a submerged biofilter, an UV sterilizer and a submersible aerator. During the whole culture period, an excellent water quality control was achieved in RAS. At the end of this experiment, the survival rate of tiger puffer was more than 98%. The final tank densities averaged 31.2 kg m-3, and the final individual mean weight was 440 g.

  13. The Importance of Supratidal Habitats for Wintering Shorebirds and the Potential Impacts of Shrimp Aquaculture

    Science.gov (United States)

    Yasué, M.; Dearden, P.

    2009-06-01

    Intensive black tiger shrimp ( Penaeus monodon) aquaculture ponds have replaced significant areas of coastal wetlands throughout tropical Asia. Few studies have assessed potential impacts on avian foraging habitats. At Khao Sam Roi Yod National Park, Thailand, seminatural wetlands have been converted to either shrimp ponds or to salinization ponds that provide saline water for shrimp aquaculture. Although shorebirds cannot feed in aquaculture ponds, hypersaline ponds can provide productive foraging areas. Thus, the overall impact of the shrimp industry on shorebirds depends partly on the relative quality of the salt ponds compared to seminatural wetlands. In this study, we examined wintering shorebird use of tidal ( N = 5 sites) and supratidal areas (four wetland sites, four salt pond sites) and compared the shorebird community (14 species), prey availability, profitability, and disturbance rates between wetlands and salt ponds. Two shorebird species fed in higher densities in wetlands, whereas seven species were more abundant in salt ponds. Large juvenile fish and dragonfly larvae were more abundant in wetlands, whereas there were more small Chironomid midge and fly larvae in salt ponds. We conclude that salt ponds might provide higher-quality foraging habitats compared to wetlands for small shorebirds species because of the abundance of small larvae. However, the shrimp aquaculture industry reduces habitat availability for shorebirds feeding on larger prey. This study demonstrates a comprehensive, multispecies approach to assess the impacts of a large-scale change in coastal habitats for wintering shorebirds.

  14. Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems.

    Science.gov (United States)

    Schmidt, Victor; Amaral-Zettler, Linda; Davidson, John; Summerfelt, Steven; Good, Christopher

    2016-08-01

    Reliance on fishmeal as a primary protein source is among the chief economic and environmental concerns in aquaculture today. Fishmeal-based feeds often require harvest from wild fish stocks, placing pressure on natural ecosystems and causing price instability. Alternative diet formulations without the use of fishmeal provide a potential solution to this challenge. Although the impact of alternative diets on fish performance, intestinal inflammation, palatability, and gut microbiota has been a topic of recent interest, less is known about how alternative feeds impact the aquaculture environment as a whole. The recent focus on recirculating aquaculture systems (RAS) and the closed-containment approach to raising food fish highlights the need to maintain stable environmental and microbiological conditions within a farm environment. Microbial stability in RAS biofilters is particularly important, given its role in nutrient processing and water quality in these closed systems. If and how the impacts of alternative feeds on microbial communities in fish translate into changes to the biofilters are not known. We tested the influence of a fishmeal-free diet on the microbial communities in RAS water, biofilters, and salmon microbiomes using high-throughput 16S rRNA gene V6 hypervariable region amplicon sequencing. We grew Atlantic salmon (Salmo salar) to market size in six replicate RAS tanks, three with traditional fishmeal diets and three with alternative-protein, fishmeal-free diets. We sampled intestines and gills from market-ready adult fish, water, and biofilter medium in each corresponding RAS unit. Our results provide data on how fish diet influences the RAS environment and corroborate previous findings that diet has a clear influence on the microbiome structure of the salmon intestine, particularly within the order Lactobacillales (lactic acid bacteria). We conclude that the strong stability of taxa likely involved in water quality processing regardless of diet (e

  15. Nitrous oxide production associated with coastal marine invertebrates

    DEFF Research Database (Denmark)

    Heisterkamp, Ines Maria; Schramm, Andreas; de Beer, Dirk

    2010-01-01

    Several freshwater and terrestrial invertebrate species emit the greenhouse gas nitrous oxide (N2O). The N2O production associated with these animals was ascribed to incomplete denitrification by ingested sediment or soil bacteria. The present study shows that many marine invertebrates also emit N2......O at substantial rates. A total of 19 invertebrate species collected in the German Wadden Sea and in Aarhus Bay, Denmark, and 1 aquacultured shrimp species were tested for N2O emission. Potential N2O emission rates ranged from 0 to 1.354 nmol ind.–1 h–1, with an average rate of 0.320 nmol ind.–1 h–1...... with an experimentally cleaned shell. Thus, the N2O production associated with marine invertebrates is apparently not due to gut denitrification in every species, but may also result from microbial activity on the external surfaces of animals. The high abundance and potential N2O emission rates of many marine...

  16. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  17. Air-breathing fishes in aquaculture. What can we learn from physiology?

    Science.gov (United States)

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues. © 2014 The Fisheries Society of the British Isles.

  18. DIAGNOSIS OF AQUACULTURE IN THE MUNICIPALITY OF ALVARADO VERACRUZ, MEXICO

    Directory of Open Access Journals (Sweden)

    Lenin Rangel-López

    2014-07-01

    Full Text Available This research aims to analyze the current situation of aquaculture farms in the Municipality of Alvarado, Veracruz, Mexico. During this study, 29 interviews were conducted aimed to the units of aquaculture producers; 24 variables were analyzed within the aspects of the socio-economic, technical, marketing and legal framework. The most relevant results within the legal framework: 21% of units has “National Registration of Fisheries and Aquaculture” (RNPyA and 7% has “Federal Taxpayer Register” (RFC; in the socio-economic aspects: 187 jobs are generated; on technical aspects: the average area for cultivation is 410.11 ha, 79% of production is Tilapia (Oreochromis spp.. The aquaculture activity on Alvarado, Veracruz, it is in a learning process, therefore strategies are needed in order to the development of the activity and increasing production; improving cultivation methodologies and training producers on managing their aquaculture units.

  19. Future challanges for the maturing Norwegian salmon aquaculture industry

    DEFF Research Database (Denmark)

    Asche, Frank; Guttormsen, Atle G.; Nielsen, Rasmus

    2013-01-01

    In this paper, we analyze total factor productivity change in the Norwegian salmon aquaculture sector from 1996 to 2008. During this period, the production has on average been growing with 8% per year. At the same time, the price of salmon has stabilized indicating that an increase in demand...... factor to future production growth in the salmon aquaculture industry....

  20. Comparative analysis of selected semi-persistent and emerging pollutants in wild-caught fish and aquaculture associated fish using Bogue (Boops boops) as sentinel species.

    Science.gov (United States)

    Henríquez-Hernández, Luis Alberto; Montero, Daniel; Camacho, María; Ginés, Rafael; Boada, Luis D; Ramírez Bordón, Besay; Valerón, Pilar F; Almeida-González, Maira; Zumbado, Manuel; Haroun, Ricardo; Luzardo, Octavio P

    2017-03-01

    The marine environment acts as a sink for diverse anthropogenic pollutants, although the environmental contamination may be non-uniformly distributed. In recent decades, the aquaculture sector has experienced a steady growth postulating as a good alternative for seafood production. However, a social debate exits about the differential level of pollutants in wild and farmed species. This study was designed to evaluate the level of pollutants in a sentinel species: Bogue (Boops boops) associated and non-associated to fish-farm cages. A total of 82 chemical substances were determined by gas chromatography-mass spectrometry, including persistent (polychlorobiphenyls (PCBs) and organochlorine pesticides (OCPs)), semi-persistent (bromodiphenyl ethers (BDEs) and polycyclic aromatic hydrocarbons (PAHs)), and emerging pollutants (such as organophosphate flame retardants (OPFRs) and UV-filters). In general, aquaculture-associated bogues showed lower levels of semi-persistent and emerging pollutants than wild-caught fish, especially when sums were considered. Thus, sum of BDEs was significantly lower in the aquaculture group (p=0.01). A similar trend was also observed for benzo(a)anthracene, the UV-filter 2-ethylhexyl-p-methoxycinnamate and some OPFRs. In the case of persistent pollutants, the sum of dioxin-like PCBs and sum of DDTs were lower in the group of wild-caught bogues (p=0.034 and p=0.003, respectively) than in aquaculture-associated bogues, as previously described for some aquaculture species. Fish feed appear as an important factor in the uptake of such substances suggesting a diet intervention to reduce their levels in the aquaculture products. Another interesting result is that for almost all chemical substances analyzed, bogues captured near sewage outfalls showed the highest levels of pollutants, pointing out the need of stringent measures for wastewater treatment units discharging in coastal areas. On the light of these results, further research in specific

  1. Dissolved oxygen and dietary phosphorus modulate utilization and effluent partitioning of phosphorus in rainbow trout (Oncorhynchus mykiss) aquaculture

    International Nuclear Information System (INIS)

    McDaniel, Nichole K.; Sugiura, Shozo H.; Kehler, Thomas; Fletcher, John W.; Coloso, Relicardo M.; Weis, Peddrick; Ferraris, Ronaldo P.

    2005-01-01

    Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10 mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10 mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent. - Dissolved oxygen concentration not only influences fish growth rate, but also affects dietary phosphorus utilization by fish in intensive aquaculture

  2. A Study of the Aquaculture Industry in Texas to Assist in Establishing Aquaculture as a Course Offering in Agricultural Science and Technology. Final Report.

    Science.gov (United States)

    Dillingham, John; And Others

    A 1989-90 project determined the knowledge and skills necessary for employment in the aquaculture industry. The study identified technical materials and other resources available in private industry and higher education institutions. Two surveys determined the status of aquaculture in Texas school districts and identified tasks performed by…

  3. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters

    Directory of Open Access Journals (Sweden)

    Mercedes Masó

    2016-09-01

    Full Text Available The present study used scanning electron microscopy to characterize the organisms colonizing marine plastic debris collected from pelagic and benthic habitats across Mediterranean coastal waters of Greece, Italy and Spain. A total of 42 fragments of plastic were collected during the COMSOM experimental cruise, 16 from the seafloor and 26 from surface waters. The results showed that diatoms were the most abundant organisms on both pelagic and benthic plastics. The diatom Ceratoneis closterium, frequently observed on surface plastics (73%, is a harmful microalgae associated with mucilage events in the Mediterranean. The abundance of marine plastic in coastal and oceanic waters may provide new habitats that offer an easy substrate for these invasive organisms. Furthermore, the colonization of these new environments might reduce the success of life strategies, or drive the organisms out of their essential habitat by dispersion and rafting phenomena. The results of the present work highlight the need to increase our knowledge of the consequences of colonization of plastics introduced into the marine environment, and the need to raise awareness of the potential impacts of debris accumulation on biodiversity of marine ecosystems.

  4. Ecological theory as a foundation to control pathogenic invasion in aquaculture

    Science.gov (United States)

    De Schryver, Peter; Vadstein, Olav

    2014-01-01

    Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them' and not the traditional ‘beat them' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host's resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture. PMID:24892581

  5. Cortisol and testosterone accumulation in a low pH recirculating aquaculture system for rainbow trout (Oncorhynchus mykiss)

    NARCIS (Netherlands)

    Mota, Vasco C.; Martins, Catarina I.M.; Eding, Ep H.; Canário, Adelino V.M.; Verreth, Johan A.J.

    2017-01-01

    Steroids accumulate in recirculating aquaculture system (RAS), although explanatory factors for such accumulation are still poorly explored. This study investigated the effect of water exchange rate and pH in six replicated RAS on the concentration of the stress hormone cortisol in rainbow trout

  6. Application and analytical verification of peracetic acid use in different types of freshwater aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming

    2011-01-01

    of water sanitation with PAA application were used to analytically verify actual PAA concentration under real conditions at different kinds of aquaculture systems. A characteristic instant disinfection demand was found to be significantly positively related to water COD content, and PAA half-lives were...... found to be in the order of a few minutes. The study revealed that PAA degrades so rapidly that insufficient disinfection is a likely outcome. The observations have applications for optimizing water treatment strategies with PAA. The investigations also indicated that the rapid degradation and hence...

  7. Remote Sensing Approach for Documenting the Conversion of Mangroves to Aquaculture

    Science.gov (United States)

    Peneva, E.

    2007-12-01

    The loss of mangrove forests to aquaculture, particularly shrimp farming, in coastal Thailand presents serious environmental and societal problems. Shrimp farming is one of the fastest growing aquaculture sectors in many parts of the world, as well as one of the most controversial. In spite of considerable work put into understanding the impacts of shrimp aquaculture, few studies provide detailed assessment of the issue through time. This research compares three change detection techniques (Object-based; Change Vector Analysis (CVA); and Integrated GIS and Remote Sensing) in order to assess the mangrove conversion caused by aquaculture development in Krabi Province, Thailand between 1989, 2001 and 2007 using Landsat TM data. All three methods provide valuable information though each has its own merits. Preliminary results show 40% loss of mangroves between 1989 and 2007, 25% of which is to aquaculture development, 10% to urban, and 5% to agricultural land. This study will help establish a methodology that will aid coastal communities in Southeast Asia in determining sustainable land use management approaches.

  8. Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid Copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Jepsen, Per Meyer; Thoisen, Christina V.; Carron-Cabaret, Thibaut

    2018-01-01

    Marine aquaculture facilities positioned far from the sea need access to seawater (SW); hence, commercial salts are often the chosen solution. In marine hatcheries, most fish larvae require live feed (zooplankton) that are in turn fed with microalgae. The objective of this research was to investi......Marine aquaculture facilities positioned far from the sea need access to seawater (SW); hence, commercial salts are often the chosen solution. In marine hatcheries, most fish larvae require live feed (zooplankton) that are in turn fed with microalgae. The objective of this research...... was to investigate the applicability of commercial salts and clarify the potential effects on the cultivation of the microalga Rhodomonas salina and the copepod Acartia tonsa. Three commercial salts were tested, Red Sea Salt (RS), Red Sea – Coral Pro Salt (CP), and Blue Treasure Salt. R. salina was cultured...

  9. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  10. PROBLEMS OF BIOFOULING ON FISH–CAGE NETS IN AQUACULTURE

    Directory of Open Access Journals (Sweden)

    Merica Slišković

    2002-09-01

    Full Text Available Biofouling on fish–cage netting is a serious technical and economical problem to aquaculture worldwide. Compensation for the effects of biofouling must be included in cage system design and planning, as fouling can dramatically increase both weight and drag. Settlements of sessile plants and animals, with accumulation of the detritus diminish the size of mesh and can rapidly occlude mesh. Negative effect of smaller mesh size is changing in water flow trough the cages. Biofouling problems necessitating purchase of a second sets of nets or more, and frequent cleaning and changing of biofouling. Changing and cleaning frequency depend on many factors such as: location of cages (near the coast or off shore, productivity of that location, time of the year, time period in which the cages are placed on that location (cause of loading of phosphorus and nitrogen from the unconsumed food in the sediment. Net changing and cleaning procedures are labor and capital intensive. Process of the cleaning of the nets is inadequate, especially when there isnžt adequate equipment available as it is case in smaller aquaculture industry. Chemical control of biofouling e. g. use of antifoulants is questioningly cause of their possible negative effects on breeding species and environment.

  11. Capacity building for sustainable aquaculture and fisheries development in Myanmar

    NARCIS (Netherlands)

    Steins, N.A.; Bosma, R.H.; Taal, K.; Bolman, B.C.; Bink, E.; Dop, van H.; Dekker, A.; Numan, J.; Spek, van der G.; Pijl, van der W.

    2015-01-01

    This report presents the results of a Dutch public-private capacity building (Knowledge to Knowledge or K2K) mission for fostering sustainable aquaculture and fisheries development in Myanmar. The objectives of the K2K mission were to: 1) analyse Myanmar’s aquaculture and fisheries knowledge

  12. Feasibility of using hydrothermal resources in Malaysian prawn aquaculture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.I.J.; Rhodes, R.J.; Wannamaker, A.W.

    1982-08-01

    The potential application of geothermal resources in South Carolina for freshwater prawn aquaculture was examined. In coastal S.C. 23 existing geothermal well sites were identified which encompassed an area which ranged from Georgetown to Beaufort. Depth averaged approx. 615 m while temperature averaged approx. 37/sup 0/C. Artesian flow rates varied from 190 to 2650 1/min. Detailed water quality analyses were conducted at 12 sites. In general, major differences from surface waters were in chlorides, fluorides, dissolved solids, ph, alkalinity, and ammonia levels. A detailed replicated laboratory study was conducted to examine the effect of geothermal water on growth and survival of prawns. After 42 days very poor survival was recorded from the various 100% geothermal water treatments. However, 50:50 mixture of shallow well water and geothermal water resulted in a survival rate of 83%, which was similar to the control treatments. Growth was also similar to that observed among the control animals.

  13. The Profile Quality of Pond In Kendal Regency to Diversification Aquaculture

    Science.gov (United States)

    Ayuniar, Ligar Novi; Hidayat, Jafron Wasiq

    2018-02-01

    Water quality, particularly coastal areas, is systematically tropogenic. The decline in water quality is caused by industrial waste pollution, soil erosion carried by the river, and the depletion of mangrove areas. The decrease of water quality can affect the fishery cultivation activities that exist in the region. It also affects the quality of the cultivated fish. Fish cultivated in ponds with poor water quality can be harmful to the health of the people who consume the fish. One effort to manage the feasibility of pond waters is by identifying the quality. The purpose of this research is to know the profile of pond water quality and to know the diversity potential of aquaculture. Based on the nature of the problem this research is a field research, while the purpose of this study is descriptive and explanatory research. The method used in this research is research by using survey method. Aquatic profile results are essential to improve the quality and quantity of Fisheries, especially in diversifying fisheries.

  14. Impact simulation of shrimp farm effluent on BOD-DO in Setiu River

    Science.gov (United States)

    Chong, Michael Sueng Lock; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    Release of effluent from intensive aquaculture farms into a river can pollute the receiving river and exert negative impacts on the aquatic ecosystem. In this paper, we simulate the effects of effluent released from a marine shrimp aquaculture farm into Sg Setiu, focusing on two critical water quality parameters i.e. DO (dissolved oxygen) and BOD (biochemical oxygen demand). DO is an important constituent in a river in sustaining water quality, with levels of DO below 5 mg/L deemed undesirable. DO levels can be depressed by the presence of BOD and other organics that consume DO. Water quality simulations in conjunction with management of effluent treatment can suggest mitigation measures for reducing the adverse environmental impact. For this purpose, an in-house two-dimensional water quality simulation model codenamed TUNA-WQ will be used for these simulations. TUNA-WQ has been undergoing regular updates and improvements to broaden the applicability and to improve the robustness. Here, the model is calibrated and verified for simulation of DO and BOD dynamics in Setiu River (Sg Setiu). TUNA-WQ simulated DO and BOD in Setiu River due to the discharge from a marine shrimp aquaculture farm will be presented.

  15. European Community's program in marine resources development

    International Nuclear Information System (INIS)

    Lenoble, J.P.; Jarmache, E.

    1995-01-01

    The European Community launched already several research program in the different fields of social and industrial activities. The Fourth Framework Programme is divided into 4 main activities comporting a total of 18 programs. These programs are dealing with general topics as information and communication, industrial technologies, environment, life sciences and technologies, energy, transport and socioeconomic research. One line is devoted to marine sciences and technology, but offshore activities could also be included in the other topics as offshore oil and gas in energy, ship building and harbor in transport, aquaculture and fisheries in life sciences and technology, etc. In order to maintain a coherent approach toward offshore activities, the European maritime industries met intensively front 1991 to 1994 and recommended a series of proposal for Research and Development of marine resources. The methodology and content of these proposals is exposed

  16. Nutrients' removal from aquaculture wastewater using the macroalgae Gracilaria birdiae

    Energy Technology Data Exchange (ETDEWEB)

    Marinho-Soriano, E.; Nunes, S.O.; Carneiro, M.A.A.; Pereira, D.C. [Universidade Federal do Rio Grande do Norte, Depto. de Oceanografia e Limnologia, Via Costeira, Praia de Mae Luiza, s/n, Natal, RN 59014-100 (Brazil)

    2009-02-15

    Intensive aquaculture releases large amount of nutrients into aquatic ecosystems and can lead to eutrophication of coastal waters. Studies conducted in aquaculture systems have demonstrated that the seaweeds are efficient in reducing nutrients and at the same time provides extra income, when species of economic importance are used. This study was conducted to evaluate whether Gracilaria birdiae could be cultivated efficiently for the production of useful algal biomass and removal of nutrients from shrimp pond effluents. The results obtained showed a gradual increase in biomass and relative growth rate (RGR) over the experimental period. Mean RGR between the weeks varied significantly (p < 0.01), reaching a maximum of 3.6 {+-} 0.35% d{sup -1} and a minimum of 1.6 {+-} 0.52% d{sup -1}. The mean for the whole period was 2.6% d{sup -1}. The biofiltration capacity of G. birdiae was confirmed by the significantly reduced concentration of the three nutrients analyzed (PO{sub 4}{sup 3-}, NH{sub 4}{sup +} and NO{sub 3}{sup -}) over the study period. The concentration of PO{sub 4}{sup 3-} decreased by 93.5%, NH{sub 4}{sup +} by 34% and NO{sub 3}{sup -} by 100% after the 4-week experimental period. The results obtained in this study indicated that G. birdiae can be used in aquaculture systems as a biofilter. In addition, the macroalgae biomass produced offers alternative source of raw material for the extraction of the phycocolloid agar, human food and animal feed. (author)

  17. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China

    International Nuclear Information System (INIS)

    Zhou, J.L.; Maskaoui, K.

    2003-01-01

    Findings indicate an urgent need to establish a monitoring program for persistent organic pollutants in water and sediment. - Marine culture is thriving in China and represents a major component of the regional economy in coastal zones, yet the environmental quality of many of those areas has never been studied. This paper attempts to investigate the quality status of Daya Bay, a key aquaculture area in China. The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in water and sediment samples of the bay. The total concentrations of 16 PAHs varied from 4228 to 29325 ng l -1 in water, and from 115 to 1134 ng g -1 dry weight in sediments. In comparison to many other marine systems studied, the PAH levels in Daya Bay waters were relatively high, and at six sites they were sufficiently high (>10 μg l -1 ) to cause acute toxicity. The PAH composition pattern in sediments suggest dominance by medium to high molecular weight compounds, and the ratio of certain related PAHs indicate important pyrolytic and petrogenic sources. Further analysis showed that the distribution coefficient (K D ) increased with the particular organic carbon content of sediments, consistent with the PAH partition theory. The organic carbon normalised distribution coefficient (K oc ) also increased with the compounds' octanol/water partition coefficient (K ow ), confirming the potential applicability of the linear free energy relationships in the modelling and prediction of PAH behaviour in marine environments

  18. bioSearch : A glimpse into marine biodiversity of Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Kakodkar, A.P.; Alornekar, A.; DSouza, R.; Thomas, T.R.A.; Divekar, R.; Nath, I.V.A.; Kavlekar, D.P.; Ingole, B.S.; Bharathi, P.A.L.

    bioSearch is a database application developed to digitize marine biodiversity of Indian coastal waters. A user can obtain information on organism’s binomial and common names, synonyms, taxonomy, morphology, ecology, economic importance, geographical...

  19. Detection of a Planktothrix agardhii Bloom in Portuguese Marine Coastal Waters

    Directory of Open Access Journals (Sweden)

    Catarina Churro

    2017-12-01

    Full Text Available Cyanobacteria blooms are frequent in freshwaters and are responsible for water quality deterioration and human intoxication. Although, not a new phenomenon, concern exists on the increasing persistence, scale, and toxicity of these blooms. There is evidence, in recent years, of the transfer of these toxins from inland to marine waters through freshwater outflow. However, the true impact of these blooms in marine habitats has been overlooked. In the present work, we describe the detection of Planktothrix agardhii, which is a common microcystin producer, in the Portuguese marine coastal waters nearby a river outfall in an area used for shellfish harvesting and recreational activities. P. agardhii was first observed in November of 2016 in seawater samples that are in the scope of the national shellfish monitoring system. This occurrence was followed closely between November and December of 2016 by a weekly sampling of mussels and water from the sea pier and adjacent river mouth with salinity ranging from 35 to 3. High cell densities were found in the water from both sea pier and river outfall, reaching concentrations of 4,960,608 cells·L−1 and 6810.3 × 106 cells·L−1 respectively. Cultures were also established with success from the environment and microplate salinity growth assays showed that the isolates grew at salinity 10. HPLC-PDA analysis of total microcystin content in mussel tissue, water biomass, and P. agardhii cultures did not retrieve a positive result. In addition, microcystin related genes were not detected in the water nor cultures. So, the P. agardhii present in the environment was probably a non-toxic strain. This is, to our knowledge, the first report on a P. agardhii bloom reaching the sea and points to the relevance to also monitoring freshwater harmful phytoplankton and related toxins in seafood harvesting and recreational coastal areas, particularly under the influence of river plumes.

  20. Design of high efficiency and energy saving aeration device for aquaculture

    Science.gov (United States)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  1. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish.

    Science.gov (United States)

    Assefa, Ayalew; Abunna, Fufa

    2018-01-01

    Aquaculture is rapidly growing part of agriculture worldwide. It makes up around 44 percent of total fish production globally. This increased growth of production is achieved despite facing many challenges in the aquaculture environment. Among production limiting challenges, the infectious disease takes the lion share by causing multibillion-dollar loss annually. To reduce the impact of the fish disease, it is necessary to address health constraints based on scientifically proven and recommended ways. This review aims at pointing out some of the best approaches to prevention and control of infectious disease in aquaculture. Among the effective prevention and control strategies, vaccination is one of the key practices. Types of vaccines for use in fish include killed vaccines, attenuated vaccines, DNA vaccines, recombinant technology vaccines, and synthetic peptide vaccines. Administration techniques of vaccines in fish include oral, injection, or immersion methods. Antibiotics are also in use in aquaculture despite their side effects in the development of drug resistance by microorganisms. Biological and chemical disease control strategies such as using probiotics, prebiotics, and medicinal plants are widely in use. Biosecurity measures in aquaculture can keep the safety of a facility from certain disease-causing agents that are absent in particular system. Farm-level biosecurity measures include strict quarantine measures, egg disinfection, traffic control, water treatments, clean feed, and disposal of mortalities. In conclusion, rather than trying to treat every disease case, it advisable to follow a preventive approach before the event of any disease outbreaks.

  2. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish

    Directory of Open Access Journals (Sweden)

    Ayalew Assefa

    2018-01-01

    Full Text Available Aquaculture is rapidly growing part of agriculture worldwide. It makes up around 44 percent of total fish production globally. This increased growth of production is achieved despite facing many challenges in the aquaculture environment. Among production limiting challenges, the infectious disease takes the lion share by causing multibillion-dollar loss annually. To reduce the impact of the fish disease, it is necessary to address health constraints based on scientifically proven and recommended ways. This review aims at pointing out some of the best approaches to prevention and control of infectious disease in aquaculture. Among the effective prevention and control strategies, vaccination is one of the key practices. Types of vaccines for use in fish include killed vaccines, attenuated vaccines, DNA vaccines, recombinant technology vaccines, and synthetic peptide vaccines. Administration techniques of vaccines in fish include oral, injection, or immersion methods. Antibiotics are also in use in aquaculture despite their side effects in the development of drug resistance by microorganisms. Biological and chemical disease control strategies such as using probiotics, prebiotics, and medicinal plants are widely in use. Biosecurity measures in aquaculture can keep the safety of a facility from certain disease-causing agents that are absent in particular system. Farm-level biosecurity measures include strict quarantine measures, egg disinfection, traffic control, water treatments, clean feed, and disposal of mortalities. In conclusion, rather than trying to treat every disease case, it advisable to follow a preventive approach before the event of any disease outbreaks.

  3. Predictive model of food intake of the Seabass Dicentrarchus labrax in closed aquaculture systems

    Directory of Open Access Journals (Sweden)

    Allan T Souza

    2015-12-01

    Full Text Available Fish feeding is the main source of waste in aquaculture and is also responsible for most of the environmental impacts derived from this activity. The European Seabass Dicentrarchus labrax is one of the most farmed fishes in the continent, generating an important load of waste on the environment. The consumption of food in fishes is highly dependent on the water temperature and salinity, which create a source of variability on the amount of the ration consumed by fishes. This issue is often neglected by farmers, which aggravates the ration waste. The use of models in aquaculture is increasing in the recent years, and is an excellent tool to combine an increased production with the mitigation of environmental impacts. In this context, this study aimed at developing a predictive model of the D. labrax consumption rate in closed aquaculture systems. Based on the literature review we were able to develop a conceptual diagram and a prototype of the model using the STELLA software (isee®. The preliminary results indicated that the model was capable of predicting the ration consumption of the D. labrax according to the oscillations in the water temperature and salinity. The consumption rate and growth were higher at 21ºC and with a salinity of 28 psu. Laboratory assays are need to validate the models outputs, and they are scheduled to start in October 2015. Finally, the model’s structure, equations, inputs and outputs were integrated into an easy-to-use software developed by the FoodInTech® company, that will help farmers to increase their yields and reduce the waste of ration and the nutrient load on the environment.

  4. Bioenergetics of aquatic animals

    National Research Council Canada - National Science Library

    Lucas, A

    1996-01-01

    .... Bioenergetics can provide answers to the problems of aquaculture in marine and fresh water - practical solutions are thus supplied to the management of farmed and wild fish stocks, for example...

  5. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    Science.gov (United States)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  6. A Comparison of Microbial Water Quality and Diversity for Ballast and Tropical Harbor Waters.

    Science.gov (United States)

    Ng, Charmaine; Le, Thai-Hoang; Goh, Shin Giek; Liang, Liang; Kim, Yiseul; Rose, Joan B; Yew-Hoong, Karina Gin

    2015-01-01

    Indicator organisms and antibiotic resistance were used as a proxy to measure microbial water quality of ballast tanks of ships, and surface waters in a tropical harbor. The survival of marine bacteria in ballast tanks appeared to diminish over longer water retention time, with a reduction of cell viability observed after a week based on heterotrophic plate counts. Pyrosequencing of 16S rRNA genes showed distinct differences in microbial composition of ballast and harbor waters. The harbor waters had a higher abundance of operational taxonomic units (OTUs) assigned to Cyanobacteria (Synechococcus spp.) and α-proteobacteria (SAR11 members), while marine hydrocarbon degraders such as γ-proteobacteria (Ocenspirillaes spp., Thiotrchales spp.) and Bacteroidetes (Flavobacteriales spp.) dominated the ballast water samples. Screening of indicator organisms found Escherichia coli (E. coli), Enterococcus and Pseudomonas aeruginosa (P. aeruginosa) in two or more of the ballast and harbor water samples tested. Vibrio spp. and Salmonella spp. were detected exclusively in harbor water samples. Using quantitative PCR (qPCR), we screened for 13 antibiotic resistant gene (ARG) targets and found higher abundances of sul1 (4.13-3.44 x 102 copies/mL), dfrA (0.77-1.80 x10 copies/mL) and cfr (2.00-5.21 copies/mL) genes compared to the other ARG targets selected for this survey. These genes encode for resistance to sulfonamides, trimethoprim and chloramphenicol-florfenicol antibiotics, which are also known to persist in sediments of aquaculture farms and coastal environments. Among the ARGs screened, we found significant correlations (Pwater quality survey, quantitatively assessing indicators of antibiotic resistance, potentially pathogenic organisms and a broad-brush description of difference in microbial composition and diversity between open oceans and tropical coastal environments through the use of next generation sequencing technology.

  7. Avaliação da sustentabilidade ambiental do uso de esgoto doméstico tratado na piscicultura Environmental sustainability evaluation of the treated sewage use in aquaculture

    Directory of Open Access Journals (Sweden)

    Emanuel Soares dos Santos

    2011-03-01

    Full Text Available Este trabalho teve como objetivo avaliar a sustentabilidade ambiental do uso de esgoto doméstico tratado na piscicultura por meio do Índice de Sustentabilidade Ambiental para Reúso em Piscicultura (ISA RP, do Índice de Qualidade de Água para Reúso em Piscicultura (IQA RP e do custo ambiental (entropia. Observou-se, por meio do custo ambiental, que a piscicultura convencional causou a deterioração da qualidade da água que foi utilizada. Constatou-se que o sistema de piscicultura utilizando esgoto tratado, sem usar aeração, não causou efeito deletério significante à qualidade da água de reúso (efluente da estação de tratamento de esgoto - ETE. O sistema de piscicultura usando esgoto tratado, com aeração, resultou na melhoria de sua qualidade, quando comparado com o efluente da estação de tratamento, significando que essa prática resultou em um polimento no líquido utilizado. Ambos os sistemas de reúso de águas mostraram-se ambientalmente sustentáveis, o que indica a potencialidade do uso de esgoto doméstico tratado como fonte de água e alimento natural para a piscicultura.This work aimed to evaluate the environmental sustainability of the treated sewage reuse on aquaculture by using the Environmental Sustainability Index of Aquaculture Reuse (ESI AR, Water Quality Index of Aquaculture Reuse (WQI AR and environmental cost (entropy. For conventional aquaculture, a water quality deterioration of the fish tanks was observed by the environmental cost. When treated sewage was used in tanks without external aeration, it was not verified a remarkable water quality deterioration. However, for the tanks externally aerated and fed with treated sewage there was a water quality improvement, in other words a polishing step was taking place. All the systems analyzed showed to be environmentally sustainable, which indicates that the treated sewage can be considered a good water source for aquaculture.

  8. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Directory of Open Access Journals (Sweden)

    Teresa M. Barbosa

    2013-06-01

    Full Text Available Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  9. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Science.gov (United States)

    Phelan, Robert W.; Barret, Matthieu; Cotter, Paul D.; O’Connor, Paula M.; Chen, Rui; Morrissey, John P.; Dobson, Alan D. W.; O’Gara, Fergal; Barbosa, Teresa M.

    2013-01-01

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications. PMID:23736764

  10. Marine chemical technology and sensors for marine waters: potentials and limits.

    Science.gov (United States)

    Moore, Tommy S; Mullaugh, Katherine M; Holyoke, Rebecca R; Madison, Andrew S; Yücel, Mustafa; Luther, George W

    2009-01-01

    A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O2, nutrients (N and P), micronutrients (metals), pCO2, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.

  11. IOOS: Aiding Aquaculture Industries and Their Harvest with Near Real-Time Data

    Science.gov (United States)

    Kerkering, H.; Shandy Buckley; Jan Newton; Julie Thomas

    2011-12-01

    West Coast aquaculture accounts for over 3000 jobs and brings in over 117 million in revenue to mostly small coastal communities. Larvae recruitment and growth in these systems are very susceptible to harmful algal blooms (HABs) and acidic waters (low pH). Since 2005, aquaculturists have observed a significant reduction in shellfish larvae production and recruitment. In 2008 and 2009, the Taylor Shellfish Company (Dabob Bay, WA) observed a loss of 80% in their hatchery production. Likewise in 2008, Whiskey Creek Shellfish Company (Netarts Bay, OR) produced only 25% of their normal crop. These businesses and local scientists suspect low pH to be the culprit in the declines. In 2007, the Monterey Abalone Company suffered a 60K loss in their harvest. After contacting local scientists it was determined that the abalone crop died from a harmful algal bloom event. In response, the three West Coast Regional Associations under the U.S. Integrated Ocean Observing System (NANOOS, CeNCOOS and SCCOOS) are working in collaboration with the Ocean Science Trust, Ocean Protection Council, CA Sea Grant, NOAA National Estuarine Research Reserve Program, and the Southern California Coastal Water Research Project to develop an observing and near real-time data delivery network focused on harmful algal blooms, the Harmful Algal Bloom Monitoring Alert Program and on ocean acidification, the California Current Acidification Network. The above organizations have participated in a number of workshops with members of the aquaculture community helping to design the network. It is clear that a spatial and temporal disconnect between the data needs of both groups exists. Aquaculture experts require daily and hourly data streams in the near-shore environment with a high degree of reliability in the data but not necessarily a high degree of accuracy. Conversely, scientists collect highly accurate data in the continental shelf and oceanic environment and model predictions on decadal scales. The

  12. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...

  13. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  14. Amount and type of derelict gear from the declining black pearl oyster aquaculture in Ahe atoll lagoon, French Polynesia.

    Science.gov (United States)

    Andréfouët, Serge; Thomas, Yoann; Lo, Cedrik

    2014-06-15

    Pearl oyster aquaculture is a major activity in French Polynesia atoll lagoons. After the economic decline that characterized the last decade, concerns recently rose about discarded installations and materials that supported aquaculture practices and by facilities abandoned after they had to close their activities. In May 2013, a first inventory of the type and amount of pearl farms derelict gear (PFDG) was achieved on 47 sites in Ahe lagoon. Surveys were conducted within and outside the boundaries of aquaculture concessions. Twenty types of PFDG littered the lagoon floor and the water column. The most impacted areas were near abandoned grafting houses with up to nine types of PFDG. Forty-five percent of the sites were impacted, including outside concessions. While management authorities are fully aware of the problem, this first assessment is a wake-up call to stimulate the cleaning of lagoons, enhance awareness among farmers, and identify potential ecological consequences on lagoon ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Prevalence of microplastics in the marine waters of Qatar.

    Science.gov (United States)

    Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip

    2016-10-15

    Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Prehn, Jonas; Waul, Christopher Kevin; Pedersen, Lars-Flemming

    2012-01-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study was to det...... biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems......Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study...

  17. Microbial populations causing off-flavour in recirculated aquaculture systems

    DEFF Research Database (Denmark)

    Lukassen, Mie Bech; Schramm, Edward; Nielsen, Jeppe Lund

    the distribution of geoA in more than 50 European and Brazilian aquaculture systems has allowed us to identify the diversity among geosmin-producing bacteria. The different populations of geosmin-producers were evaluated relative to plant design, environmental and operational parameters in full-scale aquaculture...... systems using multivariate statistics. The influencing parameters identified were subsequently validated by testing their gene expressions in well-controlled pilot scale aquaculture systems. The results show that the geoA gene is a relative well-conserved gene with limited horizontal gene transfer events...... phase. Furthermore, the gene expressions of the individual groups show positive correlations to the organic loading and presence of oxygen. The current study reveals the presence of important populations involved in geosmin production and which parameters are of importance for their presence...

  18. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    quantities of phytoplankton algae were removed in the CWs but abundance of toxic algae such as Microcystis was low. It is concluded that particularly vertical flow CWs have great potential for treatment of fishpond water in recirculating aquaculture systems in the tropics as the discharge of polluted water......Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...

  19. Six priorities proposed for marine biotechnology in Denmark

    DEFF Research Database (Denmark)

    Børresen, Torger

    2012-01-01

    : - Increased exploitation of marine biomass. In addition to traditional fisheries, full utilisation of all catches and improved utilisation of by-products are suggested. Further, new species of fish and macro algae should be harvested. - New farming operations. Aquaculture should be applied in its widest sense...... biochemical components. Complex structures with special properties can be included in pharmaceutical products, cosmetics and special foods. - Biofilm – from ships over the food industry to the interior of the human body. Biofilm is a deposit and growth of organisms on surfaces, usually with consequences...

  20. Intelligent information database of the thermal-hydraulic characteristics for a future marine water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Nariai, Hideki

    2000-01-01

    At the Ship Research Institute, a series of the experimental studies on the thermal-hydraulic characteristics of an integrated type marine water reactor has been conducted. This current study aims at developing an intelligent information database program with the thermal-hydraulic characteristics of a future marine water reactor on the basis of the valuably experimental knowledge, which was obtained from the above-mentioned studies. In this paper, the experimental knowledge with the flow boiling of a once-through steam generator and the natural circulation of primary water under a ship rolling motion was converted into an intelligent information database program. The program was created as a Windows application using the Visual Basic. Main functions of the program are as follows: (1) steady state flow boiling analysis and determination of stability for any helical-coil type once-through steam generator design, (2) reference and graphic display of the experimental data, (3) reference of the information such as analysis method and experimental apparatus. The program will be useful for the design of not only the future integrated type marine water reactor but also the small sized reactor with helical-coil type steam generator. (author)

  1. Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system

    Science.gov (United States)

    Kang, Yun Hee; Hwang, Jae Ran; Chung, Ik Kyo; Park, Sang Rul

    2013-03-01

    Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species ( e.g., finfish/shrimp) with extractive aquaculture species ( e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.

  2. Detection of ctx gene positive non-O1/non-O139 V. cholerae in shrimp aquaculture environments.

    Science.gov (United States)

    Madhusudana, Rao B; Surendran, P K

    2013-06-01

    Water and post-larvae samples from black tiger (Penaeus monodon) shrimp hatcheries; pond water, pond sediment and shrimp from aquaculture farms were screened for the presence of V. cholerae. A V. cholerae-duplex PCR method was developed by utilizing V. cholerae species specific sodB primers and ctxAB genes specific primers. Incidence of V. cholerae was not observed in shrimp hatchery samples but was noticed in aquaculture samples. The incidence of V. cholerae was higher in pond water (7.6%) than in pond sediment (5.2%). Shrimp head (3.6%) portion had relatively higher incidence than shrimp muscle (1.6%). All the V. cholerae isolates (n = 42) belonged to non-O1/non-O139 serogroup, of which 7% of the V. cholerae isolates were potentially cholera-toxigenic (ctx positive). All the ctx positive V. cholerae (n = 3) were isolated from the pond water. Since, cholera toxin (CT) is the major contributing factor for cholera gravis, it is proposed that the mere presence of non-O1/non-O139 V. cholerae need not be the biohazard criterion in cultured black tiger shrimp but only the presence of ctx carrying non-O1/non-O139 V. cholerae may be considered as potential public health risk.

  3. The REDCAM, institutional Cooperation for the Surveillance of the Quality of the Marine and Coastal waters in Colombia

    International Nuclear Information System (INIS)

    Ana Maria Velez G; Marin Z, Bienvenido; Garay T, Jesus A

    2003-01-01

    The Colombian Marine Environment Monitoring Network (REDCAM) initiated in 2001, with the purpose of grouping the institutions and the efforts necessary to evaluate the chemical and sanitary quality of the marine and estuarine waters of Colombia; it is composed of 16 nodes and main server located at INVEMAR (Santa Marta); each node counts with hardware and software for a Input and retrieval tables and cartographic information a about the quality o marine and coastal waters of Colombia. It was established a network of field stations that covers most of the Colombian coasts. In each one, since 2001, twice a year, it has been registering the values of the main physicochemical and bacteriological variables that characterize the quality of the marine and estuarine waters. Based on this information, the following zones have been identified as critical for its marine and coastal pollution: Santa Marta, Cartagena, Barranquilla, Morrosquillo, Uraba and San Andres, in the Caribbean coast and Buenaventura, Guapi and La Tola in Pacific coast

  4. Removing vessels from the water for biofouling treatment has the potential to introduce mobile non-indigenous marine species.

    Science.gov (United States)

    Coutts, Ashley D M; Valentine, Joseph P; Edgar, Graham J; Davey, Adam; Burgess-Wilson, Bella

    2010-09-01

    Vessels found contaminated with biofouling non-indigenous marine species are predominantly removed from the water and treated in vessel maintenance facilities (i.e., slipways, travel lifts and dry-docks). Using pre-fouled settlement plates to simulate a vessel's removal from the water for treatment, we demonstrate that a range of mobile organisms (including non-indigenous marine species) may be lost to the marine environment as a consequence of this process. We also determined that different levels of biofouling (primary, secondary and tertiary) and emersion durations (0.5, 5 and 15 min) affected the abundance and composition of mobile taxa lost to the marine environment. Primary biofouling plates lost 3.2% of total animals, secondary plates lost 19.8% and tertiary plates lost 8.2%, while hanging duration had only minor effects. The results suggest that removing vessels contaminated with biofouling non-indigenous marine species from the water for treatment may not be as biosecure as is currently recognised. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Perception of Aquaculture Education to Support Further Growth of Aquaculture Industry in Victoria, Australia

    Science.gov (United States)

    Awal, Sadiqul; Christie, Andrew; Watson, Matthew; Hannadige, Asanka G. T.

    2012-01-01

    Purpose: The central aim of this study was to determine the perception of aquaculture educational provisions in the state of Victoria, and whether they are sufficient to ultimately support further growth of the industry. Design/methodology/approach: Questionnaires were formulated and distributed to participants in a variety of ways, including via…

  6. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...... this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups...... of isolates associated with rainbow trout aquaculture (Genotype la) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also...

  7. Carp feeding activity and habitat utilisation in relation to supplementary feeding in a semi-intensive aquaculture pond

    Czech Academy of Sciences Publication Activity Database

    Jurajda, Pavel; Adámek, Zdeněk; Roche, Kevin Francis; Mrkvová, Markéta; Štarhová, Dagmar; Prášek, Václav; Zukal, Jan

    2016-01-01

    Roč. 24, č. 6 (2016), s. 1627-1640 ISSN 0967-6120 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Cyprinus carpio * telemetry * fish diet * fat content * pond aquaculture * water quality Subject RIV: EG - Zoology Impact factor: 1.095, year: 2016

  8. Correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, indonesia

    Science.gov (United States)

    Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.

    2018-05-01

    Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).

  9. Aquaculture and the utilisation of plant wastes in fish feeds

    CSIR Research Space (South Africa)

    Jacobs, A

    2010-08-31

    Full Text Available shape and size of pellets vary between species and age of the fish • Feed management needs on fish farms, must be convenient, thus feed must be stable, dry, easy to handle, cost-effective © CSIR 2010 Slide 5 Plant-based feedstuffs to replace... Acids 65.4 0.77 1.4 0.7 18.3 0.8 1.5 0.7 Fermented Soya 56.1 0.68 1.7 0.6 18.4 0.8 1.6 0.6 © CSIR 2010 Slide 16 The effect of aquaculture biological agents on water quality during feeding trials • Freshwater finfish Oreochromis...

  10. Removal of Inorganic, Microbial, and Particulate Contaminants from a Fresh Surface Water: Village Marine Tec. Expeditionary Unit Water Purifier, Generation 1

    Science.gov (United States)

    The Village Marine Tec. Generation 1 Expeditionary Unit Water Purifier (EUWP) is a mobile skid-mounted system employing ultrafiltration (UF) and reverse osmosis (RO) to produce drinking water from a variety of different water quality sources. The UF components were evaluated to t...

  11. Low-dose hydrogen peroxide application in closed recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Good, C.; Pedersen, Per Bovbjerg

    2012-01-01

    biofilter nitrite oxidation in low-intensity RAS but not in high-intensity RAS. The impact of HP exposure time on biofilter nitrification capacity was then assessed in biofilter bench-scale experiments with nitrite spiking. Exposure time was found to significantly affect nitrite oxidation. Compared...... with unexposed biofilter elements, nitrite oxidation was reduced more than 90% following 3 h of exposure to 15 mg HP/L, whereas 30 min of exposure had only minor negative effects on nitrite oxidation. The findings of this study demonstrate the potential for developing HP water treatment practices for RAS...... and contradict prevailing notions that HP cannot be used safely in RAS that employ biofiltration. The development of effective new HP treatment protocols for recirculating aquaculture could reduce the current dependence on formalin to improve water quality and control parasitic loads...

  12. Success Stories in Asian Aquaculture

    International Development Research Centre (IDRC) Digital Library (Canada)

    In Asia, the epicenter of aquaculture production, the traditional practices tend to be ...... In addition to supporting the development of the International Principles for ...... Government also provided income tax exemption schemes to small scale ...... Forum held in 30th November 2004 in Hotel Equatorial, Penang, Malaysia, 12.

  13. Bacteriological Study of the Marine Water in the Coastal of the North Sulawesi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Lies Indah Sutiknowati

    2006-11-01

    Full Text Available The main objective of this research was to study the marine bacteriology of the coast of North Sulawesi. The study was accomplished by calculating the abundance of coliform, heterotrophic, and pathogenic bacteria, and analyzing the coexistence relationship between bacteria and phytoplanktons. This research, which included the sampling and laboratory works, has been carried out on 25 - 28 October, 2000. The results suggested that the abundance of each bacteria was as follows: coliform bacteria range between 227-5940 cfu/100 ml with averages 1814.1 cfu/100 ml, found in all stations; heterotrophic bacteria range between (1-82 x 103 cfu/ml with averages 12.1 x 103 cfu/ml, it was high density and has association with phytoplankton Trichodesmium thieubautii. It was also found 6 species of pathogen bacteria e.g. Aeromonas, Citrobacter, Proteus, Pseudomonas, Yersinia and Shigella. The presence of coliform and pathogen bacteria was indicator of low quality of the seawater in the sampling area. Based on bacteriological study, the North Sulawesi Coastal is not suitable for aquaculture and need treatment and controlled for further coastal exploitation.

  14. "A Future for Fisheries?" Setting of a Field-based Class for Evaluation of Aquaculture and Fisheries Sustainability

    Science.gov (United States)

    Macko, Stephen; O'Connell, Matthew

    2016-04-01

    For the first time in 2015, aquaculture yields approximately equaled global wild capture fisheries. Are either of these levels of production sustainable? This course explored the limitations of both sources of fishery landings and included legal limitations, environmental concerns and technological problems and adaptations. It made use of visits to aquaculture facilities, government laboratories like NOAA , as well as large fish distribution centers like J.J. McDowell's Seafood (Jessup, MD), and included presentations by experts on legalities including the Law of the Sea. In addition, short day-long trips to "ocean-related" locations were also used to supplement the experience and included speakers involved with aquaculture. Central Virginia is a fortunate location for such a class, with close access for travel to the Chesapeake Bay and numerous field stations, museums with ocean-based exhibits (the Smithsonian and National Zoo) that address both extant and extinct Earth history, as well as national/state aquaria in Baltimore and Virginia Beach. Furthermore, visits to local seafood markets at local grocery stores, or larger city markets in Washington, Baltimore and Virginia Beach, enhance the exposure to productivity in the ocean, and viability of the fisheries sustainability. Sustainability awareness is increasingly a subject in educational settings. Marine science classes are perfect settings of establishing sustainability awareness owing to declining populations of organisms and perceived collapse in fisheries worldwide. Students in oceanography classes often request more direct exposure to actual ocean situations or field trips. This new approach to such a course supplement addresses the requests by utilizing local resources and short field trips for a limited number of students to locations in which Ocean experiences are available, and are often supported through education and outreach components. The vision of the class was a mixture of classroom time

  15. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad

    2017-01-01

    characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures...

  16. Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm.

    Science.gov (United States)

    Xi, Xiuping; Wang, Min; Chen, Yongshan; Yu, Shen; Hong, Youwei; Ma, Jun; Wu, Qian; Lin, Qiaoyin; Xu, Xiangrong

    2015-06-15

    Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The EC Maritime Industries Forum 1992: Marine resources and research and development

    International Nuclear Information System (INIS)

    Jenisch, U.K.

    1993-01-01

    The Maritime Industries Forum (MIF) of the European Community has prepared a comprehensive report covering all the EC maritime industries. The report, published on October 29, 1992, addresses maritime activities such as shipbuilding, shipping, fishing, energy, marine resources and environmental protection. Focal points are research and development measures and strategies. A major objective is to strengthen the competitiveness of the maritime industries via a global and horizontal approach. This paper briefly analyses the M.I.F. Report and concentrates on the EC interests in the field of marine resources such as oil and gas, potable water, aquaculture and fishing, minerals, OTEC/DOWA as well as the environmentally sound technology that is required to allow for a future oriented and sustainable exploitation. Export opportunities for such new technologies and cooperation with third states are an important objective. The proposals of the M.I.F. Report are of a positive, future-oriented nature, appropriate to replace many of the hitherto defensive policies in the maritime area. The industries recognize the responsibility for the revitalization of their industrial sectors. The method of this broad sectoral approach for a new industrial policy in Europe is innovative and a model in itself. With the installation of three specialized new industrial panels in January 1993 the work continues

  18. 77 FR 60687 - Record of Decision for the U.S. Marine Corps Basewide Water Infrastructure Project at Marine...

    Science.gov (United States)

    2012-10-04

    ... Water Infrastructure Project at Marine Corps Base Camp Pendleton, California AGENCY: Department of the... Environmental Policy Act (NEPA) of 1969, 42 United States Code (U.S.C.) Section 4332(2)(c), the regulations of the Council on Environmental Quality for Implementing the Procedural Provisions of NEPA (40 Code of...

  19. Environmental performance of aquaculture in Rondônia state, Brazil

    Directory of Open Access Journals (Sweden)

    Aurélio Ferreira Borges

    2015-04-01

    Full Text Available The objective of this study was to analyze the environmental performance of aquaculture in the city of Colorado do Oeste, Rondônia State, Brazil. Fifteen fish farmers were interviewed. For data collection, structured interviews were carried out, using a questionnaire based on information supplied by the United Nations Food and Agriculture Organization (FAO. The questionnaire considered 12 items, organized into three main topics: a social and legal standards b environmental standards c standards of food safety and hygiene. The questionnaire considered 12 items, organized into three main topics: a social and legal standards b environmental standards c standards of food safety and hygiene. Aquaculture in the city of Colorado do Oeste, Rondônia presents two fish production systems: extensive and semi-intensive. In the semi-intensive system, stocking rate was one fish per m3, on average; tambaqui (Colossoma macropomum, tilapias (Oreochromis spp., pirarucu (Arapaima gigas and pintado (Pseudoplatystoma spp. were the species farmed at the largest number. The rate of water renewal was due to the greater availability of natural food in this system. Water renewal was constant in the ponds (1,500 liters per minute. In the semi-intensive system using dug ponds, alevins were stocked and fed during the entire rearing time with natural and exogenous food. The extensive system relied on the natural production of the pond, with stocking density limited by the production of natural food. The little renewal of water made the cultivation tank itself acted as a decantation lake, with the occurrence of oxidation and sedimentation of residual organic matter, consisting of feces, debris and organic fertilizer. Production of reduced effluent volume took place in the extensive system, compared to the cultivation area. In addition, there was high water turbidity, caused by high concentration of planktonic organisms, and low concentrations of dissolved oxygen in the water

  20. Linking δ15N and histopathological effects in molluscs exposed in situ to effluents from land-based marine fish farms

    International Nuclear Information System (INIS)

    Carballeira, C.; Espinosa, J.; Carballeira, A.

    2011-01-01

    Highlights: ► Land-based marine aquaculture effluents induce branchial exfoliation and phagocytic haemocytosis in exposed molluscs. ► Transplanted clams are more sensitive to aquaculture discharges than native mussels. ► δ 15 N in organisms is a cost-effective means of biomonitoring exposure to contamination from aquaculture. ► δ 15 N analysis may facilitate the evaluation of potential effects at the tissue level. - Abstract: Histopathological alterations can indicate time-integrated impacts on organisms stemming from alterations at lower biological organisation levels. Long-term (native mussels) and short-term (transplanted clams) changes in the tissues of molluscs exposed to the effluents from two land-based marine fish farms (LBMFFs) were determined. Histological alterations were related to the δ 15 N isotopic signal measured in mussels and macroalgae. Effluents from LBMFFs were found to cause severe and moderate gill filament exfoliation in clams and mussels, respectively. Some transplanted clams showed severe degrees of hemocytic phagocytosis in gonads and connective tissue. In an attempt to semi-quantitatively summarize the observed histopathological alterations, a weighted index of damage (WID) was calculated for each type of alteration, species and sampling site. The WID was clearly related to the δ 15 N descriptor of exposure. Further studies aimed at standardizing this relationship may establish critical thresholds of the descriptor for its implementation within environmental monitoring plans for LBMFFs.