WorldWideScience

Sample records for water jet system

  1. REVIEW OF WATER JET APPLICATIONS IN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Faruk MENDİ

    1999-02-01

    Full Text Available Usage of water jets in manufacturing processes, has been known for many decades. A wide range of engineering materials can be cut by water jets with satisfactory results. Enhanced reliability and efficiency of the technique, have yielded the technology greater interest for manufacturing applications. Water jets are used to cut soft materials such as wood, plastics, aluminium and copper. Abrasive water jets are used to cut very hard materials such as titanium, inconel, glass and ceramics. It is impossible to cut these materials with classical cutting technics. A water jet processing system utilises water pressure in the range of 100Mpa-400Mpa, for the different applications. In abrasive water jet milling and abrasive water jet cutting processes, the pressure of the jet is about 400Mpa. In water jet surface penning, the jet pressure is about 100Mpa. The process of abrasives mixing with the water stream is a complex phenomena. Erosion processes involved in cutting not yet fully understood. The lack of understanding the process call for other strategies in finding appropriate ways to obtain a precision depth in cutting operation. In this paper the principles of water jet systems had been explained. Results of experiments that made on cutting process and surface strengthening with water jet had been given.

  2. Computational fluid dynamics (CFD) in the design of a water-jet-drive system

    Science.gov (United States)

    Garcia, Roberto

    1994-01-01

    NASA/Marshall Space Flight Center (MSFC) has an ongoing effort to transfer to industry the technologies developed at MSFC for rocket propulsion systems. The Technology Utilization (TU) Office at MSFC promotes these efforts and accepts requests for assistance from industry. One such solicitation involves a request from North American Marine Jet, Inc. (NAMJ) for assistance in the design of a water-jet-drive system to fill a gap in NAMJ's product line. NAMJ provided MSFC with a baseline axial flow impeller design as well as the relevant working parameters (rpm, flow rate, etc.). This baseline design was analyzed using CFD, and significant deficiencies identified. Four additional analyses were performed involving MSFC changes to the geometric and operational parameters of the baseline case. Subsequently, the impeller was redesigned by NAMJ and analyzed by MSFC. This new configuration performs significantly better than the baseline design. Similar cooperative activities are planned for the design of the jet-drive inlet.

  3. High Pressure Water Jet System Performance Assessment Project A-2A

    Energy Technology Data Exchange (ETDEWEB)

    FARWICK, C.C.

    1999-12-03

    Performance assessment for canister cleaning system in the KE Basin. Information obtained from this assessment will be used to design any additional equipment used to clean canisters. After thorough review of the design, maintenance history and operational characteristics of the 105 K East (KE) canister cleaning system, Bartlett recommends that the high pressure water jet system (HPWJS) be modified as outlined in section 5.0, and retained for future use. Further, it is recommended that Spent Nuclear Fuel (SNF) Project consider use of a graded approach for canister cleaning, based on individual canister type and characteristics. This approach would allow a simple method to be used on canisters not needing the more rigorous, high-pressure method. Justification is provided in section 5.0. Although Bartlett has provided some preliminary cost estimates, it is recommended that SNF Project perform a detailed cost-benefit analysis to weigh the alternatives presented.

  4. Evaluation of three state-of-the-art water-jet systems for cutting/removing concrete

    Science.gov (United States)

    Pace, C. E.

    1982-09-01

    This report documents a demonstration project to evaluate the capability of three waterjet systems for cutting or removing concrete or both. The Corps of Engineers is interested in the potential of this technology for such applications as rapid cutting of bomb-damaged selection of airfield pavement and removing of deteriorated sections of concrete structures at Civil Works projects. Because water-jet systems are capable of transmitting, without mechanical constraint, all of the available horsepower of their power sources into the concrete cutting/removing operation, they may prove to be an extremely efficient means of conducting such operations. The low-pressure water jets were able to cut a 6-in. slot in the concrete for a distance of 1-1/2 ft. in a period of 24 minutes (a rate of 6.4 ft. per hour). The relatively high-pressure water jet cut at rates of 9.6 ft. per hour for shallow cuts (less than 5 in.) and 3 ft. per hour for deeper cuts (greater than 5 in.). In addition, one of the low-pressure systems was used to remove some surface concrete. The results of this evaluation indicate that, although these water-jet systems did not demonstrate a capability for efficiently cutting concrete airfield pavements, the technology has potential. The low-pressure system demonstrated a capability for removing surface concrete efficiently.

  5. Thermal aspects of ice abrasive water jet technology

    Directory of Open Access Journals (Sweden)

    Marko Jerman

    2015-08-01

    Full Text Available During the last few years, different research groups have been developing systems for the transition of abrasive water jet into ice abrasive water jet. The aim of this new technology is to make the technology cleaner from both practical and ecological points of view. Mineral abrasive is replaced with ice grains that melt away after the machining process, leaving the workpiece uncontaminated. Several different approaches to this technology were studied. Thermal aspects of integrating the ice abrasive water jet technology into commercially available machines were considered. The results and analyses of water temperature measurements on the ice abrasive water jet machine are presented in this article.

  6. Experimental evaluation of a system of multiple angled impinging jets in a turbulent water flow

    Science.gov (United States)

    Delaforge, Jean-Philippe; Benson, Michael; van Poppel, Bret; Elkins, Christopher

    2017-11-01

    Impinging jets are frequently used for applications requiring high heat transfer rates. Effective area coverage is obtained by grouping these jets spatially, though such flows are more challenging to measure except in an averaged sense, and simulations historically fail to accurately predict the behavior in the vicinity of the impingement zone. In this work, we present results from an experimental technique, Magnetic Resonance Velocimetry (MRV), which measures the three components of three-dimensional time-averaged velocity field with two impinging jets. The geometry considered in this study includes two circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 8,000 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier-Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  7. Spray Deflector For Water-Jet Machining

    Science.gov (United States)

    Cawthon, Michael A.

    1989-01-01

    Disk on water-jet-machining nozzle protects nozzle and parts behind it from erosion by deflected spray. Consists of stainless-steel backing with neoprene facing deflecting spray so it does not reach nut or other vital parts of water-jet apparatus.

  8. Biofilm removal with a dental water jet.

    Science.gov (United States)

    Gorur, Amita; Lyle, Deborah M; Schaudinn, Christoph; Costerton, John W

    2009-03-01

    The objective of this study was to evaluate the effect of a dental water jet on plaque biofilm removal using scanning electron microscopy (SEM). Eight teeth with advanced aggressive periodontal disease were extracted. Ten thin slices were cut from four teeth. Two slices were used as the control. Eight were inoculated with saliva and incubated for 4 days. Four slices were treated using a standard jet tip, and four slices were treated using an orthodontic jet tip. The remaining four teeth were treated with the orthodontic jet tip but were not inoculated with saliva to grow new plaque biofilm. All experimental teeth were treated using a dental water jet for 3 seconds on medium pressure. The standard jet tip removed 99.99% of the salivary (ex vivo) biofilm, and the orthodontic jet tip removed 99.84% of the salivary biofilm. Observation of the remaining four teeth by the naked eye indicated that the orthodontic jet tip removed significant amounts of calcified (in vivo) plaque biofilm. This was confirmed by SEM evaluations. The Waterpik dental water jet (Water Pik, Inc, Fort Collins, CO) can remove both ex vivo and in vivo plaque biofilm significantly.

  9. 3D Modelling of a Vectored Water Jet-Based Multi-Propeller Propulsion System for a Spherical Underwater Robot

    Directory of Open Access Journals (Sweden)

    Xichuan Lin

    2013-01-01

    Full Text Available This paper presents an improved modelling method for a water jet-based multi-propeller propulsion system. In our previous work, the modelling experiments were only carried out in 2D planes, whose experimental results had poor agreement when we wanted to control the propulsive forces in 3D space directly. This research extends the 2D modelling described in the authors' previous work into 3D space. By doing this, the model could include 3D space information, which is more useful than that of 2D space. The effective propulsive forces and moments in 3D space can be obtained directly by synthesizing the propulsive vectors of propellers. For this purpose, a novel experimental mechanism was developed to achieve the proposed 3D modelling. This mechanism was designed with the mass distribution centred for the robot. By installing a six-axis load-cell sensor at the equivalent mass centre, we obtained the direct propulsive effect of the system for the robot. Also, in this paper, the orientation surface and propulsive surfaces are developed to provide the 3D information of the propulsive system. Experiments for each propeller were first carried out to establish the models. Then, further experiments were carried out with all of the propellers working together to validate the models. Finally, we compared the various experimental results with the simulation data. The utility of this modelling method is discussed at length.

  10. The Piezo Actuator-Driven Pulsed Water Jet System for Minimizing Renal Damage after Off-Clamp Laparoscopic Partial Nephrectomy.

    Science.gov (United States)

    Kamiyama, Yoshihiro; Yamashita, Shinichi; Nakagawa, Atsuhiro; Fujii, Shinji; Mitsuzuka, Koji; Kaiho, Yasuhiro; Ito, Akihiro; Abe, Takaaki; Tominaga, Teiji; Arai, Yoichi

    2017-09-01

    In the setting of partial nephrectomy (PN) for renal cell carcinoma, postoperative renal dysfunction might be caused by surgical procedure. The aim of this study was to clarify the technical safety and renal damage after off-clamp laparoscopic PN (LPN) with a piezo actuator-driven pulsed water jet (ADPJ) system. Eight swine underwent off-clamp LPN with this surgical device, while off-clamp open PN was also performed with radio knife or soft coagulation. The length of the removed kidney was 40 mm, and the renal parenchyma was dissected until the renal calyx became clearly visible. The degree of renal degeneration from the resection surface was compared by Hematoxylin-Eosin staining and immunostaining for 1-methyladenosine, a sensitive marker for the ischemic tissue damage. The mRNA levels of neutrophil gelatinase-associated lipocalin (Ngal), a biomarker for acute kidney injury, were measured by quantitative real-time PCR. Off-clamp LPN with ADPJ system was successfully performed while preserving fine blood vessels and the renal calix with little bleeding. In contrast to other devices, the resection surface obtained with the ADPJ system showed only marginal degree of ischemic changes. Indeed, the expression level of Ngal mRNA was lower in the resection surface obtained with the ADPJ system than that with soft coagulation (p = 0.02). Furthermore, using the excised specimens of renal cell carcinoma, we measured the breaking strength at each site of the human kidney, suggesting the applicability of this ADPJ to clinical trials. In conclusion, off-clamp LPN with the ADPJ system could be safely performed with attenuated renal damage.

  11. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  12. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  13. The dental water jet: a historical review of the literature.

    Science.gov (United States)

    Jahn, Carol A

    2010-01-01

    The objective of this paper is to provide a broad overview of the predominant findings from research published on pulsating dental water jets over the last 45 years. The author performed a computerized MEDLINE search covering the years from 1962 to 2009, with 1962 chosen since it was the year the first dental water jet was introduced. Key words included "oral irrigator" and "oral irrigation." All past and current studies were reviewed and those that reflected original research were included. The article is not intended to provide an exhaustive detailed article review, but rather a broad review of predominant findings on currently available traditional pulsating dental water jets with no novelty features. The author makes no attempt to statistically analyze any of the data. Information reported in the article comes from the original investigator analysis and interpretation. The dental water jet is supported by a well-established body of evidence demonstrating the ability to remove plaque, reduce periodontal pathogens, gingivitis, bleeding and inflammatory mediators. The dental water jet is a viable tool for reducing bleeding and gingivitis in a wide variety of patients. Due to the extensive body of knowledge on this product, a meta-analysis or systematic review is warranted. Additional research is recommended to confirm plaque biofilm removal, its effectiveness in comparison to flossing and efficacy on patients with special oral or systemic health needs.

  14. Jets and Water Clouds on Jupiter

    Science.gov (United States)

    Lian, Yuan; Showman, A. P.

    2012-10-01

    Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.

  15. A multimaterial electrohydrodynamic jet (E-jet) printing system

    Science.gov (United States)

    Sutanto, E.; Shigeta, K.; Kim, Y. K.; Graf, P. G.; Hoelzle, D. J.; Barton, K. L.; Alleyne, A. G.; Ferreira, P. M.; Rogers, J. A.

    2012-04-01

    Electrohydrodynamic jet (E-jet) printing has emerged as a high-resolution alternative to other forms of direct solution-based fabrication approaches, such as ink-jet printing. This paper discusses the design, integration and operation of a unique E-jet printing platform. The uniqueness lies in the ability to utilize multiple materials in the same overall print-head, thereby enabling increased degrees of heterogeneous integration of different functionalities on a single substrate. By utilizing multiple individual print-heads, with a carrousel indexing among them, increased material flexibility is achieved. The hardware design and system operation for a relatively inexpensive system are developed and presented. Crossover interconnects and multiple fluorescent tagged proteins, demonstrating printed electronics and biological sensing applications, respectively.

  16. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  17. The 113 GHz ECRH system for JET

    Science.gov (United States)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kamp, J. J.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-02-01

    An ECRH (Electron Cyclotron Resonance Heating) system has been designed for JET in the framework of the JET Enhanced-Performance project (JET-EP) under the European Fusion Development Agreement (EFDA). Due to financial constraints it has recently been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g., for ITER. The ECRH system was foreseen to comprise 6 gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma [1]. The main aim was to enable the control of neo-classical tearing modes (NTM). The paper will concentrate on: • The power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilise the gyrotron output power and to enable fast modulations up to 10 kHz. • A plug-in launcher, that is steerable in both toroidal and poloidal angle, and able to handle 8 separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER relevant feature.

  18. Abrasive water jet: a complementary tool

    Directory of Open Access Journals (Sweden)

    Duarte, J. P.

    1998-04-01

    Full Text Available The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries.

    O jacto de água abrasivo é uma poderosa ferramenta de corte, tendo como principais vantagens a ausência de processo térmico e permitir o corte de elevadas espessuras. Comparativamente com o laser o jacto de água abrasivo permite cortar uma maior gama de espessuras, e uma maior diversidade de materiais: rochas ornamentais, metais, polimeros, compósitos, madeiras, vidro e cerâmicos. A aplicação desta tecnologia tem sofrido um crescimento acentuado, existindo aplicações de sucesso nos mais variados sectores industriáis como a indústria automóvel, aeroespacial, têxtil, metalomecânica e rochas ornamentáis. Esta comunição pretende apresentar o corte por jacto de agua abrasivo como uma ferramenta de corte complementar ao corte por laser, apresentando as suas vantagens documentadas através de alguns exemplos de peças executadas para as diferentes indústrias.

  19. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    2016-01-01

    Roč. 84, 5-8 (2016), s. 1615-1623 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * turning * traverse speed * size of abrasive particles Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-015-7831-6

  20. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    -, September 2015 (2015), s. 1-9 ISSN 0268-3768 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * size of abrasive particles * surface quality * traverse speed Subject RIV: JQ - Machines ; Tools Impact factor: 1.568, year: 2015 http://link.springer.com/article/10.1007/s00170-015-7831-6

  1. Saturation Limits of Water in Jet Fuel

    National Research Council Canada - National Science Library

    Barsness, Dale

    1959-01-01

    ... solubility on uninhibited J-4 jet fuel and JP-4 containing corrosion inhibiting additives. This data is to serve as comparison with data that is received from efficiency tests conducted on various Filter Separator Units...

  2. CNC water-jet machining and cutting center

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, D.C.

    1991-09-01

    CNC water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only {plus minus}0.005 inch, as compared to {plus minus}0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of {plus minus}0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with {plus minus}0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust. 12 figs.

  3. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  4. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  5. Prevention of tissue damage by water jet during cavitation

    Science.gov (United States)

    Palanker, Daniel; Vankov, Alexander; Miller, Jason; Friedman, Menahem; Strauss, Moshe

    2003-08-01

    Cavitation bubbles accompany explosive vaporization of water following pulsed energy deposition in liquid media. Bubbles collapsing at the tip of a surgical endoprobe produce a powerful and damaging water jet propagating forward in the axial direction of the probe. We studied interaction of such jet with tissue using fast flash photography and modeled the flow dynamics using a two-dimensional Rayleigh-type hydrodynamic simulation. Maximal velocity of the jet generated at pulse energies of up to 1 mJ was about 80 m/s. The jet can produce tissue damage at a distance exceeding the radius of the cavitation bubble by a factor of 4. We demonstrate that formation of this flow and associated tissue damage can be prevented by application of the concave endoprobes that slow down the propagation of the back boundary of the bubble. Similar effect can be achieved by positioning an obstacle to the flow, such as a ring behind the tip.

  6. New process for screen cutting: water-jet guided laser

    Science.gov (United States)

    Perrottet, Delphine; Amorosi, Simone; Richerzhagen, Bernold

    2005-07-01

    Today's OLED manufacturers need high-precision, fast tools to cut the metal screens used to deposit the electroluminescent layers onto the substrate. Conventional methods -tching and dry laser cutting - are not satisfying regarding the demands of high-definition OLED displays. A new micro machining technology, the water jet guided laser - a hybrid of laser and water jet technologies that has been actively used in recent years in the electronic and semiconductor field - is now available to OLED manufacturers. This technology represents a significant improvement in screen, mask and stencil cutting, as it combines high precision and high speed. It is able to cut small apertures with totally clean edges (no dross or slag), as the water jet removes the particles and a thin water film is maintained on the material surface during the process. Because the water jet cools the material between the laser pulses, the cut material is free of any thermal stress. The water jet guided laser is also a very fast process: as an example, rectangular slots can be cut in 30 to 50 microns thick stainless steel or nickel at a rate between 25'000 and 30'000 holes per hour.

  7. Calculation of Water Supply to Hydraulic Jet Devices

    Directory of Open Access Journals (Sweden)

    M. V. Krautsou

    2006-01-01

    Full Text Available Dependence for calculation of working fluid supply to water-air ejector is proposed. The de­pendence has been derived via analysis and processing of data being obtained by experimental research of water-jet devices.

  8. The design of an ECRH system for JET-EP

    Science.gov (United States)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novak, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-11-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design work conducted from April 2000 to January 2002 shows a number of features that can be relevant in preparation of future ECRH systems, e.g. for ITER. The ECRH system was foreseen to comprise six gyrotrons, 1 MW each, in order to deliver 5 MW into the plasma (Verhoeven A.G.A. et al 2001 The ECRH system for JET 26th Int. Conf. on Infrared and Millimeter Waves (Toulouse, 10 14 September 2001) p 83; Verhoeven A.G.A. et al 2003 The 113 GHz ECRH system for JET Proc. 12th Joint Workshop on ECE and ECRH (13 16 May 2002) ed G. Giruzzi (Aix-en-Provence: World Scientific) pp 511 16). The main aim was to enable the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up to 10 kHz and a plug-in launcher that is steerable in both toroidal and poloidal angles and able to handle eight separate mm-wave beams. Four steerable launching mirrors were foreseen to handle two mm-wave beams each. Water cooling of all the mirrors was a particularly ITER-relevant feature.

  9. Colliding jets provide depth control for water jetting in bone tissue

    NARCIS (Netherlands)

    den Dunnen, S.; Dankelman, J.; Kerkhoffs, G. M.; Tuijthof, G.

    2017-01-01

    In orthopaedic surgery, water jet drilling provides several advantages over classic drilling with rigid drilling bits, such as the always sharp cut, absence of thermal damage and increased manoeuvrability. Previous research showed that the heterogeneity of bone tissue can cause variation in drilling

  10. Anethole-Water a Combined Jet, Matrix, and Computational Study

    Science.gov (United States)

    Newby, Josh; Nesheiwat, Jackleen

    2016-06-01

    Anethole [(E)-1-methoxy-4-(1-propenyl)benzene] is a natural product molecule that is commonly recognized as the flavor component of anise, fennel, and licorice. Previously, we reported the jet-cooled, laser-induced fluorescence (LIF) and single vibronic level fluorescence (SVLF) spectra of anethole. In this work, several weak bands were observed and were tentatively assigned as van der Waals clusters of anethole with water. We have since confirmed this assignment and have conducted a more detailed study to determine the geometry of these clusters. Results from LIF, SVLF, and matrix isolation FTIR spectroscopy, as well as computational results will be presented in this talk. J. Phys. Chem. A, 2013, 117 (48), 12831-12841 Newly built system at Hobart and William Smith Colleges

  11. Experiment on Conical Pick Cutting Rock Material Assisted with Front and Rear Water Jet

    Directory of Open Access Journals (Sweden)

    Xiaohui Liu

    2015-01-01

    Full Text Available Conical picks are one kind of cutting tools widely used in engineering machinery. In the process of rock breaking, the conical pick bears great cutting force and wear. To solve the problem, a new method, conical pick assisted with high pressure water jet, could break rock effectively, and four different configuration modes of water jet were presented. In this paper, based on the analysis of the different water jet configuration’s advantages and disadvantages, experiments on front water jet, new typed rear water jet, and the combination of those two water jet configuration modes were conducted to study the assisting cutting performance and obtain the quantitative results.

  12. The design of an ECRH system for JET-EP

    NARCIS (Netherlands)

    Verhoeven, A. G. A.; Bongers, W. A.; Elzendoorn, B. S. Q.; Graswinckel, M.; Hellingman, P.; Kooijman, W.; Kruijt, O. G.; Maagdenberg, J.; Ronden, D.; Stakenborg, J.; Sterk, A. B.; Tichler, J.; Alberti, S.; Goodman, T.; Henderson, M.; Hoekzema, J. A.; Oosterbeek, J. W.; Fernandez, A.; Likin, K.; Bruschi, A.; Cirant, S.; Novaks, S.; Piosczyk, B.; Thumm, M.; Bindslev, H.; Kaye, A.; Fleming, C.; Zohm, H.

    2003-01-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design

  13. Ultra-high pressure water jetting for coating removal and surface preparation

    Science.gov (United States)

    Johnson, Spencer T.

    1995-01-01

    This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.

  14. The influence of water jet diameter and bone structural properties on the efficiency of pure water jet drilling in porcine bone

    NARCIS (Netherlands)

    den Dunnen, S.; Tuijthof, G. J. M.

    2014-01-01

    Using water jets in orthopedic surgery to drill holes in bones can be beneficial due to the absence of thermal damage and the always sharp cut. To minimize operating time and the volume of water that is used, the efficiency (volume of removed bone per added volume of water) of the water jet should

  15. Machining human dentin by abrasive water jet drilling.

    Science.gov (United States)

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin.

  16. GeoJetting. Development and operation of the maximum pressure water-jet drilling technology; GeoJetting. Entwicklung und Betrieb der Hoechstdruckwasserstrahl-Bohrtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Rolf [Bochum Univ. (Germany); GeothermieZentrum Bochum (GZB) (Germany); Wittig, Volker

    2009-03-15

    In the consideration of a geothermal total system - near the surface or deep being enough - the greatest amount of the plant costs are due to underground operation. Therefore, an emphasis of future technological developments in the geothermal heat also must lie in the underground; that means at innovative procedures for drilling and the reservoir development for efficient geothermal heat exchangers. At the geothermal centre on the campus of the University Bochum (Federal Republic of Germany) a new drilling procedure was developed in the years 2003 to 2007 with promotion of the Federal Ministry of Education and Research (BMBF, Berlin, Federal Republic of Germany) on the basis by maximum pressure water-jet cutting technology. The procedure is called 'GeoJetting'. The procedure needs clear water as the only propellant and thereby is compatible particularly with groundwater. The technology completely dissolves the rock with a water pressure of up to 1,000 bar in its solid matrix and transfers it in suspension. In comparison with drillings with conventional percussion hammers, this procedure permitted a threefold to fivefold higher drilling velocities in loose rocks and in small compressed sedimentary rocks.

  17. Jet atomization and cavitation induced by interactions between focused ultrasound and a water surfacea)

    Science.gov (United States)

    Tomita, Y.

    2014-09-01

    Atomization of a jet produced by the interaction of 1 MHz focused ultrasound with a water surface was investigated using high-speed photography. Viewing various aspects of jet behavior, threshold conditions were obtained necessary for water surface elevation and jet breakup, including drop separation and spray formation. In addition, the position of drop atomization, where a single drop separates from the tip of a jet without spraying, showed good correlation with the jet Weber number. For a set of specified conditions, multiple beaded water masses were formed, moving upwards to produce a vigorous jet. Cavitation phenomena occurred near the center of the primary drop-shaped water mass produced at the leading part of the jet; this was accompanied by fine droplets at the neck between the primary and secondary drop-shaped water masses, due to the collapse of capillary waves.

  18. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  19. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  20. The design of an ECRH system for JET-EP

    DEFF Research Database (Denmark)

    Verhoeven, A.G.A.; Bongers, W.A.; Elzendoorn, B.S.Q.

    2003-01-01

    An electron cyclotron resonance heating (ECRH) system has been designed for JET in the framework of the JET enhanced performance project (JET-EP) under the European fusion development agreement. Due to financial constraints it has been decided not to implement this project. Nevertheless, the design...... the control of neo-classical tearing modes. The paper will concentrate on: the power-supply and modulation system, including series IGBT switches, to enable independent control of each gyrotron and an all-solid-state body power supply to stabilize the gyrotron output power and to enable fast modulations up...

  1. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  2. Experiment and simulation study of laser dicing silicon with water-jet

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jiading; Long, Yuhong, E-mail: longyuhong@guet.edu.cn; Tong, Youqun; Yang, Xiaoqing; Zhang, Bin; Zhou, Zupeng

    2016-11-30

    Highlights: • The explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with ns-pulsed laser of 1064 nm irradiating. • Self-focusing phenomenon was found and its causes are analyzed. • SPH modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining. - Abstract: Water-jet laser processing is an internationally advanced technique, which combines the advantages of laser processing with water jet cutting. In the study, the experiment of water-jet laser dicing are conducted with ns pulsed laser of 1064 nm irradiating, and Smooth Particle Hydrodynamic (SPH) technique by AUTODYN software was modeled to research the fluid dynamics of water and melt when water jet impacting molten material. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with nanosecond pulse laser of 1064 nm irradiating. Self-focusing phenomenon was found and its causes are analyzed. Smooth Particle Hydrodynamic (SPH) modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining.

  3. Wobbling and Precessing Jets from Warped Disks in Binary Systems

    Science.gov (United States)

    Sheikhnezami, Somayeh; Fendt, Christian

    2015-12-01

    We present results of the first ever three-dimensional (3D) magnetohydrodynamic (MHD) simulations of the accretion-ejection structure. We investigate the 3D evolution of jets launched symmetrically from single stars but also jets from warped disks in binary systems. We have applied various model setups and tested them by simulating a stable and bipolar symmetric 3D structure from a single star-disk-jet system. Our reference simulation maintains a good axial symmetry and also a bipolar symmetry for more than 500 rotations of the inner disk, confirming the quality of our model setup. We have then implemented a 3D gravitational potential (Roche potential) due by a companion star and run a variety of simulations with different binary separations and mass ratios. These simulations show typical 3D deviations from axial symmetry, such as jet bending outside the Roche lobe or spiral arms forming in the accretion disk. In order to find indications of precession effects, we have also run an exemplary parameter setup, essentially governed by a small binary separation of only ≃200 inner disk radii. This simulation shows a strong indication that we observe the onset of a jet precession caused by the wobbling of the jet-launching disk. We estimate the opening angle of the precession cone defined by the lateral motion of the jet axis to be about 4° after about 5000 dynamical time steps.

  4. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  5. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell

  6. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  7. High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations

    Science.gov (United States)

    Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.

    2011-05-01

    We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.

  8. Fatigue Testing of Abrasive Water Jet Cut Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Dahl, Michael E.; Williford, Ralph E.

    2009-06-08

    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.

  9. Utilization of ultrasound to enhance high-speed water jet effects.

    Science.gov (United States)

    Foldyna, Josef; Sitek, Libor; Svehla, Branislav; Svehla, Stefan

    2004-05-01

    Continuous high-speed water jets are presently used in many industrial applications such as cutting of various materials, cleaning and removal of surface layers. However, there is still a need for further research to enhance the performance of pure water jets. An obvious method is to generate water jets at ultra-high pressures (currently up to 700 MPa). An alternate approach is to eliminate the need for such high pressures by pulsing of the jet. This follows from the fact that the impact pressure on a target generated by a slug of water is considerably higher than the stagnation pressure of a corresponding continuous jet. Ultrasonically forced modulation of a continuous stream of water represents the most promising method of pulsed jet generation because of its simplicity and practicality. A pulsed jet is generated by modulating a continuous stream of water by ultrasonic waves. A velocity transformer connected to a piezoelectric transducer is located axially inside a nozzle to induce longitudinal pulsations in the water. An extensive laboratory research program is in progress to understand the basic principles of the process and to optimize the nozzle design for several applications. The results reported in this paper show that the performance of such a pulsed jet is far superior to that of a continuous jet operating at the same parameters. Experimental results obtained with the ultrasonic vibration of a tip situated inside the nozzle indicate that using this technique one can achieve performance of the jet even order of magnitude higher in comparison to continuous jet at the same hydraulic parameters. Performance of ultrasonically modulated jets in cutting of various materials was tested in laboratory conditions. In this paper, results of measurement of dynamic pressure in the nozzle and force effects of modulated jets are presented together with results obtained in cutting of various materials using ultrasonically modulated water jets. The results are compared

  10. A thermodynamic analysis of a solar-powered jet refrigeration system

    Science.gov (United States)

    Lansing, F. L.; Chai, V. W.

    1980-01-01

    The article describes and analyzes a method of using solar energy to drive a jet refrigeration system. A new technique is presented in the form of a performance nomogram combining the energy and momentum equations to determine the performance characteristics. A numerical example, using water as the working fluid, is given to illustrate the nomogram procedure. The resulting coefficient of performance was found comparable with other refrigeration systems such as the solar-absorption system or the solar-Rankine turbocompressor system.

  11. Separation of the tumor and brain surface by "water jet" in cases of meningiomas.

    Science.gov (United States)

    Toth, S; Vajda, J; Pasztor, E; Toth, Z

    1987-01-01

    In the surgery of meningiomas one of the most delicate problems is the separation of the tumor from the brain surface. The authors generally recommend microsurgery to preserve the brain surface anatomically and functionally. For this purpose we have developed a new surgical technique according to our concepts of tissue care. After excavating the tumor from inside the tumor brain surface was separated by repeated "water jets" into the tumor arachnoideal space. The "water jet" was produced by an ordinary bulb syringe. The front pressure of the jets was 300-1000 mm of water and the side pressure 100-300 mm of water. In the tumor-arachnoideal space the spreading water (phys. NaCl) separates the brain from the tumor with utmost care. We operated on 55 meningiomas of different types with the "water jet" technique. The immediate results were anatomically excellent. Intraoperative and postoperative acute and late edemas appeared only in a few cases. The functions of the nearby brain were generally preserved. The surgery was uneventful when the tumor surface was smooth and the tumor was spherical. When the tumor surface was uneven, one part of the tumor extended under the dura as a thin layer or the tumor was multilobulated with expanded vessels between the lobules, more microseparation was necessary. We compared the results of the "water jet" technique with the results of the "pre-water jet" series. The surgery with the "water jet" technique was much shorter and its results were better than those of microsurgery alone.

  12. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  13. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  14. Diseño de un sistema de generación de chorro de agua de flujo laminar iluminado//Designing a system to generate water jet illuminated laminar flow

    Directory of Open Access Journals (Sweden)

    Néstor A. Ulloa-Auqui

    2015-09-01

    Full Text Available Se diseñó y fabricó exitosamente un Sistema de Generación de Chorro de Agua de Flujo Laminar Iluminado, el mismo tiene como finalidad desarrollar destrezas y capacidades en el laboratorio de fluidos cuando se realicen prácticas de variación de caudal para obtener diferentes alturas, alcances y observar como viajan las partículas de agua en un flujo laminar, fenómeno que se produce gracias a la iluminación de todo el chorro con la tecnología de la fibra óptica y un potenciador led RGB.  Los resultados obtenidos permiten realizar proyectos en el área de ornamentación que pueden ser utilizados de manera creativa en parques, hoteles, piscinas y piletas.  El estudio inicia con la determinación de las ecuaciones de cantidad de movimiento, balance de energía y movimiento parabólico que sirvieron para el cálculo hidráulico y selección de la bomba de caudal y boquilla del dispositivo. Palabras clave: flujo laminar, chorro de agua, fibra óptica, boquilla._____________________________________________________________________________AbstractA system to generate water jet illuminated laminar flow was successfully designed and fabricated, the same aims to develop skills and capabilities in the laboratory practices fluids when flow variation for different heights and ranges are made and watch the water particles traveling in laminar flow, phenomenon which occurs by lighting the whole jet technology with fiber optics and a RGB led enhancer.  The results obtained allow perform projects in the area of ornamentation, the same that can be used creatively in parks, hotels, swimming pools and fountains.  The study begins with the determination of the equations of momentum, energy balance and parabolic movement that served to the hydraulic calculation and selection of the pump flow and nozzle device. Key words: flow, laminar, waterjet, optical fiber, nozzle.

  15. Reseach on the reduction of rocket motor jet noise by water injection

    Directory of Open Access Journals (Sweden)

    Zou Hao

    2016-01-01

    Full Text Available Injecting water in the mixing layer of rocket motor jets is a means to reduce jet noise. The calculation of the sound pressure signals at the prescribed receivers was performed by FW-H acoustics model under the condition of water injection and without water injection. The calculation results show that the jet noise is with obvious directivity. The total sound pressure levels are obviously much higher in 10° to 30° direction than that in other direction. The sound pressure levels at the condition of water injected are lower than that of without water injection at the all receiver points, which indicates that water injection can reduce jet noise effectively.

  16. The structural and dynamic characteristics of a water-polimer high-speed jet

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Погребняк

    2017-07-01

    Full Text Available The aim is to study the structural and dynamic characteristics of the water-polymer jet, what is of decisive importance for understanding the nature of the abnormally high cutting ability. A complex study of the structure and dynamics of a water-polymer high-speed jet has been carried out. Analysis of the photographs of jets of aqueous PEO solution indicates that adding polyethylene oxide (PEO into water results in a significant increase in the initial sections of the water-polymer jet, which characterizes the quality of its formation, and leads to compactness due to a reduction of its diameter. The obtained experimental data made it possible to propose a relationship for determining the dimensionless value of the initial sections of jets of aqueous PEO solutions of different concentration and molecular mass of PEO, taking into account the real parameters of the jet forming head. Investigation of changes in the energy capabilities of water-polymer jets, which were estimated by the force of the jet impact on the steel obstacle, made it possible to establish the features of their dynamics. The obtained experimental data explain the nature of the change in the cutting properties of the water-polymer jet as a function of the distance between the surface of the material that is being cut and the cut of the nozzle. If the distance from the nozzle to the surface of the material is less than the size of the initial sections of the water-polymer jet, an increase in the diameter of the nozzle outlet hole will lead to a reduction in the depth of the cut. If, however, the distance from the nozzle to the surface of the material approaches or exceeds the size of the main part of the water-polymer jet, then the depth of the cut will increase with increasing diameter of the nozzle at a constant pressure. The use of structural and dynamic characteristics of water-polymer jets is substantiated when establishing rational parameters of equipment for water

  17. Research on Discharge Circuit of Electro-Hydraulic Power Impulse Water Jets

    Science.gov (United States)

    Wang, Zhaohui; Gao, Quanjie; Wang, Wei; Liao, Zhenfang

    2012-01-01

    Electro-hydraulic power impulse water jets can convert the shock wave generated in the liquid by discharging into mechanical energy, and it has been widely used in material forming, surface cleaning, pipeline dirt cleaning and ore breaking process. Compared with the traditional high pressure water jets, the energy utilization of electro-hydraulic power impulse water jets is up to 80% while the water consumption is reduced by 40-55%. This paper has taken electro-hydraulic power impulse water jets as the research object, employed obtaining the maximum pressure of compression impulse matrix surface as the research goal, studied in depth the equivalent discharge circuit, characteristic equation and the relationship between the electrical parameters of the electro-hydraulic power impulse discharge circuit and built the calculation method of the voltage, the inductance, the capacitance and the electrode spacing parameter of electro-hydraulic power impulse water jets discharge circuit. So, it will provide important theoretical basis for further studies of electro-hydraulic power impulse technology and the existing water jets device.

  18. Drilling Performance of Rock Drill by High-Pressure Water Jet under Different Configuration Modes

    Directory of Open Access Journals (Sweden)

    Songyong Liu

    2017-01-01

    Full Text Available In the rock drilling progress, the resistant force results in tools failure and the low drilling efficiency; thus, it is necessary to reduce the tools failure and enhance the drilling efficiency. In this paper, different configuration modes of drilling performance assisted with water jet are explored based on the mechanism and experiment analysis of rock drilling assisted with water jet. Moreover, the rotary sealing device with high pressure is designed to achieve the axial and rotation movement simultaneously as well as good sealing effect under high-pressure water jet. The results indicate that the NDB and NFB have better effects on drilling performance compared with that of NSB. Moreover, the high-pressure water jet is helpful not only to reduce the drill rod deflection, but also to reduce the probability of drill rod bending and improve the drill rod service life.

  19. Effect of Tip Clearance on Hydraulic Performance of Water-jet Pump

    Science.gov (United States)

    Yang, Duo; Huang, Zuodong; Guo, Ang; Xu, Jiawei; Jiao, Lei

    2017-10-01

    The k-ω Shear Stress Transport (SST) turbulence model is adopted to study the hydrodynamic performance of the water-jet axial pump which is applied in Unmanned Surface Vehicle (USV). The numerical simulation of the whole passage of the water-jet pump is carried out for four different tip clearance with δ = 0.3 mm, δ = 0.8 mm, δ = 1 mm and δ = 1.4 mm. And the results, in term of external characteristics and internal flow field, show that, due to the tip leakage flow, the leakage vortex is formed behind the blade after the fluid flows over the impeller blades. Moreover, with the expansion of tip clearance, the head and efficiency of the water-jet pump will be affected, and this impact is weakened with the increase of the flow rate. Finally, the suggestion of structure optimization of water-jet pump can be made.

  20. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    Science.gov (United States)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. Utilization of abrasive water jet for cutting parts of intricate shapes

    Directory of Open Access Journals (Sweden)

    Al-Qawabah Safwan M. A.

    2017-01-01

    Full Text Available As early as 1974 the British Hydrodynamic Research Association, BHRA, held the First International Conference on Cutting by Water Jets. The subject was at its early stages. Since then a large amount of research work has been carried out and the process has been greatly developed. In this paper, utilization of water jets for flexible cutting parts of intricate shapes in steel plates and granite is presented and discussed.

  2. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets

    Science.gov (United States)

    Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2018-01-01

    Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.

  3. Design and performance of the ATLAS jet trigger system

    CERN Document Server

    Tavares Delgado, Ademar; The ATLAS collaboration

    2015-01-01

    The CERN Large Hadron Collider is the biggest and most powerful particle collider made by man. It produces up to 40 million proton-proton collisions per second at unprecedented energies to explore the fundamental laws and properties of Nature. The ATLAS experiment is one of the detectors that analyse and record these collisions. It generates a huge data volume that has to be reduced before it can be permanently stored. The event selection is made by the ATLAS trigger system, which reduces the data volume by a factor of 10^{5}. The trigger system has to be highly configurable in order to adapt to changing running conditions and maximize the physics output whilst keeping the output rate under control. A particularly interesting pattern generated during collisions consists of a collimated spray of particles, known as a hadronic jet. To retain the interesting jets and efficiently reject the overwhelming background, optimal jet energy resolution is needed. Therefore the Jet trigger software requires CPU-intensive ...

  4. Evaluation and Modeling of Camel Thorn (Alhagi Maurorum Weed Cutting by Water Jet

    Directory of Open Access Journals (Sweden)

    M Naghipour Zade Mahani

    2014-04-01

    Full Text Available Due to the importance of weed control and the limitations of mechanical methods in some places, in this research the water jet cutting for weed control was investigated. The cutting tests were performed on camel thorn weed in Shahid Bahonar university of Kerman. The water jet pressure of 90 bars was achieved with the aid of a suitable pump. The cutting time was studied in a completely randomized factorial design experiment (CRD with five replications. Factors of experiments are: stem diameter in 2 levels (smaller and larger than 5 mm, distance of spraying jet from weeds in 3 levels (10, 20 and 30 cm and two types of plant holders: blade and plate. The results showed that stem diameter and jet distance from the weed stem had significant effects on cutting time (at the 1%. The mean comparison of parameters showed that with increase of stem diameter the cutting time increased and any increase in jet distance from the weeds decreased the cutting time linearly with R2=0.96 and R2=0.99 for small and large diameter weeds, respectively. The minimum cutting time was measured at 30 cm of the jet from small diameter of stems. A multivariate linear regression model was also proposed for cutting weed parameters. It can be concluded that due to the flexibility of water jet cutting for restricted places, hydrodynamic control of weeds is proposed as a complementary method and sometimes a competing substitute method.

  5. OH Radical and a Drizzling Water Jet Production from the Ball-Lightning Discharge in Water

    Science.gov (United States)

    Maeyama, Mitsuaki; Tanaka, Yasutomo

    The ball lightning, or fireball discharge using the typical electrode configuration was reported to produce a long-living spherical plasmoid with radius exceed 10 cm at atmospheric pressure. In this study, we investigated the relationship between a optical output emitted from OH radicals and discharge conditions of the ball-lightning electrode configuration, and discussed its possibility to the water treatment process. As a results, in both polarity cases of the charged voltage V0, a ball-lightning discharge and the optical emission from OH radicals as a major radiation can be generated on the condition |V0| > 4 kV in tap water. Furthermore, an intensive upward water jet from the rod electrode is observed in case of positive polarity and in 0.2% NaCl solution, which is composed of drizzling water drops near the rod electrode.

  6. Fluidized Bed Opposed Jet Mill System for Processing Inorganic Materials

    Science.gov (United States)

    Al-Nuzal, S. M. D.; Mohammed, M. I.

    2017-08-01

    A jet mill system was built aiming to give values for processing inorganic materials, to be used for different industry. The milling housing of the system is composed of; milling chamber, compressed air nozzles which deliver compressed air in the milling chamber to accelerate sample particles. The classifier wheel is composed of two concentric pieces welded together under argon and coupled to a AC Motor, 0 - 9000 rpm, 2 kW, with AC frequencies convertor. The performances of this jet mill system were tried on five cheap locally available materials, viz. white sand, glass, iron oxide, black carbon and alum. It is possible to get particle sizes of less than 1 μm with narrow distribution of particle sizes.

  7. Lighting system with thermal management system having point contact synthetic jets

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton Earl; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Sharma, Rajdeep

    2013-12-10

    Lighting system having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system includes a plurality of synthetic jets. The synthetic jets are arranged within the lighting system such that they are secured at contact points.

  8. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well......-suited for industrial ventilation purposes. With the REEXS principle it is possible to create a flow pattern in front of the exhaust opening which will have a considerable influence on the general flow in a given room....

  9. Numerical Simulation of Rock Fragmentation under the Impact Load of Water Jet

    Directory of Open Access Journals (Sweden)

    Jiang Hongxiang

    2014-01-01

    Full Text Available To investigate the rock fragmentation and its influence factors under the impact load of water jet, a numerical method which coupled finite element method (FEM with smoothed particle hydrodynamics (SPH was adopted to simulate the rock fragmentation process by water jet. Linear and shock equations of state were applied to describe the dynamic characteristics of rock and water, respectively, while the maximum principal stress criterion was used for the rock failure detection. The dynamic stresses at the selected element containing points in rock are computed as a function of time under the impact load of water jet. The influences of the factors of boundary condition, impact velocity, confining pressure, and structure plane on rock dynamic fragmentation are discussed.

  10. Life cycle water footprint analysis for rapeseed derived jet fuel in North Dakota

    Science.gov (United States)

    Rapeseed is a promising feedstock source for hydroprocessed esters and fatty acids (HEFA) jet fuel production to address energy security and climate change mitigation. However, concerns have been raised about its impact on water as large scale biofuels production may place pressure on fresh water su...

  11. Ultra-high pressure water jet: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  12. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Science.gov (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  13. Influence of Water-jet Nozzle Geometry on Cutting Ability of Soft Material

    Directory of Open Access Journals (Sweden)

    Irwansyah Irwansyah

    2012-06-01

    Full Text Available Hygiene is main reason for food processor to use waterjet cutting system. Traditionally food cutting process is low-quality, unsafe products, procedures and direct contact between product and labor. This paper introduced a low cost waterjet system for cutting soft material as identic food material. The low cost waterjet system has been developed by using a commercial pressure pump for cleaning purposes and modified nozzle. In order to enhance waterjet pressure for cutting products, a modified waterjet nozzle was designed. Paramater design of waterjet system was setup on nozzle orifice diameter 0.5 mm, standoff distance 15 mm, length of nozzle cylindrical tube 2.5 mm. Polycarbonate, polysterene, and polyethelene materials are used as sample product with thickness 2 mm, to represent similar properties with agriculture products. The experimental results indicate good possibilities of waterjet system to cut material in appropriate profile surface. The waterjet also can be used to improve cutting finished surface of food products. Therefore, utilizing a low cost commercial pump and modified nozzle for waterjet system reduces equipment price, operational cost and environmental hazards. It indicates viable technology applied to substitute traditional cutting technology in post harvest agriculture products. Keywords: cutting ability, modified nozzle, polymer material, water-jet system

  14. Surface-Wettability Patterning for Distributing High-Momentum Water Jets on Porous Polymeric Substrates.

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Dodge, Richard; Yu, Lisha; Megaridis, Constantine M

    2018-02-07

    Liquid jet impingement on porous materials is particularly important in many applications of heat transfer, filtration, or in incontinence products. Generally, it is desired that the liquid not penetrate the substrate at or near the point of jet impact, but rather be distributed over a wider area before reaching the back side. A facile wettability-patterning technique is presented, whereby a water jet impinging orthogonally on a wettability-patterned nonwoven substrate is distributed on the top surface and through the porous matrix, and ultimately dispensed from prespecified points underneath the sample. A systematic approach is adopted to identify the optimum design that allows for a uniform distribution of the liquid on horizontally mounted substrates of ∼50 cm 2 area, with minimal or no spilling over the sample edges at jet flow rates exceeding 1 L/min. The effect of the location of jet impingement on liquid distribution is also studied, and the design is observed to perform well even under offset jet impact conditions.

  15. Do water fountain jets really indicate the onset of the morphological metamorphosis of circumstellar envelopes?

    Science.gov (United States)

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Hsia, Chih-Hao; Imai, Hiroshi

    2017-03-01

    Small-scale bipolar jets with short dynamical ages from 'water-fountain' (WF) sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such a process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resemble usual AGB stars, while others have aspherical envelopes, which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of morphological metamorphosis. We argue further that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.

  16. Water detection in jet fuel using a polymer optical fibre Bragg grating

    Science.gov (United States)

    Zhang, C.; Chen, X.; Webb, D. J.; Peng, G.-D.

    2009-10-01

    Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel1,2,3, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C)4, leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material5.

  17. Preliminary study on occurrence of composite material delamination processed by abrasive water jet cutting

    Directory of Open Access Journals (Sweden)

    Popan Ioan Alexandru

    2017-01-01

    Full Text Available The paper presents a preliminary experimental study on processing composite materials (CFRP using abrasive water jet cutting (AWJC process, analysing the possibilities of occurrence of material delamination. AWJC is a proper solution for cutting CFRP because of reduced interface temperature, high flexibility, low mechanical loading and reduced cutting forces. Cutting CFRP using AWJC involves several challenges like material delamination due to the high velocity impact of the jet. To understand the delamination, three experimental tests were made: in the first test the cutting and the drilling was made with high water pressure (350 MPa, in the second test the cutting was made with high water pressure and for drilling was used low water pressure (200 MPa and in last test a pre-drilled hole was used. Within those experiments was observed the CFRP delamination appears just during the drilling, not during the cutting. By decreasing the water jet pressure, the jet energy is decreased and in this way the delamination decrease.

  18. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  19. Kilowatt Isotope Power System: component test report for the ground demonstration system jet condenser orifice performance. 77-KIPS-103

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, E.L.

    1977-11-08

    The purpose of these tests was to determine which orifice elements achieved satisfactory hydraulic and thermal performance prior to their incorporation into the Jet Condenser Assembly. Requirements were as set forth within the Kilowatt Isotope Power System (KIPS) Component Test Procedure number 414 for the Jet Condenser Orifice Performance testing. The results of the performance testing conducted on the Jet Condenser Orifices are presented. Part Number 720841 Jet Condenser Orifice Nozzle successfully completed the orifice screening tests.

  20. Removal of resist film from wafer surface by steam-water mixture jet

    Science.gov (United States)

    Mashiko, Takashi; Sanada, Toshiyuki; Nishiyama, Itsuo; Horibe, Hideo

    2011-11-01

    We have shown that the steam-water mixture jet, a two-fluid jet with its carrier gas being steam, exhibits high cleaning performance when sprayed onto a target. This is a promising technique which requires only simple apparatus and little or no chemicals, but the cleaning mechanism remains unknown. We have conducted a series of experiments to elucidate the mechanism and learn how to meet given industrial requirements (e.g., set parameters for desired detergency). In our recent experiment, we adopted a resist-coated silicon wafer as the target and evaluated the jet performance of resist removal from the wafer. The removal performance proved to be a decreasing function of the resist hardness and of the resist-wafer adhesivity, and an increasing function of the jet duration. These results suggest that the resist removal by the steam-water mixture jet mainly consists of physical processes (e.g., peel-off process), in contrast to the traditional resist-removal techniques utilizing chemical reactions.

  1. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  2. Modelling of destructive ability of water-ice-jet while machine processing of machine elements

    Directory of Open Access Journals (Sweden)

    Burnashov Mikhail

    2017-01-01

    Full Text Available This paper represents the classification of the most common contaminants, appearing on the surfaces of machine elements after a long-term service.The existing well-known surface cleaning methods are described and analyzed in the framework of this paper. The article is intended to provide the reader with an understanding of the process of cleaning and removing contamination from machine elements surface by means of water-ice-jet with preprepared beforehand particles, as well as the process of water-ice-jet formation. The paper deals with the description of such advantages of this method as low costs, wastelessness, high quality of the surface, undergoing processing, minimization of harmful impact upon environment and eco-friendliness, which makes it differ radically from formerly known methods. The scheme of interection between the surface and ice particle is represented. A thermo-physical model of destruction of contaminants by means of a water-ice-jet cleaning technology was developed on its basis. The thermo-physical model allows us to make setting of processing mode and the parameters of water-ice-jet scientifically substantiated and well-grounded.

  3. Forecast Surface Quality of Abrasive Water Jet Cutting Based on Neural Network and Verified by Experiments

    National Research Council Canada - National Science Library

    Gui-Lin Yang

    2013-01-01

      In this study, firstly, the YL12 aluminum alloy is used as experimental materials, then in the following experiments it is cut in JJ-I-type water jet machines, and 1,000 group data are gotten by measurement...

  4. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  5. Synthetic Diagnostics Of The JET System Of The JET-2 Unmanned Drone

    Directory of Open Access Journals (Sweden)

    Sabak Ryszard

    2014-12-01

    Full Text Available In recent years, , newer and newer designs of unmanned air vehicles have been appeared and in a spread and spread area. That is why, their service and in particular their diagnostics should be carried out both before and in each flight. In this paper, a description of both unmanned air vehicle JET-2 and its units and control system are presented. The paper includes also description of signals which are transmitted in a real time from the dron to the flight control station. These signals enable to state whether the vehicle works in a correct way. An interactive diagnostics model is presented as two united equations of state which are based on an observation that the usable value of the UAV resulting from its working standards, depends on its technical condition and what is more, technical condition depends on its working condition (intensity of usage. It should be stated that technical conditions are an environment for working conditions and working conditions are an environments for technical conditions. Presented model gives a comprehensive information about technical and working capability of a vehicle. It enables to plan next flights taking into account their currant potential and capability.

  6. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  7. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  8. Sustainable Water Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-02-01

    Full Text Available Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is therefore to disseminate and share scientific findings on novel sustainable water systems addressing recent problems and opportunities. This special issue focuses on the following key topics: climate change adaptation and vulnerability assessment of water resources systems; holistic water management; carbon credits; potable water savings; sustainable water technologies; nutrient management; holistic storm water reuse; water and wastewater infrastructure planning; ecological status of watercourses defined by the Water Framework Directive. The combined knowledge output advances the understanding of sustainable water, wastewater and storm water systems in the developed and developing world. The research highlights the need for integrated decision-support frameworks addressing the impact of climate change on local and national water resources management strategies involving all relevant stakeholders at all levels.

  9. Mechanism of the high efficiency of the cutting frozen food products using water-jet with polymer additions

    Directory of Open Access Journals (Sweden)

    A. Pogrebnyak

    2017-06-01

    Full Text Available The article to determine peculiarities of macromolecule deformation behavior under conditions of a jet-shaping head that would allow to solve the issue related to the mechanism of increasing water-jet cutting power with polymer additions. In converging polyethyleneoxide solution flow macromolecules are forced by a hydrodynamic field to rather strong stretching that causes the dynamic structure formation in solutions. There have been studied experimentally velocity fields and their gradients as well as the degree of macromolecule unrolling under pattern conditions of a jet-shaping head in poluyethyleneoxide solutions flow. In converging polymer solution flow macromolecules are forced by a hydrodynamic field to rather strong (~ 60 % and more stretching that causes the field restructuring. The determined regularities of macromolecules behavior in the flow under conditions of a jet-shaping head and manifested in this case effects of elastic deformations have paramount importance in understanding the mechanism of «anomalously» high cutting power of water-polymer jet. The work for the first time makes it possible to explain the nature of increased water-jet cutting power with polymer additions when cutting food products. Understanding the nature of increased cutting power of water-polymer jet will make it possible to develop recommendations on choosing regimes for water-polymer jet processing of food products by cutting.

  10. Numerical Simulation of Water Jet Flow Using Diffusion Flux Mixture Model

    Directory of Open Access Journals (Sweden)

    Zhi Shang

    2014-01-01

    Full Text Available A multidimensional diffusion flux mixture model was developed to simulate water jet two-phase flows. Through the modification of the gravity using the gradients of the mixture velocity, the centrifugal force on the water droplets was able to be considered. The slip velocities between the continuous phase (gas and the dispersed phase (water droplets were able to be calculated through multidimensional diffusion flux velocities based on the modified multidimensional drift flux model. Through the numerical simulations, comparing with the experiments and the simulations of traditional algebraic slip mixture model on the water mist spray, the model was validated.

  11. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  12. Fluid-Solid Interactive Methodology for Prognosis of Passenger Jet Structural Damage in Water Crash Landing

    Science.gov (United States)

    Bayandor, Javid

    2010-11-01

    Today, crashworthiness studies constitute a major part of modern aerospace design and certification processes. Of important consideration is the assessment of structural damage tolerance in terms of the extent of progressive damage and failure caused by aircraft emergency ditching on soft terrain or on water. Although a certification requirement, full scale crash landings are rarely tested using fully functional prototypes due to their high associated costs. This constraint makes it difficult for all crashworthy features of the design to be identified and fine-tuned before the commencement of the manufacturing phase. The current study presents aspects of a numerical methodology that can drastically subside the dependency of the certification assessments to full scale field trials. Interactive, fully nonlinear, solid-structure and fluid- structure analyses have been proposed using coupled Lagrangian- Eulerian and independent meshless Lagrangian approaches that run on a combined finite element-computational fluid dynamics platform. Detailed analysis of a key landing scenario pertaining to a large passenger jet will be provided to determine the relevance and accuracy of the proposed method. The work further identifies state-of-the-art computational approaches for modeling fluid-solid interactive systems that can help improve aircraft structural responses to soft impact and water ditching.

  13. Evaluation of a new jet flap propulsive-lift system for turbofan-powered STOL transports

    Science.gov (United States)

    Chin, Y. T.; Aiken, T. N.; Oates, G. S., Jr.

    1974-01-01

    A large-scale STOL transport model with a new jet flap propulsive-lift system was subject to wind-tunnel testing. Aerodynamically, this IBF system combines the benefits of the jet flap and the mechanical flap with boundary layer control. Structurally, it creates its own spanwise air duct with the deflection of the mechanical flap. An additional short-chord control flap, located at the jet-flap exit, provides a powerful means for flight path and lateral controls. The results show that the overall effectiveness of this flap system compares well with other jet flap propulsive-lift systems. A preliminary study based on the wind-tunnel data was made on a medium-size IBF STOL jet transport configuration for a typical-military mission. This study showed that the IBF results in a configuration with a relatively low T/W ratio, making the system an attractive candidate for future designs.

  14. Water Spray Flow Characteristics Under Synthetic Jet Driven By a Piezoelectric Actuator

    Science.gov (United States)

    Marchitto, L.; Valentino, G.; Chiatto, M.; de Luca, L.

    2017-01-01

    Particle Image Velocimetry (PIV) and Phase Doppler Anemometry (PDA) have been applied to investigate the droplets size and velocity distribution of a water spray, under the control of a piezo-element driven synthetic jet (SJ). Tests were carried out under atmospheric conditions within a chamber test rig equipped with optical accesses at two injection pressures, namely 5 and 10 MPa, exploring the variation of the main spray parameters caused by the synthetic jet perturbations. The SJ orifice has been placed at 45° with respect to the water spray axis; the nozzle body has been moved on its own axis and three different nozzle quotes were tested. PIV measurements have been averaged on 300 trials whereas about 105 samples have been acquired for the PDA tests. For each operative condition, the influence region of the SJ device on the spray has been computed through a T-Test algorithm. The synthetic jet locally interacts with the spray, energizing the region downstream the impact. The effect of the actuator decreases at higher injection pressures and moving the impact region upwards. Droplets coalescence can be detected along the synthetic jet axis, while no significant variations are observed along a direction orthogonal to it.

  15. Numerical and Experimental Studies of Cavitation Behavior in Water-Jet Cavitation Peening Processing

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2013-01-01

    Full Text Available Water-jet cavitation peening (WCP is a new technology for the surface modification of metallic materials. The cavitation behavior in this process involves complex and changeable physics phenomena, such as high speed, high pressure, multiple phases, phase transition, turbulence, and unstable features. Thus, the cavitation behavior and impact-pressure distribution in WCP have always been key problems in this field. Numerous factors affect the occurrence of cavitation. These factors include flow-boundary conditions, absolute pressure, flow velocity, flow viscosity, surface tension, and so on. Among these factors, pressure and vapor fraction are the most significant. Numerical simulations are performed to determine the flow-field characteristics of both inside and outside the cavitating nozzle of a submerged water jet. The factors that influence the cavitation intensity of pressure are simulated. Fujifilm pressure-sensitive paper is used to measure the distribution of impact pressure along the jet direction during the WCP process. The results show that submerged cavitation jets can induce cavitation both inside and outside a conical nozzle and a convergent-divergent nozzle when the inlet pressure is 32 MPa. Moreover, the shock wave pressure induced by the collapse of the bubble group reaches up to 300 MPa.

  16. Structural analysis of converging jets in a triple torch plasma system

    CERN Document Server

    Ramachandran, K

    2003-01-01

    A three-dimensional numerical model is developed to clarify the structure of the converging jets in a triple torch plasma system. Three individual argon plasma jets, issued into atmospheric argon, are mixed with given angle of convergence and form a converged plasma jet. Predicted results show that thermo-fluid fields of the converging plasma jets are symmetric with three symmetric sections at an interval 120 deg. Symmetry and uniformity of thermo-fluid fields increase with decreasing angle of convergence. Temperature field is more sensitive to angle of convergence than the velocity field. Symmetry of thermo-fluid fields is improved in downstream direction. A dip in the velocity fields corresponds to poor mixing and diffusion of velocity fields of three individual plasma jets. Central gas injection decreases converging jets temperature significantly.

  17. Track Reconstruction and b-Jet Identification for the ATLAS Trigger System

    CERN Document Server

    Coccaro, Andrea

    2012-01-01

    A sophisticated trigger system, capable of real-time track reconstruction, is used in the ATLAS experiment to select interesting events in the proton-proton collisions at the Large Hadron Collider at CERN. A set of $b$-jet triggers was activated in ATLAS for the entire 2011 data-taking campaign and successfully selected events enriched in jets arising from heavy-flavour quarks. Such triggers were demonstrated to be crucial for the selection of events with no lepton signature and a large jet multiplicity. An overview of the track reconstruction and online $b$-jet selection with performance estimates from data is presented in these proceedings.

  18. Parametric Study on the Physical Action of Steam-Water Mixture Jet: Removal of Photoresist Film from Silicon Wafer Surfaces

    Science.gov (United States)

    Mashiko, Takashi; Sanada, Toshiyuki; Nishiyama, Itsuo; Horibe, Hideo

    2012-06-01

    We performed experiments to elucidate the physical action of a steam-water mixture jet, which we have proposed as a promising, environmentally friendly tool for cleaning surfaces. Photoresist-coated silicon wafers were adopted as the target and the jet performance of resist removal was evaluated, with several parameters being varied. We found that the resist-removal performance improves as the thickness or the mechanical strength of the resist film decreases, resist-wafer adhesivity decreases, or jet duration increases. The results imply that the essential part of the resist removal by the jet is a physical process including peel-off, in contrast to the established techniques such as the batch cleaning method utilizing chemical reactions. The results also indicate that the physical impact of the jet can be controlled, which will be a significant advantage in applying the jet as a cleaning technique.

  19. Boiling water jet outflow from a thin nozzle: spatial modeling

    Science.gov (United States)

    Bolotnova, R. Kh.; Korobchinskaya, V. A.

    2017-09-01

    This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.

  20. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  1. Laser Induced Molecular Micro-Jet Implantation of Perylene Molecules through Water or Diiodomethane Layers

    Science.gov (United States)

    Goto, Masahiro; Pihosh, Yuriy; Kasahara, Akira; Tosa, Masahiro

    2008-06-01

    Laser-induced molecular micro-jets of perylene molecules have been successfully generated in water and diiodomethane layers. The perylene molecules were ejected from a thin film of perylene molecules used as a source by photoexcitation using 4-ns laser pulses onto a borosilicate glass substrate used as a target. The gap between the source and the target was filled with water or diiodomethane. After the ejection, the perylene molecules passed through the liquid layer and were implanted into the target. The focusing of the molecular micro-jet and consequently the shape of the implanted molecular dots depends on the molecular species and type of liquid. This novel technique can be used for the fabrication of a pattern of functional molecular dots on a designated region of hard materials and can be used to manufacture molecular devices, molecular sensors, and optoelectronic devices.

  2. New concept of tunnel boring machine: high performance using water jet and diamond wire as rock cutting technology

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco dos Santos

    Full Text Available Abstract Tunnel boring machines are important tools in underground infrastructure projects. Although being well established equipment, these machinesare based on designsof more than 60 years ago and are characterized by big dimensions, enormous weight and high power consumption. Commercial aspects should be noted too. The model adopted by the TBM industry requires constant replacement of cutter discs and specific labor skills, usually offered by the same manufacturingcompany. In some cases the cost of replacement parts and technical assistance can be higher than the acquisition cost of an entire machine. These aspects are no longer compatible with the concept of sustainability that is an important aspect of currentsociety. While the technical characteristics require a large quantity of steel and several inputs, the adoptedmodel is not competitive. One alternative is looking for new technologies that break the old paradigms and allow the development of high performance concepts with lower social and environmental impact. This studydealswith this opportunity by proposing a high performance tunnel boring machine that makes use of high power water jet and diamond wire to compose a double shield cutter head. It works in two stages. In the fristone, an annular cut is executed by hydrodemolition,and in the second one, the diamond wire station slices the rock core. Only with the action of diamond wire is the rock core separated from the rock mass and the removal process is finished. A smart water jet nozzle movement system is described and non circular tunnels can be executed. The new technologies involved requirea different type of backup system, lighter and smaller. The non-existence of mechanical contact between the equipment and the rock mass at theexcavation front allows low power consumption. The advanced rate and primary excavation cost analyses can also be encountered herein. It shows that it is possible to reach an advanced rate of 174 m/day in

  3. Multi-objective Optimization of Process Performances when Cutting Carbon Steel with Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    M. Radovanović

    2016-12-01

    Full Text Available Multi-objective optimization of process performances (perpendicularity deviation, surface roughness and productivity when cutting carbon steel EN S235 with abrasive water jet is presented in this paper. Cutting factors (abrasive flow rate, traverse rate and standoff distance were determined when perpendicularity deviation and surface roughness are minimal and productivity is maximal. Multi-objective genetic algorithm (MOGA was used for the determination set of nondominated optimal points, known as Pareto front.

  4. Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Dixit, A. R.; Bora, B.; Zeleňák, Michal; Foldyna, Josef; Hloch, Sergej; Hlaváček, Petr; Ščučka, Jiří; Klich, Jiří; Sitek, Libor; Vilaca, P.

    2017-01-01

    Roč. 88, č. 5 (2017), s. 1687-1701 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : friction stir welding (FSW) * abrasive water jet (AWJ) * optical profilometer * topography * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-016-8776-0

  5. On-line monitoring of technological process of material abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Kinik, D.; Gánovská, B.; Hloch, Sergej; Monka, P.; Monková, K.; Hutyrová, Z.

    2015-01-01

    Roč. 22, č. 2 (2015), s. 351-357 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * vibrations * monitoring Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=203519

  6. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H2O and CO2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  7. On the influence of water subcooling and melt jet parameters on debris formation

    Energy Technology Data Exchange (ETDEWEB)

    Manickam, Louis, E-mail: louis@safety.sci.kth.se; Kudinov, Pavel; Ma, Weimin; Bechta, Sevostian; Grishchenko, Dmitry

    2016-12-01

    Highlights: • Melt and water configuration effects on debris formation is studied experimentally. • Melt superheat and water subcooling are most influential compared to jet size. • Melt-water configuration and material properties influence particle fracture rate. • Results are compared with large scale experiments to study effect of spatial scales. - Abstract: Breakup of melt jet and formation of a porous debris bed at the base-mat of a flooded reactor cavity is expected during the late stages of a severe accident in light water reactors. Debris bed coolability is determined by the bed properties including particle size, morphology, bed height and shape as well as decay heat. Therefore understanding of the debris formation phenomena is important for assessment of debris bed coolability. A series of experiments was conducted in MISTEE-Jet facility by discharging binary-oxide mixtures of WO{sub 3}–Bi{sub 2}O{sub 3} and WO{sub 3}–ZrO{sub 2} into water in order to investigate properties of resulting debris. The effect of water subcooling, nozzle diameter and melt superheat was addressed in the tests. Experimental results reveal significant influence of water subcooling and melt superheat on debris size and morphology. Significant differences in size and morphology of the debris at different melt release conditions is attributed to the competition between hydrodynamic fragmentation of liquid melt and thermal fracture of the solidifying melt droplets. The particle fracture rate increases with increased subcooling. Further the results are compared with the data from larger scale experiments to discern the effects of spatial scales. The present work provides data that can be useful for validation of the codes used for the prediction of debris formation phenomena.

  8. Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties

    DEFF Research Database (Denmark)

    Zhang, Shizhong; Dam-Johansen, Kim; Bernad, Pablo L.

    2015-01-01

    Rapid and reliable rain erosion screening of blade coatings for wind turbines is a strong need in the coatings industry. One possibility in this direction is the use of discrete water jets, where so-called jet slugs are impacted on a coating surface. Previous investigations have mapped......, confirm the conclusion from the previous investigation that a direct correlation of data from discrete water jet experiments with those obtained in the whirling arm rig does not seem possible (at least not for the blade coatings considered). The underlying mechanisms of rain erosion are substantially...... the influence of water jet slug velocity and impact frequency. In the present work, the effects on coating erosion of water cushioning, substrate curvature, and water nozzle-coating distance were explored. The investigations showed that in some cases water cushioning (the presence of a liquid film...

  9. High resolution X-ray emission spectroscopy of water and aqueous ions using the micro-jet technique

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kathrin M.; Koennecke, Rene; Ghadimi, Samira; Golnak, Ronny [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Mikhail A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Hodeck, Kai F. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Alexander [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Freie Universitaet Berlin, FB Physik, Arnimallee 14, D-14195 Berlin (Germany)

    2010-11-25

    Graphical abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the way for the study of biochemical systems in physiological media. - Abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the

  10. The clinical efficacy of the water jet dissection at the thyroid surgery (immediate results; quality of life

    Directory of Open Access Journals (Sweden)

    Voskanyan S.E.

    2015-12-01

    Full Text Available Aim: reduction of the morbidity, disability and improved quality of life after surgery on the thyroid gland. Material and methods. Surgical treatment of the thyroid diseases have been performed to 56 patients. Mobilization of the thyroid gland and the separation of the pretracheal, preguttural and paratracheal tissues were performed by standard techniques using electrocoagulation and blunt separation of tissues in the control group. Mobilization of the thyroid gland and the separation of pretracheal, preguttural and paratracheal tissues were performed using a water-jet dissector ERBEjet 2 and the pressure of the water jet 25 bars in the main group of patients. Violations of voice (dysphonia, swallowing difficulties (dysphagia, the overall incidence of postoperative complications, length of postoperative hospital stay were markers of the effectiveness of the prevention of the damage of the recurrent laryngeal nerve afterthyroid surgery. Assessment of the quality of life of patients after surgery on the thyroid gland was performed before surgery, at 3 and 6 months after surgery. Results. Damage of the recurrent laryngeal nerve was not identified in any of the patient as a result of water jet dissection with pressure of the water jet 25 bars during the operation. Nerve function in the postoperative period were preserved in 100% (p <0.05. Application of the proposed method of preventing damage to the recurrent laryngeal nerve afterthyroid surgery resulted in a leveling of postoperative complications, as well as a statistically significant reduction of postoperative hospital stay. Using of the water jet dissection for mobilize of the thyroid and parathyroid tissues with a pressure of the water jet 25 bars significantly improves the quality of life of patients in the postoperative period. Conclusion. Application of the water jet dissection with pressure of the water jet 25 bars in thyroid surgery is a safe and effective method to prevent damage of the

  11. Purge water management system

    Science.gov (United States)

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  12. Particulate-removal system upgraded with pulse-jet baghouse

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, T.

    1983-08-01

    A pulse-jet baghouse installed on a flue gas side-stream enhanced the performance of a small precipitator on Philadelphia Electric Co.'s Cromby unit 1 and enabled it to meet particulate standards. Pulse-jet baghouses have a gentle cleaning action that prolongs fabric life as well as improving particulate removal efficiency to the required 90%. Details of the baghouse design and operation are given. 2 figures. (DCK)

  13. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    Science.gov (United States)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  14. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  15. CFD model of multiphase flow in the abrasive water jet tool

    OpenAIRE

    Říha, Zdeněk

    2015-01-01

    The possibility of using CFD fluid flow modeling in area of tools with abrasive water jet is described in the paper. The correct function of such tool is based on proper setting of multiphase flow of water, air and solid particles in the inner space of the tool. The multiphase fluid flow numerical simulation can provide information which show relation between the geometry and the flow field. Then, this stable CFD model of multiphase flow creates key to design of the tool able to work wi...

  16. Tools to detect structures in dynamical systems using Jet Transport

    Science.gov (United States)

    Pérez-Palau, Daniel; Masdemont, Josep J.; Gómez, Gerard

    2015-11-01

    This paper is devoted to the development of some dynamical indicators that allow the determination of regions and structures that separate different dynamic regimes in autonomous and non-autonomous dynamical systems. The underlying idea is closely related to the Lagrangian coherent structures concept introduced by Haller. In the present paper, instead of using the Cauchy-Green tensor, that determines the domains where the flow associated to a differential equation is expanding in the normal direction, the Jet Transport methodology is used. This is a semi-numerical tool, that has as basic ingredients a polynomial algebra package and a numerical integration method, allowing, at each integration step, the propagation under a flow of a neighbourhood U instead of a single initial condition. The output of the procedure is a polynomial in several variables that represents the image of U up to a selected order, containing high order terms of the variational equations. Using these high order representation, the places where the normal direction expands can be easily detected, in a similar manner as the procedures for calculating the Lagrangian coherent structures do. In order to illustrate the methodology, first the results obtained in the determination of the separatrices of the simple and the periodically perturbed pendulum are given. Later, the applications to the circular restricted three body problem are considered, where the aim is the detection of invariant manifolds of libration point orbits, as well as in the non-autonomous vector field defined by the elliptic restricted three body problem.

  17. A numerical and experimental study of oblique impact of ultra-high pressure abrasive water jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2016-03-01

    Full Text Available An investigation of the abrasive water jet with an emphasis on the oblique impact of abrasive particles on the target plate is performed. Ultra-high jet pressure necessitates a close examination of the phenomena featured by small spatial and temporal scales. The effect of oblique impact is assessed from both numerical and practical aspects. Numerical simulation, implemented using the commercial code LS-DYNA, allows a detailed inspection of transient stress wave propagation inside the target plate. And impact experiments facilitate a qualitative description of resultant footprints of oblique water jet. Different incident angles of abrasive particles are adopted and a comparison is thereby unfolded. The results indicate that rebound, embedding, and penetration of single abrasive particle are three representative final operation states. Adjacent to the abrasive particle, the response of the target plate to oblique impact is reflected by von Mises stress distribution and plate deformation as well. Oblique impact arouses non-symmetrical stress wave distributions and distinct unbalanced node displacements at the two sides of the abrasive particle. As for the target plate, global surface morphology is in accordance with predicted effects. The most favorable surface roughness is not associated with vertical impact, and it hinges upon the selection of standoff distance. Furthermore, variation of surface roughness with incident angle is not monotonous.

  18. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  19. Study of kerf geometry of multilayers materials in abrasive water jet cutting process

    Directory of Open Access Journals (Sweden)

    Barabas Bogdan

    2017-01-01

    Full Text Available The use of abrasive jet cutting in case of multilayers materials, shows particularities and difficulties, due to different hardness and thickness of layers. This paper studies changes, occurred in the kerf geometry at passing of abrasive particles, through layers with different hardness and aims to establish a link between hardness and thickness of the layers and kerf geometry because processing accuracy is determined by the geometry of the cut. Thus, is proposed a novel algorithm based on minimization of angle of kerf, for optimization a cutting process in abrasive water jet technology, which can be utilized for materials with different hardness in layers. Direct effect of optimization of cutting consist in increasing efficiency, dimensional precision, traverse velocity, and decreasing the amount of used abrasive garnet.

  20. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    Science.gov (United States)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  1. A universal scaling for the energetics of relativistic jets from black hole systems.

    Science.gov (United States)

    Nemmen, R S; Georganopoulos, M; Guiriec, S; Meyer, E T; Gehrels, N; Sambruna, R M

    2012-12-14

    Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  2. Detection Damage in Bearing System of Jet Engine Using the Vibroacoustic Method

    Directory of Open Access Journals (Sweden)

    Żokowski Mariusz

    2017-09-01

    Full Text Available The article discusses typical, operational systems for monitoring vibrations of jet engines, which constitute the propulsion of combat aircraft of the Armed Forces of the Republic of Poland. After that, the paper presents the stage of installing vibration measuring sensors in the direct area of one of the jet engine bearings, which is a support system for its rotor. The article discusses results of carried out analyses of data gathered during tests of the engine in the conditions a jet engine test bed. Results of detecting damages to the bear-ing, using sensors built in the direct area will be presented.

  3. A focused liquid jet formed by a water hammer in a test tube

    CERN Document Server

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  4. Study on jet aeration oxidation of magnesium sulfite from magnesium-based exhaust gas cleaning system.

    Science.gov (United States)

    Guo, Lin; Tang, Xiaojia; Wang, Hui; Li, Tie; Liu, Weifeng; Liu, Quan; Zhu, Yimin

    2017-05-11

    Oxidation of magnesium sulfite in washing water is essential for the treatment of by-product of shipboard magnesium-based exhaust gas cleaning systems. The purpose of this study is to obtain a highly efficient magnesium sulfite oxidation technology by using the jet aeration process. Response surface methodology and central composite design were used to investigate the effects of major variables on oxidation of magnesium sulfite and optimize the oxidation conditions. The predictions of the two response functions agree well with the experimental data. The optimum oxidation conditions for ship are temperature 318 K, liquid flow rate 4.04 m3/h, and pH 7.70. Under optimal conditions, 12 moles of magnesium sulfite were oxidized by 90% over 15 minutes at an energy consumption of 0.220 kw h.

  5. Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling.

    Science.gov (United States)

    Liu, Jiyu; Song, Jinlong; Wang, Guansong; Chen, Faze; Liu, Shuo; Yang, Xiaolong; Sun, Jing; Zheng, Huanxi; Huang, Liu; Jin, Zhuji; Liu, Xin

    2018-02-19

    Superhydrophobic surfaces with hydrophilic patterns have great application potential in various fields, such as microfluidic systems and water harvesting. However, many reported preparation methods involve complicated devices and/or masks, making fabrication of these patterned surfaces time-consuming and inefficient. Here, we propose a highly efficient, simple, and maskless microplasma jet (MPJ) treatment method to prepare hydrophilic patterns such as dots, lines, and curves on superhydrophobic aluminum substrates. Contact angles, sliding angles, adhesive forces, and droplet impact behavior of the created patterns are investigated and analyzed. The prepared "dot" patterns exhibit great water adhesion, whereas the "line" patterns show anisotropic adhesion. Additionally, the MPJ treatment does not obviously change the surface structures, which makes it possible to achieve repeatable patterning on one substrate. The adhesion behavior of these patterns could be adjusted using MPJs with different diameters. MPJs with larger diameters are efficient for the creation of patterns with high water adhesion, which can be potentially used for open-channel lab-on-chip systems (e.g., continuous water transportation), whereas MPJs with smaller diameters are preferable in preparing patterns with low water adhesion for diverse applications in biomedical fields (e.g., lossless liquid droplet mixing and cell screening).

  6. Investigation on standoff distance influence on kerf characteristics in abrasive water jet cutting of composite materials

    Directory of Open Access Journals (Sweden)

    POPAN Ioan Alexandru

    2017-01-01

    Full Text Available The paper presents an experimental study on processing composite materials using abrasive water jet cutting (AWJC process, analysing one of the main process parameter, standoff distance (SOD. Carbon Fibre Reinforced Plastics (CFRP are used in a wide range of industrial applications, like aerospace and automotive. Cutting CFRP using AWJC involves several challenges like high dimensional accuracy and good surface quality. To produce precise parts by using this process must be understand the influence of the process parameters on quality characteristics. On this study was investigated the standoff distance influence on kerf characteristics. The characteristics of the cut surface (kerf geometry, surface roughness and topography were analyzed.

  7. WATER-JET CUTTING MACHINE NOW AVAILABLE FROM THE CERN RAW MATERIALS STORES

    CERN Multimedia

    2007-01-01

    The CERN Raw Materials Stores has recently acquired a new water-jet cutting machine. The machine is capable of cutting all types and shapes of materials up to 70 mm in thickness, with an accuracy of +/- 0.1mm/m. For the time being, users requiring materials to be cut should supply drawings in DXF, DWG or IGES (AutoCad) file format. The machine will be operational as of 1st October 2007. The Stores Team Paulo Dos Santos FI-LS-MM 72308

  8. Atomization of water jets and sheets in axial and swirling airflows

    Science.gov (United States)

    Ingebo, R. D.

    1979-01-01

    Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70 deg blake angle, air swirling. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swirling markedly reduced the spray mean drop size. Test conditions included a water flow rate of 68.0 liter per hour and airflow rates (per unit area) of 3.7 to 25.7 g per square cm per sec, at 293 K and inlet-air static pressures of 1.01 x 10 to the 5th to 1.98 x 10 to the 5th N/sq m.

  9. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  10. Methodology for Flight Relevant Arc-Jet Testing of Flexible Thermal Protection Systems

    Science.gov (United States)

    Mazaheri, Alireza; Bruce, Walter E., III; Mesick, Nathaniel J.; Sutton, Kenneth

    2013-01-01

    A methodology to correlate flight aeroheating environments to the arc-jet environment is presented. For a desired hot-wall flight heating rate, the methodology provides the arcjet bulk enthalpy for the corresponding cold-wall heating rate. A series of analyses were conducted to examine the effects of the test sample model holder geometry to the overall performance of the test sample. The analyses were compared with arc-jet test samples and challenges and issues are presented. The transient flight environment was calculated for the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Earth Atmospheric Reentry Test (HEART) vehicle, which is a planned demonstration vehicle using a large inflatable, flexible thermal protection system to reenter the Earth's atmosphere from the International Space Station. A series of correlations were developed to define the relevant arc-jet test environment to properly approximate the HEART flight environment. The computed arcjet environments were compared with the measured arc-jet values to define the uncertainty of the correlated environment. The results show that for a given flight surface heat flux and a fully-catalytic TPS, the flight relevant arc-jet heat flux increases with the arc-jet bulk enthalpy while for a non-catalytic TPS the arc-jet heat flux decreases with the bulk enthalpy.

  11. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  12. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  13. Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.

    Science.gov (United States)

    Umemura, Akira; Kawanabe, Sho; Suzuki, Sousuke; Osaka, Jun

    2011-09-01

    Laboratory experiments are conducted in which water is issued vertically downward from a finite-length nozzle at a constant speed using a piston. The results of these experiments indicate that the breakup length of the liquid jet is two-valued at Weber numbers greater than unity but less than a certain value, which depends on the nozzle length-to-radius ratio and the Bond number. In addition to a long breakup length, which is consistent with the conventional observation, another shorter breakup length is realized at the same jet issue speed. Each experimental run for a specific jet issue speed begins from the start of liquid issue so that each run is independent of the other runs. Transition between the two breakup lengths seldom occurs in each run. Which of the two breakup lengths occurs is determined at the start of liquid issue, when the capillary wave produced by the liquid jet tip contraction easily reaches the nozzle exit. Unlike the conventional belief, which is based on the Plateau-Rayleigh instability theory, this experimental evidence demonstrates that liquid jet disintegration occurs in a deterministic manner. The previously proposed self-destabilizing mechanism of a liquid jet in microgravity, in which the origin of the unstable wave responsible for the breakups is attributed to the formation of an upstream propagating capillary wave at every breakup, is extended to explore the physics underlying the observed liquid jet disintegration behaviors.

  14. Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.

    Science.gov (United States)

    Ahmad, Nadeem; Suzuki, Takayuki

    2016-01-01

    This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.

  15. Objectives, physics requirements and conceptual design of an ECRH system for JET

    Science.gov (United States)

    Giruzzi, G.; Lennholm, M.; Parkin, A.; Aiello, G.; Bellinger, M.; Bird, J.; Bouquey, F.; Braune, H.; Bruschi, A.; Butcher, P.; Clay, R.; de la Luna, E.; Denisov, G.; Edlington, T.; Fanthome, J.; Farina, D.; Farthing, J.; Figini, L.; Garavaglia, S.; Garcia, J.; Gardener, M.; Gerbaud, T.; Granucci, G.; Hay, J.; Henderson, M.; Hotchin, S.; Ilyin, V. N.; Jennison, M.; Kasparek, W.; Khilar, P.; Kirneva, N.; Kislov, D.; Knipe, S.; Kuyanov, A.; Litaudon, X.; Litvak, A. G.; Moro, A.; Nowak, S.; Parail, V.; Plaum, B.; Saibene, G.; Sozzi, C.; Späh, P.; Strauss, D.; Trukhina, E.; Vaccaro, A.; Vagdama, A.; Vdovin, V.; EFDA Contributors, JET

    2011-06-01

    A study has been conducted to evaluate the feasibility of installing an electron cyclotron resonance heating (ECRH) and current drive system on the JET tokamak. The main functions of this system would be electron heating, sawtooth control, neoclassical tearing mode control to access high beta regimes and current profile control to access and maintain advanced plasma scenarios. This paper presents an overview of the studies performed in this framework by an EU-Russia project team. The motivations for this major upgrade of the JET heating systems and the required functions are discussed. The main results of the study are summarized. The usefulness of a 10 MW level EC system for JET is definitely confirmed by the physics studies. Neither feasibility issues nor strong limitations for any of the functions envisaged have been found. This has led to a preliminary conceptual design of the system.

  16. STS-39 OV-103 reaction control system (RCS) jets fire during onorbit maneuver

    Science.gov (United States)

    1991-01-01

    During STS-39 rendezvous maneuvers, two of Discovery's, Orbiter Vehicle (OV) 103's, right reaction control system (RCS) jets fire (one up and one to the right). The RCS jet firings create a glow around OV-103's orbital maneuvering system (OMS) pods and vertical tail against the blackness of space. Some reflection from the crew compartment windows is visible. In the foreground are the Space Test Payload 1 (STP-1) multipurpose experiment support structure (MPESS) (front) and the Air Force Program 675 (AFP-675) experiment support system (ESS) (back). The remote manipulator system (RMS) arm is stowed along the port side sill longeron.

  17. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  18. Robust diagnostic approach for uncertain systems: an example for the jet engine sensor systems

    Science.gov (United States)

    Hsu, Pau-Lo; Shen, Li-Cheng

    1995-05-01

    This paper presents a novel eigenstructure assignment approach for sythesizing robust fault detection and isolation (FDI) systems with known inputs. After formulating the FDI problem in eigenstructure assigment, we proceed to develop a parametric characterization of all allowable eigenspaces for disturbance decoupling to achieve robust fault detection. In addition to the structured uncertainties, the robustness of the diagnostic observer to unstructured modeling errors is discussed. A numerical algorithm is further proposed to suppress the effects due to the unstructured uncertainties. The overall robustness of the diagnostic strategy is verfied through simulation studies on jet engine systems.

  19. CFD Simulation of Flow in an Abrasive Water Suspension Jet: The Effect of Inlet Operating Pressure and Volume Fraction on Skin Friction and Exit Kinetic Energy

    Directory of Open Access Journals (Sweden)

    D. Deepak

    2012-01-01

    Full Text Available Abrasive particles in the suspension mixture in an abrasive water suspension jet (AWSJ machining causes acute skin friction effect thereby effectively changing the jet diameter due to wear, which in turn influences jet exit kinetic energy. This results in lowering the life of the jet for effective machining. In consideration of this aspect, the present work examines the effect of inlet pressure on skin friction coefficient and jet exit kinetic energy. It is inferred from the analysis that an increase in inlet pressure causes a significant increase in skin friction coefficient and also results in proportional increase in the exit kinetic energy of the jet. Further, it is revealed from the analysis that an increase volume fraction of abrasive (abrasive concentration in water results in significant decrease in the skin friction coefficient and jet exit kinetic energy.

  20. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  1. Deployment of a fluidic pulse jet mixing system for horizontal waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kent, T.E.; Hylton, T.D. [Lockheed Martin Energy Research Corp., Oak Ridge, TN (United States). Chemical Technology Div.; Taylor, S.A. [AEA Technology, Cheshire (United Kingdom); Moore, J.W. [Bechtel Jacobs Co. LLC, Oak Ridge, TN (United States)

    1998-08-01

    A fluidic pulse jet mixing system, designed and fabricated by AEA Technology, was successfully demonstrated for mobilization of remote-handled transuranic (RH-TRU) sludge for retrieval from three 50,000-gal horizontal waste storage tanks (W-21, W-22, and W-23) at Oak Ridge National Laboratory (ORNL). The pulse jet system is unique because it does not contain any moving parts except for some solenoid valves which can be easily replaced if necessary. The pulse jet system consisted of seven modular equipment skids and was installed and commissioned in about 7 weeks. The system used specially designed fluidic jet pumps and charge vessels, along with existing submerged nozzles for mixing the settled sludges with existing supernate in the tank. The operation also used existing piping and progressive cavity pumps for retrieval and transfer of the waste mixtures. The pulse jet system operated well and experienced no major equipment malfunctions. The modular design, use of quick-connect couplings, and low-maintenance aspects of the system minimized radiation exposure during installation and operation of the system. The extent of sludge removal from the tanks was limited by the constraints of using the existing tank nozzles and the physical characteristics of the sludge. Removing greater than 98% of this sludge would require aggressive use of the manual sluicer (and associated water additions), a shielded sluicer system that utilizes supernate from existing inventory, or a more costly and elaborate robotic retrieval system. The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other horizontal waste tanks at ORNL and US Department of Energy sites.

  2. Jet pinch-off and drop formation in immiscible liquid-liquid systems

    Energy Technology Data Exchange (ETDEWEB)

    Webster, D.R. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Longmire, E.K. [Dept. of Aerospace Engineering and Mechanics, Univ. of Minnesota, Minneapolis, MN (United States)

    2001-01-01

    The behavior of glycerin-water jets flowing into immiscible ambients of Dow Corning 200 fluid was investigated using laser induced fluorescence (LIF). Undistorted images were obtained by matching the index of refraction of the fluids. A sinusoidal perturbation was superposed on the flow to phase lock the drop formation. The forcing frequency dramatically affected the size, spacing, and number of drops that formed within a forcing cycle and the angle between drops and the jet interface just before pinch-off. Two fluid combinations were studied with similar density ratios, but viscosity ratios differing by a factor of 20. The viscosity ratio affected the jet stability as well as pinch-off angles and drop size. (orig.)

  3. An Investigation of Abrasive Water Jet Machining on Graphite/Glass/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Deepak Doreswamy

    2015-01-01

    Full Text Available In the present research work, the effect of abrasive water jet (AWJ machining parameters such as jet operating pressure, feed rate, standoff distance (SOD, and concentration of abrasive on kerf width produced on graphite filled glass fiber reinforced epoxy composite is investigated. Experiments were conducted based on Taguchi’s L27 orthogonal arrays and the process parameters were optimized to obtain small kerf. The main as well as interaction effects of the process parameters were analyzed using the analysis of variance (ANOVA and regression models were developed to predict kerf width. The results show that the operating pressure, the SOD, and the feed rate are found to be significantly affecting the top kerf width and their contribution to kerf width is 24.72%, 12.38%, and 52.16%, respectively. Further, morphological study is made using scanning electron microscope (SEM on the samples that were machined at optimized process parameters. It was observed that AWJ machined surfaces were free from delamination at optimized process parameters.

  4. First experimental results with the Current Limit Avoidance System at the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Tommasi, G. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Galeani, S. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Jachmich, S. [Association EURATOM-Belgian State, Koninklijke Militaire School - Ecole Royale Militaire, B-1000 Brussels (Belgium); Joffrin, E. [IRFM-CEA, Centre de Cadarache, 13108 Saint-paul-lez-Durance (France); Lennholm, M. [EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); European Commission, B-1049 Brussels (Belgium); Lomas, P.J. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A.C. [Associazione EURATOM-IST, Instituto de Plasmas e Fusao Nuclear, IST, 1049-001 Lisboa (Portugal); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Associazione EURATOM-ENEA-CREATE, Università di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Rimini, F.G. [Euratom-CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Sips, A.C.C. [European Commission, B-1049 Brussels (Belgium); Varano, G.; Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Università di Roma, Tor Vergata, Rome (Italy); Zaccarian, L. [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse (France); Universitè de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-06-15

    The Current Limit Avoidance System (CLA) has been recently deployed at the JET tokamak to avoid current saturations in the poloidal field (PF) coils when the eXtreme Shape Controller is used to control the plasma shape. In order to cope with the current saturation limits, the CLA exploits the redundancy of the PF coils system to automatically obtain almost the same plasma shape using a different combination of currents in the PF coils. In the presence of disturbances it tries to avoid the current saturations by relaxing the constraints on the plasma shape control. The CLA system has been successfully implemented on the JET tokamak and fully commissioned in 2011. This paper presents the first experimental results achieved in 2011–2012 during the restart and the ITER-like wall campaigns at JET.

  5. Research proposal on : amplitude modulated reflectometry system for JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la

    1992-12-31

    Amplitude Modulated reflectrometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps` in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectrometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectrometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  6. Research proposal on : amplitude modulated reflectometry system for JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectrometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectrometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectrometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  7. A Thermo-Physical Model Of Destruction Of Contaminants By Means Of A Water-Ice-Jet Cleaning Technology

    Science.gov (United States)

    Stepanov, Yu; Burnashov, M.; Stepanova, E.

    2017-01-01

    The reader will achieve a benchmark understanding of the essence of cleaning for the removal of contaminants from machine elements by means of cryo jet water-ice jet with particles prepared beforehand. This paper represents the classification of the most common contaminants appearing on the surfaces of machine elements after a long-term service. The conceptual contribution of the paper is to represent a thermo-physical model of contaminant removal by means of a water ice jet. In conclusion, it is evident that this study has shown the dependencies between the friction force of an ice particle with an obstacle (contamination), a dimensional change of an ice particle in the cleaning process and the quantity of heat transmitted to an ice particle.

  8. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  9. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    Science.gov (United States)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  10. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  11. Developing a Safety Management System for Fatigue Related Risks in easyJet

    NARCIS (Netherlands)

    Stewart, S.; Koornneef, F.; Akselsson, R.; Turner, C.

    2009-01-01

    Chapter 5: Developing a Safety Management System for Fatigue Related Risks in easyJet The European Commission HILAS project (Human Integration into the Lifecycle of Aviation Systems - a project supported by the European Commission’s 6th Framework between 2005-2009) was focused on using human factors

  12. Kerf variation analysing for abrasive water jet cutting of a steel square part

    Directory of Open Access Journals (Sweden)

    Basarman Adrian-Paul

    2017-01-01

    Full Text Available The abrasive water jet cutting method is a modern method for cutting materials. It is used for cutting different type of materials, from glass, rocks, and even metals like titanium. This method has a reached a high level of usability in the nowadays modern production. In order to obtain the class of precision needed for different requirements in production, the surface quality, the kerf aspect, the shape and respectively the form of the obtained part have to be researched and analyzed. This paper presents the results obtained after cutting one square shaped part, made of S355 material. This paper presents the study regarding both the inside and the outside of the cut, the kerf width, the aspect of the taper and the profile deviation.

  13. Process parameters effect on material removal mechanism and cut quality of abrasive water jet machining

    Directory of Open Access Journals (Sweden)

    Janković P.

    2013-01-01

    Full Text Available The process of the abrasive water jet cutting of materials, supported by the theories of fluid mechanics, abrasive wear and damage mechanics, is a high-tech technologies that provides unique capabilities compared to conventional machining processes. This paper, along the theoretical derivations, provides original contributions in the form of mathematical models of the quantity of the cut surface damage, expressed by the values of cut surface roughness. The particular part of this paper deal with the results of the original experimental research. The research aim was connected with the demands of industry, i.e. the end user. Having in mind that the conventional machining processes are not only lagging behind in terms of quality of cut, or even some requests are not able to meet, but with the advent of composite materials were not able to machine them, because they occurred unacceptable damage (mechanical damage or delamination, fiber pull-out, burning, frayed edges.

  14. Decontamination methods using a dental water jet and dental floss for microthreaded implant fixtures in regenerative periimplantitis treatment.

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Chung, Chong-Pyoung; Seol, Yang-Jo

    2015-06-01

    This study evaluated decontamination methods using a dental water jet and dental floss on microthreaded implants for regenerative periimplantitis therapy. In 6 beagle dogs, experimental periimplantitis was induced, and decontamination procedures, including manual saline irrigation (control group), saline irrigation using a dental water jet (group 1) and saline irrigation using a dental water jet with dental flossing (group 2), were performed. After in situ decontamination procedures, some of the implant fixtures (n = 4 per group) were retrieved for analysis by SEM, whereas other fixtures (n = 4 per group) underwent regenerative therapy. After 3 months of healing, the animals were killed. The SEM examination indicated that decontamination of the implant surfaces was the most effective in group 2, with no changes in implant surface morphology. The histological examination also revealed that group 2 achieved significantly greater amounts of newly formed bone (6.75 ± 2.19 mm; P = 0.018), reosseointegration (1.88 ± 1.79 mm; P = 0.038), and vertical bone fill (26.69 ± 18.42%; P = 0.039). Decontamination using a dental water jet and dental floss on microthreaded implants showed positive mechanical debridement effects and positive bone regeneration effects.

  15. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    Directory of Open Access Journals (Sweden)

    Shuce Zhang

    2015-01-01

    Full Text Available Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinates is not symmetrical for the helix nozzle. Compared to simply changing the jetting angle, revolving the jet issued from the helix nozzle creates a grinding wheel on the cleaning surface, which makes not only an impact effect but also a shearing action on the cleaning object. This particular shearing action improves the cleaning process overall and forms a wider, effective cleaning range, thus obtaining a broader jet width.

  16. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  17. Simulation analysis of striation phenomena in abrasive water jet cutting (AWJC process of AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    X. C. Chen

    2018-01-01

    Full Text Available Abrasive water jet cutting (AWJC technology has been widely used in metal processing field. However, the generation of striations deteriorates cutting quality. In this paper, Smoothed particle hydrodynamics (SPH coupled Finite element method (FEM is used to simulate and analyze the cutting process of AISI 304 stainless steel. The results show that the declining jet angle will result in uneven erosion of abrasive particles, which is caused by the generation of striation phenomenon. The research can deepen the understanding of striation phenomena in metal machining process.

  18. Implantation of Perylene Molecules into Glass Plates through a Water Layer Using a Laser Induced Molecular Micro-Jet

    Science.gov (United States)

    Goto, Masahiro; Pihosh, Yuriy; Kasahara, Akira; Tosa, Masahiro

    2006-09-01

    Perylene molecules have been successfully implanted onto borosilicate glass plates, forming fluorescent features of 420 nm in diameter, using a method involving laser induced molecular micro-jet ejection through a water layer. The technique utilises a polymer source film in which perylene molecules are dispersed, a borosilicate glass substrate as a target and a pulsed laser. The space gap between the source film and the target is filled with liquid water. Perylene molecules dispersed in the polymer source films are photo-excited using 4-ns laser pulses resulting in the ejection of the molecules from the source matrix after which they become implanted into the target after passing through the water layer. This new advanced implantation method, using a laser induced molecular micro-jet through water, gives fine spatial control for fixing functional organic molecules in a designated region on hard dielectric materials and will have application in the fabrication of molecular devices, molecular sensors, and opto-electronics.

  19. Experimental And Numerical Investigations of Ejector Jet Refrigeration System With Primary Stream Swirl

    OpenAIRE

    Parveen Banu, Jiautheen; Mallikarjuna, Jawali Maharudrappa; Mani, Annamalai

    2016-01-01

    Among the various heat powered refrigerated systems, vapour jet refrigeration system (VJRS) is attractive because of its simple and rugged nature. Ejector is a key component in VJRS and the performance of the whole system depends on the effective performance of the ejector. Ejector can be operated with low grade energy by utilizing the heat from solar energy, waste heat from industrial exhaust, automobile exhaust, etc, at minimum temperature of about 60°C[1]. Besides that, this system requir...

  20. Track Reconstruction and b-Jet Identification for the ATLAS Trigger System

    CERN Document Server

    Coccaro, A; The ATLAS collaboration

    2011-01-01

    A sophisticated trigger system, capable of real-time track reconstruction, is in place in the ATLAS experiment, to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physics signals. The strategy adopted for fast reconstruction of charged tracks and in particular its application to the selection of jets from the hadronization of b-quarks is reviewed. Track reconstruction is routinely used for selection based on various physics objects while b-jet triggers are actively selecting events from the beginning of the 2011 LHC data-taking campaign.

  1. Direct photon production and jet energy-loss in small systems

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chun; Park, Chanwook [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Paquet, Jean-François [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11733 (United States); Denicol, Gabriel S. [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Jeon, Sangyong; Gale, Charles [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada)

    2016-12-15

    Two types of penetrating probes, direct photon and QCD jets, are investigated in the background of a small and rapidly expanding droplet of quark-gluon plasma. The additional thermal electromagnetic radiation results in a ∼50% enhancement of the direct photons. In high multiplicity p+Pb collisions, jets can lose a sizeable fraction of their initial energy, leading to a charged hadron R{sub pA} of ∼0.8 at a transverse momentum around 10 GeV. Those two proposed measurements can help understand the apparent collective behaviour observed in small collision systems.

  2. Using SKA to observe relativistic jets from X-ray binary systems

    NARCIS (Netherlands)

    Fender, R.P.

    2004-01-01

    I briefly outline our current observational understanding of the relativistic jets observed from X-ray binary systems, and how their study may shed light on analogous phenomena in active galactic nuclei and gamma ray bursts. How SKA may impact on this field is sketched, including the routine

  3. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    Science.gov (United States)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness

  4. Environmental Quality Research-Fate of Toxic Jet Fuel Components in Aquatic Systems

    Science.gov (United States)

    1981-12-01

    literature suggests that the maximum growt rate of Chlorella vulgaris is almost certainly between 1.5 and 2.5 days at water temperatures near 25°C...the results of an investigation of the potential toxic effects of the jet fuel JP-4 ( petroleum -based and shale-based) on the aqueous environ- ment... petroleum and shale-based) have demonstrated: a) their similarities in terms of components, and b) their differences in terms of relative amounts of

  5. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system.

    OpenAIRE

    Lomanowski, B.A.; Meigs, A.G.; Conway, N. J.; Zastrow, K.-D.; Sharples, R. M.; Heesterman, P.; Kinna, D.; JET EFDA Contributors,

    2014-01-01

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spat...

  6. Modeling corium jet breakup in water pool and application to ex-vessel fuel–coolant interaction analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang-Hyun, E-mail: khbang@hhu.ac.kr; Kumar, Rohit; Kim, Hyoung-Tak

    2014-09-15

    Highlights: • Kelvin–Helmholtz Instability on melt–steam–water interfaces was solved numerically. • Corium jet breakup model was developed for FCI codes based on the KHI solutions. • Ex-vessel steam explosions in reactor cavity were calculated using TRACER-II code. - Abstract: In light water reactor core melt accidents, the molten fuel can be brought into contact with coolant water in the course of the melt relocation in-vessel and ex-vessel as well as in an accident mitigation action of water addition. For the last several decades, the potential risk of energetic molten fuel coolant interactions (FCIs, steam explosions) has drawn substantial attention in the safety analysis of reactor severe accidents. In this paper, an improved melt jet breakup model is presented and analyses of an energetic fuel–coolant interaction in a PWR cavity (1) partially filled (4 m deep) and (2) completely filled (7 m deep) with water are presented. The TRACER-II code was used in the analyses. For jet breakup model, the full dispersion equation of Kelvin–Helmholtz instability for the melt jet–vapor film–water was solved numerically and the solutions were correlated for use in the TRACER-II code. The new jet breakup model was benchmarked using FARO L28 test data. In reactor calculations the mixing calculations showed that the average melt drop size was much smaller in 4 m deep pool with 3 m free-fall than in 7 m deep pool. The explosion calculations showed that the peak pressure at the center of mixture was ∼90 MPa in 4 m deep pool, ∼25 MPa in 7 m deep pool. It also showed that the maximum impulse at the cavity wall was found at the lower wall in both cases and it was 50 kPa s in 4 m deep pool and 150 kPa s in 7 m deep pool.

  7. Two-phase cooling system with a jet pump for spacecraft

    Science.gov (United States)

    Fairuzov, Yuri V.; Bredikhin, Victor V.

    1995-04-01

    A two-phase cooling system with a jet pump is proposed for the thermal control of spacecraft. The system does not require an external source of energy, the pumping of the working fluid is performed by the work that is produced in a thermodynamic cycle being carried out in the heat transport loop. The cooling system has no moving parts or control devices, with the exception of a mechanical pump and an actuated valve, that are used only for the startup sequence. This article reports on the results of the theoretical and experimental studies of the two-phase thermal control system with a jet pump for spacecraft application. A mathematical model for the steady-state analysis of the proposed system was developed. The model was applied to predict overall performance characteristics and operating range for a specific spacecraft two-phase cooling system. The possible reasons for the fluid loop operation failures were identified. The influence of the accumulator volume on the system characteristics was also investigated. Three jet pumps of various configurations were tested and stable operational regimes of the cooling system were obtained under different heat-load and heat-rejection conditions on a ground experimental facility.

  8. Fluidic Injection for Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda

    2010-01-01

    Investigations into fluidic injection for jet noise reduction began over 50 years ago. Studies have included water and air injection for the reduction of noise in scale model jets and jet engines and water injection for the reduction of excess overpressures on the Space Shuttle at lift-off. Injection systems have included high pressure microjets as well as larger scale injectors operating at pressures that can be achieved in real jet engines. An historical perspective highlighting noise reduction potential is presented for injection concepts investigated over the last 50 years. Results from recent investigations conducted at NASA are presented for supersonic and subsonic dual-stream jets. The noise reduction benefits achieved through fluidic contouring using an azimuthally controlled nozzle will be discussed.

  9. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  10. A correlation for predicting the abrasive water jet cutting depth for natural stones

    Directory of Open Access Journals (Sweden)

    Irfan C. Engin

    2012-09-01

    Full Text Available The abrasive water jet (AWJ cutting method has been used widely for the cutting and processing of materials because of its cool, damage-free, and precise cutting technique. Nowadays, the use of AWJ cutting in the natural stone industry is increasing. However, the effectiveness of AWJ cutting of natural stones is dependent on the rock properties and machine operating parameters. In this study, injection-type AWJ cutting was applied to 42 different types of natural stones to investigate the effects of rock properties and operating parameters on the cutting depth. Shore hardness, Bohme surface abrasion resistance and the density of the rocks were the most significant rock properties affecting the cutting depth. The working pump pressure and traverse velocity were the most significant operating parameters affecting cutting, as has been shown previously. The relationships between the rock properties or operating parameters and the cutting depth were evaluated using multiple linear and nonlinear regression analyses, and estimation models were developed. Some of the models included only rock properties under fixed operating conditions, and others included both rock properties and operating parameters to predict cutting depth. The models allow for the preselection of particular operating parameters for the cutting of specific rocks types. The prediction of cutting depth is a valuable tool for the controlled surface machining of rock materials.

  11. Laser Doppler vibrometry experiment on a piezo-driven slot synthetic jet in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2015-01-01

    Full Text Available The present study deals with a slot synthetic jet (SJ issuing from an actuator into quiescent surroundings and driven by a piezoceramic transducer. The actuator slot width was 0.36 mm, with a drive frequency proposed near the theoretical natural frequency of the actuator. The working fluid was water at room temperature. The present experiments used flow visualization (a laser-induced fluorescence technique and laser Doppler vibrometry methods. Flow visualization was used to identify SJ formation, to demonstrate its function, and to estimate SJ velocity. Laser Doppler vibrometry was used to quantify diaphragm displacement and refine operating parameters. Phase averaging yielded a spatial and temporal diaphragm deflection during the actuation period. Taking incompressibility and continuity into consideration, the velocity in the actuator slot and the Reynolds number of the SJ were evaluated as 0.21 m/s and 157, respectively. The present results confirmed a SJ actuator function at the resonance frequency of approximately 46 Hz, which corresponds closely with the theoretical evaluation. The laser Doppler vibrometry results corresponded closely with an estimation of SJ velocity by the present flow visualization.

  12. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  13. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  14. Effect of abrasive water jet on the structure of the surface layer of Al-Mg alloy

    Science.gov (United States)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Gudnev, N. Z.

    2017-09-01

    Optical, scanning, and transmission electron microscopy methods, and X-ray diffraction analysis have been used to study the changes in the structure and the microhardness in the surface layer of the Al-Mg (5.8-6.8 wt %) alloy after water jet cutting. The dislocation density, the sizes of coherent scattering regions, and microdistortions have been determined. The transformation of the fine structure has been revealed in the displacement from the alloy volume to the abrasive-waterjet cutting surface.

  15. Water-jet dissector for endoscopic submucosal dissection in an animal study: outcomes of the continuous and pulsed modes.

    Science.gov (United States)

    Lepilliez, Vincent; Robles-Medranda, Carlos; Ciocirlan, Mihai; Lukashok, Hannah; Chemali, Marwan; Langonnet, Stephan; Chesnais, Sabrina; Hervieu, Valerie; Ponchon, Thierry

    2013-08-01

    Endoscopic submucosal dissection (ESD) allows en bloc resection of early neoplastic lesions of gastrointestinal tract. Lesions are lifted by submucosal fluid injection before circumferential incision and dissection. High-pressure fluid injection using water jet (WJ) technology is already used for lifting and dissection in surgery. The study was designed to assess WJ for ESD submucosal lifting and dissection. An experimental, randomized comparative, "in vivo" nonsurvival animal study on 12 pigs was designed. Stomach mucosal areas were delineated and resected using three ESD techniques: technique A-syringe injection and IT knife dissection; technique B-WJ continuous injection and IT knife dissection; technique C-WJ injection and WJ pulsed dissection. Injection and dissection speeds and complications rates were assessed. Water jet continuous injection is faster than syringe injection (B faster than A, p = 0.001 and B nonsignificantly faster than C, p = 0.06). IT knife dissection is significantly faster after WJ continuous injection (B faster than A, p = 0.003). WJ pulsed dissection is significantly slower than IT knife dissection (C slower than A and B, both p < 0.001). The overall procedure speed was significantly higher and the immediate bleedings rate was significantly lower for technique B than A and C (overall procedure speed p = 0.001, immediate bleedings p = 0.032 and 0.038 respectively). There were no perforations with any technique. Water jet fluid continuous injection speeds up ESD, whereas pulsed WJ dissection does not.

  16. Enhanced photocatalytic-electrolytic degradation of Reactive Brilliant Red X-3B in the presence of water jet cavitation.

    Science.gov (United States)

    Wang, Xiaoning; Jia, Jinping; Wang, Yalin

    2015-03-01

    Photocatalysis, electrolysis, water jet cavitation (WJC), alone and in combinations were applied to degrade an azo dye, Reactive Brilliant Red X-3B (X-3B). Experiments were conducted in a 4.0 L aqueous solution with different initial dye concentrations, TiO₂ dose, and solution pH. WJC substantially increased the photocatalytic, electrolytic and photocatalytic-electrolytic rates of the dye removal. The observed first-order rate of X-3B decolorization in the process of combined photocatalysis and electrolysis coupled with WJC was 1.6-2.9 times of that in the process of combined photocatalysis and electrolysis coupled with mechanical stirring. The rate enhancements may be attributed primarily to the reduced diffusion layer thickness on the electrodes and the deagglomeration of photocatalyst particles due to the chemical and physical effects of WJC. Under the conditions of 80 mg/L X-3B solution, 100 mg/L TiO₂ dose and solution pH 6.3, 97% and 71% of color and chemical oxygen demand (CODCr) were removed, respectively, within 90-min photocatalytic-electrolytic treatment coupled with WJC. During this process, azo groups and naphthalene, benzene and triazine structures of the dye can be destroyed. Industrial textile effluent was also investigated, and a positive synergistic effect between photocatalytic-electrolytic system and WJC was observed considering color removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Feasibility of AN Ecrh System for Jet:. High Voltage Power Supplies Requirements and Proposed Structure

    Science.gov (United States)

    Braune, H.; Giruzzi, G.; Hay, J.; Khilar, P.; Lennholm, M.; Moreira, L.; Parkin, A.; Vadgama, A.

    2011-02-01

    The future JET programme, after the installation of the ITER-like wall, will be mainly focused on the consolidation of the physics basis of the three main ITER scenarios. These scenarios will make substantial use of Electron Cyclotron (EC) waves, for heating as well as for control of both the MHD activity and the current density profile. Therefore, a programme for preparation, validation and optimization of the ITER scenarios in present tokamaks would strongly benefit from an ECRH/ECCD system. A study has been conducted to evaluate the feasibility of installing an ECRH system on the JET tokamak. An important intention of the study was to investigate the feasibility to utilise some unused conventional NBI - power supplies for the ECRH project.

  18. A new Disruption Mitigation System for deuterium–tritium operation at JET

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, Uron, E-mail: uron.kruezi@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Jachmich, Stefan [Laboratory for Plasma Physic, ERM/KMS, B-1000 Brussels (Belgium); Koslowski, Hans Rudolf [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Lehnen, Michael [ITER Organization, Route de Vinon-sur-Verdon, CS90046, 13067 St. Paul Lez Durance Cedex (France); Brezinsek, Sebastijan [Forschungszentrum Jülich GmbH, IEK-4, 52425 Jülich (Germany); Matthews, Guy [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • A Disruption Mitigation System based on massive gas injections has been designed. • The DMS has been installed at the JET-tokamak for routine machine protection. • The DMS is capable of a throughput of up to 4.6 kPa m{sup 3}. • The new DMS is compatible with the deuterium–tritium operation at JET. - Abstract: Disruptions, the fast accidental losses of plasma current and stored energy in tokamaks, represent a significant risk to the mechanical structure as well as the plasma facing components of reactor-scale fusion facilities like ITER. At JET, the tokamak experiment closest to ITER in terms of operating parameters and size, massive gas injection has been established as a disruption mitigation method. As a “last resort” measure it reduces thermal and electromagnetic loads during disruptions which can potentially have a serious impact on the beryllium and tungsten plasma-facing materials of the main chamber and divertor. For the planned deuterium–tritium experiments, a new Disruption Mitigation System (DMS) has been designed and installed and is presented in this article. The new DMS at JET consists of an all metal gate valve compatible with gas injections, a fast high pressure eddy current driven valve, a high voltage power supply and a gas handling system providing six supply lines for pure and mixed noble and flammable gases (Ar, Ne, Kr, D{sub 2}, etc.). The valve throughput varies with the injection pressure and gas type (efficiency – injected/charged gas 50–97%); the maximum injected amount of gas is approximately 4.6 kPa m{sup 3} (at maximum system pressure of 5.0 MPa).

  19. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  20. Interfacial and velocity characteristics of pinch-off modes in liquid/liquid jet systems

    Science.gov (United States)

    Milosevic, Ilija; Longmire, Ellen

    2003-11-01

    Forced jets of water/glycerin mixture flowing into silicone oil were investigated. An index-matching technique was employed, and the flow was examined by laser-induced fluorescence and PIV. Experiments were performed at several Reynolds and Strouhal numbers (Re 50-80, St 2-3) while holding viscosity ratio (mi/mo = 1.6) and Ohnesorge number (Oh = 0.013) constant. The upstream and downstream interface angles as well as velocity fields surrounding the pinch off location were measured for several distinct modes; e.g. a primary drop separating from the jet, a primary drop splitting in two, and a satellite drop separating from the jet. At the smallest observable scales ( 15 microns), the angles varied with the pinch-off mode. The angles in the splitting drop mode appeared to converge toward values predicted by similarity theory, but angles in the other modes did not. The differences in behavior will be discussed in terms of the local velocity and vorticity fields surrounding each mode. Detailed measurements include centerline velocity and local strain and rotation rate through each pinch-off event. *supported by DOE (DE-FG02-98ER14869)

  1. Still water: dead zones and collimated ejecta from the impact of granular jets.

    Science.gov (United States)

    Ellowitz, Jake; Turlier, Hervé; Guttenberg, Nicholas; Zhang, Wendy W; Nagel, Sidney R

    2013-10-18

    When a dense granular jet hits a target, it forms a large dead zone and ejects a highly collimated conical sheet with a well-defined opening angle. Using experiments, simulations, and continuum modeling, we find that this opening angle is insensitive to the precise target shape and the dissipation mechanisms in the flow. We show that this surprising insensitivity arises because dense granular jet impact, though highly dissipative, is nonetheless controlled by the limit of perfect fluid flow.

  2. THE RADIO JET ASSOCIATED WITH THE MULTIPLE V380 ORI SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Yam, J. Omar; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía, s/n, E-18008, Granada (Spain); Trejo, Alfonso, E-mail: l.rodriguez@crya.unam.mx [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-10-01

    The giant Herbig–Haro object 222 extends over ∼6′ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical–IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, located about 23′ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free–free emitters at centimeter wavelengths. Here, we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the giant outflow defined by HH 222 and its suggested counterpart to the SE, HH 1041. We propose that this radio jet traces the origin of the large scale HH outflow. Assuming that the jet arises from the Herbig Be star, the radio luminosity is a few times smaller than the value expected from the radio–bolometric correlation for radio jets, confirming that this is a more evolved object than those used to establish the correlation.

  3. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  4. Breast reconstruction de novo by water-jet assisted autologous fat grafting – a retrospective study

    Directory of Open Access Journals (Sweden)

    Hoppe, Delia Letizia

    2013-12-01

    Full Text Available [english] Background: Autologous fat grafting has become a frequent, simple, reproducible and low-risk technique for revisional or partial breast reconstruction. The presented European multicenter study describes an optimized treatment and follow-up protocol for the de novo breast reconstruction after total mastectomy by lipotransfer alone.Methods: A retrospective European multicenter trial included 135 procedures on 28 (35 breasts postmastectomy patients (mean 52.4 years. All women were treated with the water-jet assisted fat grafting method (BEAULI™ combined with additional procedures (NAC reconstruction, contralateral mastoplasty and evaluated with at least 6 months follow-up (mean 2.6 years. Sonography or mammography, clinical examination, patient questionnaire (10-point Likert scale and digital photographs were carried out.Results: On average the patients received 4 to 6 procedures each with a single volume of 159 ml (±61 ml over 21 months (range 9 months to 2.5 years. In total 1,020 ml (±515 ml fat were grafted till a complete breast reconstruction was achieved. Irradiated patients needed a significantly higher volume than non-irradiated (p<0.041. Main treatment complications were liponecrosis (2.59%, infection (0.74% and granuloma (0.74%. Patient satisfaction was overall high to very high (96% and confirmed the good aesthetic results (68% and the natural softness, contour and shape of the reconstructed breast.Conclusions: A complete breast reconstruction with large volume fat grafting is alternatively possible to standard techniques in selected cases. It takes at least 4 to 6 lipotransfers in the course of 2 years. Patients with prior radiotherapy may require even up to 8 sessions over nearly 3 years of treatment.

  5. Atmospheric-pressure plasma jet system for silicon etching without fluorocarbon gas feed

    Science.gov (United States)

    Ohtsu, Yasunori; Nagamatsu, Kenta

    2018-01-01

    We developed an atmospheric-pressure plasma jet (APPJ) system with a tungsten rod electrode coated with C2F4 particles of approximately 0.3 µm diameter for the surface treatment of a silicon wafer. The APPJ was generated by dielectric barrier discharge with a driving frequency of 22 kHz using a He gas flow. The characteristics of the APPJ were examined under various experimental conditions. The plasma jet length increased proportionally to the electric field. It was found that the treatment area of the silicon wafer was approximately 1 mm in diameter. By atomic force microscopy analysis, minute irregularities with a maximum length of about 600 nm and part of a ring-shaped trench were observed. A Si etching rate of approximately 400 nm/min was attained at a low power of 6 W and a He flow rate of 1 L/min without introducing molecular gas including F atoms.

  6. Jet delivery system for Raman scattering on bio-inorganic compounds

    Science.gov (United States)

    Wetzel, A.; Biebl, F.; Beyerlein, K. R.; Stanek, J.; Gumprecht, L.; Hoffmann, A.; Herres-Pawlis, S.; Bajt, S.; Chapman, H. N.; Grimm-Lebsanft, B.; Rukser, D.; Rübhausen, M.

    2016-11-01

    We present a micro-jet sample delivery system for Raman measurements. Compared to cuvette measurements, the observed Raman signal is enhanced by more than one order of magnitude and does not contain signal distortions from the liquid-glass interface. Furthermore, the signal stability of repeated measurements is enhanced due to reduced sample damage effects by constantly replenishing the sample. This allows the study of sensitive samples that can only be produced in low concentrations. Our setup consists of a controlled sample environment that can be either under vacuum or an exchange gas, which allows the study of samples that are unstable in air. Finally, by matching the effective source point of the Raman instrument with the diameter of the jet, controlled experiments using laser beams of different wavelengths are possible. We see future applications of our setup for resonance Raman and time-resolved Raman measurements of bioinorganic samples.

  7. Detection of reactive oxygen species supplied into the water bottom by atmospheric non-thermal plasma jet using iodine-starch reaction

    Science.gov (United States)

    Kawasaki, Toshiyuki; Eto, Wataru; Hamada, Masaki; Wakabayashi, Yasutaka; Abe, Yasufumi; Kihara, Keisuke

    2015-08-01

    The supply of reactive oxygen species (ROS) to a target through liquid by plasma jet should be clarified. In this study, a non-thermal plasma jet was irradiated onto the water surface in atmospheric air, and the ROS reaching the water bottom were detected using a gel reagent with iodine-starch reactions. As a result, two-dimensional ROS distributions were visually obtained at the bottom, and the relative ROS concentration was obtained by absorbance measurement. Oxygen addition to helium led to a higher ROS supply into the bottom than helium plasma jet and ozone exposure. A doughnut-shaped ROS distribution was clearly observed at the bottom under certain conditions. The ROS concentration at the bottom significantly depended on irradiation distance and water layer thickness. It is observed from the results obtained using a liquid reagent that the plasma-jet-induced flow and the mixing effect play an important role in ROS supply into the bottom.

  8. Simulation of a high-pressure water jet structure as an innovative tool for pulverizing copper ore in KGHM Polska Miedź S.A.

    Directory of Open Access Journals (Sweden)

    Przemysław Józef Borkowski

    2016-01-01

    Full Text Available Effective comminution of copper ore for further processing during flotation is still a challenge, both as a technological problem as well as for the high energy costs of such processing.A high-pressure water jet is one alternative method of preparing copper ore for final flotation, causing distinct enlargement of the surface of micronized particles, which could be profitable for copper production.As a consequence of such innovative processing, particles of copper ore become micronized, ensuring grain fractions directly useful for flotation at the exit of the pulverizing apparatus (the hydro-jetting mill.The paper presents some results of simulation as well as describing an analysis of the phenomena occurring inside the high-pressure water and abrasive-water jets of specific structures, elaborated in the aspect of developing hybrid jets of maximum erosive efficiency, potentially useful for effective pulverization.

  9. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system.

    Science.gov (United States)

    Lomanowski, B A; Meigs, A G; Conway, N J; Zastrow, K-D; Sharples, R M; Heesterman, P; Kinna, D

    2014-11-01

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  10. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    Energy Technology Data Exchange (ETDEWEB)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  11. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  12. Water Supply Infrastructure System Surety

    Energy Technology Data Exchange (ETDEWEB)

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  13. Meeting water requirements system.

    Science.gov (United States)

    Minett, Roy

    2007-05-01

    There is a plethora of legislation and guidelines relating to the control and supply of water in healthcare establishments. Here, Roy Minett, marketing manager of Rada in the UK, provides some advice on making sense of what is expected and required.

  14. Demonstration of a Packaged Capacitive Pressure Sensor System Suitable for Jet Turbofan Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.

    2016-01-01

    In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.

  15. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  16. Experimental Study of Water Jet Impingement Cooling of Hot Steel Plates

    OpenAIRE

    Karwa, Nitin

    2012-01-01

    Liquid jet impingement cooling is critical in many industrial applications. Principle applications include extracting large heat flux from metal parts, such as hot fuel bundle post-loss-of-coolant-accident in nuclear reactors, heat treatment of steel plates post-hot-processing, etc. The ability of liquid jets to extract high heat flux at controlled rates from metal parts, with temperatures as high as 800-1000 ºC, at moderate flow rates has made them indispensable in these applications. Due to...

  17. Evaporative cooling by a pulsed jet spray of binary ethanol-water mixture

    Science.gov (United States)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2015-07-01

    We have experimentally studied the heat transfer under conditions of pulsed multinozzle jet spray impact onto a vertical surface. The working coolant fluid was aqueous ethanol solution in a range of concentrations K 1 = 0-96%. The duration of spray pulses was τ = 2, 4, and 10 ms at a repetition frequency of 10 Hz. The maximum heat transfer coefficient was achieved at an ethanol solution concentration within 50-60%. The thermal efficiency of pulsed spray cooling grows with increasing ethanol concentration and decreasing jet spray pulse duration.

  18. An investigation of a jet-pump thermal (ice) storage system powered by low-grade heat

    OpenAIRE

    Worall, Mark

    2001-01-01

    This thesis investigates a novel combination of a jet-pump refrigeration cycle and a thermal (ice) storage (TIS) system that could substantially reduce the electrical energy requirements attributable to comfort cooling.Two methods of TIS were identified; spray ice TIS would use evaporative freezing to store ice on a vertical surface,and encapsulated ice TIS would freeze a bed of encapsulated elements by sublimation freezing.Thestudy also investigates jet-pump refrigeration at partload and a ...

  19. The upgraded JET toroidal Alfvén eigenmode diagnostic system

    Science.gov (United States)

    Puglia, P.; Pires de Sa, W.; Blanchard, P.; Dorling, S.; Dowson, S.; Fasoli, A.; Figueiredo, J.; Galvão, R.; Graham, M.; Jones, G.; Perez von Thun, C.; Porkolab, M.; Ruchko, L.; Testa, D.; Woskov, P.; Albarracin-Manrique, M. A.; Contributors, JET

    2016-11-01

    The main characteristics of toroidal Alfvén eigenmodes (TAEs) have been successfully investigated in JET (Joint European Torus) using the scheme of sweeping-frequency external excitation with tracking of the synchronously-detected resonances. However, due to technical limitations, only modes with low values of the toroidal mode number n≤slant 7 could be effectively excited and unambiguously identified by the Alfvén Eigenmode Active Diagnostic (AEAD) system. This represents a serious restriction because theoretical models indicate that medium-n Alfvén eigenmodes (AEs) are the most prone to be destabilized by energetic particles in ignited plasmas and, therefore, reliable measurement of their damping rates remains a relevant issue to properly access their effect in ignited plasmas. For this reason, a major upgrade of the AEAD system has been carried out aiming at providing a state-of-the-art excitation and real-time detection system for the planned DT campaign in JET. This required the development of a new type of radio frequency amplifier and filter, not commercially available, and also a control system. In this paper, details of the concepts that are relevant to understand the operation of the new system in the next experimental campaigns are presented, as are the results of numerical simulations to model its performance.

  20. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  1. Water Powered Bioassay System

    National Research Council Canada - National Science Library

    Lin, Liwei

    2004-01-01

    This project addresses critical technologies, including the acquisition, metering, buffering, delivery and assay for the processing of bio-fluids that enable the complete integration of microfluidic chips into systems...

  2. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  3. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  4. Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet

    Science.gov (United States)

    Uchida, Giichiro; Takenaka, Kosuke; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Setsuhara, Yuichi

    2018-01-01

    We present the control of H2O2 and NO2 ‑ productions in deionized water by using a high-frequency plasma jet driven by a 60 MHz voltage. In the gas phase, the high-frequency plasma jet has a high O (3P) atom density of 8 × 1014 cm‑3, which is two orders of magnitude higher than that of the low-frequency plasma jet driven by a 5 kHz voltage. Concerning the production of reactive oxygen and nitrogen species in the liquid phase, with the direct contact of the plasma jet to the liquid surface, the H2O2 concentration is higher than the NO2 ‑ concentration. On the other hand, without the observable contact of the high-frequency plasm jet with high plasma density to the liquid surface, the NO2 ‑ concentration increases with the flow rate of N2(20%)O2(80%) gas added to the Ar discharge gas and becomes more dominant compared with H2O2 in the plasma-treated water. H2O2 and NO2 ‑ could be selectively produced in the plasma-treated water by using a nonthermal high-frequency plasma jet, which is a promising tool for biomedical applications.

  5. Use of information system data of jet crushing acoustic monitoring for the process management

    Directory of Open Access Journals (Sweden)

    T.M. Bulanaya

    2012-12-01

    Full Text Available The graphic interpretation of amplitude and frequency of acoustic signals of loose material jet grinding process are resulted. Criteria of process management is determined on the basis of the acoustic monitoring data of jet mill acting.

  6. A preliminary study of a new endodontic irrigation system: Clean Jet Endo.

    Science.gov (United States)

    Nouioua, F; Slimani, A; Levallois, B; Camps, J; Tassery, H; Cuisinier, F; Bukiet, F

    2015-03-01

    The purpose of the present study was to assess the irrigant penetration and cleaning ability of a new irrigation system, the Clean Jet Endo (Produits Dentaires SA, Switzerland) in comparison to conventional irrigation followed or not by sonic activation. Irrigant penetration was evaluated on resin blocks simulators by measuring the methylene blue absorbance thanks to a UV/visible spectrophotometer and cleaning ability was assessed in an ex vivo experiment according to the debris score in an artificial canal extension before and after the final irrigation protocol. A statistical analysis was carried out in order to highlight the significant differences between the irrigation techniques. Clean Jet Endo permitted to better eliminate the methylene blue into the simulated canals. A significant difference between the 2 techniques was observed in the middle third (p = 0.005) as well as in the apical third (p irrigant within the lateral canals of the simulators. Likewise, this irrigating system permitted to better eliminate the debris in the lateral groove than the other techniques. In conclusion, our findings implied the potential of this new irrigation system to enhance root canal debridement and disinfection.

  7. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  8. Diagnostics of Plasma Jet Generated in Water/Argon DC Arc Torch.

    Czech Academy of Sciences Publication Activity Database

    Hurba, Oleksiy; Hlína, Michal; Hrabovský, Milan

    2016-01-01

    Roč. 3, č. 1 (2016), s. 5-8 ISSN 2336-2626. [Symposium on Physics of Switching Arc 2015, FSO 2015 /21./. Nové Město na Moravě, 07.09.2015-11.09.2015] R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : thermal plasma jet * electric probes * schlieren photography * enthalpy probe Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    Science.gov (United States)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  10. APPLICATION OF WATER-JET HORIZONTAL DRILLING TECHNOLOGY TO DRILL AND ACIDIZE HORIZONTAL DRAIN HOLES, TEDBIT (SAN ANDRES) FIELD, GAINES COUNTY, TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Michael W. Rose

    2005-09-22

    The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.

  11. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  12. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  13. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.

    Science.gov (United States)

    Tirella, Annalisa; Vozzi, Federico; De Maria, Carmelo; Vozzi, Giovanni; Sandri, Tazio; Sassano, Duccio; Cognolato, Livio; Ahluwalia, Arti

    2011-07-01

    The adaptation of inkjet printing technology for the realisation of controlled micro- and nano-scaled biological structures is of great potential in tissue and biomaterial engineering. In this paper we present the Olivetti BioJet system and its applications in tissue engineering and cell printing. BioJet, which employs a thermal inkjet cartridge, was used to print biomolecules and living cells. It is well known that high stresses and forces are developed during the inkjet printing process. When printing living particles (i.e., cell suspensions) the mechanical loading profile can dramatically damage the processed cells. Therefore computational models were developed to predict the velocity profile and the mechanical load acting on a droplet during the printing process. The model was used to investigate the role of the stiffness of the deposition substrate during droplet impact and compared with experimental investigations on cell viability after printing on different materials. The computational model and the experimental results confirm that impact forces are highly dependent on the deposition substrate and that soft and viscous surfaces can reduce the forces acting on the droplet, preventing cell damage. These results have high relevance for cell bioprinting; substrates should be designed to have a good compromise between substrate stiffness to conserve spatial patterning without droplet coalescence but soft enough to absorb the kinetic energy of droplets in order to maintain cell viability. Copyright © 2011. Published by Elsevier B.V.

  14. Numerical Study on Different Series Modes of Jet Fan in a Longitudinal Tunnel Ventilation System

    Directory of Open Access Journals (Sweden)

    Guihong Pei

    2014-01-01

    Full Text Available Efficient ventilation systems will contribute to maintaining air quality in the tunnel. In order to improve ventilation performance in normal traffic condition, the 3D tunnel models were established according to the original design for the tunnel located in central plains of China. Based on the commercial CFD software Fluent 6.3 and k-ε turbulence model, numerical simulations were carried out to study the patterns of jet flow and the optimization of fan combinations. It is found that the axial velocity profile obtained from numerical simulation agrees quite well with turbulent free jet theory although there is a little difference on the magnitude. The comparison of four combination modes under the condition of operating four fans indicates that the ventilation effectiveness is affected mainly by both the interval of adjacent groups of fans and the combination modes of operational fans. According to the simulation results, a novel combination mode which consists of a group double paralleled fans and two groups single fan is designed. The novel combination mode is regarded as the optimum combination mode with respect to maximizing air velocity in the tunnel. Compared to the traditional combination modes, it will increase the air velocity by 5.7%.

  15. Design of a resonant magnetic perturbation ELM suppression system for JET

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108, St Paul-lez-Durance (France)], E-mail: gilbert.agarici@cea.fr; Becoulet, M.; Nardon, E.; Saille, A.; Thomas, P.R.; Verger, J.M. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108, St Paul-lez-Durance (France)

    2007-10-15

    The suppression of ELMs with a resonant magnetic perturbation (RMP), as demonstrated in DIIID experiments [T. Evans, et al., Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas, Nucl. Fusion 45 (2005) 595-607], and widely published [K.H. Burrell, et al., Plasma Phys. Control., Fusion 47 (2005) B37-B52 ; M. Becoulet, et al., Edge localized modes control by stochastic magnetic field, Nucl. Fusion 45 (2005) 1284-1292], is an attractive solution to the problem of divertor target erosion in ITER. Ideally, the RMP should be strong at the plasma edge and weak in the core, which requires the installation of the RMP coils as close as possible to the plasma. In both ITER and JET, an installation of the RMP coils within the vacuum vessel would subject the coils to neutron irradiation, tritium contamination and all the problems of furnishing cooling and electrical services, across many interfaces. So for JET, it has been proposed to install an 'ITER prototype' RMP system located ex-vessel.

  16. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  17. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    National Research Council Canada - National Science Library

    Can Kang; Haixia Liu

    2013-01-01

    ... with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream...

  19. Effect of a dental water jet with orthodontic tip on plaque and bleeding in adolescent patients with fixed orthodontic appliances.

    Science.gov (United States)

    Sharma, Naresh C; Lyle, Deborah M; Qaqish, Jimmy G; Galustians, Jack; Schuller, Reinhard

    2008-04-01

    Effective self-care is difficult for people with orthodontic appliances because of the inherent design of brackets and archwires. It is not uncommon to have increases in plaque and gingivitis after placement of fixed appliances. The purpose of this study was to evaluate the effect of using a dental water jet (DWJ) with a specialized tip (orthodontic) on plaque and bleeding in adolescent orthodontic patients with fixed appliances. One hundred six subjects were enrolled in this single blind, parallel clinical study. They were randomly assigned to 1 of 3 treatment groups: group 1, once daily irrigation with a DWJ and orthodontic jet tip plus a manual toothbrush; group 2, once daily flossing (FL) plus a manual toothbrush; group 3, manual toothbrush (MT) only. Plaque index (PI) and bleeding index (BI) scores were recorded at baseline, and at 2 and 4 weeks. All groups showed statistically significant reductions in PI (whole mouth and interproximal) at 2 and 4 weeks (P plaque than the methods in the other groups (P >.001) at both 2 and 4 weeks, whereas the FL protocol in group 2 was significantly more effective than the MT protocol in group 3 at 4 weeks (P =.025) for whole-mouth plaque and at 2 and 4 weeks (P = .011 and P = .028, respectively) for interproximal plaque. All groups showed statistically significant reductions in BI (whole mouth and interproximal) at 2 and 4 weeks (P plaque and bleeding.

  20. High pressure water abrasive suspension JET cutting - An innovative cutting technology for the dismantling of reactor core components

    Energy Technology Data Exchange (ETDEWEB)

    Kalwa, H. [VAK, Kahl (Germany); Schwarz, T. [RWE NUKEM Limited, B7 Windscale, Seascale, Cumbria CA20 1PF (United Kingdom)

    2003-07-01

    In the frame of decommissioning of nuclear facilities the dismantling of reactor pressure vessels and their internals represent one special challenge. Due to their high activation, associated high dose rate levels, and to some extent the complex geometry and high material thickness of the components, there are particular demands for dismantling techniques. The task is to safely and economically work in every respect and therefore employ techniques with a wide area of application. As a proven technique, RWE NUKEM offers High Pressure Water Abrasive Suspension Jet Cutting. High pressure Water Abrasive Suspension Jet cutting (WASJ), well established in non-nuclear applications, has now been upgraded to meet the demands of decommissioning in the nuclear industry. The application at the Nuclear Power Plant in Kahl (VAK) was one of the first industrial scale applications. Based on several tests and parametric studies, High Water Abrasive Suspension Jet Cutting was tested against other cutting technologies. Because the overall performance in terms of fast and easy cutting operations, ability for remote handling, production of secondary waste WASJ was chosen at VAK Kahl for the dismantling of the lower core shroud and the reactor pressure vessel itself. The dismantling of the core shroud and the reactor vessel took place in-situ (component in its built-in position) using the WASJ technology. As example of application the core shroud of VAK is given. The total mass of the VAK lower shroud was about 3 tons and the wall thickness varied from 30 to 135 mm. The shroud was cut into segments in its in-vessel position, each segment being 500 x 900 mm and having a mass of about 0.25 tons. Cutting was performed in such a way that the separated pieces could be loaded directly into standard waste containers. All secondary waste (abrasives and dross) was collected in two 200 liter drums and, after drying, the drums were sent directly to waste storage. Reactor Pressure Vessel of VAK

  1. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

    Science.gov (United States)

    Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

    1999-08-01

    The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

  2. Theoretical Analysis and Experimental Study on the Coating Removal from Passenger-Vehicle Plastics for Recycling by Using Water Jet Technology

    Science.gov (United States)

    Zhang, Hongshen; Chen, Ming

    2015-11-01

    The recovery and utilization of automotive plastics are a global concern because of the increasing number of end-of-life vehicles. In-depth studies on technologies for the removal of coatings from automotive plastics can contribute to the high value-added levels of the recycling and utilization of automotive plastic. The liquid waste generated by removing chemical paint by using traditional methods is difficult to handle and readily produces secondary pollution. Therefore, new, clean, and highly efficient techniques of paint removal must be developed. In this article, a method of coating removal from passenger-vehicle plastics was generated based on high-pressure water jet technology to facilitate the recycling of these plastics. The established technology was theoretically analyzed, numerically simulated, and experimentally studied. The high-pressure water jet equipment for the removal of automotive-plastic coatings was constructed through research and testing, and the detailed experiments on coating removal rate were performed by using this equipment. The results showed that high-pressure water jet technology can effectively remove coatings on the surfaces of passenger-vehicle plastics. The research also revealed that the coating removal rate increased as jet pressure ( P) increased and then decreased when jet moving speed ( Vn) increased. The rate decreased as the distance from nozzle to work piece ( S nw ) and the nozzle angle ( Φ) increased. The mathematical model for the rate of removal of coatings from bumper surfaces by water jet was derived based on the experiment data and can effectively predict coating removal rate under different operating conditions.

  3. Chemical and biological structure and transport of a cool filament associated with a jet-eddy system of northern California in July 1986 (OPTOMA21)

    Science.gov (United States)

    Jones, Burton H.; Mooers, Christopher N. K.; Rienecker, Michele M.; Stanton, Tim; Washburn, Libe

    1991-01-01

    The distributions of nutrient, pigment, bio-optical, and physical variables were mapped in a jet-eddy system off Point Reyes and Point Arena, California, from July 7 to 19, 1986, in order to describe the 3D variability of the filament and its relation to the nutrient and phytoplankton distributions offshore, to examine the interaction between the filament and coastal water, and to estimate the transport of nutrients and phytoplankton by the jet system. Several cool filaments were distinguishable at distances of more than 35-50 km from the coast in satellite imagery during this period. The juxtaposition of these features as well as the presence of an offshore anticyclone and a cyclone south of the filament anchored to the coast at Point Arena led to complex patterns in all variables, aided by the apparent alongshore variability in the source of upwelled water. This structure has implications for the fluxes of organic material in the region and is probably significant in organizing the interactions among different trophic levels within the system.

  4. Nasal injury and comfort with jet versus bubble continuous positive airway pressure delivery systems in preterm infants with respiratory distress.

    Science.gov (United States)

    Khan, Jafar; Sundaram, Venkataseshan; Murki, Srinivas; Bhatti, Anuj; Saini, Shiv Sajan; Kumar, Praveen

    2017-12-01

    Nasal injuries with use of nasal continuous positive airway pressure (CPAP) range from blanching of nasal tip to septal necrosis and septal drop. This analysis was done in preterm neonates of Bubble device for delivery of CPAP, both through nasal prongs of different structure, make and fixation methods. Nasal injury was assessed using a validated nasal injury score. Out of 170 neonates enrolled, 103 (61%) had nasal injuries; moderate and severe injuries were observed in 18 (11%) and 8 (5%) infants, respectively. Septum was the most common site injured. The incidence and severity of nasal injury were significantly lesser in Jet group compared to Bubble group [RR 0.6 (95% C.I. 0.5-0.8); p Bubble group. However, Jet group neonates had significantly more common prong displacements. Bubble CPAP device with its nasal interface had higher and more serious incidence of nasal injuries in comparison to Jet CPAP device. What is known: • Nasal injuries are becoming increasingly common with use of nasal CPAP low gestational age, low birth weight, longer use of CPAP and longer NICU stay are risk factors for such injuries • Validated nasal injury scores have been created for assessment of nasal trauma in neonates What is new: • Bubble device with its interface had higher and more serious incidence of nasal injuries in comparison to Jet device • Even though pain assessed by N-PASS was less with Jet device, prong displacements were more frequent with its system.

  5. Modern precise high-power water-cooling systems for press quenching

    OpenAIRE

    A. Patejuk; J. Piwnik; M. Plata

    2009-01-01

    Demand for extrusions in transport applications is increasing rapidly. The extrusions must be strong, light, crashworthy and may have to undergo hydroforming. This implies low wall thicknesses (1-2½ mm) in strong alloys that need very fast quenching to obtain the required T4 temper. Crashworth iness – the ability to absorb a lot of energy in crushing deformation – demands very uniform properties throughout the section, and so does hydroforming. Various systems of water or air/water jets, with...

  6. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    Science.gov (United States)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  7. The near infrared imaging system for the real-time protection of the JET ITER-like wall

    Science.gov (United States)

    Huber, A.; Kinna, D.; Huber, V.; Arnoux, G.; Balboa, I.; Balorin, C.; Carman, P.; Carvalho, P.; Collins, S.; Conway, N.; McCullen, P.; Jachmich, S.; Jouve, M.; Linsmeier, Ch; Lomanowski, B.; Lomas, P. J.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; May-Smith, T.; Meigs, A.; Mertens, Ph; Nunes, I.; Price, M.; Puglia, P.; Riccardo, V.; Rimini, F. G.; Sergienko, G.; Tsalas, M.; Zastrow, K.-D.; contributors, JET

    2017-12-01

    This paper describes the design, implementation and operation of the near infrared (NIR) imaging diagnostic system of the JET ITER-like wall (JET-ILW) plasma experiment and its integration into the existing JET protection architecture. The imaging system comprises four wide-angle views, four tangential divertor views, and two top views of the divertor covering 66% of the first wall and up to 43% of the divertor. The operation temperature ranges which must be observed by the NIR protection cameras are, for the materials used on JET: Be 700 °C–1400 °C W coating 700 °C–1370 °C W bulk 700 °C–1400 °C. The Real-Time Protection system operates routinely since 2011 and successfully demonstrated its capability to avoid the overheating of the main chamber beryllium wall as well as of the divertor W and W-coated carbon fibre composite (CFC) tiles. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%–3% of the discharges were terminated due to the detection of actual hot spots.

  8. Environmental Assessment for the Maintenance, Upgrade, and Construction of the Jet Fuel Distribution System, Edwards Air Force Base, California

    Science.gov (United States)

    2009-01-01

    Antiperching devices shall be installed to deter birds from perching on structures. p. If bat roosts are encountered, the bats shall be removed by an...Compliance Branch Gerald Callahan Chief, Environmental Conservation Branch FINAL January 2009 88 Jet Fuel Distribution System EA Robert M

  9. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  10. The Issue Of Water Resources Diversification In Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Rak Janusz

    2015-11-01

    Full Text Available The aim of the paper is to present the methodology for determining the diversification degree of water resources in Collective Water Supply Systems (CWSS. Knowing the number of water supply sub-systems and their share in the total supply of water for CWSS, it is possible to calculate the dimensionless Pielou ratio. The paper presents the calculation of the diversification rate for 26 CWSS in Poland. The presented methodology makes it possible to compare CWSS with different water requirements.

  11. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  12. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  13. Assessment of two external telemetry systems (PhysioJacket and JET) in beagle dogs with telemetry implants.

    Science.gov (United States)

    Chui, Ray W; Fosdick, Abigail; Conner, Ra'Shun; Jiang, Jian; Bruenner, Bernd A; Vargas, Hugo M

    2009-01-01

    Regulatory guidelines recommend the use of conscious, unrestrained animals for comprehensive cardiovascular safety assessment of a new therapeutic agent. Cardiovascular safety pharmacology studies normally use internal telemetry (surgical implants) in free-moving animals to monitor key ECG endpoints, like the QTc interval, but this technical approach is highly resource intensive. In toxicology studies, ECG recording is also typically performed under chemical or physical restraint, which has a number of disadvantages, e.g., anesthesia confounds, handling stress and limited data collection. External telemetry for ECG recording has the potential to overcome many of these restraint limitations, with the benefit of being a surgically non-invasive method. To evaluate this method, we used two jacket systems: Data Sciences International (DSI) JET and Integrated Telemetry Systems (ITS) PhysioJacket in implanted beagle dogs. Heart rate and cardiac intervals were monitored continuously for 22-24 h following oral administration of vehicle (water) or 1 mg/kg E-4031. Data obtained from each jacket system was compared with implant-derived data in the same animal. Significant increases in QT/QTcV (25-30 ms) were noted following treatment with 1 mg/kg E-4031 in both external jacket systems and with implanted telemetry. Throughout the recording periods, the normal variations in heart rate and ECG intervals observed in conscious dogs as detected with the jacket systems, mirrored the changes observed via implant telemetry. The overall findings from this study support the use of external telemetry technology as a viable alternative to implants. The data demonstrated that jackets were sufficiently sensitive to detect QT/QTcV changes following E-4031 administration, that were comparable to those derived from implants. As such, this method is an invaluable tool for obtaining high quality ECG data from repeat-dose toxicology studies.

  14. Deep learning for plasma tomography using the bolometer system at JET

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Francisco A. [Instituto Superior Técnico (IST), University of Lisbon (Portugal); Ferreira, Diogo R., E-mail: diogo.ferreira@tecnico.ulisboa.pt [Instituto Superior Técnico (IST), University of Lisbon (Portugal); Carvalho, Pedro J. [Instituto de Plasmas e Fusão Nuclear (IPFN), IST, University of Lisbon (Portugal)

    2017-01-15

    Highlights: • Plasma tomography is able to reconstruct the plasma profile from radiation measurements along several lines of sight. • The reconstruction can be performed with neural networks, but previous work focused on learning a parametric model. • Deep learning can be used to reconstruct the full 2D plasma profile with the same resolution as existing tomograms. • We introduce a deep neural network to generate an image from 1D projection data based on a series of up-convolutions. • After training on JET data, the network provides accurate reconstructions with an average pixel error as low as 2%. - Abstract: Deep learning is having a profound impact in many fields, especially those that involve some form of image processing. Deep neural networks excel in turning an input image into a set of high-level features. On the other hand, tomography deals with the inverse problem of recreating an image from a number of projections. In plasma diagnostics, tomography aims at reconstructing the cross-section of the plasma from radiation measurements. This reconstruction can be computed with neural networks. However, previous attempts have focused on learning a parametric model of the plasma profile. In this work, we use a deep neural network to produce a full, pixel-by-pixel reconstruction of the plasma profile. For this purpose, we use the overview bolometer system at JET, and we introduce an up-convolutional network that has been trained and tested on a large set of sample tomograms. We show that this network is able to reproduce existing reconstructions with a high level of accuracy, as measured by several metrics.

  15. A protection system for the JET ITER-like wall based on imaging diagnostics.

    Science.gov (United States)

    Arnoux, G; Devaux, S; Alves, D; Balboa, I; Balorin, C; Balshaw, N; Beldishevski, M; Carvalho, P; Clever, M; Cramp, S; de Pablos, J-L; de la Cal, E; Falie, D; Garcia-Sanchez, P; Felton, R; Gervaise, V; Goodyear, A; Horton, A; Jachmich, S; Huber, A; Jouve, M; Kinna, D; Kruezi, U; Manzanares, A; Martin, V; McCullen, P; Moncada, V; Obrejan, K; Patel, K; Lomas, P J; Neto, A; Rimini, F; Ruset, C; Schweer, B; Sergienko, G; Sieglin, B; Soleto, A; Stamp, M; Stephen, A; Thomas, P D; Valcárcel, D F; Williams, J; Wilson, J; Zastrow, K-D

    2012-10-01

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  16. A protection system for the JET ITER-like wall based on imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2012-10-15

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  17. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  18. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  19. Transferência de massa em sistemas de aeração por jatos bifásicos Mass transfer in two-phase jet aeration systems

    Directory of Open Access Journals (Sweden)

    Iran Eduardo Lima Neto

    2013-03-01

    Full Text Available A injeção de misturas de ar e água na forma de jatos bifásicos é bastante usada para a aeração artificial em tanques e corpos hídricos. No presente trabalho, foram realizados experimentos para investigar a transferência de massa induzida por estes jatos em um tanque de aeração. Os resultados forneceram eficiências de transferência de oxigênio padrão variando entre aproximadamente 5 e 9%. Combinando-se os dados obtidos nesta pesquisa com os disponíveis na literatura, foram geradas correlações adimensionais para o coeficiente de transferência de massa em função da fração volumétrica de ar e do número de Froude densimétrico. Finalmente, os resultados foram aplicados a situações práticas envolvendo sistemas de aeração por jatos bifásicos.The injection of air-water mixtures through two-phase jets is widely used for artificial aeration in tanks and water bodies. In this study, experiments were conducted to investigate mass transfer induced by such jets in an aeration tank. The results provided standard oxygen transfer efficiencies ranging from about 5 to 9%. Combining the results obtained here with those from previous investigations allowed to generate dimensionless correlations for the mass transfer coefficient as a function of the gas volume fraction and the densimetric Froude number. Finally, the results were applied to practical situations involving two-phase jet aeration systems.

  20. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  1. Safe Drinking Water Information System (SDWIS) Drinking Water Well Sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of drinking water wells. These well locations are part of the safe drinking water information system (SDWIS)....

  2. Shower Water Reuse System-Expanded Operations to Laundry Water

    Science.gov (United States)

    2014-09-01

    Laundry rinse water carries dilute soaps and dirt. Detergents, bleaches, and disinfectants are a significant risk to plants and soils, while some...sulfate is designated as a hazardous substance 311(b)(2)(A) of the Federal Water Pollution Control Act and further regulated by the Clean Water Act...Footprint Camp Program September 2014 Shower Water Reuse System- Expanded Operations to Laundry Water Work Unit WW13-01 Prepared by Valerie H. Adams, Ph.D

  3. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  4. 3D Printing-Based Integrated Water Quality Sensing System.

    Science.gov (United States)

    Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina

    2017-06-08

    The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology-material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting-to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively.

  5. An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system

    Science.gov (United States)

    Gandhi, P.; Bachetti, M.; Dhillon, V. S.; Fender, R. P.; Hardy, L. K.; Harrison, F. A.; Littlefair, S. P.; Malzac, J.; Markoff, S.; Marsh, T. R.; Mooley, K.; Stern, D.; Tomsick, J. A.; Walton, D. J.; Casella, P.; Vincentelli, F.; Altamirano, D.; Casares, J.; Ceccobello, C.; Charles, P. A.; Ferrigno, C.; Hynes, R. I.; Knigge, C.; Kuulkers, E.; Pahari, M.; Rahoui, F.; Russell, D. M.; Shaw, A. W.

    2017-12-01

    Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched1-3. Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial4-8. Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of ≲103 Schwarzschild radii for the main inner optical emission zone above the black hole9, constraining both internal shock10 and magnetohydrodynamic11 models. Similarities with blazars12,13 suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags8,14,15, so this size scale may be a defining feature of such systems.

  6. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  7. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  8. Monitoring systems for community water supplies

    Science.gov (United States)

    Taylor, R. E.; Brooks, R. R.; Jeffers, E. L.; Linton, A. T.; Poel, G. D.

    1978-01-01

    Water monitoring system includes equipment and techniques for waste water sampling sensors for determining levels of microorganisms, oxygen, chlorine, and many other important parameters. System includes data acquisition and display system that allows computation of water quality information for real time display.

  9. Modern precise high-power water-cooling systems for press quenching

    Directory of Open Access Journals (Sweden)

    A. Patejuk

    2009-04-01

    Full Text Available Demand for extrusions in transport applications is increasing rapidly. The extrusions must be strong, light, crashworthy and may have to undergo hydroforming. This implies low wall thicknesses (1-2½ mm in strong alloys that need very fast quenching to obtain the required T4 temper. Crashworth iness – the ability to absorb a lot of energy in crushing deformation – demands very uniform properties throughout the section, and so does hydroforming. Various systems of water or air/water jets, with and without scanning, with and withoutarrangements for precisely aiming the jets, have proved effective for less difficult alloys in wall thicknesses down to 3 mm. These areunsuitable for the new types of transport extrusions, either inducing physical distortion or non-uniform mechanical properties. A novelcooling system that satisfies the new requirements uses laminar water jets of 50-250 μm diameter in a densely packed array of up to10/cm2. These are arranged in modules whose position and direction of aim can be adjusted relative to the part of the extrusion they cool,assuring linear cooling of all parts of the section at up to 500 K/s. The array of modules is very compact and not expensive. A sophisticated system of water microfiltration ensures that the fine nozzles do not become blocked.

  10. On the mathematic simulation of the energy efficiency for heat exchangers with the systems of impingement plane-parallel jets

    Directory of Open Access Journals (Sweden)

    Haritonova Larisa

    2017-01-01

    Full Text Available The article gives the analytical generalization of the data on the energy efficiency for heat exchangers with the flat heat exchange surface to which systems of impact plane parallel jets are sent. Functional relations of specific power consumption (per unit of area, which were obtained for the first time using the techniques of the similarity law, for moving a heat carrier are shown with regard to design and operation factors. The regression equations representing a mathematical model of the process enable to carry out an analysis of various factors impact on the parameter to be determined. The obtained results can be used to optimize or to create the calculation techniques for new highly-efficient heat exchange devices with jet plane -parallel impingement systems and also to reduce power consumption for moving a heat carrier.

  11. Experimental and simulation testing of thermal loading in the jet tabs of a thrust vector control system

    Directory of Open Access Journals (Sweden)

    Živković Saša Ž.

    2016-01-01

    Full Text Available The paper discusses the temperature changes in mechanical jet tabs in a system of rocket motor thrust vector control, estimated by the simulation and experimental tests methodology. The heat transfer calculation is based on complex computational fluid dynamics simulations of both the nozzle and external tab flows, as the comprehensive integral flow zones with high flow parameters gradients. Due to a complexity of the model for flow calculations, the experimental estimation of the calculated results is carried out. The temperature is measured by jet tabs embedded thermocouples, and conducted through the rocket motor static tests. A good agreement of the calculated and measured results is achieved. The main aim of the developed method is to establish an approved calculation tool for designing new TVC systems in order to avoid disadvantages due to overheating.

  12. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  13. INVESTIGATION SURFACE ROUGHNESS AND CHARACTERIZATION OF CUTTING FRONT SIDE GEOMETRY IN THE CUTTING OF AISI 1030 MATERIAL WITH ABRASIVE WATER JET

    Directory of Open Access Journals (Sweden)

    Adnan AKKURT

    2009-01-01

    Full Text Available Abrasive water jet (AWJ is used as a new and alternative cutting technique in industry to form the materials that are hard to cut. In this study, AISI 1030 steel samples in different thickness were cut with AWJ process. The samples were cut with different cutting speeds. The effect of cutting speed on the surface characteristics was investigated. The results of the study show that AWJ can be used as an effective cutting process to form sharp corners and edges.

  14. Study on similar model of high pressure water jet impacting coal rock

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    Based on the similarity theory and dimensional analysis, the similarity criterion of the coal rock mechanical parameters were deduced. The similar materials were mainly built by the cement, sand, nitrile rubber powder and polystyrene, by controlling the water-cement ratio, cement-sand ratio, curing time and additives volume ratio. The intervals of the factors were obtained by carrying out series of material compression tests. By comparing the basic mechanical parameters such as the bulk density, compressive strength, Poisson ratio and elastic modulus between the coal rock prototype and similar materials, the optimal producing proposal of the coal rock similar materials was generated based on the orthogonal design tests finally.

  15. Vibration analysis of land mine detection using high-pressure water jets

    Science.gov (United States)

    Denier, Robert; Herrick, Thomas J.

    2000-08-01

    The goal of the waterjet-based mine location and identification project is to investigate the use of waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjet, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground.

  16. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates

    DEFF Research Database (Denmark)

    Ploug, H.; Jørgensen, BB

    1999-01-01

    A flow system was developed which enables studies of hydrodynamics and mass transfer in freely sinking aggregates. The aggregates stabilized their positions in the water phase at an upward flow Velocity which balanced and opposed the sinking velocity of the individual aggregate. The flow field...

  17. Image analysis of jet structure on electrospinning from free liquid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Jiri, E-mail: jiri.kula@tul.cz; Linka, Ales, E-mail: ales.linka@tul.cz; Tunak, Maros, E-mail: maros.tunak@tul.cz [Department of Textile Evaluation, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic); Lukas, David, E-mail: david.lukas@tul.cz [Department of Nonwoven and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic); Centre for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic)

    2014-06-16

    The work analyses intra-jet distances during electrospinning from a free surface of water based poly(vinyl alcohol) solution confined by two thin metallic plates employed as a spinning electrode. A unique computer vision system and digital image processing were designed in order to track position of every polymer jet. Here, we show that jet position data are in good compliance with theoretically predicted intra-jet distances by linear stability analysis. Jet density is a critical parameter of electrospinning technology, since it determines the process efficiency and homogeneity of produced nanofibrous layer. Achievements made in this research could be used as essential approach to study jetting from two-dimensional spinning electrodes, or as fundamentals for further development of control system related to Nanospider{sup ™} technology.

  18. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  19. Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  20. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  1. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  2. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  3. The size and performance effects of high lift system technology on a modern twin engine jet transport

    Science.gov (United States)

    Sullivan, R. L.

    1979-01-01

    The energy and economic benefits of low-speed aerodynamic system technology applied to a modern 200-passenger, 2000-nmi range, twin engine jet transport are reviewed. Results of a new method to design flap systems at flight Reynolds number are summarized. The study contains the airplane high lift configuration drag characteristics and design selection charts showing the effect of flap technology on the airplane size and performance. The study areas include: wing and flap geometry, climb and descent speed schedules with partial flap deflection, flap system technology, and augmented stability. The results compare the improvements in payload from a hot, high elevation airport.

  4. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  5. Water activity in polyol/water systems: new UNIFAC parameterization

    Science.gov (United States)

    Marcolli, C.; Peter, Th.

    2005-06-01

    Water activities of a series of polyol/water systems were measured with an AquaLab dew point water activity meter at 298K. The investigated polyols with carbon numbers from n=2-7 are all in liquid state at room temperature and miscible at any molar ratio with water. In aqueous solutions with the same molar concentration, the diols with lower molecular weight lead to lower water activities than those with higher molecular weights. For diols with four or more carbon atoms, the hydrophilicity shows considerable differences between isomers: The 1,2-isomers - consisting of a hydrophilic and a hydrophobic part - bind less strongly to water than isomers with a more balanced distribution of the hydroxyl groups. The experimental water activities were compared with the predictions of the group contribution method UNIFAC: the model predictions overestimate the water activity of water/polyol systems of substances with two or more hydroxyl groups and can not describe the decreased binding to water of isomers with hydrophobic tails. To account for the differences between isomers, a modified UNIFAC parameterization was developed, that allows to discriminate between three types of alkyl groups depending on their position in the molecule. These new group interaction parameters were calculated using water activities of alcohol/water mixtures. This leads to a distinctly improved agreement of model predictions with experimental results while largely keeping the simplicity of the functional group approach.

  6. Water activity in polyol/water systems: new UNIFAC parameterization

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2005-01-01

    Full Text Available Water activities of a series of polyol/water systems were measured with an AquaLab dew point water activity meter at 298K. The investigated polyols with carbon numbers from n=2-7 are all in liquid state at room temperature and miscible at any molar ratio with water. In aqueous solutions with the same molar concentration, the diols with lower molecular weight lead to lower water activities than those with higher molecular weights. For diols with four or more carbon atoms, the hydrophilicity shows considerable differences between isomers: The 1,2-isomers - consisting of a hydrophilic and a hydrophobic part - bind less strongly to water than isomers with a more balanced distribution of the hydroxyl groups. The experimental water activities were compared with the predictions of the group contribution method UNIFAC: the model predictions overestimate the water activity of water/polyol systems of substances with two or more hydroxyl groups and can not describe the decreased binding to water of isomers with hydrophobic tails. To account for the differences between isomers, a modified UNIFAC parameterization was developed, that allows to discriminate between three types of alkyl groups depending on their position in the molecule. These new group interaction parameters were calculated using water activities of alcohol/water mixtures. This leads to a distinctly improved agreement of model predictions with experimental results while largely keeping the simplicity of the functional group approach.

  7. Optimization Program for Drinking Water Systems

    Science.gov (United States)

    The Area-Wide Optimization Program (AWOP) provides tools and approaches for drinking water systems to meet water quality optimization goals and provide an increased – and sustainable – level of public health protection to their consumers.

  8. HAWQS (Hydrologic and Water Quality System)

    Science.gov (United States)

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  9. Water activity in polyol/water systems: new UNIFAC parameterization

    OpenAIRE

    Marcolli, C.; Peter, Th.

    2005-01-01

    Water activities of a series of polyol/water systems were measured with an AquaLab dew point water activity meter at 298 K. The investigated polyols with carbon numbers from n=2–7 are all in liquid state at room temperature and miscible at any molar ratio 5 with water. In aqueous solutions with the same mass concentration, the diols with lower molecular weight lead to lower water activities than those with higher molecular weights. For diols with four or more carbon atoms, the hygro...

  10. Cleanup of a jet fuel spill

    Science.gov (United States)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  11. Stability of liquid-nitrogen-jet laser-plasma targets

    Science.gov (United States)

    Fogelqvist, E.; Kördel, M.; Selin, M.; Hertz, H. M.

    2015-11-01

    Microscopic jets of cryogenic substances such as liquid nitrogen are important regenerative high-density targets for high-repetition rate, high-brightness laser-plasma soft x-ray sources. When operated in vacuum such liquid jets exhibit several non-classical instabilities that negatively influence the x-ray source's spatial and temporal stability, yield, and brightness, parameters that all are important for applications such as water-window microscopy. In the present paper, we investigate liquid-nitrogen jets with a flash-illumination imaging system that allows for a quantitative stability analysis with high spatial and temporal resolution. Direct and indirect consequences of evaporation are identified as the key reasons for the observed instabilities. Operating the jets in an approximately 100 mbar ambient atmosphere counteracts the effects of evaporation and produces highly stable liquid nitrogen jets. For operation in vacuum, which is necessary for the laser plasmas, we improve the stability by introducing an external radiative heating element. The method significantly extends the distance from the nozzle that can be used for liquid-jet laser plasmas, which is of importance for high-average-power applications. Finally, we show that laser-plasma operation with the heating-element-stabilized jet shows improved short-term and long-term temporal stability in its water-window x-ray emission.

  12. Behavior of a wave-driven buoyant surface jet on a coral reef

    Science.gov (United States)

    Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.

    2017-01-01

    A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.

  13. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  14. Application of abrasive water suspension jets for dismantling of metallic structural components; Anwendung von Wasserabrasivsuspensionsstrahlen zur Zerlegung metallischer Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.

    1999-07-01

    Abrasive water suspension jets continue to open up new applications in the dismantling of nuclear installations because of their specific cutting capabilities and other advantages. The progress report in hand examines possibilities for drastic reduction of the volume of required liquids, accompanied by an enhancement of the cutting performance. This was achieved especially by increasing the operational pressure to 200 MPa. Based on experimentally derived data, a tool for optimization of the cutting performance was developed. This tool enables cutting work optimization by an assessment of optimal cutting parameters, also taking into account the specific boundary conditions. On the basis of the results achieved and reported in this publication, the WASS method could be applied on site for the first time in December 1997, for dismantling of the bottom part of the core shroud of the VAK experimental reactor facility at Kahl. (orig./CB) [German] Wasserabrasivsuspensionsstrahlen besitzen aufgrund ihrer verfahrensspezifischen Vorteile ein grosses Potential beim Rueckbau kerntechnischer Anlagen. Bisher scheiterte ein Einsatz des Verfahrens an der Menge des sekundaeren Abfalls. Im Rahmen der Arbeit werden Moeglichkeiten zur drastischen Reduzierung der eingesetzten Volumenstroeme bei gleichzeitiger Steigerung der Schnittleistung aufgezeigt. Dies wird insbesondere durch die Anhebung des Betriebsdruckes auf 200 MPa erreicht. Auf Basis experimentell ermittelter Daten ist ein Werkzeug zur Optimierung der Schnittleistung entwickelt worden. Dieses Werkzeug ermoeglicht die Abschaetzung optimaler Schneidparameter unter Beruecksichtigung der spezifischen Randbedingungen. Basierend auf den im Rahmen der vorliegenden Arbeit erzielten Ergebnisse konnte das WASS-Verfahren im Dezember 1997 erstmals unter realen Bedingungen im Versuchsatomkraftwerk, Kahl (VAK) zur Zerlegung des Kernmantelunterteils eingesetzt werden. (orig.)

  15. Extending the `energetic scaling of relativistic jets from black hole systems' to include γ-ray-loud X-ray binaries

    Science.gov (United States)

    Lamb, Gavin P.; Kobayashi, Shiho; Pian, Elena

    2017-11-01

    We show that the jet power Pj and geometrically corrected γ-ray luminosity Lγ for the X-ray binaries (XRBs) Cygnus X-1, Cygnus X-3, and V404 Cygni, and γ-ray upper limits for GRS 1915+105 and GX339-4, follow the universal scaling for the energetics of relativistic jets from black hole (BH) systems found by Nemmen et al. for blazars and GRBs. The observed peak γ-ray luminosity for XRBs is geometrically corrected, and the minimum jet power is estimated from the peak flux density of radio flares and the flare rise time. The Lγ-Pj correlation holds across ∼17 orders of magnitude. The correlation suggests a jet origin for the high-energy emission from XRBs, and indicates a common mechanism or efficiency for the high-energy emission 0.1-100 GeV from all relativistic BH systems.

  16. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  17. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  18. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    Energy Technology Data Exchange (ETDEWEB)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.; Frederick, G.S.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigma STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.

  19. Tissue dissection before direct manipulation to the pathology with pulsed laser-induced liquid jet system in skull base surgery--preservation of fine vessels and maintained optic nerve function.

    Science.gov (United States)

    Ogawa, Yoshikazu; Nakagawa, Atsuhiro; Washio, Toshikatsu; Arafune, Tatsuhiko; Tominaga, Teiji

    2013-10-01

    Most difficulties in skull base tumor removal are generally caused by adhesion of feeding arteries to the vital structures and cranial nerves. Water jet technology provides tissue dissectability with preservation of fine blood vessels both in experimental and clinical situations. However problems still remain regarding whether tumor removal with preservation of peripheral nerve function is possible or not. This clinical investigation evaluated functional preservation of peripheral nerves and dissectability with a newly developed pulsed laser-induced liquid jet (LILJ) system under intraoperative electrophysiological monitoring. The LILJ system was used to treat 21 patients with skull base tumors manifesting as severe visual disturbance through the extended transsphenoidal approach. The LILJ system consists of a bayonet-shaped catheter incorporating a jet generator, and total weight is around 7 g. Intraoperative visual evoked potential (VEP), and pre/postoperative conventional visual assessments were investigated. Precise dissections of the tumor were obtained, resulting in gross total removal in 19 of 21 patients. Two patients with meningiomas with tight adhesion to the origin of the lenticulostriate arteries had small remnants. Of the 21 patients, 16 showed immediate improvement on intraoperative VEP, 2 had no change, and 3 had prolonged latency, which required intermittent suspension of procedure. A total of 20 patients and 40 eyes showed good recovery at discharge, and all patients evaluated had recovered good visual status. The LILJ system can achieve safe and optimal removal with functional preservation of optic nerves, probably because of the high resistance of the arachnoidal sheath and fine vascular tissue.

  20. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  1. A system model for water management.

    Science.gov (United States)

    Schenk, Colin; Roquier, Bastien; Soutter, Marc; Mermoud, André

    2009-03-01

    Although generally accepted as a necessary step to improve water management and planning, integrated water resources management (IWRM) methodology does not provide a clear definition of what should be integrated. The various water-related issues that IWRM might encompass are well documented in the literature, but they are generally addressed separately. Therefore, water management lacks a holistic, systems-based description, with a special emphasis on the interrelations between issues. This article presents such a system model for water management, including a graphical representation and textual descriptions of the various water issues, their components, and their interactions. This model is seen as an aide-memoire and a generic reference, providing background knowledge helping to elicit actual system definitions, in possible combination with other participatory systems approaches. The applicability of the model is demonstrated through its application to two test case studies.

  2. Solar-powered hot-water system

    Science.gov (United States)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  3. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  4. Alternative Water Systems Project (India) | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Alternative Water Systems Project seeks to develop a point-of-use safe water system incorporating natural plant-derived coagulants, simple sari cloth filtration and chlorine disinfection for the control of waterborne diseases in South Asian slums. This is a technical approach that is simple, inexpensive, makes use of ...

  5. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  6. Air concentration distribution in deflector-jets

    OpenAIRE

    Chanson, H.; Toombes, L.; Pfister, Michael; Schwindt, Sebastian

    2014-01-01

    As an alternative to ski jumps, deflectors can be implemented on spillways to generate free jets. They guide, up to a certain limit, the jet to an achieved location onto the plunge pool surface, and furthermore enhance the process of jet disintegration. The present research addresses the following aspects, derived from physical model tests: (1) length and shape of the jet black-water core and further characteristic air concentration contour lines, (2) streamwise development of average and min...

  7. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    Science.gov (United States)

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 106 cm-3), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10-4M⊙ yr-1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M⊙) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  8. GPR-Based Water Leak Models in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    David Ayala–Cabrera

    2013-11-01

    Full Text Available This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.

  9. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  10. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  11. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  12. Small Drinking Water System Variances

    Science.gov (United States)

    Small system variances allow a small system to install and maintain technology that can remove a contaminant to the maximum extent that is affordable and protective of public health in lieu of technology that can achieve compliance with the regulation.

  13. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  14. Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system

    Science.gov (United States)

    Panda, Pratikash P.; Roa, Mario; Szedlacsek, Peter; Laster, Walter R.; Lucht, Robert P.

    2015-01-01

    Secondary injection of the fuel, also referred to as staged combustion, is being studied by gas turbine manufacturers as a means of increasing the power output of the gas turbine systems with minimal contribution to NO x emission. A reacting jet issuing into a swirling, vitiated crossflow operating at gas turbine relevant conditions was investigated as a means of secondary injection. In this study, the flow field of the reacting jet was investigated using high repetition rate (HRR) (5 kHz), two-component particle imaging velocimetry and OH-PLIF. In applications similar to the one currently studied in this work, viz. secondary injection of fuel in a gas turbine combustor, rapid mixing and chemical reaction in the near field of jet injection are desirable. Based on our analysis, it is hypothesized that the shear layer and wake field vortices play a significant role in stabilizing a steady reaction front within the near wake region of the jet. Premixed jets composed of natural gas and air were injected through an extended nozzle into the vitiated flow downstream of a low-swirl burner that produced the vitiated, swirled flow. The jet-to-crossflow momentum flux ratio was varied to study the corresponding effect on the flow field. The time-averaged flow field shows a steady wake vortex very similar to that seen in the wake of a cylindrical bluff body which helps to stabilize the reaction zone within the wake of the jet. The HRR data acquisition also provided temporally resolved information on the transient structure of the wake flow associated with the reacting jet in crossflow.

  15. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  16. Disinfection of water distribution systems for Legionella.

    Science.gov (United States)

    Lin, Y S; Stout, J E; Yu, V L; Vidic, R D

    1998-06-01

    Hospital-acquired legionnaires' disease arises from the presence of Legionella in hospital water systems. Legionella not only persists in hot water tanks but is also found in the biofilm throughout the entire water distribution system. Conditions within water systems that promote Legionella colonization include water temperature, configuration and age of the hot water tank, physicochemical constituents of the water, plumbing materials, and commensal microflora. Hospital-acquired legionnaires' disease has been prevented by instituting control measures directed at the water distribution system. These include superheat-and-flush, copper/silver ionization, ultraviolet light, instantaneous heating systems, and hyperchlorination. Each of the above disinfection methods has been proven to be effective in the short-term, but long-term efficacy has been difficult due to limitations associated with each method. The complexities of Legionella disinfection, including advantages and disadvantages of each method, are reviewed. A successful Legionella prevention program requires cooperation and communication among hospital administrative personnel, engineers, and infection control staff. Routine environmental surveillance cultures for Legionella are the critical component for successful long-term disinfection. Culture results document the efficacy of the disinfection method and alert the hospital staff to consider Legionella in hospitalized patients with pneumonia.

  17. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  18. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  19. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  20. A changing framework for urban water systems.

    Science.gov (United States)

    Hering, Janet G; Waite, T David; Luthy, Richard G; Drewes, Jörg E; Sedlak, David L

    2013-10-01

    Urban water infrastructure and the institutions responsible for its management have gradually evolved over the past two centuries. Today, they are under increasing stress as water scarcity and a growing recognition of the importance of factors other than the cost of service provision are forcing a reexamination of long-held ideas. Research and development that supports new technological approaches and more effective management strategies are needed to ensure that the emerging framework for urban water systems will meet future societal needs.

  1. 2013 Problem 8: Jet and Film

    Science.gov (United States)

    Zeng, Pei; Chen, Lan; Zhu, Kejing

    2015-10-01

    In this article, we investigate the interaction between the water jet and soap film under different jet speeds and incident angles. We consider two different phenomena- penetrating and non-penetrating, and their corresponding conditions. In the case of penetration, we seek for the relationship between the parameters of incident jet and emergent jet, calculate the shape of the film under specific occasions. In the case of non-penetration the jet may adhere to the surface of the film or bounce off the film several times. Depending on the incident angle and velocity of the jet, the film will be found in stable and unstable patterns. We calculate the shape of the jet and the film under different conditions and found the patterns in experimental observations. Finally we portrait a `phase diagram' illustrating the conditions for different forms of jet and film interaction.

  2. Charged-particle multiplicity in three-jet events and two-gluon systems

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2005-01-01

    The charged particle multiplicity in hadronic three-jet events from Z decays is investigated. The topology dependence of the event multiplicity is found to be well described by a modified leading logarithmic prediction. A parameter fit of the prediction to the data yields a measurement of the colour factor ratio C_A/C_F with the result C_A/C_F = 2.261 +/- 0.014 (stat.) +/- 0.036 (exp.) +/- 0.066 (theo.) in agreement with the SU(3) expectation of QCD. The quark-related contribution to the event multiplicity is subtracted from the three-jet event multiplicity resulting in a measurement of the multiplicity of two-gluon colour-singlet states over a wide energy range. The ratios r=N_{gg}(s)/N_{q qbar}(s) of the gluon and quark multiplicities and r^{(1)}=N_{gg}'(s)/N_{q qbar}'(s) of their derivatives are compared with perturbative calculations. While a good agreement between calculations and data is observed for r^{(1)}, larger deviations are found for r indicating that non-perturbative effects are more important f...

  3. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-07-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2{pi} The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( {approx} 2{pi} ). (Author) 2 refs.

  4. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  5. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  6. Liquid jets injected into non-uniform crossflow

    Science.gov (United States)

    Tambe, Samir

    An experimental study has been conducted with liquid jets injected transversely into a crossflow to study the effect of non-uniformities in the crossflow velocity distribution to the jet behavior. Two different non-uniform crossflows were created during this work, a shear-laden crossflow and a swirling crossflow. The shear-laden crossflow was generated by merging two independent, co-directional, parallel airstreams creating a shear mixing layer at the interface between them. The crossflow exhibited a quasi-linear velocity gradient across the height of the test chamber. By varying the velocities of the two airstreams, the sense and the slope of the crossflow velocity gradient could be changed. Particle Image Velocimetry (PIV) studies were conducted to characterize the crossflow. The parameter, UR, is defined as the ratio of the velocities of the two streams and governs the velocity gradient. A positive velocity gradient was observed for UR > 1 and a negative velocity gradient for UR 1), jet penetration increased and the Sauter Mean Diameter (SMD) distribution became more uniform. For low UR (designed axial swirlers. Three swirlers were used, with vane exit angles of 30°, 45° and 60°. Laser Doppler Velocimetry (LDV) was used to study the crossflow velocities. The axial (Ux) and the tangential (Utheta) components of the crossflow velocity were observed to decrease with increasing radial distance away from the centerbody. The flow angle of the crossflow was smaller than the vane exit angle, with the difference increasing with the vane exit angle. Water jets were injected from a 0.5 mm diameter orifice located on a cylindrical centerbody. Multi-plane PIV measurements were conducted to study the penetration and droplet velocity distribution of the jets. The jets were observed to follow a path close to the helical trajectory of the crossflow with a flow angle slightly less than the crossflow. This deficit in flow angle is attributed to the centrifugal acceleration

  7. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    Science.gov (United States)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  8. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    Science.gov (United States)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  9. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  10. Dynamics of swirling jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ivanic, T.; Foucault, E.; Pecheux, J. [Laboratoire d' Etudes Aerodynamiques (L.E.A. CNRS UMR 6609), Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86960, Futuroscope Chasseneuil Cedex (France)

    2003-10-01

    Experimental investigations of near-field structure of coaxial flows are presented for four different configurations: coaxial jets without rotation (reference case), outer flow rotating only (OFRO), inner-jet rotating only (IJRO) and corotating jets (CRJ). The investigations are performed in a cylindrical water tunnel, with an independent rotation of two coaxial flows. Laser tomography is used to document the flow field, and photographs are shown for different configurations. Time mean velocity profiles obtained by PIV, with and without swirl, are also presented. The dynamics of the swirling jets in the initial region (i.e. near the exit of the jets) is described. The effects of azimuthal velocity and axial velocity ratio variations on flow dynamics are examined. The appearance and growth of the first instabilities are presented and compared with some theoretical results, as is the influence of the rotation (inner or outer) on the dominating structures. (orig.)

  11. Drop-in Jet and Diesel Fuels from Renewable Oils

    Science.gov (United States)

    2011-05-11

    Hydrothermolysis (CH) Process • CH Product Chemistry • Naphtha Data • Recent Algal Oil Tests • Byproduct Potential • Pilot System • Engineering Challenges...Optional Hydrolysis Primary CH Hydrothermolysis Jet – 25-50% Cycloparaffins LPG-Olefins C5-C9 acids C1-C4 acidsGlycerin Naphtha – 25-40% Water Diesel

  12. Development of a multiphysics analysis system for sodium-water reaction phenomena in steam generators of sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki [Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki (Japan)

    2015-12-31

    A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integrated into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.

  13. Family of Packaged Water/Packaged Water System

    Science.gov (United States)

    1994-03-01

    equipment were surveyed. These companies were selected from: a. Thomas Register - Pharmaceutical , Blood Processing Equipment, and Intravenous Equipment...Engineering Center, ASTM- CCM , Fort Lee, VA. 4. U.S. Army Quartermaster Center and School. 1992. Draft Study Plan for the Packaged Water System

  14. Implementation of one and three dimensional models for heat transfer coeffcient identification over the plate cooled by the circular water jets

    Science.gov (United States)

    Malinowski, Zbigniew; Cebo-Rudnicka, Agnieszka; Hadała, Beata; Szajding, Artur; Telejko, Tadeusz

    2017-10-01

    A cooling rate affects the mechanical properties of steel which strongly depend on microstructure evolution processes. The heat transfer boundary condition for the numerical simulation of steel cooling by water jets can be determined from the local one dimensional or from the three dimensional inverse solutions in space and time. In the present study the inconel plate has been heated to about 900 °C and then cooled by six circular water jets. The plate temperature has been measured by 30 thermocouples. The heat transfer coefficient and the heat flux distributions at the plate surface have been determined in time and space. The one dimensional solutions have given a local error to the heat transfer coefficient of about 35%. The three dimensional inverse solution has allowed reducing the local error to about 20%. The uncertainty test has confirmed that a better approximation of the heat transfer coefficient distribution over the cooled surface can be obtained even for limited number of thermocouples. In such a case it was necessary to constrain the inverse solution with the interpolated temperature sensors.

  15. Measurement of the jet energy resolution in ATLAS

    CERN Document Server

    Psoroulas, S; The ATLAS collaboration

    2011-01-01

    The jet energy resolution can be determined in in-situ from the measurement of the transverse momentum balance of a system of two jets (transverse momentum asymmetry). The measurement is based on the direct transverse momentum balance and a decomposition of the transverse jet momentum along the bi-sector of the two jets. Good agreement between data and Monte Carlo simulations is found. Sophisticated jet calibration schemes based on cell energy weighting or exploiting the internal jet structure are also presented.

  16. Hydro static water level systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  17. The effect of the low-level jet on the poleward water vapour transport in the central region of South America

    Science.gov (United States)

    Berri, Guillermo J.; Inzunza, Juan B.

    The low-level jet (LLJ) in the central region of South America is studied. This LLJ is generated by the daily cycle of convergence and divergence east of the Andes Mountains. We use the 1973-1974 radiosonde and pilot balloon data set from the upper air weather stations, Salta and Resistencia, in northern Argentina to select 10 LLJ cases and another 10 NoLLJ cases (when the LLJ is not present). We use the University of Utah Mesoscale Model to simulate these situations in order to obtain a high-resolution low-level wind field. These model predictions are then used to calculate the meridional water vapour transport across a vertical cross-section, along 26°S in central South America. The results reveal that the LLJs are a very effective mechanism for the poleward water vapour transport.

  18. Upgrades to the ISS Water Recovery System

    Science.gov (United States)

    Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.

    2016-01-01

    The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.

  19. Further testing of solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Watson, M.

    2002-07-01

    In a study for the DTI, the Energy Monitoring Company compared the amount of energy which eight solar water heaters could generate. The systems were operated side by side over about six months. In one series of tests the systems were operated entirely as solar systems, and in another, auxiliary top-up heating was applied. The two systems were evaluated and the relative advantages/disadvantages discussed.

  20. Amoxicillin in a biological water recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Morse, A.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Lubbock, Texas (United States); Pickering, K. [Johnson Space Center, NASA, Houston, Texas (United States)

    2002-06-15

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO{sub 3}{sup -} and NO{sub 2}{sup -} as the e{sup -} acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities

  1. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  2. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    has been compared with diesel, wind and hand pump systems and found to be .... motor and may also include maximum power point tracker and ... performance. Commercially available PY water pumping systems are in a variety of configurations. p. (a). DC Motor + Pump. PV. Array. (b). Inverter. AC Motor + Pump. Figure 2 ...

  3. Measurement of the jet energy resolution in ATLAS

    CERN Document Server

    Psoroulas, S; The ATLAS collaboration

    2011-01-01

    The jet energy resolution can be determined in in-situ from the measurement of the transverse momentum balance of a system of two jets (transverse momentum asymmetry). The measurement is based on the direct transverse momentum balance and a decomposition of the transverse jet momentum along the bi-sector of the two jets. Good agreement between data and Monte Carlo simulations is found. Sophisticated jet calibration schemes based on cell energy weighting or exploiting the internal jet structure are also presented. Such calibration schemes improve the jet resolution by 20-30% and in addition reduce the flavour dependence of the jet response.

  4. Generation and Diffusion of Innovations in a District Innovation System: The Case of Ink-Jet Printing

    Directory of Open Access Journals (Sweden)

    Yolanda Reig-Otero

    2014-06-01

    Full Text Available This paper provides an in-depth case study of the ink-jet printing (IJP technology that emerged from the ceramic industry in a Spanish region (Castellon in the first decade of 2000. We propose an analytical framework that combines the theoretical perspectives of Industrial Districts and Innovation Systems, and exploit a qualitative methodology that includes information from patent and scientific article databases and 21 in-depth interviews. Our results show that IJP is a major innovation that breaks with the tradition of machinery innovations in this industry in Spain. Micro-level evidences show the complex external and internal relationships in the sharing of knowledge and innovation process, being the role of internal ties, trust, secrecy and strong in-house R&D strategies determinants of the IJP innovation.

  5. Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed jet mixing flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Saga, T.; Kobayashi, T.; Taniguchi, N. [Inst. of Industrial Science, Univ. of Tokyo (Japan); Yasuki, M. [Industrial Instruments Dept., Seika Corp., Tokyo (Japan)

    2001-09-01

    The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out

  6. Energy optimization of water distribution system

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  7. Water injected fuel cell system compressor

    Science.gov (United States)

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  8. Performance Analysis of Photovoltaic Water Heating System

    OpenAIRE

    Tomas Matuska; Borivoj Sourek

    2017-01-01

    Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized loa...

  9. SPHERE/ZIMPOL observations of the symbiotic system R Aquarii : I. Imaging of the stellar binary and the innermost jet clouds

    NARCIS (Netherlands)

    Schmid, H.M.; Bazzon, A.; Milli, J.; Roelfsema, R.; Engler, N.; Mouillet, D.; Lagadec, E.; Sissa, E.; Sauvage, J.-F.; Ginski, C.; Baruffolo, A.; Beuzit, J.L.; Boccaletti, A.; Bohn, A.J.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Gisler, D.; Girard, J.H.; Gratton, R.; Henning, T.; Hubin, N.; Joos, F.; Kasper, M.; Langlois, M.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S.P.; Salasnich, B.; Siebenmorgen, R.; Stute, M.; Suarez, M.; Szulágyi, J.; Thalmann, C.; Turatto, M.; Udry, S.; Vigan, A.; Wildi, F.

    Context. R Aqr is a symbiotic binary system consisting of a mira variable, a hot companion with a spectacular jet outflow, and an extended emission line nebula. Because of its proximity to the Sun, this object has been studied in much detail with many types of high resolution imaging and

  10. Pileup Jet Identification

    CERN Document Server

    CMS Collaboration

    2013-01-01

    High pileup in LHC collisions can increase incidence of jets by several large factors. To reduce the incidence of jets from pileup and to preserve the rate of good jets, a jet identification based on both vertex information and jet shape information has been developed. The construction of this jet identifier is described and the performances are evaluated using both Z+jets MC simulated samples and Z+jets data collected in the 2012 $\\sqrt{s}=8$ TeV run. The effectiveness of this jet identifier is discussed in the context of jet vetoes and vector boson fusion production.

  11. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  12. Mean droplet size and local velocity in horizontal isothermal free jets of air and water, respectively, viscous liquid in quiescent ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Al Rabadi, S.; Friedel, L. [Fluid Mechanics Institute, Technical University of Hamburg-Harburg (Germany); Al Salaymeh, A. [Mechanical Engineering Department, University of Jordan (Jordan)

    2007-01-15

    Measurements using two-dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid-phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  14. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders.

    Science.gov (United States)

    Mostafaei, Amir; Hughes, Eamonn T; Hilla, Colleen; Stevens, Erica L; Chmielus, Markus

    2017-02-01

    Binder jet printing (BJP) is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1-3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017) [4].

  15. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  16. Hard scale abrasive jetting removal system: a solution for Brazilian offshore operations

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Iuri [Schlumberger, Rio de Janeiro, RJ (Brazil); Quiroga, Marcelo H.; Calmeto, Joao C.; Assis, Carlos A.; Pinto, Salvador L. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Scale deposition in producing well bores is becoming a serious problem to the oil industry. On situations of injected seawater breakthrough, the problem is especially difficult, since the growth is often Barium or Strontium Sulfate, which are almost completely insoluble. Further growth will decrease the flowing area and hinder the production. Ultimately the scale can restrict the production tubing to such a degree preventing access for tools into lower sections of the well and finally it can bridge over completely. The range of options for scale removal goes from a simple brush run using slick line or basic chemical treatment up to a full rig work over to replace the production string. Very often through tubing treatments using coiled tubing are used due to the savings compared to rig cost. This technology can convey tools for mechanical scale removal and also works as a fluid conduit for chemical treatments. The objective of this paper is to describe the coiled tubing abrasive jetting technology used to successfully clean, for the first time, production tubing in Brazilian offshore operations, heavily affected by Barium Sulfate scale in and its impact on the well economics. (author)

  17. Dynamic water vapor and temperature calibration system.

    Science.gov (United States)

    Montague, F W; Primiano, F P; Saidel, G M

    1984-06-01

    The objective evaluation of thermal and humidification processes in the pulmonary system requires accurate dynamic measurements of temperature and water vapor concentration of a flowing gas mixture. The adequacy of instruments used for such measurements can only be determined by dynamic calibration techniques. We have developed a method of producing step changes in temperature and water vapor content of a gas mixture undergoing controlled steady flow. The system consists of two reservoirs and a slide valve that switches a test section between them. The inlet (usually a probe or catheter tip) of the device to be calibrated is positioned in the test section. The flow rate through the test section is minimally changed during the transition between gas from one reservoir to that of the other. The system has been used to analyze the response of a thermistor and a respiratory mass spectrometer to changes in gas temperature and water vapor.

  18. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  19. Global resilience analysis of water distribution systems.

    Science.gov (United States)

    Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David

    2016-12-01

    Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mechanism of bullet-to-streamer transition in water surface incident helium atmospheric pressure plasma jet (APPJ)

    Science.gov (United States)

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Su-Jeong; Bae, Byeongjun; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2016-09-01

    The mechanism of bullet to streamer transition of helium-APPJ bullet on the electrolyte surface was investigated. The APPJ was discharged in pin-to-ring DBD reactor system with helium gas by applying the ac-driven voltage at a frequency of 10 kHz. The water evaporation was controlled via saline temperature. The temporal- and 2-dimensional spatially- resolved plasma properties are monitored by optical diagnostics. During the APPJ bullet propagation from reactor to electrolyte surface, the transition of bullet from streamer was recognized from the high speed image, hydrogen beta emission line, and bullet propagation speed. The He metastable species density profiles from the tunable diode laser absorption spectroscopy (TDLAS) showed the metastable lost the energy near electrolyte surface. It is found that the bullet transited to streamer when the water fraction reached to 29%. This can be fascinating result to study the plasma physics liquid surface, non-fixed boundary. Acknowledgements: This work was partly supported by R&D Program of `Plasma Advanced Technology for Agriculture and Food (Plasma Farming)' through the National Fusion Research Institute of Korea (NFRI) funded by the Government fund was carried out as part.

  1. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  2. Conceptual Analysis of System Average Water Stability

    Science.gov (United States)

    Zhang, H.

    2016-12-01

    Averaging over time and area, the precipitation in an ecosystem (SAP - system average precipitation) depends on the average surface temperature and relative humidity (RH) in the system if uniform convection is assumed. RH depends on the evapotranspiration of the system (SAE - system average evapotranspiration). There is a non-linear relationship between SAP and SAE. Studying this relationship can lead mechanistic understanding of the ecosystem health status and trend under different setups. If SAP is higher than SAE, the system will have a water runoff which flows out through rivers. If SAP is lower than SAE, irrigation is needed to maintain the vegetation status. This presentation will give a conceptual analysis of the stability in this relationship under different assumed areas, water or forest coverages, elevations and latitudes. This analysis shows that desert is a stable system. Water circulation in basins is also stabilized at a specific SAP based on the basin profile. It further shows that deforestation will reduce SAP, and can flip the system to an irrigation required status. If no irrigation is provided, the system will automatically reduce to its stable point - desert, which is extremely difficult to turn around.

  3. Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Andreu, Joaquín; Paredes-Arquiola, Javier; Solera, Abel; Pedro-Monzonís, María

    2014-11-01

    An increase in water demands, exacerbated by climate change and the tightening of environmental requirements, leads to a reduction in available water resources for economic uses. This situation poses challenges for water resource planning and management. Water accounting has emerged as an appropriate tool to improve transparency and control in water management. There are multiple water accounting approaches, but they generally involve a very exhaustive list of accounted concepts. According to our findings in this research, one of the best water accounting methodologies is the Australian Water Accounting Standard. However, its implementation for integrated water resource planning and management purposes calls into questioning the amount of information and level of detail necessary for the users of water accounts. In this paper, we present a different method of applying the Australian Water Accounting Standard in relation to water resource management, which improves its utility. In order to compare the original approach and that proposed here, we present and discuss an application to the Júcar Water Resource System, in eastern Spain.

  4. Investigation on the influence of jetting equipment on the characteristics of centrifugal pump

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2016-08-01

    Full Text Available To reduce radial noises from the motor of centrifugal pumps, this study designed a water cooling system called jetting equipment to replace traditional fan cooling systems in pump motors. By measuring radiated noises, head, efficiency, and cavitation performance, the research compared the differences among experimental results of the original pump unit, the one with a normal design jetting pipe and another one with a larger jetting pipe. Results show that the radiated sound pressure level of the model pump was significantly reduced by 8.3 dB after integrating the jetting pipe. With a normal jetting pipe, no significant changes were observed in the head, efficiency, and shaft power curves, and cavitation performance improved under small flow rate. However, the performance with the larger jetting pipe worsened, except the hump phenomenon of the model pump under a small flow rate was enhanced. Computational fluid dynamics method was used to calculate the internal flow of three model pumps in order to investigate the jetting flow effect. A comparison among the flow fields at the inlet of the three types of pumps indicated that high-pressure water injection can effectively control inlet recirculation and improve velocity distribution in the inlet flow field with decreased recirculation vortex strength and recirculation onset critical flow rate.

  5. Jet-type, water-cooled heat sink that yields 255-W continuous-wave laser output at 808 nm from a 1-cm laser diode bar.

    Science.gov (United States)

    Miyajima, Hirofumi; Kan, Hirofumi; Kanzaki, Takeshi; Furuta, Shin-ichi; Yamanaka, Masanobu; Izawa, Yasukazu; Nakai, Sadao

    2004-02-01

    A newly designed jet-type, water-cooled heat sink (the funryu heat sink, meaning fountain flow in Japanese) yielded 255-W cw laser output at 808 nm from a 1-cm bar made from InGaAsP/InGaP quantum-well active layers with a 67% fill factor [70 quantum-well laser diode (LD) array along the 1-cm bar]. A funryu heat sink measuring 1.1 mm in thickness gave the LD 0.25 degrees C/W thermal resistance, one of the lowest values achieved with a 1-cm LD bar. Over a short period of operation, the device reached a maximum cw power of 255 W. To the best of our knowledge, this is the highest power ever achieved in 808-nm LD operation. In the future, the funryu heat sink may be capable of 80-W cw operation over an extended lifetime of several thousand hours.

  6. Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klichová, Dagmar; Foldyna, Josef; Hloch, Sergej; Hvizdoš, P.; Fides, M.; Botko, F.

    2017-01-01

    Roč. 110, November 2017 (2017), s. 230-238 ISSN 0263-2241 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * surface integrity * mass material removal * copper * nanoindentation Subject RIV: JQ - Machines ; Tools Impact factor: 2.359, year: 2016 http://ac.els-cdn.com/S0263224117304396/1-s2.0-S0263224117304396-main.pdf?_tid=783a1e88-7d09-11e7-9063-00000aacb362&acdnat=1502286708_794e233dee7c309f6d1566e4775d6ff0

  7. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  8. AOIPS water resources data management system

    Science.gov (United States)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  9. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  10. Jet in jet in M87

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  11. The influence of the cutting density on the magnetic properties of non-oriented electrical steels cut through mechanical punching and water jet technologies

    Science.gov (United States)

    Paltanea, V.; Paltanea, G.; Gavrila, H.; Popovici, D.; Jiga, G.

    2017-02-01

    The use of high quality non-oriented electrical steel and of an innovative design for the magnetic cores of the electrical machines are very important, in order to minimize the value of the total energy losses. The energy losses are strongly influenced by the cutting technologies, and the producers of the electrical machines want to minimize the deterioration of the magnetic properties during the manufacturing process. The influence of the cutting density on the magnetic permeability and energy losses was analyzed and one can notice that these magnetic properties are strongly influenced by the cutting technologies. There were tested sheet samples of M400-50A and M700-50A industrial steel grades (thickness of 0.50 mm), cut through mechanical and water jet technologies. All samples have the length equal to 300 mm and the width of 30, 15, 10, 7.5 and 5 mm. The magnetic characterization was performed using a laboratory single strip tester, which can make measurements on samples with an area of 300 × 30 mm2. In order to have the standard width of 30 mm, there were put together side by side 2, 3, 4 and 6 pieces with different widths. The magnetic properties were analyzed at 1000 mT in the frequency range 10 ÷ 400 Hz. It was observed that the processing conditions must be controlled and optimized, in order to maintain a low deterioration of the magnetic properties of the non-oriented steels. In the case of water jet technology an increase of the cutting speed will be useful for the introduction of this method in the large scale manufacturing of the electrical machines.

  12. High-pressure jet injection of viscous solutions for endoscopic submucosal dissection: a study on ex vivo pig stomachs.

    Science.gov (United States)

    Pioche, Mathieu; Ciocirlan, Mihai; Lépilliez, Vincent; Salmon, Damien; Mais, Laetitia; Guillaud, Olivier; Hervieu, Valérie; Petronio, Marco; Lienhart, Isabelle; Adriano, Jean-Luc; Lafon, Cyril; Ponchon, Thierry

    2014-05-01

    Long-lasting lifting is a key factor during endoscopic submucosal dissection (ESD) and can be obtained by water-jet injection of saline solution or by injection of viscous macromolecular solutions. Combination of the jet injection and the macromolecular viscous solutions has never been used yet. We assessed the ability of a new water-jet system to inject viscous solutions in direct viewing and in retroflexion. We compared jet injection of saline solution and hyaluronate 0.5 % to perform ESD on ex vivo pig stomachs in order to evaluate the benefits of macromolecular solutions when injected by a jet-injector system. This is a prospective comparative study in pig stomachs. Using the jet injector, four viscous solutions were tested: hydroxyethyl starch, glycerol mix, hyaluronate sodic (0.5 %), and poloxamer mix. Ten ESDs larger than 25 mm (five in direct viewing and five in retroflexion) and one larger than 10 cm were performed with each solution. ESD with hyaluronate jet injection was then compared with ESD with saline jet injection by performing 50 ESDs in each group. A single, minimally-experienced operator conducted all the procedures. All 145 resections were complete, including all marking points with two perforations. Eleven jet ESDs per solution were conducted without any injection issue. In the second part of the study, when compared with saline, significant benefit of hyaluronate was observed on dissection speed (0.80 vs. 1.08 cm(2)/min, p < 0.001). This is the first report on a jet-injector system allowing injection of macromolecular viscous solutions even with retroflexed endoscope. Jet injection of macromolecular solutions can speed up dissection in comparison with saline, and should now be tested on humans.

  13. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  14. to medium-sized water distribution systems

    African Journals Online (AJOL)

    Framework for optimizing chlorine dose in small- to medium-sized water distribution systems: A case of a residential neighbourhood in Lahore, Pakistan. ... The bulk decay coefficient (Kb) was determined in the laboratory, whereas the wall decay coefficient (Kw) was estimated by calibrating the simulation results with the ...

  15. Application of a production line phosphorescence sensor coating system on a jet engine for surface temperature detection

    Science.gov (United States)

    Sollazzo, P. Y.; Feist, J. P.; Berthier, S.; Charnley, B.; Wells, J.; Heyes, A. L.

    2013-09-01

    Thermal Barrier Coatings (TBC) are used to reduce the working temperature of the high pressure turbine blade metal surface and hence permit engines to operate at higher temperatures/ efficiencies. A sensor TBC is an adaptation of existing TBCs to enhance their functionality, such that they become sensors and allow measurement of component temperatures. The sensing capability is introduced by embedding optically active materials into the TBC and by illuminating these coatings with excitation light phosphorescence can be observed. The phosphorescence carries temperature and structural information about the coating. This paper describes the first ever implementation of a sensor coating system on a full-scale jet engine. The system consists of three main components: industrially manufactured coatings, advanced remote detection optics with large stand-off distances and tailored control and readout software. The majority of coatings were based on yttrium stabilized zirconia doped with Dy and Eu, although other coatings were manufactured, too. Coatings were produced on a production line using atmospheric plasma spraying. An advanced optical system was designed, manufactured and operated permitting scanning of coated components using a wide acceptance angle. Successful measurements were taken from the nozzle guide vanes at the inlet to the turbine section and are reported in the paper.

  16. Radial flow pulse jet mixer

    Science.gov (United States)

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  17. Instabilities in coaxial rotating jets

    Science.gov (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie

    2000-12-01

    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  18. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  19. The future of water resources systems analysis: Toward a scientific framework for sustainable water management

    National Research Council Canada - National Science Library

    Brown, Casey M; Lund, Jay R; Cai, Ximing; Reed, Patrick M; Zagona, Edith A; Ostfeld, Avi; Hall, Jim; Characklis, Gregory W; Yu, Winston; Brekke, Levi

    2015-01-01

    This paper presents a short history of water resources systems analysis from its beginnings in the Harvard Water Program, through its continuing evolution toward a general field of water resources systems science...

  20. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  1. Upgrades to the ISS Water Recovery System

    Science.gov (United States)

    Kayatin, Matthew; Takada, Kevin; Carter, Layne

    2017-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of Reverse Osmosis technology to reduce the resupply mass of the WPA Multifiltration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the UPA, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, deleting the Separator Plumbing Assembly, and evaluating upgrades to the UPA vacuum pump.

  2. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  3. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  4. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  5. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  6. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  7. Prototype solar heating and hot water systems

    Science.gov (United States)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  8. Degradation of bromophenol blue molecule during argon plasma jet irradiation

    Science.gov (United States)

    Matinzadeh, Ziba; Shahgoli, Farhad; Abbasi, Hamed; Ghoranneviss, Mahmood; Salem, Mohammad Kazem

    2017-06-01

    The aim of this paper is to study degradation of a bromophenol blue molecule (C19H10Br4O5S) using direct irradiation of cold atmospheric argon plasma jet. The pH of the bromophenol blue solution has been measured as well as its absorbance spectra and conductivity before and after the irradiation of non-thermal plasma jet in various time durations. The results indicated that the lengths of conjugated systems in the molecular structure of bromophenol blue decreased, and that the bromophenol blue solution was decolorized as a result of the decomposition of bromophenol blue. This result shows that non-thermal plasma jet irradiation is capable of decomposing, and can also be used for water purification.

  9. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  10. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  11. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  12. SPHERE/ZIMPOL observations of the symbiotic system R Aquarii. I. Imaging of the stellar binary and the innermost jet clouds

    Science.gov (United States)

    Schmid, H. M.; Bazzon, A.; Milli, J.; Roelfsema, R.; Engler, N.; Mouillet, D.; Lagadec, E.; Sissa, E.; Sauvage, J.-F.; Ginski, C.; Baruffolo, A.; Beuzit, J. L.; Boccaletti, A.; Bohn, A. J.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Joos, F.; Kasper, M.; Langlois, M.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Salasnich, B.; Siebenmorgen, R.; Stute, M.; Suarez, M.; Szulágyi, J.; Thalmann, C.; Turatto, M.; Udry, S.; Vigan, A.; Wildi, F.

    2017-06-01

    Context. R Aqr is a symbiotic binary system consisting of a mira variable, a hot companion with a spectacular jet outflow, and an extended emission line nebula. Because of its proximity to the Sun, this object has been studied in much detail with many types of high resolution imaging and interferometric techniques. We have used R Aqr as test target for the visual camera subsystem ZIMPOL, which is part of the new extreme adaptive optics (AO) instrument SPHERE at the Very Large Telescope (VLT). Aims: We describe SPHERE/ZIMPOL test observations of the R Aqr system taken in Hα and other filters in order to demonstrate the exceptional performance of this high resolution instrument. We compare our observations with data from the Hubble Space Telescope (HST) and illustrate the complementarity of the two instruments. We use our data for a detailed characterization of the inner jet region of R Aqr. Methods: We analyze the high resolution ≈ 25 mas images from SPHERE/ZIMPOL and determine from the Hα emission the position, size, geometric structure, and line fluxes of the jet source and the clouds in the innermost region <2'' (<400 AU) of R Aqr. The data are compared to simultaneous HST line filter observations. The Hα fluxes and the measured sizes of the clouds yield Hα emissivities for many clouds from which one can derive the mean density, mass, recombination time scale, and other cloud parameters. Results: Our Hα data resolve for the first time the R Aqr binary and we measure for the jet source a relative position 45 mas West (position angle -89.5°) of the mira. The central jet source is the strongest Hα component with a flux of about 2.5 × 10-12 erg cm-2 s-1. North east and south west from the central source there are many clouds with very diverse structures. Within 0.5'' (100 AU) we see in the SW a string of bright clouds arranged in a zig-zag pattern and, further out, at 1''-2'', fainter and more extended bubbles. In the N and NE we see a bright, very

  13. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    a semi - arid climate , where indoor air is mostly re-circulated, and HVAC unit temperature set points are intentionally high to conserve energy...Traditional Irrigation System • May be applicable in any climate (i.e., arid and/or semi - arid ). • Are economical in many regions of the country where...consumption for irrigation at our DoD installations located in semi - arid regions where alternative water conservation measures are being pursued. The

  14. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  15. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  16. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  17. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  18. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    OpenAIRE

    Wei Wang; Deshan Tang; Melissa Pilgrim; Jinan Liu

    2015-01-01

    Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quanti...

  19. Research and development of improved cavitating jets for deep-hole drilling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.E. Jr.; Lindenmuth, W.T.; Chahine, G.L.; Conn, A.F.; Frederick, G.S.

    1984-01-01

    Improved cavitating nozzles have been developed as part of an on-going program to increase the rate of penetration of deep-hole drill bits. Based on the four criteria of: incipient cavitation number, amplitude of pressure fluctuation (and hence enhanced structuring of the jet flow), rock cutting, and cleaning chips from the hole bottom - these new, STRATOJET (STRuctured Acoustically Tuned Oscillating JET) cavitating nozzle systems have out-performed both conventional drill bit nozzles and the basic CAVIJET cavitating jets. Although nozzle designs which provide large amplitude pressure modulations are now available for the operation in water, additional research is needed to optimize self-resonating jets for use: (a) in mud, (b) in specific drill bit designs, and (c) at higher system pressures than now currently used for deep-hole drilling.

  20. COMPLEX USE OF RESOURCES IN THE REGIONAL WATER SUPPLY SYSTEMS

    OpenAIRE

    S. A. ALEXANDRESCU; F. TĂMĂŞANU

    2011-01-01

    Complex use of resources in the regional water supply systems. Regional water supply systems have expanded the range from county to regional level. These are complex works meant to serve the customers from several counties. Viable sources of underground water have become lower in number, quality and volume, due to pollution. Also, the quality indicators of surface water have downgraded because of the pollution. This paper will analyze a typical case of regional system, the water supply system...

  1. Numerical Modeling of Munroe Jets

    Science.gov (United States)

    Mader, Charles; Gittings, Michael

    2007-06-01

    Munroe jets are formed by the oblique interaction of detonation products from two explosive charges separated by an air gap. The jet consists of a high velocity jet of low density precursor gases and particles that travel faster than the primary jet which is a high pressure regular shock reflection. The Los Alamos PHERMEX Data Volumes [1] contain 40 radiographs taken by Douglas Venable in the 1960's of Munroe Jets generated by Composition B explosive charges separated by 5 to 80 mm of air. In several of the experiments the Munroe jets interacted with thin Tantalum foils and with aluminum plates. The PHERMEX experiments were modeled using the AMR Eulerian reactive hydrodynamic code, NOBEL [2,3], When the detonation arrives at the bottom of the gap, the detonation product s expand against the air and precursor gases travel at high velocity ahead of the detonation wave in the explosive. The expanding detonation products from the explosive collide and result in a high pressure regular shock reflection.. Interaction with a metal plate consists of first the interaction of the precursor gases and then the high pressure regular shock reflection arrives to further damage the metal plate. [1] Los Alamos PHERMEX Data, Volumes I, II, and III, UC Press 1980. [2] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004 [3] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.

  2. Inclusive Jets in PHP

    CERN Document Server

    Roloff, Philipp

    2014-01-01

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  3. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1993-12-31

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% (by man) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  4. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  5. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  6. Liquid developer jetting device

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Jun-ichi; Sasahara, Toshihiko; Nakamura, Manabu

    1996-02-06

    The liquid developer jetting device of the present invention comprises an air jetting nozzle for jetting pressurized air to an object to be tested. A liquid developer jetting nozzle is disposed near the air jetting nozzle for jetting a developer upwardly. The liquid developer jetting nozzle is situated in front of the air jetting nozzle for jetting the liquid developer in the direction perpendicular to the pressurized air jetted from the air jetting nozzle. In order to perform an penetration flaw detection test for an abut-welded portion of a drain nozzle disposed to the bottom of a reactor pressure vessel, the liquid developer jetting device is disposed in adjacent with the welded portion. Since the liquid developer jetted while dispersed from the developer jetting nozzle is further dispersed by the pressurized air from the air jetting nozzle, the density of the jetted the developer is made uniform despite of the short distance to the object to be tested. Accordingly, developing processing can be performed even in a restricted space. (I.N.).

  7. Jet reconstruction and jet studies in PHENIX

    CERN Document Server

    Iordanova, A

    2012-01-01

    Jets of particles in localized regions of phase space are produced from partonic hard-scatterings of quarks and gluons contained within protons and neutrons. In pp and d+Au collisions the produced jets fragment into many hadrons, which can then be reconstructed in the PHENIX detector. In contrast, jets in heavy-ion collisions (for example Cu+Cu) may propagate through the created hot, dense medium which, in turn, could lower the energy of the jet. This energy loss has several consequences including modification of the expected rate of (final) particle production and jetshapes. By directly studying the jets measured in heavy-ion collisions, we can start to understand the properties of the hot, dense medium. However, the large nonjet backgrounds make such measurements difficult. In this talk, I will discuss the latest PHENIX results involving jets, jet reconstruction and high-pT phenomena in the context of our current understanding of heavy-ion collisions.

  8. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning...... methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having...

  9. Sustainable Energy, Water and Environmental Systems

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-06-01

    Full Text Available This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning methodology with Ireland as a case and the applicability of energy scenarios modelling tools as a main focus, evaluation of energy demands in Italy and finally evaluation of underground cables vs overhead lines and lacking public acceptance of incurring additional costs for the added benefit of having transmission beyond sight.

  10. Biological stability in drinking water distribution systems: A novel approach for systematic microbial water quality monitoring

    OpenAIRE

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the distribution system must be microbiologically safe and ideally should also be biologically stable”. The biological stability criterion refers to maintaining the microbial drinking water quality in time and d...

  11. The effect of water purification systems on fluoride content of drinking water

    OpenAIRE

    Prabhakar A; Raju O; Kurthukoti A; Vishwas T

    2008-01-01

    Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, bo...

  12. Improving Potable Water Accessibility And Sustainability Through Efficient Management Of Pipe Water Supply System

    OpenAIRE

    Nakabugo, Stella Mirembe

    2015-01-01

    This paper discusses how to improve potable water accessibility and sustainability through efficient management of pipe water supply system a case study of Uganda, Kampala region. Kampala the capital city of Uganda still faces a challenge to access clean potable water. Water supply coverage is 77.5 % showing at least 22.5 % of the total population has limited access to potable drinking water causing a gap between water supply and water demand. Hypotheses of the paper were that the city's popu...

  13. Jetstream Atherectomy System treatment of femoropopliteal arteries: Results of the post-market JET Registry.

    Science.gov (United States)

    Gray, William A; Garcia, Lawrence A; Amin, Ali; Shammas, Nicolas W

    2017-12-27

    To report on procedural, safety, and effectiveness outcomes of real-world practice with the Jetstream rotational atherectomy system for treatment of femoropopliteal artery lesions. Safety and effectiveness of treatment with the Jetstream device has been demonstrated in clinical trials, but outcomes during real-world clinical practice have yet to be examined. 241 patients (66% male, mean age 67years, 41% diabetes; Rutherford 1-3) with de novo or restenotic (non-stent) femoropopliteal lesions ≥4cm in length were recruited. Major adverse events (MAE), defined as amputation, death, target lesion/vessel revascularization (TLR/TVR), myocardial infarction, or angiographic distal embolization that required a separate intervention; and binary restenosis were assessed at 30days and 12months. The mean (±SD) lesion length was 16.4±13.6cm; 35% of patients received adjunctive stents. Procedural success was achieved for 98.3% of lesions. The 30-day MAE rate was 2% (5/219; 2 TLR/TVR and 3 distal embolization); there were no deaths, index limb amputations, or myocardial infarctions. At 12months, the overall estimated freedom from TLR/TVR was 81.7% and 77.2% (44/57) of patients were free from duplex ultrasound-assessed restenosis. Efficacy and patency in a diabetic subset were similar to those of the overall cohort, while maintaining a similar safety profile. In a cohort reflecting real-world practice, the Jetstream Atherectomy System demonstrated a high procedural success rate with a low rate of complications and reinterventions, especially given the relatively long lesions studied. Copyright © 2017. Published by Elsevier Inc.

  14. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  15. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  16. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  17. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  18. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    Science.gov (United States)

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  19. A closed recirculated sea-water system

    Science.gov (United States)

    1967-01-01

    Study of a virus disease in the chinook salmon (Oncorhynchus tshawytscha) necessitated the use of a marine environment to study the long range effects of the disease and to complete the life cycle of its etiologic agent. A closed recirculated sea-water system was designed for use under experimental laboratory conditions so that controlled studies of the disease could be made. As others may wish to do marine environment studies in the laboratory, the design and operation of our system are presented. Other systems currently in use have been described by Chin (1959), DeWitt and Salo (1960), McCrimmon and Berst (1966), and the authors of collected papers edited by Clark and Clark (1964). Preparatory to the design and construction of the system in use in this laboratory, visits were made to marine systems in use at the University of Washington's College of Fisheries, Seattle, -washington, and Friday Harbor Laboratory, San Juan Island, Washington; the Washington State Department of Fisheries' Point whitney Shellfish Laboratory, Brinnon, Washington; Humboldt State College, Arcata, California; and the Steinhart Aquarium of the California Academy of Science, San Francisco, California.

  20. An Electrosurgical Endoknife with a Water-Jet Function (Flushknife Proves Its Merits in Colorectal Endoscopic Submucosal Dissection Especially for the Cases Which Should Be Removed En Bloc

    Directory of Open Access Journals (Sweden)

    Yoji Takeuchi

    2013-01-01

    Full Text Available Background. Previously, we reported that the Flushknife (electrosurgical endoknife with a water-jet function could reduce the operation time of colorectal endoscopic submucosal dissection (ESD however, suitable situation for the Flushknife was obscure. This subgroup analysis of a prospective randomized controlled trial was aimed to investigate the suitable situation for the Flushknife. Methods. A total of 48 superficial colorectal neoplasms that underwent ESD using either the Flexknife or the Flushknife in a referral center were enrolled. The differences of operation time between the Flexknife and the Flushknife groups in each subgroup (tumor size, location, and macroscopic type were analyzed. Results. Median (95% CI operation time calculated using survival curves was significantly shorter in the Flushknife group than in the Flexknife group (55.5 min [41, 78] versus 74.0 [57, 90] min; , Hazard Ratio HR: 0.53; 95% CI (0.29–0.97. In particular, the HR in patients with laterally spreading tumors-nongranular type (LST-NG in the Flushknife group was significantly smaller than in the Flexknife group (HR: 0.1650.17; 95% CI (0.04–0.66. There was a trend of decreasing HRs according to larger lesion size. Conclusions. The Flushknife proved its merits in colorectal ESD especially for the lesions which should be removed en bloc (LST-NG and large lesion.

  1. Heating, current drive and confinement regimes with the JET ICRH and LHCD systems

    DEFF Research Database (Denmark)

    Jacquinot, J.; Adams, J.M.; Altmann, H.

    1991-01-01

    by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were......-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained...... performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile...

  2. The Impact of Subsonic Twin Jets on Airport Noise

    Science.gov (United States)

    Bozak, Richard, F.

    2012-01-01

    Subsonic and supersonic aircraft concepts proposed through NASA s Fundamental Aeronautics Program have multiple engines mounted near one another. Engine configurations with multiple jets introduce an asymmetry to the azimuthal directivity of the jet noise. Current system noise predictions add the jet noise from each jet incoherently, therefore, twin jets are estimated by adding 3 EPNdB to the far-field noise radiated from a single jet. Twin jet effects have the ability to increase or decrease the radiated noise to different azimuthal observation locations. Experiments have shown that twin jet effects are reduced with forward flight and increasing spacings. The current experiment investigates the impact of spacing, and flight effects on airport noise for twin jets. Estimating the jet noise radiated from twin jets as that of a single jet plus 3 EPNdB may be sufficient for horizontal twin jets with an s/d of 4.4 and 5.5, where s is the center-to-center spacing and d is the jet diameter. However, up to a 3 EPNdB error could be present for jet spacings with an s/d of 2.6 and 3.2.

  3. Research on the Efficiency of Drinking Water Aeration Systems

    Directory of Open Access Journals (Sweden)

    Andrius Styra

    2011-02-01

    Full Text Available A number of modern iron removal systems used in individual houses do not work properly. One of the reasons could be inappropriate work of the aeration system. Therefore, the aim of this research is to analyze three types of jet pumps used in individual houses in Lithuania and compare the amount of sucked oxygen with demand for dissolved oxygen the amount of which is calculated. When summarizing the results of research, it was discovered that the ejector worked unstable when flow was low, and therefore stable operation require additional pressure.Article in Lithuanian

  4. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  5. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  6. Integrated liquid jet waveguide for fluorescence spectroscopy on chip

    Science.gov (United States)

    Persichetti, Gianluca; Testa, Genni; Bernini, Romeo

    2013-03-01

    An optofluidic jet waveguide for on chip fluorescence analysis is presented. The waveguide consists of an high speed water jet produced by means of a micro-channel coupled with a multimode optical fiber collecting the fluorescence opportunely excited. The liquid jet acts, at the same time, as the solution to analyse and as an optical waveguide. This configuration allows a strong reduction of the scattering and fluorescence of non analyte substances enabling a very low limit of detection (LOD). The integrated device is fabricated by PMMA micro-machining allowing a self-alignment between the liquid jet waveguide and the optical fiber used to deliver the fluorescence to the detector. The performance of the system has been tested on Cy5 water solutions and LOD of 2.56 nM has been obtained. A proof-of-concept of filter-free measurements has been performed demonstrating that fluorescence measurements can be performed also by using a photodiode with an LOD of 6.11 nM.

  7. Optimal water meter selection system | Johnson | Water SA

    African Journals Online (AJOL)

    The relative frequency of the volume of water passing through a meter at various flow rates and the weighted accuracies of these measured volumes play a pivotal role in establishing a common comparison reference. The time unit selected to calculate the volume of water passing through the meter is guided by the type of ...

  8. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  9. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    Science.gov (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  10. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  11. Jet Veto Measurements at ATLAS

    CERN Document Server

    Hesketh, Gavin Grant; The ATLAS collaboration

    2017-01-01

    Jet veto cross section measurements in ATLAS ATLAS has no new dedicated analyses on BFKLtype analyses. We suggest the following mixture of jet veto / exclusive jet cross sections in V+jet, VV+jet, multijets: - Z+jets 13 TeV and Jet vetoes in Z VBF, W VBF studies - WW+0,1 jets http://arxiv.org/abs/1608.03086 - Other dibosons + jets: Zgamma+jets and WZ+jets http://arxiv.org/abs/1606.04017,http://arxiv.org/abs/1604.05232 - Studies of rapidity separations etc in 4jet events http://arxiv.org/abs/1509.07335

  12. Water Quality Modeling System for Coastal Archipelagos

    Science.gov (United States)

    Tuomi, L.; Miettunen, E.; Lukkari, K.; Puttonen, I.; Ropponen, J.; Tikka, K.; Piiparinen, J.; Lignell, R.

    2016-02-01

    Coastal seas are encountering pressures from eutrophication, fishing, ship emissions and coastal construction. Sustainable development and use of these areas require science-based guidance with high quality data and efficient tools. Our study area, the Archipelago Sea, is located in the northern part of the semi-enclosed and brackish water Baltic Sea. It is a shallow, topographically heterogeneous and eutrophic sub-basin, covered with thousands of small islands and islets. The catchment area is 8950 km2and has ca. 500 000 inhabitants. We are developing a modeling system that can be used by local authorities and in ministry level decision making to evaluate the environmental impacts that may result from decisions and changes made both in the watershed and in the coastal areas. The modeling system consists of 3D hydrodynamic model COHERENS and water quality model FICOS, both applied to the area with high spatial resolution. Models use river discharge and nutrient loading data supplied by watershed model VEMALA and include loading from multiple point sources located in the Archipelago Sea. An easy-to-use interface made specifically to answer the end-user needs, includes possibility to modify the nutrient loadings and perform model simulations to selected areas and time periods. To ensure the quality and performance of the modeling system, comprehensive measurement dataset including hydrographic, nutrient, chlorophyll-a and bottom sediment data, was gathered based on monitoring and research campaigns previously carried out in the Archipelago Sea. Verification showed that hydrodynamic model was able to simulate surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. However, the dynamics of the deeper layers need to be improved, especially in areas that have sharp bathymetric gradients. The preliminary analysis of the water quality model results showed that the model was able to reproduce the basic characteristics of

  13. Fabrication of micro/nano-structures by electrohydrodynamic jet technique

    Science.gov (United States)

    Wang, Dazhi; Zhao, Xiaojun; Lin, Yigao; Ren, Tongqun; Liang, Junsheng; Liu, Chong; Wang, Liding

    2017-12-01

    Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.

  14. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  15. Modelling trihalomethanes formation in water supply systems.

    Science.gov (United States)

    Di Cristo, Cristiana; Esposito, Giovanni; Leopardi, Angelo

    2013-01-01

    Chlorination is the most widely used method for disinfection of drinking water, but there are concerns about the formation of by-products, such as trihalomethanes (THMs), since the chronic exposure to them may pose risks to human health. For these reasons regulations fix maximum acceptable THMs levels throughout distribution networks, so it is very important to be able to correctly reproduce their formation. In the literature many models for predicting THMs formation have been developed, both based on empirical relationships and on kinetics involved during chlorine reactions. In this work the use of some of these models and their reliability in real situations is investigated through the application to the Aurunci-Valcanneto Water Supply System in Southern Lazio (Italy). The comparison of the performances of 18 selected literature empirical models furnishes interesting observations, indicating that the formula, developed using field data, results in being more suitable for reproducing THMs formation for the presented case study. Other considerations are also offered from the comparison with the results obtained using a simple first order kinetic model, calibrated using measured data.

  16. Turbulent Boyant Jets and Plumes in Flowing Ambient Environments

    DEFF Research Database (Denmark)

    Chen, Hai-Bo

    Turbulent buoyant jets and plumes in flowing ambient environments have been studied theoretically and experimentally. The mechanics of turbulent buoyant jets and plumes in flowing ambients have been discussed. Dimensional analysis was employed to investigate the mean behaviour of the turbulent....... Comprehensive laboratory experiments were conducted to study the mean behaviour of turbulent buoyant jets and plumes in a flowing ambient by using both fresh and salt receiving waters. The experimental data on the jet trajectories and dilutions, for a horizontal jet in a coflowing ambient and for a vertical jet......, the available field observated data on the initial dilutions for a horizontal jet issuing into a perpendicular crossflowing ambient have been presented and discussed. Mathematical modelling of the turbulent buoyant jets and plumes has been carried out by using both an integral model and a turbulence model...

  17. Wick wetting for water condensation systems

    Science.gov (United States)

    Hering, Susanne Vera; Spielman, Steven Russel; Lewis, Gregory Stephen; Kreisberg, Nathan Michael

    2017-04-04

    A system and method for particle enlargement with continuously wetted wicks includes a container into which a flow of particle-laden air is introduced in a laminar manner through an inlet and to an outlet. The container has a first section, a second section and a third section though which the particle-laden air flows between the inlet and the outlet. The temperature of the second section is warmer than that of the first section at the inlet and the third section at the outlet. In one embodiment, a continuous wick spanning an interior wall of the first second, second section and third section, said wick being capable of internally transporting liquid water along its length is provided.

  18. Trends in monitoring of waste water systems.

    Science.gov (United States)

    Lynggaard-Jensen, A

    1999-11-15

    A review of the trends in monitoring of waste water systems is given - with the focus on the use of sensors for on-line real-time monitoring and control. The paper formed a basis for discussion at the workshop on Methodologies for Wastewater Quality Monitoring, Nimes, 29-30 October 1998, organised by the European Commission and Ecoles des Mines d'Alès. The basic structure of the typical organisation of monitoring and control based on sensors and the handling of the sensor data are discussed and the different types of sensors are classified according to the method used for their introduction into the structure. Existing and new sensor technologies are briefly described, and the possibilities of how standardisation of on-line in-situ sensors can encourage further developments and use of sensors are presented.

  19. Mapping Climate Change Vulnerability Distribution of Water Resources in a Regional Water Supply System

    Science.gov (United States)

    Liu, T.; Tung, C.; Li, M.

    2011-12-01

    In recent years, the threat of increasing frequency of extreme weather rise up human attention on climate change. It is important to know how climate change might effect regional water resources, however, there is not much information to help government understanding how climate change will effect the water resources locally. To a regional water supply system, there might be some hotspots more vulnerable to climate. For example, the water supply of some area is from the water of river. When the storm occurred, the water can't be treated due to high density of suspended sediment in the river. Then the water supply in this area is more vulnerable to climate. This study used an integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources, which includes 10 GCMs output of SRES A2, A1B, B2 scenarios, weather generator, GWLF model, and Analytic Hierarchy Process (AHP) tool. A water supply system is very complex which needs dynamic modeling to determine the vulnerability distribution. This study used a system dynamics model- VENSIM connected with TaiWAP to simulate a water supply system and evaluate vulnerability of each unit in a water supply system. The vulnerable hotspots will be indicated in the system and the adaptive strategies will be applied to strengthen the local vulnerable area. The adaptive capacity will be enhanced to mitigate climate change impacts on water supply system locally to achieve sustainable water uses.

  20. Propagation Of Dense Plasma Jets

    Science.gov (United States)

    Turchi, Peter J.; Davis, John F.

    1988-05-01

    A variety of schemes have been proposed over the last two decades for delivering lethal amounts of energy and/or momentum to targets such as missiles and high speed aircraft. Techniques have ranged from high energy lasers and high voltage charged-particle accelerators to less exotic but still challenging devices such as electromagnetic railguns. One class of technology involves the use of high speed plasmas. The primary attraction of such technology is the possibility of utilizing relatively compact accelerators and electrical power systems that could allow highly mobile and agile operation from rocket or aircraft platforms, or in special ordnance. Three years ago, R & D Associates examined the possibility of plasma propagation for military applications and concluded that the only viable approach consisted of long dense plasma jets, contained in radial equilibrium by the atmosphere, while propagating at speeds of about 10 km/s. Without atmospheric confinement the plasma density would diminish too rapidly for adequate range and lethality. Propagation of atmospherically-confined jets at speeds much greater than 10 km/s required significant increases in power levels and/or operating altitudes to achieve useful ranges. The present research effort has been developing the experimental conditions necessary to achieve reasonable comparison with theoretical predictions for plasma jet propagation in the atmosphere. Time-resolved measurements have been made of high speed argon plasma jets penetrating a helium background (simulating xenon jets propagating into air). Basic radial confinement of the jet has been observed by photography and spectroscopy and structures in the flow field resemble those predicted by numerical calculations. Results from our successful initial experiments have been used to design improved diagnostic procedures and arcjet source characteristics for further experiments. In experiments with a modified arcjet source, radial confinement of the jet is again

  1. Joint optimization of regional water-power systems

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders

    2016-01-01

    for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost......Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method...

  2. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-12-01

    Full Text Available Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quantitative representation of the sustainable development state of the water resources compound system. Four cities in China, Beijing, Fuzhou, Urumqi, and Lhasa, were selected as the study areas. The differences in the three types of mechanisms and the water quotient of the water resources compound system of each city in 2013 were compared. The results indicate that the different subsystems that comprise the compound system of a given area have different development mechanisms and resistant mechanisms. There are clear differences in the mechanisms and the water quotients for the water resources compound systems of different regions. Pertinent measures should be taken into account during integrated water resource management to improve the sustainable development status of regional water resources compound systems.

  3. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.; Narumanchi, S.; Moreno, G.

    2014-09-01

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and were used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.

  4. Benchmarking leakage from water reticulation systems in South Africa

    African Journals Online (AJOL)

    driniev

    The model is used to assist water utilities to evaluate the levels of leakage and non- revenue water in their water distribution systems. A project was previously initiated by the Water Research ... the BENCHLEAK model and the results carefully screened for ... The length of mains is the total length of the bulk and distribution.

  5. Entropy Assessment on Direct Contact Condensation of Subsonic Steam Jets in a Water Tank through Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Yu Ji

    2016-01-01

    Full Text Available The present article analyzes the dissipation characteristics of the direct contact condensation (DCC phenomenon that occurs when steam is injected into a water tank at a subsonic speed using a new modeling approach for the entropy generation over the calculation domain. The developed entropy assessment model is based on the local equilibrium hypothesis of non-equilibrium thermodynamics. The fluid flow and heat transfer processes are investigated numerically. To describe the condensation and evaporation process at the vapor-liquid interface, a phase change model originated from the kinetic theory of gas is implemented with the mixture model for multiphase flow in the computational fluid dynamics (CFD code ANSYS-FLUENT. The CFD predictions agree well with the published works, which indicates the phase change model combined with the mixture model is a promising way to simulate the DCC phenomenon. In addition, three clear stages as initial stage, developing stage and oscillatory stage are discriminated from both the thermal-hydraulic results and the entropy generation information. During different stages, different proportion of the entropy generation rate owing to heat transfer, viscous direct dissipation, turbulent dissipation and inner phase change in total entropy generation rate is estimated, which is favorable to deeper understanding the irreversibility of DCC phenomenon, designing and optimizing the equipment involved in the process.

  6. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  7. COST-EFFECTIVENESS ANALYSIS OF ALTERNATIVE WATER HEATER SYSTEMS OPERATING WITH UNRELIABLE WATER SUPPLIES

    OpenAIRE

    Arif Yurtsev; Jenkins, Glenn P.

    2015-01-01

    This paper reports on a cost-effectiveness analysis of four types of water heating systems operating in a situation where there is an unreliable water supply. These systems are electric water heating, a solar water heating system (SWHS) with electricity back-up, the SWHS with an LPG water heater, and an LPG water heater alone. It is found that in the conditions of North Cyprus, that an SWHS with an LPG heater back-up is the most cost-effective, most convenient and most environmentally friendl...

  8. The future of water resources systems analysis: Toward a scientific framework for sustainable water management

    Science.gov (United States)

    Brown, Casey M.; Lund, Jay R.; Cai, Ximing; Reed, Patrick M.; Zagona, Edith A.; Ostfeld, Avi; Hall, Jim; Characklis, Gregory W.; Yu, Winston; Brekke, Levi

    2015-08-01

    This paper presents a short history of water resources systems analysis from its beginnings in the Harvard Water Program, through its continuing evolution toward a general field of water resources systems science. Current systems analysis practice is widespread and addresses the most challenging water issues of our times, including water scarcity and drought, climate change, providing water for food and energy production, decision making amid competing objectives, and bringing economic incentives to bear on water use. The emergence of public recognition and concern for the state of water resources provides an opportune moment for the field to reorient to meet the complex, interdependent, interdisciplinary, and global nature of today's water challenges. At present, water resources systems analysis is limited by low scientific and academic visibility relative to its influence in practice and bridled by localized findings that are difficult to generalize. The evident success of water resource systems analysis in practice (which is set out in this paper) needs in future to be strengthened by substantiating the field as the science of water resources that seeks to predict the water resources variables and outcomes that are important to governments, industries, and the public the world over. Doing so promotes the scientific credibility of the field, provides understanding of the state of water resources and furnishes the basis for predicting the impacts of our water choices.

  9. Model Predictive Control for Operational Water Management : A Case Study of the Dutch Water System

    NARCIS (Netherlands)

    Tian, X.

    2015-01-01

    Water is needed everywhere to satisfy domestic, agricultural and industrial water demands, to maintain navigation systems, and to preserve healthy and sustainable ecosystems. In order to protect us from floods and to reallocate water resources in a man-made environment, the 'hardware', water-related

  10. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  11. Magnetohydrodynamic production of relativistic jets.

    Science.gov (United States)

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  12. Observations of barium ion jets in the magnetosphere using Doppler imaging systems and very sensitive imaging systems using imaging photon detectors

    Science.gov (United States)

    Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.

    1985-01-01

    Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.

  13. Study on the Impact Characteristics of Coherent Supersonic Jet and Conventional Supersonic Jet in EAF Steelmaking Process

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Cheng, Ting; Dong, Kai; Yang, Lingzhi; Wu, Xuetao

    2018-02-01

    Supersonic oxygen-supplying technologies, including the coherent supersonic jet and the conventional supersonic jet, are now widely applied in electric arc furnace steelmaking processes to increase the bath stirring, reaction rates, and energy efficiency. However, there has been limited research on the impact characteristics of the two supersonic jets. In the present study, by integrating theoretical modeling and numerical simulations, a hybrid model was developed and modified to calculate the penetration depth and impact zone volume of the coherent and conventional supersonic jets. The computational fluid dynamics results were validated against water model experiments. The results show that the lance height has significant influence on the jet penetration depth and jet impact zone volume. The penetration depth decreases with increasing lance height, whereas the jet impact zone volume initially increases and then decreases with increasing lance height. In addition, the penetration depth and impact zone volume of the coherent supersonic jet are larger than those of the conventional supersonic jet at the same lance height, which illustrates the advantages of the coherent supersonic jet in delivering great amounts of oxygen to liquid melt with a better stirring effect compared to the conventional supersonic jet. A newly defined parameter, the k value, reflects the velocity attenuation and the potential core length of the main supersonic jet. Finally, a hybrid model and its modifications can well predict the penetration depth and impact zone volume of the coherent and conventional supersonic jets.

  14. The effect of water purification systems on fluoride content of drinking water.

    Science.gov (United States)

    Prabhakar, A R; Raju, O S; Kurthukoti, A J; Vishwas, T D

    2008-03-01

    The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  15. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  16. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    OpenAIRE

    Amirnordin Shahrin Hisham; Khalid Amir; Ismail Isma Adzrai; Yii Shi Chin Ronny; Fawzi Mas

    2016-01-01

    The flow characteristics of multi-circular jet (MCJ) plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in t...

  17. Installation package for a Sunspot Cascade Solar Water Heating System

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  18. Model predictive control on open water systems

    NARCIS (Netherlands)

    Van Overloop, P.J.

    2006-01-01

    Human life depends on water daily, especially for drinking and food production. Also, human life needs to be protected against excess of water caused by heavy precipitation and floods. People have formed water management organizations to guarantee these necessities of life for communities. These

  19. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  20. THE EPANET WATER DISTRIBUTION SYSTEM MODEL

    Science.gov (United States)

    EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. It tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemica...

  1. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  2. Iron and copper release in drinking-water distribution systems.

    Science.gov (United States)

    Shi, Baoyou; Taylor, James S

    2007-09-01

    A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.

  3. APPLICATION OF USEPA'S DRINKING WATER REGULATIONS TOWARDS RAINWATER CATCHMENT SYSTEMS

    Science.gov (United States)

    Rainwater harvesting is receiving increased attention worldwide as an alternative source of drinking water. Although federal agencies such as the USEPA acknowledge the existence of rainwater collection systems, the monitoring of this water source is still typically carried out b...

  4. Water Information Management & Analysis System (WIMAS) v 4.0

    Data.gov (United States)

    Kansas Data Access and Support Center — The Water Information Management and Analysis System (WIMAS) is an ArcView based GIS application that allows users to query Kansas water right data maintained by the...

  5. Urban renovation of the hot water supply system

    Directory of Open Access Journals (Sweden)

    Taraday Oleksandr

    2017-01-01

    Full Text Available Issues related to improving the reliability of hot water supply systems are considered. Currently, centralized hot water supply systems are in an emergency condition due to the fact that the external networks are made of black pipes without anticorrosive coatings. A fundamental difference between hot water supply systems and heating systems is the nature of black metal corrosion. The purpose of this article is to conduct a research of the state of hot water supply systems and consider options for their recovery. The options suggested for restoration of hot water supply systems in cities and settlements of Ukraine are the following: complete replacement of failed networks with new pre-insulated plastic pipelines; refusal from external networks of centralized hot water supply systems and a central heat point with the installation of individual heat points in each house; decentralization of hot water supply systems by installing electric water heaters. A technical and economic comparison of these options is carried out, and the advantages and disadvantages of each option are considered. The arrangement of a set of individual heat points instead of one central point cannot be considered as the recommended method, because of the need for large additional costs for the reconstruction of heating, water supply and electricity supply systems. The most technically and economically justified method from the considered renovation methods of hot water supply systems is the complete replacement of failed steel pipelines with new nonmetallic pre-insulated structures.

  6. Public water-supply systems and associated water use in Tennessee, 2005

    Science.gov (United States)

    Robinson, John A.; Brooks, Jaala M.

    2010-01-01

    Public water-supply systems in Tennessee provide water to for domestic, industrial, and commercial uses, and municipal services. In 2005, more than 569 public water-supply systems distributed about 920 million gallons per day (Mgal/d) of non-purchased surface water and groundwater to a population of nearly 6 million in Tennessee. Surface-water sources provided 64 percent (about 591 Mgal/d) of the State's water supplies. Groundwater produced from wells and springs in Middle and East Tennessee and from wells in West Tennessee provided 36 percent (about 329 Mgal/d) of the public water supplies. Gross per capita water use for Tennessee in 2005 was about 171 gallons per day. Water withdrawals by public water-supply systems in Tennessee have increased from 250 Mgal/d in 1955 to 920 Mgal/d in 2005. Tennessee public water-supply systems withdraw less groundwater than surface water, and surface-water use has increased at a faster rate than groundwater use. However, 34 systems reported increased groundwater withdrawals during 2000–2005, and 15 of these 34 systems reported increases of 1 Mgal/d or more. The county with the largest surface-water withdrawal rate (130 Mgal/d) was Davidson County. Each of Tennessee's 95 counties was served by at least one public water-supply system in 2005. The largest groundwater withdrawal rate (about 167 Mgal/d) by a single public water-supply system was reported by Memphis Light, Gas and Water, which served 654,267 people in Shelby County in 2005.

  7. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  8. The water energy nexus, an ISO50001 water case study and the need for a water value system

    Directory of Open Access Journals (Sweden)

    Brendan P. Walsh

    2015-06-01

    Full Text Available The world’s current utilisation of water, allied to the forecasted increase in our dependence on it, has led to the realisation that water as a resource needs to be managed. The scarcity and cost of water worldwide, along with water management practices within Europe, are highlighted in this paper. The heavy dependence of energy generation on water and the similar dependence of water treatment and distribution on energy, collectively termed the water–energy nexus, is detailed. A summary of the recently launched ISO14046 Water Footprint Standard along with other benchmarking measures is outlined and a case history of managing water using the Energy Management Standard ISO50001 is discussed in detail. From this, the requirement for a methodology for improvement of water management has been identified, involving a value system for water streams, which, once optimised will improve water management including efficiency and total utilisation.

  9. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2013-01-03

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily desalinated at very low pressures. Thus, a device consumes less energy when recovering water. The apparatus, system and method comprise an immersed forward osmosis cell.

  10. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  11. Tap water isotope ratios reflect urban water system structure and dynamics across a semiarid metropolitan area

    Science.gov (United States)

    Jameel, Yusuf; Brewer, Simon; Good, Stephen P.; Tipple, Brett J.; Ehleringer, James R.; Bowen, Gabriel J.

    2016-08-01

    Water extraction for anthropogenic use has become a major flux in the hydrological cycle. With increasing demand for water and challenges supplying it in the face of climate change, there is a pressing need to better understand connections between human populations, climate, water extraction, water use, and its impacts. To understand these connections, we collected and analyzed stable isotopic ratios of more than 800 urban tap water samples in a series of semiannual water surveys (spring and fall, 2013-2015) across the Salt Lake Valley (SLV) of northern Utah. Consistent with previous work, we found that mean tap water had a lower 2H and 18O concentration than local precipitation, highlighting the importance of nearby montane winter precipitation as source water for the region. However, we observed strong and structured spatiotemporal variation in tap water isotopic compositions across the region which we attribute to complex distribution systems, varying water management practices and multiple sources used across the valley. Water from different sources was not used uniformly throughout the area and we identified significant correlation between water source and demographic parameters including population and income. Isotopic mass balance indicated significant interannual and intra-annual variability in water losses within the distribution network due to evaporation from surface water resources supplying the SLV. Our results demonstrate the effectiveness of isotopes as an indicator of water management strategies and climate impacts within regional urban water systems, with potential utility for monitoring, regulation, forensic, and a range of water resource research.

  12. Water System Architectures for Moon and Mars Bases

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2015-01-01

    Water systems for human bases on the moon and Mars will recycle multiple sources of wastewater. Systems for both the moon and Mars will also store water to support and backup the recycling system. Most water system requirements, such as number of crew, quantity and quality of water supply, presence of gravity, and surface mission duration of 6 or 18 months, will be similar for the moon and Mars. If the water system fails, a crew on the moon can quickly receive spare parts and supplies or return to Earth, but a crew on Mars cannot. A recycling system on the moon can have a reasonable reliability goal, such as only one unrecoverable failure every five years, if there is enough stored water to allow time for attempted repairs and for the crew to return if repair fails. The water system that has been developed and successfully operated on the International Space Station (ISS) could be used on a moon base. To achieve the same high level of crew safety on Mars without an escape option, either the recycling system must have much higher reliability or enough water must be stored to allow the crew to survive the full duration of the Mars surface mission. A three loop water system architecture that separately recycles condensate, wash water, and urine and flush can improve reliability and reduce cost for a Mars base.

  13. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    tended regions of emission. These jets, which occur across the electromagnetic spectrum, are powered by supermassive black holes in the centres of the host galaxies. Jets are seen on the scale of parsecs in the nuclear regions to those which power the giant radio sources extending over several mega- parsecs. These jets ...

  14. Physical modeling of the impingement of an air jet on a water surface; Modelado fisico de la incidencia de un chorro de aire sobre una superficie de agua

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano-Lopez, J.; Ramirez-Argaez, M.A.; Zenit, R.

    2010-07-01

    The use of gas jets (oxygen) plays a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF). Those jets improve heat, mass and momentum transfer in the liquid metal, mixing of chemical species enhancing and govern the formation of foaming slag. In this work experimental measurements were performed to determine the dimensions of the cavity formed at the liquid free surface caused by a gas jet impinging on it; also velocities vectors were measured in the zone affected by the gas jet. avities were measured from images from high speed camera and the vector maps were obtained with a Particle Image Velocimetry (PIV) technique. Both velocities and cavities were determined as a function of the main process variables: gas flow rate, distance of the nozzle from the free surface and lance angle. Cavity dimensions were statistically processed treated as a function of the process variables and also as a function of the proper dimensionless numbers that govern these phenomena. It was found that Weber and Froude numbers govern the cavity geometry. Liquid flow driven by the jet is mainly affected by the air flow rate, lance height and angle. (Author).

  15. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito

    We are working in the development of a compact, low power water recycling device that can supply delicious drinking water which can be consumed safely and with peace of mind in order to help astronauts lead a healthy and comfortable life in space. This device uses electrolysis to decompose ammonia and organic matter, purifies the water using a reverse osmosis membrane, adds minerals to the water, and then sterilizes the water, thereby maintaining water quality. An online system for measuring TOC and harmful substances is also used to manage the water quality.

  16. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  17. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  18. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Directory of Open Access Journals (Sweden)

    Xu Ping

    2015-01-01

    Full Text Available Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS, protein (PN, and polysaccharide (PS in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  19. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  20. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  1. Fair Water Allocation in Complex International River Systems

    Science.gov (United States)

    Beck, L.; Bernauer, T.

    2011-12-01

    Conflicts over water allocation in international freshwater systems are recurring phenomena, and climatic changes are likely to make existing problems worse in many parts of the world. Science-based proposals for water allocation frequently focus on allocating water to the economically most efficient purposes. In reality, allocation outcomes are often shaped by political and economic power, rather than considerations of economic efficiency. This paper develops a new approach to fair international water allocation in complex international freshwater systems. This approach covers both needs-based criteria - if acute water scarcity is present - and criteria for fair water allocation pertaining to relative gains in water-abundant situations. The usefulness of the approach is illustrated with a case study on the Zambezi River Basin (ZRB). Based on a hydrological model, and scenarios for water availability and demand in the ZRB until 2050, the paper shows how the waters of the ZRB could be allocated in a way that fairly distributes costs and benefits.

  2. Establishing Vulnerability Map of Water Resources in Regional Water Supply System

    Science.gov (United States)

    Liu, T. M.; Tung, C. P.; Li, M. H.

    2012-04-01

    In recent years, the threat of increasing frequency of extreme weather rise up human attention on climate change. To reduce the threat of water scarcity, it is important to know how climate change might affect regional water resources and where the hotspots, the vulnerability points, are. However, there is not much information to help government understanding how climate change will affect the water resources locally. To a regional water supply system, there might be some hotspots more vulnerable to climate due to the lack of water treatment plants or tape water pipe system. And also, there might be some hotspots more vulnerable due to high population and high industrial product value when they expose to the same threat of water scarcity. This study aims to evaluate the spatial vulnerability distribution of water resources and propose the adaptive plan for southern region of Taiwan. An integrated tool - TaiWAP (Taiwan Water Resources Assessment Program) for climate change vulnerability assessment on water resources, which includes 10 GCMs output of SRES A2, A1B, B2 scenarios, weather generator, GWLF model, and Analytic Hierarchy Process (AHP) tool is used for climate impact assessment. For the simulation of the complex water supply system, the system dynamics model- VENSIM which is connected with TaiWAP is adopted to simulate a water supply system and evaluate vulnerability of each unit in a water supply system. The vulnerable hotspots will be indicated in the system and the adaptive strategies will be applied to strengthen the local vulnerable area. The adaptive capacity will be enhanced to mitigate climate change impacts on water supply system locally to achieve sustainable water uses.

  3. Unit process engineering for water quality control and biosecurity in marine water recirculating systems

    Science.gov (United States)

    High-intensity systems that treat and recirculate water must maintain a culture environment that can sustain near optimum fish health and growth at the design carrying capacity. Water recirculating systems that use centralized treatment systems can benefit from the economies of scale to decrease th...

  4. An Integrated Framework for Assessment of Hybrid Water Supply Systems

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2015-12-01

    Full Text Available Urban water managers around the world are adopting decentralized water supply systems, often in combination with centralized systems. While increasing demand for water arising from population growth is one of the primary reasons for this increased adoption of alternative technologies, factors such as climate change, increased frequency of extreme weather events and rapid urbanization also contribute to an increased rate of adoption of these technologies. This combination of centralized-decentralized water systems approach is referred to as “hybrid water supply systems” and is based on the premise that the provision of alternative water sources at local scales can both extend the capacity of existing centralized water supply infrastructures, and improve resilience to variable climatic conditions. It is important to understand, however, that decentralized water production and reuse may change the flow and composition of wastewater and stormwater, thereby potentially also having negative impacts on its effectiveness and performance. This paper describes a framework to assess the interactions between decentralized water supply systems and existing centralized water servicing approaches using several analytical tools, including water balance modelling, contaminant balance modelling and multi-criteria decision analysis. The framework enables the evaluation of impacts due to change in quantity and quality of wastewater and stormwater on the existing centralized system arising from the implementation of hybrid water supply systems. The framework consists of two parts: (1 Physical system analysis for various potential scenarios and (2 Ranking of Scenarios. This paper includes the demonstration of the first part of the framework for an area of Melbourne, Australia by comparing centralized water supply scenario with a combination of centralized water supply and reuse of treated waste water supply scenario.

  5. Systems and Methods for Automated Water Detection Using Visible Sensors

    Science.gov (United States)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  6. Visible Light Activated Photocatalytic Water Polishing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal targets development of a LED light activated photocatalytic water polishing system that enables reduction of organic impurities (TOC and...

  7. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  8. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  9. Privatisation of water systems: Crime against humanity

    Directory of Open Access Journals (Sweden)

    Titus R. Mobie

    2009-11-01

    Full Text Available This article emphasises the importance of water resources, which are vital to the sustenance of life. Water is essential for various reasons: for drinking, for personal hygiene, for cooking, for watering crops, for cleaning our homes etc. One can therefore conclude that, without this vital resource, there is no life. It is for this reason that God, giver of life, gave water as a gift – free – both to humanity and to the rest of creation, so that we may all achieve fullness of life. This article challenges the fact that, because of the insistence of the World Bank and the International Monetary Fund on the privatisation of water supplies where the poorest of the poor are unable to pay, these people are cut off from water supplies and are deprived of the right to the fullness of life. The author emphasises that there is no life without water, that water resources are a gift from the creator and should therefore be made accessible to all, rich and poor alike.

  10. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  11. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER — BASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  12. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  13. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  14. Approach for restructuring of regional water distribution systems against the background of water and energy scarcity. Case study Bribin Water Distribution System, Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Klingel, P.; Hassel, N.; Nestmann, F. [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Water and River Basin Management

    2012-07-01

    Due to the natural conditions of the karst areas of Java, Indonesia wide spread water distribution systems with great pumping heights are needed to supply the population. Those systems are deficient to a wide extent resulting in intermittent, insufficient and inequitable supply of the consumers. Main reasons are the limited accessible water resources, energy inefficient system concepts and inadequate operation strategies. This paper presents an approach to optimize the existing systems in order to establish an equitable distribution of the limited water resources. The approach comprehends a system restructuring and optimization concept and a system input-oriented distribution strategy. The application is shown for the Bribin Water Distribution System. (orig.)

  15. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  16. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  17. 21 CFR 1250.42 - Water systems; constant temperature bottles.

    Science.gov (United States)

    2010-04-01

    ... and protected as to minimize the hazard of contamination of the water supply. (c) On all new or... containers used for storing or dispensing potable water shall be kept clean at all times and shall be... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles. 1250...

  18. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  19. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  20. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  1. System for harvesting water wave energy

    Science.gov (United States)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  2. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality

  3. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from...... the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...

  4. Design of Simple Water Treatment System for Cleaning Dirty Water in the Rural Area

    Science.gov (United States)

    Nandiyanto, A. B. D.; Haristiani, N.

    2017-03-01

    The purpose of this study was to introduce our simple home-made water treatment system for solving the clean water supply problem in rural area. We designed a water system using several materials: activated sand, activated carbon, manganese, and zeolite. As a model, we investigated the water treatment system on two wells that placed in one of the rural area (far from the main city) in West Java, Indonesia. Experimental results showed that our designed water treatment system succeeded to purify dirty water and the properties and the chemical composition of the purified water is fit with the minimum standard requirement of clean water. Analysis and discussion about the way for the cleaning water process were also presented in the paper. Finally, since the wells are installed in the elementary school and the water is typically used for daily life activity for the neighbour people, this water system can be used for educational purposes and the school can become a center of life in this rural area.

  5. Multiplicities of Hadrons Within Jets at STAR

    Science.gov (United States)

    Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration

    2017-09-01

    Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.

  6. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  7. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  8. Water Treatment Systems Make a Big Splash

    Science.gov (United States)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  9. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  10. Water-Conserving Plant-Growth System

    Science.gov (United States)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  11. Lyophilization for Water Recovery III, System Design

    Science.gov (United States)

    Litwiller, Eric; Reinhard, Martin; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground- based human testing. This paper describes the prototype design and presents results of functional and performance tests.

  12. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  13. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  14. Effects of the water content on the growth rate of AgCl nanoparticles in a reversed micelle system.

    Science.gov (United States)

    Kimijima, Ken'ichi; Sugimoto, Tadao

    2005-06-15

    The effects of water content on the growth rate and the final particle size of AgCl nanoparticles in a reversed micelle (RM) system of polyoxyethylene (6) nonylphenyl ether (NP-6)/water/cyclohexane were investigated using a double-jet technique, in which RM solutions of AgNO(3) and KCl were added concurrently to a RM solution containing the excess concentration of chloride ion. As a result, the particle growth rate and the final particle size at a constant Rw ( identical with[water]/[surfactant]) below 5 were found to be in excellent agreement with our theoretical prediction based on a dynamic Ostwald ripening mechanism governed by the overall solubility of the solid and the diffusivity of the reversed micelles, whereas the final particle size was far beyond the size of the water pool of a reversed micelle. Thus, the dramatic reduction of the particle size in the RM system can be explained by the drastic reduction of the overall solubility of the solid and the small diffusivity of the bulky reversed micelles as a carrier of silver ion, and not by the size of the water pool of a reversed micelle as conventionally explained. Some additional contribution of a coagulation process was also suggested in a high Rw range above 5. Significant coagulation of AgCl particles was observed in a RM system with AOT in place of NP-6 even under the standard conditions for the NP-6 system.

  15. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    Science.gov (United States)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Gazda, Daniel; Roberts, Michael

    2009-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.

  16. Technology for Water Treatment (National Water Management)

    Science.gov (United States)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  17. Modular AUV System for Sea Water Quality Monitoring and Management

    OpenAIRE

    Eichhorn, Mike; Taubert, Ralf; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten

    2017-01-01

    The sustained and cost-effective monitoring of the water quality within European coastal areas is of growing importance in view of the upcoming European marine and maritime directives, i.e. the increased industrial use of the marine environment. Such monitoring needs mechanisms/systems to detect the water quality in a large sea area at different depths in real time. This paper presents a system for the automated detection and analysis of water quality parameters using an autonomous underwater...

  18. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  19. Water supply system decision making using multicriteria analysis

    African Journals Online (AJOL)

    2005-07-04

    Jul 4, 2005 ... implementation of the water supply system. This study describes the application of multicriteria decision aid for choosing the priority city to receive a water supply system, using the ELECTRE methodology. It was found that this type of methodol- ogy accommodates the decision-making in selecting a locality, ...

  20. Particulate fingerprinting of water quality in the distribution system ...

    African Journals Online (AJOL)

    Particles in the distribution system play an important role in the perception? Not clear what is meant) of drinking water quality, particularly in association with discolouration. In The Netherlands the water quality in the distribution system is traditionally monitored by turbidity measurements. However, turbidity is hard to quantify ...