WorldWideScience

Sample records for water infiltration

  1. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  2. Storm-water management through Infiltration trenches

    OpenAIRE

    Chahar, Bhagu Ram; Graillot, Didier; Gaur, Shishir

    2012-01-01

    International audience; With urbanization, the permeable soil surface area through which recharge by infiltration can occur is reducing. This is resulting in much less ground-water recharge and greatly increased surface run-off. Infiltration devices, which redirect run-off waters from the surface to the sub-surface environments, are commonly adopted to mitigate the negative hydrologic effects associated with urbanization. An infiltration trench alone or in combination with other storm water m...

  3. water infiltration, conductivity and runoff under fallow

    African Journals Online (AJOL)

    sections of sloping terraces on water infiltration and subsequent runoff on a Haplic ... Infiltration measurements, done by a tension infiltrometer, were conducted under 3-year old tree .... head first avoid hysteresis (Reynolds and Elrick, ..... terrace (60%), perhaps reflecting the influence of ..... Water Resources Research 14:.

  4. Hydrogeophysical monitoring of water infiltration processes

    Science.gov (United States)

    Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio

    2010-05-01

    Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content

  5. Measurements of infiltration and water repellency on different soils

    OpenAIRE

    Lavrač, Rožle

    2012-01-01

    Infiltration is a process of water entering soil from its surface. Field measurements of infiltration are performed with infiltrometers. Calculation of hydraulic conductivity can be done by different equations. Infiltration exhibits large spatial and temporal variability due to many affecting factors. One of those effects is soil water repellency (hydrophobicity). Water-repellent soils do not wet up spontaneously. The intensity and persistence of water repellency vary widely due to variabilit...

  6. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes.

    Science.gov (United States)

    Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim

    2010-10-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.

  7. Measurements of water repellency and infiltration of the soil

    OpenAIRE

    Žnidaršič, Petra

    2013-01-01

    Soil water repellency is a reduction in the rate of wetting caused by the presence of hydrophobic coatings on soil particles. The occurrence of the absorption of water from the surface of the ground in its interior is called infiltration. Water resistance and infiltration are dependent on a number of influences. All measurements were done on three different soil types at each at the ground level and in the trench. Water repellency measurements were performed by two methods, namely with wat...

  8. Water Infiltration in Methylammonium Lead Iodide Perovskite : Fast and Inconspicuous

    NARCIS (Netherlands)

    Mueller, Christian; Glaser, Tobias; Plogmeyer, Marcel; Sendner, Michael; Doering, Sebastian; Bakulin, Artem A.; Brzuska, Carlo; Scheer, Roland; Pshenichnikov, Maxim S.; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrincic, Robert

    2015-01-01

    While the susceptibility of CH3NH3PbI3 to water is well-documented, the influence of water on device performance is not well-understood. Herein, we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at a humidity much lower than previously thought. We pr

  9. Simulation of Water Movement through Unsaturated Infiltration- Redistribution System

    Directory of Open Access Journals (Sweden)

    T Bunsri

    2009-01-01

    Full Text Available This paper deals with the movement of water in a natural unsaturated zone, focusing on infiltration-redistribution system. Infiltration refers to the downward movement of water due to the gravitational force and redistribution defines the upward movement of water due to the capillary rise. Under natural conditions, the movement of water through an infiltrationredistribution depended upon the relations among water content, hydraulic conductivity and tension of soil pore. Various combinations of water balance concepts, Richards’ equation, soil-physics theory and capillary height concepts were applied to mathematically model the movement of water through infiltration-redistribution system. The accuracy and computational efficiency of the developed model were evaluated for the case study. Besides the laboratory scale sand/soil columns with the inner diameter of 10.4 cm were investigated in order to provide the supporting data for model calibration. Sand/soil layers were packed with a bulk density of 1.80 and 1.25 g/cm3, respectively. The infiltration was sprayed uniformly at the soil surface with the constant rate of 66.1 and 7.18 cm3/h for sand and soil columns, respectively. The redistribution process was developed by which water arriving at the column base enter to the sand/soil column due to capillary rise. The laboratory observations were simulated using the developed model. The results indicate that the developed model could well estimate the movement of water in the infiltration-redistribution system that observed in the case study and the experiments.

  10. WATER INFILTRATION IN TWO CULTIVATED SOILS IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2015-04-01

    Full Text Available Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico and Humic Cambisol (Cambissolo Húmico alumínico léptico soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol, regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1

  11. Movement of water infiltrated from a recharge basin to wells.

    Science.gov (United States)

    O'Leary, David R; Izbicki, John A; Moran, Jean E; Meeth, Tanya; Nakagawa, Brandon; Metzger, Loren; Bonds, Chris; Singleton, Michael J

    2012-01-01

    Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 µg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.

  12. Effects of white grubs on soil water infiltration.

    Science.gov (United States)

    Romero-López, A A; Rodríguez-Palacios, E; Alarcón-Gutiérrez, E; Geissert, D; Barois, I

    2015-04-01

    Water infiltration rates k were measured in mesocosms with soil and "white grubs" of Ancognatha falsa (Arrow) (Coleoptera: Melolonthidae). Three third instars of A. falsa and three adult earthworms Pontoscolex corethrurus were selected, weighted, and introduced into the mesocosms setting three treatments: soil + A. falsa, soil + P. corethrurus, and control (soil without any macroorganism). The experiment had a completely random design with four replicates per treatment (n = 4). The infiltration rates of soil matrix were assessed in each mesocosms with a minidisk tension infiltrometer. Six measurements were made along the experiment. Results showed that larvae of A. falsa promoted a higher water infiltration in the soil, compared to the control. On day 7, k values were similar among treatments, but k values after 28 days and up to 100 days were much higher in the A. falsa treatment (k = 0.00025 cm s(-1)) if compared to control (k = 0.00011 cm s(-1)) and P. corethrurus (k = 0.00008 cm s(-1)) treatments. The k values were significantly higher in the presence of larvae of A. falsa compared to the control and P. corethrurus treatments. The larvae of A. falsa are potential candidates for new assays on soil water infiltration with different tensions to evaluate the role of pores and holes created by the larvae on soils.

  13. Biochar impact on water infiltration and water quality through a compacted subsoil layer

    Science.gov (United States)

    Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic...

  14. Influence of the initial soil water content on Beerkan water infiltration experiments

    Science.gov (United States)

    Lassabatere, L.; Loizeau, S.; Angulo-Jaramillo, R.; Winiarski, T.; Rossier, Y.; Delolme, C.; Gaudet, J. P.

    2012-04-01

    Understanding and modeling of water flow in the vadose zone are important with regards water management and infiltration devices design. Water infiltration process clearly depends on initial soil water content, in particular for sandy soils with high organic matter content. This study investigates the influence of initial water content on water infiltration in a hydrophobic sandy soil and on the related derivation of hydraulic parameters using the BEST algorithm (Lassabatere et al., 2006). The studied sandy soil has a high total organic content decreasing from 3.5% (w/w) at the surface to 0.5% (w/w) below 1cm depth. The highest TOC at surface was due to the presence of a dense biofilm and resulted in a high surface hydrophobicity under dry conditions (low initial water contents). The water infiltration experiments consisted in infiltrating known volumes of water through a simple ring at null pressure head (Beerkan method). The infiltrations were performed during three successive days after a dry period with a storm event between the first and the second day (5 mm) and another between the second and the third day (35 mm). These events resulted in an increase in initial water contents, from less than 5% for the first day to around 10% for the last day. Experiments were performed for appropriate conditions for Beerkan experiments: initial water contents below 1/4 of the saturated water content and uniform water profile resulting from water redistribution after each rainfall event. The analysis of the infiltration data clearly highlights the strong effect of hydrophobicity. For the driest initial conditions (first day), infiltration rates increased with time, whereas they decreased with time for wetter conditions. Such a decrease agreed with the principles of water infiltration without hydrophobicity. In addition, total cumulative infiltrations were far higher for the wettest conditions. Regarding hydraulic characterization, only the data obtained during the last

  15. Water Infiltration and Hydraulic Conductivity in Sandy Cambisols

    DEFF Research Database (Denmark)

    Bens, Oliver; Wahl, Niels Arne; Fischer, Holger

    2006-01-01

    Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective of this st......Soil hydrological properties like infiltration capacity and hydraulic conductivity have important consequences for hydrological properties of soils in river catchments and for flood risk prevention. They are dynamic properties due to varying land use management practices. The objective...... of this study was to characterize the variation of infiltration capacity, hydraulic conductivity and soil organoprofile development on forest sites with comparable geological substrate, soil type and climatic conditions, but different stand ages and tree species in terms of the effects of forest transformation...... from pure Scots pine stands towards pure European beech stands. The water infiltration capacity and hydraulic conductivity (K) of the investigated sandy-textured soils are low and very few macropores exist. Additionally these pores are marked by poor connectivity and therefore do not have any...

  16. Difficulties in the evaluation and measuring of soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2013-04-01

    Soil water infiltration is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the evaluation and measurement of water infiltration rates has become indispensable for the evaluation and modeling of the previously mentioned processes. Infiltration is one of the most difficult hydrological parameters to evaluate or measure accurately. Although the theoretical aspects of the process of soil water infiltration are well known since the middle of the past century, when several methods and models were already proposed for the evaluation of infiltration, still nowadays such evaluation is not frequently enough accurate for the purposes being used. This is partially due to deficiencies in the methodology being used for measuring infiltration, including some newly proposed methods and equipments, and in the use of non appropriate empirical models and approaches. In this contribution we present an analysis and discussion about the main difficulties found in the evaluation and measurement of soil water infiltration rates, and the more commonly committed errors, based on the past experiences of the author in the evaluation of soil water infiltration in many different soils and land conditions, and in their use for deducing soil water balances under variable and changing climates. It is concluded that there are not models or methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil

  17. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

    Directory of Open Access Journals (Sweden)

    Loizeau Sébastien

    2017-09-01

    Full Text Available Artificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2 in a pumping field at Crepieux-Charmy (Lyon, France. A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated, revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

  18. Catch crops impact on soil water infiltration in vineyards

    Science.gov (United States)

    Cerdà, Artemi; Bagarello, Vincenzo; Iovino, Massimo; Ferro, Vito; Keesstra, Saskia; Rodrigo-Comino, Jesús; García Diaz, Andrés; di Prima, Simone

    2017-04-01

    Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. Bagarello, V., Elrick, D. E., Iovino, M., & Sgroi, A. (2006). A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135, 322-334. Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefevre, I., & Le Bissonnais, Y. (2016). Relative contribution of Rill/Interrill and Gully/Channel erosion to small reservoir siltation in mediterranean environments. Land Degradation and Development, 27(3), 785-797. doi:10.1002/ldr.2387 Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98WR01659 Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x Cerdà, A., Morera, A. G., & Bodí, M. B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western mediterranean basin. Earth Surface Processes and Landforms, 34(13), 1822-1830. doi:10.1002/esp.1889 di Prima, S., Lassabatère, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2016). Using static and dynamic indicators to evaluate soil physical quality in a sicilian area. Land Degradation and Development, 27(2), 200-210. doi:10.1002/ldr.2263 Laudicina, V. A., Novara, A., Barbera, V., Egli, M., & Badalucco, L. (2015). Long-term tillage and cropping system effects on

  19. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  1. INVESTIGATION OF QUANTIFICATION OF FLOOD CONTROL AND WATER UTILIZATION EFFECT OF RAINFALL INFILTRATION FACILITY BY USING WATER BALANCE ANALYSIS MODEL

    OpenAIRE

    文, 勇起; BUN, Yuki

    2013-01-01

    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  2. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  3. Study of water infiltration in a lightweight green roof substrate

    Science.gov (United States)

    Tomankova, Klara; Holeckova, Martina; Jelinkova, Vladimira; Snehota, Michal

    2015-04-01

    Green roofs have a positive impact on the environment (e.g. improving microclimate and air quality in cities, reducing solar absorbance and storm water). A laboratory infiltration experiment was conducted on the narrow flume serving as 2D vertical model of a green roof. The lightweight Optigreen substrate Type M was used (depth of 20 cm). The front wall of the flume was transparent and inspected by digital camera. The experiment was designed to measure pressure head, volumetric water content and calculate water retention in the substrate. Experiment comprised three artificial rainfall intensities with different values of initial water content of the substrate. The experimental results confirmed that green roofs have the ability to retain rainwater and thus have a beneficial effect on reducing runoff. In the experiment with the artificial 10 minutes rainfall event (total precipitation of 29 mm), the air dry substrate retained 95.9 % of precipitation. On the other hand for moist initial condition 4.2 % of precipitations amount was captured in the substrate. Additionally, the analysis of images taken during the experiment confirmed preferential flow and uneven advancement of the wetting front. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  4. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Science.gov (United States)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  5. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  6. An Analytical Solution for One-Dimensional Water Infiltration and Redistribution in Unsaturated Soil

    Institute of Scientific and Technical Information of China (English)

    WANG Quan-Jiu; R. HORTON; FAN Jun

    2009-01-01

    Soil infiltration and redistribution are important processes in field water cycle, and it is necessary to develop a simple model to describe the processes. In this study, an algebraic solution for one-dimensional water infiltration and redistribution without evaporation in unsaturated soil was developed based on Richards equation. The algebraic solution had three parameters, namely, the saturated water conductivity, the comprehensive shape coefficient of the soil water content distribution, and the soil suction allocation coefficient. To analyze the physical features of these parameters, a relationship between the Green-Ampt model and the algebraic solution was established. The three parameters were estimated based on experimental observations, whereas the soil water content and the water infiltration duration were calculated using the algebraic solution. The calculated soil water content and infiltration duration were compared with the experimental observations, and the results indicated that the algebraic solution accurately described the unsaturated soil water flow processes.

  7. Impact of water repellency on infiltration of differently concentrated ethanol solutions

    Science.gov (United States)

    Dlapa, Pavel; Hrabovský, Andrej; Hriník, Dávid; Kuric, Peter

    2017-04-01

    Infiltration experiments were carried out on an extremely (WDPT > 3600 s) water repellent forest soil in the Little Carpathians Mts (SW Slovakia). Measurements were performed following a long dry warm period using the Mini Disk Infiltrometer (Decagon). Replicated infiltration experiments were conducted with water and five different ethanol solutions. The infiltrometer was set to a capillary pressure head of -2 cm and filled with solutions containing 0, 5, 10, 20, 40, and 95% of ethanol by volume, respectively. Solutions used in infiltration experiments differed in density, viscosity, and surface tension. Combined effect of solution properties on infiltration into soil is strongly dependent on soil surface properties. This may lead to a decrease of infiltration rate with increasing ethanol concentration. Such behaviour should be observable in wettable soils. However, the infiltration experiments revealed a significant increase in the rate of infiltration for increasing concentrations of ethanol. The solutions showed infiltration rates of 10-4, 10-3, and 10-2 cm/s for the 5, 20, and 95% ethanol solutions, respectively. This trend suggests the dominant influence of contact angle (affected by ethanol concentration) on infiltration process. Measurements allow quantifying changes of various infiltration parameters as a function of the solution properties. The obtained results showed that similar approach can be a valuable alternative to other methods used for the evaluation of severity of soil repellency and impacts to hydrological processes.

  8. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    Science.gov (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  9. Perfluorinated compounds in infiltrated river Rhine water and infiltrated rainwater in coastal dunes

    NARCIS (Netherlands)

    Eschauzier, C.; Haftka, J.; Stuyfzand, P.J.; de Voogt, P.

    2010-01-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific

  10. Perfluorinated compounds in infiltrated river Rhine water and infiltrated rainwater in coastal dunes

    NARCIS (Netherlands)

    Eschauzier, C.; Haftka, J.; Stuyfzand, P.J.; de Voogt, P.

    2010-01-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemic

  11. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  12. Salt—Water Dynamics in Highly Salinized Topsoil of Salt—Affected Soil During Water Infiltration

    Institute of Scientific and Technical Information of China (English)

    WANGXUE-FENG; YOUWEN-RUI; 等

    1991-01-01

    Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.

  13. Water Repellency, Infiltration and Water Retention Properties of Forest Soils Under Different Management Practices

    Science.gov (United States)

    Wahl, N. A.; Bens, O.; Schäfer, B.; Hüttl, R. F.

    For soils under both agricultural and forest use, management and tillage practice can have significant influence on the hydraulic properties. It is therefore supposed, that management practices are capable of altering surface runoff, water retention and flood- ing risk for river catchments. Soil water repellency (hydrophobicity) can adversely affect soil hydrological properties, e.g. reduce infiltration capacity and induce pref- erential flow, thus enhancing the overall risk of flooding in river catchment areas. Hydrophobic effects are especially pronounced in coniferous forest soils. Investigations were carried out on several study plots in the German Northeastern Lowlands, located app. 50 km NE of Berlin in Brandenburg. Soils found in the area are mainly of glacifluvial origin with a pronounced sandy texture (with medium sized sand dominating). The four stands investigated represent different stages of forest transfor- mation, in a sense of a SfalseT chronosequence and are made up of populations of & cedil;Pinus sylvestris and Fagus sylvatica of different ages. Infiltration was measured with hood infiltrometers, and single infiltration rings at soil surface. Water retention capacity and the influence of soil organic matter on water storage were evaluated with laboratory methods. Water repellency was quantified with the water drop penetration time (WDPT) test, for determining the persistence of water repellency, and the ethanol percentage (EP) test, for measuring the severity/degree of water repellency. Soil samples from the four forest plots and different soil depths (0U160 cm) were used for the measurements. SPotentialT water repellencies were & cedil;determined after 3-day oven-drying at 45 C. The results indicate that for sandy forest soils, the overall infiltration capacity of the plots is low due to the effects of water repellency. The inter-variability of the plots is mainly caused by changes in the textural composition of the soils. For all plots a

  14. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  15. Infiltration characteristics of water in forest soils in the Simian mountains, Chongqing City, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Hongjiang ZHANG; Meng LI; Jinhua CHENG; Bo WANG; Weili LU

    2009-01-01

    Spearman rank-correlation analysis and grey relational grade analysis were used to study infiltration characteristics of water in different forest soils in the Simian mountains, Chongqing City. The results indicate that the soil bulk density, contents of coarse sand, and porosity of macropores were significantly correlated with saturated hydraulic conductivity. Porosity of macropores and contents of coarse sand were positively correlated with soil saturated hydraulic conductivity and soil bulk density negatively. Based on the initial infiltration rate, the stable infiltration rate, time required for infiltration to reach a stable state, and cumulative infiltration, all of which are crucial parameters determining soil infiltration capacity, the results of grey relational grade analysis showed that the grey relational grades of the different forest soils were listed from high to low as broad-leaved forest (0.8031) > Phyllostachys pubescens forest (0.7869) > mixed coniferbroadleaf forest (0.4454)>coniferous forest (0.4039). Broadleaf forest had the best ability to be infiltrated among the four soils studied. The square roots of the coefficients of determination obtained from fitting the Horton infiltration equation, simulated in our study of forest soils, were higher than 0.950. We conclude that soils of broad-leaved forests were the best suited for infiltration processes of forestry in the Simian mountains.

  16. Quantifying Water Infiltration through the Preferential Passages in the Forest Soil

    Science.gov (United States)

    Qu, Liqin; Chen, Ping; Gan, Ping; Lei, Tingwu

    2017-04-01

    Infiltration of water into soil commonly involves infiltration through the matrix body and preferential passages. Quantifying the contribution of preferential flow is important to evaluate the effects of land use and land cover changes on hillslope hydrology and watershed sedimentation. A new procedure was applied in this study to estimate the water infiltration into the soil through the soil body and macrospores. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station, Gansu Province, China. The experiment implements a double-ring infiltrometer and involves two measuring phases. Firstly, a thin layer sieved soil collected on site was sprinkled on the nylon cloth to shelter the macrospores and to ensure that water infiltrates the soil through the matrix only. The infiltration process was measured, computed, and recorded. Secondly, immediately after the first phase, the nylon cloth and layered soil above the soil surface was removed from the double ring infiltrometer carefully, and the infiltration process was measured for 30 mins in which water infiltration through both soil body impacted by the preferential passages in the soil body. There were three treatments according to the measured infiltration periods in the first phase of 30, 60, 90 mins, respectively, and two replicates for each treatment were conducted. The measured soil infiltration curves in the first phase explained the transient process of soil matrix infiltration well. The measured date were fitted by Kostiako models fitted measured data well with all coefficients of determination greater than 0.9. The constant infiltration rates from the second phase were at least 2 times larger than the estimates from the first phase. In other words, the results indicated that more than 60% of water infiltration was through the preferential passages in the forest soil. The result also shows that durations in the first phase affect the

  17. Comparative assessment of water infiltration of soils under different tillage systems in eastern Botswana

    Science.gov (United States)

    Moroke, T. S.; Dikinya, O.; Patrick, C.

    Water infiltration is an important component of water balance for improving crop production potential in dryland soil tillage systems in Botswana, particularly in the eastern region. Hardsetting soils common in arable lands of Botswana, often require some kind of tillage such as mouldboard ploughing, chiselling and ripping to improve waterharvesting and crop growth conditions. The objective of this study was to compare ponded cumulative infiltration, steady state infiltration rate and sorptivity of soils cultivated using deep ripping, single and double mouldboard ploughing. This study was conducted on Chromic Luvisols (sandy loam), Haplic Luvisols (sandy clay loam), Ferric Luvisols (clay loam), and Ferric Arenosols (sand). Infiltration was measured using double ring infiltrometer method for 4 h. Although infiltration was smaller on traffic line of deep ripping system at all sites, it was only significantly ( P 0.05) different under deep ripped. Cumulative and steady state infiltration rate was greater under sandy than loamy soils, smaller under double ploughing compared with single ploughed and deep ripped soils. Sorptivity was not significantly ( P > 0.05) different among tillage systems but was greater under sandy than sandy loam soils. Information on tillage and infiltration can improve implementation of waterharvesting technologies and crop production in Botswana.

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    Science.gov (United States)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  19. Hundreds of automatic drip counters reveal infiltration water discharge characteristics in Australian caves

    Science.gov (United States)

    Baker, A.; Treble, P. C.; Coleborn, K.; Mahmud, K.; Markowska, M.; Flemons, I.

    2015-12-01

    Quantifying the timing and character of cave drip water discharge is crucial for our understanding of speleothem climate proxies. Since 2010, we have established a long-term, national monitoring program of drip water infiltration onto cave stalagmites using automated Stalagmate© loggers. Five karst regions, from semi-arid to sub-tropical climates, have been instrumented. Over 200 loggers (between 10 and 40 per cave) have collected data on the timing and amount of drip water infiltration, from sites of contrasting limestone geology. Here, we present results demonstrating the timing and characteristics of drip water discharge from 2010 to present. At the semi-arid Cathedral Cave, with a range of depths from 0-40 m, there is a decreasing frequency of recharge events with depth below ground surface. High-intensity, long-duration rainfall events are confirmed to be the primary driver of infiltration events at semi-arid sites, whereas annual rainfall amount is the primary driver at a Mediterranean climate site with high primary porosity. Inter-annual variability in the frequency and relative amount of drip water infiltration is compared to climate forcing variables such as the ENSO and surface temperature. Our cave observatory system helps improve our understanding of the drip water recharge process, drip-water related speleothem proxy records, and provides a baseline monitoring network for diffuse groundwater recharge during a period of climate change.

  20. Relationships between water infiltration and oil spill migration in sandy soils

    Science.gov (United States)

    Kessler, Avner; Rubin, Hillel

    1987-06-01

    This article summarizes a study directed towards the prediction of oil spill migration in sandy soils. Such a prediction is needed for the design of remedial measures against soil and groundwater contamination. The geneal approach in this study is to convert available data concerning water infiltration into equivalent unknown data concerning oil spillage. This information is then fed into a numerical model by which the oil spill migration is simulated. Laboratory measurements including retention curve, hydraulic conductivity and infiltration rate, were made separately for water and kerosene in order to evaluate and confirm the suggested approach.

  1. Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.; Nyagumbo, I.

    2014-01-01

    Realising that rainwater harvesting (RWH) improves crop productivity, smallholder farmers in semi-arid Zimbabwe modified contour ridges traditionally used for rainwater management by digging infiltration pits inside contour ridge channels in order to retain more water in crop fields. However, scient

  2. Double porosity models for the description of water infiltration in wood

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Damkilde, Lars

    2004-01-01

    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy bv...

  3. Double Porosity Models For the Description of Water Infiltration In Wood

    DEFF Research Database (Denmark)

    Kristian, Krabbenhøft; Damkilde, Lars

    2004-01-01

    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy...... by a double permeability model....

  4. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

  5. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam

    Science.gov (United States)

    2016-01-01

    Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705

  6. Comparing the Goodness of Different Statistical Criteria for Evaluating the Soil Water Infiltration Models

    Directory of Open Access Journals (Sweden)

    S. Mirzaee

    2016-02-01

    Full Text Available Introduction: The infiltration process is one of the most important components of the hydrologic cycle. Quantifying the infiltration water into soil is of great importance in watershed management. Prediction of flooding, erosion and pollutant transport all depends on the rate of runoff which is directly affected by the rate of infiltration. Quantification of infiltration water into soil is also necessary to determine the availability of water for crop growth and to estimate the amount of additional water needed for irrigation. Thus, an accurate model is required to estimate infiltration of water into soil. The ability of physical and empirical models in simulation of soil processes is commonly measured through comparisons of simulated and observed values. For these reasons, a large variety of indices have been proposed and used over the years in comparison of infiltration water into soil models. Among the proposed indices, some are absolute criteria such as the widely used root mean square error (RMSE, while others are relative criteria (i.e. normalized such as the Nash and Sutcliffe (1970 efficiency criterion (NSE. Selecting and using appropriate statistical criteria to evaluate and interpretation of the results for infiltration water into soil models is essential because each of the used criteria focus on specific types of errors. Also, descriptions of various goodness of fit indices or indicators including their advantages and shortcomings, and rigorous discussions on the suitability of each index are very important. The objective of this study is to compare the goodness of different statistical criteria to evaluate infiltration of water into soil models. Comparison techniques were considered to define the best models: coefficient of determination (R2, root mean square error (RMSE, efficiency criteria (NSEI and modified forms (such as NSEjI, NSESQRTI, NSElnI and NSEiI. Comparatively little work has been carried out on the meaning and

  7. Temporal and soil management effects on soil infiltration and water content in a hillslope vineyard

    Science.gov (United States)

    Biddoccu, Marcella; Ferraris, Stefano; Cavallo, Eugenio

    2015-04-01

    The maintenance of bare soil in the vineyard's inter-rows with tillage, as well as other mechanized operations which increase the vehicle traffic, expose the soil to degradation, favoring overland flow and further threats as compaction, reduction of soil water holding capacity and water infiltration. Water infiltration is strongly controlled by field-saturated hydraulic conductivity, which depends primarily on soil texture and structure, and it is characterized by high spatial and temporal variability. Beyond the currently adopted soil management, some major causes in variability of infiltration rates are the history of cultivation and the structure of the first centimeters of the vineyard's soil. A study was carried out in two experimental vineyard plots included in the 'Tenuta Cannona Experimental Vine and Wine Centre of Regione Piemonte', located in NW Italy. The study was addressed to evaluate the temporal variations of the field-saturated hydraulic conductivity, in relation to the soil management adopted in the inter-rows of a hillslope vineyard. The investigation was carried out in a vineyard comparing the adoption of two different soil managements in the inter-rows: 1) conventional tillage and 2) controlled grass cover. Several series of double-ring of infiltration tests were carried out during a 2-years period of observation, using the simplified falling head technique (SFH). In order to take into account the effect of tractor traffic, the tests were done both inside the the track, the portion of soil affected by the transit of tractor wheels or tracks, and outside the track. Before the execution of each test, bulk density and initial soil water content close to the investigated area were determined. Relations among infiltration behavior and these parameters were analyzed. Field-saturated hydraulic conductivity (Kfs) at different sampling dates showed high variability, especially in the vineyard with cultivated soil. Indeed, highest infiltration rates were

  8. Bedrock infiltration estimates from a catchment water storage-based modeling approach in the rain snow transition zone

    Science.gov (United States)

    Estimates of bedrock infiltration from mountain catchments in the western U.S. are essential to water resource managers because they provide an estimate of mountain block recharge to regional aquifers. On smaller scales, bedrock infiltration is an important term in water mass balance studies, which...

  9. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  10. Spatial analysis of water infiltration in urban soils. Case study of Iasi municipality (Romania)

    Science.gov (United States)

    Cristian Vasilica, Secu; Ionut, Minea

    2013-04-01

    The post-communist period (after 1989) caused important changes in the functional structure of Iasi municipality. The partly dismantling of the industrial area, the urban sprawl against the periurban and agricultural space, the new infrastructure works, all these determined important changes of soils' physical and morphological properties (e.g. porosity, density, compaction, infiltration rate etc., in the first case, and changes in soil horizons, in the second case etc.). This study aims to prove the variability of physical properties through the combination of statistical and geostatistical methods intended for a correct spatial representation. Water infiltration in urban soils was analyzed in relation to land use and the age of parental materials. Field investigations consisted in measurements of the water infiltration (by the means of Turf Tech infiltrometer), resistance to penetration (penetrologger), moisture deficit (Theta Probe) and resistivity (EC) for 70 equally distanced points (750 m x 750 m) placed in a grid covering more than 33 km2. In the laboratory, there were determined several parameters as density, porosity (air pycnometer), gravimetric moisture and other hydrophysical indicators. Filed investigations results are very heterogeneous, because of the human intervention on soils. The curves of variation for the rate water infiltration in soils indicate a downward trend, from high values in first time interval (one minute), between 5000 and 60 mm/h-1, gradually decreasing to the interval of 5-10 minutes (between 30 and 1000 mm/ h-1 to a general trend of flattening after a large time interval (in the timeframe of 50-60 minutes, the infiltration rate ranges between 4 and 142 mm•h-1). The highest frequency (≥65%) caracterizes the infiltration rates between 20 and 65 mm•h-1. For each analyzed sector (residential areas, industrial areas, degraded lands, recreational areas - parks and botanical gardens, forests heterogeneous agricultural lands), the

  11. Dynamic soil water repellency during infiltration of water, ethanol, and aqueous ethanol solutions in post wildfire soils

    Science.gov (United States)

    Beatty, Sarah; Smith, James

    2015-04-01

    Contact angle dynamics, the temporal dependence of repellency, and the persistence of repellency are all terms used to describe dynamic changes in soil water repellency with time. Studied over varied spatial and temporal scales, much remains to be known about dynamic soil water repellency and its role during infiltration. Of those approaches used to characterize dynamic soil water repellency and develop mechanistic insight, tension infiltration has become an important one. Removing positive pore water pressures through tension infiltration facilitates the observation of infiltration initiated by capillary pull and experimentally eliminates one of the competing mechanisms that generates non-uniqueness. This makes tension infiltrometers and the data they generate uniquely sensitive to (primary) changes in contact angles and fractional wettability. Changes, which are subsumed when positive pore water pressures are the primary drivers of infiltration, as is the case during ponded infiltration in water repellent soils. One pressing challenge, however, is that analytical approaches, based on idealized wettable-system principles (e.g. 0° and/or static contact angles), yield suspect results in non-wetting / fractionally wettable / dynamic systems. Consequently, complex infiltration behaviours, and linkages between fundamental process oriented understanding and real-world problems, remain poorly understood. This persistently impedes our ability to accurately describe, model, and predict flow in water repellent systems. To help address this knowledge gap, this work presents suites of in situ field (3D) and laboratory (1D) experimental data collected in naturally repellent post wildfire soils using tension infiltrometers (4.4cm and 8cm, respectively) and different infiltrating fluids. In the field, 49 infiltration tests using water, ethanol (95%), and Molarity of Ethanol Drop (MED)-derived aqueous ethanol solutions indicated that early- and late-time infiltration behaviours

  12. Metal concentrations in soil and seepage water due to infiltration of roof runoff by long term numerical modelling.

    Science.gov (United States)

    Zimmermann, J; Dierkes, C; Göbel, P; Klinger, C; Stubbe, H; Coldewey, W G

    2005-01-01

    The qualitative effects of stormwater infiltration on soil and seepage water are investigated with long term numerical modelling. The retention behaviour of different soils and materials used in infiltration devices is determined with batch and column tests. Results of the laboratory tests are adsorption isotherms which represent input data for numerical transport modelling. The long term simulations are performed with combinations of different solutions (types of roof runoff) and infiltration devices (swale and trench) under different hydrogeological conditions. The presented results contain the infiltration of low polluted roof runoff, runoff from a roof with zinc sheets and from a roof with copper sheets concerning the heavy metals zinc, copper and lead. The increase of concentrations in the infiltration body is high. For the infiltrated water, the results show a migration to groundwater only for the low adsorbing soil.

  13. Electrical capacitance volume tomography for measurement soil water infiltration in vessel experiments

    Institute of Scientific and Technical Information of China (English)

    Muhammad Mukhlisin; Marlin Ramadhan Baidillah; Mohd Raihan Taha

    2014-01-01

    Electrical capacitance volume tomography (ECVT) is a recently-developed technique for real-time, non-invasive 3D monitoring of processes involving materials with strong contrasts in dielectric permittivity. This work is first application of the method to visualization of water flow in soil. We describe the principles behind the method, and then demonstrate its use with a simple laboratory infiltration experiment. 32 ECVT sensors were installed on the sides of an empty PVC column. Water was poured into the column at a constant rate, and ECVT data were collected every second. The column was then packed with dry sand and again supplied with water at a constant rate with data collected every second. Data were analyzed to give bulk average water contents, which proved consistent with the water supply rates. Data were also analyzed to give 3D images (216 voxels) allowing visualization of the water distribution during the experiments. Result of this work shows that water infiltration into the soil, wall flow, progress of the unstable wetting front and the final water distribution are clearly visible.

  14. Effects of hydrophilic macropore fillings and coatings on the infiltration into water repellent porous media

    Science.gov (United States)

    Suetsugu, A.; Mori, Y.

    2012-12-01

    Macropores generate rapid flow paths in the surface soils by their high permeability under saturated/near-saturated moisture conditions. In natural soils, some macropores are filled/coated with various materials including decayed plant roots (Meek et al., 1989), exudates from plants/soil organisms (Jegou et al., 2001), iron oxides or other precipitates from preferentially-introduced solutes/colloids to the macropores (Rasmussen et al., 2001), or the surrounding soils with reduced bulk density (Ela et al., 1992). When we expect infiltration into water repellent soils through macropores or hydrophilic patches created from the macropore cementation processes, hydrophilicity of the macropore fillings/coatings should be understood. In the present study, we conducted an infiltration experiment with water repellent porous media and some macropore fillings/coatings, in order to clarify the roles of hydrophilic macropore fillings/coatings in infiltration. Ponding depth and flow distribution were monitored with a micro-focus X-ray computational tomography apparatus (SMX-90CT, Shimadzu Corp., Kyoto, Japan) at 90 kV and 110 μA. Dilute CsCl(aq) (density: 1.04 Mg m-3) was used as the contrast media to avoid density-driven alteration of the flows. Water repellency of the samples was evaluated by the water drop penetration time (WDPT, Van't Woudt, 1959). A glass beads (mean diameter: 0.46 mm, BZ-04, ASONE Corp., Osaka, Japan) was used as water repellent porous media. The glass beads sample was packed in 50-mL polypropylene centrifugation tubes at 1.55 Mg m-3 bulk density. A 2-mm hole was made at the bottom of each centrifugation tube for ventilation. The hole was covered with mesh cloth. Macroporous structure was made at the center of each tube from the surface. Each macroporous structure had 4-mm diameter and 30-mm length. Six types of macropores were prepared including 1) no macropore, 2) empty macropore, 3) an aluminum (Al) pipe (4-mm inner diameter, 5-mm outer diameter), 4) a

  15. Modeling of soil water infiltration with rainfall simulator in different agricultural systems

    Directory of Open Access Journals (Sweden)

    Thais E. M. dos Santos

    2016-06-01

    Full Text Available ABSTRACT This study aimed to compare models for predicting soil water infiltration rate and erosive rates using a rainfall simulator in different systems of common bean (Phaseolus vulgaris L. cultivation. The evaluated mathematical models were: Kostiakov, Kostiakov-Lewis, Green-Ampt and Horton. Infiltration tests were carried out considering six treatments: bean cultivated on contour with rock barriers spaced at 0.5 m between crop rows (BC1; bean cultivated on contour with rock barriers spaced at 1.0 m between crop rows (BC2; bean cultivated downslope (BDS; bean cultivated on contour with mulch (BCM; bare soil (BS and soil under natural cover (NC. Four replicates were considered, totaling 24 field tests. Kostiakov-Lewis's equation showed the lowest values of standard error. Soil water infiltration rate was equal to 53.3 mm h-1 in the natural vegetation treatment and to 9.49 mm h-1 in the downslope treatment. Surface roughness and the time of beginning of surface runoff were significantly higher for the conditions with mulch cover.

  16. Quantitative Assessment of Fat Infiltration in the Rotator Cuff Muscles using water-fat MRI

    Science.gov (United States)

    Nardo, Lorenzo; Karampinos, Dimitrios C.; Lansdown, Drew A.; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C. Benjamin; Link, Thomas M.; Krug, Roland

    2013-01-01

    Purpose To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semi-quantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. Materials and Methods The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2- and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Results Fat fraction values were significantly correlated with GC grades (p0.9) showing consistent increase with GC grades (grade=0, 0%–5.59%; grade=1, 1.1%–9.70%; grade=2, 6.44%–14.86%; grade=3, 15.25%–17.77%; grade=4, 19.85%–29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus a) deficit in internal rotation (Spearman Rank Correlation Coefficient=0.39, 95% CI 0.13–0.60, pquantitative fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (Spearman Rank Correlation Coefficient=0.45, 95% CI 0.20–0.60, p<0.01). Conclusion We concluded that an accurate and highly reproducible fat quantification in the rotator cuff muscles using water-fat MRI techniques is possible and significantly correlates with shoulder pain and range of motion. PMID:24115490

  17. Groundwater Infiltration Potential (GWIP) as an aid to determining the cause of dilution of waste water

    Science.gov (United States)

    Dirckx, Geert; Van Daele, Sofie; Hellinck, Nathan

    2016-11-01

    Groundwater infiltration through leaking sewers represents a considerable fraction of the total amount of wastewater dilution. In search for an easy-to-determine yet acceptably accurate estimation of the likelihood of groundwater infiltration into leaking sewers, the parameter 'groundwater infiltration potential' or shortly GWIP was defined. GWIP expresses the extent to which groundwater infiltration could - in contrast to the inflow of surface water - be a cause of dilution of sewage. The GWIP is determined by a comparison between the elevation of the groundwater table with the position of the sewer conduits per geo-spatial aggregation level (GAL). This first order analysis compares sets of three representative figures of the groundwater table's elevation, i.e. the minimum, the maximum and the average level with sets of two representative values of the pipes' positions, i.e. average invert and soffit levels. A GWIP map can be set-up indicating per GAL a GWIP score that represents a generic evaluation of the common (i.e. most occurring or representative) situation regarding the presence of the groundwater table versus the elevations of the sewer system. In this way the GWIP map can assist in the determination of the overall most likely origin - either surface water or groundwater - of dilution per GAL. Eventually this facilitates strategic decisions regarding the search for particular locations of dilution, and subsequently for the selection of specific remediation measures. The methodology is developed on a local scale of Flanders, Belgium but is generic and therefore applicable to any other region provided that information on the elevation of the sewer system and groundwater table is available.

  18. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI.

    Science.gov (United States)

    Nardo, Lorenzo; Karampinos, Dimitrios C; Lansdown, Drew A; Carballido-Gamio, Julio; Lee, Sonia; Maroldi, Roberto; Ma, C Benjamin; Link, Thomas M; Krug, Roland

    2014-05-01

    To evaluate a chemical shift-based fat quantification technique in the rotator cuff muscles in comparison with the semiquantitative Goutallier fat infiltration classification (GC) and to assess their relationship with clinical parameters. The shoulders of 57 patients were imaged using a 3T MR scanner. The rotator cuff muscles were assessed for fat infiltration using GC by two radiologists and an orthopedic surgeon. Sequences included oblique-sagittal T1-, T2-, and proton density-weighted fast spin echo, and six-echo gradient echo. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) was used to measure fat fraction. Pain and range of motion of the shoulder were recorded. Fat fraction values were significantly correlated with GC grades (P 0.9) showing consistent increase with GC grades (grade = 0, 0%-5.59%; grade = 1, 1.1%-9.70%; grade = 2, 6.44%-14.86%; grade = 3, 15.25%-17.77%; grade = 4, 19.85%-29.63%). A significant correlation between fat infiltration of the subscapularis muscle quantified with IDEAL versus 1) deficit in internal rotation (Spearman Rank Correlation Coefficient [SRC] = 0.39, 95% confidence interval [CI] 0.13-0.60, P fat infiltration measures of the supraspinatus muscle were significantly correlated with a deficit in abduction (SRC coefficient = 0.45, 95% CI 0.20-0.60, P fat quantification in the rotator cuff muscles using water-fat magnetic resonance imaging (MRI) techniques is possible and significantly correlates with shoulder pain and range of motion. Copyright © 2013 Wiley Periodicals, Inc.

  19. Groundwater and surface-water utilisation using a bank infiltration technique in Malaysia

    Science.gov (United States)

    Shamsuddin, Mohd Khairul Nizar; Sulaiman, Wan Nor Azmin; Suratman, Saim; Zakaria, Mohamad Pauzi; Samuding, Kamarudin

    2014-05-01

    Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5-98 % decrease in turbidity, as well as reductions in HCO3 -, Cl-, SO4 2-, NO3 -, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.

  20. Analytical solution to transient Richards' equation with realistic water profiles for vertical infiltration and parameter estimation

    Science.gov (United States)

    Hayek, Mohamed

    2016-06-01

    A general analytical model for one-dimensional transient vertical infiltration is presented. The model is based on a combination of the Brooks and Corey soil water retention function and a generalized hydraulic conductivity function. This leads to power law diffusivity and convective term for which the exponents are functions of the inverse of the pore size distribution index. Accordingly, the proposed analytical solution covers many existing realistic models in the literature. The general form of the analytical solution is simple and it expresses implicitly the depth as function of water content and time. It can be used to model infiltration through semi-infinite dry soils with prescribed water content or flux boundary conditions. Some mathematical expressions of practical importance are also derived. The general form solution is useful for comparison between models, validation of numerical solutions and for better understanding the effect of some hydraulic parameters. Based on the analytical expression, a complete inverse procedure which allows the estimation of the hydraulic parameters from water content measurements is presented.

  1. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  2. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  3. Seasonal fluctuations in water repellency and infiltration in a sandy loam soil after a forest fire in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Alleres

    2013-05-01

    Full Text Available The aim of this work was to analyze, after a wildfire of moderate severity, the temporal fluctuations in water repellency and infiltration in a sandy loam soil under a mixed plantation of pine and eucalyptus and the comparison with an adjacent area not affected by the fire. In the burnt area and in a neighboring area not affected by the fire were collected during one year (1, 4, 6, 8 and 12 months after the fire 10 soil samples along a transect of 18 m at four depths: 0-2, 2-5, 5-10 and 10-20 cm. Soil water repellency was determined using the water drop penetration time test (WDPT test and the infiltration was measured with a mini-disc infiltrometer (pressure head h0 = -2 cm.The results show a temporal pattern of soil water repellency in the burnt and unburnt areas. Significant correlations between water repellency and soil moisture were observed, with higher correlation coefficients in the unburned area and in the surface soil layer.Soil water infiltration was significantly lower than would be expected by the coarse texture of the soil in both burnt and unburnt areas. Temporal fluctuations in unburnt soil infiltration seem to be clearly related to the transient nature of the soil water repellency, with no infiltration in samples extremely repellent. In the burned area, the soil infiltration showed much more variability and temporal fluctuations appear to be less dependent on the persistence of water repellency and more dependent on environmental conditions.The unburnt area show significant and negative correlations of soil water repellency with hydraulic conductivity and sorptivity and positive of these two parameters with soil moisture. These relationships were not observed in the burnt area. The temporal fluctuations of soil water repellency have an evident impact on soil infiltration and seem to be more influent than the effects of fire.

  4. Perched water during steady infiltration in a gradually layered soil: some theoretical results

    Science.gov (United States)

    Barontini, Stefano; Ranzi, Roberto

    2010-05-01

    Due to the genetic layering, the hydraulic conductivity at saturation Ks is usually expected to decrease across the upper soil layers. Its effect on the soil hydrological properties is related to a number of landslide triggering mechanisms. Key information in order to evaluate the soil stability are the threshold of the infiltration rate for a saturated layer or a perched water to onset, its depth, the maximum pressure head and the water content profile above the saturated soil. Anyway if Ks is gradually decreasing, as often observed in the uppermost soil layers or in mountain not-mature soils, the position of a perched water can be a priori not known, nor could be the position of the maximum pressure head. These topics were theoretically discussed considering an undeformable soil layer of finite depth, characterised by gradually and monotonically decreasing Ks, in which a steady one-dimensional infiltration takes place at a rate i. At the bottom of the domain a saturation condition was assumed. Two classes of soil constitutive laws were considered in order to represent the unsaturated soil behaviour. They are respectively characterised by a finite and by an infinite slope of the hydraulic conductivity K(φ) (where φ is the matric potential) as approaching the soil saturation. The theoretical results were particularized for a soil with exponentially decreasing Ks and the profiles of the hydrological properties were determined by analytical solutions of the Darcy's law. The analyses suggested the definition of a threshold for the infiltration rate i for the perched water to onset, and allowed to determine the characteristics of the saturated layer, its pressure head profile and the position of the maximum pressure head as a function of the infiltration rate. Moreover, the hydrological properties profiles obtained for the overlaying unsaturated soil stressed the high sensitivity of the solution to the K(φ) model near saturation. The stronger is the reduction of K

  5. Sustainable Zero-Valent Metal (ZVM Water Treatment Associated with Diffusion, Infiltration, Abstraction, and Recirculation

    Directory of Open Access Journals (Sweden)

    David D.J. Antia

    2010-09-01

    Full Text Available Socio-economic, climate and agricultural stress on water resources have resulted in increased global demand for water while at the same time the proportion of potential water resources which are adversely affected by sodification/salinisation, metals, nitrates, and organic chemicals has increased. Nano-zero-valent metal (n-ZVM injection or placement in aquifers offers a potential partial solution. However, n-ZVM application results in a substantial reduction in aquifer permeability, which in turn can reduce the amount of water that can be abstracted from the aquifer. This study using static diffusion and continuous flow reactors containing n-ZVM and m-ZVM (ZVM filaments, filings and punchings has established that the use of m-ZVM does not result in a reduction in aquifer permeability. The experimental results are used to design and model m-ZVM treatment programs for an aquifer (using recirculation or static diffusion. They also provide a predictive model for water quality associated with specific abstraction rates and infiltration/injection into an aquifer. The study demonstrates that m-ZVM treatment requires 1% of the weight required for n-ZVM treatment for a specific flow rate. It is observed that 1 t Fe0 will process 23,500 m3 of abstracted or infiltrating water. m-ZVM is able to remove >80% of nitrates from flowing water and adjust the water composition (by reduction in an aquifer to optimize removal of nitrates, metals and organic compounds. The experiments demonstrate that ZVM treatment of an aquifer can be used to reduce groundwater salinity by 20 –> 45% and that an aquifer remediation program can be designed to desalinate an aquifer. Modeling indicates that widespread application of m-ZVM water treatment may reduce global socio-economic, climate and agricultural stress on water resources. The rate of oxygen formation during water reduction [by ZVM (Fe0, Al0 and Cu0] controls aquifer permeability, the associated aquifer pH, aquifer Eh

  6. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Directory of Open Access Journals (Sweden)

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  7. Infiltration and water balance modeling along a toposequence in a rubber tree plantation of NE Thailand

    Science.gov (United States)

    Hammecker, Claude; Seltacho, Siwaporn; Suvanang, Nopmanee; Do, Frederic; Angulo-Jaramillo, Rafael

    2015-04-01

    Northeast of Thailand, is a plateau at 200 m AMSL with a typical undulating landscape. Traditionally the lowlands were dedicated to paddy fields and the uplands covered by Dipterocarpus forest. However development of cash crops during the last decades has led to intensive land clearing in the uplands and to modifications at a regional scale of the water balance in the critical zone with increasing runoff and soil erosion. Recent international demand increase for natural rubber motivated many local farmers to shift from these cash crops towards rubber-tree (Heva Brasiliensis) plantations. However these land use changes have been undertaken without considering the climatic and edaphic specificity of the region, which are not well adapted to the growth of rubber tree (rainfall lower than recommended and sandy soils with low fertility). Therefore, in order to assess and try to predict the environmental consequences (water resources, water-table, ..) of the development of rubber tree plantations in this area, a small watershed in the region ok Khon Kaen has been selected to follow the infiltration and to monitor the different components of the water balance along a toposequence. A six years monitoring of the main components of water balance along a toposequence associated to numerical simulation were used to quantify and try to forecast the evolution of the water use and water resources. Unsaturated soil properties were determined at different depths, in various positions along the toposequence. Experimental results supported by modeling of 2D water flow with HYDRUS3D show clearly that infiltration is blocked by a clayey layer on top of the bedrock and conditioned the occurrence of a perched watertable during the rainy seasons. Most of the soil water flow was found to be directed laterally during the rainy season. The deep groundwater was found to be fed from the lower part of toposequence in the thalweg. The transpiration rate measured on the trees at this stage of

  8. Multiphase Reactive Transport modeling of Stable Isotope Fractionation of Infiltrating Unsaturated Zone Pore Water and Vapor Using TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Michael J.; Sonnenthal, Eric L.; Conrad, Mark E.; DePaolo, Donald J.

    2003-08-28

    Numerical simulations of transport and isotope fractionation provide a method to quantitatively interpret vadose zone pore water stable isotope depth profiles based on soil properties, climatic conditions, and infiltration. We incorporate the temperature-dependent equilibration of stable isotopic species between water and water vapor, and their differing diffusive transport properties into the thermodynamic database of the reactive transport code TOUGHREACT. These simulations are used to illustrate the evolution of stable isotope profiles in semiarid regions where recharge during wet seasons disturbs the drying profile traditionally associated with vadose zone pore waters. Alternating wet and dry seasons lead to annual fluctuations in moisture content, capillary pressure, and stable isotope compositions in the vadose zone. Periodic infiltration models capture the effects of seasonal increases in precipitation and predict stable isotope profiles that are distinct from those observed under drying (zero infiltration) conditions. After infiltration, evaporation causes a shift to higher 18O and D values, which are preserved in the deeper pore waters. The magnitude of the isotopic composition shift preserved in deep vadose zone pore waters varies inversely with the rate of infiltration.

  9. Evaporation and Infiltration from Water Bodies in the Lerma-Chapala Basin, Mexico

    Science.gov (United States)

    Scott, C. A.; Flores-Lopez, F. F.

    2001-05-01

    Reservoirs and ponds significantly influence the hydrology of the Lerma-Chapala river basin in Mexico and affect inflows to the receiving waters of Lake Chapala. This paper reports on remote sensing and GIS assessment of the 55,511 km2 basin, in which 81 lakes and reservoirs, and 28,895 ponds were identified from post-rainy season 1998 Thematic Mapper imagery. Digital terrain analysis coupled with sedimentation estimates from soil and land cover data were used to estimate impounded volumes in ponds, and in reservoirs for which storage data were unreported. Open water surface evaporation (3.2 - 7.4 mm/day) was determined using a surface energy balance model, Penman-Monteith, and corrected pan evaporation methods. Sediment samples were analyzed, and a pedo-transfer function was used to estimate saturated hydraulic conductivity (0.2 - 6.6 mm/day) of the bed sediments, which are assumed to be the layer that limits percolation recharge to groundwater. The ponds' shallow depths and sediments with high clay and low organic matter contents result in evaporation to infiltration ratios of approximately 2:1 over the dry season. Increasing irrigation from ponds or permitting this water to flow downstream to deeper reservoirs may result in less water loss than allowing impounded water to recharge and subsequently withdrawing groundwater.

  10. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration

    Directory of Open Access Journals (Sweden)

    Di Prima Simone

    2017-09-01

    Full Text Available In Mediterranean ecosystems, special attention needs to be paid to forest–water relationships due to water scarcity. In this context, Adaptive Forest Management (AFM has the objective to establish how forest resources have to be managed with regards to the efficient use of water, which needs maintaining healthy soil properties even after disturbance. The main objective of this investigation was to understand the effect of one of the AFM methods, namely forest thinning, on soil hydraulic properties. At this aim, soil hydraulic characterization was performed on two contiguous Mediterranean oak forest plots, one of them thinned to reduce the forest density from 861 to 414 tree per ha. Three years after the intervention, thinning had not affected soil water permeability of the studied plots. Both ponding and tension infiltration runs yielded not significantly different saturated, Ks, and unsaturated, K−20, hydraulic conductivity values at the thinned and control plots. Therefore, thinning had no an adverse effect on vertical water fluxes at the soil surface. Mean Ks values estimated with the ponded ring infiltrometer were two orders of magnitude higher than K−20 values estimated with the minidisk infiltrometer, revealing probably soil structure with macropores and fractures. The input of hydrophobic organic matter, as a consequence of the addition of plant residues after the thinning treatment, resulted in slight differences in terms of both water drop penetration time, WDPT, and the index of water repellency, R, between thinned and control plots. Soil water repellency only affected unsaturated soil hydraulic conductivity measurements. Moreover, K−20 values showed a negative correlation with both WDPT and R, whereas Ks values did not, revealing that the soil hydrophobic behavior has no impact on saturated hydraulic conductivity.

  11. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    Science.gov (United States)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  12. Water repellency and infiltration of biological soil crusts on an arid and a temperate dunes

    Science.gov (United States)

    Fischer, Thomas; Yair, Aaron; Geppert, Helmut; Veste, Maik

    2014-05-01

    Biological soil crusts (BSCs) play an important role in many ecosystems and in all climates. We studies hydrological properties of BSCs under arid and temperate climates. The arid study site was located near Nizzana, in the northwestern Negev, Israel and the temperate site was near Lieberose, Brandenburg, Germany. BSCs were sampled at each site near the dune crest, at the center of the dune slope and at the dune base. Using principal component analysis (PCA), we studied the relationships between hydraulic properties and the molecular structure of organic matter using repellency indices, microinfiltrometry, and 13C-CP/MAS-NMR. The soil texture was finer and water holding capacities (WHCs) were higher in Nizzana, whereas surface wettability was reduced in Lieberose. At both sites, BSCs caused extra WHC compared to the mineral substrate. Infiltration after wetting along both catenas generally reached a maximum after 10 min and decreased after 30 min. Carbohydrates were the dominating components in all of the BSCs studied, where the relative peak areas of carbohydrate-derived structures (60-110 ppm) amounted to 28-46% and to 10-14% of total C-peak areas, respectively. PCA revealed that the WHC of the substrate was closely related to the amount of silt and clay, whereas the BSC induced extra WHC was closely related to carbohydrates. It was further found that water repellency was positively related to carbohydrate C, but negatively related to alkyl C. Infiltration kinetics was attributed to polysaccharide hydration and swelling. Our findings support the hypothesis that hydraulic properties of BSCs are determined by extracellular polymeric substances (EPS) and soil texture. Hydraulic properties in BSCs result from the combination of chemical properties related to C compounds mainly dominated by carbohydrates and physical surface properties related to texture, porosity and water holding capacity. References Fischer, T., Yair, A., Veste, M., Geppert, H. (2013) Hydraulic

  13. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, J.A.; Kinner, D.A.; Ubeda, X.

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(??i), as a function of initial soil moisture content, ??i, ranging from extremely dry conditions (??i capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(??i) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall-runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds under these initial conditions.

  14. Infiltration and water storage in forest soils at the plot and the micro- catchment scale

    Science.gov (United States)

    Stimm, Eva-Maria; Lange, Benjamin; Lüscher, Peter; Germann, Peter; Weingartner, Rolf

    2010-05-01

    Tree roots generate and conserve hydrologically active macropores. We explored the influence of root density on infiltration and water storage at six 1-m2 plots along an 8-m transect between two mature trees (spruce). The soil is a Flysch-based stagnic Cambisol with a flow-impeding horizon at a depth of about 60 cm. At a plot the experimental set up consisted of a 1m x 1m sprinkler and five Decagon HS-10 soil-moisture probes that were horizontally mounted from a trench into the centre of each horizon. We irrigated each plot three times at 24-hour intervals during one hour with a rate of 70 mm h-1. Data logging was at 60-seconds intervals that produced time series of water contents due to irrigation and drainage. After irrigation, soil cores of 10 cm diameter were sampled. Roots were extracted from the cores and their densities were optically analysed with the program "whinRIZO". The application of a rivulet approach to the time series of water contents produced the thickness F (μm) and the specific contact length L (m m-2) per cross-sectional area of the water films that represent Stokes-flow. The procedure leads to estimates of storage capacity and hydraulic connectivity in the vertical and lateral directions along the transect. Extrapolation from the transect to the micro-catchment scale is based on maps showing the spatial arrangements of trees, shrubs and soil properties like thickness and hydrological parameters of horizons.

  15. Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration

    Science.gov (United States)

    Imhoff, Paul T.; Jaffé, Peter R.

    1994-09-01

    Gas-water phase mass transfer was examined in a homogeneous sand with both the gas and water phase mobile: water was infiltrated from the top of the sand column while benzene-laden air flowed upward from the bottom. Mass-transfer limitations for this situation may be important for applications of bioventing, where water and nutrients are added at the ground surface simultaneously with induced air movement to carry oxygen and volatile organics to microbial populations. Gas- and water-phase samples indicate that gas-water phase mass transfer was sufficiently fast that equilibrium between gas and water phases was achieved at all sampling locations within the porous medium. Lower-bound estimates for the gas-water mass-transfer rate coefficient show that mass transfer was at least 10-40 times larger than predictions made from an empirical model developed for gas-water phase mass transfer in an identical porous medium. A water-phase tracer test demonstrates that water flow was much more uniform in this study than in those earlier experiments, which is a likely explanation for the differing rates of gas-water phase mass transfer. It is hypothesized that the liquid distribution in previous laboratory experiments was less uniform because of preferential flow paths due to wetting front instabilities. Gas-water phase mass-transfer rate coefficients reported in this investigation are for an ideal situation of uniform water infiltration: mass-transfer rates in field soils are expected to be significantly smaller.

  16. An analysis of infiltration with moisture content distribution in a two-dimensional discretized water content domain

    KAUST Repository

    Yu, Han

    2014-06-11

    On the basis of unsaturated Darcy\\'s law, the Talbot-Ogden method provides a fast unconditional mass conservative algorithm to simulate groundwater infiltration in various unsaturated soil textures. Unlike advanced reservoir modelling methods that compute unsaturated flow in space, it only discretizes the moisture content domain into a suitable number of bins so that the vertical water movement is estimated piecewise in each bin. The dimensionality of the moisture content domain is extended from one dimensional to two dimensional in this study, which allows us to distinguish pore shapes within the same moisture content range. The vertical movement of water in the extended model imitates the infiltration phase in the Talbot-Ogden method. However, the difference in this extension is the directional redistribution, which represents the horizontal inter-bin flow and causes the water content distribution to have an effect on infiltration. Using this extension, we mathematically analyse the general relationship between infiltration and the moisture content distribution associated with wetting front depths in different bins. We show that a more negatively skewed moisture content distribution can produce a longer ponding time, whereas a higher overall flux cannot be guaranteed in this situation. It is proven on the basis of the water content probability distribution independent of soil textures. To illustrate this analysis, we also present numerical examples for both fine and coarse soil textures.

  17. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method...... water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model...

  18. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters

    Science.gov (United States)

    Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar

    2016-05-01

    One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.

  19. Linking hydraulic properties of fire-affected soils to infiltration and water repellency

    Science.gov (United States)

    Moody, John A.; David Kinner,; Xavier Úbeda,

    2009-01-01

    Heat from wildfires can produce a two-layer system composed of extremely dry soil covered by a layer of ash, which when subjected to rainfall, may produce extreme floods. To understand the soil physics controlling runoff for these initial conditions, we used a small, portable disk infiltrometer to measure two hydraulic properties: (1) near-saturated hydraulic conductivity, Kf and (2) sorptivity, S(θi), as a function of initial soil moisture content, θi, ranging from extremely dry conditions (θi water repellency that influences Kf and S(θi).Values of Kf ranged from 4.5 × 10−3 to 53 × 10−3 cm s−1 for ash; from 0.93 × 10−3 to 130 × 10−3 cm s−1 for reference soils; and from 0.86 × 10−3 to 3.0 × 10−3 cm s−1, for soil unaffected by fire, which had the lowest values of Kf. Measurements indicated that S(θi) could be represented by an empirical non-linear function of θi with a sorptivity maximum of 0.18–0.20 cm s−0.5, between 0.03 and 0.08 cm3 cm−3. This functional form differs from the monotonically decreasing non-linear functions often used to represent S(θi) for rainfall–runoff modeling. The sorptivity maximum may represent the combined effects of gravity, capillarity, and adsorption in a transitional domain corresponding to extremely dry soil, and moreover, it may explain the observed non-linear behavior, and the critical soil-moisture threshold of water repellent soils. Laboratory measurements of Kf and S(θi) are the first for ash and fire-affected soil, but additional measurements are needed of these hydraulic properties for in situ fire-affected soils. They provide insight into water repellency behavior and infiltration under extremely dry conditions. Most importantly, they indicate how existing rainfall–runoff models can be modified to accommodate a possible two-layer system in extremely dry conditions. These modified models can be used to predict floods from burned watersheds

  20. Estimate of the soil water retention curve from the sorptivity and β parameter calculated from an upward infiltration experiment

    Science.gov (United States)

    Moret-Fernández, D.; Latorre, B.

    2017-01-01

    The water retention curve (θ(h)), which defines the relationship between the volumetric water content (θ) and the matric potential (h), is of paramount importance to characterize the hydraulic behaviour of soils. Because current methods to estimate θ(h) are, in general, tedious and time consuming, alternative procedures to determine θ(h) are needed. Using an upward infiltration curve, the main objective of this work is to present a method to determine the parameters of the van Genuchten (1980) water retention curve (α and n) from the sorptivity (S) and the β parameter defined in the 1D infiltration equation proposed by Haverkamp et al. (1994). The first specific objective is to present an equation, based on the Haverkamp et al. (1994) analysis, which allows describing an upward infiltration process. Secondary, assuming a known saturated hydraulic conductivity, Ks, calculated on a finite soil column by the Darcy's law, a numerical procedure to calculate S and β by the inverse analysis of an exfiltration curve is presented. Finally, the α and n values are numerically calculated from Ks, S and β. To accomplish the first specific objective, cumulative upward infiltration curves simulated with HYDRUS-1D for sand, loam, silt and clay soils were compared to those calculated with the proposed equation, after applying the corresponding β and S calculated from the theoretical Ks, α and n. The same curves were used to: (i) study the influence of the exfiltration time on S and β estimations, (ii) evaluate the limits of the inverse analysis, and (iii) validate the feasibility of the method to estimate α and n. Next, the θ(h) parameters estimated with the numerical method on experimental soils were compared to those obtained with pressure cells. The results showed that the upward infiltration curve could be correctly described by the modified Haverkamp et al. (1994) equation. While S was only affected by early-time exfiltration data, the β parameter had a

  1. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area

    Science.gov (United States)

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca + Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO3-Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO3 and Mg-Na-HCO3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies > 95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. > 40 years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability.

  2. Wastewater infiltration percolation for water reuse and receiving body protection: thirteen years' experience in Spain.

    Science.gov (United States)

    Brissaud, F; Salgot, M; Folch, M; Auset, M; Huertas, E; Torrens, A

    2007-01-01

    Infiltration percolation (IP) is an extensive technology to treat primary or secondary effluents of small and middle size communities before reuse or disposal to sensitive receiving bodies. Thirteen years of implementation of IP in Spain has highlighted the necessity to abide by defined design and construction rules and operation conditions in order to achieve consistently the treatment objectives and guarantee a long lasting treatment capacity. From this experience, high care should be taken of (i) the characteristics of the sand constituting the filter, (ii) the drainage conditions, (iii) the influent spreading over the infiltration surface and (iv) the risks related to recurrent overloading. Simple monitoring measures are suggested in order to improve the reliability of IP plants.

  3. Active seepage and water infiltration in Lake Baikal sediments: new thermal data from TTR-Baikal 2014 (Class@Baikal)

    Science.gov (United States)

    Poort, Jeffrey; Khlystov, Oleg M.; Akhmanov, Grigorii G.; Khabuev, Andrei V.; Belousov, Oleg V.

    2015-04-01

    New thermal data from the sediments of Lake Baikal were collected in July 2014 during the first Training-Through-Research cruise on Lake Baikal (Class@Baikal) organized by MGU and LIN. TTR-Baikal is a comprehensive multidisciplinary program to train students on the field on pertinent scientific topics. The cruise program focused on seafloor sampling, acoustic investigations and heat flow measurements of gas seeps, flares, mud volcanoes, slumps and debris flows, canyons and channels in the coastal proximity. The thermal data were acquired using autonomous temperature sensors on a 3 meter long gravity corer that allowed analysis at the same spot of sediments, pore fluids, hydrates and microbiology. A total of eight thermal measurements were performed in five structures located on the lake floor of the Central Baikal Basin at 333-1530 meter water depths: 3 mud volcanoes (Novosibirsk, Unshuy and Krest), 1 seep site (Seep 13), and one fault outcrop in the Selenga transfer zone. All studied structures show signals of active seepage, water infiltration and/or hydrate dynamics. The strongest thermal gradient has been measured in Seep 13, suggesting a strong upflow of warm fluids similar to the Gorevoy Utes seep. At the three mud volcanoes, hydrate presence have been evidenced and both enhanced and reduced thermal gradients have been observed. This is similar to the hydrate-bearing K-2 mud volcano in Baikal (Poort et al., 2012). A strongly reduced thermal gradient was observed in the Krest mud volcano where the presence of oxidized channels at 30-40 cm under the sediment surface indicate an infiltration of cold lake water. The water infiltration process at hydrate bearing seep sites will be discussed and compared with other seep areas in the world.

  4. Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.

    Science.gov (United States)

    Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng

    2012-12-01

    Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  5. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    Science.gov (United States)

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  6. Transport behavior of surrogate biological warfare agents in a simulated landfill: Effect of leachate recirculation and water infiltration

    KAUST Repository

    Saikaly, Pascal

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD. © 2010 American Chemical Society.

  7. Modeling Large Water Infiltration Events in Small Plots Using the 1-D Finite Water-content Method and Numerical Solutions to the Richards' Equation.

    Science.gov (United States)

    Brown, A.; Dahlke, H. E.

    2015-12-01

    The ability of soil to infiltrate large volumes of water is fundamental to managed aquifer recharge (MAR) when using infiltration basins or agricultural fields. In order to investigate the feasibility of using agricultural fields for MAR we conducted a field experiment designed to not only assess the resilience of alfalfa (Medicago sativa) to large (300 mm), short duration (1.5 hour), repeated irrigation events during the winter but also how crop resilience was influenced by soil water movement. We hypothesized that large irrigation amounts designed for groundwater recharge could cause prolonged saturated conditions in the root-zone and yield loss. Tensiometers were installed at two depths (60 and 150 cm) in a loam soil to monitor the changes in soil matric potential within and below the root-zone following irrigation events in each of five experimental plots (8 x 16 m2). To simulate the individual infiltration events we employed the HYDRUS-1D computational module (Simunek et al., 2005) and compared the finite-water content vadose zone flow method (Ogden et al. 2015) with numerical solutions to the Richards' equation. For both models we assumed a homogenous and isotropic root zone that is initially unsaturated with no water flow. Here we assess the ability of these two models to account for the control volume applied to the plots and to capture sharp changes in matric potential that were observed in the early time after an irrigation pulse. The goodness-of-fit of the models was evaluated using the root mean square error (RMSE) for observed and predicted values of cumulative infiltration over time, wetting front depth over time and water content at observation nodes. For the finite-water content method, the RMSE values and output for observation nodes were similar to that from the HYDRUS-1D solution. This indicates that the finite-water content method may be useful for predicting the fate of large volumes of water applied for MAR. Moreover, both models suggest a

  8. Temporal patterns of infiltration into a water repellent soil under field conditions

    Science.gov (United States)

    Ward, Phil; Roper, Margaret; Micin, Shayne; Jongepier, Ramona

    2014-05-01

    Water repellency causes substantial economic losses for farmers in southern Australia through impacts on crop growth and weed germination. However, recent research has demonstrated that laboratory measurements of water repellency may not be a reliable indicator of the severity of symptoms experienced in the field. In particular, crop residue retention and minimal soil disturbance led to increased water repellency, but was also associated with higher soil water contents measured at strategic times of the year. Little is known about the temporal patterns of soil water storage close to the soil surface in a water repellent sand. In this research we measured soil water content at a depth of 0.05 m at 15-minute intervals from June 2011 to October 2012, under various treatment combinations of residue retention and soil disturbance. Measurements were made in both 'crop row' and 'crop inter-row' positions. For a rainfall event (9.2 mm) in March 2012, prior to crop seeding, plots previously established with no-till absorbed significantly more water (increase in soil water content of 0.074 v/v) than plots conventionally cultivated (0.038 v/v). In June 2012 (12.6 mm), 4 weeks after crop seeding, tillage was again significant, and there was a significant interaction between tillage and 'row' or 'inter-row' position. These results demonstrate the importance of crop management in modifying the response of water repellent soils to rainfall in the field.

  9. Urban Expansion Dynamic and its Impact on Water Infiltration and Stream-flow in Huntsville City, Alabama

    Science.gov (United States)

    Wagaw, M. F.; Gabre, T.; Kebede, G.; Wilson, C.; Davis, C.

    2010-12-01

    A rapid change of land use from prime agricultural and forest covered land into housing units, manufacturing, retail and office space development is observed especially in the East-West, and North areas of the Huntsville city. This permanent land use change entails a change in surface moisture, hydrodynamics pattern and flush-runoff behavior of the surrounding streams and rivers on the receiving side of the stream network. This by itself leads to change in hydrologic runoff and infiltration properties leading to a completely new set of micro-hydrologic pattern. In this study we are going to assess the impact of the land use change on the future water infiltration and stremflow change of land surface using Landsat TM images from 1980 to year 2006 and map the increase of the proportion of impervious surfaces as a result of the above activities, and meteorological data over the past 100 years. Different image enhancing and classification technologies based on statistical, Adaptive Neural Network, and Fuzzy Logic Models will be used. Different handling approaches at the pixel level will be implemented. The result will be compiled into a collection of maps and discussed by correlating with the ground truth in the investigation area. As a result of this investigation the economic, ecologic, and institutional impacts over the coming three and decades will be modeled.

  10. Mechanism of Water Infiltration and Defiltration through ZSM-5 Zeolite: Heating and Sodium Chloride Concentration Effect

    Directory of Open Access Journals (Sweden)

    Yueting Sun

    2013-01-01

    Full Text Available Hydrophobic nanoporous material and wetting liquid together comprise a system with promising energy related applications. The mechanism of the interaction between liquid and solid phase is not fully explored. In this paper, based on the quasistatic compression experiments on investigating the mechanical behavior of ZSM-5 zeolite/NaCl solution system, the effects of two key parameters, that is, the pretreatment temperature of ZSM-5 zeolite and NaCl concentration, are parametrically and quantitatively investigated based on Laplace-Washburn equation. Results show that both pretreatment temperature and NaCl concentration raise the infiltration pressure and NaCl can also promote defiltration. The advancing contact and receding contact angle of zeolite-NaCl-air system increase with both pretreatment temperature and NaCl concentration, and the contact angle hysteresis decreases with NaCl concentration. Results may provide fundamental explanation to the nanoconfined liquid behavior and liquid-solid interaction, thus, to smartly control the mechanical properties of the liquid spring and bumpers for energy dissipation function.

  11. Effect of mulching with maize straw on water infiltration and soil loss at different initial soil moistures in a rainfall simulation

    Directory of Open Access Journals (Sweden)

    Yifu ZHANG,Hongwen LI,Jin HE,Qingjie WANG,Ying CHEN,Wanzhi CHEN,Shaochun MA

    2016-06-01

    Full Text Available Mulching and soil water content (SWC have a significant impact on soil erosion, and this study investigated the effect of straw mulching on water infiltration and soil loss under different initial SWC treatments in a rainfall simulation experiment conducted in northern China. Increasing initial SWC can decrease soil infiltration and increase soil loss. During an 80 mm rainfall event (80 mm·h-1 for 60 min, 8%, 12% and 16% initial SWC treatments decreased cumulative infiltration by 8.7%, 42.5% and 58.1%, and increased total sediment yield by 44, 146 and 315 g, respectively, compared to 4% initial SWC. However, in all the straw mulching treatments, there was no significant difference in stable infiltration rate between the different initial SWC treatments. For all initial SWC treatments, straw mulching of 30% or more significantly enhanced water infiltration by over 31% and reduced soil loss by over 49%, compared to the unmulched treatment. Taking into consideration the performance of no-till planters, a maize straw mulching rate of 30% to 60% (1400—3100 kg·hm-2 is recommended for the conservation of water and soil in northern China.

  12. Temperature peaks affect fire-induced soil water repellency, infiltration and erosion risk of Mediterranean shrublands. Implications for water and sediment connectivity

    Science.gov (United States)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Miriam, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    We know that the impact of fire on soil water repellency varies largely with the availability of water and physical and chemical soil properties, as well as the intensity of pre-existing hydrophobicity. However, there are few studies that relate the intensity of post-fire soil hydrophobicity and its persistence to the intensity and duration of thermal peaks occurring during fire. Fundamentally, this is due to the difficulty of quantifying these factors in situ, so that experimental fires are an extremely useful tool. The objective of this work was to study the impact of the intensity and duration of the thermal peaks observed during an experimental fire in the hydrophobicity of previously wet or slightly hydrophobic soils and the consequences of these changes on infiltration, runoff and soil loss (through rainfall simulation) in the immediate (30 days) and medium-term (1 year) post-fire period. In general, soil water repellency increased in all cases, although high temperatures and residence times of moderate thermal peaks caused the greatest impact. Although infiltration rates determined by mini-disk infiltrometer with water generally declined, no significant changes were observed in the same measurement with ethanol (which negates the effect of hydrophobicity).

  13. Fire, Water and the Earth Below: Quantifying the Geochemical Signature of Fire in Infiltration Water and their Impacts on Underlying Karst Systems

    Science.gov (United States)

    Lupingna, A.

    2015-12-01

    Fires are natural hazards that affect communities globally and while many studies about their effects on environments such as forests and woodlands have been extensively researched, the effects of fire on karst is a topic that is not well understood. The sensitivity of caves to environmental changes make karst systems natural record keepers of environmental events and have been used as proxies for paleo environmental studies in recent times. Building on from this, karsts could potentially also be used to extend currently known fire histories beyond recorded events further back in time. Identifying quantifiable signatures in infiltration water characteristics from the burnt environments and how they are altered as they travel from a soil dominated medium (overlying soil) to a carbonate dominated medium (underlying karst system), is the key identifying fire signatures in the caves through which these waters flow. Multiple infiltration experiments conducted using a soil column set up (soil profiles from burnt environment) amended to represent a subsurface cave system (Fig. 1), have been conducted to measure chemical composition, organic matter, carbon dioxide concentrations, pH, electronic conductivity and alkalinity after a controlled fire over the test site at Yarrangobilly Caves in the Snowy Mountains, NSW. Recurring trends in the variables of the infiltration water could be identified and used to identify a fire signature originating from surface to cave. The fire event on which this paper is based is a cool controlled fire over Yarrangobilly Caves, very similar to back burning practises undertaken in regions prone to wildfires globally. In saying this, samples from hotspots that had experienced higher temperatures, had also been collected for this experiment to simulate the effects of hotter wildfires on the underlying karst systems. Figure 1: Soil column with isolated chamber containing limestone used to represent a subsurface karst environment

  14. The interplay between rainfall infiltration depth, rooting depth and water table depth in regulating Amazon evapotranspiration (ET)

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Fan, Ying; Dominguez, Francina

    2017-04-01

    Plants link the subsurface to the atmosphere via water and carbon fluxes and are therefore a key player in climate. The Amazon, one of Earth's largest ecosystems, is an important climate regulator. As a large source of evapotranspiration, it has significant influence on regional and remote precipitation dynamics. For its equatorial position, it impacts significantly the global climate engine. The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we elucidate the interplay among three hydrological depths: precipitation infiltration depth, root water uptake-depth, and the water table depth in regulating dry-season ET, using inverse modeling based on observed productivity, ERA Interim reanalysis atmosphere, and a novel integrated soil-surface-groundwater model with dynamic root uptake to meet the transpiration demand. We perform high-resolution ( 1km) multi-year simulations over the region, with shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth; attempting to tease out these components. The results demonstrate the strong interactions among the three depths and what each factor does in regulating dry season ET, shedding light on how future global change may preferentially impact Amazon ecosystem functioning.

  15. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems

    Science.gov (United States)

    Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate severe wildfires can cause significant increases in soil water repellency res...

  16. Soil water repellency and infiltration in coarse-textured soils of burned and unburned sagebrush ecosystems

    Science.gov (United States)

    F. B. Pierson; P. R. Robichaud; C. A. Moffet; K. E. Spaeth; C. J. Williams; S. P. Hardegree; P. E. Clark

    2008-01-01

    Millions of dollars are spent each year in the United States to mitigate the effects of wildfires and reduce the risk of flash floods and debris flows. Research from forested, chaparral, and rangeland communities indicate that severe wildfires can cause significant increases in soil water repellency resulting in increased runoff and erosion. Few data are available to...

  17. Magnetic resonance imaging of slow water flow during infiltration and evaporation by tracer motion

    Science.gov (United States)

    Pohlmeier, A.; Haber-Pohlmeier, S.; Bechtold, M.; Vanderborght, J.; Vereecken, H.

    2012-04-01

    Water fluxes in soils control many processes in the environment like plant nutrition, solute and pollutant transport. In the last two decades non-invasive visualization methods have been adapted to monitor flux processes on the small scale. Magnetic resonance imaging (MRI), also well known from medical diagnostics, is one of the most versatile ones. It mostly probes directly the substance of interest: water, and it offers many opportunities to manipulate the observed signals for creating different contrasts and thus probing different properties of the porous medium and the embedded fluids. For example, one can make the signal sensitive to the total proton density, i. e. water content, to spatial distributions of relaxation times which reflect pore sizes, to spatial distributions of transport coefficients, and to concentration of contrast agents by using strongly T1 weighted MRI pulse sequences. In this presentation we use GdDTPA2- for monitoring flux processes in soil columns in an ultra-wide bore MRI scanner. It offers the opportunity for monitoring slow water fluxes mainly occurring in soil systems which are not monitorable with direct MRI flow imaging. This contrast agent is most convenient since it behaves conservatively, i.e. it does not sorb at different soil materials and it is chemically stable. Firstly, we show that its mode of action in natural porous media is identical to that known from medical applications as proved by the identical relaxivity parameters [1]. Secondly, the tracer is applied for the visualization of flux processes during evaporation-driven flow. Theoretical considerations by forward simulation predicted a lateral redistribution of solutes during evaporative upward fluxes from highly conductive fine material to neighbouring domains with low water content and conductivity. Here we could prove that such near-surface redistribution really takes place [2]. Thirdly, this tracer is applied for the investigation of water uptake by root systems

  18. Time lapse inversion of 2D ERT data for monitoring river water infiltration

    Science.gov (United States)

    Wallin, E. L.; Johnson, T. C.; Greenwood, W. J.

    2011-12-01

    Uranium transport in the 300 area is driven by both the chemical and physical effects of stage fluctuations in the Columbia River and resulting river water, ground water interaction. Because river water is less conductive than groundwater, it serves as a natural tracer that can be imaged using surface ERT. We've monitored 4 lines for 4 months over the high stage spring runoff interval to identify preferred flowpaths for river water intrusion. The four lines overlay former waste disposal sites including the processing ponds and sanitary leach trenches. We have used this ERT data set to investigate two methods of time lapse inversion, sequential and all-at-once. Each technique is a model difference approach as opposed to a data difference inversion approach. Both use a regularized inversion with model constraints that regularize spatially and temporally. For the sequential inversion, the starting and reference models are taken from the previous inversion. Both starting and reference models are taken from the first inversion for the all-at-once method. In either case an inversion is triggered if data misfit from the starting model exceeds the chi-squared convergence criteria. It was found that starting with a relatively smooth model provided better visualization of temporal conductivity changes when inverting all data sets with the same initial model, while an initial model exhibiting smaller data misfit may be used successfully as the starting point for sequential inversion. Inland conductivity changes within model cells were found to be highly correlated with river stage, and when paired with the characterization model, provide evidence of waste trenches, the processing pond, as well as the existence of a paleo-channel incised into the Ringold Formation and dipping structures on the Hanford-Ringold contact that provide preferred pathways for river water intrusion.

  19. Infiltrative Cardiomyopathies

    Science.gov (United States)

    Bejar, David; Colombo, Paolo C; Latif, Farhana; Yuzefpolskaya, Melana

    2015-01-01

    Infiltrative cardiomyopathies can result from a wide spectrum of both inherited and acquired conditions with varying systemic manifestations. They portend an adverse prognosis, with only a few exceptions (ie, glycogen storage disease), where early diagnosis can result in potentially curative treatment. The extent of cardiac abnormalities varies based on the degree of infiltration and results in increased ventricular wall thickness, chamber dilatation, and disruption of the conduction system. These changes often lead to the development of heart failure, atrioventricular (AV) block, and ventricular arrhythmia. Because these diseases are relatively rare, a high degree of clinical suspicion is important for diagnosis. Electrocardiography and echocardiography are helpful, but advanced techniques including cardiac magnetic resonance (CMR) and nuclear imaging are increasingly preferred. Treatment is dependent on the etiology and extent of the disease and involves medications, device therapy, and, in some cases, organ transplantation. Cardiac amyloid is the archetype of the infiltrative cardiomyopathies and is discussed in great detail in this review. PMID:26244036

  20. Storm water infiltration in a monitored green roof for hydrologic restoration.

    Science.gov (United States)

    Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G

    2011-01-01

    The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available.

  1. Assessing the Impact of Recycled Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT Site in Alice Springs, Northern Territory (NT, Australia

    Directory of Open Access Journals (Sweden)

    Karen E. Barry

    2017-03-01

    Full Text Available Infiltration techniques for managed aquifer recharge (MAR, such as soil aquifer treatment (SAT can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing suspended solids and nutrients is used to recharge the aquifer. To gain a better insight into reductions in infiltration rates during MAR, a field investigation was carried out via soil aquifer treatment (SAT using recharge basins located within a mixture of fine and coarse grained riverine deposits in Alice Springs, Northern Territory, Australia. A total of 2.6 Mm3 was delivered via five SAT basins over six years; this evaluation focused on three years of operation (2011–2014, recharging 1.5 Mm3 treated wastewater via an expanded recharge area of approximately 38,400 m2. Average infiltration rates per basin varied from 0.1 to 1 m/day due to heterogeneous soil characteristics and variability in recharge water quality. A treatment upgrade to include sand filtration and UV disinfection (in 2013 prior to recharge improved the average infiltration rate per basin by 40% to 100%.

  2. Influence of soil water repellency on infiltration into fine- to coarse-textured soils of burned and unburned rangeland ecosystems in the Great Basin, USA

    Science.gov (United States)

    Soil water repellency and its spatial and temporal variability have been documented for a range of soil types and plant communities. The magnitude of its influence on infiltration of rainfall however remains uncertain, particularly for rangeland landscapes in the western United States. Very little i...

  3. Urban Stormwater Infiltration Perspectives

    DEFF Research Database (Denmark)

    Geldof, Govert; Jacobsen, Per; Fujita, Shoichi

    1994-01-01

    water management. This paper focuses on the possibilities for urban stormwater infiltration. The results of three studies are presented. The first study concerns the flooding of the Shirako River in Tokyo. It is shown that with the help of stormwater infiltration the floods can be reduced remarkably......In urban areas there are many problems with water management: combined sewer overflows, peak flows, man-induced droughts, consolidation of the soil, damage from frost penetration, etc. It is preferable to look at all these problems in relation to each other, according the concept of integrated...... shows the impact of urban stormwater infiltration on the groundwater flux in an area in the south of the Netherlands. To relate the different results from the three studies an analogy is introduced with the human body. The combination of problems results in a so-called urban hang-over. It is shown...

  4. Infiltration from a surface point source and drip irrigation: 1. The midpoint soil water pressure

    Science.gov (United States)

    Revol, P.; Vauclin, M.; Vachaud, G.; Clothier, B. E.

    1997-08-01

    Bresler [1978] proposed a procedure for drip irrigation design which is focused on the midpoint soil water pressure hc. We present a practical field test of this approach in order to evaluate the validity of the underlying assumptions. The simulated hc values were obtained from Raats' [1971] steady state theory for 32 points in the field where the hydraulic conductivity parameters Ks and αwere measured. The hc values were measured at the same locations during microirrigation of a maize crop. Measured hc's appear to be lower than the simulated ones, especially late in the season. The measured spatial variability in hc appeared to be higher than the simulated ones. This could well have been caused by root uptake activity, which is not considered in the analysis, as well as by the large but typical drippers spacing of d = 1.00 m. Thus the tensiometers could have been beyond the practical limit of wetting. Consequences for design and management are important. For design, even if a high hc value is chosen, there is no real guarantee that the wetting would be effective at the midpoint. For irrigation management, tensiometer placement too far from the dripper would lead to overirrigation, so for a large dripper spacing d, the midpoint placement is not judicious.

  5. Lidar Investigation of Infiltration Water Heterogeneity in the Tamala Limestone, SW WA

    Science.gov (United States)

    Mahmud, K.; Mariethoz, G.; Treble, P. C.; Baker, A.

    2014-12-01

    To better manage groundwater resources in carbonate areas and improve our understanding of speleothem archives, it is important to understand and predict unsaturated zone hydrology in karst. The high level of complexity and spatial heterogeneity of such systems is challenging and requires knowledge of the typical geometry of karstic features. We present an exhaustive characterization of Golgotha Cave, SW Western Australia, based on an extensive LIDAR measurement campaign. The cave is developed in Quaternary age aeolianite (dune limestone) and contains speleothem records. We collect 30 representative 3D scan images from this site using FARO Focus3D, a high-speed 3D laser scanner, to visualize, study and extract 2D and 3D information from various points of view and at different scales. In addition to LIDAR data, 32 automatic drip loggers are installed at this site to measure the distribution and volume of water flow. We perform mathematical morphological analyses on the cave ceiling, to determine statistical information regarding the stalactites widths, lengths and spatial distribution. We determine a relationship between stalactites diameter and length. We perform tests for randomness to investigate the relationship between stalactite distribution and ceiling features such as fractures and apply this to identify different types of possible flow patterns such as fracture flow, solution pipe flow, primary matrix flow etc. We also relate stalactites density variation with topography of the cave ceiling which shows hydraulic gradient deviations. Finally we use Image Quilting, one of the recently developed multiple-point geostatistics methods, with the training images derived from LIDAR data to create a larger cave system to represent not only the caves that are visible, but the entire system which is inaccessible. As a result, an integral geological model is generated which may allow other scientists, geologist, to work on two different levels, integrating different

  6. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    Science.gov (United States)

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  7. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Φ); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Φ mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Φ mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  8. A serendipitous, long-term infiltration experiment: Water and tritium circulation beneath the CAMBRIC trench at the Nevada Test Site

    Science.gov (United States)

    Maxwell, Reed M.; Tompson, Andrew F. B.; Kollet, Stefan

    2009-08-01

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used subsequently to characterize subsurface hydrologic transport processes in arid climates. In 1965, a unique, 16-year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in the saturated zone beneath Frenchman Flat, Nevada, USA, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport in a heterogeneous subsurface, tailored specifically for large-scale and efficient calculations. Simulations have been used to estimate tritium travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the trench and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the trench, the water table, and monitoring and pumping wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing more accurate interpretations of contaminant migration processes.

  9. Estimation of infiltration rate and deep percolation water using feed-forward neural networks in Gorgan Province

    Directory of Open Access Journals (Sweden)

    Fereydoon Sarmadian

    2014-01-01

    Full Text Available The two common methods used to develop PTFs are multiple-linear regression method and Artificial Neural Network. One of the advantages of neural networks compared to traditional regression PTFs is that they do not require a priori regression model, which relates input and output data and in general is difficult because these models are not known. So at present research, we compare performance of feed-forward back-propagation network to predict soil properties. Soil samples were collected from different horizons profiles located in the Gorgan Province, North of Iran. Measured soil variables included texture, organic carbon, water saturation percentage Bulk density, Infiltration rate and deep percolation. Then, multiple linear regression and neural network model were employed to develop a pedotransfer function for predicting soil parameters using easily measurable characteristics of clay, silt, SP, Bd and organic carbon. The performance of the multiple linear regression and neural network model was evaluated using a test data set by R2, RMSE and RSE. Results showed that artificial neural network with two and five neurons in hidden layer had better performance in predicting soil hydraulic properties than multivariate regression. In conclusion, the result of this study showed that both ANN and regression predicted soil properties with relatively high accuracy that showed that strong relationship between input and output data and also high accuracy in determining of data.

  10. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  11. A process to estimate net infiltration using a site-scale water-budget approach, Rainier Mesa, Nevada National Security Site, Nevada, 2002–05

    Science.gov (United States)

    Smith, David W.; Moreo, Michael T.; Garcia, C. Amanda; Halford, Keith J.; Fenelon, Joseph M.

    2017-08-29

    This report documents a process used to estimate net infiltration from precipitation, evapotranspiration (ET), and soil data acquired at two sites on Rainier Mesa. Rainier Mesa is a groundwater recharge area within the Nevada National Security Site where recharged water flows through bedrock fractures to a deep (450 meters) water table. The U.S. Geological Survey operated two ET stations on Rainier Mesa from 2002 to 2005 at sites characterized by pinyon-juniper and scrub-brush vegetative cover. Precipitation and ET data were corrected to remove measurement biases and gap-filled to develop continuous datasets. Net infiltration (percolation below the root zone) and changes in root-zone water storage were estimated using a monthly water-balance model.Site-scale water-budget results indicate that the heavily-fractured welded-tuff bedrock underlying thin (<40 centimeters) topsoil is a critical water source for vegetation during dry periods. Annual precipitation during the study period ranged from fourth lowest (182 millimeters [mm]) to second highest (708 mm) on record (record = 55 years). Annual ET exceeded precipitation during dry years, indicating that the fractured-bedrock reservoir capacity is sufficient to meet atmospheric-evaporative demands and to sustain vegetation through extended dry periods. Net infiltration (82 mm) was simulated during the wet year after the reservoir was rapidly filled to capacity. These results support previous conclusions that preferential fracture flow was induced, resulting in an episodic recharge pulse that was detected in nearby monitoring wells. The occurrence of net infiltration only during the wet year is consistent with detections of water-level rises in nearby monitoring wells that occur only following wet years.

  12. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Ken Hubbert; Matt Busse; Steven Overby; Carol Shestak; Ross Gerrard

    2015-01-01

    Thinning of conifers followed by pile burning has become a popular treatment to reduce fuel loads in the Lake Tahoe Basin. However, concern has been voiced about burning within or near riparian areas because of the potential effect on nutrient release and, ultimately, lake water quality. Our objective was to quantify the effects of pile burning on soil physical and...

  13. Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya

    Directory of Open Access Journals (Sweden)

    C. P. Ghimire

    2014-03-01

    Full Text Available This work investigates the trade-off between increases in vegetation water use and rain water infiltration afforded by soil improvement after reforesting severely degraded grassland in the Lesser Himalaya of Central Nepal. The hillslope hydrological functioning (surface- and sub-soil hydraulic conductivities and overland flow generation and the evapotranspiration (rainfall interception and transpiration of the following contrasting vegetation types were quantified and examined in detail: (i a nearly undisturbed natural broad-leaved forest; (ii a mature, intensively-used pine plantation; and (iii a highly degraded pasture. Planting pines increased vegetation water use relative to the pasture and natural forest situation by 355 and 55 mm year−1, respectively. On balance, the limited amount of extra infiltration afforded by the pine plantation relative to the pasture (only 90 mm year−1 due to continued soil degradation associated with regular harvesting of litter and understory vegetation in the plantation proved insufficient to compensate the higher water use of the pines. As such, observed declines in dry season flows in the study area are thought to reflect the higher water use of the pines although the effect could be moderated by better forest and soil management promoting infiltration. In contrast, a comparison of the water use of the natural forest and degraded pasture suggests that replacing the latter by (mature broad-leaved forest would (ultimately have a near-neutral effect on dry season flows as the approximate gains in infiltration and evaporative losses were very similar (ca. 300 m year−1 each. The results of the present study underscore the need for proper forest management for optimum hydrological functioning as well as the importance of protecting the remaining natural forests in the region.

  14. Green-Ampt Model of Saline Water Infiltration%微咸水入渗条件下的Green-Ampt模型

    Institute of Scientific and Technical Information of China (English)

    毕远杰

    2015-01-01

    The impact on the infiltration of soil structure changes after saline water infiltration was attributed the results which were caused by generalized saturated zone hydraulic conductivity and the suction at the wetting front comprehensive changes with salinity and sodium adsorp-tion ratio. The functional relationship between generalized saturated zone hydraulic conductivity and the suction at the wetting front and salini-ty and sodium adsorption ratio under the test area water quality and soil conditions was established by using experimental data. Green-Ampt model saline water infiltration integrated into water quality factors was established and verified. Two sets of data validation results show that the errors between the calculated infiltration rate and measured values are 2. 68% and 0. 72%. Validation results show high accuracy.%将微咸水入渗后土壤结构改变对入渗的影响归结为概化饱和区导水率和湿润锋处的吸力随入渗水矿化度和钠吸附比的综合变化结果,并通过试验资料确立了试验区水质及土壤条件下饱和导水率和湿润锋处的吸力与入渗水矿化度及钠吸附比之间的函数关系,建立了融入水质因素的微咸水入渗条件下的Green-Apmt模型。为了验证所建立模型的准确性,采用另外两组实测资料对其进行验证,计算入渗率的误差分别为2.68%和0.72%,模型的计算精度较高。

  15. Pollution from Urban Stormwater Infiltration

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Weyer, G.; Berry, C.

    1994-01-01

    Stormwater infiltration in urban areas gives cause for concern with regard to the risk of soil and groundwater pollution. Compared with conventional storm drainage, infiltration introduces different and widely unknown conditions governing the impacts and the fate of the pollutants......, and it is therefore difficult to assess the overall environmental impact. This paper gives a state of the art assessment of the water quality aspects of stormwater infiltration and proposes ways of managing the inherent problems. The major stormwater pollution sources are highlighted and the different processes...... operating in the soil and groundwater are described. The paper also discusses how the environmental risk of urban stormwater infiltration can be assessed, and outlines the possibilities for designing environmentally safe infiltration systems....

  16. Pollution from Urban Stormwater Infiltration

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Weyer, G.; Berry, C.

    1994-01-01

    Stormwater infiltration in urban areas gives cause for concern with regard to the risk of soil and groundwater pollution. Compared with conventional storm drainage, infiltration introduces different and widely unknown conditions governing the impacts and the fate of the pollutants......, and it is therefore difficult to assess the overall environmental impact. This paper gives a state of the art assessment of the water quality aspects of stormwater infiltration and proposes ways of managing the inherent problems. The major stormwater pollution sources are highlighted and the different processes...

  17. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  18. Experimental Study on the Infiltration Laws of Water-Repellent Soils Based on Alcohol Solution%酒精溶液对斥水土壤入渗规律的试验研究

    Institute of Scientific and Technical Information of China (English)

    刘春成; 李毅

    2012-01-01

    Comparative infiltration experimental study based on the 2 soils of different water-repellency degrees was conducted.Indoors soil column experiment were used to carry out the experiment of ponding infiltration to compare the variations of infiltration volumes and infiltration rates versus time of 2 soils in different water-repellency degrees,applicability of Kostiakov equation in water-repellent soils based on the alcohol infiltration was tested,the fitted relations of infiltration versus t-1/2 were explored,as well as distributions of total salt and Cl-contents in the profiles were researched.Results showed that the existence of soil water-repellency has some obvious impacts on the soil infiltration property,but variations of the infiltration capacity among water-repellent soils of different water-repellent degrees,and the infiltration capacity in water-repellent soils was lower than one in wettable soils;the rinsed results of total salt and Cl-were more obvious in water-repellent soils that those in wettable soils,and the maximum was reached at the wetting front;applicability of Kostiakov equation was well about the variations of the infiltration rates versus time;there was good exponential relationship between infiltration rates and t-1/2.The study showed that the existence of soil water-repellency affected alcohol solution infiltration,but water-repellent soil infiltrations of different water-repellent degrees were not influenced by alcohol solution.The process of infiltration based on alcohol solution was accelerated greatly compared to distilled water infiltration.%采用室内土柱积液入渗试验,进行了不同斥水程度的2种土质的酒精溶液和蒸馏水的对比入渗试验研究,对比了不同斥水程度的土壤累积入渗量和入渗率随时间的变化,验证了Kostiakov公式在斥水土壤酒精溶液入渗的适应性,探索了i与t-1/2的拟合关系,以及全盐量和氯离子的剖面分布。结果表明,酒精入渗条件下,

  19. Impact of herbaceous understory vegetation to ecosystem water cycle, productivity and infiltration in a semi arid oak woodland assessed by stable oxygen isotopes

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Silva, Filipe Costa e.; Correia, Alexandra C.; Pereira, Joao S.; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    vegetation strongly increased rain infiltration, specifically during strong rain events. In conclusion, beneficial understory vegetation effects were dominant. However, the observed vulnerability of the understory vegetation to drought and competition for water with trees suggests, that increased drought and altered precipitation pattern as predicted in future climate change scenarios for the Mediterranean basin not only threaten understory development. They also very likely decrease rain infiltration and ground water recharge by decreasing understory vegetation cover and increasing amount of heavy precipitation events with high run-off from sealed bare soils. This in turn can severely diminish cork-oak productivity and hence the resilience of the ecosystem toward drought (Costa e Silva et al., in rev.). Dubbert, M; Cuntz, M; Piayda, A; Maguas, C; Werner, C: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol (2013) Dubbert, M; Piayda, A; Cuntz, M; Correia, AC; Costa e Silva, F; Pereira, JS; Werner, C: Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange, Frontiers in Plant Science (2014a) Dubbert, M; Mosena, A; Piayda, A; Cuntz, M; Correia, AC; Pereira, JS; Werner, C: Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork oak woodland., Acta Oecologica

  20. Tunnel Construction Water Inflow Predicted by Precipitation Infiltration Method%降水入渗法隧道施工涌水量预测

    Institute of Scientific and Technical Information of China (English)

    黄钟焕; 王玲

    2011-01-01

    Water inflow is generally obtained form well pumping test. But in geological survey and route selection , the precipitation infiltration method is used in the prediction the wate inflow of the construction of the tunnel because of the site condition and the cost constraints.%涌水量一般通过抽水试验取得,但在区域性地质调查或选线中,由于场地条件及费用限制,只能通过野外地质调查,用降水入渗法预测隧道涌水量,可为选线或初步预测隧道施工涌水量.

  1. A SERENDIPITOUS, LONG-TERM INFILTRATION EXPERIMENT: WATER AND RADIONUCLIDE CIRCULATION BENEATH THE CAMBRIC TRENCH AT THE NEVADA TEST SITE.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R; Tompson, A; Carle, S; Zavarin, M; Kollet, S

    2006-03-16

    Underground atomic weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. Beginning in 1975, groundwater adjacent to the CAMBRIC test, conducted beneath Frenchman Flat in 1965, was pumped steadily for 16 years to elicit experimental information on the migration of residual radioactivity through the saturated zone. Radionuclides in the pumping well effluent, including tritium, {sup 36}Cl and {sup 85}Kr, were extensively monitored prior to their discharge into an unlined ditch flowing toward a dry lake bed over a kilometer away. We have applied a large (6km x 6km x 1km) and highly resolved (4 m) variably saturated flow model to investigate infiltration into the 220-m vadose zone underlying the ditch as well as subsequent groundwater recharge and well recirculation processes. A Lagrangian particle-tracking model has been used to compute flow pathways and estimate radionuclide travel and residence times in various parts of the system based upon the flow model. Results are consistent with rising tritium levels observed in a monitoring well since 1991. They suggest that recirculation of the ditch effluent through the vadose zone, into groundwater, and back to the test cavity and pumping well are responsible for diluted, tritium-based groundwater age dates observed in 2000 at these locations, as well as for increased tailing effects observed in the pumping well elution curves. Altogether, the models and experimental observations provide an improved basis to understand both historical and future movements of test-related radionuclides in groundwater near CAMBRIC.

  2. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water--First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds.

    Science.gov (United States)

    Pekar, Heidi; Westerberg, Erik; Bruno, Oscar; Lääne, Ants; Persson, Kenneth M; Sundström, L Fredrik; Thim, Anna-Maria

    2016-01-15

    Freshwater blooms of cyanobacteria (blue-green algae) in source waters are generally composed of several different strains with the capability to produce a variety of toxins. The major exposure routes for humans are direct contact with recreational waters and ingestion of drinking water not efficiently treated. The ultra high pressure liquid chromatography tandem mass spectrometry based analytical method presented here allows simultaneous analysis of 22 cyanotoxins from different toxin groups, including anatoxins, cylindrospermopsins, nodularin and microcystins in raw water and drinking water. The use of reference standards enables correct identification of toxins as well as precision of the quantification and due to matrix effects, recovery correction is required. The multi-toxin group method presented here, does not compromise sensitivity, despite the large number of analytes. The limit of quantification was set to 0.1 μg/L for 75% of the cyanotoxins in drinking water and 0.5 μg/L for all cyanotoxins in raw water, which is compliant with the WHO guidance value for microcystin-LR. The matrix effects experienced during analysis were reasonable for most analytes, considering the large volume injected into the mass spectrometer. The time of analysis, including lysing of cell bound toxins, is less than three hours. Furthermore, the method was tested in Swedish source waters and infiltration ponds resulting in evidence of presence of anatoxin, homo-anatoxin, cylindrospermopsin and several variants of microcystins for the first time in Sweden, proving its usefulness. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Application of spreadsheet to estimate infiltration parameters

    Directory of Open Access Journals (Sweden)

    Mohammad Zakwan

    2016-09-01

    Full Text Available Infiltration is the process of flow of water into the ground through the soil surface. Soil water although contributes a negligible fraction of total water present on earth surface, but is of utmost importance for plant life. Estimation of infiltration rates is of paramount importance for estimation of effective rainfall, groundwater recharge, and designing of irrigation systems. Numerous infiltration models are in use for estimation of infiltration rates. The conventional graphical approach for estimation of infiltration parameters often fails to estimate the infiltration parameters precisely. The generalised reduced gradient (GRG solver is reported to be a powerful tool for estimating parameters of nonlinear equations and it has, therefore, been implemented to estimate the infiltration parameters in the present paper. Field data of infiltration rate available in literature for sandy loam soils of Umuahia, Nigeria were used to evaluate the performance of GRG solver. A comparative study of graphical method and GRG solver shows that the performance of GRG solver is better than that of conventional graphical method for estimation of infiltration rates. Further, the performance of Kostiakov model has been found to be better than the Horton and Philip's model in most of the cases based on both the approaches of parameter estimation.

  4. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  5. Soil tillage and water infiltration in semi-arid Morocco: the role fo surface and sub-surface soil conditions

    NARCIS (Netherlands)

    Dimanche, P.H.; Hoogmoed, W.B.

    2002-01-01

    Production of cereals in a dryland farming system forms an important part of agricultural production in Morocco. Yield levels on the Saïs Plateau between Meknès and Fez in the semi-arid zone, however, remain low possibly because of sub-optimum water use due to inefficient tillage systems. A study wa

  6. Aleppo pine afforestation in the Massis del Caroig, Eastern Spain. The impact on soil water repellency and infiltration rates.

    Science.gov (United States)

    Cerdà, Artemi; González Pelayo, Óscar; Jordán, Antonio; Mataix Solera, Jorge; Úbeda, Xavier

    2015-04-01

    Paloma Hueso and co-workers (2014; 2015) researched the impact of soil treatment on soil erosion and organic matter recovery in Mediterranean types ecosystems and they demonstrated that the surface wash and the soil quality is determined by the soil management. Afforestation and proper management with fertilizers, mulches and vegetation recovery, are common strategies to flight against soil erosion in Mediterranean type ecosystems García Orenes et al., 2010; Barbera et al., 2012; García Orenes et al., 2012; Mekuria and Aynekulu, 2013; Jiménez et al., 2015; Tengberg et al., 2015; Tesfaye et al., 2015). However, Hueso et al., (2014; 2015) did not paid attention to the impact that water repellency can trigger in the runoff generation and water repellency when soils increase the organic matter. In Eastern Spain, afforestation with Aleppo Pine (Pinus halepensis Mill.) was very popular during the XX century, although little is know about his impact on soil hydrology. Many of the impacts of afforestation were found positive (García et al., 2000; Maestre et al., 2003; Bellot et al., 2004; Maestre and Cortina, 2004; Chirino et al., 2006; Querejeta et al., 2008; ). This research shows the impact of Pinus halepensis Mill. on soil water repellency, in comparison to the natural scrubland and the cover of Quercus ilex. Within the El Teularet-Sierra de Enguera Experimental Station five types of vegetation covers were selected: Pinus halepensis, Quercus Ilex, Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris and Brachypodium retusum. The Water Drop Penetration Time method (Cerda and Doerr; 2007; 2008) was applied. A hundred drops were applied at the soil surface, 1, 2, 5 and 10 cm depth 5 times along the year 2013 under different soil moisture content. The results show that the water repllency of the soils is: Pinus Pinus halepensis > Quercus coccifera > Rosmarinus officinalis > Quercus ilex > Thymus vulgaris > Brachypodium retusum. This is related to the higher

  7. Infiltration into soils: Conceptual approaches and solutions

    Science.gov (United States)

    Assouline, Shmuel

    2013-04-01

    Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.

  8. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  9. Method to measure soil matrix infiltration in forest soil

    Science.gov (United States)

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu

    2017-09-01

    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This

  10. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.; Martinez, M.J.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time of solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.

  11. 透水沥青路面的储水-渗透模型与效能%Water Storage-infiltration Model for Permeable Asphalt Pavement and Its Efficiency

    Institute of Scientific and Technical Information of China (English)

    蒋玮; 沙爱民; 肖晶晶; 裴建中

    2013-01-01

    Rainfall process was numeralized and the physical process of rainwater infiltration was divided into four steps. Pavement materials parameters such as rainwater adsorption rate, permeation rate, air voids content/connected air voids content, pavement thickness and precipitation parameters such as rainstorm return period, rainfall duration were selected for permeable asphalt pavement water storage-infiltration model based on the theory of meteorology and hydraulics, and the target of function design was put forward. Then, the efficiency of water storage and infiltration for permeable asphalt pavement was calculated and analyzed. Results show that the model can predict and evaluate the function of water storage and infiltration for permeable pavement in different regions on different meteorological and rainfall condition. Maximum water storage occurs in the pavement behind the time the rainfall intensity reaches its peak. The water storage structure layer can be thickened or longitudinal drainage pipe can be employed in the pavement structure if the permeable pavement structure can not meet the demand of water storage or infiltration function for some precipitation condition.%将降雨过程数值化并对雨水入渗的物理过程进行划分;选定雨水吸附率、渗透速度、空隙率/连通空隙率、结构层厚度等路面材料参数以及降雨重现期和历时等降雨参数,基于气象学和水力学理论建立透水沥青路面的储水-渗透模型,提出相应的功能设计目标,并对透水路面的效能进行计算和分析.结果表明:所建模型能够针对不同地域的气象和降雨特点对透水路面的储水、渗透功能进行预估和评价;透水沥青路面最大储水量出现时间滞后于最大降雨强度发生时间;当透水路面结构不满足该降雨条件下的储水和渗透功能要求时,可以增大路面储水结构层的厚度,或者在路面结构中铺设纵向排水管道.

  12. A hydrologic analysis for the infiltration basins planned on Jeju Island, Korea

    Science.gov (United States)

    Lee, S.; Kang, T.; Lee, J.; Kang, S.

    2010-12-01

    Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Infiltration basins can be a method to receive storm water and to let the water move into the soil. The contents of the study include a hydrologic analysis on a site and an evaluation of the capacity of infiltration basins planned on the site. Most region of Jeju Island, Korea is highly pervious. Three infiltration basins were designed on the area of the Jeju English Education City. To evaluate adequacy of the capacities of the infiltration basins, infiltration rates were measured and storm water runoff was simulated. Infiltration rates on the surface of the reserved land for infiltration basins were measured by a standard double ring infiltrometer or a small infiltrometer. A FORTRAN version of SWMM was modified to incorporate the infiltration basin and the basic equations of the infiltration basin are same as those of the infiltration trench used in MIDUSS. The code modified was used to simulate storm runoff from watersheds, infiltration from the infiltration basins, and reservoir routing of the infiltration basins. The saturated hydraulic conductivities on the reserved sites were measured by 0.0068, 0.0038, and 0.00017 cm/sec. The return period of the design rainfall is fifty years. The following results were obtained from a hydrologic analysis on the watersheds and the infiltration basins to be built. The two infiltration basins with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the basins. Some water, however releases from the other infiltration basin and the capacity of the basin is not sufficient to infiltrate the total runoff after the land use change. A channel is needed in which the water released from the less pervious basin flows. The hydrologic analysis method of the study can be used for capacity evaluation of future infiltration basins on highly pervious areas in

  13. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  14. Physical simulation of urban rainfall infiltration

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZENG Bing; WANG Yan-xia; SHEN Lei

    2008-01-01

    To meet the demand of urban rainwater integrated management, we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters. We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system. In a comprehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material, we simulated the major parameters of an experimental area rainfall, soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient, obtained from basic data.

  15. Infiltration and extravasation.

    Science.gov (United States)

    Hadaway, Lynn

    2007-08-01

    The Infusion Nurses Society's national standards of practice require that a nurse who administers IV medication or fluid know its adverse effects and appropriate interventions to take before starting the infusion. A serious complication is the inadvertent administration of a solution or medication into the tissue surrounding the IV catheter--when it is a nonvesicant solution or medication, it is called infiltration; when it is a vesicant medication, it is called extravasation. Both infiltration and extravasation can have serious consequences: the patient may need surgical intervention resulting in large scars, experience limitation of function, or even require amputation. Another long-term effect is complex regional pain syndrome, a neurologic syndrome that requires long-term pain management. These outcomes can be prevented by using appropriate nursing interventions during IV catheter insertion and early recognition and intervention upon the first signs and symptoms of infiltration and extravasation. Nursing interventions include early recognition, prevention, and treatment (including the controversial use of antidotes, and heat and cold therapy). Steps to manage infiltration and extravasation are presented.

  16. Incorporating infiltration modelling in urban flood management

    Directory of Open Access Journals (Sweden)

    A. S. Jumadar

    2008-06-01

    Full Text Available Increasing frequency and intensity of flood events in urban areas can be linked to increase in impervious area due to urbanization, exacerbated by climate change. The established approach of conveying storm water by conventional drainage systems has contributed to magnification of runoff volume and peak flows beyond those of undeveloped catchments. Furthermore, the continuous upgrading of such conventional systems is costly and unsustainable in the long term. Sustainable drainage systems aim at addressing the adverse effects associated with conventional systems, by mimicking the natural drainage processes, encouraging infiltration and storage of storm water. In this study we model one of the key components of SuDS, the infiltration basins, in order to assert the benefits of the approach. Infiltration modelling was incorporated in the detention storage unit within the one-dimensional urban storm water management model, EPA-SWMM 5.0. By introduction of infiltration modelling in the storage, the flow attenuation performance of the unit was considerably improved. The study also examines the catchment scale impact of both source and regional control storage/infiltration systems. Based on the findings of two case study areas modelled with the proposed options, it was observed that source control systems have a greater and much more natural impact at a catchment level, with respect to flow attenuation, compared to regional control systems of which capacity is equivalent to the sum of source control capacity at the catchment.

  17. Study of the Influence of Intermittent Water supply on brackish soil infiltration and water-salt distribution characteristics%间歇供水对微咸水土壤入渗与水盐分布特性的影响研究

    Institute of Scientific and Technical Information of China (English)

    邵俊昌

    2015-01-01

    China is a country of relatively water resources shortage ,to solve water shortage will be a pressing problem currently.China is rich in salty water resources ,scientific and rational use of brackish water to allevi-ate water shortages ,to ensure that agricultural production has an extremely important role in drought resis-tance.In this paper, the indoor one-dimensional vertical soil column infiltration test ,intermittent water brackish water infiltration and infiltration characteristics of soil water and salt distribution were studied ,focusing on dif-ferent salinity brackish water in different cycles and under conditions of circulation rate of infiltration ,and brackish water infiltration for continuous analysis and comparison reveals infiltration mechanism of intermittent water brackish,brackish water on soil intermittent water and salt for the future brackish water irrigation some test data and technical support ,provide theoretical and practical basis for the rational use of brackish water ir-rigation.%我国是一个水资源相对贫乏的国家,解决水资源的短缺将是我国目前面临的一个迫切问题。中国有着丰富的咸水资源,科学合理的利用微咸水对于缓解水资源短缺,确保农业增产抗旱有着极其重要的作用。本文采用室内一维垂直土柱入渗试验,对间歇供水条件下微咸水入渗土壤水分入渗特性及水盐分布特征进行研究,重点介绍不同矿化度的微咸水在不同的周期和循环率的入渗条件下,与微咸水连续入渗作分析比较,揭示微咸水间歇供水的入渗机理,分析微咸水间歇供水对土壤水分和盐分的影响,为今后微咸水灌溉提供一些试验数据和技术支撑,为微咸水灌溉的合理利用提供理论基础和实践依据。

  18. Evaluation of an Infiltration Model with Microchannels

    Science.gov (United States)

    Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.

    2015-12-01

    This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were

  19. Influence of Surface Biosolids Application on Infiltration

    Directory of Open Access Journals (Sweden)

    Richard E. Zartman

    2012-01-01

    Full Text Available Biosolids from waste water treatment facilities applied to soils not only add plant nutrients, but also increase infiltration and decrease runoff and erosion. Wet biosolids from New York, NY, were surface applied at 0 to 90 Mg ha−1 dry weight to soils near El Paso, Tex. Simulated rainfall intensities of 16.4 cm hr−1 for 30 minutes applied to 0.5 m2 soil plots yielded initial infiltration rates of ~16 cm hr−1 for all plots. Biosolids applications extended the duration of the initially high infiltration rates. After 30 minutes, infiltration rates for bare soil were 3 cm hr−1 without and 10 cm hr−1 with 90 Mg biosolids ha−1. Applied biosolids, plant litter, surface gravel, and plant base contributed surface cover, which absorbed raindrop energy and reduced erosion. Biosolids increased cumulative infiltration on the vegetated, wet soils more than for the dry or bare soils. Biosolids increased cumulative infiltration from 2 to 6 cm on a bare gravelly soil and from 9.3 to 10.6 cm on a vegetated soil.

  20. Infiltration and runoff losses under fallowing and conservation ...

    African Journals Online (AJOL)

    2011-02-16

    Feb 16, 2011 ... sustainable cropping practices that reduce soil and water loss and increase water use ..... can have immediate benefits of increasing infiltration rates ..... Impact of tillage and crop rotation on aggregate-associated carbon.

  1. Stormwater infiltration trenches: a conceptual modelling approach.

    Science.gov (United States)

    Freni, Gabriele; Mannina, Giorgio; Viviani, Gaspare

    2009-01-01

    In recent years, limitations linked to traditional urban drainage schemes have been pointed out and new approaches are developing introducing more natural methods for retaining and/or disposing of stormwater. These mitigation measures are generally called Best Management Practices or Sustainable Urban Drainage System and they include practices such as infiltration and storage tanks in order to reduce the peak flow and retain part of the polluting components. The introduction of such practices in urban drainage systems entails an upgrade of existing modelling frameworks in order to evaluate their efficiency in mitigating the impact of urban drainage systems on receiving water bodies. While storage tank modelling approaches are quite well documented in literature, some gaps are still present about infiltration facilities mainly dependent on the complexity of the involved physical processes. In this study, a simplified conceptual modelling approach for the simulation of the infiltration trenches is presented. The model enables to assess the performance of infiltration trenches. The main goal is to develop a model that can be employed for the assessment of the mitigation efficiency of infiltration trenches in an integrated urban drainage context. Particular care was given to the simulation of infiltration structures considering the performance reduction due to clogging phenomena. The proposed model has been compared with other simplified modelling approaches and with a physically based model adopted as benchmark. The model performed better compared to other approaches considering both unclogged facilities and the effect of clogging. On the basis of a long-term simulation of six years of rain data, the performance and the effectiveness of an infiltration trench measure are assessed. The study confirmed the important role played by the clogging phenomenon on such infiltration structures.

  2. Transient Point Infiltration In The Unsaturated Zone

    Science.gov (United States)

    Buecker-Gittel, M.; Mohrlok, U.

    The risk assessment of leaking sewer pipes gets more and more important due to urban groundwater management and environmental as well as health safety. This requires the quantification and balancing of transport and transformation processes based on the water flow in the unsaturated zone. The water flow from a single sewer leakage could be described as a point infiltration with time varying hydraulic conditions externally and internally. External variations are caused by the discharge in the sewer pipe as well as the state of the leakage itself. Internal variations are the results of microbiological clogging effects associated with the transformation processes. Technical as well as small scale laboratory experiments were conducted in order to investigate the water transport from an transient point infiltration. From the technical scale experiment there was evidence that the water flow takes place under transient conditions when sewage infiltrates into an unsaturated soil. Whereas the small scale experiments investigated the hydraulics of the water transport and the associated so- lute and particle transport in unsaturated soils in detail. The small scale experiment was a two-dimensional representation of such a point infiltration source where the distributed water transport could be measured by several tensiometers in the soil as well as by a selective measurement of the discharge at the bottom of the experimental setup. Several series of experiments were conducted varying the boundary and initial con- ditions in order to derive the important parameters controlling the infiltration of pure water from the point source. The results showed that there is a significant difference between the infiltration rate in the point source and the discharge rate at the bottom, that could be explained by storage processes due to an outflow resistance at the bottom. This effect is overlayn by a decreasing water content decreases over time correlated with a decreasing infiltration

  3. Sorptivity and liquid infiltration into dry soil

    Science.gov (United States)

    Culligan, Patricia J.; Ivanov, Vladimir; Germaine, John T.

    2005-10-01

    The sorptivity S quantifies the effect of capillarity on liquid movement in a porous material. For liquid infiltration into an initially dry material, S is a parameter that is contingent on both liquid and material properties as well as the maximum liquid content behind the infiltrating front, θm. Scaling analyses are used to derive a dimensionless, intrinsic sorptivity S∗ that is constant for different liquids, Miller-similar materials and different values of θm. The analyses confirm that S is dependent on β1/2, where β = cos ϕ is a measure of the wettability of the liquid. They also indicate a power law relationship between S and Se(av), the average liquid saturation behind the infiltrating front. Seventeen water and eleven Soltrol 220 horizontal infiltration experiments are reported in uniform, dry sand. Test results show that water is partially wetting in the sand. They also confirm that S∝Se(av)d, where d = 3.2 for the experimental conditions. The usefulness of a general, dimensionless Boltzmann variable is demonstrated to normalize infiltration profiles for the different liquids. An approximate method for sorptivity calculation is shown to provide an accurate estimate of S∗.

  4. Stormwater infiltration and the 'urban karst' - A review

    Science.gov (United States)

    Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.

    2017-09-01

    The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.

  5. Effects of soil initial water content on line-source infiltration characteristic in moistube irrigation%初始含水率对微润灌溉线源入渗特征的影响

    Institute of Scientific and Technical Information of China (English)

    张俊; 牛文全; 张琳琳; 史丽艳; 吴泽广

    2014-01-01

    In order to identify effects of soil initial water content on line-source infiltration characteris-tics in moistube irrigation,the wetting front advance distance and soil moisture variation feature were investigated through indoor simulation experiments for isotropic soil under four initial water contents:2.1%,5.6%,8.0% and 10.1%.The experimental results revealed that soil initial water content had a great effect on line-source infiltration,the advance speed of wetting front and surface wetting time were raised and extended with increasing initial water content,and could be presented by a power function of irrigation time.Meanwhile,the shape of wetting soil was slightly affected by initial water content and its cross-section shape was kept to be nearly circular.During an irrigation event,the cu-mulative infiltration and average infiltration rate were positively correlated with initial water content, but the time for a stable infiltration rate was negatively related to the content.The water content inside a wetting soil body was distributed concentrically,and the moisture gradient was decreased with in-creasing initial water content,however,the uniformity coefficient of moistube-irrigation was increased with the content.Those results may be useful for application of moistube-irrigation.%为探明微润灌土壤湿润体特性的变化规律,以扰动均质土壤为研究对象,采用室内模拟试验的方法,分析了不同初始含水率(2.1%,5.6%,8.0%,10.1%)条件下微润灌土壤湿润锋运移距离和水分分布的变化规律.结果表明:土壤初始含水率对微润灌溉线源扩散有较大的影响,湿润锋推进速率、地表湿润时间随着初始含水率的增大而增大,并与灌水时间呈幂函数关系;湿润体形状受初始含水率影响非常小,其横断面为近似圆形;一定灌水时间内,累计入渗量、平均入渗率与初始含水率呈正相关性,且到达稳定入渗率的时

  6. 甘肃黑方台黄土滑坡地表水入渗机制初步研究%PRELIMINARY STUDY ON MECHANISM OF SURFACE WATER INFILTRATION AT HEIFANGTAI LOES S LANDSLIDES IN GANSU

    Institute of Scientific and Technical Information of China (English)

    亓星; 许强; 李斌; 彭大雷; 周飞

    2016-01-01

    黑方台黄土底部的地下水对滑坡的发生起了重要作用,地下水的来源主要为台塬大面积灌溉,灌溉水通过孔隙、裂隙进入黄土内部并在底部向台塬四周渗出。通过探地雷达确认了台塬中部与台塬边同样发育大量裂隙延伸至黄土深部。根据灌水和开挖探槽可见裂隙为地表水的主要优势入渗通道,地表水可沿裂隙快速入渗至黄土深部。在台塬四周的陡壁和典型滑坡后壁取样测含水率发现黄土底部只有裂隙渗水点附近含水率较高,其余区域含水率增大不明显,黄土底部含水率大小分布受节理裂隙控制。%The groundwater at the bottom of loess plays an important role on the occurrence of Heifangtai landslides.The main source of groundwater comes from irrigation water .Irrigation water can infiltrate into the loess through cracks, then seep around to the bottom of loess .A large number of cracks are confirmed in deep loess at middle and edge tableland through ground penetrating radar .According to the irrigation and trench excavation , it is found the cracks are the main infiltration channel for surface water .Surface water along the cracks can rapidly infiltrate into the deep loess.At the tableland around the steep and typical landslide , sampling and measuring moisture content are conducted.It is found that high water content only exists at seepage points of cracks .The remaining area of the increase of water content is not obvious .The distribution of water content at the bottom of loess is controlled by joints, fissures and cracks.

  7. Comparison of clinical semi-quantitative assessment of muscle fat infiltration with quantitative assessment using chemical shift-based water/fat separation in MR studies of the calf of post-menopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza; Nardo, Lorenzo; Karampinos, Dimitrios C.; Joseph, Gabby B.; Yap, Samuel P.; Baum, Thomas; Krug, Roland; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2012-07-15

    The goal of this study was to compare the semi-quantitative Goutallier classification for fat infiltration with quantitative fat-fraction derived from a magnetic resonance imaging (MRI) chemical shift-based water/fat separation technique. Sixty-two women (age 61 {+-} 6 years), 27 of whom had diabetes, underwent MRI of the calf using a T1-weighted fast spin-echo sequence and a six-echo spoiled gradient-echo sequence at 3 T. Water/fat images and fat fraction maps were reconstructed using the IDEAL algorithm with T2* correction and a multi-peak model for the fat spectrum. Two radiologists scored fat infiltration on the T1-weighted images using the Goutallier classification in six muscle compartments. Spearman correlations between the Goutallier grades and the fat fraction were calculated; in addition, intra-observer and inter-observer agreement were calculated. A significant correlation between the clinical grading and the fat fraction values was found for all muscle compartments (P < 0.0001, R values ranging from 0.79 to 0.88). Goutallier grades 0-4 had a fat fraction ranging from 3.5 to 19%. Intra-observer and inter-observer agreement values of 0.83 and 0.81 were calculated for the semi-quantitative grading. Semi-quantitative grading of intramuscular fat and quantitative fat fraction were significantly correlated and both techniques had excellent reproducibility. However, the clinical grading was found to overestimate muscle fat. (orig.)

  8. STUDY ON THE TECHNIQUE EFFECTS OF WATER-SAVING AND INFILTRATING ROOTS IRRIGATION OF FRUIT TREE IN PEASANTS'COURTYARD IN ARID AND SEMI-ARID LOESS PLATEAU%干旱、半干旱黄土区庭院果园节水灌根技术效应研究

    Institute of Scientific and Technical Information of China (English)

    熊伟; 赵岷阳

    2000-01-01

    Water-saving and infiltrating roots irrigation,which is easy to follow and more economical in practice,such as inserting-tube and irrigating roots,infiltrating roots irrigation with one or two bottles are new irrigation methods in arid and semi-arid land orchard.The methods can decrease the evaporation of soil moisture,prolong the valid time of supplying water to plant,save irrigation water capaicty,and increase soil water use efficiency on account of making water infiltrate to the soil layer in which the most roots of the fruit tree distribute.The research shows that the consumption of water in a year under infiltrating roots irrigation is 33.33% under traditional point irrigation used in the area.The growth of height,stem diameter,crown diameter,sprouting shoot number and leaf area of two year old apple tree under infiltrating roots irrigation is 40.93%,34.94%,50.23%,23.06% and 73.19% higher than under natural condition without irrigation.If the technique of covering plastic membrance is adopted simultaneously,the practical result will be more effective.

  9. Efecto de acondicionadores naturales y sintéticos sobre los cationes solubles y la infiltración del agua en un Aridisol Effect of natural and synthetic conditioners on soluble cations and water infiltration in an Aridisol

    Directory of Open Access Journals (Sweden)

    Manuel Henríquez

    2003-02-01

    Full Text Available El objetivo del trabajo fue evaluar el efecto de diversos acondicionadores sobre los cationes solubles y la infiltración del agua en un suelo Vertic Haplocambid, arcilloso muy fino, de la depresión de Quibor, Venezuela. Fueron aplicadas soluciones de acondicionadores naturales de cardón dato (Lemaireocereus griceus (Haw. Br. & Rose y de cardón lefaria (Cereus deficiens Otto & Dietr, a concentraciones de2.000, 1.000 y 500 mg L-1, solución de un acondicionador sintético, la poliacrilamida, en concentración de 10 mg L-1 y agua del acueducto local. Las soluciones de cada uno de esos tratamientos fueron vertidas sobre mini canales rellenos del suelo, para simular el flujo del agua en surcos. Los acondicionadores naturales incrementaron la infiltración y produjeron una relación Ca-Mg-Na en el suelo, mas adecuada que la producida con la aplicación de la poliacrilamida o el agua sin aditivos.The objective of this work was to evaluate the effect of several conditioners on soluble cations and water infiltration on a fine clay Vertic Haplocambid soil collected on the Quibor depression, Venezuela. Solutions of two natural conditioners from dato cactus (Lemaireocereus griceus (Haw. Br. & Rose and lefaria cactus(Cereus deficiens Otto & Dietr, on concentrations of 2,000, 1,000 and 500 mg L-1, a synthetic polyacrilamide conditioner solution of 10 mg L-1 and local tap water were applied to the soil. All solutions and the tap water were poured in a mini flume to simulate the irrigation process on furrows. The natural conditioners increased the infiltration and produced a better Ca-Mg-Na relationship as compared with that produced by the polyacrilamide and the tap water without additives.

  10. Effects of residual plastic film mixed in soil on water infiltration, evaporation and its uncertainty analysis%残膜对土壤水分入渗和蒸发的影响及不确定性分析

    Institute of Scientific and Technical Information of China (English)

    牛文全; 邹小阳; 刘晶晶; 张明智; 吕望; 古君

    2016-01-01

    Pollution of residual plastic film, a continuous pollutant and difficult to degrade, is a major limiting factor for sustainable development of agriculture in northwest China. Residual plastic film can destroy homogeneity of soil texture and seriously impede the movement of soil water and solute, and thus greatly enhance the uncertainties in soil water movement. In order to reveal the negative effects of residual plastic film on soil water infiltration, evaporation and their uncertainties, soil column simulation experiments were conducted to observe the processes of soil water infiltration and evaporation with different amounts of residual plastic film in the Key Laboratory of Agricultural Soil and Water Engineering in Arid Area (108°02′E, 34°17′N), at Northwest A&F University, in Yangling, Shaanxi Province of China, from September to October, 2015. Six amounts of residual plastic film were designed including 0, 80, 160, 320, 640, 1 280 kg/hm2 with triplicate. During the experiment, the wetting front, the cumulative infiltration and the cumulative evaporation were investigated. Meanwhile, gravimetric soil moisture was measured after the evaporation process. To mimic the actual distribution characteristic of residual plastic film in field, fragile plastic film and soil samples were mixed evenly with a blender. During infiltration, when the wetting front arrived at 40 cm, irrigation water was cut off. Soil columns were covered with waterproof plastic film to reduce atmospheric evaporation. Soil columns stood for 12 h until the infiltration process completely stopped. In the consequent process of soil water evaporation, the columns were continuously heated by infrared lamps of 275 W from morning till night. Soil columns were weighed with an electronic balance at 9:00 a.m. every day to calculate mass change and standard daily evaporation. Furthermore, an evaporation pan that had the same diameter as soil column was used to measure daily evaporation from free water

  11. 陕西洛川中更新统下部黄土入渗规律研究%LAW OF WATER INFILTRATION OF LOWER PART OF MIDDLE PLEISTOCENE LOESS IN LUOCHUAN OF SHAANXI

    Institute of Scientific and Technical Information of China (English)

    赵景波; 张允; 陈宝群; 董治宝

    2009-01-01

    A water infiltration experiment,soil porosity and CaCO_3 content determination was conducted at Fengqi in Luochuan of Shaanxi Province on soil profiles of loess and palesol to explore infiltration characteristics and the conditions for groundwater enrichment. Results show that stable infiltration rate of Horizon L_4, L_5, L_6 and L_7 of Loess profile in Xigou, Luochuan, was higher, averaging 0.65 mm min~(-1) and the stable infiltration rate of Horizon S_4, S_5, S6 and S_7 was lower, averaging 0.37 mm min~(-1). In the loess profile infiltration rate leveled off quickly, generally within 60~90 minutes, while in the palesol it did slower, usually within 90~120 minutes. With higher porosity and higher infiltration rate, the loess had a well-developed aquifer, which is attributed to the dynamics of cold-dry climate. Low in porosity and weak in permeability, paleosol tended to form an impermeable layer, which is attributed to the dynamics of warm and humid climate. Attempts were made to fit the three infiltration equations with the data obtained from the infiltration experiment. The three empirical formula commonly used are all applicable to describe infiltration law of loess and paleosol 400 ka~700 ka BP old. The findings of the study have opened up a new field for application of the theory of climatic change in the Quaternary. It is quite clear that the information of climate change in the Pleistocene is of high application value in the study on conditions of enrichment of soil water groundwater and rules of the enrichment, and exploitation of the water resources.%通过对陕西洛川凤栖镇剖面黄土与红色古土壤8个层位的入渗实验及孔隙度与CaCO_3含量测定,研究了黄土与古土壤入渗特征和地下水富集条件.结果表明,陕西洛川西沟L_4、L5、L_6和L7黄土的稳定入渗率较大,4个层位的平均值为0.65 mm min~(-1);S_4、S_5、S_6和S_7古土壤稳定入渗率较小,4个层位的平均值为0.37 mm min~(-1);黄

  12. Rainwater Channelization and Infiltration in Granular Media

    Science.gov (United States)

    Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team

    2013-03-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.

  13. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  14. Tracing surface water infiltration in fractured rocks with environmental isotopes: a case study of the former Balangero asbestos mine (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, Elisa [University of Pavia, Via Ferrata 1, Pavia I-27100 (Italy); Bergamini, Massimo; Castellano, Gianpaolo [R.S.A. S.r.l, Viale Copperi 15, Balangero - TO, I-10070 (Italy); Barella, Vittorio [ISO4 S.n.c., Via Valperga Caluso 37, Torino I-10125 (Italy)

    2013-07-01

    A semi-quantitative evaluation of the contribution of lake water to streams, springs, and groundwater circulating in the fractured rocks hosting the former Balangero asbestos mine was performed using stable isotopes of the water molecule. Results indicate that the lake, located in the open pit of the mine, generally contributes less than 30% of water to streams, springs, and groundwater. This contribution is more evident during dry periods, and should be taken into account in the design of remediation plans. (authors)

  15. Estimating the Limits of Infiltration in the Urban Appalachian Plateau

    Science.gov (United States)

    Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.

    2014-12-01

    Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.

  16. Analysis and integrated modelling of groundwater infiltration to sewer networks

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Balling, Jonas Dueholm; Larsen, Uffe Bay Bøgh

    2016-01-01

    Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow...... and novel model set-up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set-up makes use of two...

  17. Comparative assessment of infiltration, runoff and erosion sprinkler irrigated soils

    OpenAIRE

    Santos, Francisco Lúcio; Reis, João; Martins, Olga; Castanheira, Nádia; Serralheiro, Ricardo

    2003-01-01

    Abstract The impacts of sprinkler irrigation on infiltration, runoff and sediment loss of ten representative soils of Southern Portugal were assessed by laboratory sprinkler irrigation simulation tests. All soils showed very low permeability to applied water. The mechanical impact of water droplets enhanced soil dispersion and further lowered their infiltration capacity, particularly for high clay plus silt content soils that showed the poorest results. As a consequence, high runoff and se...

  18. [Lung infiltrations in Hodgkin lymphoma].

    Science.gov (United States)

    Ciurea-Löchel, A; Ciurea, A; Stey, C; Pestalozzi, B

    2001-08-02

    We report the case of a young patient presenting with cervical lymphadenopathy and interstitial pulmonary infiltrates due to Hodgkin's Disease. Although lung involvement regressed under chemotherapy, we observed new alveolar infiltrates during treatment. Steroid administration after exclusion of an infectious cause was followed by rapid clinical and radiological improvement, indicating the probable presence of pulmonary bleomycine toxicity.

  19. Joint modeling of canopy interception and soil water flow to compare infiltration rates below two land covers (Galápagos Islands)

    Science.gov (United States)

    Dominguez, C.; Pryet, A.; Gonzalez, A.; Tournebize, J.; Chaumont, C.; Villacis, M.; D'ozouville, N. I.; Violette, S.

    2014-12-01

    Most volcanic islands face issues due to an imbalance between constantly increasing population and limited freshwater resources. In this context, groundwater exploitation is a valuable strategy and the estimation of recharge rates is crucial for water management planning, specially considering the changes in land use. In the present study we aim to assess the impact of land cover change on the groundwater recharge at the Santa Cruz Island (Galápagos), where a marked vegetation zonation is observed on the windward side. We studied during one year two adjacent land covers that extend on the majority of the island: a secondary forest and a pasture land. We monitored the climatic variables and throughfall over the pasture and under the forest, respectively. At both plots, the soil water suction was measured with automatic tensiometers in a vertical profile at different soil depth. We associate (i) a Rutter-type canopy interception model, with (ii) a 1-D physically-based variably saturated flow model. This allows the estimation of interception losses, cloud water interception, plant transpiration, runoff and deep percolation. The model was calibrated with the throughfall and soil water suction measurements. The model reveals contrasting behaviors in the soil water transfers between the two plots. The difference could be attributed to the reduction of the net precipitation input at the forest, which is caused by higher evaporation losses at the canopy. The approach provides insights about the soil water dynamics under different land covers, and may help to assess the effect of land use change in the groundwater recharge of a vast region of the island.

  20. Implementations and interpretations of the talbot-ogden infiltration model

    KAUST Repository

    Seo, Mookwon

    2014-11-01

    The interaction between surface and subsurface hydrology flow systems is important for water supplies. Accurate, efficient numerical models are needed to estimate the movement of water through unsaturated soil. We investigate a water infiltration model and develop very fast serial and parallel implementations that are suitable for a computer with a graphical processing unit (GPU).

  1. Interpretation of ponded infiltration data using numerical experiments

    Directory of Open Access Journals (Sweden)

    Dohnal Michal

    2016-09-01

    Full Text Available Ponded infiltration experiment is a simple test used for in-situ determination of soil hydraulic properties, particularly saturated hydraulic conductivity and sorptivity. It is known that infiltration process in natural soils is strongly affected by presence of macropores, soil layering, initial and experimental conditions etc. As a result, infiltration record encompasses a complex of mutually compensating effects that are difficult to separate from each other. Determination of sorptivity and saturated hydraulic conductivity from such infiltration data is complicated. In the present study we use numerical simulation to examine the impact of selected experimental conditions and soil profile properties on the ponded infiltration experiment results, specifically in terms of the hydraulic conductivity and sorptivity evaluation. The effect of following factors was considered: depth of ponding, ring insertion depth, initial soil water content, presence of preferential pathways, hydraulic conductivity anisotropy, soil layering, surface layer retention capacity and hydraulic conductivity, and presence of soil pipes or stones under the infiltration ring. Results were compared with a large database of infiltration curves measured at the experimental site Liz (Bohemian Forest, Czech Republic. Reasonably good agreement between simulated and observed infiltration curves was achieved by combining several of factors tested. Moreover, the ring insertion effect was recognized as one of the major causes of uncertainty in the determination of soil hydraulic parameters.

  2. Infiltration of CO2 into Water-Saturated Two-Dimensional Porous Micromodels: New Insight from Microscopic Particle Image Velocimetry (μPIV) Experiments

    Science.gov (United States)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2013-12-01

    A novel experimental apparatus has been developed to study the interaction between liquid/supercritical CO2 and water in a two-dimensional porous micro-model. This flow process is very similar to what is encountered in many engineering applications such as sequestration of CO2 in geological formations (Carbon Capture and Sequestration, CCS) as well as enhanced oil recovery operations (EOR). Saline aquifers have very high potential for geological sequestration of CO2 based on several factors, including high capacity, economics and minimum environmental impact. Several CO2 injection and sequestration projects are currently in operation (e.g. Sleipner project in Norway), and numerous other projects are planned for the near future. While several studies exist on the large temporal- and spatial- scale effects of CO2 injection, the fluid-dynamic mechanisms at the pore-scale are largely unknown. In fact, recent studies suggest that such processes may be far more complex than previously addressed. CO2 and water/brine are immiscible, thus during the injection process of CO2 into a liquid-saturated porous structure, CO2 must displace the resident fluid. The lower viscosity and density of CO2 compared to water results in complex mechanisms of water displacement. While early studies focused on qualitative observations of fluid-fluid interactions, in this study, the microscopic particle image velocimetry (μPIV) technique is employed to quantify the flow fields within each fluid phase. The interface dynamics, migration and trapping mechanisms are of particular interest. In such flows, viscosity and interfacial tension are known as the main controlling parameters. In this regard, a challenging aspect of this work is that, in the vicinity of the critical point, these properties become very sensitive to changes in pressure and temperature. Additionally, despite the low Reynolds number of the flow, inertial effects are found to control the dynamics of flow patterns at the fluid

  3. Significance of tree roots for preferential infiltration in stagnic soils

    Directory of Open Access Journals (Sweden)

    B. Lange

    2008-08-01

    Full Text Available It is generally believed that roots have an effect on infiltration. In this study we analysed the influence of tree roots from Norway spruce (Picea abies (L. Karst, silver fir (Abies alba Miller and European beech (Fagus sylvatica L. on preferential infiltration in stagnic soils in the northern pre-Alps in Switzerland. We conducted irrigation experiments (1 m2 and recorded water content variations with time domain reflectrometry (TDR. A rivulet approach was applied to characterise preferential infiltration. Roots were sampled down to a depth of 0.5 to 1 m at the same position where the TDR-probes had been inserted and digitally measured. The basic properties of preferential infiltration, film thickness of mobile water and the contact length between soil and mobile water in the horizontal plane are closely related to fine root densities. An increase in root density resulted in an increase in contact length, but a decrease in film thickness. We modelled water content waves based on fine root densities and identified a range of root densities that lead to a maximum volume flux density and infiltration capacity. These findings provide convincing evidence that tree roots improve soil structure and thus infiltration.

  4. Impacts of Magnetized Water Irrigation on Soil Infiltration and Soil Salt Leaching%磁化水在盐渍化土壤中的入渗和淋洗效应

    Institute of Scientific and Technical Information of China (English)

    张瑞喜; 王卫兵; 褚贵新

    2014-01-01

    分向下运移,表明磁化水灌溉有利于将更多的盐分淋洗出土体,300 mT磁处理效果最佳。磁化水滴灌为改良盐渍化土壤提供了一种操作简便快速、低投入与高效的方法,为在新疆大面积盐渍化土壤上应用提供了理论依据和技术支撑。%Objective]Soil salinization is one of the major obstacle factors affecting crop yield in arid region, improvement of soil by using magnetized water irrigation can be traced back to the 1960s. In this study, a laboratory soil cylinder simulation experiment and a field plot experiment were conducted to investigate the effects of magnetized water irrigation on soil water infiltration and soil salt leaching. The purpose of this research is to find a novel method to reduce soil salt content and prevent soil secondary salinity in water-saving agriculture.[Method] In the present study, a laboratory soil cylinder simulation experiment and a field trial were carried out to investigate the impacts of magnetized water irrigation on soil infiltration, soil moisture, and salt movement in irrigation treatments with different magnetic field intensities, under given constant water head of 7.5 cm. The soil cylinder incubation experiment included 0 (Control), 100, 300, and 500 mT of magnetic field intensity, respectively. Infiltration from soil cylinder top to down, reached the entire soil cylinder 2/3, and then samplings were made. The field trial had two treatments:conventional water irrigation (CK) and magnetized water irrigation (T), and the magnetic field intensity was 300 mT. The field experiment was finished in the lysimeter, and the lysimeter area was 6.67 m2. Meanwhile, soil water leakage and salt distribution were also measured under the magnetized water drip irrigation condition. [Result] An obvious effect of magnetized water on accelerating soil infiltration and increasing soil moisture were observed. Compared with the control (CK), soil wetting front speed was markedly

  5. On-site infiltration of road runoff using pervious pavements with subjacent infiltration trenches as source control strategy.

    Science.gov (United States)

    Fach, S; Dierkes, C

    2011-01-01

    The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.

  6. Eosinophilic infiltration in Korea: idiopathic?

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Hoon; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2006-03-15

    Eosinophilia is defined as the presence of more than 500 eosinophils/{mu}L in the peripheral blood, and may be accompanied by eosinophil infiltration in tissues. Focal eosinophilic infiltration in the lungs and liver is relatively common and is often associated with a parasitic infection, drug hypersensitivity, allergic diseases, collagen vascular diseased, and internal malignancies such as Hodgkin's disease, as well as cancer of the lung, stomach, pancreas or ovary. An eosinophilic abscess refers to a lesion of massive eosinophil infiltration and associated destroyed tissue, and an eosinophilic granuloma refers to a lesion consisting of central necrosis and mixed inflammatory cell infiltrates with numerous eosinophils, a number of neutrophils and lymphocytes, and a palisade of epithelioid histiocytes and/or giant cells.

  7. Comparison of infiltration capacity of permanent grassland and arable land during the 2011 growing season

    Directory of Open Access Journals (Sweden)

    Tomáš Mašíček

    2012-01-01

    Full Text Available The aim of this paper was to compare the rate of infiltration and cumulative infiltration in permanent grassland (PG and in arable land over the course of the 2011 growing season. The measurement of water infiltration into soil was conducted via ponded infiltration method based on the use of two concentric cylinders in field conditions. Kostiakov equations were applied to evaluate the ponded infiltration. Based on field measurements, the dependence of infiltration rate (v on time (t was determined and also the dependence of cumulative infiltration (i on time (t. In order to determine physical properties of soil and carry out a grain size analysis, intact soil samples of plough layer from the depths of 10, 20 and 30 cm were collected using Kopecký cylinders along with individual infiltration attempt in each measurement carried out on experimental plots. In order to assess the infiltration capacity of soil on experimental plots, four measurements were conducted, each with three repetitions. Infiltration attempts were held on May 12, June 28, August 24 and October 6, 2011. On average, a faster water infiltration into soil and a higher cumulative infiltration during the 2011 growing period were detected in arable land. The soil’s initial water content has proven to be the crucial factor affecting the rate of water infiltration into soil in case of PG; in case of arable land, it was bulk density indicating the soil’s compaction. The PG showed a more balanced course of infiltration rate and cumulative infiltration values during the growing season. Arable land is characterized by a greater dispersion of measured values between individual measurement dates.

  8. Spatial and temporal infiltration dynamics during managed aquifer recharge.

    Science.gov (United States)

    Racz, Andrew J; Fisher, Andrew T; Schmidt, Calla M; Lockwood, Brian S; Los Huertos, Marc

    2012-01-01

    Natural groundwater recharge is inherently difficult to quantify and predict, largely because it comprises a series of processes that are spatially distributed and temporally variable. Infiltration ponds used for managed aquifer recharge (MAR) provide an opportunity to quantify recharge processes across multiple scales under semi-controlled conditions. We instrumented a 3-ha MAR infiltration pond to measure and compare infiltration patterns determined using whole-pond and point-specific methods. Whole-pond infiltration was determined by closing a transient water budget (accounting for inputs, outputs, and changes in storage), whereas point-specific infiltration rates were determined using heat as a tracer and time series analysis at eight locations in the base of the pond. Whole-pond infiltration, normalized for wetted area, rose rapidly to more than 1.0 m/d at the start of MAR operations (increasing as pond stage rose), was sustained at high rates for the next 40 d, and then decreased to less than 0.1 m/d by the end of the recharge season. Point-specific infiltration rates indicated high spatial and temporal variability, with the mean of measured values generally being lower than rates indicated by whole-pond calculations. Colocated measurements of head gradients within saturated soils below the pond were combined with infiltration rates to calculate soil hydraulic conductivity. Observations indicate a brief period of increasing saturated hydraulic conductivity, followed by a decrease of one to two orders of magnitude during the next 50 to 75 d. Locations indicating the most rapid infiltration shifted laterally during MAR operation, and we suggest that infiltration may function as a "variable source area" processes, conceptually similar to catchment runoff.

  9. Research of Rainwater Infiltration in Eastern Slovakia

    Directory of Open Access Journals (Sweden)

    Hudáková Gabriela

    2015-11-01

    Full Text Available Today precipitation water in the majority of built up and other sealed surface areas no longer reach the water circulation system via natural routes. This can lead to long-term changes to the soil and water resources, reduce the natural local regeneration of the groundwater and have effects on the chemical and biological conditions above and below the ground surface. Reasonable rainwater management leads to maintain or recover a sound and sustainable water cycle. The purpose of this paper is to present objectives and monitoring of a drainage project in Eastern Slovakia, in Kosice city. The paper focuses on percolation facilities in the research area of campus of Technical University and measurements connected with rainwater infiltration.

  10. Estimating Infiltration Parameters from Basic Soil Properties

    Science.gov (United States)

    van de Genachte, G.; Mallants, D.; Ramos, J.; Deckers, J. A.; Feyen, J.

    1996-05-01

    Infiltration data were collected on two rectangular grids with 25 sampling points each. Both experimental grids were located in tropical rain forest (Guyana), the first in an Arenosol area and the second in a Ferralsol field. Four different infiltration models were evaluated based on their performance in describing the infiltration data. The model parameters were estimated using non-linear optimization techniques. The infiltration behaviour in the Ferralsol was equally well described by the equations of Philip, Green-Ampt, Kostiakov and Horton. For the Arenosol, the equations of Philip, Green-Ampt and Horton were significantly better than the Kostiakov model. Basic soil properties such as textural composition (percentage sand, silt and clay), organic carbon content, dry bulk density, porosity, initial soil water content and root content were also determined for each sampling point of the two grids. The fitted infiltration parameters were then estimated based on other soil properties using multiple regression. Prior to the regression analysis, all predictor variables were transformed to normality. The regression analysis was performed using two information levels. The first information level contained only three texture fractions for the Ferralsol (sand, silt and clay) and four fractions for the Arenosol (coarse, medium and fine sand, and silt and clay). At the first information level the regression models explained up to 60% of the variability of some of the infiltration parameters for the Ferralsol field plot. At the second information level the complete textural analysis was used (nine fractions for the Ferralsol and six for the Arenosol). At the second information level a principal components analysis (PCA) was performed prior to the regression analysis to overcome the problem of multicollinearity among the predictor variables. Regression analysis was then carried out using the orthogonally transformed soil properties as the independent variables. Results for

  11. Landslide triggering by rain infiltration

    Science.gov (United States)

    Iverson, Richard M.

    2000-01-01

    Landsliding in response to rainfall involves physical processes that operate on disparate timescales. Relationships between these timescales guide development of a mathematical model that uses reduced forms of Richards equation to evaluate effects of rainfall infiltration on landslide occurrence, timing, depth, and acceleration in diverse situations. The longest pertinent timescale is A/D0, where D0 is the maximum hydraulic diffusivity of the soil and A is the catchment area that potentially affects groundwater pressures at a prospective landslide slip surface location with areal coordinates x, y and depth H. Times greater than A/D0 are necessary for establishment of steady background water pressures that develop at (x, y, H) in response to rainfall averaged over periods that commonly range from days to many decades. These steady groundwater pressures influence the propensity for landsliding at (x, y, H), but they do not trigger slope failure. Failure results from rainfall over a typically shorter timescale H2/D0 associated with transient pore pressure transmission during and following storms. Commonly, this timescale ranges from minutes to months. The shortest timescale affecting landslide responses to rainfall is √(H/g), where g is the magnitude of gravitational acceleration. Postfailure landslide motion occurs on this timescale, which indicates that the thinnest landslides accelerate most quickly if all other factors are constant. Effects of hydrologic processes on landslide processes across these diverse timescales are encapsulated by a response function, R(t*) = √(t*/π) exp (-1/t*) - erfc (1/√t*), which depends only on normalized time, t*. Use of R(t*) in conjunction with topographic data, rainfall intensity and duration information, an infinite-slope failure criterion, and Newton's second law predicts the timing, depth, and acceleration of rainfall-triggered landslides. Data from contrasting landslides that exhibit rapid, shallow motion and slow, deep

  12. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  13. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  14. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    SUN JianPing; LIU QingQuan; LI JiaChun; AN Yi

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  15. 基于HYDRUS-3D的涌泉根灌土壤入渗数值模拟%Numerical simulation of soil water infiltration under bubbled root irrigation based on HYDRUS-3D

    Institute of Scientific and Technical Information of China (English)

    李耀刚; 王文娥; 胡笑涛

    2013-01-01

    针对涌泉根灌流量大且出流边界为柱状,与传统滴灌、渗灌等存在很大差异的问题,依据非饱和土壤水动力学理论,并结合涌泉根灌条件下土壤水分运动特征,建立了具有柱状出流边界的入渗模型,利用HYDRUS-3D对模型进行求解,所建模型通过土壤剖面含水率随时间变化的实测值与模拟值的对比进行验证.结果表明:模拟值与实测值的相对误差在10%以内,两者具有较好的一致性,数值模拟结果可为涌泉根灌系统的合理设计及运行提供理论依据.通过数值模拟方法研究了流量、套管开孔长度对土壤含水率的影响,发现流量越大,水分运移速率越大,随着时间推移流量所引起的差异减小;灌水量相同时,灌水结束后土壤湿润体范围随流量增大略有减小;开孔区长度增加对湿润体形状、大小没有显著影响,但对土壤湿润体内水分分布状况影响较大.%With large flow and columnar flow boundary,bubbled root irrigation is greatly different from traditional drip irrigation and infiltrating irrigation.It is therefore necessary to study water movement under bubbled root irrigation from different boundaries.Based on the theory of unsaturated soil water dynamics,combining the characteristics of soil water movement under bubbled root irrigation,an infiltration model with columnar flow boundary was established.The HYDRUS-3 D software was applied to solve the model numerically.The model is validated through the contrast of measured values and simulated values of the soil moisture which change over time.The results show that the simulation results are in well agreement with measured values.The relative error between simulated and measured values is less than 10%,both of which are quite consistent.The simulation results can provide some theoretical basis for the rational design and operation of the bubbled root irrigation system.The influences on soil moisture content by dripper

  16. 不同钠吸附比的咸水结冰融水入渗后滨海盐土的水盐分布%Water and salt distribution in coastal saline soil after infiltration of melt-water of saline water ice with different sodium adsorption ratio

    Institute of Scientific and Technical Information of China (English)

    郭凯; 陈丽娜; 张秀梅; 刘小京

    2011-01-01

    在室内利用相同矿化度(10 g·L-1)、不同钠吸附比(5、10和30)的咸水进行咸水结冰融水模拟试验、结冰融水入渗和咸水直接入渗的土柱试验,以淡水处理为对照,分析不同钠吸附比咸水结冰融水入渗下滨海盐土水盐分布特征.结果表明:咸水冰融化过程中,融出水的矿化度和钠吸附比均呈由高到低的变化趋势.咸水结冰融水入渗速度和入渗深度均快于和深于淡水.咸水钠吸附比越小,结冰融水入渗速率越快、深度越深.水盐分布也表现为低钠吸附比咸水结冰处理的表层土壤含水量较低,水分向深层迁移,这种水分分布也使盐分向深层运移,表现为表层土壤含盐量低,深层土壤含盐量大.土层含水量低钠吸附比咸水处理高于高钠吸附比处理,10~45 cm土层则表现出相反的趋势;表层土含盐量低钠吸附比处理高于高钠吸附比处理,且咸水处理下土壤脱盐的深度大于淡水处理.钠吸附比5的咸水结冰处理,0~10 cm土壤平均含水量和含盐量分别为30.3%和1.1 g·kg-1,显著低于其他处理.为比较咸水结冰灌溉和咸水直接灌溉的效果,室内利用含盐量为10 g.L-1、钠吸附比10的咸水进行直接入渗的土柱(土壤含盐量为213 g·kg-1)模拟试验,结果表明:与咸水直接入渗处理相比,咸水结冰融水处理盐分淋洗效果更好,该处理0~25 cm土层平均土壤含盐量为2.9g·kg-1,显著低于咸水直接入渗的10.6 g·kg-1.%A laboratory soil column experiment was conducted to investigate water and salt distribution in coastal saline soil after saline ice melt-water infiltration. A salinity of 10 g·L-1 was designed with three variants of saline sodium adsorption ratios (SAR, i. e,5, 10 and 30) as source water in the experiment, with fresh water as the control. The results showed that both the salinity and SAR levels of melt-water were extremely higher in the initial melt-water than in subsequent melt-waters

  17. Laboratory testing on infiltration in single synthetic fractures

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  18. Determining the extent of groundwater interference on the performance of infiltration trenches

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen;

    2015-01-01

    depth of less than 1.5-3. m in sandy loam, 6.5-8. m in silt loam and 11-12. m in silty clay loam. A correction factor that can be applied for infiltration trench design when there is a shallow groundwater table is presented. The analyses showed that below a certain value of unsaturated depth...... the dissipation capacity of the mound/groundwater becomes the dominant process determining the infiltration capacity from infiltration trenches. In these cases it is essential to consider the local groundwater conditions in the infiltration trench design process.......Infiltration trenches are widely used in stormwater management, but their capacity decreases when installed in areas with shallow groundwater where infiltration is limited by groundwater drainage. Here the hydrological performance of single infiltration trenches in areas with shallow water tables...

  19. Constructed Rapid Infiltration/Hybrid Constructed Wetland for Advanced Treatment of Tail Water from Chemical Wastewater Treatment Plant%人工快渗/复合人工湿地工艺处理园区污水厂尾水

    Institute of Scientific and Technical Information of China (English)

    曹明利; 崔康平; 许为义; 洪天求

    2012-01-01

    A combined process of constructed rapid infiltration, two-stage horizontal subsurface flow wetland, surface flow wetland, oxidation pond and tertiary horizontal subsurface flow wetland was designed for advanced treatment of tail water from chemical wastewater treatment plant in an industrial park. The performance of the combined process was investigated in trial operation for a year. The results showed that the whole treatment system had stable performance in treatment of tail water. The average removal rates of COD, NH3 - N and TP were 78. 8% , 86. 9% and 76. 4% respectively. The concentrations of COD, NH3 - N and TP in the effluent all reached the V criteria specified in the Environmental Quality Standards for Surface Water ( GB 3838 - 2002). The combined process had advantages such as low operation cost and convenient operation.%针对某工业园区混合化工污水厂尾水的水质特点,设计了基于水资源循环利用的人工快渗/两级水平潜流湿地/表面流湿地/氧化塘/三级水平潜流湿地组合工艺对其进行深度处理,考察了该工艺运行一年多来对COD、NH3 -N和TP的去除效果.结果表明,该工艺对混合化工污水厂尾水的处理效果较好,对COD、NH3 -N和TP的平均去除率分别为78.8%、86.9%和76.4%,出水COD、NH3-N和TP浓度达到《地表水环境质量标准》(GB 3838-2002)的V类标准,并具有运行费用低、操作方便等优点.

  20. Hydrologic impact of urbanization with extensive stormwater infiltration

    Science.gov (United States)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Deletic, Ana; Roldin, Maria; Binning, Philip John

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater infiltration is not widely available, and is important because many municipalities are considering infiltration as an alternative to traditional stormwater systems. This study analyzes groundwater level observations from an urban catchment located in Perth, Western Australia. The groundwater observation data cover approximately a 40-year-long period where land use changes (particularly due to urbanization) occurred; moreover, the monitored area contains both undeveloped and urbanized areas where stormwater infiltration is common practice via soakwells (shallow vertical infiltration wells). The data is analyzed using a distributed and dynamic hydrological model to simulate the groundwater response. The model explicitly couples a soakwell model with a groundwater model so that the performance of the soakwells is reduced by the increase of groundwater levels. The groundwater observation data is used to setup, calibrate and validate a coupled MIKE SHE-MIKE URBAN groundwater model and the model is used to quantify the extent of groundwater rise as a result of the urbanization process. The modeled urbanization processes included the irrigation of new established private and public gardens, the reduction of evapotranspiration due to a decrease in green areas, and the development of artificial stormwater infiltration. The study demonstrates that urbanization with stormwater infiltration affects the whole catchment water balance, increasing recharge and decreasing evapotranspiration. These changes lead to a rise in the groundwater table and an increase in the probability of groundwater seepage above terrain.

  1. Fluxos de calor no dossel vegetativo e infiltração de água no solo, em floresta tropical Heat fluxes in the vegetative canopy and water infiltration in tropical forest

    Directory of Open Access Journals (Sweden)

    Vanessa de A. Dantas

    2011-12-01

    Full Text Available Este estudo analisou as variações sazonais e anuais dos fluxos de calor sensível e latente, armazenados pelo dossel vegetativo de floresta tropical úmida, bem como a taxa de infiltração de água no solo em duas parcelas experimentais, uma com exclusáo de chuva e outra submetida às condições reais de precipitação pluvial. Os dados aqui usados foram obtidos do projeto ''Estudo da Seca da Floresta (ESECAFLOR, subprojeto do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia (LBA, conduzido na reserva florestal de terra firme em Caxiuaná, PA. Os dados de temperatura e umidade relativa do ar foram coletados no perfil da floresta amazônica, em intervalos de 8 m, deSd e a superfície até 32 m, durante o ano de 2008, em intervalos horários, para se determinar os fluxos de calor sensível e latente armazenados nos período chuvoso (fevereiro, março e abril e menos chuvoso (setembro, outubro e novembro. Os resultados indicaram que o fluxo de calor sensível armazenado no dossel da floresta no ano de 2008, foi 167,93 W m-2 e o fluxo de calor latente armazenado foi de 5184,38 W m-2. A taxa de infiltração de água do solo na floresta foi reduzida drasticamente nos primeiros minutos do início do experimento, independentemente das condições de umidade do solo e, em seguida, ela apresentou comportamento quase constante ao longo do tempo.This study assessed the seasonal and annual variations in both sensible and latent heat storage fluxes in the canopy air-space of tropical rainforest, as well as the infiltration rate in soil in two experimental plots one with exclusion of rainfall and other under actual rainfall. The data used in this study were obtained during the ''Long-term drought impact on water and carbon dioxide fluxes in Amazonian Tropical Rainforest Experiment'' (ESECAFLOR which is subproject of Large Scale Biosphere Atmosphere Experiment in Amazon forest (LBA, carried out in Caxiuaná National Forest, Pará, Brazil

  2. Diffuse pulmonary infiltrates in immunocompromised patients

    NARCIS (Netherlands)

    Fijen, JW; van der Werf, TS; Ligtenberg, JJM; Tulleken, JE; Zijlstra, JG

    1999-01-01

    The differential diagnosis of bilateral interstitial pulmonary infiltrates in immunocompromised patients is very extensive. We describe two immunocompromised patients with diffuse pulmonary infiltrative changes. Bronchoscopic bronchoalveolar lavage after orotracheal intubation using topical anaesthe

  3. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Flint, L.E.; Flint, A.L. Hevesi, J.A. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface.

  4. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Flint, L.E.; Flint, A.L.; Hevesi, J.A. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e. winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface.

  5. Variably-saturated groundwater modeling for optimizing managed aquifer recharge using trench infiltration

    Science.gov (United States)

    Heilweil, Victor M.; Benoit, Jerome; Healy, Richard W.

    2015-01-01

    Spreading-basin methods have resulted in more than 130 million cubic meters of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water-table depth, alternate wet/dry periods, and number of parallel trenches. Modeling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water-table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings

  6. Equação de green-ampt para a infiltração da água no solo aproximações numéricas para explicitação do volume infiltrado Green-ampt equation for water infiltration into soil numerical approximations to the explicit formulation for the accumulated water

    Directory of Open Access Journals (Sweden)

    Francisco Mercês de Mello

    2008-01-01

    Full Text Available O modelo de infiltração de Green-Ampt (1911, muito utilizado ainda hoje em Hidrologia, não permite explicitar de forma exacta o volume acumulado por infiltração em função do tempo. É neste contexto que se insere o presente estudo ,no qual são propostas duas soluções aproximadas. A primeira equação é original e a segunda resulta de modificações introduzidas numa das equações de Li et al. (1976. Analisaram-se os erros relativos provenientes da aplicação destas equações e apresenta-se um exemplo para melhor concretizar a aplicação destas aproximações numéricas.The Green-Ampt infiltration model (1911, still used in Hydrology nowadays, does not allows to have an exact explicitation of the accumulated infiltration water versus time. The present work tries to solve this problem by presenting two solutions. The first equation is original and the second is the result of some improvements made in one of Li et al equations (1976.The relative errors proceeding from these equation were discussed and one example is presented in order to concretize these numerical applications.

  7. Study on water infiltration law of test pits of collapsible loess with water injection holes%设注水孔条件下湿陷性黄土试坑水分入渗规律

    Institute of Scientific and Technical Information of China (English)

    尚银生; 胡孟卿; 闫金忠; 皇甫红旺; 李康; 李永伟; 师振华; 刘芳

    2015-01-01

    Submerging tests with setting water injection holes and sensors, like moisture meters, were set up on a large-thickness self-weight collapsible loess field in Yuci District, in Jinzhong City, Shanxi Province. The results show that the diffusion pattern of the wetting front is rather complicated due to the feature of moisture spreading in test pits from the bottom up, from the top down, and from the center to the two sides because of setting water injection holes. After 52 days of immersion, the whole section of exploratory wells basically reached saturated water content in the test pits. The layout of water injection holes saved a great deal of time and cost of the experiment. The curve of volumetric water content changing with time can be divided into four stages: the early stable stage of volumetric water content, the growth and change stage of volumetric water content, the steady and extended stage of saturated water content, the late and slightly decreasing stage of volumetric water content.%对山西省晋中市榆次区大厚度自重湿陷性黄土场地进行布设注水孔、埋设土壤水分传感器的浸水试验。结果表明:由于布设注水孔,试坑内水分扩散存在自下而上、自上而下、由试坑中心向两侧扩散的特点,湿润锋扩散形态比较复杂;浸水52 d,试坑内探井全断面基本达到饱和含水率,注水孔的布设节省了大量的试验时间与费用。体积含水率随时间变化曲线基本可以分为4个阶段:初期含水率平稳段;含水率增长、变化段;饱和含水率稳定延续段;末期含水率小幅减小变化段。

  8. Determining the extent of groundwater interference on the performance of infiltration trenches

    Science.gov (United States)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Wong, Tony; Binning, Philip John

    2015-10-01

    Infiltration trenches are widely used in stormwater management, but their capacity decreases when installed in areas with shallow groundwater where infiltration is limited by groundwater drainage. Here the hydrological performance of single infiltration trenches in areas with shallow water tables is quantified in terms of their capability to reduce peak flow, peak volume and annual stormwater runoff volume. To simulate the long term hydrological performance of infiltration trenches two different models are employed. The models continuously simulate infiltration rates from infiltration trenches using a 19 year rainfall time series from Copenhagen as input. The annual and single event stormwater runoff reduction from infiltration trenches was determined for 9 different scenarios that covered different soil conditions and infiltration trench dimensions. Monte Carlo simulations were used in order to quantify the impact of parameter variability for each scenario. Statistical analysis of the continuous long term model simulations was used to quantify the hydrological performance of infiltration trenches. Results show that infiltration trenches are affected by groundwater when there is an unsaturated depth of less than 1.5-3 m in sandy loam, 6.5-8 m in silt loam and 11-12 m in silty clay loam. A correction factor that can be applied for infiltration trench design when there is a shallow groundwater table is presented. The analyses showed that below a certain value of unsaturated depth the dissipation capacity of the mound/groundwater becomes the dominant process determining the infiltration capacity from infiltration trenches. In these cases it is essential to consider the local groundwater conditions in the infiltration trench design process.

  9. Streamflow, Infiltration, and Recharge in Arroyo Hondo, New Mexico

    Science.gov (United States)

    Moore, Stephanie J.

    2007-01-01

    Infiltration events in channels that flow only sporadically produce focused recharge to the Tesuque aquifer in the Espa?ola Basin. The current study examined the quantity and timing of streamflow and associated infiltration in Arroyo Hondo, an unregulated mountain-front stream that enters the basin from the western slope of the Sangre de Cristo Mountains. Traditional methods of stream gaging were combined with environmental-tracer based methods to provide the estimates. The study was conducted during a three-year period, October 1999?October 2002. The period was characterized by generally low precipitation and runoff. Summer monsoonal rains produced four brief periods of streamflow in water year 2000, only three of which extended beyond the mountain front, and negligible runoff in subsequent years. The largest peak flow during summer monsoon events was 0.59 cubic meters per second. Snowmelt was the main contributor to annual streamflow. Snowmelt produced more cumulative flow downstream from the mountain front during the study period than summer monsoonal rains. The presence or absence of streamflow downstream of the mountain front was determined by interpretation of streambed thermographs. Infiltration rates were estimated by numerical modeling of transient vertical streambed temperature profiles. Snowmelt extended throughout the instrumented reach during the spring of 2001. Flow was recorded at a station two kilometers downstream from the mountain front for six consecutive days in March. Inverse modeling of this event indicated an average infiltration rate of 1.4 meters per day at this location. For the entire study reach, the estimated total annual volume of infiltration ranged from 17,100 to 246,000 m3 during water years 2000 and 2001. During water year 2002, due to severe drought, streamflow and streambed infiltration in the study reach were both zero.

  10. Inactivation of VHSV by infiltration and salt under experimental conditions

    OpenAIRE

    Skall, Helle Frank; Jørgensen, Claus; Olesen, Niels Jørgen

    2014-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by infiltration. To evaluate the inactivation effect of infiltration on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid layer consisting of dug sand (76 cm) was used for the trial. Over a period of 18 h 3.9 x 1010 TCID50 VHSV was supplied to the column, where after normal tap water was supplied for the rest of the tri...

  11. Factors affecting the hydraulic performance of infiltration based SUDS in clay

    DEFF Research Database (Denmark)

    Bockhorn, B.; Klint, K.E.S.; Locatelli, Luca;

    2015-01-01

    The influence of small scale soil heterogeneity on the hydraulic performance of infiltration based SUDS was studied using field data from a clayey glacial till and groundwater simulations with the integrated surface water and groundwater model HydroGeoSphere. Simulations of homogeneous soil blocks...... that exclusion of small scale soil physical features may greatly underestimate hydraulic performance of infiltration based SUDS....... with hydraulic properties ranging from sand to clay showed that infiltration capacities vary greatly for the different soil types observed in glacial till. The inclusion of heterogeneities dramatically increased infiltration volume by a factor of 22 for a soil with structural changes above and below the CaC03...

  12. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs.

    Science.gov (United States)

    Faybishenko, B; Bodvarsson, G S; Salve, R

    2003-01-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Topopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility (ESF), using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  13. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff

  14. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    Science.gov (United States)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale ( 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  15. Effects of biochar on water infiltration, evaporation and nitrate leaching in semi-arid loess area%生物炭对黄土区土壤水分入渗、蒸发及硝态氮淋溶的影响

    Institute of Scientific and Technical Information of China (English)

    肖茜; 张洪培; 沈玉芳; 李世清

    2015-01-01

    Water scarcity and low use efficiency of nitrogen are the major limiting factors for agriculture sustainable development in dryland areas of the Loess Plateau. Biochar has been widely proposed as a promising novel alternative of soil amendment to improve soil quality and increase crop productivity, but limited quantitative work has been addressed on the soil water infiltration process, evaporation characteristics and nitrate leaching. A better understanding of these characteristics can provide the solid basis for the evaluation of the effect of biochar amendment on soil hydrology and nitrogen retention in arid and semi-arid regions. In the present study, by using the soil column simulation investigation, biochar derived from maize stover (pyrolysis temperature of 400℃) was applied to 3 different types of soil samples (aeolian soil, cultivated loessial soil and dark loessial soil) collected from the Loess Plateau at 6 rates of 0, 0.5%, 1%, 2%, 3%and 5%(w/w) with triplicate. The wetting process, the cumulative infiltration amount, the permeability and the stable infiltration rate were determined. The water infiltration analysis showed that the advancement of wetting front and the cumulative infiltration amount changed with the biochar addition amount and soil texture. The migration rate of water was the fastest in aeolian soil and the slowest in cultivated loessial soil due to the soil texture and structure. The migration rate of wetting front in aeolian soil and dark loessial soil was decreased after the biochar addition. As the rate of biochar addition increased, the cumulative infiltration amount of aeolian soil and dark loessial soil gradually declined. For cultivated loessial soil, the higher biochar addition rates (3%and 5%) increased the time of the wetting front to the bottom of the column, while the lower rates (0.5%, 1%and 2%) increased the wetting front migration rate;the cumulative infiltration amount was not decreased at the rate of 0.5%, 1%and 2%, but

  16. SIMULATION OF NET INFILTRATION FOR MODERN AND POTENTIAL FUTURE CLIMATES

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Heveal

    2000-06-16

    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M&O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M&O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide spatially

  17. Groundwater Infiltration Path of Road Deicing Agent and its Quantification

    Science.gov (United States)

    Moroizumi, T.; Hada, J.; Sasaki, K.

    2015-12-01

    A deicing agent has been sprinkled on an expressway to prevent it from freezing in the hilly and mountainous area along the expressway having been used for more than 30 years. We investigated the infiltration, the river runoff, and the scattering of the de-icing agent quantitatively, observed the variation of water quality in river, and discussed the infiltration route and balance of the deicing agent in order to clarify the influence of the de-icing agent on the groundwater salinization. As a result, it turned out that 65% of the de-icing agent sprinkled on the road surface flowed into the waterway, the 25% infiltrated into underground through the crack of a road surface, and the remaining 10% dispersed out of an expressway. Next, for the rate of the de-icing agent outflowing to the river during a frozen snow term, it was estimated that the 39% of the sprinkled de-icing agent outflowed with surface water, and the 17% did with groundwater. Moreover, it was shown clearly that the 44% was probably stored in underground from the balance between the sprinkled de-icing agent and the outflowing one. In addition, the Cl- concentration of groundwater by the infiltrated deicing agent was simulated to clarify its extent and to predict its change in future when stopped sprinkling the deicing agent.

  18. Infiltration kinetics of pressureless infiltration in SiCp/Al composites

    Institute of Scientific and Technical Information of China (English)

    QIN Zhen-kai; YU Jia-kang; ZHANG Xiao-yu

    2005-01-01

    The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pressureless infiltration of silicon carbide particle compacts were studied and quantified. The preform with high volume fraction SiC was obtained by mixing SiC particles with bimodal size distribution, whose diameters are 5 and 50 μm, respectively. The results show that an incubation period exists before infiltration, the influence of temperature on the incubation time exceeds that of Mg content, infiltration rate increases with the increasing temperature and Mg content, infiltration rate decreases as Mg consumes. A model of macroscopical infiltration and microscopical infiltration of liquid alloy in porous SiC preform was proposed.

  19. Impact of climate variations on Managed Aquifer Recharge infiltration basins.

    Science.gov (United States)

    Barquero, Felix; Stefan, Catalin

    2017-04-01

    KEYWORDS: Managed Aquifer Recharge, field scale infiltration unit, climatic conditions, numerical model Managed Aquifer Recharge (MAR) is a technique that is gaining more attention as a sustainable alternative for areas where water scarcity is increasing. Main concept relies on facilitating the vertical infiltration of a source of fresh water (river water, rainwater, reclaimed water, etc). The groundwater acts as storage of water for further use in the future, for example in times of water scarcity. In some MAR types the soil itself can be used even as a filter for the removal of specific organic and inorganic compounds. In order to promote the benefits of MAR in different zones of the globe with variable climate conditions, including the effects of climate change, a numerical model (HYDRUS 2D/3D) is being set up. Coupled with the model a field-scale rapid infiltration unit (4m x 5m x 1.5m) was constructed with the capacity to log different MAR key parameters in the soil (tension, water content, temperature and electrical conductivity) in space and time. These data will feed the model for its calibration using specific hydrogeological characteristics of the packing material and hydraulic characteristics of the infiltrated fluid. The unit is located in the city of Pirna (German), 200 m north from the Elbe River where the groundwater level varies seasonally between 6 and 9 m below the ground surface. Together with the field scale rapid infiltration unit, a set of multi-parametric sensors (measuring in time: water stage, electrical conductivity, dissolved oxygen and temperature) in six monitoring wells, located on the basin surroundings, were installed. The purpose of these sensors is to estimate, via tracer experiments, the time that the infiltrated water needed to reach the groundwater and the flow speed in which it travelled once it reached the saturated zone. Once calibrated, the model will be able to estimate the flow behaviour under variable climate conditions

  20. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  1. Modeling Nitrogen Losses under Rapid Infiltration Basins

    Science.gov (United States)

    Akhavan, M.; Imhoff, P. T.; Andres, A. S.; Finsterle, S.

    2011-12-01

    Rapid Infiltration Basin System (RIBS) is one of the major land treatment techniques used for wastewater treatment and reuse of recovered treated wastewater. In this system, wastewater that is treated using primary, secondary, or advanced treatment techniques is applied at high rates to shallow basins constructed in permeable deposits of soil or sand, with further treatment occurring in soil and the vadose zone before the water recharges groundwater. Because the influent wastewater is usually enriched in nitrogen (N) compounds, there is particular concern that RIBS may contaminant groundwater or nearby surface waters if not designed and operated properly. In most of the new sequenced batch reactor (SBR) wastewater treatment plants, N is found in the form of nitrate in the discharged wastewater, so denitrification (DNF) is the main reaction in N removal. The absence of molecular oxygen is one of the required conditions for DNF. During RIBS operation, application of wastewater is cyclic and typically consists of a flooding period followed by days or weeks of drying. Key operational parameters include the ratio of wetting to drying time and the hydraulic loading rate, which affect water saturation and air content in the vadose zone and as a result have an impact on DNF. Wastewater is typically distributed at a limited number of discharge points in RIBS and basins are not usually completely flooded which result in non-homogeneous distribution of wastewater and unusual surface water flow patterns. For this reason, we couple overland flow within RIBS with subsurface flow to investigate the influence of non-uniform application of wastewater on DNF. No modeling effort has been done for understanding this aspect of RIBS performance previously. TOUGH2/ iTOUGH2, a general-purpose numerical simulation program for multi-phase fluid flow in porous media, is used for modeling fluid movement. Water saturation is used as a surrogate parameter to evaluate oxygen limitations in the

  2. Numerical study on rainfall infiltration in rock-soil slop

    Institute of Scientific and Technical Information of China (English)

    LIU; Yuewu; LIU; Qingquan; CHEN; Huixin; GONG; Xin; ZHANG

    2005-01-01

    A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.

  3. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    One-dimensional and two-dimensional radial flow numerical models were used to evaluate the results for a 60.5 h ponded infiltration experiment done around a 24 m deep, 0.15 m diameter, cased borehole at Yucca Mountain, NV. Nine distinct morphological horizons in the soil profile has been identified; physical and hydraulic properties had been measured for each horizon; and a porosity profile at the borehole had been measured. During the infiltration experiment, 10 cm of water was ponded in a 3.5 m diameter infiltrometer around the borehole, the volume of water applied was measured, and water content profiles were measured with a neutron moisture meter. The infiltrometer applied 86.9 cm of water during the first 60.5 h of infiltration, but only 52.8 cm of additional water was measured in the borehole profiles. Assuming a linear relationship between cumulative infiltration (I) and the square root of time (t{sup 0.5}), an experimental sorptivity of 11.5 cm h{sup {minus}1} was estimated for the first 4.5 h of infiltration. An assumed washout zone around the borehole casing accounted for the discrepancy between the measured water content profiles and the applied water. A uniform property, 1-D model with an applied flux upper boundary described by the sorptivity confirmed the probable washout zone, and indicated that significant lateral flow into the dry soil around the infiltrometer could occur. A 2-D radial flow model with the same properties and upper boundary demonstrated that significant lateral flow occurred. The upper boundary in this model caused the upper portion of the profile to drain. This suggested using a saturated upper boundary to keep the upper portion of the profile saturated. When the saturated upper boundary was used, the permeability of the soil was decreased from the measured value of 3.28 E-11 m{sup 2} to 1.5E-12 m{sup 2} so that the simulated wetting front at a similar depth as the observed wetting front after 60.5 h.

  4. Net-Infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    As populations grow in the arid southwestern United States and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration and recharge becomes critically important for inventorying groundwater resources and mapping contamination vulnerability. A Geographic Information System (GIS)-based model utilizing readily available soils, topographic, precipitation, and outcrop data has been developed for predicting net infiltration to exposed and soil-covered areas of the Navajo Sandstone outcrop of southwestern Utah. The Navajo Sandstone is an important regional bedrock aquifer. The GIS model determines the net-infiltration percentage of precipitation by using an empirical equation. This relation is derived from least squares linear regression between three surficial parameters (soil coarseness, topographic slope, and downgradient distance from outcrop) and the percentage of estimated net infiltration based on environmental tracer data from excavations and boreholes at Sand Hollow Reservoir in the southeastern part of the study area.Processed GIS raster layers are applied as parameters in the empirical equation for determining net infiltration for soil-covered areas as a percentage of precipitation. This net-infiltration percentage is multiplied by average annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data to obtain an infiltration rate for each model cell. Additionally, net infiltration on exposed outcrop areas is set to 10 percent of precipitation on the basis of borehole net-infiltration estimates. Soils and outcrop net-infiltration rates are merged to form a final map.Areas of low, medium, and high potential for ground-water recharge have been identified, and estimates of net infiltration range from 0.1 to 66 millimeters per year (mm/yr). Estimated net-infiltration rates of less than 10 mm/yr are considered low, rates of 10 to 50 mm/yr are

  5. Liquid crystal infiltration of complex dielectrics

    NARCIS (Netherlands)

    Gottardo, Stefano; Wiersma, Diederik S.; Vos, Willem L.

    2003-01-01

    Liquid crystal infiltration is becoming an important tool to control the optical properties of complex dielectric systems like photonic crystals and disordered dielectrics. We discuss the technical aspects of liquid crystal infiltration in meso-porous structures, give some details of the sample

  6. Infiltration as Ventilation: Weather-Induced Dilution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J.N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-06-01

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount of air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.

  7. Mixed artificial grasslands with more roots improved mine soil infiltration capacity

    Science.gov (United States)

    Wu, Gao-Lin; Yang, Zheng; Cui, Zeng; Liu, Yu; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-04-01

    Soil water is one of the critical limiting factors in achieving sustainable revegetation. Soil infiltration capacity plays a vital role in determining the inputs from precipitation and enhancing water storage, which are important for the maintenance and survival of vegetation patches in arid and semi-arid areas. Our study investigated the effects of different artificial grasslands on soil physical properties and soil infiltration capacity. The artificial grasslands were Medicago sativa, Astragalus adsurgens, Agropyron mongolicum, Lespedeza davurica, Bromus inermis, Hedysarum scoparium, A. mongolicum + Artemisia desertorum, A. adsurgens + A. desertorum and M. sativa + B. inermis. The soil infiltration capacity index (SICI), which was based on the average infiltration rate of stage I (AIRSI) and the average infiltration rate of stage III (AIRS III), was higher (indicating that the infiltration capacity was greater) under the artificial grasslands than that of the bare soil. The SICI of the A. adsurgens + A. desertorum grassland had the highest value (1.48) and bare soil (-0.59) had the lowest value. It was evident that artificial grassland could improve soil infiltration capacity. We also used principal component analysis (PCA) to determine that the main factors that affected SICI were the soil water content at a depth of 20 cm (SWC20), the below-ground root biomasses at depths of 10 and 30 cm (BGB10, BGB30), the capillary porosity at a depth of 10 cm (CP10) and the non-capillary porosity at a depth of 20 cm (NCP20). Our study suggests that the use of Legume-poaceae mixtures and Legume-shrub mixtures to create grasslands provided an effective ecological restoration approach to improve soil infiltration properties due to their greater root biomasses. Furthermore, soil water content, below-ground root biomass, soil capillary porosity and soil non-capillary porosity were the main factors that affect the soil infiltration capacity.

  8. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  9. TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-05-01

    For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration

  10. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  11. Dentin infiltration ability of different classes of adhesive systems.

    Science.gov (United States)

    Langer, Alina; Ilie, Nicoleta

    2013-01-01

    This study evaluates the dentin infiltration ability of various types of adhesives and compares four classes of adhesive systems with regard to this property. The infiltration is determined quantitatively, characterized as tag length and ratio of infiltration, and qualitatively, characterized as homogeneity, regularity, and continuity of the resin tags. Flat dentin surfaces from 140 halves of caries-free molars were bonded with four classes of adhesive systems. The adhesives (n = 20) were labeled with rhodamine B isothiocyanate and applied on the occlusal dentin following the manufacturer's recommendations and were subsequently light cured, 20 s. Then a 2-mm thick composite layer was applied and light cured, 20 s. The specimens were stored in distilled water at 37°C, 24 h. Two slices were sectioned mesio-distally from each sample and were investigated with a confocal laser scanning microscope. The measurements were done at 0.5, 1.5, and 2.5 mm from the enamel-dentin junction. The data were analyzed by using analysis of variance and the general linear model. The class of adhesive, the composition, and the dentin position were significant factors affecting the investigated parameters. The use of etch and rinse adhesives in comparison to self-etch adhesives provided the formation of longer, more homogeneous, very regularly distributed but mostly fractured tags. A comparison of adhesives confirmed that etch and rinse systems remain better in bond infiltration. While the importance of tags formation on bonding is still controversially discussed, adhesive systems with a high ratio of infiltration might better protect the tooth against microorganism contamination.

  12. Experimental shortcomings and applicability of in-situ ponded infiltration tests

    Science.gov (United States)

    Votrubova, Jana; Dohnal, Michal; Vogel, Tomas; Tesar, Miroslav; Cislerova, Milena

    2017-04-01

    large amount of water infiltrated during the experiments. Also, the local periodical wetting of the soil together with the permanent presence of the infiltration rings could affect distribution of burrowing animals' activity, with serious consequences for the infiltration rates measured.

  13. An analytical model for cumulative infiltration into a dual-permeability media

    Science.gov (United States)

    Peyrard, Xavier; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Simunek, Jiri

    2010-05-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model assumes that flow is governed by Richards equation in both porous regions (matrix and fractures). Water can be exchanged between the two regions following a first-order rate law. A previous study showed that the influence of the hydraulic conductivity of the matrix/macropore interface had a little influence on cumulative infiltration at the soil surface. As a result, one could consider the surface infiltration for a specific case of no water exchange between the fracture and matrix regions (a case of zero interfacial hydraulic conductivity). In such a case, water infiltration can be considered to be the sum of the cumulative infiltrations into the matrix and the fractures. On the basis of analytical models for each sub domain (matrix and fractures), an analytical model is proposed for the entire dual-porosity system. A sensitivity analysis is performed to characterize the influence of several factors, such as the saturated hydraulic conductivity ratio, the water pressure scale parameter ratio, and the saturated volumetric water content scale ratio, on the total cumulative infiltration. Such an analysis greatly helps in quantifying the impact of macroporosity and fractures on water infiltration, which can be of great interest for hydrological models.

  14. Study on Soil Infiltration Capability and Its Impact Factors of Different Land-use Types in Purple Soil Region

    Institute of Scientific and Technical Information of China (English)

    Bin MO; Xiaoyan CHEN; Tao LIU; Yicui YANG; Zhixing LIN; Xiufeng HUANG; Qiliang HUANG; Hui JIAN; Tujin ZHOU; Yunkang SHEN

    2016-01-01

    Soil infiltration capability is the hot spot topic of soil erosion studies and soil physical and chemical properties have great influence on it. A new infiltration method point- source infiltration method was used to precisely evaluate the infiltration capability in different purple soil land- use types. And correlation analysis on soil physical and chemical properties and soil infiltration capability of different land- use types was performed. Results showed that:( i) there is a large difference among soil physical and chemical properties in different land- use types,soil water content,non- capillary porosity,capillary porosity,content of > 0. 25 mm aggregates and organic matter content in the top soil are greater than those in the subsoil;( ii) soil infiltration capability showed differences among different land- use types. Land use showed great effects,in general,the order of decrease on initial infiltration rate and average infiltration rate was: woodland slope > slope farmland >grassland,the order of decrease on steady infiltration rate was: slope farmland > woodland > grassland and the time reaching stable state was:slope farmland > woodland > grassland;( iii) correlation analysis showed that there was a significantly positive correlation between initial infiltration rate and wet sieve MWD value and structural damage rate,and it had a significantly negative correlation with capillary porosity;( iv)steady infiltration rate and non- capillary porosity showed the significantly positive correlation,and it had a significantly negative correlation with the soil bulk density;( v) the average infiltration rate and non- capillary porosity and structural damage rate showed a positive correlation and the correlation coefficient was large and there was a negative correlation between average infiltration rate and soil bulk density and capillary porosity,and the absolute value of correlation coefficient was relatively large. The results of this study can provide the

  15. Impacts of fractal features of soil on moisture infiltration capacity of typical stands in Jinyun mountain of Chongqing city

    Institute of Scientific and Technical Information of China (English)

    WANG Yujie; WANG Yunqi

    2007-01-01

    The soil structure was expressed with fractal dimensions of particle size distribution (PSD),aggregate size distribution (ASD),and soil pore size distribution (SPD).The effect of soil fractal features on soil infiltration velocity and process was studied.The result of the fractal feature shows that fractal dimensions of PSD are obviously greater than those of ASD and SPD,and in different soil genetic horizons,the fractal dimension of ASD has the greatest variability,and shows a downtrend on the top-to-bottom genetic horizon.According to the soil infiltration process curve,the infiltration process was divided into three phases:(1) the initial phase (0-5 rain),(2) the transition phase (5-30 min),and (3)the stable phase (30-180 min).In the initial phase of infiltration,the soil structure of soil genetic horizon A was the major influencing factor;in the transition phase of infiltration,the pore distribution of soil horizon AB and soil structure of horizon B were the major influencing factors;in the stable phase of infiltration,the soil structure of horizon C was the major influencing factor to the infiltration velocity.Soil infiltration process is influenced comprehensively by soil PSD,ASD,and SPD.In the overall soil water infiltration,the infiltration in shrub forest land was much faster than that in other land uses,and in the initial infiltration phase,arable land soil infiltration was much faster than that in forest land,and in the stable infiltration phase,the infiltration velocity in forest land was faster than that in arable land.

  16. Evaluation of two stormwater infiltration trenches in central Copenhagen after 15 years of operation

    DEFF Research Database (Denmark)

    Bergman, Maria Kerstin; Hedegaard, Mathilde Jørgensen; Petersen, Mette Fjendbo;

    2011-01-01

    Two stormwater infiltration trenches were installed in 1993 in an area in central Copenhagen. The system was monitored continuously for almost three years after establishment, and a small reduction in performance over that time, possibly due to clogging, was noted. A new study was conducted in 2009...... to see whether the reduction in performance has continued and to determine how the system performs today. Water levels in the trenches were monitored for almost 4 months, and from this period seven events were selected to analyse the infiltration rate. A comparison with similar analyses on storm...... factors to consider when implementing stormwater infiltration trenches. © IWA Publishing 2011....

  17. The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Alma; Maya, Catalina [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico); Gibson, Richard [Instituto de Geografia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico); Jimenez, Blanca, E-mail: bjimenezc@iingen.unam.mx [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 D.F. (Mexico)

    2011-05-15

    The Tula Valley receives untreated wastewater from Mexico City for agricultural irrigation, half of which infiltrates to aquifers from where drinking water is extracted. Samples of wastewater and infiltrated water from three areas of the valley were analyzed for microorganisms, organic micropollutants, and some basic parameters. Concentrations of microorganisms in the infiltrated water were generally very low but the incidence of fecal coliforms (present in 68% of samples), somatic bacteriophages (36%), Giardia spp. (14%), and helminth eggs (8%) suggested a health risk. Organic micropollutants, often present at high concentrations in the wastewater, were generally absent from the infiltrated water except carbamazepine which was in 55% of samples (up to 193 ng/L). There was no correlation between carbamazepine concentrations and the presence of microorganisms but highest concentrations of carbamazepine and boron coincided. A treatment such as nanofiltration would be necessary for the infiltrated water to be a safe potable supply. - Highlights: > Wastewater from Mexico City used for crop irrigation infiltrates to aquifers. > Infiltration through the soil removes many contaminants. > Occasional contamination of infiltrated water with microorganisms occurs. > Carbamazepine is widely present in the infiltrated water. > Safe use of this water for drinking would need nanofiltration or another treatment. - Water extracted from aquifers fed by wastewater used for irrigation may contain microorganisms and persistent polar organic micropollutants and requires treatment to be a potable supply.

  18. Real Time Electrical Monittoring of the Soil Infiltration

    Science.gov (United States)

    Losinno, B.; Sainato, C. M.

    2012-12-01

    Infiltration into the soil plays a key role in the agricultural field. Standard methodologies to determine basic infiltration rate are altered by the presence of preferential flow pathways in the soil. At intensive livestock farms, previous studies showed that in areas with high stocking rates and consequently high levels of trampling, both the basic infiltration rate measured in the field as a field such as saturated hydraulic conductivity (Ks) measured in laboratory had values significantly lower than those obtained in the areas without animals. Therefore, the evaluation of the infiltration process as an entry of pollutants into the profile is of importance in determining indicators of vulnerability to groundwater contamination. Geoelectrical methodology was used in combination with tracers to study the movement of water flow. A salty solution was used as tracer as it progresses along the profile. It is assumed that the water flow rate is similar to that of the applied solution. Geolelctric surveys can measure the apparent electrical resistivity inverse of the ECa, apparent electrical conductivity) in real time and thus determine the direction and speed of water flow through the profile. The aim of this study was to detect and characterize potential preferential flow pathways, comparing sectors where the high trampling by animals has generated high compaction, with areas without animals. We chose two sites: one located under high trampling at path between the pens of a feedlot placed at a lower position which receives runoff from feedlots. The background site was chosen at a pasture plot, with sporadic presence of animals. The soil is silty-loamy. In each of the sites sprinkler irrigation was performed in a square of 4 m x 4 m with saline solution of potassium bromide (concentration 5 g / l). After the irrigation, dipole - dipole survey was done with a line of stainless steel electrodes spaced 20 cm. while the flow is penetrating into the ground. Two dimension

  19. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  20. Mathematical Analysis and Optimization of Infiltration Processes

    Science.gov (United States)

    Chang, H.-C.; Gottlieb, D.; Marion, M.; Sheldon, B. W.

    1997-01-01

    A variety of infiltration techniques can be used to fabricate solid materials, particularly composites. In general these processes can be described with at least one time dependent partial differential equation describing the evolution of the solid phase, coupled to one or more partial differential equations describing mass transport through a porous structure. This paper presents a detailed mathematical analysis of a relatively simple set of equations which is used to describe chemical vapor infiltration. The results demonstrate that the process is controlled by only two parameters, alpha and beta. The optimization problem associated with minimizing the infiltration time is also considered. Allowing alpha and beta to vary with time leads to significant reductions in the infiltration time, compared with the conventional case where alpha and beta are treated as constants.

  1. Cardiac Arrest After Submucosal Infiltration With Lignocaine

    African Journals Online (AJOL)

    Marinda

    following submucosal infiltration of lignocaine 2% with epinephrine 1:200,000 combination. ... The surgeon packed the right nasal cavity with ... alpha and beta adrenergic receptors. ... numbness of the mouth and tongue, followed by tinnitus,.

  2. INFILTRATION CHARACTERISTICS IN MULTI-FLOOR BUILDINGS

    Directory of Open Access Journals (Sweden)

    Dilek KUMLUTAŞ

    1999-02-01

    Full Text Available Infiltration or in other words the air leakage in buildings has an important role on heat load calculations. The rate of this loss has been estimated as 20 to 30 % of the total load. The indicated important effect of infiltration on the load calculations needs a reliable method for the determination of air leakeage level in buildings. Meantime, the rate of infiltration has an additional importance at the area of thermal comfort studies which deals with the air quality of enclosed volumes. During this research study, first the mechanism of infiltration and the major components of the phenomena (wind pressure, temperature difference was discussed together with the theoretical considerations. Later, several conventional engineering approachs and emprical methods was reviewed and compared among each others. At the last part of the paper, the modified DIN 4701 method which is presently used in Turkey, and some other algorithms was applied to some pilot buildings and the predictions was compared with experimental results.

  3. 24 CFR 3280.505 - Air infiltration.

    Science.gov (United States)

    2010-04-01

    ... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration...-to-ceiling and wall-to-floor connections shall be caulked or otherwise sealed. When walls...

  4. 2D SPLASH: a new method to determine the fatty infiltration of the rotator cuff muscles

    Energy Technology Data Exchange (ETDEWEB)

    Kenn, Werner; Huemmer, Christian; Koestler, Herbert; Hahn, Dietbert [University of Wuerzburg, Department of Radiology, Wurzburg (Germany); Boehm, Dirk; Gohlke, Frank [University of Wuerzburg, Department of Orthopedic Surgery, Wurzburg (Germany)

    2004-12-01

    The objective of this paper is to quantify the fatty degeneration (infiltration) of rotator cuff muscles with a new spectroscopic FLASH (SPLASH) sequence. Before planned surgery (reconstruction or muscle transfer), 20 patients (13 men, 7 women; 35-75 years) with different stages of rotator cuff disease underwent an MR examination in a 1.5-T unit. The protocol consists of imaging sequences and a newly implemented SPLASH, which allows an exact quantification of the fat/water ratio with a high spatial resolution in an arbitrarily shaped region of interest (ROI). The percentages of fat in the rotator cuff muscles were determined. To determine statistically significant differences between the different stages of rotator cuff tear, a Kruskal-Wallis H test was used. Fatty infiltration of the supraspinatus muscle was correlated with cross-sectional area (CSA) measures (Bravais-Pearson). We found significant differences between different stages of rotator cuff disease, the fatty infiltration and the volume loss (determined by the occupation ratio) of the supraspinatus muscle. With the increasing extent of rotator cuff disease, fatty infiltration increases significantly, as does the volume loss of the supraspinatus muscle. Comparing fatty infiltration and the occupation ratio individually, there was only a moderate inverse correlation between fatty infiltration and the occupation ratio, with considerable variation of data. Fatty infiltration of the infraspinatus muscle occurred when the infraspinatus tendon was involved to a lesser extent. The SPLASH sequence allows exact quantification of fatty infiltration in an arbitrarily shaped ROI. The extent of atrophy and fatty infiltration correlates with the size of the tear. Atrophy and fatty infiltration correlate only moderately and should be evaluated separately. (orig.)

  5. Reversible fatty infiltration of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Bostel, F.; Hauger, W.

    1987-11-01

    Case studies show that acute pancreatitis occurring independently or combined with a preceding abuse of alcohol may be the cause of fatty infiltration of the liver. These fat areas can evolve in a very short time and provoke in the case of focal incidence diagnostic problems of differentiation against abscesses of metastases. Due to this fact and because of the rapid reversibility of the fatty infiltration under therapy, the safest method to clarify the situation consists of short-term CT controls.

  6. Modelling of snowmelt infiltration in heterogeneous seasonally-frozen soil monitored by electrical resistivity measurements

    Science.gov (United States)

    French, H. K.; Binley, A. M.; Voss, C.

    2016-12-01

    Infiltration during snowmelt can be highly heterogeneous due to the formation of ice on the ground surface below the snow cover. In situations where snow is contaminated, such as along highways and airports due to de-icing agents, it is important to predict the zone of infiltration, because this will determine the retention time and potential for degradation in the unsaturated zone. In 2001, infiltration during snowmelt was monitored over a small area (4m2) using time-lapse electrical resistivity monitoring at Gardermoen, Norway. Data revealed a spatio-temporal variable infiltration pattern related to micro topography of the ground surface (French and Binley, 2004). In this study, we want to test the suitability of a newly developed numerical model for water and heat transport including phase change in a variably saturated soil against field observations. Monitored weather and snow data defined the boundary conditions of a simulated unsaturated profile with seasonal freezing. The dependency of capillary pressure and permeability on water saturation is taken from van Genuchten equation with the addition of a scaling parameter, to account for the heterogeneity of the hydraulic permeability. Soil physical data and heterogeneity (variance and correlation structure of the permeability) was based on local soil measurements. The available amount of meltwater for infiltration over the area was based on average snowmelt measurements at the site. Different infiltration scenarios were tested. Soil temperatures, TDR measurements of soil moisture, a tracer experiment conducted at an adjacent site and changes in electrical resistivity were used to validate the model of infiltration and thawing. The model was successful in reproducing the thawing and soil moisture patterns observed in the soil, and hence looks like a promising tool for predicting snowmelt infiltration and melting of ground frost in a sandy unsaturated soil. ReferencesFrench, H.K. and Binley, A. (2004) Snowmelt

  7. Run off-on-out method and models for soil infiltrability on hill-slope under rainfall conditions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The soil infiltrability of hill-slope is important to such studies and practices as hydrological process, crop water supply, irrigation practices, and soil erosion. A new method for measuring soil infiltrability on hill-slope under rainfall condition with run off-on-out was advanced. Based on water (mass) balance, the mathematic models for soil infiltrability estimated from the advances of runoff on soil surface and the water running out of the slope were derived. Experiments of 2 cases were conducted. Case I was done under a rainfall intensity of 20 mm/h, at a slope gradient of about 0° with a runoff/on length (area) ratio of 1 : 1. Case II was under a rainfall intensity of 60 mm/h and a slope of 20° with a runoff/on length (area) ratio of 1 : 1. Double ring method was also used to measure the infiltrability for comparison purposes. The experiments were done with soil moisture of 10%. Required data were collected from laboratory experiments. The infiltrability curves were computed from the experimental data. The results indicate that the method can well conceptually represent the transient infiltrability process, with capability to simulate the very high initial soil infiltrability. The rationalities of the method and the models were validated. The errors of the method for the two cases were 1.82%/1.39% and 4.49%/3.529% (Experimental/Model) respectively, as estimated by comparing the rainfall amount with the infiltrated volume, to demonstrate the accuracy of the method. The transient and steady infiltrability measured with double ring was much lower than those with this new method, due to water supply limit and soil aggregates breaking down at initial infiltration stage. The method can overcome the short backs of the traditional sprinkler method and double ring method for soil infiltraility. It can be used to measure the infiltrability of sloped surface under rainfall-runoff-erosion conditions, in the related studies.

  8. Modelagem da infiltração de água no solo sob condições de estratificação utilizando-se a equação de Green-Ampt Modeling of water infiltration in soil under stratified conditions using the Green-Ampt equation

    Directory of Open Access Journals (Sweden)

    Roberto A. Cecílio

    2003-12-01

    Full Text Available A infiltração de água no solo é um dos mais significantes processos do ciclo hidrológico. A equação de Green-Ampt (GA é bastante utilizada na modelagem da infiltração; entretanto, diversos autores alertam para a necessidade de adequação de seus parâmetros de entrada (umidade de saturação (tetas; condutividade hidráulica do solo saturado (K0 e potencial matricial na frente de umedecimento (psi. Neste sentido, avaliou-se a aplicabilidade do modelo de GA, assim como as diversas proposições de adequação de K0 e psi, em um Latossolo Vermelho-Amarelo sob condições de estratificação. Determinaram-se a infiltração acumulada (I, a taxa de infiltração (Ti e as características físicas do perfil necessárias para a aplicação do modelo. Foram feitas simulações com base na combinação de seis metodologias para a determinação de psi e três para a condutividade hidráulica da zona de transmissão (Kw, verificando-se que as combinações seguintes simularam bem o processo de infiltração: Kw igual a 0,5 K0 associado a psi determinado com base na umidade inicial do solo (psi (tetai; Kw igual à taxa de infiltração estável (Tie associado a psi igual à média entre psi (tetai e psi relativo à umidade de saturação de campo (psi (tetaw; e Kw igual a K0 associado a psi calculado com base na textura e porosidade do solo (psi(textura e Kw igual à Tie associado a psi(textura.Soil water infiltration is one of the most important processes of the hydrological cycle. The Green and Ampt equation (GA is quite used to simulate the infiltration process, however, several authors showed the necessity of some adaptations in the GA parameters: saturation moisture (thetas, hydraulic conductivity (K0 and mean suction in the wetting front (psi. An evaluation was made of the GA model and of the several correction propositions of K0 and psi, applied in a stratified Red-Yellow Latosol. A soil box filled with soil material belonging to three

  9. System dynamics modeling of nitrogen removal in a stormwater infiltration basin with biosorption-activated media.

    Science.gov (United States)

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane

    2013-07-01

    Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input.

  10. Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement

    Science.gov (United States)

    Hilpert, M.; Adria-Mora, B.

    2015-12-01

    Pollution at gas stations due to small spills that occur during refueling of customer vehicles has received little attention. We have performed laboratory experiments in order to assess the processes of evaporation and infiltration of fuel spilled onto concrete samples. Changes in mass of both spilled diesel and gasoline droplets as a function of time have been analyzed. The infiltrated mass is affected by variations in humidity, among other parameters, which influence the amount of water condensed onto the concrete. Therefore, we used a humidity data logger and statistical tools to predict the evolution of the real mass of infiltrated fuel. The infiltrated mass roughly decreases exponentially, but the difference in behavior between both fuel types is important. The percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. Also, the percentage of infiltrated liquid depends on the initial droplet mass. We also developed a multiphysics model, which couples pore-scale infiltration to turbulent atmospheric transport, to explain the experimental data. In conclusion, a substantial amount of fuel could both seep into the ground to contaminate groundwater and be released to the atmosphere. More studies are needed to quantify the public health implications of the released pollutants.

  11. Rainier Mesa CAU Infiltration Model using INFILv3

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, Daniel G. [Los Alamos National Laboratory; Kwicklis, Edward M. [Los Alamos National Laboratory

    2012-07-13

    The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3) ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.

  12. Inactivation of VHSV by infiltration and salt under experimental conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Jørgensen, Claus; Olesen, Niels Jørgen

    2014-01-01

    . In order to answer this question a small trial was set up. VHSV and NaCl was added to cell culture medium with 10% foetal bovine serum, in order to mimic a “dirty” environment, to obtain from 1.9% to 20.9% NaCl and kept in the dark at 4°C. Samples were titrated after 5 min, 1 h and 20 h. No reduction......At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by infiltration. To evaluate the inactivation effect of infiltration on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid...... be a valuable method to sanitize VHSV infected water. Changes in temperature, pH, earth types in the area used for infiltration etc. may change the virus reduction, though. As some of the fish cutting plants are also smoking rainbow trout fillets, the question arose whether a brine solution will inactivate VHSV...

  13. Solutions to Overland Flow Incorporating Infiltration

    Science.gov (United States)

    Boyraz, Uǧur; Gülbaz, Sezar; Melek Kazezyılmaz-Alhan, Cevza

    2017-04-01

    Overland flow is represented by flood wave propagation and plays an important role in hydrology and hydraulics. Flood wave propagation concerns many disciplines and thus, scientists such as hydrologists, city planners, irrigation practitioners and hydraulic and environmental engineers are studying on developing accurate solutions for flood wave equations. The dynamic wave equations consist of continuity and momentum equations and describe unsteady and non-uniform flow conditions. Diffusion wave equations can be derived from the dynamic wave equations by neglecting the local and convective acceleration terms in the momentum equation. The kinematic wave model obtained by ignoring both inertial and pressure terms is the simplest routing method which substitutes a steady uniform flow relationship in the momentum equation. In order to calculate the overland flow, these three types of flood wave equations are solved with many different numerical techniques. Nevertheless, the dynamic interaction between surface flow and infiltration is not sufficiently investigated. In this study, the effect of infiltration on overland flow is explored by incorporating the integrated Horton equation into the flood wave equations. Integrated Horton method calculates infiltration under variable rainfall intensity. MacCormack explicit finite difference method is employed in solving the coupled infiltration-overland flow problem. Hydrographs for overland flow with and without infiltration effects are obtained under different rainfall intensities and soil conditions and compared. It is found that infiltration affects both the peak and the shape of hydrographs considerably. Furthermore, the effect of rainfall intensity and soil conditions on overland flow is also observed. Keywords: Overland flow; MacCormack; infiltration; Integrated Horton Method; Kinematic waves, Diffusion waves, Dynamic waves.

  14. Pituitary infiltration by non-Hodgkin's lymphoma: a case report

    Directory of Open Access Journals (Sweden)

    Aral Ferihan

    2009-11-01

    Full Text Available Abstract Introduction Pituitary adenomas represent the most frequently observed type of sellar masses; however, the presence of a rapidly growing sellar tumor, diabetes insipidus, ophthalmoplegia and headaches in an older patient strongly suggests metastasis to the pituitary. Since the anterior pituitary has a great reserve capacity, metastasis to the pituitary and pituitary involvement in lymphoma are usually asymptomatic. Whereas diabetes insipidus is the most frequent symptom, patients can present with headaches, ophthalmoplegia and bilateral hemianopsia. Case presentation A 70-year-old woman with no previous history of malignancy presented with headaches, right oculomotor nerve palsy and diabetes insipidus. As magnetic resonance imaging revealed a sellar mass involving the pituitary gland and infundibular stalk, which also extended into the right cavernous sinus and sphenoid sinus, the patient underwent an immediate transsphenoidal decompression surgery. Her prolactin was 102.4 ng/ml, whereas her gonadotropic hormone levels were low. A low level of urine osmolality after overnight water deprivation, along with normal plasma osmolality suggested diabetes insipidus. Histological examination revealed that the mass had been the infiltration of a high grade B-cell non-Hodgkin's lymphoma involving respiratory system epithelial cells. Paranasal sinus computed tomography scanning and magnetic resonance imaging of the thorax and abdomen were performed. Since magnetic resonance imaging did not reveal any abnormality, after paranasal sinus computed tomography was performed, we concluded that the primary lymphoma originated from the sphenoid sinus and infiltrated the pituitary. Chemotherapy and radiotherapy to the sellar area were planned, but the patient died and her family did not permit an autopsy. Conclusion Lymphoma infiltration to the pituitary is difficult to differentiate from pituitary adenoma, meningioma and other sellar lesions. To plan the

  15. Fractal Analyses of Steady Infiltration and Terrain on an Undulating Agricultural Field

    Science.gov (United States)

    Fractal scaling behaviors have been observed in systems where interacting factors cause nested spatial structures. Surface water infiltration affects spatial patterns of soil water, nutrients, and plant development and crop yield. Here, we explored simple fractal scaling of quasi-steady infiltrati...

  16. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    HU HePing; YANG ZhiYong; TIAN FuQiang

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial heterogeneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overestimate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hydrological and land surface process modeling in a promising way.

  17. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial hetero- geneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overes- timate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hy- drological and land surface process modeling in a promising way.

  18. Electron Percolation In Copper Infiltrated Carbon

    Science.gov (United States)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 × 104 Ω-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  19. Simulation of Net Infiltration for Present-Day and Potential Future Climates

    Energy Technology Data Exchange (ETDEWEB)

    D. Levitt

    2004-11-09

    The purpose of this model report is to document the infiltration model used to estimate upper-bound, mean, and lower-bound spatially-distributed average annual net infiltration rates for present-day and potential future climates at Yucca Mountain, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone. The estimates of net infiltration are primarily used for defining the upper boundary condition for the site-scale three-dimensional unsaturated zone (UZ) model. The UZ flow model is one of several process models abstracted by the total system performance assessment (TSPA) model used to evaluate performance of the repository at Yucca Mountain, Nevada. The net-infiltration model is important for assessing repository-system performance because output from this model provides the upper boundary condition for the UZ flow model used to generate flow fields; water percolating downward from the UZ will be the principal means by which radionuclides are potentially released to the saturated zone (SZ). The SZ is the principal pathway to the biosphere where the reasonably maximally exposed individual (RMEI) is exposed to radionuclides.

  20. Soil infiltration based on bp neural network and grey relational analysis

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2013-02-01

    Full Text Available Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.

  1. Non-uniform overland flow-infiltration model for roadside swales

    Science.gov (United States)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-09-01

    There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.

  2. Can urban tree roots improve infiltration through compacted subsoils for stormwater management?

    Science.gov (United States)

    Bartens, Julia; Day, Susan D; Harris, J Roger; Dove, Joseph E; Wynn, Theresa M

    2008-01-01

    Global land use patterns and increasing pressures on water resources demand creative urban stormwater management. Strategies encouraging infiltration can enhance groundwater recharge and water quality. Urban subsoils are often relatively impermeable, and the construction of many stormwater detention best management practices (D-BMPs) exacerbates this condition. Root paths can act as conduits for water, but this function has not been demonstrated for stormwater BMPs where standing water and dense subsoils create a unique environment. We examined whether tree roots can penetrate compacted subsoils and increase infiltration rates in the context of a novel infiltration BMP (I-BMP). Black oak (Quercus velutina Lam.) and red maple (Acer rubrum L.) trees, and an unplanted control, were installed in cylindrical planting sleeves surrounded by clay loam soil at two compaction levels (bulk density = 1.3 or 1.6 g cm(-3)) in irrigated containers. Roots of both species penetrated the more compacted soil, increasing infiltration rates by an average of 153%. Similarly, green ash (Fraxinus pennsylvanica Marsh.) trees were grown in CUSoil (Amereq Corp., New York) separated from compacted clay loam subsoil (1.6 g cm(-3)) by a geotextile. A drain hole at mid depth in the CUSoil layer mimicked the overflow drain in a stormwater I-BMP thus allowing water to pool above the subsoil. Roots penetrated the geotextile and subsoil and increased average infiltration rate 27-fold compared to unplanted controls. Although high water tables may limit tree rooting depth, some species may be effective tools for increasing water infiltration and enhancing groundwater recharge in this and other I-BMPs (e.g., raingardens and bioswales).

  3. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  4. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Chang-Yong, E-mail: cynam@bnl.gov; Stein, Aaron; Kisslinger, Kim; Black, Charles T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-11-16

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices.

  5. Spatial and temporal variations of ponded infiltration in a grid of permanent infiltration rings

    Science.gov (United States)

    Votrubová, Jana; Dohnal, Michal; Dušek, Jaromír; Vogel, Tomáš; Tesař, Miroslav; Císlerová, Milena

    2016-04-01

    The soil at Liz experimental site (Volynka headwater catchment, Sumava Mountains, southern Bohemia) has been subject to a long term research on the soil infiltration properties since 2003. For this purpose, 18 permanent infiltration rings were installed at a gently sloped grass-covered experimental plot (300 sq.m). Using this set-up, the single-ring ponded infiltration experiments have been conducted annually. Since 2005, a procedure of repeating the same ponded infiltration experiments in two successive days has been implemented. For the soil type of the study area (sandy loam developed upon gneiss bedrock), a large spatial variability of soil hydraulic properties had been reported before. The focus of the present study has been primarily the temporal variability of the soil infiltration properties. Results of a supplementary dye-tracer experiment conducted in 2005 demonstrate that in the soil studied the infiltration process is strongly dominated by preferential flow. As expected, infiltration rates varied considerably among the infiltration ring. With regard to the impact of the initial soil moisture conditions, general decrease of the infiltration rates observed on two subsequent days was detected. Surprisingly, the spatial variations between separate measuring points were vastly overridden by a huge overall increase of the infiltration rates observed throughout the years. The observed variability of the experimental data was further examined in numerical simulations of hypothetical scenarios reflecting possible variations of soil profile and experimental set-up. Axisymmetric 3D simulations were performed using S2D code. The dual-continuum model was able to describe part of the variability of infiltration curves associated with soil structure heterogeneity. None of the tested factors could explain the wide range of infiltration rate variations observed. Nevertheless, better agreement between simulated and observed infiltration characteristics could be achieved

  6. Verification of a 1-dimensional model for predicting shallow infiltration at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Hevesi, J.A.; Flint, A.L. [Geological Survey, Mercury, NV (United States); Flint, L.E. [Foothill Engineering Consultants, Mercury, Nevada (United States)

    1994-12-31

    A characterization of net infiltration rates is needed for site-scale evaluation of groundwater flow at Yucca Mountain, Nevada. Shallow infiltration caused by precipitation may be a potential source of net infiltration. A 1-dimensional finite difference model of shallow infiltration with a moisture-dependant evapotranspiration function and a hypothetical root-zone was calibrated and verified using measured water content profiles, measured precipitation, and estimated potential evapotranspiration. Monthly water content profiles obtained from January 1990 through October 1993 were measured by geophysical logging of 3 boreholes located in the alluvium channel of Pagany Wash on Yucca Mountain. The profiles indicated seasonal wetting and drying of the alluvium in response to winter season precipitation and summer season evapotranspiration above a depth of 2.5 meters. A gradual drying trend below a depth of 2.5 meters was interpreted as long-term redistribution and/or evapotranspiration following a deep infiltration event caused by runoff in Pagany Wash during 1984. An initial model, calibrated using the 1990 to 1 992 record, did not provide a satisfactory prediction of water content profiles measured in 1993 following a relatively wet winter season. A re-calibrated model using a modified, seasonally-dependent evapotranspiration function provided an improved fit to the total record. The new model provided a satisfactory verification using water content changes measured at a distance of 6 meters from the calibration site, but was less satisfactory in predicting changes at a distance of 18 meters.

  7. Verification of a 1-dimensional model for predicting shallow infiltration at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Hevesi, J.; Flint, A.L. [Geological Survey, Mercury, NV (United States); Flint, L.E. [Foothill Eng. Consultants, Mercury, NV (United States)

    1994-12-31

    A characterization of net infiltration rates is needed for site-scale evaluation of groundwater flow at Yucca Mountain, Nevada. Shallow infiltration caused by precipitation may be a potential source of net infiltration. A 1-dimensional finite difference model of shallow infiltration with a moisture-dependent evapotranspiration function and a hypothetical root-zone was calibrated and verified using measured water content profiles, measured precipitation, and estimated potential evapotranspiration. Monthly water content profiles obtained from January 1990 through October 1993 were measured by geophysical logging of 3 boreholes located in the alluvium channel of Pagany Wash on Yucca Mountain. The profiles indicated seasonal wetting and drying of the alluvium in response to winter season precipitation and summer season evapotranspiration above a depth of 2.5 meters. A gradual drying trend below a depth of 2.5 meters was interpreted as long-term redistribution and/or evapotranspiration following a deep infiltration event caused by runoff in Pagany Wash during 1984. An initial model, calibrated using the 1990 to 1992 record, did not provide a satisfactory prediction of water content profiles measured in 1993 following a relatively wet winter season. A re-calibrated model using a modified, seasonally-dependent evapotranspiration function provided an improved fit to the total record. The new model provided a satisfactory verification using water content changes measured at a distance of 6 meters from the calibration site, but was less satisfactory in predicting changes at a distance of 18 meters.

  8. Importance of moisture determination in studies of infiltration and surface runoff for long periods

    Directory of Open Access Journals (Sweden)

    Fabian Fulginiti

    2011-08-01

    Full Text Available The determination of the natural soil moisture is essential to solve problems related to irrigation water requirements, environmental considerations, and determination of surplus water. For the determination of runoff one can adopt models that consider exclusively the infiltration as a loss or one could use computational models of infiltration to model the infiltrated water. Models based on the infiltration calculation consider well the interaction between infiltration - runoff processes and provide additional information on the phenomenon of infiltration which establishes the existing conditions of moisture in the soil before the occurrence of a new event (simulation for long periods. These models require solving Richards’s equation and for this purpose it is necessary to determine the relation between the soil moisture - suction and hydraulic conductivity - suction which require the determination of the hydraulic properties that can be obtained by measuring the water content by moisture profiles. The aim of this study was the verification of these moisture curves in loessic soils in the south of the city of Cordoba, Argentina. To do this, measurements were done and compared with results of infiltration models based on the determined hydraulic functions. The measurements were done using three probes installed at different depths. The results showed that the values obtained with NETRAIN adequately represent the behavior of wetting and drying conditions of the studied soil.The determination of these curves provided a basis for future studies that include the advancement of agricultural chemicals in the soil and its potential capacity to pollute groundwater, fundamental issue to define environmental management policies.

  9. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    Science.gov (United States)

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil

  10. Measuring and modeling two-dimensional irrigation infiltration under film-mulched furrows

    Institute of Scientific and Technical Information of China (English)

    YongYong Zhang; PuTe Wu; XiNing Zhao; WenZhi Zhao

    2016-01-01

    Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and math-ematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14%less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.

  11. Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils

    Science.gov (United States)

    Ebel, Brian A.; Moody, John A.

    2017-01-01

    We collected soil-hydraulic property data from the literature for wildfire-affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field-saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil-structural changes, organic matter impacts, quantitative water repellency trends, and soil-water content along with soil-hydraulic properties could drive the

  12. Absorção e infiltração de água por raízes de batata-doce, através de ferimentos durante a lavagem Water absorption and infiltration in sweet-potato wound roots during washing

    Directory of Open Access Journals (Sweden)

    Adonai Gimenez Calbo

    2000-09-01

    Full Text Available Raízes intactas e segmentos transversais de batata-doce (Ipomea batatas L. Lam foram totalmente ou parcialmente imersos em água. Raízes ou segmentos parcialmente imersos ficaram com menos de 10% da superfície externa fora da água, em um suspiro. Nestes ensaios a pressão da atmosfera interna das raízes parcialmente imersas manteve-se apenas alguns milímetros inferior a pressão atmosférica. Nas raízes totalmente imersas a pressão reduziu-se quase linearmente até mais de 1m de coluna de água e depois voltou a aumentar lentamente. Nas raízes intactas ou nos seus segmentos transversais totalmente imersos, houve maior infiltração de água nos volumes intercelulares do que nas raízes ou segmentos parcialmente imersos. Nas raízes intactas praticamente houve apenas absorção de água através das paredes e membranas celulares. Nos segmentos a infiltração de água através dos volumes intercelulares foi dominante. Considerando-se as dimensões transversais dos volumes intercelulares, sugere-se que partículas como bactérias e esporos possam ser arrastados para o interior órgão pela infiltração de água durante a lavação dos tecidos mecânicamente danificados.Intact roots and transversal root segments of sweet-potato (Ipomea batatas L. Lam were partially or completely submerged in water. In partially submerged roots less than 10% of the dermal surface remained exposed to air through a vent. Internal atmosphere pressure in partially submerged roots remained a few millimeters bellow the atmospheric pressure, while a much larger and nearly linear pressure reduction occurred in completely submerged roots. This linear phase caused a pressure reduction larger than 1m of water column. After that, the pressure started to rise slowly. The observed pressure reduction was smaller than the one observed in the constant pressure manometry procedure where the roots were sealed with epoxy resin, which precluded any water infiltration and

  13. Articaine and lidocaine for maxillary infiltration anesthesia.

    Science.gov (United States)

    Vähätalo, K.; Antila, H.; Lehtinen, R.

    1993-01-01

    This study was undertaken to compare the anesthetic properties of articaine hydrochloride with 1:200,000 epinephrine (Ultracain DS) and lidocaine with 1:80,000 epinephrine (Xylocain-Adrenalin) for maxillary infiltration anesthesia. Twenty healthy dental student volunteers were included in this double-blind study. Each subject received 0.6 mL of each test solution at different times. Infiltration anesthesia was performed on the upper lateral incisor. The onset and duration of anesthesia were monitored using an electric pulp tester. No statistically significant differences were seen in the onset and duration of anesthesia between the articaine and lidocaine solutions. PMID:7943919

  14. Migration of infiltrated NH4 and NO3 in a soil and groundwater system simulated by a soil tank

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; WANG Pei-Fang

    2008-01-01

    The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater.A laboratory-designed large soil tank with periodic and continuous infiltration models,respectively,was used to simulate the migration of the contaminants NHa and NO3 in a soil and groundwater system,including unsaturated and saturated zones.The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water.The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time.A short infiltration time resulted in a single sharp peak in the breakthrough curve,while a long infiltration time led to a plateau curve.When NHa and NO3 migrated from the unsaturated zone to the saturated zone,an interfacial retardation was formed,resulting in an increased contaminant concentration on the interface.Under the influence of horizontal groundwater movement,the infiltrated contaminants formed a contamination-prone area downstream.As the contaminants migrated downstream,their concentrations were significantly reduced.Under the same infiltration concentration,the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank,suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.

  15. Infiltration measurements and modeling in a soil-vertical drain system

    Science.gov (United States)

    Hammecker, Claude; Siltecho, Siwaporn; Angulo-Jaramillo, Rafael; Lassabatere, Laurent; Robain, Henri; Winiarski, Thierry; Trelo-ges, Vidaya; Suvannang, Nopmanee

    2016-04-01

    Severe water logging problems occur in rubber tree plantations in NE Thailand during the rainy season and create adverse conditions for the development of the trees. Moreover this situation contributes to a waste of scarce rainfall and reduce it's efficiency, as 50% is lost by hypodermic water flow and superficial runoff. The presence of a clayey layer at 1m depth with low permeability, hindering the water infiltration that led to the occurrence of a perched water table. In order to drawdown the water level of the perched water table and to increase the efficiency of the rainfall by storing water in the underlying bedrock a vertical drainage system was developed. In order to test the feasibility of this solution we chose to use the numerical modelling of water flow in soil and to test different set-ups (size and spacing between the drains). The objective of this study was to characterise the hydraulic properties and of the soil-drain system in a rubber tree plantation. Therefore an experiment was set up in rubber tree plantation at Ban Non Tun, Khon Kaen Province (Northeast of Thailand). Infiltration experiments around the vertical drains with single ring of 1m diameter, were conducted in three different locations to measure infiltration rate. The infiltration experiments were also monitored with two complementary geophysical methods (ERT and GPR) to asses the progression ans at the geometry of the wetting front. The model Hydrus2D was used to adjust the computed infiltration curves and water level in the drain to the experimental data, by fitting effective unsaturated hydrodynamic parameters for the drain. These parameters were used to calibrate the model and to perform further predictive numerical simulations.

  16. Obesity, Intrapancreatic Fatty Infiltration, and Pancreatic Cancer.

    Science.gov (United States)

    Wang, Hua; Maitra, Anirban; Wang, Huamin

    2015-08-01

    Obesity and intrapancreatic fatty infiltration are associated with increased risk of pancreatic cancer and its precursor lesions. The interplay among obesity, inflammation, and oncogenic Kras signaling promotes pancreatic tumorigenesis. Targeting the interaction between obesity-associated inflammation and Kras signaling may provide new strategies for prevention and therapy of pancreatic cancer. ©2015 American Association for Cancer Research.

  17. Infiltrating/sealing proximal caries lesions

    DEFF Research Database (Denmark)

    Martignon, S; Ekstrand, K R; Gomez, J

    2012-01-01

    proximal lesions identified radiographically around the enamel-dentin junction to the outer third of the dentin, were included. Lesions were randomly allocated for treatment to test-A (Infiltration: ICON-pre-product; DMG), test-B (Sealing: Prime-Bond-NT; Dentsply), or control-C (Placebo). Primary outcome...

  18. An Infiltration Exercise for Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  19. Field-scale investigation of infiltration into a compacted soil liner

    Science.gov (United States)

    Panno, Samuel V.; Herzog, Beverly L.; Cartwright, Keros; Rehfeldt, Kenneth R.; Krapac, Ivan G.; Hensel, Bruce R.

    1991-01-01

    The Illinois State Geological Survey constructed and instrumented an experimental compacted soil liner. Infiltration of water into the liner has been monitored for two years. The objectives of this investigation were to determine whether a soil liner could be constructed to meet the U.S. EPA's requirement for a saturated hydraulic conductivity of less than or equal to 1.0 ?? 10-7 cm/s, to quantify the areal variability of the hydraulic properties of the liner, and to determine the transit time for water and tracers through the liner. The liner measures 8m ?? 15m ?? 0.9m and was designed and constructed to simulate compacted soil liners built at waste disposal facilities. The surface of the liner was flooded to form a pond on April 12, 1988. Since flooding, infiltration has been monitored with four large-ring (LR) and 32 small-ring (SR) infiltrometers, and a water-balance (WB) method that accounted for total infiltration and evaporation. Ring-infiltrometer and WB data were analyzed using cumulative-infiltration curves to determine infiltration fluxes. The SR data are lognormally distributed, and the SR and LR data form two statistically distinct populations. Small-ring data are nearly identical with WB data; because there is evidence of leakage in the LRs, the SR and WB data are considered more reliable.

  20. Impact of Years of Enrollment in the Conservation Reserve Program on Depth of Rain Infiltration

    Science.gov (United States)

    Goebel, T.; Lascano, R. J.; Acosta-Martinez, V.

    2014-12-01

    The Conservation Reserve Program (CRP) is a USDA program administered by the Farm Service Agency (FSA) introduced in 1985 to reduce soil erosion by increasing vegetative cover of highly erodible land. The Texas High Plains (THP) leads the US with >890,000 ha enrolled in CRP. Potential benefits of the CRP include, e.g., increased infiltration of rainfall and organic matter, and better soil structure. However, impact of these benefits is not well characterized. Participation in the CRP is done via contracts (10-15 years in length) and since its inception land area of the THP enrolled in CRP has varied significantly allowing the evaluation of years of enrollment (age) on soil structure and impact on rain infiltration. This information is critical for land users to determine how long it is necessary to enroll their land in the CRP to improve soil structure and impact rain infiltration and increase the water holding capacity of the soil. Stable isotopes of water present a useful technique that is used in ecology and hydrology to study water movement through ecosystems and can be used to evaluate the depth of infiltration of rainwater under CRP management. We compared the infiltration depth of rain in land under CRP management to land under continuous dryland cotton with no irrigation. Two locations, in Terry and Lynn counties, were used for this study. The site in Terry County was enrolled in CRP for 25 years (1985) and 22 years (1992) in Lynn County.

  1. Infiltration capacity of roadside filter strips with non-uniform overland flow

    Science.gov (United States)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-02-01

    The side slope to a roadside swale (drainage ditch) constitutes a filter strip that has potential for infiltration of road runoff, thereby serving as a stormwater quantity and quality control mechanism. A total of thirty-two tests were performed during three seasons in four different highways located in the Minneapolis-St. Paul metropolitan area, MN to analyze the infiltration performance of roadside filter strips and the effect of fractional coverage of water on infiltration. Three different application rates were used in the experiments. All the tests showed that water flow on the lateral slope of a roadside swale is concentrated in fingers, instead of sheet flow, at the typical road runoff intensities for which infiltration practices are utilized to improve surface water quality. A linear relationship between flux of water from the road and fraction of wetted surface was observed, for the intensities tested. The average percentage infiltration of the medium road runoff rate (1.55 × 10-4 m2/s, without direct rainfall) experiments performed in fall was 85% and in spring 70%. For the high road runoff rate (3.1 × 10-4 m2/s, without direct rainfall) tests the average amount of water infiltrated was 47% and for the low road runoff rate (7.76 × 10-5 m2/s, without direct rainfall) tests it was 69%, both set of tests performed in spring and summer. The saturated hydraulic conductivity of swale soil was high, relative to the values typical of laboratory permeameter measurements for these types of soils. This is believed to be due to the macropores generated by vegetation roots, activity of macrofauna (e.g. earthworms), and construction/maintenance procedures. The trend was to have more infiltration when the saturated hydraulic conductivity was higher and for a greater side slope length, as expected. The vegetation, type of soil and length of the side slope are important to consider for constructing and maintaining roadside swales that will be efficient as stormwater

  2. Does drought alter hydrological functions in forest soils? An infiltration experiment

    Science.gov (United States)

    Gimbel, K. F.; Puhlmann, H.; Weiler, M.

    2015-08-01

    The water cycle is expected to change in future and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey, loamy and sandy textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by WDPT tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the "drought-history" or generally the climatic conditions in the past of a soil are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; and also, that drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  3. Linking structural and functional connectivity in a simple runoff-runon model over soils with heterogeneous infiltrability

    Science.gov (United States)

    Harel, M.; Mouche, E.

    2012-12-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed wherever R is greater than I. The infiltration rate equals the infiltrability where runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon process), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max (Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect differently to each other depending on the rainfall intensity and the nature of the soil heterogeneity. In order to characterize the runoff patterns and their connectivity, we use the connectivity function defined by Allard (1993) in Geostatistics. Our aim is to assess, in a stochastic framework, the runoff organization on 1D and 2D slopes with random infiltrabilities (log-normal, exponential and bimodal distributions) by means of numerical simulations. Firstly, we show how runoff is produced and organized in patterns along a 2D slope according to the infiltrability distribution. We specifically illustrate and discuss the link between the statistical nature of the infiltrability and that of the flow-rate, with a special focus on the relations between the connectivities of both fields: the structural connectivity (infiltrability patterns

  4. Pollution of soil and groundwater from infiltration of highly contaminated stormwater - a case study

    DEFF Research Database (Denmark)

    Mikkelsen, P.S.; Häfliger, M.; Ochs, M.

    1997-01-01

    A surface and a sub-surface infiltration system that received runoff water from trafficked roads for several decades was dug up and the contamination with heavy metals, PAH and AOX was investigated. Most measured solid phase concentrations exceeded background concentrations in nearby surface soils...... and subsurface sediments and some even exceeded guidelines fixed to preserve the fertility of soil. However, the contamination decreased rapidly with depth. None of the measured metal concentrations in simulated soil solutions exceeded defined drinking water quality standards. Surprisingly, the surface...... and the sub-surface infiltration system seemed to be equally good at retaining pollution. This indicates that the runoff sludge found in such infiltration systems plays an important role both as a source and a sorbent for stormwater contaminants. The study does not point at a considerable risk for groundwater...

  5. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Institute of Scientific and Technical Information of China (English)

    Wen-xian ZHANG; Zhan-yu ZHANG; Kang WANG

    2009-01-01

    Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation) into the underlying waste.This study evaluated the soil water balance performance of evapotranspiration covers (ET covers) and simulated percolation in the systems using the active region model (ARM).Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers.Results showed that vegetation played a critical role in controlling the water balance of the ET covers.In soil profiles of 60-cm depth with and without vegetation cover,the maximum soil water storage capacities were 97.2 mm and 62.8 mm,respectively.The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil.The ARM simulated percolation more accurately than the continuum model because it considered preferential flow.Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration,thus reducing percolation.

  6. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Directory of Open Access Journals (Sweden)

    Wen-xian ZHANG

    2009-09-01

    Full Text Available Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation into the underlying waste. This study evaluated the soil water balance performance of evapotranspiration covers (ET covers and simulated percolation in the systems using the active region model (ARM. Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers. Results showed that vegetation played a critical role in controlling the water balance of the ET covers. In soil profiles of 60-cm depth with and without vegetation cover, the maximum soil water storage capacities were 97.2 mm and 62.8 mm, respectively. The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil. The ARM simulated percolation more accurately than the continuum model because it considered preferential flow. Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration, thus reducing percolation.

  7. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  8. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...... partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector...... element based finite element method. We demonstrate results for a splay aligned liquid crystal infiltrated into the capillaries of a four-ring photonic crystal fiber and compare them to corresponding experiments....

  9. Sequential infiltration synthesis for advanced lithography

    Science.gov (United States)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing

    2015-03-17

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.

  10. Diffuse infiltrating retinoblastoma invading subarachnoid space

    Directory of Open Access Journals (Sweden)

    Kase S

    2011-06-01

    Full Text Available Satoru Kase1, Kazuhiko Yoshida1, Shigenobu Suzuki2, Koh-ichi Ohshima3, Shigeaki Ohno4, Susumu Ishida11Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo; 2Department of Ophthalmic Oncology, National Cancer Center Hospital, Tokyo; 3Section of Ophthalmology, Okayama Medical Center, Okayama; 4Department of Ocular Inflammation and Immunology, Hokkaido University Graduate School of Medicine, Sapporo, JapanAbstract: We report herein an unusual case of diffuse infiltrating retinoblastoma involving the brain, which caused a patient’s death 27 months after enucleation. An eight-year-old boy complained of blurred vision in his right eye (OD in October 2006. Funduscopic examination showed optic disc swelling, dense whitish vitreous opacity, and an orange-colored subretinal elevated lesion adjacent to the optic disc. Fluorescein angiography revealed hyperfluorescence in the peripapillary region at an early-phase OD. Because the size of the subretinal lesion and vitreous opacity gradually increased, he was referred to us. His visual acuity was 20/1000 OD on June 20, 2007. Slit-lamp biomicroscopy showed a dense anterior vitreous opacity. Ophthalmoscopically, the subretinal orange-colored area spread out until reaching the mid peripheral region. A B-mode sonogram and computed tomography showed a thick homogeneous lesion without calcification. Gadolinium-enhanced magnetic resonance imaging showed a markedly enhanced appearance of the underlying posterior retina. Enucleation of the right eye was performed nine months after the initial presentation. Histopathology demonstrated retinal detachment and a huge choroidal mass invading the optic nerve head. The tumor was consistent with diffuse infiltrating retinoblastoma. The patient died due to brain involvement 27 months after enucleation. Ophthalmologists should be aware that diffuse infiltrating retinoblastoma may show an unfavorable course if its diagnosis is delayed

  11. Conjunction of Multizone Infiltration Specialists (COMIS) fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H.E.; Rayner-Hooson, A. (eds.)

    1990-05-01

    The COMIS workshop (Conjunction of Multizone Infiltration Specialists) was a joint research effort to develop a multizone infiltration mode. This workshop (October 1988--September 1989) was hosted by the Energy Performance of Buildings Group at Lawrence Berkeley Laboratory's Applied Science Division. The task of the workshop was to develop a detailed multizone infiltration program taking crack flow, HVAC-systems, single-sided ventilation and transport mechanism through large openings into account. This work was accomplished not by investigating into numerical description of physical phenomena but by reviewing the literature for the best suitable algorithm. The numerical description of physical phenomena is clearly a task of IEA-Annex XX Air Flow Patterns in Buildings,'' which will be finished in September 1991. Multigas tracer measurements and wind tunnel data will be used to check the model. The agenda integrated all participants' contributions into a single model containing a large library of modules. The user-friendly program is aimed at researchers and building professionals. From its announcement in December 1986, COMIS was well received by the research community. Due to the internationality of the group, several national and international research programmes were co-ordinated with the COMIS workshop. Colleagues for France, Italy, Japan, The Netherlands, People's Republic of China, Spain, Sweden, Switzerland, and the United States of America were working together on the development of the model. Even though this kind of co-operation is well known in other fields of research, e.g., high energy physics; for the field of building physics it is a new approach. This document contains an overview about infiltration modelling as well as the physics and the mathematics behind the COMIS model. 91 refs., 38 figs., 9 tabs.

  12. Invasive follicular thyroid carcinoma infiltrating trachea

    Directory of Open Access Journals (Sweden)

    Filipović Aleksandar

    2011-01-01

    Full Text Available Introduction. Although follicular thyroid carcinoma is a rare malignant tumor, up to 20% of the patients are threatened by potential complications resulting from infiltrating tumor growth into surrounding tissues. Case report. A 66- year-old female came to hospital with the presence of a growing thyroid nodule of the left lobe. Ultrasonic examination showed a 8 cm hypoechoic nodule in the left lobe. Thyroid scintigraphy showed a cold nodule. CT scan and tracheoscopy showed tracheal infiltration without tracheal obstruction. An extended total thyroidectomy was done, with the left jugular vein, strap muscles and tracheal 2 cm long circular resection. The pathologist confirmed invasive follicular thyroid cancer. After the surgery the patient was treated with radioiodine therapy and permanent TSH suppressive therapy. The patient was followed with measurements of the thyroid hormone and serum thyroglobulin level every six months, as well as the further tests (chest xray, ultrasound of the neck and a whole body scintigraphy were done. After more than three years the patient had no evidence of the recurrent disease. Conclusion. Radical resection of the tracheal infiltrating thyroid cancer with circular tracheal resection and terminoterminal anastomosis followed by radioiodine therapy should be considered the treatment of choice.

  13. Influence of experimental set-up on the infiltration characteristics during managed aquifer recharge operation

    Science.gov (United States)

    Fichtner, Thomas; Vanzella de Melo, Julio Augusto; Stefan, Catalin

    2016-04-01

    The main focus during operation of managed aquifer recharge (MAR) is on clogging processes, specifically on the changes of infiltration capacities and degradation of infiltrated organic substances including vadose zone oxygen dynamics. Lab scale experiments are one opportunity to understand and characterize these processes under different drying and wetting cycles and infiltration rates. However, the multitude of assumptions and scale-related limitations of downscale investigations often lead to over- or underestimations, rendering their results useless when translated to field-like conditions. Therefore, the specific objective of this investigation is to compare the results obtained from two different experimental set-ups with different scales: a 3D, rectangular shaped, stainless steel lysimeter (1.5 x 1.0 x 1.0 m) with an infiltration basin installed in the centre of its surface and a 1D soil column (1m, ᴓ 0.15 m) with the infiltration over the complete column surface. The study focuses on the influence of the experimental setup conditions on the soil clogging, water flow pattern, oxygen dynamics and degradation of organic substances. The results should allow making statements about the suitability of these lab experiments for the investigation of processes taking place in the unsaturated soil zone during operation of MAR. Both experimental units were packed with the same soil and equipped with tensiometers, TDR-probes, oxygen probes and suction cups in two depths for the estimation of spatial and temporal distribution of soil moisture, oxygen and infiltrated substances. The lysimeter and the column were placed inside of a fully automatic climate tent, which facilitates the exact control of air temperature and humidity. The first results confirm that both infiltration units are suitable to simulate the clogging and the oxidation of easily degradable organic substances. However, the velocity of water transport is higher in the column compared with the lysimeter

  14. INCORRECT PROPOSAL OF RUNOFF DRAINAGE THROUGH INFILTRATION FACILITY - CASE STUDY

    Directory of Open Access Journals (Sweden)

    G. MARKOVIC

    2016-03-01

    Full Text Available mbalance of the natural dynamic equilibrium between the processes of percolation, evaporation and surface runoff is caused because of urbanization of the previously natural areas which are transformed by humans now. More and more rainwater flows over the surface of the catchment area. Infiltration facilities are devices designed for fluent and natural infiltration of rainwater from the roofs of buildings and paved surfaces. Facilities for infiltration as one of source control measures are permeable paved areas, unpaved areas for infiltration, vegetated swales, vegetated buffer strips, bioretention, detention ponds, dry well, infiltration basins and infiltration gallery and many more. Rainwater drainage from the bridge object in Sarisske Luky in Presov district (Slovakia, using infiltration gallery is presented in the paper. Its capacity is not efficient now, so the reconstruction or other supplement solution is needed. From the wide possibilities of solutions, one of them which full fills all criterions about the rainwater infiltration in selected building object is presented and discussed.

  15. 40 CFR 35.2120 - Infiltration/Inflow.

    Science.gov (United States)

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... portion of its sewer system is subject to excessive infiltration, the applicant may confirm its belief...

  16. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables (s

  17. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Science.gov (United States)

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the v...

  18. Effects of the hydraulic conductivity of the matrix/macropore interface on cumulative infiltrations into dual-permeability media

    Science.gov (United States)

    Lassabatere, L.; Peyrard, X.; Angulo-Jaramillo, R.; Simunek, J.

    2009-12-01

    Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model (referred to as the 2K model) assumes that flow is governed by Richards equation in both porous regions (matrix and macropores). Water can be exchanged between the two regions following a first-order rate law. Although several studies have dealt with such modeling, no study has evaluated the influence of the hydraulic conductivity of the matrix/macropore interface on water cumulative infiltration. And this is the focus of this study. An analytical scaling method reveals the role of the following main parameters for given boundary and initial conditions: the saturated hydraulic conductivity ratio (R_Ks), the water pressure scale parameter ratio (R_hg), the saturated volumetric water content ratio (R_θs), and the shape parameters of the water retention and hydraulic conductivity functions. The last essential parameter is related to the interfacial hydraulic conductivity (Ka) between the macropore and matrix regions. The scaled 2K flow equations were solved using HYDRUS-1D 4.09 for the specific case of water infiltrating into an initially uniform soil profile and a zero pressure head at the soil surface. A sensitivity of water infiltration was studied for different sets of scale parameters (R_Ks, R_hg, R_θs, and shape parameters) and the scaled interfacial conductivity (Ka). Numerical results illustrate two extreme behaviors. When the interfacial conductivity is zero (i.e., no water exchange), water infiltrates separately into matrix and macropore regions, producing a much deeper moisture front in the macropore domain. In the opposite case

  19. Nutrient Release from Disturbance of Infiltration System Soils during Construction

    Directory of Open Access Journals (Sweden)

    Daniel P. Treese

    2012-01-01

    Full Text Available Subsurface infiltration and surface bioretention systems composed of engineered and/or native soils are preferred tools for stormwater management. However, the disturbance of native soils, especially during the process of adding amendments to improve infiltration rates and pollutant removal, may result in releases of nutrients in the early life of these systems. This project investigated the nutrient release from two soils, one disturbed and one undisturbed. The disturbed soil was collected intact, but had to be air-dried, and the columns repacked when soil shrinkage caused bypassing of water along the walls of the column. The undisturbed soil was collected and used intact, with no repacking. The disturbed soil showed elevated releases of nitrogen and phosphorus compared to the undisturbed soil for approximately 0.4 and 0.8 m of runoff loading, respectively. For the undisturbed soil, the nitrogen release was delayed, indicating that the soil disturbance accelerated the release of nitrogen into a very short time period. Leaving the soil undisturbed resulted in lower but still elevated effluent nitrogen concentrations over a longer period of time. For phosphorus, these results confirm prior research which demonstrated that the soil, if shown to be phosphorus-deficient during fertility testing, can remove phosphorus from runoff even when disturbed.

  20. Unstable infiltration fronts in porous media on laboratory scale

    Science.gov (United States)

    Schuetz, Cindi; Neuweiler, Insa

    2014-05-01

    Water flow and transport of substances in the unsaturated zone are important processes for the quality and quantity of water in the hydrologic cycle. The water movement through preferential paths is often much faster than standard models (e. g. Richards equation in homogeneous porous media) predict. One type/phenomenon of preferential flow can occur during water infiltration into coarse and/or dry porous media: the so-called gravity-driven fingering flow. To upscale the water content and to describe the averaged water fluxes in order to couple models of different spheres it is necessary to understand and to quantify the behavior of flow instabilities. We present different experiments of unstable infiltration in homogeneous and heterogeneous structures to analyze development and morphology of gravity-driven fingering flow on the laboratory scale. Experiments were carried out in two-dimensional and three-dimensional sand tanks as well as in larger two-dimensional sand tanks with homogeneous and heterogeneous filling of sand and glass beads. In the small systems, water content in the medium was measured at different times. We compare the experiments to prediction of theoretical approaches (e.g. Saffman and Taylor, 1958; Chuoke et al., 1959; Philip 1975a; White et al., 1976; Parlange and Hill, 1976a; Glass et al., 1989a; Glass et al., 1991; Wang et al., 1998c) that quantify properties of the gravity-driven fingers. We use hydraulic parameters needed for the theoretical predictions (the water-entry value (hwe), van Genuchten parameter (Wang et al., 1997, Wang et al., 2000) and saturated conductivity (Ks), van Genuchten parameter (Guarracino, 2007) to simplify the prediction of the finger properties and if necessary to identify a constant correction factor. We find in general that the finger properties correspond well to theoretical predictions. In heterogeneous settings, where fine inclusions are embedded into a coarse material, the finger properties do not change much

  1. Borehole environmental tracers for evaluating net infiltration and recharge through desert bedrock

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Gardner, P.M.

    2006-01-01

    Permeable bedrock aquifers in arid regions are being increasingly developed as water supplies, yet little is generally known about recharge processes and spatial and temporal variability. Environmental tracers from boreholes were used in this study to investigate net infiltration and recharge to the fractured Navajo Sandstone aquifer. Vadose zone tracer profiles at the Sand Hollow study site in southwestern Utah look similar to those of desert soils at other sites, indicating the predominance of matrix flow. However, recharge rates are generally higher in the Navajo Sandstone than in unconsolidated soils in similar climates because the sandstone matrix allows water movement but not root penetration. Water enters the vadose zone either as direct infiltration of precipitation through exposed sandstone and sandy soils or as focused infiltration of runoff. Net infiltration and recharge exhibit extreme spatial variability. High-recharge borehole sites generally have large amounts of vadose zone tritium, low chloride concentrations, and small vadose zone oxygen-18 evaporative shifts. Annual net-infiltration and recharge rates at different locations range from about 1 to 60 mm as determined using vadose zone tritium, 0 to 15 mm using vadose zone chloride, and 3 to 60 mm using groundwater chloride. Environmental tracers indicate a cyclical net-infiltration and recharge pattern, with higher rates earlier in the Holocene and lower rates during the late Holocene, and a return to higher rates during recent decades associated with anomalously high precipitation during the latter part of the 20th century. The slightly enriched stable isotopic composition of modern groundwater indicates this recent increase in precipitation may be caused by a stronger summer monsoon or winter southern Pacific El Nin??o storm track. ?? Soil Science Society of America.

  2. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2010-05-01

    Full Text Available Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs and Hydrological Models (HMs have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology.

    In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1 the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2 differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3 despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4 the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.

  3. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2009-09-01

    Full Text Available Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs and Hydrological Models (HMs have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology.

    In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1 the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2 differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15–30 cm, (3 despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4 the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines and can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.

  4. Determination of infiltration and percolation rates along a reach of the Santa Fe River near La Bajada, New Mexico

    Science.gov (United States)

    Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.

    2000-01-01

    Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26

  5. Evaluation of some infiltration models and hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, F.; Gorji, M.; Shorafa, M.; Sarmadian, F.; Mohammadi, M. H.

    2010-07-01

    The evaluation of infiltration characteristics and some parameters of infiltration models such as sorptivity and final steady infiltration rate in soils are important in agriculture. The aim of this study was to evaluate some of the most common models used to estimate final soil infiltration rate. The equality of final infiltration rate with saturated hydraulic conductivity (Ks) was also tested. Moreover, values of the estimated sorptivity from the Philips model were compared to estimates by selected pedotransfer functions (PTFs). The infiltration experiments used the doublering method on soils with two different land uses in the Taleghan watershed of Tehran province, Iran, from September to October, 2007. The infiltration models of Kostiakov-Lewis, Philip two-term and Horton were fitted to observed infiltration data. Some parameters of the models and the coefficient of determination goodness of fit were estimated using MATLAB software. The results showed that, based on comparing measured and model-estimated infiltration rate using root mean squared error (RMSE), Hortons model gave the best prediction of final infiltration rate in the experimental area. Laboratory measured Ks values gave significant differences and higher values than estimated final infiltration rates from the selected models. The estimated final infiltration rate was not equal to laboratory measured Ks values in the study area. Moreover, the estimated sorptivity factor by Philips model was significantly different to those estimated by selected PTFs. It is suggested that the applicability of PTFs is limited to specific, similar conditions. (Author) 37 refs.

  6. Seasonal changes of the infiltration rates in urban parks of Valencia City, Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Keesstra, Saskia; Burguet, María; Pereira, Paulo; Esteban Lucas-Borja, Manuel; Martinez-Murillo, Juan F.

    2016-04-01

    Infiltration is a key process of the hydrological cycle. Infiltration also controls the soil water resources, and the development of the vegetation, and moreover, in the Mediterranean, determines the runoff generation (Cerdà, 1996; 1997; 2001). In the Mediterranean, the infiltration in forest soils shows high spatial variability and seasonal and temporal changes (Cerdà, 1999; Bodí and Cerdà, 2009) and is being affected by forest fires (Cerdà, 1998), which introduce a new temporal change in the seasonality of the infiltration rates. Although the forest soils are well assessed, there is no information about the infiltration in urban areas in Mediterranean cities. The Mediterranean dense urban systems use to be treated as impermeable areas. However, the cities show areas covered by vegetation and with soils that allow the rainfall to infiltrate. Those areas are mainly the parks. In order to shed some light on the infiltration capacity of the soils of the urban area of Valencia city 30 rainfall simulations experiments (Cerdà, 1996) and 90 ring infiltrometer (10 cm diameter) measurements were carried out in January 2011, and they were repeated in July 2011, to compare wet (19.4 % of soil moisture) and dry (5.98 % of soil moisture) soils. The infiltration curves where fitted to the Horton (1933) equation and they lasted for 1 hour. The results show that the infiltration is 11 times higher when measured with ring infiltrometer than with the simulated rainfall at 55 mmh-1, and that the infiltration rates where higher in summer than in winter: 2.01 higher for the ring infiltrometer, and 1.45 higher when measured with the rainfall simulator. In comparison to the soils from the forest areas, the infiltration rate in the gardens were lower, with values of 10.23 and 21.65 mm h-1 in average for winter and summer when measured with the rainfall simulator. Similar results were found with the ring infiltrometer. It was also found a clear relationship between the vegetation

  7. Can geotextiles modify the transfer of heavy metals transported by stormwater in infiltration basins?

    Science.gov (United States)

    Lassabatère, L; Winiarski, T; Galvez-Cloutier, R

    2005-01-01

    Geotextiles are fibrous materials increasingly employed for the design of infiltration basins. However, their influence on the transfer of contaminants carried by stormwater has not been fully investigated. This study, based on column leaching experiments, aims at showing the effect of geotextiles on the transfer of three heavy metals (Zn, Pb and Cd) in a reactive soil (simulating an infiltration basin at laboratory scale). This effect depends on several factors, such as type of geotextile, hydric conditions (geotextile water content), hydraulic conditions (flow-rates) and the number of geotextiles installed. In all cases, geotextiles influence heavy metal retention by modifying flow and thus regulating contact between these metals and the reactive soil.

  8. Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

    2003-04-01

    The results of a series of ponded infiltration tests in variably saturated fractured basalt at Box Canyon, Idaho, were used to build confidence in conceptual and numerical modeling approaches used to simulate infiltration in fractured rock. Specifically, we constructed a dual-permeability model using TOUGH2 to represent both the matrix and fracture continua of the upper basalt flow at the Box Canyon site. A consistent set of hydrogeological parameters was obtained by calibrating the model to infiltration front arrival times in the fracture continuum as inferred from bromide samples collected from fracture/borehole intersections observed during the infiltrating tests. These parameters included the permeability of the fracture and matrix continua, the interfacial area between the fracture and matrix continua, and the porosity of the fracture continuum. To calibrate the model, we multiplied the fracture-matrix interfacial area by a factor between 0.1 and 0.01 to reduce imbibition of water from the fracture continuum into the matrix continuum during the infiltration tests. Furthermore, the porosity of the fracture continuum, as calculated using the fracture aperture inferred from pneumatic-test permeabilities, was increased by a factor of 50 yielding porosity values for the upper basalt flow in the range of 0.01 to 0.02. The fracture-continuum porosity was a highly sensitive parameter controlling the arrival times of the simulated infiltration fronts. Porosity values are consistent with those determined during the Large-Scale Aquifer Pumping and Infiltration Test at the Idaho National Engineering and Environmental Laboratory.

  9. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

    Energy Technology Data Exchange (ETDEWEB)

    Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A& M University; Scott W. Tyler, Ph.D., University of Nevada, Reno; Tian-Chyi Jim Yeh, Ph.D., University of Arizona -- ORISE Review Facilitators: Robert S. Turner, Ph.D., Technical Review Group Manager, Oak Ridge Institute for Science and Education; Brian R. Herndon, Project Manager, Oak Ridge Institute for Science and Education; Russ Manning, Technical Writer/Editor, Haselwood Enterprises, Inc.

    2008-08-30

    The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technically credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: • A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (i) the net infiltration estimates, (ii) the uncertainty estimates of parameters caused by their spatial variability, and (iii) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. • The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. • While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they

  10. Performance of a 'Transitioned' Infiltration Basin Part 2: Nitrogen and Phosphorus Removals.

    Science.gov (United States)

    Natarajan, Poornima; Davis, Allen P

    2016-04-01

    Infiltration basins have been widely used for stormwater runoff management. However, their longevity could be compromised over time, up to the point of operational failure. This research study showed that a 'failed' infiltration basin can 'transition' into a wetpond/wetland-like practice and provide water quality benefits. Performance evaluation over three years showed that the transitioned infiltration basin reduced the discharge event mean concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), NOx-N (nitrate+nitrite), total Kjeldahl nitrogen (TKN), organic-N (ON), and total nitrogen (TN) during most storm events. Exports of TP, DP, ON, and TKN masses were observed only during the coldest periods. The cumulative mass removals were 61% TP, 53% DP, 63% PP, 79% NOx-N, 51% TKN, 45% ON, and 64% TN. The dry-weather nutrient concentrations combined with the environmental conditions at the transitioned basin indicated that sedimentation, adsorption, denitrification, and volume reduction were the removal mechanisms.

  11. A multilevel multiscale mimetic method for an anisotropic infiltration problem

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, Konstantin [Los Alamos National Laboratory; Moulton, David [Los Alamos National Laboratory; Svyatskiy, Daniil [Los Alamos National Laboratory

    2009-01-01

    Modeling of multiphase flow and transport in highly heterogeneous porous media must capture a broad range of coupled spatial and temporal scales. Recently, a hierarchical approach dubbed the Multilevel Multiscale Mimetic (M3) method, was developed to simulate two-phase flow in porous media. The M{sup 3} method is locally mass conserving at all levels in its hierarchy, it supports unstructured polygonal grids and full tensor permeabilities, and it can achieve large coarsening factors. In this work we consider infiltration of water into a two-dimensional layered medium. The grid is aligned with the layers but not the coordinate axes. We demonstrate that with an efficient temporal updating strategy for the coarsening parameters, fine-scale accuracy of prominent features in the flow is maintained by the M{sup 3} method.

  12. Hydrologic impact of urbanization with extensive stormwater infiltration

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater...... is analyzed using a distributed and dynamic hydrological model to simulate the groundwater response. The model explicitly couples a soakwell model with a groundwater model so that the performance of the soakwells is reduced by the increase of groundwater levels. The groundwater observation data is used...... to setup, calibrate and validate a coupled MIKE SHE-MIKE URBAN groundwater model and the model is used to quantify the extent of groundwater rise as a result of the urbanization process. The modeled urbanization processes included the irrigation of new established private and public gardens, the reduction...

  13. Rapid fabrication of ceramic composite tubes using chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering; Besmann, T.M.; Stinton, D.P.; McLaughlin, J.C.; Matlin, W.M. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Ceramic composite tubes can be fabricated with silicon carbide matrix and Nicalon fiber reinforcement using forced flow-thermal gradient chemical vapor infiltration (FCVI). The process model GTCVI is used to design the equipment configuration and to identify conditions for rapid, uniform densification. The initial injector and mandrel design produced radial and longitudinal temperature gradients too large for uniform densification. Improved designs have been evaluated with the model. The most favorable approach utilizes a free-standing preform and an insulated water-cooled gas injector. Selected process conditions are based on the temperature limit of the fiber, matrix stoichiometry and reagent utilization efficiency. Model runs for a tube 12 inches long, 4 inches OD and 1/4 inch wall thickness show uniform densification in approximately 15 hours.

  14. Exploring Variation and Predictors of Residential Fine Particulate Matter Infiltration

    Directory of Open Access Journals (Sweden)

    Amanda J. Wheeler

    2010-08-01

    Full Text Available Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM2.5 and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  15. Exploring variation and predictors of residential fine particulate matter infiltration.

    Science.gov (United States)

    Clark, Nina A; Allen, Ryan W; Hystad, Perry; Wallace, Lance; Dell, Sharon D; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J

    2010-08-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  16. Surface composites fabricated by vacuum infiltration casting technique

    Institute of Scientific and Technical Information of China (English)

    Guirong Yang; Yuan Hao; Wenming Song; Jinjun Lü; Ying Ma

    2005-01-01

    Alumina (Al2O3) particles reinforced copper matrix surface composites were fabricated on the bronze substrate using the vacuum infiltration casting technique. Three cases were obtained in the vacuum infiltration casting technique: no infiltration, partial infiltration and full infiltration (the thickness of preforms do not exceed 3.5 mm). The reason of no infiltration is that the vacuum degree is not enough so that the force acting on the liquid metal is lower than the resistance due to the surface tension. Partial infiltration is because of somewhat lower vacuum degree and pouring temperature. Full desired infiltration is on account of suitable infiltration casting conditions, such as vacuum degree, pouring temperature, grain size and preheating temperature of the preform. The most important factor of affecting formation of surface composites is the vacuum degree, then pouring temperature and particle size.The infiltration mechanism was discussed on the bases of different processing conditions. The surface composite up to 3.5 mm in thickness with uniformly distributed Al2O3 particles could be fabricated via the vacuum infiltration casting technique.

  17. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  18. Revealing the mechanisms and significance of frozen soil infiltration

    Science.gov (United States)

    Stähli, Manfred; Hayashi, Masaki

    2015-04-01

    Frozen soil is one of the most characteristic features of Nordic hydrology. Depending on climate, snow cover and soil properties it can slow down or even inhibit the water's journey from the soil surface to the stream, or it can speed up the journey by generating overland flow. When Harald Grip's and Allan Rhode's book came out in the mid-eighties, state-of-the-art knowledge on frozen soil hydrology was based on numerous cold-chamber experiments and only few field measurements, especially from Alaska. It was already then recognized that frozen soil is not impermeable per se, but its permeability depends on the amount and connectivity of air-filled pores, which in turn depends on ice content. How has our understanding of frozen soil hydrology further developed since then? One important innovation was the application of dye tracers to frozen field plots and soil columns uncovering the flow paths of infiltrating water. A second crucial advance was the development of numerical models to calculate water transfer from the snow cover into soil profiles. These models made researchers aware of the high sensitivity of frozen soil infiltration to boundary conditions (e.g. depth to groundwater) and winter history (e.g. evolution of snow cover, number of mid-winter melt events). A further important insight was that local effects of frozen ground on water flow may vanish at the scale of catchments due to the highly variable topography, vegetation and soil of a landscape. Nevertheless, studies showing the impact of frozen soil on large scale ground-water recharge or stream runoff are still scarce. A recent analysis of long-term runoff data from Switzerland sheds new light on the response of small catchments to frozen ground. Finally, it can be concluded that the Nordic lessons on frozen soil hydrology have been noted by the worldwide research community and are receiving increased attention in the context of climate change and its impacts on seasonally and permanently frozen soil.

  19. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments

    Science.gov (United States)

    Di Prima, Simone; Lassabatère, Laurent; Angulo-Jaramillo, Rafael; Bagarello, Vincenzo; Iovino, Massimo

    2015-04-01

    The Beerkan method along with BEST algorithms is an alternative technique to conventional laboratory or field measurements for rapid and low-cost estimation of soil hydraulic properties. The Beerkan method is simple to conduct but requires an operator to pour known volumes of water through the ring and can be time-consuming. To alleviate this need, a new cheap infiltrometer equipped with a data acquisition system, allowing automation of Beerkan infiltration experiments, was recently designed and is presented in a companion paper. Yet, it has never been tested against a wide range of experimental conditions (soils, initial water saturation, etc.). In this paper, we tested the automated infiltrometer with the aim to validate its applicability to the Beerkan infiltration experiment under several experimental circumstances. In addition, we assessed the accuracy of BEST methods on the data obtained with the infiltrometer for the estimation of saturated soil hydraulic conductivity and sorptivity. For this purpose, we used both analytically generated and real experimental data. The analytically generated data simulate infiltration experiments carried out with the infiltrometer on five contrasting soils from UNSODA database and different initial water contents. The total volume of water to be infiltrated and the volume increments are fixed by the infiltrometer characteristics. Then, inverse analysis of the analytically generated data was performed using the three available BEST algorithms to derive saturated soil hydraulic conductivity and sorptivity that were compared to the reference values. The results of the analytical assessment showed that the infiltrometer along with BEST methods could lead to accurate estimates in most cases thus validating the design of the studied infiltrometer and its combination with BEST algorithms. Some soils (mostly loam) and some hydric conditions (high initial water contents) may lead to misestimate soil properties or failure of BEST

  20. Ecological engineering to control bioclogging: an original field study coupling infiltration and biological measurements

    Science.gov (United States)

    Gette-bouvarot, Morgane; Mermillod-Blondin, Florian; Lassabatere, Laurent; Lemoine, Damien; Delolme, Cécile; Volatier, Laurence

    2014-05-01

    Infiltration systems are increasingly used in urban areas for several purposes such as flood prevention and groundwater recharge. However, their functioning is often impacted by clogging that leads to decreases in hydraulic and water treatment performances. These systems are commonly built with sand as infiltration medium, a media subject to rapid clogging by the combined and overlapping processes of pore occlusion by fine particles and biofilm development. In a previous study, we pointed out that the phototrophic component of biofilms developed at the surface layer of infiltration systems (algae, cyanobacteria) could reduce by up to 60-fold the saturated hydraulic conductivity. Consequently, it appears crucial to control biofilm growth to maintain porous infiltration media performances. The present study aimed to test the influence of biotic (addition of animals or macrophytes) and abiotic (light reduction) treatments on biofilm development and associated hydraulic properties in an infiltration device dedicated to aquifer recharge with river water in Lyon Area (France). Twenty-five benthic enclosures were used to test 5 "treatments" on non-manipulated surface layer under field conditions. Three biotic treatments consisted in the introduction of: (i) an invertebrate acting as algae grazer (Viviparus viviparus), (ii) an invertebrate that digs galleries in sediments (Tubifex tubifex), and (iii) a macrophyte that could inhibit benthic biofilm by allelopathic activity (Vallisneria spiralis L). The fourth treatment was designed to simulate shading. The last "treatment" was a control which monitored the evolution of the system during the experiment without manipulation (addition of macro-organisms or shading). Each treatment was replicated five times. The experiment was conducted for 6 weeks, and sampling of the surface layer (0-1 cm) was carried out in each enclosure at the beginning (t0) and the end (tf). We coupled biological characterizations (organic matter, algal

  1. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    Science.gov (United States)

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration

  2. Map of infiltration of the Paraíba do Sul basin using physical elements and precipitation

    Directory of Open Access Journals (Sweden)

    George de Paula Bernardes

    2008-04-01

    Full Text Available This paper presents a methodological approach to characterize the infiltrations conditions of a portion of Paraiba do Sul river basin (7,600 km2 using Geographic Information Systems tools. To each landscape feature (rock, structure, relief, soil, and land-use and to the spatial distribution of precipitation, an infiltration potential scale factor that ranges from higher influence (5 to lower influence (1 was applied considering its geographical position. The results showed that higher infiltration capacity areas are located in Serra da Bocaina associated to Serra do Mar relief in the Northeast region and Southeast region as well associated to gentle hills and sandstones along the Paraíba do Sul river. The creation of an Infiltration Map may contribute to the development of long-term territorial plans and water resource management plans in order to support future implementation of non-structural and structural measures at both regional and local scales.

  3. A Percolation‐Based Approach to Scaling Infiltration and Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Allen G. Hunt

    2017-02-01

    Full Text Available Optimal flow paths obtained from percolation theory provide a powerful tool that can be used to characterize properties associated with flow such as soil hydraulic conductivity, as well as other properties influenced by flow connectivity and topology. A recently proposed scaling theory for vegetation growth appeals to the tortuosity of optimal paths from percolation theory to define the spatio‐temporal scaling of the root radial extent (or, equivalently, plant height. Root radial extent measures the maximum horizontal distance between a plant shoot and the root tips. We apply here the same scaling relationship to unsteady (horizontal flow associated with plant transpiration. The pore‐scale travel time is generated from the maximum flow rate under saturated conditions and a typical pore size. At the field‐scale, the characteristic time is interpreted as the growing season duration, and the characteristic length is derived from the measured evapotranspiration in that period. We show that the two scaling results are equivalent, and they are each in accord with observed vegetation growth limits, as well as with actual limiting transpiration values. While the conceptual approach addresses transpiration, most accessed data are for evapotranspiration. The equivalence of the two scaling approaches suggests that, if horizontal flow is the dominant pathway in plant transpiration, horizontal unsteady flow follows the same scaling relationship as root growth. Then, we propose a corresponding scaling relationship to vertical infiltration, a hypothesis which is amenable to testing using infiltration results of Sharma and co‐authors. This alternate treatment of unsteady vertical flow may be an effective alternative to the commonly applied method based on the diffusion of water over a continuum as governed by Richards’ equation.

  4. Possible Involvement of Pancreatic Fatty Infiltration in Pancreatic Carcinogenesis

    OpenAIRE

    Mika Hori; Michihiro Mutoh; Toshio Imai; Hitoshi Nakagama; Mami Takahashi

    2016-01-01

    Pancreatic cancer is difficult to diagnose in its early stage and is one of the most lethal human cancers. Thus, it is important to clarify its major risk factors, predictive factors and etiology. Here, we focus on fatty infiltration of the pancreas and suggest that it could be a risk factor for pancreatic cancer. Fatty infiltration of the pancreas is observed as ectopic adipocytes infiltrating the pancreatic tissue and is positively correlated with obesity and the prevalence of diabetes mell...

  5. Bone marrow granulomas in infiltrating lobular breast cancer.

    OpenAIRE

    Kettle, P.; Allen, D C

    1997-01-01

    A 50 year old woman with a history of infiltrating lobular breast carcinoma presented with back pain. Bone scan and magnetic resonance imaging were not conclusive. A bone marrow aspirate appeared normal. A routine trephine biopsy specimen showed granulomas but no obvious infiltration by carcinoma. Immunohistochemical staining with epithelial markers demonstrated carcinoma cells in the trephine specimen. This case illustrates the difficulty of detecting infiltrating lobular carcinoma in bone m...

  6. Reactive Melt Infiltration Of Silicon Into Porous Carbon

    Science.gov (United States)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  7. Light propagation in Liquid-infiltrated Microstructured Optical Fibres”

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard

    2008-01-01

    The work presented in this thesis is focussed on studying the possibilities of tuning and optimizing the performance of infiltrated waveguides in systems where nonlinear optical effects are exploited. Infiltrated systems where either nonlinear temporal or spatial effects come into play have been...... considered. First a general introduction to the basic principles used throughout the work is given. It is then shown how infiltrated waveguides can be used for manipulating dispersive and diffractive properties of light propagartion....

  8. Influence of the substitution of a grass cover by a mulch on infiltration rate

    Science.gov (United States)

    Sastre-Merlín, A.; Martínez-Pérez, S.; Bienes-Allas, R.; Molina-Navarro, E.; Martínez de Baroja, L.

    2012-04-01

    The study was carried out in an urban park of Madrid, in which it was decided to remove part of the prairie, replacing it by a mulch (pine bark). One year after this change in soil cover, infiltration tests were performed using the double ring infiltrometer (Müntz method). In each treatment the number of repetitions was 3. In the infiltration tests carried out the mulch not was withdraw, since we want to study their behavior before a rain or overhead irrigation. After one year, the infiltration rate showed ??much higher values in the prairie (18.9 mm h-1) than in the pine bark (8.4 mm h-1). Removing the prairie has meant a reduction in permeability of about 55%, which demonstrates the important role exerted by the radicular systems on infiltration. The origin is in the ability of roots to create preferred pathways circulation of the water. These pathways are of various types, and perhaps the most important are the root tubes, which are the channels that occur in the soil once the roots decompose. The finer roots create these pathways faster. These root tubes end up crumbling over time, so that is necessary to maintain the constant creation of new pipes in the soil. Under a prairie the number of root tubes that forms annually is enormous. By contrast, in absence of roots, in the surface horizon begins a process of gradual compaction, with reducing of the macroporosity and consequently impacting on the infiltration rate. The first consequence of this reduction in the infiltration rate is a poor flushing of salts from the soil of reclaimed water used in irrigation. This assertion has been corroborated by the analysis of the soil saturated paste, which shows an increasing of the electrical conductivities under the mulch. E.C. (μS cm-1) at the beginning of 2011 irrigation season (March) at different depths. Efficiency of the rains of autumn-winter by to wash soil salts. Depth (cm) PrairiePine bark 20 340 320 35 310 480 60 340 550 Therefore, the results indicate that

  9. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Rockhold, Mark L.; Oostrom, Martinus; Moore, R. C.; Burns, Carolyn A.; Williams, Mark D.; Zhong, Lirong; Fruchter, Jonathan S.; McKinley, James P.; Vermeul, Vincent R.; Covert, Matthew A.; Wietsma, Thomas W.; Breshears, Andrew T.; Garcia, Ben J.

    2009-03-01

    The objective of this project is to develop a method to emplace apatite precipitate in the 100N vadose zone, which results in sorption and ultimately incorporation of Sr-90 into the apatite structure. The Ca-citrate-PO4 solution can be infiltrated into unsaturated sediments to result in apatite precipitate to provide effective treatment of Sr-90 contamination. Microbial redistribution during solution infiltration and a high rate of citrate biodegradation for river water microbes (water used for solution infiltration) results in a relatively even spatial distribution of the citrate biodegradation rate and ultimately apatite precipitate in the sediment. Manipulation of the Ca-citrate-PO4 solution infiltration strategy can be used to result in apatite precipitate in the lower half of the vadose zone (where most of the Sr-90 is located) and within low-K layers (which are hypothesized to have higher Sr-90 concentrations). The most effective infiltration strategy to precipitate apatite at depth (and with sufficient lateral spread) was to infiltrate a high concentration solution (6 mM Ca, 15 mM citrate, 60 mM PO4) at a rapid rate (near ponded conditions), followed by rapid, then slow water infiltration. Repeated infiltration events, with sufficient time between events to allow water drainage in the sediment profile can be used to buildup the mass of apatite precipitate at greater depth. Low-K heterogeneities were effectively treated, as the higher residual water content maintained in these zones resulted in higher apatite precipitate concentration. High-K zones did not receive sufficient treatment by infiltration, although an alternative strategy of air/surfactant (foam) was demonstrated effective for targeting high-K zones. The flow rate manipulation used in this study to treat specific depths and heterogeneities are not as easy to implement at field scale due to the lack of characterization of heterogeneities and difficulty tracking the wetting front over a large

  10. River infiltration to a subtropical alluvial aquifer inferred using multiple environmental tracers

    Science.gov (United States)

    Lamontagne, S.; Taylor, A. R.; Batlle-Aguilar, J.; Suckow, A.; Cook, P. G.; Smith, S. D.; Morgenstern, U.; Stewart, M. K.

    2015-06-01

    Chloride (Cl-), stable isotope ratios of water (δ18O and δ2H), sulfur hexafluoride (SF6), tritium (3H), carbon-14 (14C), noble gases (4He, Ne, and Ar), and hydrometry were used to characterize groundwater-surface water interactions, in particular infiltration rates, for the Lower Namoi River (New South Wales, Australia). The study period (four sampling campaigns between November 2009 and November 2011) represented the end of a decade-long drought followed by several high-flow events. The hydrometry showed that the river was generally losing to the alluvium, except when storm-derived floodwaves in the river channel generated bank recharge—discharge cycles. Using 3H/14C-derived estimates of groundwater mean residence time along the transect, infiltration rates ranged from 0.6 to 5 m yr-1. However, when using the peak transition age (a more realistic estimate of travel time in highly dispersive environments), the range in infiltration rate was larger (4-270 m yr-1). Both river water (highest δ2H, δ18O, SF6, 3H, and 14C) and an older groundwater source (lowest δ2H, δ18O, SF6, 3H, 14C, and highest 4He) were found in the riparian zone. This old groundwater end-member may represent leakage from an underlying confined aquifer (Great Artesian Basin). Environmental tracers may be used to estimate infiltration rates in this riparian environment but the presence of multiple sources of water and a high dispersion induced by frequent variations in the water table complicates their interpretation.

  11. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  12. Approach to cutaneous lymphoid infiltrates: When to consider lymphoma?

    Directory of Open Access Journals (Sweden)

    Yann Vincent Charli-Joseph

    2016-01-01

    Full Text Available Cutaneous lymphoid infiltrates (CLIs are common in routine dermatopathology. However, differentiating a reactive CLI from a malignant lymphocytic infiltrate is often a significant challenge since many inflammatory dermatoses can clinically and/or histopathologically mimic cutaneous lymphomas, coined pseudolymphomas. We conducted a literature review from 1966 to July 1, 2015, at PubMed.gov using the search terms: Cutaneous lymphoma, cutaneous pseudolymphoma, cutaneous lymphoid hyperplasia, simulants/mimics/imitators of cutaneous lymphomas, and cutaneous lymphoid infiltrates. The diagnostic approach to CLIs and the most common differential imitators of lymphoma is discussed herein based on six predominant morphologic and immunophenotypic, histopathologic patterns: (1 Superficial dermal T-cell infiltrates (2 superficial and deep dermal perivascular and/or nodular natural killer/T-cell infiltrates (3 pan-dermal diffuse T-cell infiltrates (4 panniculitic T-cell infiltrates (5 small cell predominant B-cell infiltrates, and (6 large-cell predominant B-cell infiltrates. Since no single histopathological feature is sufficient to discern between a benign and a malignant CLI, the overall balance of clinical, histopathological, immunophenotypic, and molecular features should be considered carefully to establish a diagnosis. Despite advances in ancillary studies such as immunohistochemistry and molecular clonality, these studies often display specificity and sensitivity limitations. Therefore, proper clinicopathological correlation still remains the gold standard for the precise diagnosis of CLIs.

  13. Approach to Cutaneous Lymphoid Infiltrates: When to Consider Lymphoma?

    Science.gov (United States)

    Charli-Joseph, Yann Vincent; Gatica-Torres, Michelle; Pincus, Laura Beth

    2016-01-01

    Cutaneous lymphoid infiltrates (CLIs) are common in routine dermatopathology. However, differentiating a reactive CLI from a malignant lymphocytic infiltrate is often a significant challenge since many inflammatory dermatoses can clinically and/or histopathologically mimic cutaneous lymphomas, coined pseudolymphomas. We conducted a literature review from 1966 to July 1, 2015, at PubMed.gov using the search terms: Cutaneous lymphoma, cutaneous pseudolymphoma, cutaneous lymphoid hyperplasia, simulants/mimics/imitators of cutaneous lymphomas, and cutaneous lymphoid infiltrates. The diagnostic approach to CLIs and the most common differential imitators of lymphoma is discussed herein based on six predominant morphologic and immunophenotypic, histopathologic patterns: (1) Superficial dermal T-cell infiltrates (2) superficial and deep dermal perivascular and/or nodular natural killer/T-cell infiltrates (3) pan-dermal diffuse T-cell infiltrates (4) panniculitic T-cell infiltrates (5) small cell predominant B-cell infiltrates, and (6) large-cell predominant B-cell infiltrates. Since no single histopathological feature is sufficient to discern between a benign and a malignant CLI, the overall balance of clinical, histopathological, immunophenotypic, and molecular features should be considered carefully to establish a diagnosis. Despite advances in ancillary studies such as immunohistochemistry and molecular clonality, these studies often display specificity and sensitivity limitations. Therefore, proper clinicopathological correlation still remains the gold standard for the precise diagnosis of CLIs.

  14. Geophysical Monitoring of Active Infiltration Experiments for Recharge Estimation: Gains and Pains

    Science.gov (United States)

    Noell, U.; Lamparter, A.; Houben, G.; Koeniger, P.; Stoeckl, L.; Guenther, T.

    2014-12-01

    Drinking water supply on the island of Langeoog, North Sea, solely depends on groundwater from a freshwater lens. The correct estimation of the recharge rate is critical for a sustainable use of the resource. Extensive hydrogeological and geophysical studies have revealed differences in groundwater recharge by a factor of two and more between the top of the dunes and the dune valleys. The most convincing proof of these differences in recharge is based on isotope analysis (age dating) but boreholes are scarce and a direct proof of recharge is desired. For this purpose active infiltration experiments are performed and geophysically monitored. Former applications of this method in sand and loess soil gave evidence for the applicability of the geophysical observation when combined with tensiometers installed in situ at depth. These results showed firstly that in sandy soil the water reaches the groundwater table quicker than anticipated due to the water repellent characteristic of the dry sand, inhibiting the lateral spreading of the water. The studies also revealed that in loess preferential flow is initiated by ponding and that sprinkling caused very slow movement of water within the unsaturated zone and the water remained near the surface. On the island of Langeoog field experiments underlined the importance of water repellency on the dune surface, indicating that the rain water runs off superficially into the dune valleys where higher recharge is found. The active infiltration zone of the experiment covers an area of some 7m² and includes steeper parts of the dune. The infiltration will vary depending on rainfall intensity and duration, original water content and vegetation cover. What results can we reliably expect from the active experiment and what additional measurements are required to back up the findings? Results are ambiguous with regard to the quantitative assessment but the processes can be visualized by geophysical monitoring in situ.

  15. Calculation of infiltration coefficient of precipitation based on long-term observation data of spring water:a case study of ore deposit bearing karst water in Dazhuyuan bauxite mining area in Wuchuan%利用泉水长观资料计算降水入渗系数--以务川自治县大竹园铝土矿区岩溶充水矿床为例

    Institute of Scientific and Technical Information of China (English)

    黄作明

    2016-01-01

    Dazhuyuan bauxite mining area in Wuchuan Autonomous County is a positive landform of mountain platform syncline.The deposits are ore deposits filled with karst water with deep depth of water level.At-mospheric precipitation is the only recharge source of the ground water.In the north,east and west there are escarpments or steep slopes.Metallogenic series and aquiclude occur on the foot of escarpments.A surface watershed is distributed along the upper edge of escarpments with an opening to the west,and forms a com-plete hydrogeological unit.The ground water in the syncline runs from east to west and collects at Meigudong for discharge.The bauxite layer directly touches the thin and discontinuous roof of shale of Liangshan For-mation (P2 l ),and the strong aquifer above of limestone of Maokouqixia Formation (P2m +q )is in direct contact with ore bed,while the karst pipelines are well developed.Therefore,it is more appropriate to apply the water balance method in terms of calculating the water inflow in the mine.The observational data of spring water is used to calculate infiltration coefficient,so as to predict the water inflow in the mine and to evaluate the water yield property of the aquifer.%务川自治县大竹园铝土矿区为高山台地向斜正地形,岩溶充水矿床,水位埋藏较深,大气降水是地下水的唯一补给源,北、东、西为陡崖或陡坡,崖脚为矿系和隔水层,沿陡崖上部边缘分布一条开口向西的地表分水岭,形成完整的水文地质单元,地下水在向斜内由东向西汇集于梅古洞排泄。铝土矿层直接顶板梁山组(P2 l )页岩,厚度小,不连续,其上部茅口栖霞组(P2 m +q )灰岩强含水层与矿层直接接触,并且岩溶管道发育。因此,计算矿坑涌水量的方法用水均衡法较为恰当,即利用泉水观测资料计算入渗系数,从而达到预测矿坑涌水量、评价含水层富水性的目的。

  16. Adsorptive infiltration of metals in urban drainage--media characteristics

    Science.gov (United States)

    Sansalone

    1999-09-01

    Urban pavement drainage often contains significant quantities of anthropogenic metal elements, including Cd, Cu, Pb and Zn that exceed surface water discharge standards. In many urban areas low rainfall pH, results in predominately dissolved metal element mass. Such partitioning has critical implications for the selection of in-situ treatment. One such category of treatment is engineered infiltration systems. To be effective, such systems must adsorb dissolved metal elements to their fixed media while also acting as filters for particulate-bound fractions. One such strategy is called a partial exfiltration trench (PET). The PET contains oxide-coated sand (OCS); an amphoteric media of high surface area (5-15 m2/g) as compared to uncoated silica sand (0.01-0.05 m2/g). OCS was generated through heating a mixture of silica sand and ferric nitrate solution to dryness. This paper presents results of both media characterization and bench scale PET simulations. Media tested were OCS and plain silica sand. Media testing was carried out until capacity was exhausted, using both synthetic and actual stormwater loadings. Testing was conducted for pH levels of 6.5 and 8.0. Results indicated that OCS had greater capacity than silica sand for all dissolved fractions. As the pH was raised from 6.5 to 8.0, OCS capacity was improved. A PET configuration with porous pavement resulted in the highest in-situ treatment capacity for metal element bearing storm water.

  17. Analysis of slope stability in unsaturated weathered soil dependent on rainfall infiltration velocity

    Science.gov (United States)

    Chae, Byung-Gon; Park, Hyuck-Jin; Choi, Jung-Hae; Jang, Bo-An

    2013-04-01

    In this study the unsaturated soil column tests were carried out for weathered granite and weathered mudstone soils to find out the relationship between rainfall intensity and rainfall infiltration velocity on the basis of different unit weight conditions for the soils. For this purpose, the volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column tests, three different unit weights such as in-situ, loose and dense condition were applied, and two different rainfall intensities (20mm/h and 50mm/h) were selected for the analysis. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered mudstone soils. It is because weathered mudstone soils contain more clay minerals than weathered granite soils. The infinite slope stability was analyzed to find out the relationship between the slope stability and rainfall infiltration velocity considering saturation depth ratio of rainfall based on column test results. The analysis showed that the faster average infiltration velocity and the higher unit weight of soil, the faster reducing the factor of safety. Finally, landslide susceptibility of a study area was analyzed using the calculation results of the factor of safety and GIS techniques. For the analysis, slope angle and soil depth were obtained from digital topographic data, and cohesion, unit weight and internal friction angle for slope materials were obtained from the laboratory tests and field investigation. In addition, landslide locations were identified using the aerial photos and landslide inventory map.

  18. Evaluating the Infiltration Performance of Eight Dutch Permeable Pavements Using a New Full-Scale Infiltration Testing Method

    Directory of Open Access Journals (Sweden)

    Floris Boogaard

    2014-07-01

    Full Text Available Permeable pavements are a type of sustainable urban drainage system (SUDS technique that are used around the world to infiltrate and treat urban stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha. Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h. This study used a newly-developed, full-scale infiltration test procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.

  19. Possible Involvement of Pancreatic Fatty Infiltration in Pancreatic Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Mika Hori

    2016-03-01

    Full Text Available Pancreatic cancer is difficult to diagnose in its early stage and is one of the most lethal human cancers. Thus, it is important to clarify its major risk factors, predictive factors and etiology. Here, we focus on fatty infiltration of the pancreas and suggest that it could be a risk factor for pancreatic cancer. Fatty infiltration of the pancreas is observed as ectopic adipocytes infiltrating the pancreatic tissue and is positively correlated with obesity and the prevalence of diabetes mellitus, which are risk factors for pancreatic cancer. However, whether fatty infiltration is a major risk factor for pancreatic cancer has not been established. Recent clinical studies show there is a positive correlation between fatty infiltration of the pancreas and pancreatic precancerous lesions or ductal adenocarcinomas. Animal experimental studies also show an association between fatty infiltration of the pancreas and pancreatic precancerous lesions or ductal adenocarcinomas development. Syrian golden hamsters, which are sensitive to chemical carcinogens in the pancreas, develop fatty infiltration of the pancreas with age. The combination of a high-fat diet and a chemical carcinogen that induces a K-ras mutation increases the severity of fatty infiltration of the pancreas. Thus, fatty infiltration of the pancreas is suggested to promote pancreatic carcinogenesis via a K-ras activating mutation. It is assumed that increased expression of adipokines and of inflammatory and proliferation-associated factors elicited by fatty infiltration of the pancreas may contribute to pancreatic precancerous lesions or ductal adenocarcinomas development. Accumulating evidence suggests that in addition to suppression of Ras activation, methods to modulate fatty infiltration in the pancreas can be considered as a strategy for preventing pancreatic cancer.

  20. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  1. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    Science.gov (United States)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better

  2. Liquid precursor infiltration processing of powder compacts. 1: Kinetic studies and microstructure development

    Energy Technology Data Exchange (ETDEWEB)

    Tu, W.C.; Lange, F.F. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-01

    The kinetics of infiltrating a solution precursor into Si{sub 3}N{sub 4} powder compacts were studied using either water or an aqueous solution of Zr-nitrate and Y-nitrate that formed a crystalline Zr(Y)O{sub 2} (3 mol% Y{sub 2}O{sub 3}) solid solution during pyrolysis. When the powder compact contained air, the infiltration involved two steps: (1) relatively rapid intrusion of liquid via flow due to capillary pressure and (2) diffusion of entrapped gas to the surface as its pressure became equal to the capillary pressure. The kinetics of both processes are described with different parabolic rate laws--Darcy`s law and Fick`s law, respectively. When the intruded precursor is converted to an inorganic during heat treatment, the void space is partially filled with pyrolyzed precursor without shrinkage of the Si{sub 3}N{sub 4} powder. The movement of precursor molecules was prevented by gelling prior to drying, viz., by soaking the infiltrated bodies in an aqueous NH{sub 4}OH solution. Microstructures developed during cyclic precursor infiltration and pyrolysis were characterized to show that cracklike voids are produced within the pyrolyzed precursor due to its large volume change during pyrolysis and densification; the size distribution of the cracklike voids is proportional to the size distribution of the voids within the initial powder compact.

  3. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits

    Science.gov (United States)

    Rodríguez-Castelán, Julia; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas, Estela

    2015-01-01

    Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis. PMID:26175757

  4. Effectiveness of Straw Mulch on Infiltration, Splash Erosion, Runoff and Sediment in Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Gholami Leila

    2014-10-01

    Full Text Available Mulches have extraordinary potential in reducing surface runoff, increasing infiltration of water into the soil and decreasing soil erosion. The straw mulches as a biological material, has the ability to be a significant physical barrier against the impact of raindrops and reduce the detachment of soil aggregates. The present study is an attempt to determine the efficiency of straw mulch as conservation treatment in changes in the splash erosion, time-to-runoff, runoff coefficient, infiltration coefficient, time-to-drainage, drainage coefficient, sediment concentration and soil loss. The laboratory experiments have been conducted for sandy-loam soil taken from deforested area, about 15 km of Warsaw west, Poland under lab conditions with simulated rainfall intensities of 60 and 120 mmh–1, in 4 soil moistures of 12, 25, 33 and 40% and the slope of 9%. Compared with bare treatments, results of straw mulch application showed the significant conservation effects on splash erosion, runoff coefficient, sediment concentration and soil loss and significant enhancement effects on infiltration and drainage. The results of Spearman-Rho correlation showed the significant (p < 0.05 correlation with r = –0.873, 0.873, 0.878 and 0.764 between rainfall intensity and drainage coefficient, downstream splash, sediment concentration and soil loss and with r = –0.976, 0.927 and –0.927 between initial soil moisture content and time-to-runoff, runoff coefficient and infiltration coefficient, respectively.

  5. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits

    Directory of Open Access Journals (Sweden)

    Julia Rodríguez-Castelán

    2015-01-01

    Full Text Available Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control n=6 and hypothyroid groups (n=6, methimazole, 0.02% in drinking water for 30 days. After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS or Masson’s Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.

  6. A field-scale infiltration model accounting for spatial heterogeneity of rainfall and soil saturated hydraulic conductivity

    Science.gov (United States)

    Morbidelli, Renato; Corradini, Corrado; Govindaraju, Rao S.

    2006-04-01

    This study first explores the role of spatial heterogeneity, in both the saturated hydraulic conductivity Ks and rainfall intensity r, on the integrated hydrological response of a natural slope. On this basis, a mathematical model for estimating the expected areal-average infiltration is then formulated. Both Ks and r are considered as random variables with assessed probability density functions. The model relies upon a semi-analytical component, which describes the directly infiltrated rainfall, and an empirical component, which accounts further for the infiltration of surface water running downslope into pervious soils (the run-on effect). Monte Carlo simulations over a clay loam soil and a sandy loam soil were performed for constructing the ensemble averages of field-scale infiltration used for model validation. The model produced very accurate estimates of the expected field-scale infiltration rate, as well as of the outflow generated by significant rainfall events. Furthermore, the two model components were found to interact appropriately for different weights of the two infiltration mechanisms involved.

  7. Mullite/SiAlON/alumina composites by infiltration processing

    Energy Technology Data Exchange (ETDEWEB)

    Albano, M.P.; Scian, A.N. [Centro de Tecnologia de Recursos Minerales y Ceramica, Buenos Aires (Argentina)

    1997-01-01

    The formation of mullite/SiAlON/alumina composites was studied by infiltrating a SiAlON/alumina-base composite with two different solutions, followed by thermal treatment. The base composite was prepared from a mixture of tabular Al{sub 2}O{sub 3} grains, fume SiO{sub 2}, and aluminum powders. The mixture was pressed into test bars and nitrided in a nitrogen-gas (N{sub 2}) atmosphere at 1,480 C. The infiltrants were prehydrolyzed ethyl polysilicate solution and ethyl polysilicate-aluminum nitrate solution. The composites were infiltrated under vacuum, cured at 100 C, and precalcined in air at 700 C. This infiltration process was repeated several times to produce bars that had been subjected to multiple infiltrations, then the bars were calcined in a N{sub 2} atmosphere at 1,480 C to obtain mullite/SiAlON/alumina composites. The infiltration process increased the percentage of nitrogenous crystalline and mullite phases in the matrix; therefore, a decrease of the composite microporosity was observed. The infiltration increased the mechanical strength of the composites. Of the two composites, the one produced using prehydrolyzed ethyl polysilicate as the infiltrant had a higher mechanical strength, before and after being subjected to a severe thermal shock.

  8. 9 CFR 311.35 - Muscular inflammation, degeneration, or infiltration.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Muscular inflammation, degeneration, or infiltration. 311.35 Section 311.35 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... PARTS § 311.35 Muscular inflammation, degeneration, or infiltration. (a) If muscular lesions are...

  9. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  10. Unidirectional infiltration method to produce crown for dental prosthesis application

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, F.H.D.; Taguchi, S.P. [Universidade de Sao Paulo (EEL/DEMAR/USP), Lorena, SP (Brazil). Escola de Engenharia; Borges Junior, L.A. [Centro Universitario de Volta Redonda, RJ (Brazil); Machado, J.P.B. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Santos, C. [ProtMat Materiais Avancados, Guaratingueta, SP (Brazil)

    2009-07-01

    Alumina ceramics have been used in dental prosthesis because it is inert, presents higher corrosion and shear resistance when compared to metals, excellent aesthetic, and mechanical resistance. In this work it was produced an infrastructure material for applications in dental crowns, obtained by glass infiltration in alumina preform. Various oxides, among that, rare-earth oxide produced by Xenotime, were melted at 1450 deg C and heat treatment at 700 deg C to obtain the glass (REglass). The alumina was pre-sintered at 1100 deg C cut and machined to predetermine format (unidirectional indirect infiltration) and finally conducted to infiltration test. The alumina was characterized by porosity (Hg-porosity and density) and microstructure (SEM). The glass wettability in alumina was determined as function of temperature, and the contact angle presented a low value (θ<90 deg), showing that glass can be infiltrated spontaneously in alumina. The infiltration test was conducted at glass melting temperature, during 30, 60, 180, 360 minutes. After infiltration, the samples were cut in longitudinal section, ground and polished, and analyzed by XRD (crystalline phases), SEM (microstructure) and EDS (composition).The REglass presents higher infiltration height when compared to current processes (direct infiltration), and homogeneous microstructure, showing that it is a promising method used by prosthetics and dentists. (author)

  11. Psoas Muscle Infiltration Masquerading Distant Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Kamel A. Gharaibeh

    2014-01-01

    Full Text Available Malignant metastasis to the psoas muscle is rare. We report a case that clinically mimicked psoas abscess that was subsequently proven to be from metastatic disease secondary to adenocarcinoma of the duodenum. A 62-year-old male presented with a seven-month history of right lower quadrant abdominal pain and progressive dysphagia. CT scan of abdomen-pelvis revealed a right psoas infiltration not amenable to surgical drainage. Patient was treated with two courses of oral antibiotics without improvement. Repeated CT scan showed ill-defined low-density area with inflammatory changes involving the right psoas muscle. Using CT guidance, a fine needle aspiration biopsy of the right psoas was performed that reported metastatic undifferentiated adenocarcinoma. Patient underwent upper endoscopy, which showed a duodenal mass that was biopsied which also reported poorly differentiated adenocarcinoma. In this case, unresponsiveness to medical therapy or lack of improvement in imaging studies warrants consideration of differential diagnosis such as malignancy. Iliopsoas metastases have shown to mimic psoas abscess on their clinical presentation and in imaging studies. To facilitate early diagnosis and improve prognosis, patients who embody strong risk factors and symptoms compatible with underlying malignancies who present with psoas imaging concerning for abscess should have further investigations.

  12. Tumor infiltrating lymphocytes in ovarian cancer.

    Science.gov (United States)

    Santoiemma, Phillip P; Powell, Daniel J

    2015-01-01

    The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment.

  13. Electrical Imaging of Infiltration in Agricultural Soils on Long Island, New York

    Science.gov (United States)

    Lampousis, A.; Kenyon, P. M.; Sanwald, K.; Steiner, N.

    2007-12-01

    High resolution electrical resistivity imaging of vadose zone infiltration experiments was conducted on agricultural soils by the City College and Graduate Center of CUNY, in cooperation with Cornell University's Agricultural Stewardship Program and Long Island Horticultural Research and Extension Center (LIHREC) in Riverhead, New York. Measurements were made in active vineyards with a commercial resistivity imaging system, using a half- meter electrode spacing. Soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silty loam (BgA). The Riverhead and Haven soils are the most common types found on eastern Long Island. The Bridgehampton is considered the most fertile. Soil samples and measurements of soil compaction were collected at the same time as the geophysical measurements. In addition, remote sensing data were obtained for the three sites and processed to produce normalized difference vegetation index (NDVI) data to evaluate potential correlations between vegetation vigor, soil texture and water migration patterns. Applications of this study include continuous water content monitoring in high value cash crops (precision agriculture). Changes in electrical resistivity during infiltration are clearly visible at all three locations. Preliminary analysis of the results shows correlations of baseline resistivity with particle size distributions and correlations between changes in resistivity during infiltration and soil compaction data. Time-lapse electrical images of the three sites will also be compared with published properties for these soils, including particle size distribution, saturated hydraulic conductivity, available water capacity, and surface texture.

  14. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms

    Science.gov (United States)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.

    1999-01-01

    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  15. Muscle biopsy findings predictive of malignancy in rare infiltrative dermatomyositis.

    Science.gov (United States)

    Uchino, Makoto; Yamashita, Satoshi; Uchino, Katsuhisa; Mori, Akira; Hara, Akio; Suga, Tomohiro; Hirahara, Tomoo; Koide, Tatsuya; Kimura, En; Yamashita, Taro; Ueda, Akihiko; Kurisaki, Ryoichi; Suzuki, Junko; Honda, Shoji; Maeda, Yasushi; Hirano, Teruyuki; Ando, Yukio

    2013-05-01

    The characteristic pathological muscular findings of polymyositis (PM) and dermatomyositis (DM) have been shown to reflect their different pathogeneses. Here, we characterized the muscle biopsy findings of PM and DM patients with or without malignancy. We evaluated the muscle biopsy findings of 215 consecutive PM and DM patients admitted to our hospital between 1970 and 2009. Pathology of the lesion biopsy sections was classified into 3 types: endomysial infiltration-type, perivascular infiltration-type, and rare-infiltrative-type. There was no difference between the muscle pathology of PM patients with and without malignancy. However, the incidence of rare-infiltrative type muscle pathology in DM patients with malignancy was significantly higher than in those without such tumors (p=0.0345). The incidence of rare-infiltrative type muscle pathology may be a predictive marker of DM with malignancy. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Late infiltration of post-orthodontic white spot lesions.

    Science.gov (United States)

    Neuhaus, Klaus W; Graf, Martina; Lussi, Adrian; Katsaros, Christos

    2010-11-01

    White spot lesion (WSL) infiltration has been recommended immediately after debonding of orthodontic brackets. It is however not clear if established inactive WSLs can also be masked through infiltration. Orthodontic treatment of a 19-year-old patient had to be terminated prematurely due to development of multiple WSLs of varying severity. Three months after debonding, the patient presented for lesion infiltration. After etching with 15% HCl gel and re-wetting of the dried surfaces it seemed that a good outcome could be expected. Lesion infiltration led to complete masking of less severe WSLs. The visual appearance of moderate and severe WSLs was improved but they were still visible after treatment. Inactive WSLs may not represent an increased caries risk, but patients are often bothered esthetically. Infiltration by repeated etching might be a viable approach even for inactive WSLs. Controlled clinical trials are needed to investigate the long-term performance of this technique.

  17. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model

    Directory of Open Access Journals (Sweden)

    M. J. Rossi

    2012-09-01

    Full Text Available Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1 overland flow and infiltration parameters were obtained in undisturbed field conditions; (2 field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3 the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying

  18. Analytical solutions for reactive transport under an infiltration-redistribution cycle.

    Science.gov (United States)

    Severino, Gerardo; Indelman, Peter

    2004-05-01

    Transport of reactive solute in unsaturated soils under an infiltration-redistribution cycle is investigated. The study is based on the model of vertical flow and transport in the unsaturated zone proposed by Indelman et al. [J. Contam. Hydrol. 32 (1998) 77], and generalizes it by accounting for linear nonequilibrium kinetics. An exact analytical solution is derived for an irreversible desorption reaction. The transport of solute obeying linear kinetics is modeled by assuming equilibrium during the redistribution stage. The model which accounts for nonequilibrium during the infiltration and assumes equilibrium at the redistribution stage is termed partial equilibrium infiltration-redistribution model (PEIRM). It allows to derive approximate closed form solutions for transport in one-dimensional homogeneous soils. These solutions are further applied to computing the field-scale concentration by adopting the Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979) 461] column model. The effect of soil heterogeneity on the solute spread is investigated by modeling the hydraulic saturated conductivity as a random function of horizontal coordinates. The quality of the PEIRM is illustrated by calculating the critical values of the Damköhler number which provide the achievable accuracy in estimating the solute mass in the mobile phase. The distinguishing feature of transport during the infiltration-redistribution cycle as compared to that of infiltration only is the finite depth of solute penetration. For irreversible desorption, the maximum solute penetration W/theta(r) is determined by the amount of applied water W and the residual water content theta(r). For sorption-desorption kinetics, the maximum depth of penetration z(r)(e, infinity ) also depends on the ratio between the rate of application and the column-saturated conductivity. It is shown that z(r)(e, infinity ) is bounded between the depths W/(theta(r)+K(d)) and W/theta(r) corresponding to the maximum solute

  19. Swash-Induced Infiltration in a Sandy Beach Aquifer, Cape Henlopen, Delaware

    Science.gov (United States)

    Heiss, J.; Ullman, W. J.; Michael, H. A.

    2011-12-01

    Submarine groundwater discharge has been shown to be an important source of nutrients, heavy metals, and organic compounds to the coastal ocean. Physical flow and mixing dynamics in the intertidal zone may influence these contaminant fluxes; however the mechanisms that contribute to mixing of saltwater and through-flowing freshwater are not well understood. A study of wave swash-induced infiltration at two sites on Cape Henlopen, Delaware, was performed to quantify effects of swash zone width and tidal elevation on the flux of seawater into the beach aquifer. Porewater salinity measurements indicate the presence of a well-defined intertidal freshwater-seawater mixing zone. High-frequency pressure and soil moisture measurements from shore-perpendicular arrays across the beachface were used to infer influx rates. Measurements were conducted at two sites, one with larger waves and a wide swash zone, and the other with smaller waves and a narrow swash zone. Infiltration occurred during the rising tide at the leading edge of the swash zone and increased in magnitude from low tide to high tide. Infiltration rates were on average 2.2 times greater near mean high water than near mean low water. Measurements revealed that swash zone width influences infiltration: influx rates associated with the beach with a wider swash zone were 2.7 times higher than those of a beach with a narrower swash zone. The field observations are roughly consistent with estimates from analytical models, which are highly sensitive to uncertain model parameters. Pressure measurements during rising tide also indicate changes in hydraulic gradients due to infiltrated seawater. Flow beneath the sensor array was initially seaward and as the swash zone tracked up the beachface, a groundwater mound formed that resulted in net landward flow in the vicinity of the sensor array. The results demonstrate the role of wave swash in driving beach seawater infiltration, indicate spatial trends in flux across the

  20. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  1. Temporal Damping Effect of the Yucca Mountain FracturedUnsaturated Rock on Transient Infiltration Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keni; Wu, Yu-Shu; Pan, Lehua

    2005-05-02

    Performance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Painbrush Group (PTn unit) at Yucca Mountain, because of its highly porous physical properties, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain. The model is first run to steady state and calibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary.

  2. Temporal Damping Effect of the Yucca Mountain Fractured Saturated Rock on Transient Infiltration Pulses

    Energy Technology Data Exchange (ETDEWEB)

    K. Zhang; Y.S. Wu; L. Pan

    2006-05-02

    Performance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Paintbrush Group (PTn unit) at Yucca Mountain, because of its highly porous nature, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain. The model is first run to steady state and calibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary.

  3. Stormwater Treatment by Two Retrofit Infiltration Practices

    OpenAIRE

    DeBusk, Kathy Marie

    2008-01-01

    Increases in impervious surfaces associated with urbanization change stream hydrology by increasing peak flow rates, storm-flow volumes and flood frequency, and degrade water quality through increases in sediment, nutrient, and bacteria concentrations. In response to water quality and quantity issues within the Stroubles Creek watershed, the Town of Blacksburg and Virginia Tech designed and constructed two innovative stormwater best management practices (BMPs). The goal of this...

  4. Correlation effects during liquid infiltration into hydrophobic nanoporous media

    Energy Technology Data Exchange (ETDEWEB)

    Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A. [Moscow Engineering Physics Institute National Research Nuclear University (Russian Federation); Lisichkin, G. V. [Moscow State University (Russian Federation); Tronin, V. N.; Troyan, V. I. [Moscow Engineering Physics Institute National Research Nuclear University (Russian Federation)

    2011-03-15

    To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement of filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.

  5. Rainfall infiltration on hilly slopes under various lithology and its effect on tree growth in the dry-hot valley

    Institute of Scientific and Technical Information of China (English)

    YANG; Zhong; XIONG; Donghong; ZHOU; Hongyi; ZHANG; Xinbao

    2003-01-01

    Revegetation is very difficult in dry-hot valleys in China. Rainfall infiltration capability on hilly slopes is one of the key factors determining soil moisture conditions and tree growth in the dry-hot valley. Low rainfall infiltration often results in soil drought on slopes under the dry-hot valleys climate. Rainfall infiltration capability varies greatly with the difference of slope lithologic porosity. The infiltration rates of five lithologic slope-types, Schist Slope, Grit Slope, Gravel Slope, the slightly eroded Mudstone Slope and the intensively eroded Mudstone Slope, are 1.40-8.67, 6.33, 0.69-2.20, 0.6-1.3 and 0.03-0.63 mm/min, respectively. With its viscid compact soil body and low infiltration capability which causes little infiltrating rainfall, mudstone slope can afford little effective supply to soil water and leads to serious drought of soil in dry seasons, resulting in cessation of growth or even wide-spread death of trees due to physiological damage for the excessive deficit of water in dry season and also the low productivity of stands. Hence, it is extremely difficult to restore vegetation on this type of slope. The other four lithologic slope-types, however, with well-developed soil crevice, high infiltration capability and thus more infiltrating rainfall, can afford more available soil water supply and the trees on them can obtain better growth and relatively higher productivity, compared with those on Mudstone Slope. Revegetation in dry-hot valleys is controlled by the soil moisture conditions of different slope-types, and it can be implemented by relying on the dominative life-form plant species, the suitable spatial arrangement of different life-forms of arbor-shrub-herb species, and the establishment of ecological community relationship between vegetation and soil moisture in habits. On the other hand, ground making measures for forestation and the runoff-collecting engineering measures to increase the rainfall infiltration are the major

  6. Evaluation of a new experimental test procedure to more accurately determine the surface infiltration rate of permeable pavement systems

    NARCIS (Netherlands)

    Lucke, T.; Boogaard, F.; Van den Ven, F.

    2014-01-01

    Permeable pavements are specifically designed to promote the infiltration of stormwater through the paving surface in order to reduce run-off volumes and to improve water quality by removing sediment and other pollutants. However, research has shown that permeable pavements can become clogged over

  7. Hydrologic behaviour of stormwater infiltration trenches in a central urban area during 2 3/4 years of operation

    DEFF Research Database (Denmark)

    Warnaars, E.; Larsen, A.V.; Jacobsen, P.;

    1999-01-01

    Two infiltration trenches were constructed in a densely built-up area in central Copenhagen and equipped with on-line sensors measuring rain, runoff flow from the connected surfaces and water level in the trenches. The paper describes the field site, the measuring system and the results from an i...

  8. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    Science.gov (United States)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    Best management practices are based on the infiltration of stormwater (e.g. infiltration into basins or trenches) to reduce the risk of flooding of urban areas. Proper estimations of saturated hydraulic conductivity of the vadose zone are required to avoid inappropriate design of infiltration devices. This article aims at assessing (i) the method-dependency of the estimation of soils saturated hydraulic conductivity and (ii) the consequences of such dependency on the design of infiltration trenches. This is illustrated for the specific case of an infiltration trench to be constructed to receive stormwater from a specific parking surface, 250 m2 in area, in Recife (Brazil). Water infiltration experiments were conducted according to the Beerkan Method, i.e. application of a zero water pressure head through a disc source (D=15 cm) and measures of the amount of infiltrated water with time. Saturated hydraulic conductivity estimates are derived from the analysis of these infiltration tests using several different conceptual approaches: one-dimensional models of Horton(1933) and Philip(1957), three-dimensional methods recently developed (Lassabatere et al., 2006, Wu et al., 1999, and Bagarello et al., 2013) and direct 3-dimensional numerical inversion. The estimations for saturated hydraulic conductivity ranged between 65.5 mm/h and 94 mm/h for one-dimensional methods, whereas using three-dimensional methods saturated hydraulic conductivity ranged between 15.6 mm/h and 50 mm/h. These results shows the need for accounting for 3D geometry, and more generally, the physics of water infiltration in soils, if a proper characterization of soil saturated hydraulic conductivity is targeted. In a second step, each estimate of the saturated hydraulic conductivity was used to calculate the stormwater to be stored in the studied trench for several rainfall events of recurrence intervals of 2 to 25 years. The calculation of these volumes showed a great sensitivity with regards to the

  9. Nutrient infiltrate concentrations from three permeable pavement types.

    Science.gov (United States)

    Brown, Robert A; Borst, Michael

    2015-12-01

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m(2), lined sections that direct all infiltrate into 5.7-m(3) tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry deposition. Similar to other permeable pavement studies, nitrate was the dominant nitrogen species in the infiltrate. The PA infiltrate had significantly larger nitrite and ammonia concentrations than PICP and PC, and this was presumably linked to unexpectedly high pH in the PA infiltrate that greatly exceeded the optimal pH range for nitrifying bacteria. Contrary to the nitrogen results, the PA infiltrate had significantly smaller orthophosphate concentrations than in rainwater, runoff, and infiltrate from PICP

  10. Acoustic location of infiltration openings in buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-10-01

    Unnecessary air infiltration (''draftiness'') in buildings can be a major cause for excessive energy consumption. A method for using sound to locate, for subsequent sealing, the openings of air infiltration leakage paths in buildings has been investigated. The results of pertinent analytical studies, laboratory experiments, and field applications of this acoustic-location method are reported; and a plan is provided to encourage national implementation of the method. Low-cost, readily available equipment and procedures are described whereby the average building contractor or homeowner can use acoustic leak location to pinpoint many of the air infiltration openings in a building.

  11. Modeling the effect of initial soil moisture on sorptivity and infiltration

    Science.gov (United States)

    Stewart, Ryan; Abou Najm, Majdi; Rupp, David; Selker, John

    2016-04-01

    Soil capillarity, often associated with the parameter sorptivity, is a primary control on infiltration during short-duration rainfall and irrigation events. However, most mathematical models used to quantify capillarity are only valid for dry antecedent conditions. In this study, we examine how the capillary component of sorptivity (i.e., wetting front potential) varies with initial soil water content, and use this finding to provide a simple modification to the classic Green-Ampt sorptivity model. The modified model has many practical applications, including 1) describing the relative sorptivity of a soil at various water contents; 2) quantifying saturated hydraulic conductivity from sorptivity measurements; and 3) interpreting transient time behavior of single ring infiltration (i.e., beerkan) measurements. The model is especially useful in low permeability soils, where steady-state conditions may not be attained for hours or even days, and in shrink-swell soils, where rapid infiltration measurements are often desired so as not to induce substantial material swelling.

  12. Modelling spatial distribution of soil steady state infiltration rate in an urban park (Vingis Parkas, Vilnius, Lithuania)

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi; Depellegrin, Daniel; Misiune, Ieva; Bogunovic, Igor; Menchov, Oleksandr

    2016-04-01

    Within the hydrological process, infiltration is a key component as control the partitioning of the rainfall into runoff or soil water (Cerdà, 1997). And the infiltration process is determining the fate of the soil development and the human impact in the soil system (Brevik et al., 2015). On forest soils, the infiltration use to be high due to the macropore flow, which drainages the surface runoff usually generated by the hydrophobic response of soil reach in organic matter (Hewelke et al., 2015) or as a consequence of forest fires (Jordán et al., 2010; Pereira et al., 2014) due to the development of water repellent substances (Mao et al., 2015), which are mainly associated to the ash (Pereira et al., 2014; Pereira et al., 2015). To understand the role the infiltration plays in the soil development and the runoff generation is important, and also is necessary to understand how some factors such as vegetation, crust, stones, litter, mulches… play in the hydrological, erosional and pedological system (Cerdà, 2001; Keesstra, 2007; Liu et al., 2014; Bisantino et al., 2015; Cassinari et al., 2015, Cerdà et al., 2015; Mohawesh et al., 2015; Terribile et al., 2015). The well-know importance of the infiltration process did not resulted in the research on the infiltration on urban areas, although there is where the infiltration is more altered. Water infiltration is extremely important in urbanized areas, since the majority of the surfaces are sealed by concrete, asphalt and other materials. Soil sealing increases exponentially the impacts of flash floods and reduces soil infiltration capacity. This decreases importantly one of the most important services provided by soil: water storage and infiltration. In this context, the existence of green areas and urban parks are of major importance to mitigate the impact of human settlements in soil water infiltration. The aim of this work is to assess the spatial distribution of steady-state soil water infiltration in the

  13. Road runoff management using over-the-shoulder infiltration: real-scale experimentation.

    Science.gov (United States)

    Piguet, P; Parriaux, A; Bensimon, M

    2009-01-01

    A new management policy regarding road runoff was proposed in 2002 by the Swiss Federal Office for the Environment (FOEN). This new concept is based on the diffuse infiltration of road runoff into embankment slopes, where soils will filter particles and contaminants. The shoulder lying between road surface and infiltration slopes must be impervious in order to maximise the amount of water reaching the slope and avoid losses in the road structure. The implementation of this new concept should lower the impact of roads on the environment, improve aquifer recharge and reduce construction costs. The Swiss Federal Road Office (FedRO) decided to carry out real-scale investigations regarding this new policy and thus commissioned the GEOLEP to design, build, and test 5 different shoulder structures. This paper presents the results of a 2-years survey of infiltration processes in these shoulders to establish the best performing structure. The first three shoulders were overlaid with 5 cm of gravel mixed with humus, gravel mixed with clay, and seeded with lawn, respectively. The latter two had impervious layers located 26 cm deep: the road bituminous basement (road base) was prolonged and coated with bitumen in the first case, and a sodic-bentonite geotextile was used in the second. Both were covered with gravel. All shoulders were equipped with basal collecting devices that measured hydraulic fluxes seeping through the shoulders. In total, 112 natural precipitations and 3 artificial events were monitored. Artificial events mimicked known transitory regimes (thunderstorms) or were performed with constant regime. The goal was to effectively assess infiltration processes in shoulders. Results showed that shoulders made of gravel and humus or lawn were highly ineffective (only 30 to 40% of runoff is conducted to the infiltration slope). Gravel and clay was more efficient with a proportion of approximately 60%. The shoulder with prolonged road base showed similar results since

  14. Numerical analysis of rainfall infiltration in the slope with a fracture

    Institute of Scientific and Technical Information of China (English)

    FAN Ping; LIU Qingquan; LI Jiachun; SUN Jianping

    2005-01-01

    With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.

  15. Soft-bed experiments beneath Engabreen, Norway: regelation infiltration, basal slip and bed deformation

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Moore, P. L.; Jackson, M.; Lappegard, G.; Kohler, J.

    To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m × 1.6 m × 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50- 80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.

  16. Infiltrated microstructured fibers as tunable and nonlinear optical devices

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;

    We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....

  17. Tunable nonlinear beam defocusing in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H; Neshev, Dragomir N.;

    2007-01-01

    We demonstrate a novel experimental platform for discrete nonlinear optics based on infiltrated photonic crystal fibers. We observe tunable discrete diffraction and nonlinear self-defocusing, and apply the effects to realize a compact all-optical power limiter....

  18. Application of the rainfall infiltration breakthrough (RIB) model for ...

    African Journals Online (AJOL)

    Application of the rainfall infiltration breakthrough (RIB) model for groundwater ... Correlation analysis between rainfall and observed WLF data at daily scale and ... data are more realistic than those for daily data, when using long time series.

  19. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...

  20. Measuring Spatial Infiltration in Stormwater Control Measures: Results and Implications

    Science.gov (United States)

    This presentation will provide background information on research conducted by EPA-ORD on the use of soil moisture sensors in bioretention/bioinfiltration technologies to evaluate infiltration mechanisms and compares monitoring results to simplified modeling assumptions. A serie...

  1. Trajectory Networks and Their Topological Changes Induced by Geographical Infiltration

    CERN Document Server

    Costa, Luciano da Fontoura

    2008-01-01

    In this article we investigate the topological changes undergone by trajectory networks as a consequence of progressive geographical infiltration. Trajectory networks, a type of knitted network, are obtained by establishing paths between geographically distributed nodes while following an associated vector field. For instance, the nodes could correspond to neurons along the cortical surface and the vector field could correspond to the gradient of neurotrophic factors, or the nodes could represent towns while the vector fields would be given by economical and/or geographical gradients. Therefore trajectory networks are natural models of a large number of geographical structures. The geographical infiltrations correspond to the addition of new local connections between nearby existing nodes. As such, these infiltrations could be related to several real-world processes such as contaminations, diseases, attacks, parasites, etc. The way in which progressive geographical infiltrations affect trajectory networks is ...

  2. MEAN INFILTRATION SPEED IN A VERTISOL UNDER DIFFERENT TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Juan José Martínez Villanueva

    2015-03-01

    Full Text Available Soil compaction is regarded as the most serious environmental problem caused by conventional agriculture. Few studies are concerned with the assessment of soil compaction using infiltration speed, specifically in the Vertisol soil characteristic of the main maize producing area of the Toluca-Atlacomulco Valley in central Mexico. The aim of this research was to examine the effect on infiltration speed and penetration resistance of a Vertisol soil when compacted by wheeled agricultural traffic in three different types of tillage systems: zero, minimal and conventional. Penetration resistance was measured on the wheel track with a portable digital penetrometer, and the mean infiltration speed was determined according to the double cylinder infiltrometer method. The pressure exerted by the number of wheeled traffic passes increased Vertisol soil compaction at 30 cm depth. Even though the benefits of zero tillage were similar to those showed by minimum tillage during the experimental period, minimum tillage reported the highest infiltration speed.

  3. Proliferation kinetics of the dermal infiltrate in cutaneous malignant lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sterry, W.; Pullmann, H.; Steigleder, G.K.

    1981-01-01

    To obtain information about the role of local proliferation in the pathogenesis of dermal infiltrate in malignant cutaneous lymphomas, we determined the percentage of /sup 3/H-thymidine-labeled infiltrating cells (/sup 3/H-index). A linear correlation was found between proliferative activity and clinical stage in mycosis fungoides, i.e., the /sup 3/H-index is moderately elevated in stage I and high in stage III. The /sup 3/H-index is within normal range in dermal infiltrate of Sezary syndrome, diffuse lymphocytic lymphoma, as well as in lymphocytoma benigna cutis. In parapsoriasis en plaques two groups can be distinguished: in the small plaque variant (chronic superficial dermatitis) the /sup 3/H-index is low, whereas the large-plaque variant (prereticulotic poikiloderma) shows strong proliferative activity. Thus, determination of proliferative activity seems to give new insights into the pathogenesis of dermal infiltrate in cutaneous lymphomas.

  4. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  5. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  6. Pulmonary infiltrates during community acquired Gram-negative bacteremia

    DEFF Research Database (Denmark)

    Fjeldsøe-Nielsen, Hans; Gjeraa, Kirsten; Berthelsen, Birgitte G

    2013-01-01

    The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark.......The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark....

  7. Tumor infiltrating immune cells in gliomas and meningiomas.

    Science.gov (United States)

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.

  8. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  9. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  10. A non-local Richards equation to model infiltration into highly heterogeneous media under macroscopic non-equilibrium pressure conditions

    Science.gov (United States)

    Neuweiler, I.; Dentz, M.; Erdal, D.

    2012-04-01

    Infiltration into dry strongly heterogeneous media, such as fractured rocks, can often not be modelled by a standard Richards equation with homogeneous parameters, as the averaged water content is not in equilibrium with the averaged pressure. Often, double continua approaches are used for such cases. We describe infiltration into strongly heterogeneous media by a Richards model for the mobile domain, that is characterized by a memory kernel that encodes the local mass transfer dynamics as well as the geometry of the immobile zone. This approach is based on the assumption that capillary flow can be approximated as diffusion. We demonstrate that this approximation is in many cases justified. Comparison of the model predictions to the results of numerical simulations of infiltration into vertically layered media shows that the non-local approach describes well non-equilibrium effects due to mass transfer between high and low conductivity zones.

  11. 锰污染土壤渗漏液与径流生态拦截净化系统的植物筛选%Screening of plant species for establishing an retention and purification ecosystem of soil infiltration water and surface runoff in manganese polluted area

    Institute of Scientific and Technical Information of China (English)

    陈星; 文仕知; 陈永华; 郝君; 刘凯; 吴子剑

    2012-01-01

    Screening of plant species were carried out for establishing an ecosystem for retention and purification of soil infiltration water and surface runoff in Xiangtan manganese polluted area. The results obtained from a five month plant growth period indicate that mushroom grass had a very low survival rate while Arundo donax var. versicolor and Acorus calamus Linn had a negative value in its biomass increment. In comparison, the other nine plant species, Thalia dealbata, Boehmeria, Canna warscewiezii A. Dietr, Phragmites australis, Typha orientalis Presl, Pontederia cordala, Nerium oleander, Pontederia cordata, Sofistem bulrush and Iris germanica grew well in the manganese polluted sites. The manganese contents in shoots of the nine plant species were all more than 1000 mg/kg and their zinc, copper and cadmium contents were also relatively high, with the ratio of the metal content in above-ground tissues to that in roots being greater than 1. In contrast, the above-ground tissue to root ratio of zinc, copper, manganese and cadmium contents in A. calamus and that of zinc, copper, and cadmium contents in A. donax var versicolor were lower than 1, suggesting that the metal accumulation in roots due to weak heavy metal transfer abilities of these species had led to poisoning effects on the pant growth. The highest manganese uptake in above-ground tissues of Boehmeria reached 217.8 mg per plant. The next uptake value was given by T. dealbata, Boehmeria, followed in turn by C. warscewiezii, Dietr, P. australis, P. cordata and S. bulrush.%为建立锰污染土壤渗漏液和径流收集处理系统,在湘潭锰矿废弃地开展了植物筛选试验.5个月植物生长的试验结果表明,香菇草成活率低,花叶芦竹、菖蒲生长量下降,而再力花、苎麻、紫叶美人蕉、芦苇、香蒲、夹竹桃、梭鱼草、水葱和德国鸢尾长势良好,其地上部分锰的含量多高于1 000 mg/kg,锌、铜、镉的含量也相对较高,锰含量地上

  12. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE

  13. Modelling heterogeneous flow in the vadoze zone underneath a stormwater infiltration basin

    Science.gov (United States)

    Winiarski, T.; Lassabatere, L.; Angulo-Jaramillo, R.; Goutaland, D.

    2011-12-01

    Infiltration basins are part of the best management practices. They are aimed at infiltrating stormwater to prevent additional collection and treatment through rainwater systems. In the suburbs of Lyon (France), many of these infiltration basins were built over fluvio-glacial deposit. These basins have been the subject of research programs on vadose zone flow and fate of pollutants. This study focuses on the impact of the heterogeneity of the fluvio-glacial deposit on both flow pattern and solute transfer. A proper geological and sedimentological description is first proposed to characterize the efficient water transfer properties of the fluvio-glacial deposit at the work scale (1 ha). The local geological and sedimentological architecture of the deposit and its lithofacies were investigated locally through trenches using both particle size analysis and sedimentological approach. This information was extended to the whole work by combining several geophysical techniques, i.e. GPR, electric resistivity and seismic refraction tomography. Then water infiltration experiments were performed on each lithofacies to derive the hydrodynamic properties through BEST algorithm (Beerkan estimation of Soil Transfer properties), leading to the corresponding hydrofacies. In addition, soil-column experiments were performed to estimate hydrodispersive parameters (tracer injection) and the geochemical properties of lithofacies (injection of model pollutants). All these data were implemented into Hydrus to model flow and solute transfer through a 2D soil profile with a precise description of the hydrofacies at the basin scale (flow domain 14x2 m2). The results are highly relevant because they emphasize different types of preferential flow due to either the presence of capillary barriers, drainage layers or pipe flow, which may be responsible for the enhancement of pollutant transfer. In particular, they show that sand lenses may play an important role whereas unconnected gravels may

  14. Water

    Science.gov (United States)

    ... Lead Poisoning Prevention Training Center (HHLPPTC) Training Tracks Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir For information about lead in water in Flint, MI, please visit http://www.phe. ...

  15. Mechanisms affecting the infiltration and distribution of ethanol-blended gasoline in the vadose zone.

    Science.gov (United States)

    McDowell, Cory J; Powers, Susan E

    2003-05-01

    One- and two-dimensional experiments were conducted to examine differences in the behavior of gasoline and gasohol (10% ethanol by volume) as they infiltrate through the unsaturated zone and spread at the capillary fringe. Ethanol in the spilled gasohol quickly partitions into the residual water in the vadose zone and is retained there as the gasoline continues to infiltrate. Under the conditions tested, over 99% of the ethanol was initially retained in the vadose zone. Depending on the volume of gasoline spilled and the depth to the water table, this causes an increase in the aqueous-phase saturation and relative permeability, thus allowing the ethanol-laden water to drain into the gasoline pool. Under the conditions tested, the presence of ethanol does not have a significant impact on the overall size or shape of the resulting gasoline pool at the capillary fringe. Residual gasoline saturations in the vadose zone were significantly reduced however because of reduced surface and interfacial tensions associated with high ethanol concentrations. The flux of ethanol in the effluent of the column ranged from 1.4 x 10(-4) to 4.5 x 10(-7) g/(cm2 min) with the LNAPL and from 6 x 10(-3) to 3.0 x 10(-4) g/(cm2 min) after water was introduced to simulate rain infiltration. The experimental results presented here illustrate that the dynamic effects of ethanol partitioning into the aqueous phase in the vadose zone create an initial condition that is significantly different than previously understood.

  16. Experimental investigation on rainfall infiltration and solute transport in layered porous and fractured media

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-fang; WANG Ming-yu

    2012-01-01

    Layered structures with upper porous and lower fractured media are widely distributed in the world.An experimental investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines,controlling contamination of mine water,and accomplishing ecological restoration of mining areas.A typical physical model of the layered structures with porous and fractured media was created in this study.Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure.The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time.The experimental results showed that the lower fractured media,with a considerably higher permeability than that of the upper porous media,had significant effects on preventing water infiltration.Moreover,although the porous media were homogeneous statistically in the whole domain,spatial variations in the features of effluent concentrations with regards to time,or so called breakthrough curves,at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed,indicating the diversity of solute transport at small scales.Furthermore,the breakthrough curves of the outflow at the bottom,located beneath the underlying fractured rock,were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media,which exhibited multiple peaks,while the peak values were reduced one by one with time.

  17. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    Science.gov (United States)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  18. Changes to infiltration and soil loss rates during the growing season under conventional and conservation tillage

    Science.gov (United States)

    Jakab, Gergely; Madarász, Balázs; Szabó, Judit; Tóth, Adrienn; Zacháry, Dóra; Szalai, Zoltán; Dyson, Jeremy

    2017-04-01

    Rainfall simulation studies were conducted to determine how infiltration and soil erosion rates vary in field plots under conventional and conservation tillage practices during the growing season: i.) in April while the soil was under green cover; ii.) in May when the soil was a bare seed bed; iii.) in October when the soil was covered in stubble after harvest. At each time, five different rainfall intensities were applied to the plots and the infiltration rate calculated as function of rainfall intensity. The highest infiltration rates were observed on the plot under conservation tillage when it was under the cover crop. Comparing these infiltration rates with those at other times, important differences can be seen. When the soil was prepared as a seedbed, higher infiltration rates occurred when rainfall intensities were less than 80 mm/h. However, when the rainfall intensities were more than 80 mm/h, water infiltration rates were higher when the soil was covered in stubble. This means that natural pore forming processes can be more effective at improving soil drainage potential than temporary improvements created by soil tillage operations. Different methods were used to assess the soil erosion potential. Independently of the method used to calculate soil erodibility, it is obvious that the soil is most vulnerable when prepared as a seedbed. In addition, the highest resistance against soil erosion was observed when the soil was covered with crops. A method of calculating the sediment transporting capacity of runoff found no significant difference between conservation and conventional tillage systems. This contrasts with the Universal Soil Loss Equation method, which indicated differences between the two tillage systems substantial at each time of observation. The lowest difference (less than two times) was when the soil was covered in stubble, which matches with literature data. Overall, conservation tillage resulted in much lower soil erodibility values for the

  19. Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes

    Science.gov (United States)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing

    2017-01-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  20. Estimating the saturated soil hydraulic conductivity by the near steady-state phase of a beerkan infiltration run

    Science.gov (United States)

    Di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2017-04-01

    Simple infiltration experiments carried out in the field allow an easy and inexpensive way of characterizing soil hydraulic behavior, maintaining the functional connection of the sampled soil volume with the surrounding soil. The beerkan method consists of a three-dimensional (3D) infiltration experiment at zero pressure head (Haverkamp et al., 1996). It uses a simple annular ring inserted to a depth of about 0.01 m to avoid lateral loss of the ponded water. Soil disturbance is minimized by the limited ring insertion depth. Infiltration time of small volumes of water repeatedly poured on the confined soil are measured to determine the cumulative infiltration. Different algorithms based on this methodology (the so-called BEST family of algorithms) were developed for the determination of soil hydraulic characteristic parameters (Bagarello et al., 2014a; Lassabatere et al., 2006; Yilmaz et al., 2010). Recently, Bagarello et al. (2014b) developed a Simplified method based on a Beerkan Infiltration run (SBI method) to determine saturated soil hydraulic conductivity, Ks, by only the transient phase of a beerkan infiltration run and an estimate of the α* parameter, expressing the relative importance of gravity and capillary forces during an infiltration process (Reynolds and Elrick, 1990). However, several problems yet arise with the existing BEST-algorithms and the SBI method, including (i) the need of supplementary field and laboratory measurements (Bagarello et al., 2013); (ii) the difficulty to detect a linear relationship between I / √t and √t in the early stage of the infiltration process (Bagarello et al., 2014b); (iii) estimation of negative Ks values for hydrophobic soils (Di Prima et al., 2016). In this investigation, a new Simplified method based on the analysis of the Steady-state Beerkan Infiltration run (SSBI method) was proposed and tested. In particular, analytical data were generated to simulate beerkan infiltration experiments for six contrasting

  1. Silole-infiltrated photonic crystal films as effective fluorescence sensor for Fe3+ and Hg2+.

    Science.gov (United States)

    Zhang, Yuqi; Li, Xiangdong; Gao, Loujun; Qiu, Jianhua; Heng, Liping; Tang, Ben Zhong; Jiang, Lei

    2014-02-24

    We develop a highly effective silole-infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe(3+) and Hg(2+) ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC's stopband. The fluorescence can be quenched significantly by Fe(3+)/Hg(2+) ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe(3+)/Hg(2+) ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe(3+)/Hg(2+) ions sensor based on HPS-infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.

  2. Imaging Rainfall Infiltration Processes with the Time-Lapse Electrical Resistivity Imaging Method

    Science.gov (United States)

    Zhang, Gang; Zhang, Gui-Bin; Chen, Chien-chih; Chang, Ping-Yu; Wang, Tzu-Pin; Yen, Horng-Yuan; Dong, Jia-Jyun; Ni, Chuen-Fa; Chen, Su-Chin; Chen, Chao-Wei; Jia, Zheng-yuan

    2016-06-01

    Electrical Resistivity Imaging (ERI) was carried out continuously for 10 days to map the subsurface resistivity distribution along a potentially hazardous hillslope at the Jieshou Junior High School in Taoyuan, Taiwan. The reliability of the inverted resistivity structures down to about 25 m depth was examined with synthetic modeling using the same electrode arrangements installed on land surface as in field surveys, together with a DOI (depth-of-investigation) index calculated from the ERI data. The subsurface resistivity distribution is consistent with results from well logging. These ERI recordings were taken daily and provided highly resolved imagery of the resistivity distribution underground and illustrated the dynamical fluid-flow behavior due to heavy rainfall infiltration. Using Archie's law, the resistivity distribution was transformed into a map of relative water saturation (RWS), which is strongly correlated with the rainfall infiltration process. We then found that the averaged RWS is significantly correlated with daily precipitation. Our observations indicate that time-lapse ERI is effective in monitoring subterraneous rainfall infiltration; moreover, the preferential flow paths can be delineated according to the changes in averaged RWS derived from the ERI data.

  3. Differences in Infiltration and Evaporation of Diesel and Gasoline Droplets Spilled onto Concrete Pavement

    Directory of Open Access Journals (Sweden)

    Bernat Adrià Mora

    2017-07-01

    Full Text Available Pollution at gas stations due to small spills that occur during vehicle refueling have received little attention. We have performed laboratory experiments to assess evaporation and infiltration of fuel spilled onto concrete. Changes in the concrete mass after small amounts of diesel and gasoline were spilled have been analyzed. Variation in humidity, among other parameters, clearly affects the measured mass since condensed water is constantly added to or released from the concrete. This mass experiences an about exponential decay in time. The difference in behavior between both fuel types is important as the percentage of evaporated mass is much larger for gasoline, while infiltration is more significant for diesel. A statistical analysis suggests that the initial spill amount does not significantly affect the fraction of infiltrated fuel over time. This finding is in agreement with pore-scale simulations that we performed. A significant amount of fuel could be seeping into soil and groundwater underneath concrete pavement at gas stations or could be released to the atmosphere. Possible solutions for pavement and groundwater pollution are considered.

  4. Time-lapse 3D ground-penetrating radar during plot-scale infiltration experiments

    Science.gov (United States)

    Allroggen, Niklas; Jackisch, Conrad; Tronicke, Jens

    2016-04-01

    In electrical resistive soils, surface-based ground-penetrating radar (GPR) is known as the geophysical tool providing the highest spatial resolution. Thus, 2D and 3D GPR surveys are commonly used for imaging subsurface structures or estimating soil moisture content. Due to its sensitivity to soil moisture and its non-invasive character, GPR provides a large potential to monitor soil moisture variation at high temporal and spatial resolution. As shown in previous experiments, the acquisition of time-lapse GPR data under field conditions requires a high data quality in terms of repeatability as well as spatial and temporal resolution. We present hydrogeophysical field experiments at the plot scale (1m x 1m), during which we record time-lapse 3D GPR. For GPR data acquisition, we use a pulseEKKO PRO GPR system equipped with a pair of 500 MHz antennas in combination with a specially designed metal-free measuring platform. Additionally, we collect tracer and soil moisture data, which are used to improve the interpretation of the GPR data with special focus on preferential flow paths and their structured advective flow field. After an accurate time-lapse GPR data processing, we compare 3D reflection events before and after infiltration and quantitatively interpret their relative time-shift in terms of soil moisture variations. Thereby, we are able to account for basically all of the infiltrated water. The first experiments demonstrate the general applicability of our experimental approach but are limited by the number of acquired time steps and measurement during the sprinkling period (the time of the highest temporal dynamics) are not possible at all. Based on this experience we redesign our experimental setup to continuously collect GPR data during irrigation and infiltration. Thereby, we strongly increase the temporal resolution of our measurements, improve the interpretability of the GPR data, and monitor the temporal and spatial dynamics of shallow subsurface

  5. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  6. CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Hiroshi; Kang, Eun-Young; Kwong, S. [Univ. of British Columbia and Vancouver Hospital and Health Sciences Centre (Canada)] [and others

    1996-03-01

    Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodes (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.

  7. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...

  8. The effectiveness of articaine in mandibular facial infiltrations

    Directory of Open Access Journals (Sweden)

    Flanagan DF

    2015-12-01

    Full Text Available Dennis F Flanagan Windham Dental Group, Willimantic, CT, USA Abstract: Four percent articaine local anesthetic has been successfully used to attain local anesthesia for dental procedures. Mandibular block anesthesia may consume longer time to attain and have a higher failure of local anesthesia compared to infiltration. Mandibular facial infiltration has been reported to successfully attain effective local anesthesia for dental procedures. This study involved only several tooth sites and found that 1.8 cc of 4% articaine facial infiltration in the mandible may be effective when the facial mandibular cortex is <2.0–3.0 mm. A waiting time of 5–10 minutes may be required for effective anesthesia. An additional 1.8 cc of dose may be required to attain anesthesia if an initial 1.8 cc of dose fails. The need for additional anesthetic may be predicted by a measurement of the facial cortex using cone beam computerized tomography. A study of mandibular sites is needed to delineate the anatomical dimensions, density of cortical bone, and apical neural location for ensuring successful local anesthetic infiltration. Keywords: articaine, local anesthesia, infiltration, dental implant, dental restoration

  9. Influence des modes d'entretien du sol en milieu viticole sur le transfert des pesticides vers les eaux d'infiltration - Impact sur les lombriciens

    OpenAIRE

    Schreck, Eva

    2008-01-01

    The aim of this study is to determine the influence of agricultural practices on pesticide transfer to drainage waters and on the soil ecosystem, in the Gaillac vineyard (France). Agricultural practices change the drainage water volumes exported and the infiltration process of the rainy waters. The pesticide transfer is function of the physico-chemical characteristics of the molecules and their use, their application mode and the nature of the soil. Soil and drainage water pollution was obser...

  10. Infiltration under snow cover: Modeling approaches and predictive uncertainty

    Science.gov (United States)

    Meeks, Jessica; Moeck, Christian; Brunner, Philip; Hunkeler, Daniel

    2017-03-01

    Groundwater recharge from snowmelt represents a temporal redistribution of precipitation. This is extremely important because the rate and timing of snowpack drainage has substantial consequences to aquifer recharge patterns, which in turn affect groundwater availability throughout the rest of the year. The modeling methods developed to estimate drainage from a snowpack, which typically rely on temporally-dense point-measurements or temporally-limited spatially-dispersed calibration data, range in complexity from the simple degree-day method to more complex and physically-based energy balance approaches. While the gamut of snowmelt models are routinely used to aid in water resource management, a comparison of snowmelt models' predictive uncertainties had previously not been done. Therefore, we established a snowmelt model calibration dataset that is both temporally dense and represents the integrated snowmelt infiltration signal for the Vers Chez le Brandt research catchment, which functions as a rather unique natural lysimeter. We then evaluated the uncertainty associated with the degree-day, a modified degree-day and energy balance snowmelt model predictions using the null-space Monte Carlo approach. All three melt models underestimate total snowpack drainage, underestimate the rate of early and midwinter drainage and overestimate spring snowmelt rates. The actual rate of snowpack water loss is more constant over the course of the entire winter season than the snowmelt models would imply, indicating that mid-winter melt can contribute as significantly as springtime snowmelt to groundwater recharge in low alpine settings. Further, actual groundwater recharge could be between 2 and 31% greater than snowmelt models suggest, over the total winter season. This study shows that snowmelt model predictions can have considerable uncertainty, which may be reduced by the inclusion of more data that allows for the use of more complex approaches such as the energy balance

  11. Comparison of rainfall and stemflow peak intensities and infiltration patterns for a mature coastal forest in British Columbia, Canada

    Science.gov (United States)

    van Meerveld, Ilja; Spencer, Sheena

    2017-04-01

    Most studies on stemflow have focused on the amount of stemflow in different forests or for different rainfall events. So far, few studies have looked at how stemflow intensity varies during rainfall events and how peak stemflow intensities compare to peak rainfall intensities. High stemflow intensities at the base of the tree, where roots and other preferential flow pathways are prevalent, may lead to faster and deeper infiltration of stemflow than rainfall and thus affect soil moisture dynamics and potentially also subsurface stormflow generation. We measured stemflow intensities for three Western hemlock, two Western red cedar, two Douglas-fir and one Birch tree in a mature coniferous forest in coastal British Columbia to determine how stemflow intensities were related to rainfall intensity. We sprayed a blue dye tracer on two Western hemlock trees (29 and 52 cm diameter at breast height (DBH)) to determine how stemflow water flows through the soil and to what depth it infiltrates. We also applied the blue dye tracer to an area between the trees to compare infiltration of stemflow with rainfall. Stemflow increased linearly with event total precipitation for all trees. The larger trees almost exclusively had funneling ratios (i.e. the volume of stemflow per unit basal area divided by the rainfall) smaller than one, regardless of species and event size. The funneling ratios for the small trees were generally larger for larger events (up to a funneling ratio of 20) but there was considerable scatter in this relation. Trees with a DBH clay layer but where roots were able to penetrate the clay layer, the infiltrating water flowed deeper into the soil and (almost) reached the soil-bedrock interface. Stemflow appeared to infiltrate deeper (122 cm) than rainfall (85 cm) but this difference was in part due to variations in maximum soil depth. These results suggest that even though stemflow is only a minor component of the water balance, the double funnelling of stemflow

  12. Effective Saturated Hydraulic Conductivity for Representing Field-Scale Infiltration and Surface Soil Moisture in Heterogeneous Unsaturated Soils Subjected to Rainfall Events

    Directory of Open Access Journals (Sweden)

    Richa Ojha

    2017-02-01

    Full Text Available Spatial heterogeneity in soil properties has been a challenge for providing field-scale estimates of infiltration rates and surface soil moisture content over natural fields. In this study, we develop analytical expressions for effective saturated hydraulic conductivity for use with the Green-Ampt model to describe field-scale infiltration rates and evolution of surface soil moisture over unsaturated fields subjected to a rainfall event. The heterogeneity in soil properties is described by a log-normal distribution for surface saturated hydraulic conductivity. Comparisons between field-scale numerical and analytical simulation results for water movement in heterogeneous unsaturated soils show that the proposed expressions reproduce the evolution of surface soil moisture and infiltration rate with time. The analytical expressions hold promise for describing mean field infiltration rates and surface soil moisture evolution at field-scale over sandy loam and loamy sand soils.

  13. USE THE METHOD OF DIMENSIONING OF INFILTRATION-RETENTION BASINS FOR MANAGEMENT OF RAINWATER

    Directory of Open Access Journals (Sweden)

    Ewa Suchanek

    2015-01-01

    Full Text Available The easiest way to “use” rainwater is its detention in places where it falls, and referral to the ground. Systems of rainwater utilization system can be implemented in different variants. In the simplest configuration it is a tank, with a runoff from the roof. The principle of operation of the tank (basin is a method for rain water management. The article presents a practical application of methods of dimensioning infiltration basins by performing calculations showing how to alter the dimensions of the basin when changing the ground conditions while maintaining the same filling.

  14. Clonal expansion of renal cell carcinoma-infiltrating T lymphocytes

    DEFF Research Database (Denmark)

    Sittig, Simone; Køllgaard, Tania; Grønbæk, Kirsten

    2013-01-01

    T lymphocytes can mediate the destruction of cancer cells by virtue of their ability to recognize tumor-derived antigenic peptides that are presented on the cell surface in complex with HLA molecules and expand. Thus, the presence of clonally expanded T cells within neoplastic lesions...... is an indication of ongoing HLA-restricted T cell-mediated immune responses. Multiple tumors, including renal cell carcinomas (RCCs), are often infiltrated by significant amounts of T cells, the so-called tumor-infiltrating lymphocytes (TILs). In the present study, we analyzed RCC lesions (n = 13) for the presence...... of expanded T-cell clonotypes using T-cell receptor clonotype mapping. Surprisingly, we found that RCCs comprise relatively low numbers of distinct expanded T-cell clonotypes as compared with melanoma lesions. The numbers of different T-cell clonotypes detected among RCC-infiltrating lymphocytes were...

  15. Piperacillin-Associated Pulmonary Infiltrates with Eosinophilia: A Case Report

    Directory of Open Access Journals (Sweden)

    Olivia Ling-I Tseng

    2010-01-01

    Full Text Available A case of pulmonary infiltrates with eosinophilia attributed to piperacillin/tazobactam therapy is described. A 54-year-old woman was treated for a suspected severe urinary tract infection with piperacillin/tazobactam. Four days later, she developed fever, chills, shortness of breath and intermittent chest pains. Eosinophilia was noted in peripheral blood and, subsequently, on bronchoalveolar lavage. Transbronchial biopsy showed tissue infiltrates with eosinophilia. No evidence of bacterial, fungal and parasitic infection, or vasculitis was observed. Her symptoms and peripheral eosinophilia subsided after drug discontinuation and oral prednisone treatment. Piperacillin is an extended-spectrum penicillin antibiotic prescribed for moderate to severe infections. The common adverse reactions to piperacillin include nausea, vomiting, diarrhea and rash. Pulmonary infiltrates with eosinophilia is a rare adverse reaction, but one that may result in significant morbidity. Physicians should be aware of this rare but important adverse reaction to piperacillin.

  16. Runoff production on a slope with randomly distributed infiltrabilities

    Science.gov (United States)

    Mouche, E.; Harel, M.

    2013-12-01

    Runoff generated on one- and two-dimensional slopes with randomly distributed infiltrability is studied in the queuing theory and connectivity frameworks. The equivalence between the runoff-runon equation and the customers waiting time in a single server queue provides a theoretical link between the statistical descriptions of infiltrability and that of runoff flow rate. Different distributions of infiltrability, representing soil heterogeneities at different scales, are considered. Numerical simulations validate these results and improve our understanding of runoff-runon process. All of the quantities describing the generation of runoff (runoff one-point statistics) and its organization into patterns (patterns statistics and connectivity) are studied as functions of rainfall rate and runoff dimensionality.

  17. On chemiluminescent emission from an infiltrated chiral sculptured thin film

    CERN Document Server

    Jamaian, Siti S

    2010-01-01

    The theory describing the far-field emission from a dipole source embedded inside a chiral sculptured thin film (CSTF), based on a spectral Green function formalism, was further developed to allow for infiltration of the void regions of the CSTF by a fluid. In doing so, the extended Bruggeman homogenization formalism--which accommodates constituent particles that are small compared to wavelength but not vanishingly small--was used to estimate the relative permittivity parameters of the infiltrated CSTF. For a numerical example, we found that left circularly polarized (LCP) light was preferentially emitted through one face of the CSTF while right circularly polarized (RCP) light was preferentially emitted through the opposite face, at wavelengths within the Bragg regime. The centre wavelength for the preferential emission of LCP/RCP light was red shifted as the refractive index of the infiltrating fluid increased from unity, and this red shift was accentuated when the size of the constituent particles in our h...

  18. Performance Improvement of an Inhomogeneous Cathode by Infiltration

    DEFF Research Database (Denmark)

    Seyed-Vakili, S. V.; Graves, Christopher R.; Babaei, A.

    2017-01-01

    The performance of solid oxide fuel cells (SOFCs) is considerably influenced by the microstructure and chemical composition of cathode materials. Porous La0.85Sr0.15FeO3– Ce0.9Gd0.1O2 composite electrodes were infiltrated by La0.6Sr0.4CoO3 and La0.6Sr0.4FeO3. The effects of infiltration loading...... performance of the electrodes. The electrochemical results revealed that the polarization resistance of the cathodes significantly was decreased by infiltration from 2.59 to 0.034 Ω cm2 measured at 670 °C. The best electrode performance was achieved at a calcination temperature of 770 °C. It was also found...

  19. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  20. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  1. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    Science.gov (United States)

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source.

  2. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    Science.gov (United States)

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

  3. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    Directory of Open Access Journals (Sweden)

    Lai Wang

    Full Text Available Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia monoculture system (JRMS, a wheat (Triticum aestivum monoculture system (TAMS, and a walnut-wheat alley cropping system (JTACS over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

  4. Antibiotic Therapy for Acute Infiltrate-Complicated Calculous Cholecystitis

    Directory of Open Access Journals (Sweden)

    Yu. A. Nesterenko

    2007-01-01

    Full Text Available Objective: to summarize the results of treatment in 442 patients of various ages with acute calculous cholecystitis complicated by a compact perivesical infiltrate.Materials and methods. Bile from all the patients was bacteriologically studied. The implication of various antibiotics in limiting perivesical fat inflammation was determined.Results. The importance of decompressive treatments for complicated calculous cholecystitis has been ascertained. The advantages of microcholecystostomy have been revealed. There is evidence that it is expedient to use third-forth-generation cephalosporins, fluoroquinolones, and dioxidine in the combined treatment of destructive calculous cholecystitis complicated by an infiltrate

  5. A METHOD AND AN ELECTRODE PRODUCED BY INFILTRATION

    DEFF Research Database (Denmark)

    2014-01-01

    firing. The high temperature firing allows the Pr ions to diffuse into the CGO backbone. The resulting backbone would then have a co-doped subsurface exhibiting electronic conductivity having improved performance when used as electrode in, e.g. a fuel cell. Remaining particles of praseodymium oxide......The present invention relates to electrodes having Gd and Pr -doped cerium oxide (CGPO)backbones infiltrated with Sr -doped LaCoO3 (LSC) and a method to manufacture them. Pr ions have been introduced into a prefabricated CGO backbone by infiltrating Pr nitrate solution followed by high temperature...

  6. Cyclic sciatica caused by infiltrative endometriosis: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Yekeler, Ensar; Kumbasar, Basak; Tunaci, Atadan; Barman, Ahmet; Tunaci, Mehtap [Department of Radiology, Istanbul Faculty of Medicine, Istanbul University, 34390, Capa, Istanbul (Turkey); Bengisu, Ergin [Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul (Turkey); Yavuz, Ekrem [Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, 34390, Capa, Istanbul (Turkey)

    2004-03-01

    Endometriosis, an important gynecological disorder of reproductive women, affects most commonly the ovaries and less frequently the gastrointestinal tract, chest, urinary tract, and soft tissues. Endometriosis classically appears on MRI as a mass with a large cystic component and variable signal intensities on T1- and T2-weighted images due to the presence of variable degradation of hemorrhagic products. Endometriosis in an atypical location, an infiltrative appearance and without cystic-hemorrhagic components has rarely been described. We report on a 33-year-old woman with cyclic sciatica due to histologically documented infiltrative endometriosis involving the area of the left sciatic notch. (orig.)

  7. Diffuse metastatic infiltration of a carcinoma into skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, W.; Braunschweig, R.; Reiser, M. [Dept. of Diagnostic Radiology, Ludwig-Maximilians-Univ., Muenchen (Germany)

    1999-03-01

    Skeletal muscle is one of the most unusual sites of metastasis from any malignancy. We report a patient with rapidly progressive contractures due to metastatic infiltration of a carcinoma of unknown origin into the skeletal muscle. This 61-year-old man presented with a 1-month history of rapidly evolving, painful restriction of mobility of his right arm and his legs. Computed tomography showed diffuse metastatic nodules in all muscles, particularly in the hip abductors. Muscle biopsy revealed extensive infiltration of the muscle with carcinoma cells. (orig.) With 4 figs., 21 refs.

  8. Asymptomatic leukemic-cell infiltration of the pancreas: US findings.

    Science.gov (United States)

    Collado, Laura; Dardanelli, Esteban; Sierre, Sergio; Moguillansky, Silvia; Lipsich, José

    2011-06-01

    Pancreatic infiltration of leukemic cells is a very rare manifestation at the onset of acute lymphoblastic leukemia (ALL) in childhood. Pancreatic enlargement in this situation is unusual and pancreatic involvement is often associated with biliary obstruction, cholestasis and pancreatitis. We report a 3-month-old girl who presented with asymptomatic leukemic infiltration of the pancreas, demonstrated by US with heterogeneous pancreatic enlargement associated with multiple hypoechogenic lesions, without cholestasis. Although these manifestations are rare, ALL should be considered a cause of pancreatic enlargement.

  9. Infiltrating lipoma of the chin: Report of a rare case

    Directory of Open Access Journals (Sweden)

    S. N. Santhosh Kumar

    2014-01-01

    Full Text Available Lipoma, also known as universal tumor or ubiquitous tumor, can occur anywhere in the body, its incidence being 0.1-5% of all head and neck neoplasms. They are benign neoplasms composed of mature adipocytes. There are various types of lipoma based on the constituent tissue type and location of the lipoma. Though lipomas are slow growing and seldom invade adjacent tissue, some variants do exhibit infiltrative behavior. Here, a case of infiltrating type of lipoma of the chin region is presented, which had suddenly increased size in the last 1 year, which led the patient to seek surgical treatment.

  10. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....

  11. Oxidation processes and clogging in intermittent unsaturated infiltration.

    Science.gov (United States)

    Bancolé, A; Brissaud, F; Gnagne, T

    2003-01-01

    Intermittent infiltration of wastewater through a non saturated sand bed is an extensive treatment process aimed at eliminating organic pollution, oxidizing ammonia and removing pathogens. A 1D numerical model, IPOX, has been worked out to simulate the transfer and oxidation of dissolved organic matter and nitrogen in unsaturated sand beds. IPOX was calibrated after real scale tests performed in Spain and Burkina Faso. Simulations allowed us to point out the influence of (i) kinetics on oxidation performances and (ii) biomass development on the process sustainability. These results brought a new light on the sizing and operation of infiltration percolation and soil aquifer treatment (SAT) plants.

  12. Residuejams and their effect on Infiltration, Runoff and Dissolved Organic Carbon (DOC) in Furrow Irrigation Systems

    Science.gov (United States)

    Mailapalli, D. R.; Wallender, W. W.; Horwath, W.; Ma, S.; Lazicki, P.

    2007-12-01

    Crop residue, which consists of small debris of different sizes, is an important resource in agricultural ecosystems. It plays a vital role in conservation tillage as a best management practice (BMP) for reducing runoff, sediment, nutrient and pesticide transport from irrigated fields. In furrow irrigation, the predominant irrigation method in the world, as irrigation or winter runoff water moves along a furrow, it lifts the unanchored residue and transports across the field. The complex interaction of multiple residue pieces (debris) with itself, the soil matrix, and the fluid cause jams to form along the furrow. The residuejams can be thought of logjams in fluvial rivers or channels which help in increasing channel roughness to reduce flow velocities and shear stress along eroding banks. The logjams also create a hydraulic shadow, a low-velocity zone for some distance upstream that allows sediment to settle out and stabilize. Similarly, the residuejams help in formation of catchments, which promote increased infiltration and settlement of sediments along the furrow. The infiltration and residue interaction with the soil-water influence the runoff, sediment, nutrient and dissolved organic carbon (DOC) export. The reduction of DOC export is critical to enhancing drinking water resources by reducing reactive sources of DOC that form carcinogenic by-products in the disinfection process. Hence, investigation of geomorphology of the residuejams is essential to understand their impact on infiltration, runoff and DOC concentration. This study focuses on the formation of residuejams and their effect on the infiltration, runoff and DOC concentration from 122 m long furrow plots with cover crop (CC), no-till (NT) and standard tillage (ST). These treatments (CC, NT and ST) were replicated three times using randomized complete block design and the plots initially, had 10, 32 and 42% of residue cover (sunflower residue on ST and NT; sunflower and wheat residue on CC plot

  13. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso

    Science.gov (United States)

    Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.

    2014-04-01

    Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.

  14. Influence of the vegetative cover on the fate of trace metals in retention systems simulating roadside infiltration swales.

    Science.gov (United States)

    Leroy, M C; Marcotte, S; Legras, M; Moncond'huy, V; Le Derf, F; Portet-Koltalo, F

    2017-02-15

    Large-scale outdoor mesocosms were designed and co-contaminated with metals (Cd, Pb, Zn) and organic compounds to better understand the complex functioning of urban roadside swale environments. Infiltration systems were planted with macrophytes (P. arundinaceae, J. effusus and I. pseudacorus) or grassed, and natural or spiked target metals were monitored over two years. In the non-spiked mesocosms, atmospheric metal inputs were slightly higher than outputs, leading to low metal accumulation in topsoils and to very low outflow water contamination (<0.7% of the initial metal stock). In the spiked infiltration systems that simulated point pollution through water inflow, transfer of the initial stock of metals to the deeper soil layers was quite low and outflow water contamination was very low (<0.6% of the initial stock). The main metal output from these systems occurred in the first days of their installation because of the high metal solubility in water and insufficient plant cover at that time. The infiltration systems stabilized after a few weeks, probably because of stronger sorption to soil aggregates, and because of plant root development. Mephytoextraction in plant roots was more efficient in mesocosms planted with P. arundinacea and grass. Metal phytoextraction in plant aerial parts was also better for grass and P. arundinacea, when considering metal standing stocks instead of their concentration in plants. J. effusus was a good metal accumulator, but its low aboveground biomass development was less favorable to metal removal through harvesting.

  15. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York

    Science.gov (United States)

    Yager, Richard M.; Kappel, William M.

    1998-04-01

    The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of δD and δ 18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of river water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that river infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds carrying river water to hydroelectric power plants. This findings is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.

  16. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel

    2012-11-01

    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  17. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    Science.gov (United States)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive

  18. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  19. Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.

    Science.gov (United States)

    Ki, Seo Jin; Ray, Chittaranjan

    2014-09-15

    Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined

  20. Performance of infiltration swales with regard to operation in winter times in an Alpine region.

    Science.gov (United States)

    Fach, Stefan; Engelhard, Carolina; Wittke, Nina; Rauch, Wolfgang

    2011-01-01

    In cold climate regions winter conditions significantly influence the performance of stormwater infiltration devices. Frozen soil and water storage by snow changes their operation. In this paper winter operation of a grassed infiltration swale was investigated using on-site and laboratory measurements. The field investigation of a grassed swale at a parking place in an Alpine region showed that the swale fulfilled its function properly. Although the top layer was frozen for some time, the storage capacity of the swale was sufficient to store the precipitation until the conditions improved. The soil attenuated the air temperature, at 20 cm below ground surface the soil was only frozen for one week. winter maintenance proved to be a problem, together with the snow from the parking place a lot of gravel and fine particles were deposited at one end of the swale. This decreased the hydraulic conductivity at that point significantly. The laboratory tests with soil columns showed an increase of flow time through the soil column with decreasing soil moisture content. For soil temperatures below 0 degrees C the hydraulic conductivity was reduced for increasing initial soil moisture contents. All in all the hydraulic conductivity was best around 0 degrees C for all soil water contents. However, also at minus 5 degrees C the coefficient of hydraulic conductivity was always at least above 10(-6) m/s, thus within the range of tolerated hydraulic conductivity specified in the national guidelines. Nevertheless, the handling of the soil was found to have high influence on the results. The results indicate that in the Alpine region infiltration swales operate sufficiently under winter conditions although with decreased performance.

  1. ‘Sticky business’: The influence of streambed periphyton on particle deposition and infiltration

    Science.gov (United States)

    Salant, Nira L.

    2011-03-01

    Strong feedbacks exist between physical and ecological components of aquatic systems. Aquatic plants can alter flow and sedimentation patterns, in turn influencing habitat condition and organism responses. In this study, I investigate the interactions between streambed periphyton, particle deposition and infiltration, and flow hydraulics to determine the influence of these organisms on the local environment. In a series of flume experiments, I measured the effects of two contrasting forms of periphyton at several densities and growth stages on near-bed hydraulics, particle loss from the water column, surface deposition, and subsurface infiltration. Data show that periphyton assemblages altered the rate and quantity of particle deposition via several mechanisms, including shear stress modification, surface adhesion, and bed clogging. Although trends varied for different size classes within a suspension of fine sediment, diatoms and algae had distinctly different effects on hydraulics, deposition, and infiltration. In general, diatoms increased the rate of decline in suspended particle concentrations relative to non-periphyton surfaces by reducing shear stresses and enhancing surface deposition via adhesion. Increases in diatom biomass, however, reduced the quantity and depth of particle infiltration, presumably by clogging interstitial pore spaces, in turn lowering rates of concentration decline. In contrast, all algal growth stages had slower or similar rates of concentration decline compared to non-periphyton conditions, due to partial clogging by high biomass and a lack of adhesion at the bed surface. Clogging effects were counteracted at later growth stages, however, as late-stage algal structures increased shear stresses and downward advection, in turn increasing amounts of infiltration. Compiled data from several field studies and experiments demonstrate a positive relation between periphyton biomass and inorganic mass, but also show a wide range in the

  2. Postural stability after inguinal herniorrhaphy under local infiltration anaesthesia

    DEFF Research Database (Denmark)

    Persson, F; Kristensen, Billy Bjarne; Lund, Claus;

    2001-01-01

    patients listed for elective inguinal herniorrhaphy. INTERVENTIONS: Preoperative and intraoperative infiltration anaesthesia by bupivacaine 2.5 mg/ml (median dose 41 ml, range 30-84 ml), and sedation with midazolam intraoperatively (median dose 3 mg, range 0-10 mg). Lichtenstein tension-free technique...

  3. The antigen specific composition of melanoma tumor infiltrating lymphocytes?

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker

    2012-01-01

    Large numbers of tumor associated antigens has been characterized, but only a minor fraction of these are recognized by tumor infiltrating lymphocytes of melanoma, although these have shown the ability to recognize tumor and provide tumor regression upon adoptive transfer. Thus the peptide...

  4. Sequential infiltration synthesis for enhancing multiple-patterning lithography

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih

    2017-06-20

    Simplified methods of multiple-patterning photolithography using sequential infiltration synthesis to modify the photoresist such that it withstands plasma etching better than unmodified resist and replaces one or more hard masks and/or a freezing step in MPL processes including litho-etch-litho-etch photolithography or litho-freeze-litho-etch photolithography.

  5. The effectiveness of articaine in mandibular facial infiltrations

    Science.gov (United States)

    Flanagan, Dennis F

    2016-01-01

    Four percent articaine local anesthetic has been successfully used to attain local anesthesia for dental procedures. Mandibular block anesthesia may consume longer time to attain and have a higher failure of local anesthesia compared to infiltration. Mandibular facial infiltration has been reported to successfully attain effective local anesthesia for dental procedures. This study involved only several tooth sites and found that 1.8 cc of 4% articaine facial infiltration in the mandible may be effective when the facial mandibular cortex is <2.0–3.0 mm. A waiting time of 5–10 minutes may be required for effective anesthesia. An additional 1.8 cc of dose may be required to attain anesthesia if an initial 1.8 cc of dose fails. The need for additional anesthetic may be predicted by a measurement of the facial cortex using cone beam computerized tomography. A study of mandibular sites is needed to delineate the anatomical dimensions, density of cortical bone, and apical neural location for ensuring successful local anesthetic infiltration. PMID:26730209

  6. Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review

    Science.gov (United States)

    Sree Manu, K. M.; Ajay Raag, L.; Rajan, T. P. D.; Gupta, Manoj; Pai, B. C.

    2016-10-01

    Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement's combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.

  7. Congenital infiltrating lipomatosis of the face with ipsilateral hemimegalencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Aydingoez, Uestuen; Karli-Oguz, Kader [Department of Radiology, Hacettepe University Medical Centre, Ankara (Turkey); Emir, Suna; Bueyuekpamukcu, Muenevver [Department of Paediatrics, Hacettepe University Medical Centre, Ankara (Turkey); Koese, Guelsen [Paediatric Clinic, SSK Ankara Training Hospital, Ankara (Turkey)

    2002-02-01

    An extremely rare case of congenital infiltrating lipomatosis of the face (CILF) associated with ipsilateral hemimegalencephaly is reported in a 3-month-old boy. MRI not only thoroughly evaluated the extent of the lesion, but also demonstrated the cerebral anomaly. MRI is indispensable in the evaluation of patients suspected of having CILF. (orig.)

  8. Diffuse Infiltrative Lesion of the Breast: Clinical and Radiologic Features

    Energy Technology Data Exchange (ETDEWEB)

    An, Yeong Yi; Kim, Sung Hun; Kang, Bong Joo; Yoon, Soo Kyung [Seoul St. Mary' s Hospital, Seoul (Korea, Republic of); Cha, Eun Suk [Ewha Womans University Mokdong Hospital, Seoul (Korea, Republic of); Kim, Hyeon Sook [St. Paul' s Hospital, Seoul (Korea, Republic of); Park, Chang Suk [Incheon St. Mary' s Hospital, Incheon (Korea, Republic of); Jung, Na Young [Bucheon St. Mary' s Hospital, Bucheon (Korea, Republic of); Whang, In Yong [Uijongbu St. Mary' s Hospital, Uijongbu (Korea, Republic of)

    2011-02-15

    The purpose of this paper is to show the clinical and radiologic features of a variety of diffuse, infiltrative breast lesions, as well to review the relevant literature. Radiologists must be familiar with the various conditions that can diffusely involve the breast, including normal physiologic changes, benign disease and malignant neoplasm

  9. Gene Rearrangement Analysis of Orbital Lymphoid Infiltrating Disorders

    Institute of Scientific and Technical Information of China (English)

    Jianhua Yan; Zhongyao Wu; Shuqi Huang; Yongping Li

    2000-01-01

    Purpose: To determine whether the use of polymerase chain reaction for B-cell gene rearrangement in patients with orbital lymphoid infiltrate disorders could be useful in the diagnosis of lymphoma, especially, in differentiating benign lesion from malignant one. Methods: In addition to clinical, pathological, and immunohistochemical evaluations,48 cases of orbital lymphoid infiltrate disorders were examined for immunoglobulin heavy (IgH) gene rearrangement by means of PCR to amplify the FR3 region with formalin-fixed and paraffin-embedded tissues. Results: Gene rearrangement in the third frame-work of the IgH region was detected in specimens obtained from 15 cases of malignant lymphoma, 4 of reactive lymphoid hyperplasia and 3 of orbital pseudotumor. All of these patients showed a discrete band (100bp) which reflected monoclonal proliferation of B lymphocytes. 5 cases of malignant lymphoma, 6 of reactive lymphoid hyperplasia and 15 of orbital pseudotumor did not show a discrete band on PCR. Conclusions: The FR3 region gene rearrangement of Ig heavy in patients with orbital lymphoid infiltrate disorders may be an additional diagnostic tool in differentiating benign from malignant lymphoid diseases and in offering a useful adjunct for diagnosis in difficult or unclear cases. It is a reliable and practical method of gene diagnosis in orbital lymphoid infiltrate disorders and helps to identify the molecular mechanism of malignant lymphoma. Eye Science 2000; 16:15 ~ 21.

  10. Postural stability after inguinal herniorrhaphy under local infiltration anaesthesia

    DEFF Research Database (Denmark)

    Persson, F; Kristensen, Billy Bjarne; Lund, Claus

    2001-01-01

    patients listed for elective inguinal herniorrhaphy. INTERVENTIONS: Preoperative and intraoperative infiltration anaesthesia by bupivacaine 2.5 mg/ml (median dose 41 ml, range 30-84 ml), and sedation with midazolam intraoperatively (median dose 3 mg, range 0-10 mg). Lichtenstein tension-free technique...

  11. An exact explicit solution for one-dimensional, transient, nonlinear Richards' equation for modeling infiltration with special hydraulic functions

    Science.gov (United States)

    Hayek, Mohamed

    2016-04-01

    This work develops a simple exact and explicit solution of the one-dimensional transient and nonlinear Richards' equation for soils in a special case of exponential water retention curve and power law hydraulic conductivity. The exact solution is obtained as traveling wave based on the approach proposed by Philip (1957, 1967) and adopted by Zlotnik et al. (2007). The obtained solution is novel, and it expresses explicitly the water content as function of the depth and time. It can be useful to model infiltration into semi-infinite soils with time-dependent boundary conditions and infiltration with constant boundary condition but space-dependent initial condition. A complete analytical inverse procedure based on the proposed analytical solution is presented which allows the estimation of hydraulic parameters. The proposed exact solution is also important for the verification of numerical schemes as well as for checking the implementation of time-dependent boundary conditions.

  12. Genomic signatures characterize leukocyte infiltration in myositis muscles

    Directory of Open Access Journals (Sweden)

    Zhu Wei

    2012-11-01

    Full Text Available Abstract Background Leukocyte infiltration plays an important role in the pathogenesis and progression of myositis, and is highly associated with disease severity. Currently, there is a lack of: efficacious therapies for myositis; understanding of the molecular features important for disease pathogenesis; and potential molecular biomarkers for characterizing inflammatory myopathies to aid in clinical development. Methods In this study, we developed a simple model and predicted that 1 leukocyte-specific transcripts (including both protein-coding transcripts and microRNAs should be coherently overexpressed in myositis muscle and 2 the level of over-expression of these transcripts should be correlated with leukocyte infiltration. We applied this model to assess immune cell infiltration in myositis by examining mRNA and microRNA (miRNA expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls. Results Several gene signatures, including a leukocyte index, type 1 interferon (IFN, MHC class I, and immunoglobulin signature, were developed to characterize myositis patients at the molecular level. The leukocyte index, consisting of genes predominantly associated with immune function, displayed strong concordance with pathological assessment of immune cell infiltration. This leukocyte index was subsequently utilized to differentiate transcriptional changes due to leukocyte infiltration from other alterations in myositis muscle. Results from this differentiation revealed biologically relevant differences in the relationship between the type 1 IFN pathway, miR-146a, and leukocyte infiltration within various myositis subtypes. Conclusions Results indicate that a likely interaction between miR-146a expression and the type 1 IFN pathway is confounded by the level of leukocyte infiltration into muscle tissue. Although the role of miR-146a in myositis remains uncertain, our results highlight the potential benefit of deconvoluting the

  13. Structure of Al-CF composites obtained by infiltration methods

    Directory of Open Access Journals (Sweden)

    A. Dolata-Grosz

    2011-04-01

    Full Text Available The structure of the composites obtained in infiltration processes 2D and 3D carbon preform by liquid Al alloy have been presented in thispaper. An aluminum alloy with silicon and manganese AlSi9Mn (trimal 37-TR37 was applied in the researches. As the reinforcementused carbon perform prepared with various protective barriers such as the nickel coating, the coating of silicon carbide and pyrolyticcarbon coating. Carbon preforms was prepared at the Institute for Lightweight Structures and Polymer Technology (ILK TU Dresden andat the Institute of Technology and Ceramic Systems (Fraunhofer-IKTS. The process of infiltration of carbon perform by liquid aluminiumalloy was carried out using a pressure-vacuum infiltration on the Degussa press and gas-pressure infiltration (GPI in an autoclavedesigned and built at the Department of Materials Technology at the Silesian University of Technology. The obtained composites werecharacterized by a regular shape, with no surface casting defects. The best connection of components was observed in AlSi9Mn/Cf(Nicomposite, obtained by gas-pressure infiltration method (GPI. On metallographic specimens, good interface between fibres and thealuminium matrix were observed. The obtained research results justify the application of nickel coatings on the fibres. During the failurecrack propagated across fiber. There was no presence of aluminum carbide on the fiber-matrix. It can be assumed that the composite willbe characterized by the good mechanical properties. However, this requires further experimental verification planned in the next stage of research, in the project realized within the DFG program: "3D textile reinforced aluminium matrix composites for complex loadingsituations in lightweight automobile and machine parts".

  14. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys.

  15. Removal of chemical oxygen demand and dissolved nutrients by a sunken lawn infiltration system during intermittent storm events.

    Science.gov (United States)

    Hou, Lizhu; Yang, Huan; Li, Ming

    2014-01-01

    Urban surface water runoff typically contains high but varying amounts of organic matter and nutrients that require removal before reuse. Infiltration systems such as sunken lawns can improve water quality. However, there is currently insufficient information describing the treatment efficiency of lawn-based infiltration systems. In this study, novel sunken lawn infiltration systems (SLISs) were designed and their pollutant removal effectiveness was assessed. The results revealed that SLISs with Poa pratensis and Lolium perenne effectively removed most chemical oxygen demand (CODCr) and dissolved nutrients. Average CODCr, total nitrogen (TN), ammonium-nitrogen (NH4(+)-N) and total phosphorus (TP) concentrations were reduced by 78.93, 66.64, 71.86 and 75.83%, respectively, and the corresponding effluent concentrations met the standard for urban miscellaneous water consumption in China. The NH4(+)-N in the synthetic runoff was shown to be removed by adsorption during the stormwater dosing and nitrification during subsequent dry days, as well as through uptake by plants. Phosphorus was mainly removed by adsorption and chemical precipitation. The NH4(+)-N and phosphorus Langmuir isotherm model fitted the clay loam soil adsorption process better than the Freundlich model. Overall, these results indicate that an SLIS provides an alternative means of removing runoff pollutants owing to its efficiency, easy operation and maintenance.

  16. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  17. Natural water purification and water management by artificial groundwater recharge.

    Science.gov (United States)

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  18. Natural water purification and water management by artificial groundwater recharge

    Institute of Scientific and Technical Information of China (English)

    Klaus-Dieter BALKE; Yan ZHU

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and fiver water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant puri- fication and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quanti-tative advantages. The contamination of infiltrated fiver water will be reduced by natural attenuation. Clay minerals, iron hy-droxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing fiver discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the fiver discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  19. Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in theNew Jersey Coastal Plain, with Emphasis on theHammonton Land Application Facility

    Science.gov (United States)

    Reilly, Timothy J.; Romanok, Kristin M.; Tessler, Steven; Fischer, Jeffrey M.

    2010-01-01

    A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.

  20. Monitoring of soil water content and quality inside and outside the water curtain cultivation facility

    Science.gov (United States)

    Ha, K.; Kim, Y.

    2014-12-01

    Water curtain cultivation system is an energy saving technique for winter season by splashing groundwater on the inner roof of green house. Artificial groundwater recharge application to the water curtain cultivation facilities was adopted and tested to use groundwater sustainably in a rural region of Korea. The groundwater level in the test site shows natural trend corresponding rainfall pattern except during mid-November to early April when groundwater levels decline sharply due to groundwater abstraction for water curtain cultivation. Groundwater levels are also affected by surface water such as stream, small dams in the stream and agricultural ditches. Infiltration data were collected from lysimeter installation and monitoring inside and outside water cultivation facility and compared with each other. The infiltration data were well correlated with rainfall outside the facility, but the data in the facility showed very different from the other. The missing infiltration data were attributed to groundwater level rise and level sensor location below water table. Soil water contents in the unsaturated zone indicated rainfall infiltration propagation at depth and with time outside the facility. According to rainfall amount and water condition at the initial stage of a rainfall event, the variation of soil water content was shown differently. Soil water contents and electrical conductivities were closely correlated with each other, and they reflected rainfall infiltration through the soil and water quality changes. The monitoring results are useful to reveal the hydrological processes from the infiltration to groundwater recharge, and water management planning in the water cultivation areas.

  1. Field experiments and numerical simulations of phreatic aquifer response to pond infiltration at the eastern Alps foothills, Italy

    Science.gov (United States)

    Teatini, Pietro; Comerlati, Andrea; Paiero, Giovanni; Martelli, Grazia; Carvalho, Tiago; Guetz, Anna; Fanzutti, Francesco; Affatato, Alessandro; Baradello, Luca; Nieto, Daniel; Bongiovanni, Stefano; Mattassi, Giorgio; Botti, Fabio

    2014-05-01

    A large volume of surficial fresh high-quality water flows every year from the eastern Alps foothills into the northern Adriatic sea through a number of rivers (e.g., the Tagliamento, Isonzo, Livenza rivers). Crossing a highly permeable plain just south of the Alpine range, the rivers naturally recharge along their course a thick phreatic aquifer mainly composed by gravel and fractured conglomerates. The river waters are distributed across the territory through a dense channel network used for irrigation during the hot season. From autumn to spring this water could be used to recharge the aquifer through a number of large infiltration ponds excavated in the early 2000s, but never used because of legislative limitation. Within the WARBO LIFE+ project, the Environmental Agency of the region has allowed to use the Mereto infiltration basin for recharging the aquifer, after detailed test for surficial water quality and compatibility with the groundwater. The pond is about 6 m deep and 45×7 m2 wide. The site, which is characterized by an elevation of 105 m above msl and a 50 m depth to the phreatic water table, has been accurately characterized by geophysical (geoelectrical, georadar, seismic) surveys and a number of 70 m deep boreholes drilled in the basin surroundings. The permeability evaluated through pumping tests in these boreholes is on the order of 10-4 m/s. Recharge started in December 2013 with an infiltration on the order of 720 m3/day. The collected data, i.e. the water volume flowed into the pond, its water level, and the piezometric evolution in the wellbores around the basin have been used for the calibration of a finite element three-dimensional variably-saturated flow model. The calibrated model will be used to manage the full-scale recharge project in the future.

  2. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  3. Influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.

  4. Large-scale infiltration experiments into unsaturated stratified loess sediments: Monitoring and modeling

    Science.gov (United States)

    Gvirtzman, Haim; Shalev, Eyal; Dahan, Ofer; Hatzor, Yossef H.

    2008-01-01

    SummaryTwo large-scale field experiments were conducted to track water flow through unsaturated stratified loess deposits. In the experiments, a trench was flooded with water, and water infiltration was allowed until full saturation of the sediment column, to a depth of 20 m, was achieved. The water penetrated through a sequence of alternating silty-sand and sandy-clay loess deposits. The changes in water content over time were monitored at 28 points beneath the trench, using time domain reflectometry (TDR) probes placed in four boreholes. Detailed records were obtained from a 21-day-period of wetting, followed by a 3-month-period of drying, and finally followed by a second 14-day-period of re-wetting. These processes were simulated using a two-dimensional numerical code that solves the flow equation. The model was calibrated using PEST. The simulations demonstrate that the propagation of the wetting front is hampered due to alternating silty-sand and sandy-clay loess layers. Moreover, wetting front propagation is further hampered by the extremely low values of the initial, unsaturated, hydraulic conductivity; thereby increasing the water content within the onion-shaped wetted zone up to full saturation. Numerical simulations indicate that above-hydrostatic pressure is developed within intermediate saturated layers, enhancing wetting front propagation.

  5. Numerical results on the contribution of an earthworm hole to infiltration

    Science.gov (United States)

    Pezzotti, Dario; Barontini, Stefano; Casali, Federico; Comincini, Mattia; Peli, Marco; Ranzi, Roberto; Rizzo, Gabriele; Tomirotti, Massimo; Vitale, Paolo

    2017-04-01

    On 9 March 2016 the WormEx I experiment was launched at the experimental site of Cividate Camuno (274ma.s.l., Oglio river basin, Central Italian Alps), aiming at contributing to understand how the soil-fauna digging activity affects soil-water flow. Particularly the experiment investigates the effects of earthworms holes on the soil-water constitutive laws, in the uppermost layers of a shallow anthropized soil. In this framework a set of simulations of the water flow in presence of an earthworm hole was preliminarily performed. The FV-FD numerical code AdHydra was used to solve the Richards equation in an axis-symmetric 2D domain around a vertical earthworm hole. The hole was represented both as a void cylinder and as a virtual porous domain with typical constitutive laws of a Δ-soil. The hypothesis of Poiseuille flow and the Jourin-Borelli law applied to determine its conductivity and soil-water retention relationship. Different scenarios of hole depth and infiltration rate were explored. As a result a meaningful change in the downflow condition was observed when burrows intersect a layered soil, both in saturated and partially unsaturated soils, in case a perched water table onsets at the interface between an upper and more conductive soil layer and a lower and less conductive one. These results may contribute to a better understanding of the streamflow generation processes and soil-water movement in shallow layered soils.

  6. "Sticky Business": the Influence of Surface Biofilm on Particle Deposition and Infiltration in Streams

    Science.gov (United States)

    Salant, N. L.; Hassan, M. A.

    2007-12-01

    Fine particulate matter is an important component of many streambed processes. For example, the deposition and infiltration of fine inorganic sediment has been repeatedly shown to degrade benthic habitat for fish and other organisms (Hynes, 1970). In contrast, fine organic particles are a significant source of carbon to benthic organisms (Webster et al., 1987). The mechanisms and rates of particle entrainment and deposition are highly complex and ill-predicted by simple physical relations. For example, a number of field studies have shown that measured rates of particle deposition often differ from still-water particle settling velocities calculated from particle size and density (e.g. Cushing et al., 1993). Several studies have proposed that adhesion of particles to surface biofilm may explain why deposition rates are faster than predicted, but few have investigated this phenomenon (Battin et al., 2003). In addition, although biofilms have been shown to significantly alter near-bed and interstitial flow velocities (Dodds and Biggs, 2002), the effect of these changes on particle depositionhas not been explored. Biofilm is pervasive in rivers and streams throughout the world, thus it may play an important, and heretofore underestimated, role in the deposition of fine particles to the streambed. This study tests the hypothesis that biofilm amount and structure may alter fine particle deposition, entrainment, and infiltration by either direct adhesion or by changes to near-bed hydraulics. A series of experiments are being conducted in a small recirculating flume to test how the amount and structure of surface biofilm influences the water column distribution, surface deposition, and infiltration of fine particles under two different flow levels ('high' and 'low'). Two types of surface biofilm are being tested: open-weave, filamentous assemblages and low-profile, mucilaginous forms; both are compared to a reference substrate without biofilm. Natural rocks hosting

  7. Water repellent soils following prescribed burning treatments and a wildfire in the oak savannas of the Malpai Borderlands Region

    Science.gov (United States)

    Cody L. Stropki; Peter F. Ffolliott; Gerald J. Gottfried

    2009-01-01

    Water repellent (hydrophobic) soils impact the infiltration process of a water budget by restricting the movement of water into and through a soil body. The infiltration of water into a water repellent soil can be inhibited or completely impeded in which case much of the incoming precipitation reaching the soil surface becomes overland flow. One mechanism causing the...

  8. Snowmelt Infiltration Into Alpine Soils Visualised In Situ With A Dye Tracer Method

    Science.gov (United States)

    Stähli, M.; Bayard, D.; Wydler, H.; Flühler, H.

    The mechanisms governing snowmelt infiltration into frozen or unfrozen alpine soils are complex due to the fact that many factors influence the flow paths from the snow pack into the soil, such as soil type, slope inclination and aspect, ground vegetation and the occurrence and persistence of ice on the soil surface or in the frozen soil. Dye tracer experiments are a feasible method to provide a better insight into the real distribution of such water flow paths, which can be very preferential. The main objec- tive of this study was to test the potential of dye tracer methods for visualising in situ snowmelt infiltration at alpine sites and to gain quantitative information on snowmelt infiltration into frozen and unfrozen soils. Field experiments were carried out during winter 2000/01 in southern Switzerland at Hannigalp (2100 m a.s.l.), where a 60 to 80 cm deep Ferric Podzole facing north-west is covered by sparse Ericaceae, and at Gd-St-Bernard pass (2500 m a.s.l.), where a shallow stony Ranker facing south is cov- ered with grass. At the beginning of December a dye tracer (Brilliant Blue FCF) was applied on the soil surface covering an area 5 m downhill x 1.5 m horizontally. At dif- ferent stages during the snowmelt (March to June) we excavated vertical soil profiles on these plots (from below upwards) and took photographs of the stained soil profiles using a digital camera. From these digital images the areas of the soil profiles stained with the dye tracer were determined using a supervised classification method, and the depth distribution of areal coverage of dye tracer was calculated. The water flow pat- tern showed to be extremely heterogeneous in the Hannigalp soil, and more uniform in the Gd-St-Bernard soil. Already in an early stage of the snowmelt we observed infil- tration down to 40 to 60 cm, indicating a relatively high soil matrix infiltration rate at Gd-St-Bernard and efficient preferential flow channels (e.g. along roots) at Hannigalp. Soil frost

  9. CO(2) partial pressure and calcite saturation in springs - useful data for identifying infiltration areas in mountainous environments.

    Science.gov (United States)

    Hilberg, Sylke; Brandstätter, Jennifer; Glück, Daniel

    2013-04-01

    Mountainous regions such as the Central European Alps host considerable karstified or fractured groundwater bodies, which meet many of the demands concerning drinking water supply, hydropower or agriculture. Alpine hydrogeologists are required to describe the dynamics in fractured aquifers in order to assess potential impacts of human activities on water budget and quality. Delineation of catchment areas by means of stable isotopes and hydrochemical data is a well established method in alpine hydrogeology. To achieve reliable results, time series of (at least) one year and spatial and temporal close-meshed data are necessary. In reality, test sites in mountainous regions are often inaccessible due to the danger of avalanches in winter. The aim of our work was to assess a method based on the processes within the carbonic acid system to delineate infiltration areas by means of single datasets consisting of the main hydrochemical parameters of each spring. In three geologically different mountainous environments we managed to classify the investigated springs into four groups. (1) High PCO2 combined with slight super-saturation in calcite, indicating relatively low infiltration areas. (2) Low PCO2 near atmospheric conditions in combination with calcite saturation, which is indicative of relatively high infiltration areas and a fractured aquifer which is not covered by topsoil layers. (3) High PCO2 in combination with sub-saturation in calcite, representing a shallow aquifer with a significant influence of the topsoil layer. (4) The fourth group of waters is characterized by low PCO2 and sub-saturation in calcite, which is interpreted as evidence for a shallow aquifer without significant influence of any hard rock aquifer or topsoil layer. This study shows that CO2-partial pressure can be an ideal natural tracer to estimate the elevation of infiltration areas, especially in non-karstified fractured groundwater bodies.

  10. Hepatic failure caused by plasma cell infiltration in multiple Myeloma

    Institute of Scientific and Technical Information of China (English)

    Fadi E Rahhal; Robert R Schade; Asha Nayak; Teresa A Coleman

    2009-01-01

    Although plasma cell infiltration is not rare in autopsy of patients with multiple myeloma (MM), it is very rarely detected in living patients. This is because MM rarely causes significant liver dysfunction that requires further evaluation. A 49-year-old man presented with acute renal failure and was diagnosed with kappa light chain MM stage ?B. Thalidomide and dexamethasone were initiated. The patient