WorldWideScience

Sample records for water final performance

  1. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  2. Final Performance Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Houldin, Joseph [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States); Saboor, Veronica [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States)

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  3. Final Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S. T. [Tulane Univ., New Orleans, LA (United States)

    2013-08-31

    U.S./China Energy and Environmental Technology Center (EETC), Payson Center for International Development, Law School of Tulane University was officially established in 1997 with initial funds from private sector, US Environmental Protection Agency and the US Department of Energy (DOE.) Lately, DOE has provided EETC funds for operations with cost share from the Ministry of Science and Technology, China. EETC was created to facilitate the development of friendly, broad-based U.S./China relations. Tulane University signed the Memorandum of Understanding (MOU) with the Chinese People’s Institute of Foreign Affairs (1995) to promote the formation of Chinese partners for EETC. EETC’s original goal is to enhance the competitiveness of US clean fossil energy technology in China so that, as her economy expands, local and global environment are well protected. Specifically, through the demonstration and broadly deployment of US developed clean coal technology for power generation, transmission, and emission reductions in China. EETC is also focused on US industry partnerships for local economic development. One of the main the objectives of the EETC is to promote the efficient, responsible production and utilization of energy with a focus on clean fossil energy, promote US clean energy and environmental technologies, and encourage environmental performance while improving the quality of life in China. Another objective is to assist China with environmental and energy policy development and provide supports for China’s development with expertise (best practices) from US industry.

  4. SLC Final Performance and Lessons

    International Nuclear Information System (INIS)

    Phinney, Nan

    2000-01-01

    The Stanford Linear Collider (SLC) was the first prototype of a new type of accelerator, the electron-positron linear collider. Many years of dedicated effort were required to understand the physics of this new technology and to develop the techniques for maximizing performance. Key issues were emittance dilution, stability, final beam optimization and background control. Precision, non-invasive diagnostics were required to measure and monitor the beams throughout the machine. Beam-based feedback systems were needed to stabilize energy, trajectory, intensity and the final beam size at the interaction point. variety of new tuning techniques were developed to correct for residual optical or alignment errors. The final focus system underwent a series of refinements in order to deliver sub-micron size beams. It also took many iterations to understand the sources of backgrounds and develop the methods to control them. The benefit from this accumulated experience was seen in the performance of the SLC during its final run in 1997-98. The luminosity increased by a factor of three to 3*10 30 and the 350,000 Z data sample delivered was nearly double that from all previous runs combined

  5. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  6. Comparison of water and infrared blanching methods for processing performance and final product quality of French fries

    Science.gov (United States)

    The main objective of this work was to compare infrared blanching (IRB) with water blanching (WB) as a pretreatment method for producing lower calorie French fries. It was observed that complete inactivation of polyphenol oxidase enzyme for 9.43 mm potato strips could be achieved in 200 s and 16 min...

  7. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  8. Power performance assessment. Final report

    International Nuclear Information System (INIS)

    Frandsen, S.

    1998-12-01

    In the increasingly commercialised wind power marketplace, the lack of precise assessment methods for the output of an investment is becoming a barrier for wider penetration of wind power. Thus, addressing this problem, the overall objectives of the project are to reduce the financial risk in investment in wind power projects by significantly improving the power performance assessment methods. Ultimately, if this objective is successfully met, the project may also result in improved tuning of the individual wind turbines and in optimisation methods for wind farm operation. The immediate, measurable objectives of the project are: To prepare a review of existing contractual aspects of power performance verification procedures of wind farms; to provide information on production sensitivity to specific terrain characteristics and wind turbine parameters by analyses of a larger number of wind farm power performance data available to the proposers; to improve the understanding of the physical parameters connected to power performance in complex environment by comparing real-life wind farm power performance data with 3D computational flow models and 3D-turbulence wind turbine models; to develop the statistical framework including uncertainty analysis for power performance assessment in complex environments; and to propose one or more procedures for power performance evaluation of wind power plants in complex environments to be applied in contractual agreements between purchasers and manufacturers on production warranties. Although the focus in this project is on power performance assessment the possible results will also be of benefit to energy yield forecasting, since the two tasks are strongly related. (au) JOULE III. 66 refs.; In Co-operation Renewable Energy System Ltd. (GB); Centre for Renewable Energy (GR); Aeronautic Research Centre (SE); National Engineering Lab. (GB); Public Power Cooperation (GR)

  9. Arsenic Removal from Drinking Water by Absorptive Media-U.S. EPA Demonstration Project at Desert Sands MDWCA, NM Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Desert Sands Mutual Domestic Water Consumers Association (MDWCA) facility in Anthony, NM. The objectives of the project were to evalu...

  10. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Village of Waynesville, IL - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal drinking water treatment technology demonstration project at the Village of Waynesville, IL. The main objective of the project was to evaluate the effectiveness of the Peerless coagu...

  11. Arsenic Removal from Drinking Water by Iron Removal - U.S. EPA Demonstration Project at Northeastern Elementary School in Fountain City, IN - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Northeastern Elementary School in Fountain City, IN. The main objective of the project was to evaluate the effectiveness of US Water Sys...

  12. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Town of Arnaudville, LA - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the United Water Systems’ facility in Arnaudville, LA. The objectives of the project were to evaluate: (1) the effectiveness of K...

  13. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  14. French Modular Impoundment: Final Cost and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drown, Peter [French Development Enterprises, LLC, North Billerica, MA (United States); French, Bill [French Development Enterprises, LLC, North Billerica, MA (United States)

    2017-05-17

    This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)

  15. Arsenic and Uranium Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Upper Bodfish in Lake Isabella, CA -Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the performance evaluation of an arsenic (As) and uranium (U) removal technology demonstrated at Upper Bodfish in Lake Isabella, CA. The objectives of the project are to evaluate: (1) the effecti...

  16. Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Richmond Elementary School in Susanville, CA Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Richmond Elementary School in Susanville, CA. The objectives of the project were to evaluate: (1) the effectiveness of an Aquatic Treatme...

  17. Arsenic Removal from Drinking Water by Adsorptive Media, U.S. EPA Demonstration Project at LEADS Head Start Building in Buckeye Lake, OH - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Licking Economic Action Development Study (LEADS) Head Start School in Buckeye Lake, Ohio. The objectives of the project were to evaluate...

  18. Afghanistan water constraints overview analysis. Final report

    International Nuclear Information System (INIS)

    1992-05-01

    Afghanistan's already severe water supply problems are expected to intensify as Afghan refugees resettle in former conflictive zones. The report examines the technical, economic, cultural, and institutional facets of the country's water supply and suggests steps to mitigate existing and anticipated water supply problems. Chapter 2 presents information on Afghanistan's water resources, covering the country's climate, precipitation, glaciers/snow packs, and watersheds; the principal patterns of water flow and distribution; and comprehensive estimates. Chapter 3 examines water resource development in the country from 1945 to 1979, including projects involving irrigation and hydroelectric power and strategies for improving the drinking water supply

  19. Arsenic Removal from Drinking Water by Iron Removal U.S. EPA Demonstration Project at Sabin, MN Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from January 30, 2006 to April 29, 2007 at the U.S. Environmental Protection Agency (EPA) Arsenic Removal Technology Demonstration site in Sabin, MN. The main objective of the project was to evaluate the eff...

  20. Arsenic Removal from Drinking Water by Adsorptive Media U.S. EPA Demonstration Project at Webb Consolidated Independent School District in Bruni, TX - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at the Webb Consolidated Independent School District (Webb CISD) in Bruni, TX. The main objective of the project was to evaluate the effect...

  1. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Rollinsford, NH, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Rollinsford, New Hampshire. The objectives of the project were to evaluate: 1) the effectiveness of AdEdge Technologies’ AD -33TM media ...

  2. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Hot Springs Mobile Home Park in Willard, Utah - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents activities performed for and results obtained from the arsenic removal treatment technology demonstration project at the Hot Springs Mobile Home Park (HSMHP) in Willard, UT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™...

  3. Arsenic Removal from Drinking Water by Iron Removal U.S. EPA Demonstration Project at Vintage on the Ponds in Delavan, WI Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Vintage on the Ponds in Delavan, WI. The objectives of the project were to evaluate: (1) the effectiveness of a Kinetico Macrolite® press...

  4. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Covered Wells in Tohono O’odham Nation, AZ - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at Covered Wells in Tohono O’odham Nation, AZ. The main objective of the project was to evaluate the effectiveness of AdEdge Technologies’ ...

  5. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL. U.S. EPA DEMONSTRATION PROJECT AT CLIMAX, MN. FINAL PERFORMANCE EVALUATION REPORT.

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project following one year of operation at the Climax, Minnesota, site. The objectives of the project were to evaluate: (1) the effectiveness of Kin...

  6. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Taos, NM, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the EPA arsenic removal technology demonstration project at the Town of Taos in New Mexico. The main objective of the project was to evaluate the effectiveness of Severn Trent Services’ (STS) SORB 33™ ad...

  7. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Woodstock Middle School in Woodstock, CT - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic removal treatment technology demonstration project at the Woodstock Middle School in Woodstock, CT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™ me...

  8. Arsenic Removal from Drinking Water by Coagulation/Filtration, U.S. EPA Demonstration Project at the City of Okanogan, WA - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the City of Okanogan, WA facility. The objectives of the project were to evaluate: (1) the effectiveness of Filtronics’ FH-13 Ele...

  9. ARSENIC REMOVAL FROM DRINKING WATER BY PROCESS MODIFICATION TO COAGULATION/FILTRATION. USEPA DEMONSTRATION PROJECT AT LIDGERWOOD, ND. FINAL PERFORMANCE EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at the Lidgerwood, North Dakota site. The objectives of the project were to evaluate: (1) the effectiveness of process modifications to an e...

  10. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Seely-Brown Village in Pomfret, CT - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic removal treatment technology demonstration project at Seely-Brown Village in Pomfret, CT. The objectives of the project were to evaluate the effectiveness of ArsenXnp adsorption media in...

  11. Arsenic Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at Geneseo Hills Subdivision, in Geneseo, IL Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the arsenic removal treatment technology demonstration project at the Geneseo Hills Subdivision in Geneseo, IL. The main objective of the project was to evaluate the effectiveness of AdEdge Technologies...

  12. Arsenic Removal from Drinking Water by Iron Removal and Adsorptive Media U.S. EPA Demonstration Project at Stewart, MN, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the one-year U.S. Environmental Protection Agency (EPA) arsenic removal technology demonstration project at the Stewart, MN facility. The main objective of the project was to evaluate the effectiveness ...

  13. 10 CFR 603.890 - Final performance report.

    Science.gov (United States)

    2010-01-01

    ... to Other Administrative Matters Financial and Programmatic Reporting § 603.890 Final performance report. A TIA must require a final performance report that addresses all major accomplishments under the... 10 Energy 4 2010-01-01 2010-01-01 false Final performance report. 603.890 Section 603.890 Energy...

  14. Yosemite Waters Vehicle Evaluation Report: Final Results

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  15. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  16. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  17. Water quality criteria for hexachloroethane: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  18. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  19. Performance life of HMA mixes : final report.

    Science.gov (United States)

    2016-01-01

    A number of hot mix asphalt (HMA) types, such as permeable friction course (PFC), stone mastic asphalts : (SMA), performance design mixes and conventional dense graded mixes are currently used to construct or overlay : roads. One of the important inp...

  20. Steam-water jet analysis. Final report

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Harlow, F.H.; Demuth, R.B.; Ruppel, H.M.

    1984-05-01

    This report presents the results of a theoretical study on the effects of the steam-water jet emitted from a hypothetical rupture in the high-pressure piping pf a nuclear power plant. A set of calculations is presented, incorporating increasingly complex formulations for mass and momentum exchange between the liquid and vapor flow fields. Comparisons between theory and detailed experimental data are given. The study begins with a thorough evaluation of the specification of equilibrium mass and momentum exchange (homogeneous equilibrium) throughout the flow region, a model that generally overpredicts the rate of jet momentum divergence. The study finds that a near-equilibrium momentum exchange rate and a strongly nonequilibrium momentum exchange rate are needed in the region of large vapor-volume fraction to explain the impingement data for fully developed two-phase jets. This leads to the viewpoint that the large-scale jet is characterized by a flow of large liquid entities that travel relatively unaffected by the strongly diverging vapor flow field. The study also finds circumstances in which a persistent core of metastable superheated water can cause much larger impingement pressures than would otherwise be possible. Existing engineering methods are evaluated for jet-loading predictions in plant design. The existing methods appear to be conservative in most possible rupture circumstances with one exception: when the impingement target is about one pipe-diameter away, large enough to capture the full jet, and the rupture flow area is equal to the full pipe flow area, the existing method can produce loadings that are slightly lower than observed for subcooled, flashing discharge. Recommendations have been made to improve the prediction of existing methods under these conditions

  1. Performance of Personal Workspace Controls Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Kiliccote, Sila; Loffeld, John; Pettler,Pete; Snook, Joel

    2004-12-01

    One of the key deliverables for the DOE-funded controls research at LBNL for FY04 was the development of a prototype Personal Workspace Control system. The successful development of this system is a critical milestone for the LBNL Lighting Controls Research effort because this system demonstrates how IBECS can add value to today's Task Ambient lighting systems. LBNL has argued that by providing both the occupant and the facilities manager with the ability to precisely control the operation of overhead lighting and all task lighting in a coordinated manner, that task ambient lighting can optimize energy performance and occupant comfort simultaneously [Reference Task Ambient Foundation Document]. The Personal Workspace Control system is the application of IBECS to this important lighting problem. This report discusses the development of the Personal Workspace Control to date including descriptions of the different fixture types that have been converted to IBECS operation and a detailed description of the operation of PWC Scene Controller, which provides the end user with precise control of his task ambient lighting system. The objective, from the Annual Plan, is to demonstrate improvements in efficiency, lighting quality and occupant comfort realized using Personal Workspace Controls (PWC) designed to optimize the delivery of lighting to the individual's workstation regardless of which task-ambient lighting solution is chosen. The PWC will be capable of controlling floor-mounted, desk lamps, furniture-mounted and overhead lighting fixtures from a personal computer and handheld remote. The PWC will use an environmental sensor to automatically monitor illuminance, temperature and occupancy and to appropriately modulate ambient lighting according to daylight availability and to switch off task lighting according to local occupancy. [Adding occupancy control to the system would blunt the historical criticism of occupant-controlled lighting - the tendency of the

  2. Factors Influencing Student Nurses' Performance in the Final ...

    African Journals Online (AJOL)

    Factors Influencing Student Nurses' Performance in the Final Practical Examination ... Staff development courses can be held to coordinate the work of the school ... to authentic individual nursing care of patients so that they use the individual ...

  3. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  4. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  5. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  6. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-03-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students actually do sleep the night before an exam, and how that would relate to their performance. The effect of inadequate sleep on exam performance was explored in a second-semester introductory physics course. At the end of the final exam, students reported the number of hours they slept the night before. Sleep deprivation corresponded to lower final exam scores. The main purpose of this study is to provide evidence that instructors can provide to their students to convince them that their time is better spent sleeping rather than studying all night before an exam.

  7. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  8. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  9. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  10. Analysis of sea water by difference chromatography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsdorf, P.C. Jr.

    1977-02-01

    During the final period of this research contract the principal results obtained were: (a) the development of anion analysis by difference chromatography to the extent that SO/sub 4//sup =//Cl/sup -/ can be determined to better than 0.1 percent using an 0.5 ml seawater sample, (b) the determination of the ion-exchange cation complements of a variety of sediments in river water and in seawater, and (c) the discovery of a simple technique for the qualitative removal of NH/sub 4//sup +/ from seawater samples without altering the ratios of the other cations. This method supersedes the use of Cu-Chelex which has proved impossible to sustain.

  11. PWR [pressurized water reactor] pressurizer transient response: Final report

    International Nuclear Information System (INIS)

    Murphy, S.I.

    1987-08-01

    To predict PWR pressurizer transients, Ahl proposed a three region model with a universal coefficient to represent condensation on the water surface. Specifically, this work checks the need for three regions and the modeling of the interfacial condensation coefficient. A computer model has been formulated using the basic mass and energy conservation laws. A two region vapor and liquid model was first used to predict transients run on a one-eleventh scale Freon pressurizer. These predictions verified the need for a second liquid region. As a result, a three region model was developed and used to predict full-scale pressurizer transients at TMI-2, Shippingport, and Stade. Full-scale pressurizer predictions verified the three region model and pointed out the shortcomings of Ahl's universal condensation coefficient. In addition, experiments were run using water at low pressure to study interface condensation. These experiments showed interface condensation to be significant only when spray flow is turned on; this result was incorporated in the final three region model

  12. Modeling the Pan-Arctic terrestrial and atmospheric water cycle. Final report; FINAL

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    2001-01-01

    This report describes results of DOE grant DE-FG02-96ER61473 to Iowa State University (ISU). Work on this grant was performed at Iowa State University and at the University of New Hampshire in collaboration with Dr. Charles Vorosmarty and fellow scientists at the University of New Hampshire's (UNH's) Institute for the Study of the Earth, Oceans, and Space, a subcontractor to the project. Research performed for the project included development, calibration and validation of a regional climate model for the pan-Arctic, modeling river networks, extensive hydrologic database development, and analyses of the water cycle, based in part on the assembled databases and models. Details appear in publications produced from the grant

  13. Water Markets in Spain: Performance and Challenges

    Directory of Open Access Journals (Sweden)

    Sara Palomo-Hierro

    2015-02-01

    Full Text Available Law 46/1999 incorporated formal water markets into the Spanish legal and regulatory framework, allowing spot water markets and the creation of water banks. The implementation of water markets in Spain aimed at improving the efficiency of water use by reallocating water towards uses with higher added value. However, the performance of water markets in Spain has been rather disappointing, since they have been operative only during drought periods, and even under these extreme scarcity situations, trading activity counted for less than 5.0% of total water use. The narrowness of the market suggests that there are some barriers hampering their effective functioning. This paper examines the evolution and performance of water markets in Spain, relying on a transaction costs analysis framework. This analysis allows the identification of the main factors impeding water markets from operating effectively as a water reallocation tool. This analysis also provides some guidelines on how to overcome these obstacles and, thus, how to improve the efficiency of water use.

  14. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  15. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  16. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline

  17. Water use, productivity and interactions among desert plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  18. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  19. Columbia Basin residents' view on water : final report

    International Nuclear Information System (INIS)

    Ronalds, L.

    2005-01-01

    Currently, there is no strategic plan for water management in the Columbia Basin to ensure that long-term water quality and quantity issues are addressed according to residents' values and views. The Columbia Basin Trust was therefore created to address water management issues. It devised a comprehensive water information questionnaire and sent it to a broad range of respondents that fell within the Canadian portion of the Columbia Basin. These included municipal, regional, provincial and federal government agencies; community and watershed groups; industry and agriculture groups; recreation and tourism groups; and, First Nations groups. The most prevalent concern among the respondents pertained to issues surrounding domestic water consumption, and the most widespread water issue in the Columbia Basin was that of water conservation. The state of aquatic ecosystems was also of significant importance to respondents. Respondents also expressed concern for the cost of providing potable water and for the sustainability of rivers and their tributaries within the Basin. The survey also found a concern for the fluctuating reservoir levels within the Basin and the protection of drinking water from contamination. In order to address the wide range of water related issues, respondents indicated that an education program should be implemented to address the general nature of the hydrologic cycle; how much water is being used for toilets, lawn watering, and showers; the cost of potable water; the importance of water on a local and global level; the importance and nature of watersheds; the ways people influence and pollute water; the challenges of cleaning up contaminated water sources; the community's water sources; the role of water in sustaining food growth; and, challenges and consequences of other communities that experience severe water quality and quantity issues. It was suggested that the education program should address a water conservation plan, including conservation

  20. Performance test for a solar water heater

    Science.gov (United States)

    1979-01-01

    Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.

  1. 76 FR 57646 - Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin

    Science.gov (United States)

    2011-09-16

    ... Final Withdrawal of Certain Federal Aquatic Life Water Quality Criteria Applicable to Wisconsin AGENCY... aquatic life water quality criteria applicable to Wisconsin? C. Why is the EPA not withdrawing Wisconsin's chronic endrin aquatic life use criterion for waters designated as Warm Water Sportfish and Warm Water...

  2. Arsenic Removal from Drinking Water by Point of Entry/Point of Use Adsorptive Media U.S. EPA Demonstration Project at Oregon Institute of Technology at Klamath Falls, OR - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at Oregon Institute of Technology (OIT) at Klamath Falls, OR. The objectives of the project were to evaluate: (1) the effectiveness...

  3. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  4. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  5. Workshops capacity building for agricultural water demand management; final report

    NARCIS (Netherlands)

    Vehmeijer, P.W.; Wolters, W.

    2004-01-01

    Agricultural Water Demand Management (AWDM) is at the core of the Water for Food Programme launched as a result of a pledge by the Netherlands' Minister for Agriculture at the 2nd World Water Forum in March 2000, The Hague. One of the projects that was started after the March 2000 pledge was

  6. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  7. Uses of warmed water in agriculture. Final report

    International Nuclear Information System (INIS)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references

  8. Arsenic and Antimony Removal from Drinking Water by Point-of-Entry Reverse Osmosis Coupled with Dual Plumbing Distribution - U.S. EPA Demonstration Project at Carmel Elementary School in Carmel, ME -Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic and antimony removal treatment technology demonstration project at the Carmel Elementary School (CES) in Carmel, ME. An innovative approach of employing point of entry (POE) reverse osmo...

  9. ARSENIC REMOVAL FROM DRINKING WATER BY POINT-OF-USE (POU) REVERSE OSMOSIS. U.S. EPA DEMONSTRATION PROJECT AT SUNSET RANCH DEVELOPMENT IN HOMEDALE, ID. FINAL PERFORMANCE EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the arsenic removal technology demonstration project at the Sunset Ranch Development in Homedale, ID. The objectives of the project are to evaluate: 1) the effectiveness of a point of use (POU) re...

  10. Arsenic and Antimony Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at South Truckee Meadows General Improvement District (STMGID), NV, Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed during and the results obtained from the operation of an arsenic and antimony removal technology demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. The objectives of the project wer...

  11. Arsenic Removal from Drinking Water by Iron Removal - U.S. EPA Demonstration Project at Big Sauk Lake Mobile Home Park in Sauk Centre, MN Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the one-year arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate (1) the effective...

  12. Arsenic Removal from Drinking Water by Oxidation/Filtration and Adsorptive Media, U.S. EPA Demonstration Project at Clinton Christian School in Goshen, IN - Final Performance Evaluation Report

    Science.gov (United States)

    This report documents the activities performed for and the results obtained from the arsenic removal treatment technology demonstration project at the Clinton Christian School in Goshen, IN. The objectives of the project were to evaluate the effectiveness of AdEdge Technologies’...

  13. Water Reactor Fuel Performance Meeting 2008

    International Nuclear Information System (INIS)

    2008-10-01

    This meeting contains articles of the Water Reactor Fuel Performance Meeting 2008 of Korean Nuclear Society, Atomic Energy Society of Japan, Chinese Nuclear Society, European Nuclear Society and American Nuclear Society. It was held on Oct. 19-23, 2008 in Seoul, Korea and subject of Meeting is 'New Clear' Fuel - A green energy solution. This proceedings is comprised of 5 tracks. The main topic titles of track are as follows: Advances in water reactor fuel technology, Fuel performance and operational experience, Transient fuel behavior and safety-related issues, Fuel cycle, spent fuel storage and transportations and Fuel modeling and analysis. (Yi, J. H.)

  14. Fast Flux Test Facility performance monitoring management information: [Final report

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-09-01

    The purpose of this report is to provide management with performance data on key performance indicators for the month of July, 1987. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  15. Multi-Application Small Light Water Reactor Final Report

    International Nuclear Information System (INIS)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  16. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  17. Ultrafiltration concept for separating oil from water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, R.L.; Schrab H.

    1973-01-01

    Discharge of oily wastes from shipboard operations of deballasting, bilge pumping, and slop tank cleaning constitutes a serious water pollution problem. Membrane ultrafiltration was studied in this project as a means of generating a highly purified water from a variety of oily wastes.

  18. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  19. SWEEP - Save Water and Energy Education Program; FINAL

    International Nuclear Information System (INIS)

    Sullivan, Gregory P; Elliott, Douglas B; Hillman, Tim C; Hadley, Adam; Ledbetter, Marc R; Payson, David R

    2001-01-01

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits

  20. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  1. Course Syllabi and Their Effects on Students' Final Grade Performance.

    Science.gov (United States)

    Serafin, Ana Gil

    This study examined the relationship between the changes introduced in a course syllabus for a course titled "Instructional Strategies" and the final grades obtained by freshman and sophomore students in three successive academic periods. A sample of 150 subjects was randomly selected from students enrolled in the course at the…

  2. Total System Performance Assessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2001-01-01

    This Letter Report presents the results of supplemental evaluations and analyses designed to assess long-term performance of the potential repository at Yucca Mountain. The evaluations were developed in the context of the Nuclear Regulatory Commission (NRC) final public regulation, or rule, 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), which was issued on November 2, 2001. This Letter Report addresses the issues identified in the Department of Energy (DOE) technical direction letter dated October 2, 2001 (Adams 2001 [DIRS 156708]). The main objective of this Letter Report is to evaluate performance of the potential Yucca Mountain repository using assumptions consistent with performance-assessment-related provisions of 10 CFR Part 63. The incorporation of the final Environmental Protection Agency (EPA) standard, 40 CFR Part 197 (66 FR 32074 [DIRS 155216]), and the analysis of the effect of the 40 CFR Part 197 EPA final rule on long-term repository performance are presented in the Total System Performance Assessment--Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain--Input to Final Environmental Impact Statement and Site Suitability Evaluation (BSC 2001 [DIRS 156460]), referred to hereafter as the FEIS/SSE Letter Report. The Total System Performance Assessment (TSPA) analyses conducted and documented prior to promulgation of the NRC final rule 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), were based on the NRC proposed rule (64 FR 8640 [DIRS 101680]). Slight differences exist between the NRC's proposed and final rules which were not within the scope of the FEIS/SSE Letter Report (BSC 2001 [DIRS 156460]), the Preliminary Site Suitability Evaluation (PSSE) (DOE 2001 [DIRS 155743]), and supporting documents for these reports. These differences include (1) the possible treatment of ''unlikely'' features, events and processes (FEPs) in evaluation of both the groundwater protection standard and the human-intrusion scenario of the individual

  3. Water quality mitigation banking : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  4. Water and land availability for energy farming. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schooley, F.A.; Mara, S.J.; Mendel, D.A.; Meagher, P.C.; So, E.C.

    1979-10-01

    The physical and economic availability of land and water resources for energy farming were determined. Ten water subbasins possessing favorable land and water availabilities were ranked according to their overall potential for biomass production. The study results clearly identify the Southeast as a favorable area for biomass farming. The Northwest and North-Central United States should also be considered on the basis of their highly favorable environmental characteristics. Both high and low estimates of water availability for 1985 and 2000 in each of 99 subbasins were prepared. Subbasins in which surface water consumption was more than 50% of surface water supply were eliminated from the land availability analysis, leaving 71 subbasins to be examined. The amount of acreage potentially available for biomass production in these subbasins was determined through a comparison of estimated average annual net returns developed for conventional agriculture and forestry with net returns for several biomass production options. In addition to a computerized method of ranking subbasins according to their overall potential for biomass production, a methodology for evaluating future energy farm locations was developed. This methodology included a general area selection procedure as well as specific site analysis recommendations. Thirty-five general factors and a five-step site-specific analysis procedure are described.

  5. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  6. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  7. Asbestos in cooling-tower waters. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1979-03-01

    Water discharges from cooling towers constructed with asbestos fill were found to contain chrysotile--asbestos fibers at concentrations as high as 10 8 fibers/liter. The major source of these fibers, appears to be the components of the towers rather than the air drawn through the towers or the makeup water taken into the towers. Suggested mechanisms for the release of chrysotile fibers from cooling-tower fill include freeze-thaw cycles and dissolution of the cement due to acidic components of the circulating water. Ash- or other material-settling ponds were found to reduce asbestos-fiber concentrations in cooling-tower effluent. The literature reviewed did not support the case for a causal relationship between adverse human health effects and drinking water containing on the order of 10 6 chrysotile--asbestos fibers/liter; for this and other reasons, it is not presently suggested that the use of asbestos fill be discontinued. However, caution and surveillance are dictated by the uncertainties in the epidemiological studies, the absence of evidence for a safe threshold concentration in water, and the conclusive evidence for adverse effects from occupational exposure. It is recommended that monitoring programs be carried out at sites where asbestos fill is used; data from such programs can be used to determine whether any mitigative measures should be taken. On the basis of estimates made in this study, monitoring for asbestos in drift from cooling towers does not appear to be warranted

  8. Supercritical water oxidation data acquisition testing. Final report, Volume I

    International Nuclear Information System (INIS)

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included

  9. Uranium reactions with water vapor. Final progress report

    International Nuclear Information System (INIS)

    Condon, J.B.; Cristy, S.S.; Kirkpatrick, J.R.

    1983-01-01

    The reaction kinetics and ion microprobe mass analyzer (IMMA) depth-profile data for water-oxygen-uranium reaction is explained in terms of the perfusive-precipitation model. This model is reviewed extensively enough to deal with this interacting, 3-element reaction system. The model, based on simultaneous diffusion and product precipitation, can be applied to several systems in a parameterless fashion. It is applied to the uranium-water reaction in the absence and presence of the oxygen inhibitor. The results of the calculations of the model are compared to the experimental rates and the IMMA depth profiles obtained when 18 O-labeled water is used. The predictions are excellent for the pressure dependence of the rates, the activation energies for both the oxygen-poisoned and oxygen-free reactions, the absolute rates for the oxygen-poisoned case, and the IMMA depth profiles. The prediction of the absolute rate for the oxygen-free case is only within a factor of five due to the approximations made for the thermodynamics of the product layer that fixes the oxygen activity. Comparison of the model to experimental data for other metal-oxidation systems such as iron, silicon, copper, zirconium with oxygen, and thorium with water, is also presented to lend credibility to the modeling technique

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  11. Final design and performance of in situ testing in Grimsel

    International Nuclear Information System (INIS)

    Fuentes-Cantillana, J.L.; Garcia-SiNeriz, J.L.

    1998-01-01

    This report is focused on the design, engineering, and construction aspects of the in situ test carried out at the Grimsel underground laboratory in Switzerland. This reproduces the AGP-granite concept of ENRESA for HLW repositories in crystalline rock. Two heaters, similar in dimensions and weight to the canisters in the reference concept, have been placed in a horizontal drift with a 2.28-m diameter, a total test length of 17.4 m, and backfilled with a total of 115.7 † of highly-compacted bentonite blocks. The backfilled area has been closed with a concrete plug which is 2.7 m thick. More than 600 sensors have been installed in the test to monitor different parameters such as temperature, pressures, humidity, etc., within both the buffer material and the host rock. The installation was completed and commissioned in February 1997, and then the heating phase, which will last for at least 3 years, was started. During this period, the test will basically be operated in an automatic mode, controlled and monitored from Spain via modem. The report is the Final Report from AITEMIN for Phase 4 of the project and includes a description of the test configuration and layout; the design, engineering, and manufacturing aspects of the different test components and equipment; the emplacement operation; and the as built information regarding the final position of the main components and the sensors. (Author)

  12. Human performance in nondestructive inspections and functional tests: Final report

    International Nuclear Information System (INIS)

    Harris, D.H.

    1988-10-01

    Human performance plays a vital role in the inspections and tests conducted to assure the physical integrity of nuclear power plants. Even when technically-sophisticated equipment is employed, the outcome is highly dependent on human control actions, calibrations, observations, analyses, and interpretations. The principal consequences of inadequate performance are missed or falsely-reported defects. However, the cost-avoidance that stems from addressing potential risks promptly, and the increasing costs likely with aging plants, emphasize that timeliness and efficiency are important inspection-performance considerations also. Human performance issues were studied in a sample of inspections and tests regularly conducted in nuclear power plants. These tasks, selected by an industry advisory panel, were: eddy-current inspection of steam-generator tubes; ultrasonic inspection of pipe welds; inservice testing of pumps and valves; and functional testing of shock suppressors. Information was obtained for the study from industry and plant procedural documents; training materials; research reports and related documents; interviews with training specialists, inspectors, supervisory personnel, and equipment designers; and first-hand observations of task performance. Eleven recommendations are developed for improving human performance on nondestructive inspections and functional tests. Two recommendations were for the more-effective application of existing knowledge; nine recommendations were for research projects that should be undertaken to assure continuing improvements in human performance on these tasks. 25 refs., 9 figs., 1 tab

  13. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  14. Performance Measures for Public Participation Methods : Final Report

    Science.gov (United States)

    2018-01-01

    Public engagement is an important part of transportation project development, but measuring its effectiveness is typically piecemealed. Performance measurementdescribed by the Urban Institute as the measurement on a regular basis of the results (o...

  15. Safety performance evaluation of converging chevron pavement markings : final report.

    Science.gov (United States)

    2014-12-01

    The objectives of this study were (1) to perform a detailed safety analysis of converging chevron : pavement markings, quantifying the potential safety benefits and developing an understanding of the : incident types addressed by the treatment, and (...

  16. Geosynthetic wall performance : facing pressure and deformation : final report.

    Science.gov (United States)

    2017-02-01

    The objective of the study was to validate the performance of blocked-faced Geosynthetic Reinforced Soil (GRS) wall and to validate the Colorado Department of Transportations (CDOT) decision to waive the positive block connection for closely-space...

  17. Performance assessment of MSE abutment walls in Indiana : final report.

    Science.gov (United States)

    2017-05-01

    This report presents a numerical investigation of the behavior of steel strip-reinforced mechanically stabilized earth (MSE) direct bridge abutments under static loading. Finite element simulations were performed using an advanced two-surface boundin...

  18. Transportation asset management : organizational performance and risk review : final report.

    Science.gov (United States)

    2012-11-15

    The 2012 Federal reauthorization of surface transportation programs, Moving Ahead for Progress in the 21st : Century (MAP-21) formally introduced performance-based decision making for investments in surface : transportation programs. This report revi...

  19. Sources of radioiodine at pressurized water reactors. Final report

    International Nuclear Information System (INIS)

    Pelletier, C.A.; Cline, J.E.; Barefoot, E.D.; Hemphill, R.T.; Voilleque, P.G.; Emel, W.A.

    1978-11-01

    The report determines specific components and operations at operating pressurized water reactors that have a potential for being significant emission sources of radioactive iodine. The relative magnitudes of these specific sources in terms of the chemical forms of the radioiodine and the resultant annual averages from major components are established. The data are generalized for broad industry use for predictive purposes. The conclusions of this study indicate that the majority of radioiodine emanating from the primary side of pressurized water reactors comes from a few major areas; in some cases these sources are locally treatable; the interaction of radioiodine with plant interior surfaces is an important phenomenon mediating the source and affecting its release to the atmosphere; the chemical form varies depending on the circumstances of the release

  20. Supercritical water oxidation data acquisition testing. Final report, Volume II

    International Nuclear Information System (INIS)

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone ampersand Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology

  1. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  2. Radionuclide Sensors for Subsurface Water Monitoring. Final report

    International Nuclear Information System (INIS)

    Timothy DeVol

    2006-01-01

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitored in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program. Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media

  3. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  4. Environmental-performance research priorities: Wood products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-15

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  5. Test of job performance aids for power plants. Final report

    International Nuclear Information System (INIS)

    Shriver, E.L.; Zach, S.E.; Foley, J.P. Jr.

    1982-10-01

    The objective of EPRI Research Project 1396-1 was to evaluate the applicability and effectiveness of Job Performance Aids (JPAs) in nuclear power plant situations. For over twenty years, JPAs have been developed in military situations to meet the problems of confusing, incomplete, and inaccurate procedures on maintenance jobs. Kinton, Incorporated of Alexandria, Virginia applied the military experience with JPAs to nuclear power plant situations and identified potential benefits in terms of cost reductions and improved performance. Sample JPAs were developed for Control Room Operations, Maintenance, Plant Operations, Instrumentation and Control, Health Physics, and Quality Assurance tasks (procedures) in selected nuclear plants. JPAs were also developed for a prototype condenser tube leak detection system in the design stage, as well as for generic classes of circuit breaker equipment. Based on the results of the study, the use of JPAs is recommended for plant procedures of medium to high difficulty and for those tasks performed infrequently, even if fairly simple

  6. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  7. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-01-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students…

  8. Camp Verde Adult Reading Program. Final Performance Report.

    Science.gov (United States)

    Maynard, David A.

    This document begins with a four-page performance report describing how the Camp Verde Adult Reading Program site was relocated to the Community Center Complex, and the Town Council contracted directly with the Friends of the Camp Verde Library to provide for the requirements of the program. The U.S. Department of Education grant allowed the…

  9. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  10. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    Science.gov (United States)

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  11. Performance indicators for nuclear medicine and industrial radiographers. Final report

    International Nuclear Information System (INIS)

    Hill, T.D.

    1997-01-01

    HCA--Assessment Experts (HCA) was retained under contract to provide evidence that a behaviourally based approach to the development of performance indicators for radioisotope users could be successfully designed, implemented and rapidly delivered to a pilot sample. Moreover, HCA believed that it was uniquely qualified to not only achieve this success, but to show further that we could instill the motivation for self-improvement in the AECB inspection ratings of Licensees and Permit Holders. In the space of about ten weeks. HCA was able to deliver a comprehensive set of web-based tools for performance indicators. Not only did we deliver these tools, but we also included such supplemental information as relevant legislation, regulations. Inspectors' preferences and recommendations, among others, so as to foster a learning component of the performance indicators tools. The call for the continuation of this work is based on two sources. The response from participants to this project was very favourable - participants want these tools. Secondly, our research and experience have shown (and the larger body of empirical research also shows) that this is the type of performance feedback and communication that participants appreciate the most, and is the most predictive of successful compliance and improvement in the future. (author)

  12. Influence choreographic readiness to gymnasts final assessment of performance skills

    Directory of Open Access Journals (Sweden)

    O.A. Omelichyk-Ziurkalova

    2014-10-01

    Full Text Available Purpose : to provide a quantitative assessment and expert choreographic preparedness gymnasts. Material : the study involved eight gymnasts competition finalists in the floor exercise - female members of the Ukrainian national team in gymnastics. Results : the quantitative indicators of acrobatic and dance elements to determine the baseline assessment. Defined methods complications composition on the floor exercise by reducing the number of acrobatic lines and diagonals and increase the number of gymnastic elements. The theoretical performance of the composite sequence is improved structure and increases the difficulty of the exercise. Conclusions : in the process of composition complications need to pay more attention to the technique of performing gymnastic elements. In improving exercise choreography element replace (in some cases acrobatic element. Based on the results is planned future direction of research in order to improve the training process in gymnastics.

  13. High Performance Building Facade Solutions - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  14. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  15. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.

    1998-10-01

    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  16. Effect of water in salt repositories. Final report

    International Nuclear Information System (INIS)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ΔP rather than sigma ΔP 2 (sigma is the uniaxial stress normal to the interface and ΔP is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model

  17. Effect of water in salt repositories. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  18. Summary of research performed since June 1996 and final summary

    International Nuclear Information System (INIS)

    Masopust, R.

    1999-01-01

    Significant influence of large relative displacement might be caused by faulting-induced movements, lateral spreading (not expected in Paks), liquefaction induced ground movements (not expected in Paks), landslides and slope failures (not expected in Paks), settlement and seismic-induced motions and deformations of the building structure into the which the buried pipe is attached (compensated by flexible connections in Paks). Dynamic amplification does not play an important role in the response of buried pipes. Only the static response of buried pipelines when subjected to propagate seismic waves is important when the large relative displacements of the ground along the pipeline cannot occur. This presentation covers seismic evaluation of buried pipes with emphasis on the main emergency water supply system and the seismic margin assessment applied to large vertical cylindrical flat bottom tanks installed inside the main building of NPP. Conclusions derived from the obtained results are as follows: no seismic upgrading necessary for vertical single and also multi cylindrical tanks located inside the main reactor building mostly on the elevation ± 0.00 m; sliding shear capacity of such tanks when they stand on special grids without any anchorage needs more detailed investigation

  19. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  20. EPRI fuel performance data base: user's manual. Final report

    International Nuclear Information System (INIS)

    Simpson, J.; Lee, S.; Rumble, E.

    1980-10-01

    This user's manual provides instructions for accessing the data in the EPRI fuel performance data base (FPDB) and manipulating that data to solve specific problems that the user wishes to specify. The user interacts with the FPDB through the Relational Information Management System (RIMS) computer program. The structure and format of the FPDB and the general syntax of the data base commands are described. Instructions follow for the use of each command. Appendixes provide more detailed information about the FPDB and its software. The FPDB currently resides on a PRIME-750 computer

  1. Fact Sheet: Notice of Ambient Water Quality Criteria Document for Tributyltin (TBT) - Final

    Science.gov (United States)

    Information pertaining to 2004 Final Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Tributyltin (TBT) for freshwater and saltwater. This fact sheet includes the safe levels of TBT that should protect the majority of species.

  2. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  3. Revisions to the Clean Water Act Regulatory Definition of Discharge of Dredged Material; Final Rule

    Science.gov (United States)

    The U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA) promulgated a final rule Amending a Clean Water Act (CWA) section 404 regulation that defines the term discharge of dredged material.

  4. Sacramento State Solar Decathlon 2015: Research Performance Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mikael [California State Univ., Sacramento, CA (United States). Dept. of Construction Management

    2017-03-14

    Our primary objective is to design and build a 600-1000sf home that produces more energy than it consumes and to showcase this home at the 2015 Solar Decathlon in Irvine, CA. Further objectives are to educate consumers and home builders, alike (including K-12 students – the industry’s future consumers), inspire a shift towards the adoption of net-zero energy solutions in residential building, and to be a leader in the transformation of the California residential marketplace to a net-zero standard. Our specific mission statement for this project is as follows: Solar NEST strives to discover the future of sustainable, energy-efficient housing and deliver these innovations to home buyers at an affordable price. To make substantial improvements to conventional building methods with regard to aesthetics, performance, and affordability. Through our efforts, we aspire to bridge the gap between ‘what is’ and ‘what is possible’ by providing unique, elegant simplicity.

  5. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal; FINAL

    International Nuclear Information System (INIS)

    Clovis A. Linkous; Darlene K. Slattery

    2000-01-01

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H(sub 2) via photocatalytic decomposition of water. While it has been demonstrated that H(sub 2) and O(sub 2) can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown

  6. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  7. Assessing the performance of urban water utilities in Mozambique ...

    African Journals Online (AJOL)

    Benchmarking analysis has become a strategic tool through which water regulators around the world measure the performance of water utilities. Since 2008, the Water Regulatory Council of Mozambique has been implementing a benchmarking framework to analyse the performance of urban water utilities. This paper ...

  8. Calculation method for the seasonal performance of heat pump compact units and validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. These units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are described. A testing procedure developed at the University of Applied Science in Lucerne, Switzerland, using a test rig for the measurement of the seasonal performance factor (SPF) is described. A calculation method based on temperature classes for the calculation of the SPF of combined heat pump systems for space heating and domestic hot water preparation that was developed by the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is examined. Two pilot plants allowing detailed field monitoring of two compact units are described. One pilot plant installed in a single-family house built to MINERGIE standard in Gelterkinden, Switzerland, provided data on a compact unit. These results of measurements made on this and a further installation in a MINERGIE-P ultra-low energy consumption house in Zeiningen, Switzerland, are presented and discussed. Calculation methods, including exergy considerations are reviewed and their validation is discussed.

  9. Management of water balance in mining areas – WaterSmart: Final Report

    OpenAIRE

    Krogerus, Kirsti; Pasanen, Antti

    2016-01-01

    Although mining companies have long been conscious of water related risks, they still face environmental management challenges. Several recent environmental incidents in Finnish mines have raised questions regarding mine site environmental and water management practices. This has increased public awareness of mining threats to the environment and resulted in stricter permits and longer permitting procedures. Water balance modelling aids in predictive water management and reduces risks caused ...

  10. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  11. Malaysian water sector reform : policy and performance

    NARCIS (Netherlands)

    Kim, C.T.

    2012-01-01

    One of the measures that can help developing countries in meeting Target 10 of the Millennium Development Goals – halving the number of people without access to water and adequate sanitation by 2015 – is through a water sector reform. In this research the Malaysian water sector reform is

  12. Use of isotopic tools to delimit areas of harnessing for drinking water supply - Final report

    International Nuclear Information System (INIS)

    Gourcy, L.; Petelet-Giraud, E.

    2011-03-01

    Within the frame of an action of the ONEMA-BRGM convention (Methodological approaches and tools for the protection of drinking water harnessing against diffuse pollutions), this study aims at developing a synthesis of isotopic geochemical tools to obtain the information required for the delimitation of harnessing supply areas. The report first describes the conventional tools: water molecule steady isotopes, radioactive isotopes, water dating tools, tools developed for another use, and artificial tracers. It presents the possible uses of natural and artificial tracers to determine parameters like flow directions, water residence duration, exchanges between aquifers and water sheet-river interactions. It gives an overview of knowledge on the use of isotopic methods to determine the origin of contaminants. It proposes a brief overview of a previous study of water sheets-rivers relationships. It finally discusses the use of geochemical and isotopic tools when delimiting supply areas for harnessing aimed at drinking water supply

  13. Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector; FINAL

    International Nuclear Information System (INIS)

    Parker, Graham B; McMordie-Stoughton, Katherine L; Sullivan, Gregory P; Elliott, Douglas B

    2001-01-01

    The Department of Energy's Federal Energy Management Program (FEMP) is considering the development of a technology-specific Super-Energy Saving Performance Contract (ESPC) for water conservation. Prior to the development however, FEMP requires the completion of a market assessment to better understand the water conservation opportunities and the strategies available for capturing them. Thus, this market assessment has been undertaken to evaluate the water conservation opportunities and answer the key questions necessary for FEMP to make recommendations on whether or not to proceed with strategies for water conservation primarily through the development of a water conservation technology-specific performance contract

  14. Operations-oriented performance measures for freeway management systems : final report.

    Science.gov (United States)

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  15. Effect of Repeated/Spaced Formative Assessments on Medical School Final Exam Performance

    Directory of Open Access Journals (Sweden)

    Edward K. Chang

    2017-06-01

    Discussion: Performance on weekly formative assessments was predictive of final exam scores. Struggling medical students will benefit from extra cumulative practice exams while students who are excelling do not need extra practice.

  16. Water level determination for transportation projects : mean high water manual, final report, November 2009.

    Science.gov (United States)

    2009-11-01

    To ensure proficient network management and safe usage of navigable waterways especially in waters that are : subject to tides, it is essential that the height of the water at various tidal phases be known. This knowledge is also : essential for prop...

  17. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  18. Water supply authorities in Europe preventing agricultural water pollution : final report

    NARCIS (Netherlands)

    Schrama, Geerten

    1997-01-01

    This document is a summary final report of research implemented under the 3rd RTD Framework Programme (1991-1994) in the field of the environment. It is one of about 160 research projects on the socio-economic aspects of environmental change which have been carried out since 1992 under both the 3rd

  19. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  20. VI-G, Sec. 661, P.L. 91-230. Final Performance Report.

    Science.gov (United States)

    1976

    Presented is the final performance report of the CSDC model which is designed to provide services for learning disabled high school students. Sections cover the following program aspects: organizational structure, inservice sessions, identification of students, materials and equipment, evaluation of student performance, evaluation of the model,…

  1. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  2. Helicopter crashes into water: warning time, final position, and other factors affecting survival.

    Science.gov (United States)

    Brooks, Christopher J; MacDonald, Conor V; Baker, Susan P; Shanahan, Dennis F; Haaland, Wren L

    2014-04-01

    According to 40 yr of data, the fatality rate for a helicopter crash into water is approximately 25%. Does warning time and the final position of the helicopter in the water influence the survival rate? The National Transportation Safety Board (NTSB) database was queried to identify helicopter crashes into water between 1981 and 2011 in the Gulf of Mexico and Hawaii. Fatality rate, amount of warning time prior to the crash, and final position of the helicopter were identified. There were 133 helicopters that crashed into water with 456 crew and passengers. Of these, 119 occupants (26%) did not survive; of those who did survive, 38% were injured. Twelve died after making a successful escape from the helicopter. Crashes with 1 min. However, more than half of fatalities (57%) came from crashes for which the warning time could not be determined. Lack of warning time and how to survive in the water after the crash should be a topic for study in all marine survival/aircraft ditching courses. Investigators should be trained to provide estimates of warning time when investigating helicopter crashes into water.

  3. Mastoidectomy performance assessment of virtual simulation training using final-product analysis

    DEFF Research Database (Denmark)

    Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S

    2015-01-01

    a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. RESULTS: Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.......59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. CONCLUSIONS: A modified...... version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency...

  4. Performance of supported catalysts for water electrolysis

    OpenAIRE

    Gurrik, Stian

    2012-01-01

    The most active catalyst for oxygen evolution in PEM water electrolysis is ruthenium oxide. Its major drawback as a commercial catalyst is its poor stability. In a mixed oxide with iridium, ruthenium becomes more stable. However, it would be favorable to find a less expensive substitute to iridium. In this work, the dissolution potential and lifetime of mixed oxides containing ruthenium and tantalum are investigated. In order to effectively determine what effects tantalum and particle size ha...

  5. Peak and ceiling effects in final-product analysis of mastoidectomy performance

    DEFF Research Database (Denmark)

    West, N; Konge, L; Cayé-Thomasen, P

    2015-01-01

    BACKGROUND: Virtual reality surgical simulation of mastoidectomy is a promising training tool for novices. Final-product analysis for assessing novice mastoidectomy performance could be limited by a peak or ceiling effect. These may be countered by simulator-integrated tutoring. METHODS: Twenty......-two participants completed a single session of self-directed practice of the mastoidectomy procedure in a virtual reality simulator. Participants were randomised for additional simulator-integrated tutoring. Performances were assessed at 10-minute intervals using final-product analysis. RESULTS: In all, 45.5 per...

  6. Performance Improvement of Solar Water Stills by Using Reflectors

    Directory of Open Access Journals (Sweden)

    Humphrey Hamusonde Maambo

    2016-09-01

    Full Text Available The lack of safe and clean drinking water sources is one of the problems faced in most rural communities in Zambia. Water in these communities is mostly obtained from shallow wells and rivers. However, this water might be potentially contaminated with harmful substances such as pathogenic bacteria and therefore, unsafe for drinking. Solar water distillation represents an important alternative to palliate problems of fresh water shortages. Solar water stills can be used to eliminate harmful substances from contaminated water by treating it using free solar energy before it can be consumed. Therefore, there is a need to improve solar still performance to produce a greater quantity of safe drinking water. One possible method to improve performance is through adding reflectors to solar stills. Reflectors improve performance by increasing the quantity of distillate by about 22.3 % at a water depth of 15 mm and about 2 9% at a water depth of 10 mm when compared to the distillate produced from a still without reflectors. The water produced using solar stills with reflectors was tested and adhered to World Health Organization (WHO drinking water standards. This implies that solar distillation with reflectors could be adopted at a larger scale to produce safer drinking water at a reduced cost.

  7. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  8. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  9. Short communication: final year students' deficits in physical examination skills performance in Germany.

    Science.gov (United States)

    Krautter, Markus; Diefenbacher, Katja; Koehl-Hackert, Nadja; Buss, Beate; Nagelmann, Lars; Herzog, Wolfgang; Jünger, Jana; Nikendei, Christoph

    2015-01-01

    The physical examination of patients is an important diagnostic competence, but little is known about the examination skills of final-year medical students. To investigate physical examination skills of final-year medical students. In a cross-sectional study, 40 final-year students were asked to perform a detailed physical examination on standardized patients. Their performances were video-recorded and rated by independent video assessors. Video ratings showed a mean success rate of 40.1 % (SD 8.2). As regards accompanying doctor-patient communication, final-year students achieved a mean of no more than 36.7 % (SD 8.9) in the appropriate use of the corresponding communication items. Our study revealed severe deficits among final-year medical students in performing a detailed physical examination on a standardized patient. Thus, physical examination skills training should aim to improve these deficits while also paying attention to communicative aspects. Copyright © 2015. Published by Elsevier GmbH.

  10. Hospitality Industry Technology Training (HITT). Final Performance Report, April 1, 1989-December 31, 1990.

    Science.gov (United States)

    Mount Hood Community Coll., Gresham, OR.

    This final performance report includes a third-party evaluation and a replication guide. The first section describes a project to develop and implement an articulated curriculum for grades 8-14 to prepare young people for entry into hospitality/tourism-related occupations. It discusses the refinement of existing models, pilot test, curriculum…

  11. Sewage Treatment Plants: Standards of Performance for New Stationary Sources 1977 Final Rule (42 FR 58520)

    Science.gov (United States)

    This document includes a copy of the Federal Register publication of the November 10, 1977 Final Rule for the Standards of Performance of New Stationary Sources for 40 CFR 60 Subparts O. This document is provided curtesy of HeinOnline.

  12. Puget Sound Tidal Energy In-Water Testing and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig W

    2012-11-16

    others. All required permit and license applications were completed and submitted under this award, including a Final License Application for a pilot hydrokinetic license from the Federal Energy Regulatory Commission. The tasks described above have brought the project through all necessary requirements to construct a tidal pilot project in Admiralty Inlet with the exception of final permit and license approvals, and the selection of a general contractor to perform project construction.

  13. Poor academic performance: A perspective of final year diagnostic radiography students

    International Nuclear Information System (INIS)

    Gqweta, Ntokozo

    2012-01-01

    Introduction: A study was conducted on final year diagnostic radiography students at a University of Technology in Durban. The aim of the study was to investigate the final year diagnostic radiography students' opinions and views on academic performance in order to inform teaching and learning methods. The objectives were: •To explore the students' opinions regarding poor performance. •To identify strategies to improve academic performance. Method: A qualitative, interpretive approach was used to explain and understand the students' lived experiences of their academic performances. A short open ended questionnaire was administered to a cohort of final diagnostic radiography students following feedback on a written assessment. Questionnaire responses were then manually captured and analyzed. Results: Five (5) themes were identified that could possibly be associated with poor academic performance. These themes were, poor preparation, lack of independent study, difficulty in understanding learning content and misinterpretation of assessment questions, inefficient studying techniques as well as perceived improvement strategies. Conclusion: Students identified their inadequate preparation and the lack of dedicated independent studying as the main reasons for poor performance. Students preferred to be taught in an assessment oriented manner. However their identified improvement strategies were aligned with the learner centred approach.

  14. Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Boing, L.E.; Aldana, J.

    1997-03-01

    The Final Report for the Decontamination and Decommissioning (D ampersand D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D ampersand D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D ampersand D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D ampersand D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a open-quotes Radiologically Controlled Area,close quotes noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion)

  15. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  16. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  17. Field performance of de-watered fluid fine tailings for oil sands reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Ward Wilson, G.; Kabwe, Louis [University of Alberta (Canada); Donahue, Robert [Applied Geochemical Engineering Inc. (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    This document presents research carried out by Syncrude Canada Ltd and its partners to evaluate several methods of de-watering fluid fine tailings to increase the solids content and at the same time produce a tailings profile which will permit final reclamation. Several de-watering methods are discussed in this paper, particularly in-line flocculation and centrifuged fluid fine tailings. First, in-line flocculation with organic polymers is discussed followed by thin left deposition, then the flocculation and centrifugation process to produce a paste- like material that is deposited in a thicker layer is presented. This document details the preliminary performance of both discussed methods; extensive instrumentation was used to measure de-watering rates due to consolidation, atmospheric drying, downward drainage to the foundation materials, and freeze/thaw consolidation. Finally, a summary of the measured results of de-watering rates and numerical model results obtained from the SoilCover model are presented and discussed.

  18. Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, Tryg [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Civil and Environmental Engineering Dept.; Spierling, Ruth [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Poole, Kyle [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Blackwell, Shelley [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Crowe, Braden [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Hutton, Matt [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Lehr, Corinne [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States). Dept. of Chemistry and Biochemistry

    2018-01-25

    The objective of this project was to develop and demonstrate methods of recycling of water and nutrients for algal biofuels production. Recycling was accomplished both internal to the system and, in a broader sense, through import and reuse of municipal wastewater. Such an integrated system with wastewater input had not been demonstrated previously, and the performance was unknown, particularly in terms of influence of recycling on algal productivity and the practical extent of nutrient recovery from biomass residuals. Through long-term laboratory and pilot research, the project resulted in the following: 1. Bench-scale pretreatment of algal biomass did not sufficiently increase methane yield of nutrient solubilization during anaerobic digestion to warrant incorporation of pre-treatment into the pilot plant. The trial pretreatments were high-pressure orifice homogenization, sonication, and two types of heat treatment. 2. Solubilization of biomass particulate nutrients by lab anaerobic digesters ranged from 20% to nearly 60% for N and 40-65% for P. Subsequent aerobic degradation of the anaerobically digested biomass simulated raceways receiving whole digestate and resulted in an additional 20-55% N solubilization and additional 20% P solubilization. 3. Comparisons of laboratory and pilot digesters showed that laboratory units were reasonable proxies for pilot-scale. 4. Pilot-scale anaerobic digesters were designed, installed, and operated to digest algal biomass. Nutrient re-solubilization by the digesters was monitored and whole digestate was successfully used as a fertilizer in pilot algae raceways. 5. Unheated, unmixed digesters achieved greater methane yield and nutrient solubilization than heated, mixed digesters, presumably due to longer the solids residence times in unmixed digesters. The unmixed, unheated pilot digesters yielded 0.16 LCH4/g volatile solids (VS) introduced with 0.15 g VS/L-d organic loading and 16oC average temperature. A

  19. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  20. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  1. Does water temperature influence the performance of key survival skills?

    Science.gov (United States)

    Schnitzler, C; Button, C; Seifert, L; Armbrust, G; Croft, J L

    2018-03-01

    Aquatic survival skills may be compromised in cold water thereby increasing the likelihood of drowning. This study compared physiological, psychological, and behavioral responses of humans treading water and swimming in cold and temperate water. Thirty-eight participants were classified as inexperienced (n = 9), recreational (n = 15), or skilled (n = 10) swimmers. They performed 3 tasks: treading water (120 seconds), swim at "comfortable" pace, and swim at "fast" pace in 2 water conditions (28°C vs 10°C). Heart rate, oxygen uptake, psychometric variables, spatio-temporal (swim speed, stroke rate, and stroke length), and coordination type were examined as a function of expertise. Tasks performed in cold water-generated higher cardiorespiratory responses (HR = 145 ± 16 vs 127 ± 21 bpm) and were perceived about 2 points more strenuous on the Borg scale on average (RPE = 14.9 ± 2.8 vs 13.0 ± 2.0). The voluntary durations of both treading water (60 ± 32 vs 91 ± 33 seconds) and swimming at a comfortable pace (66 ± 22 vs 103 ± 34 seconds) were significantly reduced in cold water. However, no systematic changes in movement pattern type could be determined in either the treading water task or the swimming tasks. Water temperature influences the physical demands of these aquatic skills but not necessarily the behavior. Training treading water and swimming skills in temperate water seems to transfer to cold water, but we recommend training these skills in a range of water conditions to help adapt to the initial "cold-shock" response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    Science.gov (United States)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  3. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  4. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  5. Final Technical Report: The Water-to-Wire (W2W) Project

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Daniel N. [Free Flow Power Corporation, Boston, MA (United States); Edward, Lovelace C. [Free Flow Power Corporation, Boston, MA (United States)

    2013-12-24

    The purpose of the Free Flow Power (FFP) Water-to-Wire Project (Project) was to evaluate and optimize the performance, environmental compatibility, and cost factors of FFP hydrokinetic turbines through design analyses and deployments in test flumes and riverine locations.

  6. Framework for continuous performance improvement in small drinking water systems.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-01-01

    Continuous performance improvement (CPI) can be a useful approach to overcome water quality problems impacting small communities. Small drinking water systems (SDWSs) struggle to meet regulatory requirements and often lack the economic and human resource flexibility for immediate improvement. A CPI framework is developed to provide SDWS managers and operators an approach to gauge their current performance against similar systems and to track performance improvement from the implementation of the new technologies or innovations into the future. The proposed CPI framework incorporates the use of a water quality index (WQI) and functional performance benchmarking to evaluate and compare drinking water quality performance of an individual water utility against that of a representative benchmark. The results are then used to identify and prioritize the most vulnerable water quality indicators and subsequently identify and prioritize performance improvement strategies. The proposed CPI framework has been demonstrated using data collected from SDWSs in the province of Newfoundland and Labrador (NL), Canada and using the Canadian Council of Ministers of the Environment (CCME) WQI. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Frequency of chest pain in primary care, diagnostic tests performed and final diagnoses.

    Science.gov (United States)

    Hoorweg, Beatrijs Bn; Willemsen, Robert Ta; Cleef, Lotte E; Boogaerts, Tom; Buntinx, Frank; Glatz, Jan Fc; Dinant, Geert Jan

    2017-11-01

    Observational study of patients with chest pain in primary care: determination of incidence, referral rate, diagnostic tests and (agreement between) working and final diagnoses. 118 general practitioners (GPs) in the Netherlands and Belgium recorded all patient contacts during  2weeks. Furthermore, patients presenting with chest pain were registered extensively. A follow-up form was filled in after 30 days. 22 294 patient contacts were registered. In 281 (1.26%), chest pain was a reason for consulting the GP (mean age for men 54.4/women 53 years). In this cohort of 281 patients, in 38.1% of patients, acute coronary syndrome (ACS) was suspected at least temporarily during consultation, 40.2% of patients were referred to secondary care and 512 diagnostic tests were performed by GPs and consulted specialists. Musculoskeletal pain was the most frequent working (26.1%) and final diagnoses (33.1%). Potentially life-threatening diseases as final diagnosis (such as myocardial infarction) accounted for 8.4% of all chest pain cases. In 23.1% of cases, a major difference between working and final diagnoses was found, in 0.7% a severe disease was initially missed by the GP. Chest pain was present in 281 patients (1.26% of all consultations). Final diagnoses were mostly non-life-threatening. Nevertheless, in 8.4% of patients with chest pain, life-threatening underlying causes were identified. This seems reflected in the magnitude and wide variety of diagnostic tests performed in these patients by GPs and specialists, in the (safe) overestimation of life-threatening diseases by GPs at initial assessment and in the high referral rate we found. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  9. Geographic variation of solar water performance in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y. [University of Ulster (United Kingdom). Faculty of Engineering; Popel, O.; Frid, S. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperatures; Norton, B. [Dublin Institute of Technology (Ireland)

    2006-07-01

    Solar water heater (SWH) performance has been analysed using the 'number of days' method for 147 different sites in all European countries. The total number of days that the temperature of delivered solar heated water reaches or exceeds specified demand temperatures is correlated with solar radiation on a horizontal surface for summer, warm half-year, and whole year periods. Maps are presented and discussed showing the contours for the number of days that an illustrative SWH met different hot water demand temperatures. Correlations between number of days water is provided at a specified temperature and solar fractions for the same periods are determined. (author)

  10. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  11. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  13. Final report on the proficiency test on the determination of total arsenic concentration in water TC Project BGD/08/018

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Trinkl, A.; Rossbach, M.; Benesch, T.; Campbell, M.; Sansone, U.; Will, K.; Schorn, R.; Toervenyi, A.

    2005-02-01

    A proficiency test on the determination of arsenic in drinking water was organised within the frame of the TC project BGD/8/018 to evaluate the analytical performance of laboratories in Bangladesh. This report summarises the performance evaluation of the participating laboratories. Analytical data evaluation showed that 61% of data obtained a 'Passed' final score for both the accuracy and precision criteria applied to this exercise. (author)

  14. Clinical observed performance evaluation: a prospective study in final year students of surgery.

    LENUS (Irish Health Repository)

    Markey, G C

    2010-06-24

    We report a prospective study of clinical observed performance evaluation (COPE) for 197 medical students in the pre-qualification year of clinical education. Psychometric quality was the main endpoint. Students were assessed in groups of 5 in 40-min patient encounters, with each student the focus of evaluation for 8 min. Each student had a series of assessments in a 25-week teaching programme. Over time, several clinicians from a pool of 16 surgical consultants and registrars evaluated each student by direct observation. A structured rating form was used for assessment data. Variance component analysis (VCA), internal consistency and inter-rater agreement were used to estimate reliability. The predictive and convergent validity of COPE in relation to summative OSCE, long case, and overall final examination was estimated. Median number of COPE assessments per student was 7. Generalisability of a mean score over 7 COPE assessments was 0.66, equal to that of an 8 x 7.5 min station final OSCE. Internal consistency was 0.88-0.97 and inter-rater agreement 0.82. Significant correlations were observed with OSCE performance (R = 0.55 disattenuated) and long case (R = 0.47 disattenuated). Convergent validity was 0.81 by VCA. Overall final examination performance was linearly related to mean COPE score with standard error 3.7%. COPE permitted efficient serial assessment of a large cohort of final year students in a real world setting. Its psychometric quality compared well with conventional assessments and with other direct observation instruments as reported in the literature. Effect on learning, and translation to clinical care, are directions for future research.

  15. Performance of Canadian commercial nuclear units and heavy water plants

    International Nuclear Information System (INIS)

    Woodhead, L.W.; Ingolfsrud, L.J.

    The operating history of Canadian commercial CANDU type reactors, i.e. Pickering generating station-A, is described. Capacity factors and unit energy costs are analyzed in detail. Equipment performance highlights are given. The performance of the two Canadian heavy water plants is described and five more are under construction or planned. (E.C.B.)

  16. Energy and water uses and their performance explanatory indicators in hotels in Hong Kong

    International Nuclear Information System (INIS)

    Deng, S.

    2003-01-01

    This paper firstly presents a case study on analyzing the electrical load profiles recorded in a Hong Kong hotel over a period of 12 months to examine the potential energy saving opportunities (ESOs) in its building services installations. The case study is followed by a report of the survey results of energy and water use in 36 quality hotels in Hong Kong. Finally, a regression analysis where the surveyed energy and water use data were correlated to a number of hotel background or operational parameters to search for suitable energy and water use performance explanatory indicators is presented. The survey results depict a diversified energy and water use situation in Hong Kong's hotels, but the regression analysis indicates that, while some of the correlations obtained are weak, there do exist a few strong energy and water explanatory indicators. (author)

  17. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Science.gov (United States)

    2010-07-23

    ... taking final agency action on the following TMDL for waters located within the State of Arkansas: Segment-reach Waterbody name Pollutant 11070208-901 Town Branch..... Total Phosphorus. EPA requested the public...

  18. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  19. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  20. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  1. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    Science.gov (United States)

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic...

  2. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  3. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  4. Strength, Endurance, Throwing Velocity and in-Water Jump Performance of Elite German Water Polo Players

    Directory of Open Access Journals (Sweden)

    Zinner Christoph

    2015-03-01

    Full Text Available The purpose of this study was threefold: 1 to assess the eggbeater kick and throwing performance using a number of water polo specific tests, 2 to explore the relation between the eggbeater kick and throwing performance, and 3 to investigate the relation between the eggbeater kick in the water and strength tests performed in a controlled laboratory setting in elite water polo players. Fifteen male water polo players of the German National Team completed dynamic and isometric strength tests for muscle groups (adductor, abductor, abdominal, pectoralis frequently used during water polo. After these laboratory strength tests, six water polo specific in-water tests were conducted. The eggbeater kick assessed leg endurance and agility, maximal throwing velocity and jump height. A 400 m test and a sprint test examined aerobic and anaerobic performance. The strongest correlation was found between jump height and arm length (p < 0.001, r = 0.89. The laboratory diagnostics of important muscles showed positive correlations with the results of the in-water tests (p < 0.05, r = 0.52-0.70. Muscular strength of the adductor, abdominal and pectoralis muscles was positively related to in-water endurance agility as assessed by the eggbeater kick (p < 0.05; r = 0.53-0.66. Findings from the current study emphasize the need to assess indices of water polo performance both in and out of the water as well as the relation among these parameters to best assess the complex profile of water polo players.

  5. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  6. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.

    2009-03-01

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  7. Final report on 3-D experiment project air-water upper plenum experiments

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Mohr, C.M.

    1978-11-01

    The results are presented from upper plenum air-water reflood behavior testing performed as part of the program to investigate three-dimensional aspects of PWR LOCA research. Tests described were performed at near ambient temperature and pressure in a plexiglass vessel which included the important features of the upper core and upper plenum regions corresponding to a single fuel bundle in both Westinghouse Electric Corporation (Trojan) and Kraftwerk Union (KKU) PWR designs. The data included observed two-phase flow characteristics, particularly with regard to countercurrent flow, and cinematography of the characteristic upper plenum flow patterns

  8. Performance of Thermosyphon Solar Water Heaters in Series

    Directory of Open Access Journals (Sweden)

    Tsong-Sheng Lee

    2012-08-01

    Full Text Available More than a single thermosyphon solar water heater may be employed in applications when considerable hot water consumption is required. In this experimental investigation, eight typical Taiwanese solar water heaters were connected in series. Degree of temperature stratification and thermosyphon flow rate in a horizontal tank were evaluated. The system was tested under no-load, intermittent and continuous load conditions. Results showed that there was stratification in tanks under the no-load condition. Temperature stratification also redeveloped after the draw-off. Analysis of thermal performance of the system was conducted for each condition.

  9. Impact of the safe drinking water act on energy development. Final issue paper

    International Nuclear Information System (INIS)

    Guymont, F.J.; Shore, R.; Goldberg, M.

    1977-11-01

    Energy development activities will be impacted by the Underground Injection Control Regulations that are formulated under Part C of the Safe Drinking Water Act. The thrust of Part C of the Act is to protect groundwater that now is or in the future might be used for drinking water. A new draft of the regulations, on which this analysis is based, is currently being considered. These regulations will be either another set of proposed regulations or will be interim final which means they can be enforced immediately but EPA will still entertain comments on them and modify them if necessary. There are four possible situations in which the Underground Control Regulations would not apply. They are: If the aquifer in question can be left unprotected despite the fact that its solids level is less than 10,000 mg/1; if the aquifer is oil or mineral producing; if the aquifer is located at a depth that would made recovery of drinking water uneconomical; and if the aquifer is already contaminated. However, the individual states have to demonstrate this to the satisfaction of the EPA administrator. If none of the conditions holds, construction, monitoring operating and reporting requirements will be necessary to receive a permit. The economic impact of these requirements is uncertain but could involve significant economic and time expenditures. Permits do not have to be renewed and one permit can serve for a whole field of wells. However, the permit application requires a significant amount of information and will take a considerable amount of time and expense to fill out. Solution mining operations also will incur extra expenses establishing initial water quality profiles and maintaining monitoring wells

  10. Behind the Final Grade in Hybrid v. Traditional Courses: Comparing Student Performance by Assessment Type, Core Competency, and Course Objective

    Science.gov (United States)

    Bain, Lisa Z.

    2012-01-01

    There are many different delivery methods used by institutions of higher education. These include traditional, hybrid, and online course offerings. The comparisons of these typically use final grade as the measure of student performance. This research study looks behind the final grade and compares student performance by assessment type, core…

  11. Final environmental statement for La Crosse Boiling Water Reactor: (Docket No. 50-409)

    International Nuclear Information System (INIS)

    1980-04-01

    A Final Environmental Statement for the Dairyland Power Cooperative for the conversion from a provisional to a full-term operating license for the La Crosse Boiling Water Reactor, located in Vernon County, Wisconsin, has been prepared by the Office of Nuclear Reactor Regulation. This statement provides a summary of environmental impacts and adverse effects of operation of the facility, and a consideration of principal alternatives (including removal of LACBWR from service, alternative cooling methodology, and alternative waste treatment systems). Also included are the comments of federal, state, and local governmental agencies and certain non-governmental organizations on the La Crosse Draft Environmental Statement and staff responses to these comments. After weighing environmental, economic, and technical benefits and liabilities, the staff recommends conversion from a provisional operating license to a full-term operating license, subject to specific environmental protection limitations. An operational monitoring program shall be established as part of the Environmental Technical Specifications. 64 refs., 20 figs., 48 tabs

  12. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  13. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.

    Science.gov (United States)

    Noya, Isabel; Aldea, Xavier; Gasol, Carles M; González-García, Sara; Amores, Maria José; Colón, Joan; Ponsá, Sergio; Roman, Isabel; Rubio, Miguel A; Casas, Eudald; Moreira, María Teresa; Boschmonart-Rives, Jesús

    2016-04-15

    A systematic tool to assess the Carbon Footprint (CF) and Water Footprint (WF) of pork production companies was developed and applied to representative Catalan companies. To do so, a cradle-to-gate environmental assessment was carried out by means of the LCA methodology, taking into account all the stages involved in the pork chain, from feed production to the processing of final products, ready for distribution. In this approach, the environmental results are reported based on eight different functional units (FUs) according to the main pork products obtained. With the aim of ensuring the reliability of the results and facilitating the comparison with other available reports, the Product Category Rules (PCR) for Catalan pork sector were also defined as a basis for calculations. The characterization results show fodder production as the main contributor to the global environmental burdens, with contributions higher than 76% regardless the environmental indicator or the life cycle stage considered, which is in agreement with other published data. In contrast, the results in terms of CF and WF lay above the range of values reported elsewhere. However, major discrepancies are mainly due to the differences in the co-products allocation criteria. In this sense, economic/physical allocation and/or system expansion have been mostly considered in literature. In contrast, no allocation was considered appropriate in this study, according to the characteristics of the industries and products under assessment; thus, the major impacts fall on the main product, which derives on comparatively higher environmental burdens. Finally, due to the relevance of fodder production in the overall impact assessment results, strategies to reduce greenhouse gases (GHG) emissions as well as water use associated to this stage were proposed in the pork supply chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.

    2014-01-01

    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  15. Relationship between push phase and final race time in skeleton performance.

    Science.gov (United States)

    Zanoletti, Costanza; La Torre, Antonio; Merati, Giampiero; Rampinini, Ermanno; Impellizzeri, Franco M

    2006-08-01

    The aim of this study was to examine the relationship between push-time and final race time in skeleton participants during a series of major international competitions to determine the importance of the push phase in skeleton performance. Correlations were computed from the first and second heat split data measured during 24 men and 24 women skeleton competitions. Body mass, height, age, and years of experience of the first 30 men and women athletes of the skeleton, bobsleigh and luge 2003-2004 World Cup ranking were used for the comparison between sliding sports. Moderate but significant correlations (p push-time and final race time in men (r(mean) = 0.48) and women (r(mean) = 0.63). No correlations were found between changes in the individual push-time between the first and second heat with the corresponding changes in final race time. The bobsleigh sliders are heavier than the athletes of the other sliding disciplines. Luge athletes have more experience and are younger than bobsleigh and skeleton sliders. The results of this study suggest that a fast push phase is a prerequisite to success in competition and confirms that the selection of skeleton athletes based on the ability to accelerate to a maximum speed quickly could be valid. However, a good or improved push-time does not ensure a placement in the top finishing positions. On the basis of these results, we suggest that strength and power training is necessary to maintain a short push-time but additional physical training aimed to enhance the push phase might not reflect performance improvements. The recruitment of younger athletes and an increase of youthful competitive activity may be another effective way to reach international competitive results.

  16. Decommissioning of the MTR-605 process water building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Browder, J.H.; Wills, E.L.

    1985-01-01

    Decontamination and decommissioning (D and D) of the unused radioactively contaminated portions of the MTR-605 building at the Test Reactor Area of the Idaho National Engineering Laboratory has been completed; this final report describes the D and D project. The building is a two-story concrete structure that was used to house piping systems to channel and control coolant water flow for the Materials Testing Reactor (MTR), a 40 MW (thermal) light water test reactor that was operated from 1952 until 1970 and then deactivated. D and D project objectives were to reduce potential environmental and radioactive contamination hazards to levels as low a reasonably achievable. Primary tasks of the D and D project were: to remove contaminated piping (about 400 linear ft of 36- and 30-in.-dia stainless steel pipe) and valves from the primary coolant pipe tunnels, to remove a primary coolant pump and piping, and to remove the three 8-ft-dia by 25-ft-long evaporators from the building second floor

  17. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  18. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  19. Scientific-technical cooperation with Russia. Transient analyses for alternative types of water-cooled reactors. Final report

    International Nuclear Information System (INIS)

    Rohde, Ulrich; Pivovarov, Valeri; Matveev, Yurij

    2010-12-01

    The recently developed multi-group version DYN3D-MG of the reactor dynamics code DYN3D has been qualified for applications to water-cooled reactor concepts different from industrial PWR and BWR. An extended DYN3D version was applied to the graphite-moderated pressure tube reactor EGP-6 (NPP Bilibino) and conceptual design studies of an advanced Boiling Water Reactor with reduced moderation (RMWR) as well as the RUTA-70 reactor for low temperature heat supply. Concerning the RUTA reactor, safe heat removal by natural circulation of the coolant at low pressure has to be shown. For the corresponding validation of thermo-hydraulic system codes like ATHLET and RELAP5, experiments on flashing-induced natural circulation instabilities performed at the CIRCUS test facility at the TU Delft were simulated using the RELAP5 code. For the application to alternative water-cooled reactors, DYN3D model extensions and modifications were implemented, in particular adaptations of heat conduction and heat transfer models. Performing code-to-code comparisons with the Russian fine-mesh neutron diffusion code ACADEM contributed to the verification of DYN3D-MG. Validation has been performed by calculating reactor dynamics experiments at the NPP Bilibino. For the reactors EGP-6, RMWR and RUTA, analyses of various protected and unprotected control rod withdrawal and ejection transients were performed. The beyond design basis accident (BDBA) scenario ''Coast-down of all main coolant pumps at nominal power without scram'' for the RUTA reactor was analyzed using the code complexes DYN3D/ATHLET and DYN3D/RELAP5. It was shown, that the reactor passes over to a save asymptotic state at reduced power with coolant natural circulation. Analyzing the BDBA ''Unprotected withdrawal of a control rod group'' for the RMWR, the safety against Departure from Nucleate Boiling (DNB) could not be shown with the necessary confidence. Finally, conclusions have been drawn

  20. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  1. A pilot solar water disinfecting system: performance analysis and testing

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, T.S.; El-Ghetany, H.H. [Tohoku University, Sendai (Japan). Dept. of Aeronautics and Space Engineering

    2002-07-01

    In most countries, contaminated water is the major cause of most water-borne diseases. Disinfection of water may be accomplished by a number of different physical-chemical treatments including direct application of thermal energy, chemical and filtration techniques. Solar energy also can be used effectively in this field because inactivation of microorganisms is done either by heating water to a disinfecting temperature or by exposing it to ultraviolet solar radiation. A pilot solar system for disinfecting contaminated water is designed, constructed and tested. Investigations are carried out to evaluate the performance of a wooden hot box solar facility as a solar disinfectant. Experimental data show that solar energy is viable for the disinfection process. A solar radiation model is presented and compared with the experimental data. A mathematical model of the solar disinfectant is also presented. The governing equations are solved numerically via the fourth-order Runge-Kutta method. The effects of environmental conditions (ambient temperature, wind speed, solar radiation, etc.) on the performance of the solar disinfectant are examined. Results showed that the system is affected by ambient temperature, wind speed, ultraviolet solar radiation intensity, the turbidity of the water, the quantity of water exposed, the contact area between the transparent water container in the solar disinfectant and the absorber plate as well as the geometrical parameters of the system. It is pointed out that for partially cloudy conditions with a low ambient temperature and high wind speeds, the thermal efficiency of the solar disinfectant is at a minimum. The use of solar energy for the disinfection process will increase the productivity of the system while completely eliminating the coliform group bacteria at the same time. (author)

  2. Flow in water-intake pump bays: A guide for utility engineers. Final report

    International Nuclear Information System (INIS)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how the vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes

  3. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Science.gov (United States)

    2012-02-28

    ... water conservation and market reallocation elements. The plan elements include projects and actions... Conservation (agricultural water and municipal/ domestic conservation); and 7. Market-Based Reallocation of Water Resources (institutional improvements to facilitate market-based water transfers). Public...

  4. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  5. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  6. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reed, John; Fanselow, Dan; Abbas, Charles; Sammons, Rhea; Kinchin, Christopher

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  7. Evaluation of PWR steam generator water hammer. Final technical report, June 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Block, J.A.; Crowley, C.J.; Rothe, P.H.; Wallis, G.B.; Young, L.R.

    1977-05-01

    An investigation of waterhammer in the main feedwater piping of PWR steam generators due to water slugs formed in the steam generator feedring is reported. The relevant evidence from PWR operation and testing is compiled and summarized. The state-of-the-art of analysis of related phenomena is reviewed. Original exploratory modeling experiments at 1 / 10 and 1 / 4 scale are reported. Bounding analyses of the behavior are performed and several key phenomena have been identified for the first time. Recommendations to the Nuclear Regulatory Commission are made

  8. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  9. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  10. Operating performance of the prototype heavy water reactor Fugen

    International Nuclear Information System (INIS)

    1984-01-01

    Since the full scale operation was started in March, 1979, the ATR Fugen power station has been verifying the performance and reliability of the machinery and equipment, uranium-plutonium mixed oxide fuel and so on, and obtaining the technical prospect for putting ATRs in practical use by accumulating operation and maintenance techniques, through about five years of operation. In this report, the operational results of the Fugen power station are described. Fugen is a heavy water-moderated, boiling light water-cooled, pressure tube type reactor with 165 MWe output. As of the end of March, 1984, the total generated electric power was about 4.3 billion kWh, and the operation time was about 27,000 hours. The mean capacity ratio reached 58.8%. During the operation period, troubles including plant shutdown occurred eight times, but generally the performance and reliability of the machinery and equipment have been good. 580 fuels including 284 MOX fuels have been charged, but fuel breaking did not occur at all. The consumption of heavy water and the leak of tritium did not cause problem. The management of the core and fuel, the management of maintenance, the quality control of cooling water and heavy water, radiation control and the management of wastes are reported. (Kako, I.)

  11. 7X performance results - final report : ASCI Red vs Red Storm.

    Energy Technology Data Exchange (ETDEWEB)

    Dinge, Dennis C. (Cray Inc., Albuquerque, NM); Davis, Michael E. (Cray Inc., Albuquerque, NM); Haskell, Karen H.; Ballance, Robert A.; Gardiner, Thomas Anthony; Stevenson, Joel O.; Noe, John P.

    2011-04-01

    The goal of the 7X performance testing was to assure Sandia National Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its performance requirements which were defined as a comparison between ASCI Red and Red Storm. Our approach was to identify one or more problems for each application in the 7X suite, run those problems at multiple processor sizes in the capability computing range, and compare the results between ASCI Red and Red Storm. The first part of this report describes the two computer systems, the applications in the 7X suite, the test problems, and the results of the performance tests on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had the opportunity to run the test problems in both single-core mode and dual-core mode and the second part of this report describes those results. Finally, we reflect on lessons learned in undertaking a major head-to-head benchmark comparison.

  12. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole

  13. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.

    2012-01-15

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  14. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  15. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    International Nuclear Information System (INIS)

    Annanmaeki, M.; Turtiainen, T.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ( 222 Rn), uranium ( 238,234 U), radium ( 226 , 228 Ra), lead ( 210 Pb) and polonium ( 210 Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 μSv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong acidic cation exchange resins

  16. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [eds.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ({sup 222}Rn), uranium ({sup 238,234}U), radium ({sup 226}, {sup 228}Ra), lead ({sup 210}Pb) and polonium ({sup 210}Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 {mu}Sv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong

  17. Risk assessment for produced water discharges to Louisiana open bays. Final report

    International Nuclear Information System (INIS)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-01-01

    The US Department of Energy (USDOE) has a program of research in the environmental aspects of oil and gas extraction. This sampling project will characterize the environmental impacts associated with the discharge of naturally occurring radioactive materials (NORM), metals and organics in produced water. This report is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the USDOE. These assessments are being coordinated with the field study, using the collected data to perform human health and ecological risk assessments. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the development and use of appropriate discharge practices. The initial human health and ecological risk assessments consist of conservative screening analyses meant to identify potentially important contaminants, and to eliminate others from further consideration. More quantitative assessments were done for contaminants identified, in the screening analysis, as being of potential concern. Section 2 gives an overview of human health and ecological risk assessment to help put the analyses presented here in perspective. Section 3 provides the hazard assessment portion of the risk assessment, and identifies the important receptors and pathways of concern. Section 3 also outlines the approach taken to the risk assessments presented in the rest of the report. The remaining sections (4 through 9) present the human health and ecological risk assessments for discharges of produced water to open bays in Louisiana

  18. Final hazard classification for N basin water filtration and sediment relocation operations

    International Nuclear Information System (INIS)

    Pisarcik, D.J.; Kretzschmar, S.P.

    1996-02-01

    This document provides an auditable safety analysis and hazard classification for the filtration of basin water and the relocation of 105-N basin solids to the North Cask Pit within the basin complex. This report assesses the operation of the Water Filtration System and the Remotely Operated Sediment Extraction Equipment (ROSEE). These activities have an activity hazard classification of radiological. Inventories of potentially releasable nonradioactive hazardous materials are far below the reportable quantities of 40 CFR 302. No controls are required to maintain the releasable inventories of these materials below the reportable quantities. Descriptive material is included to provide a general understanding of the water filtration and sediment relocation processes. All equipment will be operated as described in work instructions and/or applicable procedures. Special controls associated with these activities are as follows: (1) A leak inspection of the ROSEE system shall be performed at least once every 5-hour period of sediment relocation operation. (2) A berm must be in place around the North Cask Pit to redirect a potential abovewater ROSEE system leak back to the basin

  19. Management of water hyacinth: Final meeting and international conference. Working paper submitted by the Regional Coordinator

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Final Meeting. This meeting will essentially make a terminal review of the project and register final records of work done on the various aspects, such as: - biology of the plant; - biological control; - biogas; - wastewater treatment; - papers and boards; - integrated systems, etc. We should have at the meeting a complete account of the work done in the project under each of the above headings. For example, under 'biogas' we should prepare one consolidated account of work carried out in all the three participating countries rather than individual country reports. Likewise on 'papers and boards', and the other items. To enable preparation of reports in this form there should naturally be prior consultations and contacts among the concerned investigators by correspondence and, if necessary, personal visits. These reports will then be edited and compiled by the Regional Coordinator in the form of a book or monograph on the Management of Water Hyacinth project as a whole. Contributors to chapters will be cited. International Conference. Independent of the consolidated reports, national coordinators may prepare papers for presentation at the proposed international conference. These papers could be prepared m the usual form and style for publication in international scientific journals. Although several papers could be prepared out of work done by us, we may consider the desirability of limiting the number, in order to give adequate opportunities for the other invited participants to the conference. There would be no bar on publication of these scientific papers after the conference in appropriate journals irrespective of whether a separate volume on proceedings of the conference is brought out or not. India would be happy to host the terminal review meeting to be followed by the conference. The likely period would be last week of January to first week in February, 1983. (author)

  20. Evaluation of the Demand Response Performance of Electric Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chassin, Forrest S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  1. Reuse of drainage water in the Nile Delta; monitoring, modelling and analysis; final report Reuse of Drainage Water Project

    NARCIS (Netherlands)

    Staring Centrum, Instituut voor Onderzoek van het LandelijkGebied

    1995-01-01

    The effects of reusing drainage water have been evaluated and other options to increase the water utilization rate in Egypt explored. The results are an operational network for monitoring drainage water discharges and salinity along the major drains, a database for monitored drainage water

  2. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  3. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  5. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Hernandez-Davila, V.M.; Gallego, E.; Lorente, A.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  6. Neutron shielding performance of water-extended polyester

    International Nuclear Information System (INIS)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M.; Vega Carrillo, H.R.; Gallegoc, E.; Lorentec, A.; Hernandez-Davila, V.M.

    2006-01-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (M.C.N.P. code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a 252 Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  7. Neutron shielding performance of water-extended polyester

    Energy Technology Data Exchange (ETDEWEB)

    Vega Carrillo, H.R.; Manzanares-Acuna, E.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Nuclear Studies (Mexico); Vega Carrillo, H.R.; Hernandez-Davila, V.M. [Zacatecas Univ. Autonoma, Electric Engineering Academic Units (Mexico); Gallego, E.; Lorente, A. [Madrid Univ. Politecnica, cNuclear Engineering Department (Mexico)

    2006-07-01

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester (WEP) was carried out. Materials with low atomic number are predominantly used for neutron shielding because these materials effectively attenuate neutrons, mainly through elastic and inelastic collisions. In addition to neutron attenuation properties, other desirable properties for neutron shielding materials include mechanical strength, stability, low cost, and ease of handling. During the selection of materials to design a neutron shield, prompt gamma production as well as radionuclide induced by neutron activation must be considered. In this investigation the Monte Carlo method (MCNP code) was used to evaluate the performance of a water-extended polyester shield designed for the transportation, storage, and use of a {sup 252}Cf isotopic neutron source, for comparison the calculations were extended to water shielding, the bare source in vacuum and in air. (authors)

  8. Performance confirmation operation of water environment control facility

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Tomita, Kenji; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Hanawa, Hiroshi; Kanno, Masaru; Sakuta, Yoshiyuki

    2015-09-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. The material irradiation test facility is used for IASCC study, and consists of mainly three equipments. This report described performance operating test of the water environmental control facilities for IASCC study carried out 2013 fiscal year. (author)

  9. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  10. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Thomas [Desert Research Institute; Minor, Timothy [Desert Research Institute; Pohll, Gregory [Desert Research Institute

    2013-07-22

    Phase I, in which the hydrologic framework was investigated and the development initiated. Phase II concentrates on practical implementation of the earlier work but emphasizes applications to the hydrology of the Lake Tahoe basin. Phase 1 efforts have been refined and extended by creating a toolset for geographic information systems (GIS) that is usable for disparate types of geospatial and geo-referenced data. The toolset is intended to serve multiple users for a variety of applications. The web portal for internet access to hydrologic and remotely sensed product data, prototyped in Phase I, has been significantly enhanced. The portal provides high performance access to LANDSAT-derived data using techniques developed during the course of the project. The portal is interactive, and supports the geo-referenced display of hydrologic information derived from remotely sensed data, such as various vegetative indices used to calculate water consumption. The platform can serve both internal and external constituencies using inter-operating infrastructure that spans both sides of the DRI firewall. The platform is intended grow its supported data assets and to serve as a template for replication to other geographic areas. An unanticipated development during the project was the use of ArcGIS software on a new computer system, called the IBM PureSytems, and the parallel use of the systems for faster, more efficient image processing. Additional data, independent of the portal, was collected within the Sagehen basin and provides detailed information regarding the processes that control hydrologic responses within mountain watersheds. The newly collected data include elevation, evapotranspiration, energy balance and remotely sensed snow-pack data. A Lake Tahoe basin hydrologic model has been developed, in part to help predict the hydrologic impacts of climate change. The model couples both the surface and subsurface hydrology, with the two components having been independently

  11. Towards the final MRPC design. Performance test with heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Deppner, Ingo; Herrmann, Norbert [Physikalisches Institut Uni. Heidelberg, Heidelberg (Germany)

    2015-07-01

    The Compressed Baryonic Matter spectrometer (CBM) is a future heavy ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident energies between 2 and 35 AGeV will be a 120 m{sup 2} large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1 kHz/cm{sup 2} and 25 kHz/cm{sup 2} depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 4 different counter types called MRPC1 - MRPC4. In order to elaborate the final MRPC design of these counters a heavy ion test beam time was performed at GSI. In this contribution we present performance test results of 2 different MRPC3 full size prototypes developed at Heidelberg University and Tsinghua University, Beijing.

  12. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    Science.gov (United States)

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  13. Performance measurement of the gas tax and public transit funds : final report

    International Nuclear Information System (INIS)

    2007-01-01

    Federal funding for the gas tax fund and public transit fund are provided through Infrastructure Canada for municipal infrastructure across Canada in a broad range of municipal service projects. In order to identify appropriate outcomes that would meet reporting requirements for the gas tax fund and public transit fund, this report outlined a performance measurement approach that would allow for the reporting of projects under both funds and provide a structured methodology for multiple year analysis of benefits. The report discussed the performance measures process review and outcomes approach logic model. It also provided an outline of information sourcing strategies including an overview of the project types and expenditures; information sourcing strategy; typical municipal information sources by project type; performance measurement framework assumptions and limitations; and modeling of outcomes from outputs. Conclusions and recommendations were also offered. It was concluded that based on a comprehensive review of ancillary benefits and outcomes of various historic funding programs, there are 3 foundational outcomes that should be considered to assess all initial program outcomes. These include cleaner air, cleaner water and reduced greenhouse gas emissions. tabs., figs

  14. Combined Space and Water Heating: Next Steps to Improved Performance

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, Minneapolis, MN (United States)

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  15. Cooling performance of R510A in domestic water purifiers

    International Nuclear Information System (INIS)

    Park, Ki Jung; Lee, Yo Han; Jung, Dong Soo

    2010-01-01

    Cooling performance of R510A is examined both numerically and experimentally in an effort to replace HFC134a in the refrigeration system of domestic water purifiers. Although the use of HFC134a is currently dominant, it is being phased out in Europe and most developed countries due to its high potential contribution to global warming. To solve this problem, cycle simulation and experimental measurements are conducted with a new refrigerant mixture of 88%RE170/12%R600a using actual domestic water purifiers. This mixture has been recently numbered and listed as R510A by ASHRAE. Test results show that, due to the small internal volume of the refrigeration system of the domestic water purifiers, system performance with R510A is greatly influenced by the amount of charge. With the optimum charge amount of 20 to 21 g, approximately 50% that of HFC134a, the energy consumption of R510A is 22.3% lower than that of HFC134a. The compressor discharge temperature of R510A is 3.7 .deg. C lower than that of HFC134a at the optimum charge. Overall, R510A, a new, long term, and environmentally safe refrigerant, is a good alternative for HFC134a. Furthermore, it requires only minor changes in the refrigeration system of the domestic water purifiers

  16. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  18. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  19. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  20. Water desalination price from recent performances: Modelling, simulation and analysis

    International Nuclear Information System (INIS)

    Metaiche, M.; Kettab, A.

    2005-01-01

    The subject of the present article is the technical simulation of seawater desalination, by a one stage reverse osmosis system, the objectives of which are the recent valuation of cost price through the use of new membrane and permeator performances, the use of new means of simulation and modelling of desalination parameters, and show the main parameters influencing the cost price. We have taken as the simulation example the Seawater Desalting centre of Djannet (Boumerdes, Algeria). The present performances allow water desalting at a price of 0.5 $/m 3 , which is an interesting and promising price, corresponding with the very acceptable water product quality, in the order of 269 ppm. It is important to run the desalting systems by reverse osmosis under high pressure, resulting in further decrease of the desalting cost and the production of good quality water. Aberration in choice of functioning conditions produces high prices and unacceptable quality. However there exists the possibility of decreasing the price by decreasing the requirement on the product quality. The seawater temperature has an effect on the cost price and quality. The installation of big desalting centres, contributes to the decrease in prices. A very important, long and tedious calculation is effected, which is impossible to conduct without programming and informatics tools. The use of the simulation model has been much efficient in the design of desalination centres that can perform at very improved prices. (author)

  1. Performance of a directly-coupled PV water pumping system

    International Nuclear Information System (INIS)

    Mokeddem, Abdelmalek; Midoun, Abdelhamid; Kadri, D.; Hiadsi, Said; Raja, Iftikhar A.

    2011-01-01

    Highlights: → Directly coupled PV water pumping system installed and performance studied. → Configured for two static heads, operate without electronic control and auxiliary power. → The system attains steady state soon after any abrupt change. → Cost effective and useful for low head communicating wells system. - Abstract: This paper describes the experimental study carried out to investigate the performance of a simple, directly coupled dc photovoltaic (PV) powered water pumping system. The system comprises of a 1.5 kWp PV array, dc motor and a centrifugal pump. The experiment was conducted over a period of 4 months and the system performance was monitored under different climatic conditions and varying solar irradiance with two static head configurations. Although the motor-pump efficiency did not exceed 30%, which is typical for directly-coupled photovoltaic pumping systems, such a system is clearly suitable for low head irrigation in the remote areas, not connected to the national grid and where access to water comes as first priority issue than access to technology. The system operates without battery and complex electronic control, therefore not only the initial cost is low but also maintenance, repairing and replacement cost can be saved. The study showed that directly coupled system attains steady state soon after any abrupt change.

  2. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL's Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form's chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs

  3. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  4. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  5. 77 FR 17082 - Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters: Final...

    Science.gov (United States)

    2012-03-23

    ... standard will be used to approve ballast water management methods that are effective in preventing or reducing the introduction of nonindigenous species via discharged ballast water into waters of the United....regulations.gov on or before April 23, 2012 or reach the Docket Management Facility by that date. ADDRESSES...

  6. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  7. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    Science.gov (United States)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  8. Effect of drinking water temperature on water intake and performance of dairy calves.

    Science.gov (United States)

    Huuskonen, A; Tuomisto, L; Kauppinen, R

    2011-05-01

    Very limited information is available on the effects of drinking water temperature on dairy calves. Therefore, the present experiment was designed to study the effects on performance, health, and water consumption of dairy calves offered drinking water either warm (16 to 18 °C) or cold (6 to 8 °C). The calves (60 calves/treatment) were housed in an insulated barn in pens (3.0 × 3.5m; 5 calves in each) providing 2.1m(2)/calf. During the experimental period (20 to 195 d of age), the calves had free access to water from an open water bowl (depth 80 mm, diameter 220 mm, 2-L capacity, 1 bowl/pen). During the preweaning period (20 to 75 d of age), all calves received milk replacer (7.5L/calf daily) and had free access to commercial starter, grass silage, and hay. During the postweaning period (75 to 195 d), the weaned calves had free access to grass silage and hay and were given 3 kg/d (air-dry basis) of a commercial concentrate mixture. During the preweaning period, the water intake of the calves offered warm water was 47% higher than that of the calves offered cold water. Water intake in both treatments increased rapidly during weaning and for a few days following weaning. At 180 to 195 d of age, the calves consumed approximately 18 to 20 L of water daily. Calves offered warm water drank 7 and 8% more water during the postweaning period and overall during the experimental period, respectively, compared with those offered cold water. No treatment differences were observed in dry matter or energy intakes, body weight gains, or feed conversion rates. Furthermore, total serum IgG concentrations of the calves did not differ during the preweaning or postweaning periods. Dairy calves consumed more warm than cold water, but the increase in water intake did not influence feed intake, body weight gain, or health parameters. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  10. Evaluation of heat exchange performance for primary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Nakagawa, Shigeaki

    2006-01-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30 MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the primary pressurized water cooler (PPWC) and the intermediate heat exchanger (IHX). The heat exchangers in the primary cooling system are required the heat exchange performance to remove reactor generated heat 30 MW under the condition of reactor coolant outlet temperature 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the PPWC in the main cooling system was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that PPWC has the required heat exchange performance in the design. (author)

  11. Evaluation of heat exchange performance for secondary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Syuji; Saikusa, Akio; Oyama, Sunao; Nemoto, Takahiro; Hamamoto, Shinpei; Shinohara, Masanori; Isozaki, Minoru; Nakagawa, Shigeaki

    2006-02-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the intermediate heat exchanger (IHX) and the secondary pressurized water cooler (SPWC). The heat exchangers in the main cooling system are required the heat exchange performance to remove the reactor-generated-heat of 30MW under the condition of reactor coolant outlet temperature of 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance of the SPWC in the main cooling system was evaluated with the rise-to-power-up test and the in-service operation data. Moreover, evaluated value is compared with designed one, it is confirmed that the SPWC has required heat exchange performance. (author)

  12. Dual Water Systems: Characterization and Performance for Distribution of Reclaimed Water (WaterRF Report 4333)

    Science.gov (United States)

    The research tasks included: an inventory of cases where dual systems have been implemented; formulation of a protocol to identify claimed benefits, costs, and risks; collection of data (quantitative and anecdotal) to assess performance; display of data in the form of performance...

  13. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    International Nuclear Information System (INIS)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-01

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  14. Technologies and tools for high-performance distributed computing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karonis, Nicholas T.

    2000-05-01

    In this project we studied the practical use of the MPI message-passing interface in advanced distributed computing environments. We built on the existing software infrastructure provided by the Globus Toolkit{trademark}, the MPICH portable implementation of MPI, and the MPICH-G integration of MPICH with Globus. As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in message passing performance when compared to its predecessor MPICH-G and was based on superior software design principles resulting in a software base that was much easier to make the functional extensions and improvements we did. Using Globus services we replaced the default implementation of MPI's collective operations in MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to include client/server functionality from the MPI-2 standard [23] to facilitate remote visualization applications and, through the use of MPI idioms, MPICH-G2 provided application-level control of quality-of-service parameters as well as application-level discovery of underlying Grid-topology information. Finally, MPICH-G2 was successfully used in a number of applications including an award-winning record-setting computation in numerical relativity. In the sections that follow we describe in detail the accomplishments of this project, we present experimental results quantifying the performance improvements, and conclude with a discussion of our applications experiences. This project resulted in a significant increase in the utility of MPICH-G2.

  15. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    Energy Technology Data Exchange (ETDEWEB)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-15

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  16. 'Peripheric' pancreatic cysts: performance of CT scan, MRI and endoscopy according to final pathological examination.

    Science.gov (United States)

    Duconseil, P; Turrini, O; Ewald, J; Soussan, J; Sarran, A; Gasmi, M; Moutardier, V; Delpero, J R

    2015-06-01

    To assess the accuracy of pre-operative staging in patients with peripheral pancreatic cystic neoplasms (pPCNs). From 2005 to 2011, 148 patients underwent a pancreatectomy for pPCNs. The pre-operative examination methods of computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasonography (EUS) were compared for their ability to predict the suggested diagnosis accurately, and the definitive diagnosis was affirmed by pathological examination. A mural nodule was detected in 34 patients (23%): only 1 patient (3%) had an invasive pPCN at the final histological examination. A biopsy was performed in 79 patients (53%) during EUS: in 55 patients (70%), the biopsy could not conclude a diagnosis; the biopsy provided the correct and wrong diagnosis in 19 patients (24%) and 5 patients (6%), respectively. A correct diagnosis was affirmed by CT, EUS and pancreatic MRI in 60 (41%), 103 (74%) and 80 (86%) patients (when comparing EUS and MRI; P = 0.03), respectively. The positive predictive values (PPVs) of CT, EUS and MRI were 70%, 75% and 87%, respectively. Pancreatic MRI appears to be the most appropriate examination to diagnose pPCNs accurately. EUS alone had a poor PPV. Mural nodules in a PCN should not be considered an indisputable sign of pPCN invasiveness. © 2015 International Hepato-Pancreato-Biliary Association.

  17. Performance of water distribution systems in a pilot cooling tower

    International Nuclear Information System (INIS)

    Tognotti, L.; Giacomelli, A.; Zanelli, S.; Bellagamba, B.; Lotti, G.; Mattachini, F.

    1990-01-01

    An experimental study has been carried out on the water distribution system of a Pilot cooling tower of 160 m 3 /hr The performances of different industrial water distributors have been evaluated by changing the operative conditions of the pilot tower. In particular, the efficiency and the uniformity of the water distribution have been investigated and compared with the results obtained in a small-scale loop, in which the single nozzles were tested. Measurements in both systems, pilot tower and small scale loop, included the geometric characteristics of the jet umbrella by ensemble photography, the wetted zone by measuring the specific flowrate, the drop-size distribution and liquid concentration by high-speed photography. The results show that correlations exist between the nozzle behaviour in single and pilot tower configuration. The uniformity of water distribution in the pilot tower is strongly related to the nozzle installation pattern and to the operative conditions. Coalescence plays an important role on the drop size distribution in the pilot-tower. Comments upon the influence of these parameters on tower behaviour are also included

  18. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  19. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  20. High performance hydrophilic pervaporation composite membranes for water desalination

    KAUST Repository

    Liang, Bin

    2014-08-01

    A three-layer thin film nanofibrous pervaporation composite (TFNPVC) membrane was prepared by sequential deposition using electrospraying/electrospinning. The poly(vinyl alcohol) (PVA) top barrier layer was first electrosprayed on aluminum foil and its thickness can be easily controlled by adjusting the collecting time. Next a polyacrylonitrile (PAN) nanofibrous scaffold was deposited by electrospinning as a mid-layer support. A nonwoven PET layer is used to complete the composite membrane. The pervaporation desalination performance of TFNPVC membranes was tested using NaCl solutions at 100. Pa and at room temperature. The TFNPVC membranes show excellent desalination performance (high water flux and salt rejection >. 99.5%) for different salt concentrations with virtually no change in performance after 50. h of operation. © 2014 Elsevier B.V.

  1. Knowledge Base for Strainer Clogging - Modifications performed in different countries since 1992 - Final report

    International Nuclear Information System (INIS)

    2002-01-01

    performed mock-up studies. Full-scale tests were also performed in the condensation pool of some units. The experiment results were utilised for the optimisation in most BWRs of new strainer designs, and for the choice of new thermal insulation materials. The results obtained confirmed, mostly, the appropriate design of existing PWR strainers. PWR and Candu reactors related s studies and experiments are, however, still on-going in a few countries. The modifications of the ECCS and/or CSS suction strainers have been performed after the aforementioned exhaustive studies and experiments. The modifications have resulted in new strainer designs with significantly enlarged filtering area. Most of the new strainers have good self-cleaning properties. Relatively many of them have been provided with instrumentation for differential pressure measurement, with indications and alarms in the unit main control room, and at some units in the emergency control room. In some BWRs, the design encompasses the possibility to back-flush the strainers. Replacements of large fractions of the thermal insulation materials utilised on piping and other components inside the containment have taken place. The newly installed insulation materials vary both within and between countries. They are primarily RMI (Reflecting Metallic Insulation), nuclear grade fiberglass, mineral wool and calcium silicate. The same insulation material - for example mineral wool - can be installed differently in different countries, i.e. jacketed or encapsulated in cassettes. The results of the experiments have significantly contributed to the materials selected or installation methods. The administrative measures taken by plant owners include, e.g. a periodic cleanup of the suppression pool and the containment sumps, with the aim to minimise the presence of foreign materials, and the control and eventual betterment of the containment coating. Finally, several plants have revised their Emergency Operating Procedures (EOPs

  2. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  3. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  4. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  5. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  6. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  7. Exploratory study on pervaporation membranes for removal of water from water-crude oil emulsions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Study to explore the feasibility of removing water from oil/water (O/W) and water/oil (W/O) emulsions by means of pervaporation. Initial study involved preparation of simulated O/W and W/O emulsions prepared by mixing water and kerosene of various concentrations and stabilized by adding sodium lauryl sulfate. Preliminary experiments were conducted on 12 membranes fabricated from 2 different materials. One membrane of each type of material was chosen for further work based on the results of the preliminary tests. All experiments were carried out under 2 different downstream pressures and various temperatures.

  8. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stanley, D.; Nowak, Robert S.; Fenstermaker, Lynn, F.; Young, Michael,H.

    2007-11-30

    In order to anticipate the effects of global change on ecosystem function, it is essential that predictive relationships be established linking ecosystem function to global change scenarios. The Mojave Desert is of considerable interest with respect to global change. It contains the driest habitats in North America, and thus most closely approximates the world’s great arid deserts. In order to examine the effects of climate and land use changes, in 2001 we established a long-term manipulative global change experiment, called the Mojave Global Change Facility. Manipulations in this study include the potential effects of (1) increased summer rainfall (75 mm over three discrete 25 mm events), (2) increased nitrogen deposition (10 and 40 kg ha-1), and (3) the disturbance of biological N-fixing crusts . Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypotheses include (1) increased summer rainfall will significantly increase plant production through an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plant production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plant and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most

  9. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical

  10. 78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013

    Science.gov (United States)

    2013-08-22

    ... ambient water quality criteria for the protection of aquatic life from effects of ammonia in freshwater... ammonia to freshwater aquatic life. On December 30, 2009, EPA published draft national recommended water... freshwater are intended to protect aquatic life and do not address human health toxicity data. The water...

  11. Insulated Containers for Bottled Water (ICB)-Performance Evaluation

    Science.gov (United States)

    2017-04-21

    Plastic   Wrapped  Cordura  Rubberized traction pad  PE  Plastic   Liner  No  Yes  Yes  No  Safe Tie‐Down  Capability  Yes  Yes  Yes  No  Easy Access...mounted Soldiers. The ICBs are lighter, require less storage space, and have more effective tie-down characteristics than coolers often used to carry...bottled water in vehicles. The performance of the ICBs and a commonly used cooler was assessed to determine whether the easier-to-stow ICBs would be as

  12. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    International Nuclear Information System (INIS)

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  13. FY2014 FES (Fusion Energy Sciences) Theory & Simulation Performance Target, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoyong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Budny, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, Nikolai [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); McClenaghan, Joseph [Univ. of California, Irvine, CA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Spong, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Eric [Univ. of California, San Diego, CA (United States); Waltz, Ron [General Atomics, San Diego, CA (United States)

    2014-10-14

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfven modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.

  14. A water-quality monitoring network for Vallecitos Valley, Alameda County, California. Water-resources investigations (final)

    International Nuclear Information System (INIS)

    Farrar, C.D.

    1980-10-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring

  15. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    conditions which would impact on the long-term spent fuel integrity. Vacuum drying and hot gas recirculation drying are employed in preparation leading to dry storage. The drying process is of importance to the dry storage systems as it prevents the presence of any water remnants which could potentially facilitate some degradation mechanisms during storage. Temperature increase during drying has to be controlled to minimize the potential for hydride re-orientation. In addition to research on spent fuel assembly integrity, research activities on the behaviours of storage facility components including reinforced concrete, neutron absorbers used in storage racks and baskets, neutron shielding materials, metal gaskets, polymer seal, stainless steel and carbon steel are also being conducted. As a conclusion, it remains important to continue to study and share results regarding fuel and materials behaviour in storage. In particular, changes in fuel and material design, and the increase in discharge burnup require continued research on spent fuel performance in long- term storage and post-storage transportation.

  16. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    International Nuclear Information System (INIS)

    2012-01-01

    conditions which would impact on the long-term spent fuel integrity. Vacuum drying and hot gas recirculation drying are employed in preparation leading to dry storage. The drying process is of importance to the dry storage systems as it prevents the presence of any water remnants which could potentially facilitate some degradation mechanisms during storage. Temperature increase during drying has to be controlled to minimize the potential for hydride re-orientation. In addition to research on spent fuel assembly integrity, research activities on the behaviours of storage facility components including reinforced concrete, neutron absorbers used in storage racks and baskets, neutron shielding materials, metal gaskets, polymer seal, stainless steel and carbon steel are also being conducted. As a conclusion, it remains important to continue to study and share results regarding fuel and materials behaviour in storage. In particular, changes in fuel and material design, and the increase in discharge burnup require continued research on spent fuel performance in long- term storage and post-storage transportation.

  17. Accident source terms for Light-Water Nuclear Power Plants. Final report

    International Nuclear Information System (INIS)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it

  18. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  19. Ground-water elements of in situ leach mining of uranium. Final report

    International Nuclear Information System (INIS)

    Thompson, W.E.; Swarzenski, W.V.; Warner, D.L.; Rouse, G.E.; Carrington, O.F.; Pyrih, R.Z.

    1978-07-01

    This report provides methods to collect data and evaluates impacts concerning ground-water elements of production-scale leach mining of uranium. Two overlapping networks of monitor wells are designed to collect premining hydrogeologic and baseline water-quality data and to detect excursions of leaching fluids. The pre-mining data collection network consists of 24 wells completed into the ore-zone aquifer and the water-bearing units above and below it. The excursion-monitor network utilizes two rings of wells encircling the ore body and other wells strategically placed into other water-bearing units. The lateral excursion detection system is keyed to changes in water levels whereas the vertical excursion detection system is keyed to changes in water quality. Several ground-water restoration methods are evaluated. Mechanical and chemical restoration methods can significantly remove most introduced and mobilized chemicals. Natural geochemical mechanisms should be capable of causing water-quality improvement. Several water-quality constituents, i.e., ammonia, chloride, sulfate, may not be greatly affected by restoration efforts. Most mining and restoration activities should not greatly affect the availability or usefulness of ground water unless uncontrolled withdrawals from many sources occur. Disposal of leach mining wastes may prove a greater threat to the environment than the mining. Natural conditions and/or current state and Federal regulations limit the types of disposal methods that may be used

  20. An index approach to performance-based payments for water quality.

    Science.gov (United States)

    Maille, Peter; Collins, Alan R

    2012-05-30

    In this paper we describe elements of a field research project that presented farmers with economic incentives to control nitrate runoff. The approach used is novel in that payments are based on ambient water quality and water quantity produced by a watershed rather than proxies for water quality conservation. Also, payments are made based on water quality relative to a control watershed, and therefore, account for stochastic fluctuations in background nitrate levels. Finally, the program pays farmers as a group to elicit team behavior. We present our approach to modeling that allowed us to estimate prices for water and resulting payment levels. We then compare these preliminary estimates to the actual values recorded over 33 months of fieldwork. We find that our actual payments were 29% less than our preliminary estimates, due in part to the failure of our ecological model to estimate discharge accurately. Despite this shortfall, the program attracted the participation of 53% of the farmers in the watershed, and resulted in substantial nitrate abatement activity. Given this favorable response, we propose that research efforts focus on implementing field trials of group-level performance-based payments. Ideally these programs would be low risk and control for naturally occurring contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Science.gov (United States)

    An, Q.; Bai, Y. X.; Bi, X. J.; Cao, Z.; Chang, J. F.; Chen, G.; Chen, M. J.; Chen, S. M.; Chen, S. Z.; Chen, T. L.; Chen, X.; Chen, Y. T.; Cui, S. W.; Dai, B. Z.; Du, Q.; Danzengluobu; Feng, C. F.; Feng, S. H.; Gao, B.; Gao, S. Q.; Ge, M. M.; Gu, M. H.; Hao, X. J.; He, H. H.; Hou, C.; Hu, H. B.; Hu, X. B.; Huang, J.; Huang, W. P.; Jia, H. Y.; Jiang, K.; Liu, J.; Liu, J. L.; Liu, J. S.; Liu, S. B.; Liu, Y.; Liu, Y. N.; Li, Q. J.; Li, C.; Li, F.; Li, H. C.; Li, X. R.; Lu, H.; Lv, H. K.; Mao, Y. J.; Ma, L. L.; Ma, X. H.; Shao, J.; Shao, M.; Sheng, X. D.; Sun, G. X.; Sun, Z. B.; Tang, Z. B.; Wu, C. Y.; Wu, H. R.; Wu, Q.; Xiao, G.; Xu, Y.; Yang, Q. Y.; Yang, R.; Yao, Z. G.; You, X. H.; Yuan, A. F.; Zhang, B. K.; Zhang, H. M.; Zhang, S. R.; Zhang, S. S.; Zhang, X. Y.; Zhang, Y.; Zhang, L.; Zhai, L. M.; Zhao, J.; Zhao, L.; Zhao, Z. G.; Zha, M.; Zhou, B.; Zhu, F. R.; Zhu, K. J.; Zhuang, J.; Zuo, X.

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given.

  2. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  3. 2012 Gordon Research Conference on Water and Aqueous Solutions, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Amotz, Dor [Purdue Univ., West Lafayette, IN (United States)

    2012-08-17

    Understanding the fundamental principles governing the structure and dynamics of water - and particularly how water mediates chemical interactions and processes - continues to pose formidable challenges and yield abundant surprises. The focus of this Gordon Research Conference is on identifying key questions, describing emerging understandings, and unveiling surprising discoveries related to water and aqueous solutions. The talks and posters at this meeting will describe studies of water and its interactions with objects such as interfaces, channels, electrons, oils, ions, and proteins; probed using optical, electrical, and particle experiments, and described using classical, quantum, and multi-scale theories.

  4. Effect of blades number to performance of Savonius water turbine in water pipe

    Science.gov (United States)

    Hamzah, Imron; Prasetyo, Ari; Tjahjana, D. D. D. Prija; Hadi, Syamsul

    2018-02-01

    Savonius is usually known as a wind turbine that works efficiently at low wind speed. In this research, the Savonius turbine is proposed for a pico hydro power plant that is installed straightly on the 3-inch vertical pipeline of rainwater and household waste. The Savonius water turbine was designed with blade curvature angle of 70°, the aspect ratio of 1, turbine diameter of 82 mm, and endplate ratio of 1,1. The experimental study investigated the effect of blades number to the performance of Savonius turbine on various volume flow rate of water. Savonius turbine with three blades number generated the highest coefficient of performance of 0.23 on tip speed ratio of 1.7 compared to turbines with the number of other blades.

  5. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    Science.gov (United States)

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  6. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  7. Self-management support by final year nursing students: A correlational study of performance and person-related associated factors.

    Science.gov (United States)

    Duprez, Veerle; Beeckman, Dimitri; Verhaeghe, Sofie; Van Hecke, Ann

    2017-09-01

    Chronic conditions put a heavy burden on healthcare in every country. Supporting persons with a chronic illness to take an active role in the management of their condition is a core component in the Chronic Care Model. It implies confidence and good skills from professionals. To date, there is no evidence on final year nursing students' performance in supporting patients' self-management, nor on factors associated with this performance. To explore self-reported performance of supporting patients' self-management by final year nursing students, and person-related factors associated with this performance. A correlational multi-centre study of final year nursing students (N=256) from eight nursing schools. Students were recruited from a convenience sample of eight nursing schools. All final year students were invited to participate. Data were collected between January 2015 and May 2016 using self-administered validated questionnaires. Theoretical behavioural frameworks were used to select hypothesized associated factors for self-management support: self-efficacy to perform self-management support and socio-structural factors (Social Cognitive Theory); needs for autonomy, competence and relatedness, and patient-invested contingent self-esteem (Self-Determination Theory); and attitudes towards supporting patients' self-management (Theory of Planned Behaviour). Final year nursing students (N=256) reported an overall low level of performance in delivering self-management support during internship. Students lacked mainly competencies in collaborative goal setting and shared decision making. Students reported a significant gap between their confidence and their actual performance in self-management support (pLearning opportunities can be introduced in classroom activities and on internship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acidic deposition: State of science and technology. Report 15. Liming acidic surface waters. Final report

    International Nuclear Information System (INIS)

    Olem, H.; Thornelof, E.; Sandoy, S.; Schreiber, R.K.

    1990-09-01

    The document describes the science and technology of aquatic liming--a method for improving the water quality of acidic surface waters to restore or enhance fisheries. The report is a comprehensive compilation of years of research in North America and Europe by dozens of scientists. Several mitigation technologies--including those that have only been proposed--are critically evaluated along with the effects of liming on water chemistry and aquatic biota. Through these evaluations, the state of the science and technology of aquatic liming is identified for the reader. Whole-lake liming is now recognized as a valuable management tool for acidic surface waters and their fisheries. However, some liming technologies are considered experimental and will need further evaluation. Distinctions between technologies are included--as is the distinction between liming acidic surface waters and reducing acidifying emissions

  9. Optimizing the air flotation water treatment process. Final report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  10. Performance analysis of photovoltaic thermal (PVT) water collectors

    International Nuclear Information System (INIS)

    Fudholi, Ahmad; Sopian, Kamaruzzaman; Yazdi, Mohammad H.; Ruslan, Mohd Hafidz; Ibrahim, Adnan; Kazem, Hussein A.

    2014-01-01

    Highlights: • Performances analysis of PVT collector based on energy efficiencies. • New absorber designs of PVT collectors were presented. • Comparison present study with other absorber collector designs was presented. • High efficiencies were obtained for spiral flow absorber. - Abstract: The electrical and thermal performances of photovoltaic thermal (PVT) water collectors were determined under 500–800 W/m 2 solar radiation levels. At each solar radiation level, mass flow rates ranging from 0.011 kg/s to 0.041 kg/s were introduced. The PVT collectors were tested with respect to PV efficiency, thermal efficiency, and a combination of both (PVT efficiency). The results show that the spiral flow absorber exhibited the highest performance at a solar radiation level of 800 W/m 2 and mass flow rate of 0.041 kg/s. This absorber produced a PVT efficiency of 68.4%, a PV efficiency of 13.8%, and a thermal efficiency of 54.6%. It also produced a primary-energy saving efficiency ranging from 79% to 91% at a mass flow rate of 0.011–0.041 kg/s

  11. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  12. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  13. The numerical simulation of the performances of water rotors used in pipelines with the water baffle plates

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Burcin Deda [Pamukkale University, Kinikli (Turkmenistan)

    2014-11-15

    In this study, obtaining energy especially from large and medium sized pipelines used for drinking water, rain water, or even some used for waste water has been aimed. In line with this objective, it has been investigated how to increase the performance of the water rotors used in the pipelines in order to benefit optimally from the energy of the flowing fluid in pipe. Furthermore, in order to increase the performance of the water rotor used in pipelines, a water baffle plate has been placed in front of the water rotor. In this way, the effects of size parameters of the water rotor used in the pipeline in conjunction with the various design parameters of the water baffle plate on the power performance of rotor has been investigated. By comparing design parameters, the number of the water rotor blades has also been investigated. Optimization steps have been carried out with numerical results of the study supported by theoretical computation. For numerical optimization of the water rotor, both static and dynamic performances of rotor have been found. According to the optimization study, the maximum power performance values have been obtained from a power pipe unit which consists of a water rotor and a water baffle plate with (x{sub g} /r{sub r} = 0.1, y{sub g}/r{sub r} = 0.4, ve r{sub r}/r{sub p} = 0.4 ve α = 60 .deg. ) size ratios.

  14. The numerical simulation of the performances of water rotors used in pipelines with the water baffle plates

    International Nuclear Information System (INIS)

    Altan, Burcin Deda

    2014-01-01

    In this study, obtaining energy especially from large and medium sized pipelines used for drinking water, rain water, or even some used for waste water has been aimed. In line with this objective, it has been investigated how to increase the performance of the water rotors used in the pipelines in order to benefit optimally from the energy of the flowing fluid in pipe. Furthermore, in order to increase the performance of the water rotor used in pipelines, a water baffle plate has been placed in front of the water rotor. In this way, the effects of size parameters of the water rotor used in the pipeline in conjunction with the various design parameters of the water baffle plate on the power performance of rotor has been investigated. By comparing design parameters, the number of the water rotor blades has also been investigated. Optimization steps have been carried out with numerical results of the study supported by theoretical computation. For numerical optimization of the water rotor, both static and dynamic performances of rotor have been found. According to the optimization study, the maximum power performance values have been obtained from a power pipe unit which consists of a water rotor and a water baffle plate with (x g /r r = 0.1, y g /r r = 0.4, ve r r /r p = 0.4 ve α = 60 .deg. ) size ratios.

  15. Influence of year-on-year performance on final degree classification in a chiropractic master's degree program.

    Science.gov (United States)

    Dewhurst, Philip; Rix, Jacqueline; Newell, David

    2016-03-01

    We explored if any predictors of success could be identified from end-of-year grades in a chiropractic master's program and whether these grades could predict final-year grade performance and year-on-year performance. End-of-year average grades and module grades for a single cohort of students covering all academic results for years 1-4 of the 2013 graduating class were used for this analysis. Analysis consisted of within-year correlations of module grades with end-of-year average grades, linear regression models for continuous data, and logistic regression models for predicting final degree classifications. In year 1, 140 students were enrolled; 85.7% of students completed the program 4 years later. End-of-year average grades for years 1-3 were correlated (Pearson r values ranging from .75 to .87), but the end-of-year grades for years 1-3 were poorly correlated with clinic internship performance. In linear regression, several modules were predictive of end-of-year average grades for each year. For year 1, logistic regression showed that the modules Physiology and Pharmacology and Investigative Imaging were predictive of year 1 performance (odds ratio [OR] = 1.15 and 0.9, respectively). In year 3, the modules Anatomy and Histopathology 3 and Problem Solving were predictors of the difference between a pass/merit or distinction final degree classification (OR = 1.06 and 1.12, respectively). Early academic performance is weakly correlated with final-year clinic internship performance. The modules of Anatomy and Histopathology year 3 and Problem Solving year 3 emerged more consistently than other modules as being associated with final-year classifications.

  16. Emotional intelligence and academic performance in first and final year medical students: a cross-sectional study.

    Science.gov (United States)

    Chew, Boon How; Zain, Azhar Md; Hassan, Faezah

    2013-03-27

    Research on emotional intelligence (EI) suggests that it is associated with more pro-social behavior, better academic performance and improved empathy towards patients. In medical education and clinical practice, EI has been related to higher academic achievement and improved doctor-patient relationships. This study examined the effect of EI on academic performance in first- and final-year medical students in Malaysia. This was a cross-sectional study using an objectively-scored measure of EI, the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Academic performance of medical school students was measured using continuous assessment (CA) and final examination (FE) results. The first- and final-year students were invited to participate during their second semester. Students answered a paper-based demographic questionnaire and completed the online MSCEIT on their own. Relationships between the total MSCEIT score to academic performance were examined using multivariate analyses. A total of 163 (84 year one and 79 year five) medical students participated (response rate of 66.0%). The gender and ethnic distribution were representative of the student population. The total EI score was a predictor of good overall CA (OR 1.01), a negative predictor of poor result in overall CA (OR 0.97), a predictor of the good overall FE result (OR 1.07) and was significantly related to the final-year FE marks (adjusted R(2) = 0.43). Medical students who were more emotionally intelligent performed better in both the continuous assessments and the final professional examination. Therefore, it is possible that emotional skill development may enhance medical students' academic performance.

  17. A 5 year longitudinal study of water quality for final rinsing in the single chamber washer-disinfector with a reverse osmosis plant.

    Science.gov (United States)

    Uetera, Yushi; Kishii, Kozue; Yasuhara, Hiroshi; Kumada, Naohito; Moriya, Kyoji; Saito, Ryoichi; Okazaki, Mitsuhiro; Misawa, Yoshiki; Kawamura, Kunio

    2013-01-01

    RO systems or performing maintenance and periodical examination of the equipment. Reverse osmosis (RO) water is used for final rinsing in our washer-disinfector. The authors used the Ishikawa Fishbone diagram to clarify the critical points for optimizing RO water quality. There existed no measures to prevent contamination in the heat-labile RO water system. The storage tank was significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors occurred when a new water engineer took over the duty from his predecessor. There were neither standard operating procedures (SOPs) nor on-the-job training. The new water engineer had failed to disinfect the sampling port and water drainage system. Rothia mucilaginosa was cultured from the RO water. It is a resident in the oral cavity and upper respiratory tract. This implied the possible failure of sanitary procedures in the system maintenance. The Ishikawa Fishbone diagram was useful for this study. It suggests that water systems should be designed with plans for system maintenance taken into account. It also suggests that SOP and on-the job training are essential in order to avoid operator errors.

  18. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  19. Performance Assessment of Water Sectors : Methods and considerations for application

    NARCIS (Netherlands)

    Wieriks, M.

    2011-01-01

    With the rise of principles for water management in the 1990’s such as concepts as Integrated Water Resources Management (IWRM) and Integrated River Basin Management (IRBM), many countries have come to review their water policy and sectors. But how does one start in the assessment of a water sector

  20. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are

  1. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    International Nuclear Information System (INIS)

    1996-01-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings ' ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings.' Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  2. Performance Prediction for Large-Scale Nuclear Waste Repositories: Final Report

    International Nuclear Information System (INIS)

    Glassley, W E; Nitao, J J; Grant, W; Boulos, T N; Gokoffski, M O; Johnson, J W; Kercher, J R; Levatin, J A; Steefel, C I

    2001-01-01

    embodied in the code accurately represents the state-of-the-art in modeling these processes, and that the conceptualization of the models used in the simulations honors the primary processes that are controlling these systems. Application of the code to a wide range of important and strategic problems has been undertaken. Particularly significant are results obtained concerning the evolution of a potential high level nuclear waste repository at Yucca Mountain, Nevada. In these simulations, the results suggest that fluid movement and chemical changes will be such as to encourage solute transport around the sides of the waste emplacement tunnels, thus minimizing the potential for seepage of water and dissolved salts into the tunnels. The results also indicate that the short term response of the geological system to waste emplacement will be complex and rapid, and will be most readily detected below waste emplacement tunnels. A successful monitoring program of repository performance during the early stages of the operational period would thus benefit by coordinating design and execution of sampling strategies with a simulation tool such as NUFT-C. Such an approach would allow efficient and cost-effective sampling strategies, and would facilitate interpretation of what will surely be complex and massive data sets

  3. Do Work Placements Improve Final Year Academic Performance or Do High-Calibre Students Choose to Do Work Placements?

    Science.gov (United States)

    Jones, C. M.; Green, J. P.; Higson, H. E.

    2017-01-01

    This study investigates whether the completion of an optional sandwich work placement enhances student performance in final year examinations. Using Propensity Score Matching, our analysis departs from the literature by controlling for self-selection. Previous studies may have overestimated the impact of sandwich work placements on performance…

  4. Libraries of Middlesex, Final Performance Report for Library Services and Construction Act (LSCA) Title VI, Library Literacy Program.

    Science.gov (United States)

    Director, Elissa

    This final performance report for the Libraries of Middlesex literacy project begins with a section that compares actual accomplishments to the following objectives for 1992-93: (1) recruit and enroll at least 150 new volunteers in Basic Reading of English as a Second Language (ESL) tutor training; (2) have at least 125 volunteers successfully…

  5. EPA (Environmental Protection Agency) Method Study 12, cyanide in water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.; Britton, P.; Kroner, R.

    1984-05-01

    EPA Method Study 12, Cyanide in Water reports the results of a study by EMSL-Cincinnati for the parameters, Total Cyanide and Cyanides Amendable to Chlorination, present in water at microgram per liter levels. Four methods: pyridine-pyrazolone, pyridine-barbituric acid, electrode and Roberts-Jackson were used by 112 laboratories in Federal and State agencies, municipalities, universities, and the private/industrial sector. Sample concentrates were prepared in pairs with similar concentrations at each of three levels. Analysts diluted samples to volume with distilled and natural waters and analyzed them. Precision, accuracy, bias and the natural water interference were evaluated for each analytical method and comparisons were made between the four methods.

  6. 77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012

    Science.gov (United States)

    2012-05-22

    ...[supreg]. It is an insecticide, a molluscide, and is used to thin fruit in orchards. It is registered in... in water, with detections in approximately 50% of urban streams (U.S.G.S. 2006). EPA has previously...

  7. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  8. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  9. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  10. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  11. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  12. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  13. Orchestra Festival Evaluations: Interjudge Agreement and Relationships between Performance Categories and Final Ratings.

    Science.gov (United States)

    Garman, Barry R.; And Others

    1991-01-01

    Band, orchestra, and choir festival evaluations are a regular part of many secondary school music programs, and most such festivals engage adjudicators who rate each group's performance. Because music ensemble performance is complex and multi-dimensional, it does not lend itself readily to precise measurement; generally, musical performances are…

  14. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    Science.gov (United States)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  15. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-01

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  16. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  17. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  18. Market-Based Adult Lifelong Learning Performance Measures for Public Libraries Serving Lower Income and Majority-Minority Markets. Final Performance Report. September 1, 1996-August 31, 1999.

    Science.gov (United States)

    Koontz, Christine; Jue, Dean K.; Lance, Keith Curry

    This document is the final performance report for a Field Initiated Studies (FIS) project that addressed the need for a better assessment of public library services for adult lifelong learning in majority-minority and lower income library market areas. After stating the major educational problem addressed by the FIS project, the report lists the…

  19. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    International Nuclear Information System (INIS)

    Candy, J.

    2015-01-01

    flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue - the high-k electron energy flux - was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal ExB fluctuation could not compete with the large electron-scale linear growth rate, but the k x -mixing rate of the ExB advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal ExB velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions - certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas

  20. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J. [General Atomics, San Diego, CA (United States)

    2015-12-01

    flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the kx-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as

  1. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  2. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  3. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  4. Fate and effects of nearshore discharges of OCS produced waters. Volume 2. Technical report (Final)

    International Nuclear Information System (INIS)

    Rabalais, N.N.; McKee, B.A.; Reed, D.J.; Means, J.C.

    1991-06-01

    While the number of facilities that discharge OCS produced waters into coastal environments of Louisiana are few in number, they account for large volumes, individually and collectively. Of the 15 facilities which discharge OCS-generated produced water into coastal environments of Louisiana (as of February 1990), 10 discharges in seven areas were studied. The discharge volumes of the study areas range from 3,000 to 106,000/bbl.d. The receiving environments for these effluents are varied, but include the shallow, nearshore continental shelf; high energy, freshwater distributaries of the Mississippi River delta; and brackish and saline coastal environments with moderately to poorly flushed waters. All study areas are within the Mississippi River Deltaic Plain. The study expanded on the initial assessment of Boesch and Rabalais (1989a) with increased temporal and spatial studies of three areas, additional study sites including an abandoned discharge, and additional analytical and field observations

  5. The final effect of extraction system in the uranyl nitrate-water-diethyl ether

    International Nuclear Information System (INIS)

    Perez Luina, A.; Gutierrez Jodra, L.; Miro, A. R.

    1957-01-01

    The solute transfer of uranyl nitrate from diallylether to water has been studied in a spray column using water as dispersed phase and a direction of extraction from ether to water. The column is 102 cm. long has a diameter of 4. 7 cm. The entrances of the phases are 7 7 cm. apart. The rates of flow of both phases have been used as variables and the concentration of the continuous phase has been determined; at different heights. The curves of logarithm of concentration of the continuous phase vs , distance to interphase show the presence of a drop of concentration in the entrance of the continuous phase. This depends on the rates of flow of the phases. No effect in the entrance of the dispersed phase has been found. (Author)

  6. JGOFS IV. Subproject: natural radionuclides as tracers for particle dynamics in the water column. Final report

    International Nuclear Information System (INIS)

    Scholten, J.C.; Fietzke, J.; Mangini, A.; Stoffers, P.

    2000-01-01

    As part of the German JOINT GLOBAL OCEAN FLUX STUDY (JGOFS) the aim of the project was to investigate the particle dynamics in the water column, especially to estimate the trapping efficiencies of sediment traps deployed in the eastern North Atlantic (L1: 33 N 21 W; L2: 47 N 19.5 W; L3: 54,4 N 21,1 W; ESTOC: 29,07 N 15,25 W; OMEX: 49 N 12,5 W). This investigation was based on measurements of the distribution of natural radionuclides in the water column and in sediment traps. In the upper water column (≤1000 m) the 230 Th concentrations are similar at all locations investigated and a reversible scavenging model was able to describe the 230 Th distribution. In the deep water-column at L2 and L3 the 230 Th concentrations were significantly lower than predicted from the reversible scavenging model. The 230 Th concentrations here could be described by a scavenging-mixing model which assumes an advection of 230 Th depleted water masses and a rapid ventilation between 3 and 25 years. Based on two models, a mass balance for 230 Th and 231 Pa and a constant removal model, sediment trap efficiencies were calculated to be between 9% and 143%. The lowest efficiencies (9%-36%) were determined in the 500 m and 1000 m traps and no direct relation between water currents velocities and trapping biases were observed. The correction for trapping biases were found to be important for the understanding of the regional differences in the particle flux in the eastern north Atlantic. (orig.) [de

  7. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems

    Science.gov (United States)

    Rainbow trout Oncorhynchus mykiss performance and water quality were evaluated and compared within six replicated 9.5 cubic meter water recirculating aquaculture systems (WRAS) operated with and without ozone at various water exchange rates. Three separate studies were conducted: 1) low water exchan...

  8. Carbon-coated anatase for water purification - cyclic performance

    International Nuclear Information System (INIS)

    Inagaki, M.; Kojin, F.; Nonaka, M.; Toyoda, M.

    2005-01-01

    It was reported that carbon-coated anatase photo-catalysts were able to be prepared through a simple process and gave various advantages for water purification [1-6]. Carbon coating suppressed the phase transformation from anatase to rutile, resulting in a high crystallinity of anatase phase which was desirable for the decomposition of pollutants in water. A high adsorptivity was given to carbon-coated anatase, because of porous nature of carton layers [7]. In addition, these carbon-coated anatase powders could be fixed on the substrate by using organic binder because carbon layer interrupt the direct contact between photo-catalytic anatase particles and organic binder [1]. In the present work, cyclic performance of carbon-coated anatase was studied for the decomposition of a model pollutant, methylene blue (MB), in water by fixing the photo-catalyst particles on a tape. Carbon-coated anatase photo-catalysts were prepared by heating the powder mixtures of commercially available anatase (ST-01, Ishihara Sngyo Co., Ltd) with poly(vinyl alcohol) (PVA) in different mass ratios at 900 C in N 2 , gas flow. Carbon-coated anatase powders thus prepared were fixed on a scotch tape. Photo-catalytic activity was measured on these tapes by irradiating UV rays on one side of the tape in MB solution with 0.3x10 -5 mol/L concentration. Since carbon-coated anatase had a high adsorptivity for MB, all tapes were saturated their adsorption in a concentrated MB solution in advance. The rate constant k for MB photo-decomposition was determined from the linear relations of logarithm of relative concentration of MB in the solution, ln(c/c 0 ), with irradiation time t. In Fig. 1, changes in ln(c/c 0 ) of MB with irradiation time t were shown on two samples with different carbon contents, 8 and 2 mass%, with cycle number. Good linearity was obtained between ln(c/c 0 ) and t. The values of rate constant k calculated from these linear relations were plotted against carbon content of the

  9. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter

    2012-08-18

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  10. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  11. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-11-01

    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  12. Review and synthesis of historical Tampa Bay water quality data. Final technical report

    International Nuclear Information System (INIS)

    Vargo, G.; Weisberg, R.; Bendis, B.; Rutherford, E.H.

    1992-11-01

    The review and synthesis of historical water quality data was one of the first characterization projects administered by the Tampa Bay National Estuary Program (NEP). The objective of the project was to describe the physical, chemical and biological characteristics of Tampa Bay. The report examines the spatial and temporal trends from the acquired data for possible interrelationships and develops them statistically

  13. Real-time discriminatory sensors for water contamination events :LDRD 52595 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III (; ); Carrejo-Simpkins, Kimberly; Wheeler, David Roger; Adkins, Douglas Ray; Robinson, Alex Lockwood; Irwin, Adriane Nadine; Lewis, Patrick Raymond; Goodin, Andrew M.; Shelmidine, Gregory J.; Dirk, Shawn M.; Chambers, William Clayton; Mowry, Curtis Dale (1722 Micro-Total-Analytical Systems); Showalter, Steven Kedrick

    2005-10-01

    The gas-phase {mu}ChemLab{trademark} developed by Sandia can detect volatile organics and semi-volatiles organics via gas phase sampling . The goal of this three year Laboratory Directed Research and Development (LDRD) project was to adapt the components and concepts used by the {mu}ChemLab{trademark} system towards the analysis of water-borne chemicals of current concern. In essence, interfacing the gas-phase {mu}ChemLab{trademark} with water to bring the significant prior investment of Sandia and the advantages of microfabrication and portable analysis to a whole new world of important analytes. These include both chemical weapons agents and their hydrolysis products and disinfection by-products such as Trihalomethanes (THMs) and haloacetic acids (HAAs). THMs and HAAs are currently regulated by EPA due to health issues, yet water utilities do not have rapid on-site methods of detection that would allow them to adjust their processes quickly; protecting consumers, meeting water quality standards, and obeying regulations more easily and with greater confidence. This report documents the results, unique hardware and devices, and methods designed during the project toward the goal stated above. It also presents and discusses the portable field system to measure THMs developed in the course of this project.

  14. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    International Nuclear Information System (INIS)

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    1994-01-01

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado

  15. SEAFP cooling system design. Task M8 - water coolant option (final report)

    International Nuclear Information System (INIS)

    Stubley, P.; Natalizio, A.

    1994-01-01

    This report contains the ex-vessel portions of the outline designs for first wall, blanket and divertor cooling using water as the heat transport fluid. Equipment layout, key components and main system parameters are also described. (author). 7 tabs., 14 figs

  16. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  17. Comment Response on the Final Report: Peer Review of the Total System Performance Assessment-Viability Assessment (TSPA-VA)

    International Nuclear Information System (INIS)

    Pendleton, M. W.

    1999-01-01

    The Management and Operating Contractor established a Performance Assessment Peer Review Panel (hereinafter ''the Panel'') at the request of the U.S. Department of Energy Yucca Mountain Site Characterization Office. The objectives of the peer review were to provide: (1) A formal, independent evaluation and critique of Viability Assessment of a Repository at Yucca Mountain: Total System Performance Assessment, Volume 3 (DOE 1998a; hereinafter ''Total System Performance Assessment-Viability Assessment'') that was conducted in support of the Viability Assessment of a Repository at Yucca Mountain (DOE 1998b). (2) Suggestions for improvements as the U.S. Department of Energy prepares to develop the documentation for a Total System Performance Assessment to support a potential License Application. The Panel conducted a phased review over a two-year period to observe the development and, ultimately, to review the Total System Performance Assessment-Viability Assessment (DOE 1998a). During the development of the Total System Performance Assessment-Viability Assessment (DOE 1998a), the Panel submitted three Interim Reports (Whipple et al., 1997a, 1997b, and 1998) to the Management and Operating Contractor with recommendations and comments on the process models, model abstractions, and draft documentation for the Total System Performance Assessment-Viability Assessment (DOE 1998a). The Panel's Final Report Total System Performance Assessment Peer Review Panel (Whipple et al. 1999; hereinafter ''Final Report'') on the Total System Performance Assessment-Viability Assessment (DOE 1998a) is based primarily on the completed Total System Performance Assessment-Viability Assessment (DOE 1998a), the Total System Performance Assessment-Viability Assessment (TSPA-VA) Analyses Technical Basis Document (CRWMS M and O 1998), and the cited references. The Final Report (Whipple et al. 1999) includes the major points from the three Interim Reports (Whipple et al. 1997a, 1997b, and 1998

  18. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)

    High levels of water losses in distribution systems are the main challenge that water utilities in developing countries currently face. The water meter is an essential tool for both the utility and the customers to measure and monitor consumption. When metering is inefficient and coupled with low tariffs, the financial ...

  19. Public-Private Partnership Enhances Water Utility's Performance in Armenia

    OpenAIRE

    Tokhmakhian, Zaruhi; Eiweida, Ahmed

    2011-01-01

    Public-Private Participation (PPP) schemes were successfully implemented in several water utilities in Armenia, yielding excellent results for the development of the water and wastewater sectors. Armenia is one of the few countries in the region to have had such a successful PPP experience. For many years after the collapse of the Soviet economy, most of the water supply and sanitation sys...

  20. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  1. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  2. Sixty-five-year old final clarifier performance rivals that of modern designs.

    Science.gov (United States)

    Barnard, James L; Kunetz, Thomas E; Sobanski, Joseph P

    2008-01-01

    The Stickney plant of the Metropolitan Wastewater Reclamation District of Greater Chicago (MWRDGC), one of the largest wastewater treatment plants in the world, treats an average dry weather flow of 22 m3/s and a sustained wet weather flow of 52 m3/s that can peak to 63 m3/s. Most of the inner city of Chicago has combined sewers, and in order to reduce pollution through combined sewer overflows (CSO), the 175 km Tunnel and Reservoir Plan (TARP) tunnels, up to 9.1 m in diameter, were constructed to receive and convey CSO to a reservoir from where it will be pumped to the Stickney treatment plant. Pumping back storm flows will result in sustained wet weather flows over periods of weeks. Much of the success of the plant will depend on the ability of 96 circular final clarifiers to produce an effluent of acceptable quality. The nitrifying activated sludge plant is arranged in a plug-flow configuration, and some denitrification takes place as a result of the high oxygen demand in the first pass of the four-pass aeration basins that have a length to width ratio of 18:1. The SVI of the mixed liquor varies between 60 and 80 ml/g. The final clarifiers, which were designed by the District's design office in 1938, have functioned for more than 65 years without major changes and are still producing very high-quality effluent. This paper will discuss the design and operation of these final clarifiers and compare the design with more modern design practices. (c) IWA Publishing 2008.

  3. UCSD Performance in the Edge Plasma Simulation (EPSI) Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, George Robert [Univ. of California, San Diego, CA (United States). Center for Energy Research

    2017-12-12

    This report contains a final report on the activities of UC San Diego PI G.R. Tynan and his collaborators as part of the EPSI Project, that was led by Dr. C.S. Chang, from PPPL. As a part of our work, we carried out several experiments on the ALCATOR C-­MOD tokamak device, aimed at unraveling the “trigger” or cause of the spontaneous transition from low-­mode confinement (L-­mode) to high confinement (H-­mode) that is universally observed in tokamak devices, and is planned for use in ITER.

  4. Green River Formation Water Flood Demonstration Project: Final report. [October 21, 1992-April, 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D. [Dept. of Chemical and Fuels Engineering, University of Utah, Salt Lake City (US); Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc., Lomax Exploration Co., Salt Lake City, UT (US); Nielson, D.L.; Lutz, S.J. [Energy and Geoscience Institute at the University of Utah, Salt Lake City (US)

    1996-11-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day.

  5. Green River Formation Water Flood Demonstration Project: Final report, October 21, 1992-April, 30, 1996

    International Nuclear Information System (INIS)

    Deo, M.D.; Dyer, J.E.; Lomax, J.D.; Nielson, D.L.; Lutz, S.J.

    1996-01-01

    The objectives were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. Comprehensive reservoir characterization and reservoir simulations of the Monument Butte, Travis and Boundary units were presented in the two published project yearly reports. The primary and the secondary production from the Monument Butte unit were typical of oil production from an undersaturated oil reservoir close to its bubble point. The water flood in the smaller Travis unit appeared affected by natural and possibly by large interconnecting hydraulic fractures. Water flooding the boundary unit was considered more complicated due to the presence of an oil water contact in one of the wells. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter c ore, Formation Micro Imaging logs from several wells and Magnetic Resonance Imaging logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir characterization efforts identified new reservoirs in the Travis and the Boundary units. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2000 barrels per day

  6. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Mary [University of Utah

    2014-09-19

    Enhancing the performance of SciDAC applications on petascale systems has high priority within DOE SC. As we look to the future, achieving expected levels of performance on high-end com-puting (HEC) systems is growing ever more challenging due to enormous scale, increasing archi-tectural complexity, and increasing application complexity. To address these challenges, PERI has implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. The PERI performance modeling and prediction activity is developing and refining performance models, significantly reducing the cost of collecting the data upon which the models are based, and increasing model fidelity, speed and generality. Our primary research activity is automatic tuning (autotuning) of scientific software. This activity is spurred by the strong user preference for automatic tools and is based on previous successful activities such as ATLAS, which has automatically tuned components of the LAPACK linear algebra library, and other re-cent work on autotuning domain-specific libraries. Our third major component is application en-gagement, to which we are devoting approximately 30% of our effort to work directly with Sci-DAC-2 applications. This last activity not only helps DOE scientists meet their near-term per-formance goals, but also helps keep PERI research focused on the real challenges facing DOE computational scientists as they enter the Petascale Era.

  7. Designing Scholarships to Improve College Success: Final Report on the Performance-Based Scholarship Demonstration

    Science.gov (United States)

    Mayer, Alexander K.; Patel, Reshma; Rudd, Timothy; Ratledge, Alyssa

    2015-01-01

    Performance-based scholarships have two main goals: (1) to give students more money for college; and (2) to provide incentives for academic progress. MDRC launched the Performance-Based Scholarship (PBS) Demonstration in 2008 to evaluate the effectiveness of these scholarships in a diverse set of states, institutions, and low-income student…

  8. Swimming performance changes during the final 3 weeks of training leading to the Sydney 2000 Olympic Games.

    Science.gov (United States)

    Mujika, I; Padilla, S; Pyne, D

    2002-11-01

    The purpose of this study was to determine the magnitude of the swimming performance change during the final 3 weeks of training (F3T) leading to the Sydney 2000 Olympic Games. Olympic swimmers who took part in the same event or events at the Telstra 2000 Grand Prix Series in Melbourne, Australia, (26 - 27 August 2000), and 21 - 28 d later at the Sydney 2000 Olympic Games (16 - 23 September 2000) were included in this analysis. A total of 99 performances (50 male, 49 female) were analysed. The overall performance improvement between pre- and post-F3T conditions for all swimmers was 2.18 +/- 1.50 % (p pre-Olympic F3T elicited a significant performance improvement of 2.57 % for male and 1.78 % for female swimmers at the Sydney 2000 Olympic Games. The magnitude was similar for all competition events, and was achieved by swimmers from different countries and performance levels. These data provide a quantitative framework for coaches and swimmers to set realistic performance goals based on individual performance levels before the final training phase leading to important competitions.

  9. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Composite (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.

  10. Effects of hazardous environments on animal performance. Final report, Mar 88-Mar 91

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.R.

    1992-03-01

    Using a variety of experimental methods and procedures, animal models are used to measure the effects on performance of combat threats and countermeasures for such threats. The ultimate usefulness of such measurements in animal models will depend on extrapolations from performance changes in animals to performance changes in humans performing tasks of military relevance. This report describes several tasks in use for performance assessments in animals, and the results of experiments using these tasks to estimate performance threats from chemical warfare agents and from chemical countermeasures to these agents, as well as the efficacy of such countermeasures in reducing deleterious effects of threat agents. The use of rodents to characterize changes in neural structure and function concomitant with near-lethal exposures to chemical threat agents is also illustrated. Efforts to make rodents more closely resemble primates in their sensitivity to anticholinesterases through the use of carboxylesterase inhibitors are reported. Development of a primate model for thermal stress effects in chemical warfare defense is also described. The application of primate performance assessment techniques to the medical question of hyperbaric oxygen treatment effects on carbon monoxide toxicity is also presented.

  11. Utility and performance relative to consumer product energy efficiency standards. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Coggins, J.L.

    1979-12-14

    An investigation of the relative utility and performance of nine major household consumer products covered by the Energy Policy and Conservation Act is summarized. The objective was to define the terms utility and performance, to recommend methods for quantifying these two concepts, and to recommend an approach for dealing with utility and performance issues in the energy efficiency standards program. The definitions developed are: performance of a consumer product is the objective measure of how well, with the expected level of consumer input (following the manufacturer's instructions for installation and operation), the product does its intended job; and utility of a consumer product is a subjective measure, based on the consumer's perception, of the capability of the product to satisfy human needs. Quantification is based on test procedures and consumer survey methods which are largely already in use by industry. Utility and performance issues are important in product classification for prescribing energy efficiency standards. The recommended approach to utility and performance issues and classification is: prior to setting standards, evaluate utility and performance issues in the most quantitative way allowed by resources and schedules in order to develop classification guidelines. This approach requires no changes in existing Department of Energy test procedures.

  12. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  13. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    Energy Technology Data Exchange (ETDEWEB)

    Hoppes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oster, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased water disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.

  14. Limiting factor analysis of high availability nuclear plants (boiling water reactors). Final report

    International Nuclear Information System (INIS)

    Frederick, L.G.; Brady, R.M.; Shor, S.W.W.; McCusker, J.T.; Alden, W.M.; Kovacs, S.

    1979-08-01

    The pertinent results are presented of a 16-month study conducted for Electric Power Research Institute by General Electric Company, Bechtel Power Corporation, and Philadelphia Electric Company. The study centered around the Peach Bottom 2 Atomic Power Station, but also included limited study of operations at 20 additional operating boiling water reactors. The purpose of the study was to identify and evaluate key factors limiting plant availability, and to identify potential improvements for eliminating or alleviating those limitations. The key limiting factors were found to be refueling activities; activities related to the reactor fuel; reactor scrams; activities related to 20 operating systems or major components; delays due to radiation, turbid water during refueling operations, facilities/working conditions, and dirt/foreign material; and general maintenance/repair of valves and piping. Existing programs to reduce the effect on plant unavailability are identified, and suggestions for further action are made

  15. Early response of pressurized hot water in a pipe to a sudden break. Final report

    International Nuclear Information System (INIS)

    Alamgir, M.; Kan, C.Y.; Lienhard, J.H.

    1981-06-01

    Experimental and analytic studies that explain the details of early pressure variations during rapid depressurization in water-cooled reactors are presented as a means of assessing sudden break consequences in a coolant pipe. The report includes (1) a description of the experiment, (2) an analysis of the new bubble growth law for thermally controlled growth of vapor bubbles in an exponentially-varying pressure field, and (3) a review of previous studies and additional observations of blowdown behavior

  16. Influence of coffee/water ratio on the final quality of espresso coffee

    OpenAIRE

    Andueza, S. (Susana); Vila, M.A. (María A.); Peña, M.P. (María Paz) de; Cid, C. (Concepción)

    2007-01-01

    Espresso coffee is a polyphasic beverage in which the physico-chemical and sensory characteristics obviously depend on both the selection of ground roasted coffee and the technical conditions of the percolation process. The aim of this work was to evaluate the influence of the coffee/water ratio on the physico-chemical and sensory quality of espresso coffee. Furthermore, the influence of botanical varieties (Arabica and Robusta) and the type of roast (conventional and torrefacto) on the selec...

  17. East Saint Louis and Vicinity, Illinois. Blue Waters Ditch Improvements. Final Environmental Statement.

    Science.gov (United States)

    1978-06-01

    2.1.7 CLIMATOLOGICAL ELEMENTS OF THE AMERICAN BOTTOMS 2.1.7.1 General The climate of the American Bottoms and the Blue Waters area is that of the...land be sold by the owner for urban developnient. The older farmers express an intention to remain in the alea even in the event of farm loss. Each...land use is pastureland for grazing. Such livestock activities, though important in St. Clair County agriculture, are totally lacking in the Blue

  18. A-jacks and Aquawrap installations in Utah : scour revetment performance evaluation, final report, December 2009.

    Science.gov (United States)

    2009-12-01

    This is a performance evaluation report for A-Jacks, an articulated concrete block designed to protect bridge elements exposed to the river scouring forces, and for Aquawrap, a glass fiber reinforced polymer designed to protect and strengthen bridge ...

  19. Historical performance evaluation of Iowa pavement treatments using data analytics : final report.

    Science.gov (United States)

    2016-11-01

    The pavement network in Iowa has reached a mature state making maintenance and rehabilitation activities more important than new construction. As such, a need exists to evaluate the performance of the pavement treatments and estimate their performanc...

  20. National Aeronautics and Space Administration FY 02 Revised Final Annual Performance Plan

    Science.gov (United States)

    2002-01-01

    The Government Performance and Results Act (GPRA) was passed by Congress and signed by the President in 1993. GPRA was enacted to improve the efficiency of all Federal agencies, with the following specific goals: (1) Improve Federal program management, effectiveness, and public accountability; (2) Improve Congressional decision making on where to commit the Nation's financial and human resources; and (3) Improve citizen confidence in government performance. GPRA directs Executive Branch agencies to develop a customer-focused strategic plan that aligns activities with concrete missions and goals. The Act directs agencies to manage and measure results to justify Congressional appropriations and authorizations. The Report Consolidation Act of 2000 directs agencies to provide a report on the degree of success in achieving the goals and performance measures defined in the strategic and performance plans one hundred and fifty days after the completion of the fiscal year.

  1. Performance measures to characterize directional corridor travel time delay based on probe vehicle data : final report.

    Science.gov (United States)

    2015-10-01

    Anonymous probe vehicle data are currently being collected on roadways throughout the United States. These data are being incorporated into local and statewide mobility reports to measure the performance of freeways and arterial systems. Predefined s...

  2. Geothermal data-base study: mine-water temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, D.C.; Sonderegger, J.L.

    1978-07-01

    Investigation of about 1,600 mines and prospects for perennial discharge resulted in the measurement of temperature, pH, specific conductance, and discharge at 80 sites to provide information for a geothermal data base. Measurements were made in the fall, winter, and late spring or early summer to provide information about seasonal variability. None of the temperatures measured exceeded the mean annual air temperature by 15/sup 0/F, but three areas were noted where discharges were anomalously warm, based upon high temperatures, slight temperature variation, and quantity of discharge. The most promising area, at the Gold Bug mine in the Little Rockies, discharges water averaging 7.3/sup 0/C (12.1/sup 0/F) above the mean annual air temperature. The discharge may represent water heated during circulation within the syenite intrusive body. If the syenite is enriched in uranium and thorium, an abnormal amount of heat would be produced by radioactive decay. Alternatively, the water may move through deep permeable sedimentary strata, such as the Madison Group, and be discharged to the surface through fractures in the pluton.

  3. Determination of T90 in the coastal waters near Punta Lobos final report

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Luchini, L.; Gesto, J.

    2001-01-01

    The concept of the T--90 in estuarine and coastal waters is reviewed.A mathematical diagnostics model to describe advection,dispersion and bacterial mortality in complex stratified receiving waters is developed and solved using regular perturbation techniques.Four field experiments were designed and executed in the estuarine coastal waters of Punta Lobos,Department of Montevideo,Uruguay.Fluorescent dyes were used to measure dilution.The classic method of counting in the laboratory the number of colony forming units was employed to estimate bacterial concentrations.Drogues and an auxiliary dye were used to facilitate the sailor maneuvers.Three ships were used in the field experiments.Winds,currents,temperature,conductivity,salinity,ph and other parameters were measured in each campaign.Using the measured parameters and mathematical prognostic models the mass of tracer required was calculated on board and subsequently injected jointly with the bacterial population.The experimental data were used to estimate a value of T90 in each scenario

  4. Quality Assurance Strategy for Existing Homes: Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M.; Taggart, J.; Sikora, J.; Wood, A.

    2012-12-01

    This guide is designed to help Building America (BA) Teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  5. Quality Assurance Strategy for Existing Homes. Final Quality Management Primer for High Performing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Del Bianco, M. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2012-12-01

    This guide is designed to help Building America (BA) teams understand quality management and its role in transitioning from conventional to high performance home building and remodeling. It explains what quality means, the value of quality management systems, the unique need for QMS when building high performing homes, and the first steps to a implementing a comprehensive QMS. This document provides a framework and context for BA teams when they encounter builders and remodelers.

  6. Economic performance of water storage capacity expansion for food security

    Science.gov (United States)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  7. Evaluation of the Field Performance of Residential Fuel Cells: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Torrero, E.; McClelland, R.

    2004-05-01

    Distributed generation has attracted significant interest from rural electric cooperatives and their customers. Cooperatives have a particular nexus because of inherently low customer density, growth patterns at the end of long lines, and an influx of customers and high-tech industries seeking to diversify out of urban environments. Fuel cells are considered a particularly interesting DG candidate for these cooperatives because of their power quality, efficiency, and environmental benefits. The National Rural Electric Cooperative Association Cooperative Research Network residential fuel cell program demonstrated RFC power plants and assessed related technical and application issues. This final subcontract report is an assessment of the program's results. This 3-year program leveraged Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) funding.

  8. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  9. Self-perceived versus objectively measured competence in performing clinical practical procedures by final year medical students

    OpenAIRE

    Katowa-Mukwato, Patricia; Banda, Sekelani

    2016-01-01

    Objectives To determine and compare the self-perceived and objectively measured competence in performing 14 core-clinical practical procedures by Final Year Medical Students of the University of Zambia. Methods The study included 56 out of 60 graduating University of Zambia Medical Students of the 2012/2013 academic year. Self-perceived competence: students rated their competence on 14 core- clinical practical procedures using a self-administered questionnaire on a 5-point Likert scale. Objec...

  10. Human factors affecting the performance of inspection personnel in nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Karimi, S.S.

    1988-12-01

    This study investigates the problem of poor performance among nuclear power plant inspection personnel both in training and in the field. First, a systems perspective is employed to explore the psychological processes and relevant human factors that may be associated with workers' inadequate performance. Second, two separate yet related approaches are used to clarify the definition of competence: (1) a theory-based (or ''top-down'') approach, in which effective performance is construed as a product of a skillful, motivated person interacting with a responsive environment; and (2) an empirical (or ''bottom-up'') approach, in which key persons and context characteristics are generated based on the opinions of experts in the industry. Using a series of semi-structured interviews, two empirical studies were conducted in the latter approach. Overall, the results of both studies converged with the theoretical analysis emphasizing (1) the reciprocal and dynamic interplay of contextual and motivational factors influencing performance, and (2) the salient role of supervisory practices in terms of support, cooperation, and efficiency in contributing to the outcome of performance. 53 refs., 14 figs., 7 tabs

  11. Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Clark, N.H.

    1999-04-01

    In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

  12. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  13. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  14. Optical fiber pH sensors for high temperature water. Final report

    International Nuclear Information System (INIS)

    McCrae, D.; Saaski, E.

    1994-11-01

    The goal of this program was the development of an optical pH measurement system capable of operating in a high-temperature aqueous environment. This project built upon a dual-wavelength fiber optic sensing system previously developed by Research International which utilizes light-emitting diodes as light sources and provides remote absorption spectroscopy via a single bidirectional optical fiber. Suitable materials for constructing an optical pH sensing element were identified during the program. These included a sapphire/Ti/Pt/Au thin-film reflector, quartz and sapphire waveguides, a poly(benzimidazole) matrix, and an azo chromophore indicator. By a suitable combination of these design elements, it appears possible to optically measure pH in aqueous systems up to a temperature of about 150 degrees C. A pH sensing system capable of operating in high-purity, low-conductivity water was built using quasi-evanescent wave sensing techniques. The sensing element incorporated a novel, mixed cellulose/cellulose acetate waveguide to which an azo indicator was bound. Testing revealed that the system could reproducibly respond to pH changes arising from 1 ppm differences in the morpholine content of low-conductivity water without influencing the measurement. The sensing system was stable for 150 hrs at room temperature, and no loss or degradation of the pH-responsive optical indicator was seen in 160 hrs at 50 degrees C. However, the prototype polymer waveguide lost transparency at 1.7% per day during this same 50 degrees C test. Additional effort is warranted in the areas of water-compatible waveguides and evanescent-wave detection methods

  15. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  16. Water-molten uranium hazard analysis. Final report. LATA report No. 92

    International Nuclear Information System (INIS)

    Hughes, P.S.; Rigdon, L.D.; Donham, B.J.

    1979-01-01

    The hazard potential of cooling water leakage into the crucible of molten uranium in the MARS laser isotope separation experiment was investigated. A vapor-phase explosion is highly unlikely in any of the scenarios defined for MARS. For the operating basis accident, the gas pressure transient experienced by the vessel wall is 544 psia peak with a duration of 200 μs, and the peak hoop stress is about 20,000 psi in a 0.5-in. wall. Design and procedural recommendations are given for reducing the hazard

  17. Analysis of the impact of energy crops on water quality. Final report

    International Nuclear Information System (INIS)

    Hatfield, J.L.; Gale, W.J.

    1993-01-01

    This report consists of two separate papers. The first, ''The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,'' describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ''Energy crops as part of a sustainable landscape,'' discusses concepts of landscape management and the linkage among agricultural practices and environmental quality

  18. Recording of measurement results und data evaluation in water quality. Final report. Pt. 1

    International Nuclear Information System (INIS)

    Hanisch, H.H.; Krahe, P.

    1989-05-01

    The report presented includes different hydrological contributions which deal predominantly with the possibilities of evaluating and representing water quality data with statistical and graphical methods, with the exception of the contributions on guidelines for oil barriers and calculations on the progression of a pollutant wave in the Rhine. Experience gained on the basis of practical examples shows that techniques and methods of data interpretation ought to be taken into consideration in measurement programmes in order to be able to attain problem-related results. (orig.). 123 figs., 3 tabs., 14 refs [de

  19. Performance Evaluation of Multivariate Analysis Methods on the $Z \\gamma$ Final State

    CERN Document Server

    Amos, Kieran Robert

    2017-01-01

    The performance of various machine learning algorithms are evaluated for their separation power of the $Z\\gamma$ Electroweak process (with $Z\\rightarrow\\ell\\ell$ and $\\ell=e,\\mu$) against the various backgrounds that populate the selection.\\\\ The Boosted Decision Tree method is found to deliver the best performance and is compared to that of neural net analysis and previously used methods using $36.1\\, \\text{fb}^{-1}$ of data obtained at $\\sqrt{s}=13\\, \\text{TeV}$ from the ATLAS detector in 2015 and 2016.

  20. Target acquisition: Human observer performance studies and TARGAC model validation (Final Report)

    NARCIS (Netherlands)

    Valeton, J.M.; Bijl, P.; Gillespie, P.

    1995-01-01

    Human target acquisition performance was studied using the thermal imagery that was collected during Battlefield Emissives Sources Trials under the European Theater Weather and Obscurants, (BEST TWO), organized by NATO AC243/Panel4/RSG.l5 in 1990. Recognition and identification probabilities were

  1. Articulated, Performance-Based Instruction Objectives Guide for Automotive Mechanics. Final Document. Revised.

    Science.gov (United States)

    Henderson, William Edward, Jr.

    Developed during a project designed to provide continuous, performance-based vocational training at the secondary and postsecondary levels, this instructional guide is intended to help teachers implement a laterally and vertically articulated secondary level automotive mechanics program. Introductory materials include descriptions of Automotive…

  2. Complex Multi-Chamber Airbag Performance Simulation Final Report CRADA No. TSB-961-94

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Gregory [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kithil, Philip [Advanced Safety Concepts, Inc. (ASCI), Santa Fe, NM (United States)

    2018-01-22

    The purpose of this small business CRADA was to evaluate the performance of new airbag concepts which were developed by the Advanced Safety Concepts, Inc. (ASCI). These new airbag concepts, if successful, could have major potential savings to society in terms of fewer injuries, lost time and lives.

  3. Final report of DOE project "Detection, Localization and Diagnosis of Performance Problems Using PerfSONAR"

    Energy Technology Data Exchange (ETDEWEB)

    Dovrolis, Konstantinos [Georgia Tech

    2014-04-15

    We present the development of a middleware service, called Pythia, that is able to detect, localize, and diagnose performance problems in the network paths that interconnect research sites that are of interest to DOE. The proposed service can analyze perfSONAR data collected from all participating sites.

  4. Water chemistry and radiation buildup at the Commonwealth Edison Company LaSalle-1 BWR. Final report

    International Nuclear Information System (INIS)

    Earls, C.E.; Blok, J.

    1986-09-01

    This report presents the results of a comprehensive study of the water quality and radiation buildup at the LaSalle County Unit 2 boiling warer reactor (BWR). The purpose of the study was to determine the effect of corrosion product inputs from the forward pumped heater drains on overall water quality. Since the drains are pumped into the feedwater line without filtration or demineralization, corrosion products in these streams will directly add to the impurity levels of the final feedwater. At LaSalle, the forward pumped heater drains contributed less to the feedwater impurities, on average, than the effluent of the condensate demineralizer. The feedwater quality at LaSalle was generally in the ''acceptable'' range. Nevertheless, significant water chemistry improvements, especially in reducing the corrosion product spikes associated with power or flow transients, is highly desirable for this plant. Such improvements should begin with a more consistent quality of demineralizer operation. Quantitative gamma scans of the primary system piping at LaSalle 2 were carried out in the course of the water chemistry study. Although the cumulative operational exposure of the plant was relatively limited at the time this study was carried out, the radiation buildup rate did appear to be rapid (in fact, among the most rapid) compared to other similar BWRs

  5. Environmental impact of coal ash on tributary streams and nearshore water or Lake Erie. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, K.G.

    1978-08-01

    The environmental impact of coal ash disposal at a landfill site in north-central Chautauqua County, New York was studied from June 1975 through July 1977. Water samples taken from wells, ponds, and streams at 67 sites were analyzed for specific conductance, pH, alkalinity, arsenic, calcium, cadmium, chloride, chromium, copper, iron, magnesium, manganese, potassium, selenium, sodium, sulfate and zinc. Evidence suggests that ponds at the landfill were high in Ca, Fe, Mg, Mn, and SO/sub 4/ compared to control pands. A stream adjacent to the site contained greater Mn (207 ug/1) and SO/sub 4/ (229 ppm) than control streams. Shallow alkaline test wells in the landfill had elevated As, Ca, and Se. Acid-neutral test wells had elevated As, Ca, Cr, Mg and Mn. Household wells in the vicinity of the landfill showed no evident contamination from the landfill. Average iron concentrations in the biota were tripled, and manganese concentrations doubled in biota affected by the coal ash dump. However, any effects of the disposal area on the distribution of the biota could not be separated from effects of varying environment factors such as water movements, substrate composition and food availability. No harmful effects could be demonstrated on the biota in the creek which flowed past the disposal area.

  6. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  7. Loading functions for assessment of water pollution from nonpoint sources. Final report

    International Nuclear Information System (INIS)

    McElroy, A.D.; Chiu, S.Y.; Nebgen, J.W.; Aleti, A.; Bennett, F.W.

    1976-05-01

    Methods for evaluating the quantity of water pollutants generated from nonpoint sources including agriculture, silviculture, construction, mining, runoff from urban areas and rural roads, and terrestrial disposal are developed and compiled for use in water quality planning. The loading functions, plus in some instances emission values, permit calculation of nonpoint source pollutants from available data and information. Natural background was considered to be a source and loading functions were presented to estimate natural or background loads of pollutants. Loading functions/values are presented for average conditions, i.e., annual average loads expressed as metric tons/hectare/year (tons/acre/year). Procedures for estimating seasonal or 30-day maximum and minimum loads are also presented. In addition, a wide variety of required data inputs to loading functions, and delineation of sources of additional information are included in the report. The report also presents an evaluation of limitations and constraints of various methodologies which will enable the user to employ the functions realistically

  8. Effect of the Pacing Strategies on the Open Water 10km World Swimming Championships Performances.

    Science.gov (United States)

    Rodriguez, Luis; Veiga, Santiago

    2017-10-16

    The aim of the present research was 1) to compare the pacing strategies of different level open water swimmers during the 10km race of the FINA 2015 World Swimming Championships (WCH), and 2) to relate these pacing strategies to the race performance. Final and intermediate split times as well as intermediate race positions from the 10-kilometer race participants (69 men and 51 women) were collected from the public domain and were divided into five groups (G1 to G5) depending on their finishing positions. Medalists and finalists (G1 and G2, respectively) presented an even pacing profile with similar swimming velocities to the less successful swimmers (G3 to G5) on the initial and mid stages of the race but a 1.5-3% increase in swimming velocity in the last quarter of the race. This fast end spurt was largely related to the race performance and was not observed in the G3 and G4 (even-paced profile) or in the G5 (positive pacing profile) groups. Intermediate race positions and lap rankings were negatively related to finishing position indicating a delayed positioning of the most successful swimmers at 25%, 50% and 75% of race distance. The adoption of a conservative starting strategy by open water swimmers with a negative pacing profile and delayed partial positioning seems to increase the chances of overall race success as it allows a fast end spurt that is highly related to successful finishing race positions.

  9. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  10. In Situ Monitoring of Dispersion in the Water Column, Final Product for the Detection and Mitigation of Oil within the Water Column Project

    Science.gov (United States)

    2018-01-31

    Applied Response Technologies (SMART) protocol in remote locations. RDC started with market research of commercially available monitoring technologies...SLDMB), which can begin collecting data immediately after impact with the water surface. It transmits data to users via satellite communication ...frequently used as a platform to detect submerged oil. RDC performed a market research of commercially available unmanned vehicles. They come in

  11. A Final Review of the Performance of the CDF Run II Data Acquisition System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The CDF Collider Detector at Fermilab ceased data collection on September 30, 2011 after over twenty five years of operation. We review the performance of the CDF Run II data acquisition systems over the last ten of these years while recording nearly 10 fb-1 of proton-antiproton collisions with a high degree of efficiency. Technology choices in the online control and configuration systems and front-end embedded processing have impacted the efficiency and quality of the data accumulated by CDF, and have had to perform over a large range of instantaneous luminosity values and trigger rates. We identify significant sources of problems and successes. In particular, we present our experience computing and acquiring data in a radiation environment, and attempt to correlate system technical faults with radiation dose rate and technology choices.

  12. A Final Review of the Performance of the CDF Run II Data Acquisition System

    International Nuclear Information System (INIS)

    Badgett, W

    2012-01-01

    The CDF Collider Detector at Fermilab ceased data collection on September 30, 2011 after over twenty-five years of operation. We review the performance of the CDF Run II data acquisition systems over the last ten of these years while recording nearly 10 inverse femtobarns of proton-antiproton collisions with a high degree of efficiency - exceeding 83%. Technology choices in the online control and configuration systems and front-end embedded processing have impacted the efficiency and quality of the data accumulated by CDF, and have had to perform over a large range of instantaneous luminosity values and trigger rates. We identify significant sources of problems and successes. In particular, we present our experience computing and acquiring data in a radiation environment, and attempt to correlate system technical faults with radiation dose rate and technology choices.

  13. Neutronic calculations for JET. Performed with the FURNACE2 program. (Final report JET contract JEO/9004)

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1996-10-01

    Neutron-transport calculations with the FURNACE(2) program system, in support of the Neutron Diagnostic Group at JET, have been performed since 1980, i.e. since the construction phase of JET. FURNACE(2) is a ray-tracing/multiple-reflection transport program system for toroidal geometries, that orginally was developed for blanket neutronics studies and which then was improved and extended for application to the neutron-diagnostics at JET. (orig./WL)

  14. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in

  15. High Density, Insensitive Oxidizer With RDX Performance Final Report CRADA No. TC02178.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Preda, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis and evaluate a novel high density, insensitive oxidizer with RDX performance. This CRADA resulted from the award of a Phase I STTR ("STTR") from DOD. In recent years, the synthesis of new energetic heterocyclic compounds to replace the energetic materials currently in the stockpile has received a great amount of attention. The Office of the Secretary of Defense has identified that there is a need to incorporate new energetic materials in current and future weapon systems in an effort to increase performance and decrease sensitivity. For many of the future weapon systems, incorporation of energetic compounds currently in the stockpile will not provide the desired performance and sensitivity goals. The success of this CRADA may lead to a Phase I option STTR from DOD and to a Phase II STTR from DOD. The goal of this CRADA was to produce and test a novel oxidizer, 2,5,8-trinitroheptazine (TNH).

  16. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  17. Effect of water fogs on the deliberate ignition of hydrogen. Final report

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-11-01

    This report presents an experimental evaluation of the effects of water fog density, droplet diameter, and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. The results show that the LFL for hydrogen in air at 20 0 C is only marginally higher with fog than without. Most of the nozzles tested at 20 0 C raised the hydrogen LFL from 4.0 vol % to about 4.8%, for the case of dense fogs with volume-average drop size in the range 45 to 90 microns. The lower flammable limit at 50 0 C was typically 7.2% for dense fogs with drop size in the range 25 to 50 microns. The lower flammable limit at 70 0 C was typically 7.6%. Typical fog concentrations ranged from 0.03 to 0.09 vol % at 20 0 C and decreased with increasing fog temperature. 7 figures, 4 tables

  18. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  19. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding 233 U from 232 Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program

  20. Using the BSC Model to Evaluate the Financial Performance of the Urban Water and Wastewater Industry

    Directory of Open Access Journals (Sweden)

    Mahdi Goli Aysek

    2017-03-01

    Full Text Available Among the different models so far proposed for the guiding and evaluation of organizational performance, the balanced scorecard (BSC model is the only one that has been found capable of guiding an organization towards its goals from the lowest to the topmost levels in an integrated, sustained, efficient, and effective manner. The model in question is based on the goals and strategies adopted by an organization and it is, thus, a holistic approach that envisions the organization in all its aspects, leading to sysnergy among all the organization’s divisions. Moreover, the model has been found capable of lifting the inadequacies in performance evaluation systems in firms which strive to comply with financial milestones that draw heavily on reducing the unit price through practicing scales of economy and mass production. The present study initially investigates the effects of employing the criteria inherent to the BSC model on the financial performance evaluation of the urban water and wastewater industry. The required data are collected from 35 companies forming the statistical population over a four-year period from 2007 to 2010. The (four independent variables belong to the SCR model and performance evaluation (i.e., sales efficiency rate accounts for the independent one. Due to the insignificance of the coefficients of independent variables and the lack of correlation among the dependent ones, the step-by-step method is employed to enter the values for the variables into the model when testing the research hypotheses. The new model is found to confirm all the hypotheses. Moreover, a direct relationship is established between the SCR criteria, on the one hand, and the firm’s performance, on the other, such that any improvements in SCR evaluation criteria directly lead to improvements in performance. Finally, a value equal to unity obtained for hypothesis selection indicates the strong linear relationship holding between the financial SCR

  1. Halden Boiling Water Reactor. Plant Performance and Heavy-Water Management

    Energy Technology Data Exchange (ETDEWEB)

    Aas, S.; Jamne, E.; Wullum, T.; Fjellestad, K. [Institutt for Atomenergi, OECD Halden Reactor Project, Halden (Norway)

    1968-04-15

    The Halden boiling heavy-water reactor, designed and built by the Norwegian Institutt for Atomenergi, has since June 1958 been operated as an international project. On its second charge the reactor was operated at power levels up to 25 MW and most of the time at a pressure of 28.5 kg/cm{sup 2}. During the period from July 1964 to December 1966 the plant availability was close to 64% including shutdowns because of test fuel failures and loading/unloading of fuel. Disregarding such stops, the availability was close to 90%. The average burnup of the core is about 6200 MWd/t UO{sub 2} : the most highly exposed elements have reached 10000 MWd/t UO{sub 2}. The transition temperature of the reactor tank has been followed closely. The results of the surveillance programme and the implication on the reactor operation are discussed. The reactor is located in a cave in a rock. Some experiences with such a containment are given. To locate failed test-fuel elements a fuel failure location system has been installed. A fission gas collection system has saved valuable reactor time during clean-up of the reactor system following test fuel failures. Apart from one incident with two of the control stations, the plant control and instrumentation systems have functioned satisfactorily. Two incidents with losses of 150 and 200 kg of heavy water have occurred. However, after improved methods for leakage detection had been developed, the losses have been kept better than 50 g/h . Since April 1962 the isotopic purity of the heavy water (14 t) has decreased from 99.75 to 99.62%. The tritium concentration is now slightly above 700 {mu}C/cm{sup 3}. This activity level has not created any serious operational or maintenance problems. An extensive series of water chemistry experiments has been performed to study the influence of various operating parameters on radiolytic gas formation. The main results of these experiments will be reported. Different materials such as mild steel, ferritic steel

  2. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  3. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  4. (House Municipal School wind energy system: equipment performance). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1985-05-14

    The performance of a Skyhawk horizontal axis wind system with a 3-blade, 15-ft upwind rotor is evaluated. The wind system was placed at the House Municipal School. The school is located between Tucumcari and Clovis, New Mexico and has an annual wind regime of 12 mi/h at a height of 33 ft. It was operated for 26 months and during that time has been out of service, due to breakdowns, 13 months. When the Skyhawk was operational, it generated between 100 and 700 kilowatt-hrs per month.

  5. Design and performance of the Georgia Tech Aquatic Center photovoltaic system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Begovic, M.; Long, R.; Ropp, M.; Pregelj, A.

    1996-12-31

    A building-integrated DC PV array has been constructed on the Georgia Tech campus. The array is mounted on the roof of the Georgia Tech Aquatic Center (GTAC), site of the aquatic events during the 1996 Paralympic and Olympic Games in Atlanta. At the time of its construction, it was the world`s largest roof-mounted photovoltaic array, comprised of 2,856 modules and rates at 342 kW. This section describes the electrical and physical layout of the PV system, and the associated data acquisition system (DAS) which monitors the performance of the system and collects measurements of several important meteorological parameters.

  6. Final Report - High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Andrew [3M Company, Maplewood, MN (United States)

    2017-05-31

    The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.

  7. High Performance Fuel Laboratory, Hanford Reservation, Richland, Washington. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    The High Performance Fuel Laboratory (HPFL) will provide pilot scale tests of manufacturing processes, equipment, and handling systems and of accountability and safeguards, methods, and equipment while keeping radiological and chemical exposures of the workers, public, and environment at the lowest practicable levels. The experience gained from designing, constructing and operating the HPFL can be used in future commitments to commercial fuel fabrication plants in the late 1980s and beyond for processing of nuclear fuel. The HPFL site is located in the 400 Area of the 559-square mile, federally owned Hanford Reservation. This environmental impact statement considers effects of the HPFL under normal conditions and in the event of an accident

  8. High performance ground penetrating radar survey of TA-49/Area 2. Final report

    International Nuclear Information System (INIS)

    Hoeberling, R.F.; Rangel, M.J. III

    1994-09-01

    The results of high performance ground penetrating radar study of Area 2 at Technical Area 49 are presented. The survey was commissioned as part of Los Alamos Laboratory's continuing Environmental Remediation program and was completed and analyzed before borehole studies in Area 2 were started. Based upon the ground penetrating radar results, the location of one of the planned boreholes was moved to assure the drilling area was as safe as possible. While earlier attempts to use commercial radar devices at this facility had not been successful, the radar and digital processing system developed at Los Alamos were able to significantly improve the buried physical detail of the site

  9. Investigation of properties and performance of ceramic composite components: Final report on Phases 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Halverson, H.; Carter, R.H.; Miraj, N.; Reifsnider, K.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1998-01-15

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The research program of the Materials Response Group at Virginia Tech addresses the need for reliable and durable structural ceramic composites to perform in high temperature environments. The research effort provides an experimental and analytical basis for the transition from properties of materials to performance of actual component structures. Phases 1 and 2 of the present program focused on the development of test capabilities, initial studies of component mechanical response under various conditions and the development of a life prediction methodology. These efforts have been described in previous reports. This report summarizes the major tasks completed under Phases 3 and 4 of the project. Overall, the authors have made significant progress in a broad spectrum of tasks in this program. Their efforts have encompassed component evaluation, assessment of new SiC-based composites with improved high-temperature potential, development of oxide coating materials for SiC, and the extension and development of new models for predicting the durability of composite components under specific operating conditions for various CMC applications. Each of these areas of work is an important area for achieving the ultimate goal of usable SiC-based composites in high-temperature corrosive environments typical of fossil energy applications.

  10. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  11. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  12. A portable and independent edge fluctuation diagnostic. Final performance report, March 1992--March 1993

    International Nuclear Information System (INIS)

    Tsui, H.; Wootton, A.

    1994-01-01

    A compact self contained portable probe system has been designed and developed to diagnose the edge plasma of devices of different sizes and configurations. The system measures both the mean and the fluctuation quantities of density, temperature and potential from a standardized Langmuir probe array using a fast reciprocating probe drive. It can also be used for other fluctuation diagnostics, such as magnetic probes. The data acquisition and analysis is performed on a Macintosh IIfx which provides a user-friendly environment. The results obtained by the signal processing routines are stored in a tabloid format to allow comparative studies. The resulting database is a core part of the protable signal analysis system. To date measurements have been performed on the stellarator ATF, the reversed field pinch ZT40(m), and the tokamaks TEXT, Versator, Phaedrus-T and TFTR. The data are presently being analyzed and the results collected into the database for the purpose of edge turbulence and transport studies. Existing published data are also being included. The edge database, an output of this project, will provide readily available information for other experimental groups to compare their results with, and for theoretical groups to validate (or otherwise) the predictions of their models

  13. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  14. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  15. The performance of cassava flour as a water reducing admixture

    African Journals Online (AJOL)

    CHINYERE

    were then ground to a fine texture in a mill and the flour obtained sieved ... Figure 1: Effect of Water/cement Ratio Upon Slump and Compacting Factor. Saturated Density ... attributed to the bleeding and segregation observed in these mixes.

  16. performance of water filters towards the removal of selected

    African Journals Online (AJOL)

    Morohani Merinyo

    sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% ... associated diseases in developing countries ... The main drinking water risks in developing ... Tanzania Demographic and Health Survey.

  17. Actual performance and economic feasibility of residential solar water heaters

    International Nuclear Information System (INIS)

    Anhalt, J.

    1987-01-01

    Four residential solar water heaters currently available on the Brazilian market have been evaluated to their possible use for substituting the common electric shower head. The tests were carried out with the solar systems mounted side by side on an artificial roof. The hot water demand was simulated following a consumer profile which represents a Brazilian family with an income of seven minimum salaries. The data, which was collected automatically and presented in the form of graphs and tables, shows that an optimized solar water heater could save as much as 65% of the energy demand for residential water heating in the state of Sao Paulo. An economical study concludes that the installation and maintenance of such a solar system is feasible if long term financing is available. (author)

  18. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    proposed method of water pumping system also provides the cost effective and highly ... in the proposed system because of its similar operational characteristics compared to SPV generator. .... (CCM) regardless of the atmospheric conditions.

  19. Water Services in Chile : Comparing Private and Public Performance

    OpenAIRE

    Bitrán, Gabriel A.; Valenzuela, Eduardo P.

    2003-01-01

    In 1988, Chile put in place a new regulatory regime for water and sanitation, allowing rates to reflect the actual cost of providing services. The government then reorganized the sector under 13 state-owned regional water companies and, in 1998, started to partially privatize some of them. Four years after the first sale, it is now possible to assess the early results of privatization. Thi...

  20. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  1. Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

    1983-05-01

    The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

  2. Influence of bromide on the performance of the amphipod Hyalella azteca in reconstituted waters

    Science.gov (United States)

    Ivey, Chris D.; Ingersoll, Christopher G.

    2016-01-01

    Poor performance of the amphipod Hyalella azteca has been observed in exposures using reconstituted waters. Previous studies have reported success in H. azteca water-only exposures with the addition of relatively high concentrations of bromide. The present study evaluated the influence of lower environmentally representative concentrations of bromide on the response ofH. azteca in 42-d water-only exposures. Improved performance of H. azteca was observed in reconstituted waters with >0.02 mg Br/L.

  3. Evaluation of performance of select fusion experiments and projected reactors. Final report

    International Nuclear Information System (INIS)

    Miley, G.H.

    1978-10-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters

  4. Cone penetrometer testing at the Hanford Site: Final performance evaluation report

    International Nuclear Information System (INIS)

    Richterich, L.R.; Cassem, B.R.

    1994-08-01

    The Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) is one of several US Department of Energy (DOE) integrated demonstrations designed to support the testing of emerging environmental characterization and remediation technologies in support of the Environmental Restoration (ER) and Waste Management (WM) Programs. The primary objective of the VOC Arid ID at the Hanford Site is to characterize, remediate, and monitor arid and semi-arid sites containing volatile organic compounds with or without associated contamination. The main objective of the Arid Drilling Technology Technical Task Plan is to demonstrate promising subsurface access technologies; this includes using the cone penetrometer (CPT) system for source detection, characterization, monitoring, and remediation in support of environmental activities. The utility of the CPT for performing site characterization work has been the subject of much discussion and speculation at the Hanford Site and other arid sites because of the preponderance of thick units of coarse cobbles and gravel in the subsurface

  5. Yuma Border Patrol Lighting Retrofit: Final LED System Performance Assessment of Trial and Full Installation

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Wilkerson, Gregory P Sullivan, Robert G Davis, Sarah Safranek

    2018-04-30

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial evaluation in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations, and illuminance measurements were recorded initially and at 2500 hours, 5000 hours, 7000, and 11,000 hours of operation. Additionally, four second-generation LED luminaires installed as part of the full installation were evaluated initially and again after 4,000 hours of operation. While the initial energy, lighting quality, and maintenance benefits relative to the incumbent high-pressure sodium system were very satisfactory, the study raises important questions regarding the long-term performance of LED lighting systems in high-temperature environments.

  6. Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report

    International Nuclear Information System (INIS)

    Williams, J.M.; Miner, J.

    1998-01-01

    The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 x 10 17 /cm 2 . The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency

  7. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Dhabaleswar Kumar [The Ohio State University; Beckman, Pete

    2011-07-28

    existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.

  8. Improved control rod drive handling equipment for BWRs [boiling-water reactors]: Final report

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Gorman, J.A.

    1987-08-01

    Improved equipment for removing and replacing control rod drives (CRDs) in BWR plants has been designed, built and tested. Control rod drives must be removed from the reactor periodically for servicing. Removal and replacement of CRDs using equipment originally supplied with the plant has long been recognized as one of the more difficult and highest radiation exposure maintenance operations that must be performed at BWR plants. The improved equipment was used for the first time at Quad Cities, Unit 2, during a Fall 1986 outage. The trial of the equipment was highly successful, and it was shown that the new equipment significantly improves CRD handling operations. The new equipment significantly simplifies the sequence of operations required to lower a CRD from its housing, upend it to a horizontal orientation, and transport it out of the reactor containment. All operations of the new equipment are performed from the undervessel equipment handling platform, thus, eliminating the requirement for a person to work on the lower level of the undervessel gallery which is often highly contaminated. Typically, one less person is required to operate the equipment than were used with the older equipment. The new equipment incorporates a number of redundant and fail safe features that improve operations and reduce the chances for accidents

  9. Mobility of radionuclides and MCPA in the soil-water-plant system. Final report

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Haberhauer, G.; Strebl, F.; Temmel, B.

    1998-01-01

    . The physical decay is the most important factor decreasing 60 CO and 137 Cs contamination, although a measurable portion of Cs is removed by the harvests (up to 0.91%). In the case of 226 Ra physical decay and radioactivity losses through harvests are equally important. Anyhow, this does not mean that a significant portion of the radioactive contamination can be removed by agricultural plants in a time-span of a few decades. During the experimental period (May 1996 - November 1997) we collected 152.7 L and 253.5 L of leachate of soil I and III, respectively. Only 0.01% (soil I) and 0.02% (soil III) of the applied radioactivity was detected in the leachate. MCPA itself was not detectable in the water samples. Additional analyses showed that 96.5% of the recovered radioactivity in the seepage water originated from strongly polar substances or already mineralised compounds. 0.039% of the applied 14C was found in barley plants grown on soil I (application in the year 1996) and 0. 149% in barley grown on soil III. On soil I the 14 -concentrations, in barley grains and straw decreased by a factor of 3.8 and 5.8 as compared to the wheat samples of the previous year. Barley grown on soil III exhibited similar activity concentrations as wheat in the year 1996. (author)

  10. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    OpenAIRE

    Nyoman Suwartha; Resky Pramadin

    2012-01-01

    The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recha...

  11. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Bryan M. [Redox Power Systems, LLC, College Park, MD (United States); Bishop, Sean [Redox Power Systems, LLC, College Park, MD (United States); Gore, Colin [Redox Power Systems, LLC, College Park, MD (United States); Wang, Lei [Redox Power Systems, LLC, College Park, MD (United States); Correa, Luis [Redox Power Systems, LLC, College Park, MD (United States); Langdo, Thomas [Redox Power Systems, LLC, College Park, MD (United States); Deaconu, Stelu [Redox Power Systems, LLC, College Park, MD (United States); Pan, Keji [Redox Power Systems, LLC, College Park, MD (United States)

    2018-02-15

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and the lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large

  12. Drinking-water-criteria document for phthalic acid esters (PAES). Final report

    International Nuclear Information System (INIS)

    1991-08-01

    The document provides the health effects basis to be considered in establishing the MCLG. To achieve the objective, data on pharmacokinetics human exposure, acute and chronic toxicity to animals and humans, epidemiology and mechanisms of toxicity are evaluated for phthalic acid esters. Specific emphasis is placed on literature data providing dose-response information. Thus, while the literature search and evaluation performed in support of the document has been comprehensive, only the reports considered most pertinent in the derivation of the MCLG are cited in the document. The comprehensive literature data base in support of the document includes information published up to 1986; however, more recent data may have been added during the review process

  13. Sewage Sludge Incinerators: Final Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources Final Rule Fact Sheets

    Science.gov (United States)

    This page contains a February 2011 fact sheet with information regarding the final NSPS and Emission Guidelines for Existing Sources for Sewage Sludge Incinerators (SSI). This document provides a summary of the information for these regulations.

  14. Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission

    Science.gov (United States)

    Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.

    2017-12-01

    RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.

  15. Performance assessment and adoption processes of an information monitoring and diagnostic system prototype; FINAL

    International Nuclear Information System (INIS)

    Piette, Mary Ann

    1999-01-01

    This report addresses the problem that buildings do not perform as well as anticipated during design. We partnered with an innovative building operator to evaluate a prototype Information Monitoring and Diagnostic System (IMDS). The IMDS consists of high-quality measurements archived each minute, a data visualization tool, and a web-based capability. The operators recommend similar technology be adopted in other buildings. The IMDS has been used to identify and correct a series of control problems. It has also allowed the operators to make more effective use of the building control system, freeing up time to take care of other tenant needs. They believe they have significantly improved building comfort, potentially improving tenant health, and productivity. The reduction in hours to operate the building are worth about$20,000 per year, which could pay for the IMDS in about five years. A control system retrofit based on findings from the IMDS is expected to reduce energy use by 20 percent over the next year, worth over$30,000 per year. The main conclusion of the model-based chiller fault detection work is that steady-state models can be used as reference models to monitor chiller operation and detect faults. The ability of the IMDS to measure cooling load and chiller power to one-percent accuracy with a one-minute sampling interval permits detection of additional faults. Evolutionary programming techniques were also evaluated, showing promise in the detection of patterns in building data. We also evaluated two technology adoption processes, radical and routine. In routine adoption, managers enhance features of existing products that are already well understood. In radical adoption, innovative building managers introduce novel technology into their organizations without using the rigorous payback criteria used in routine innovations

  16. High density turbulent plasma processes from a shock tube. Final performance report

    International Nuclear Information System (INIS)

    Johnson, J.A. III.

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions

  17. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  18. Insulated Containers For Bottled Water (ICB)- Performance Evaluation

    Science.gov (United States)

    2017-04-21

    WATER STOWAGE PROTOTYPES BOTTLED WATER HIGH TEMPERATURE WEIGHT EJECTION CONTAINERS ...Soldiers are ineffectively mounting commercially  available  coolers and they,  as well as the bottles they  contain , are becoming projectile hazards... container  (shown in Figure 15). The tie‐down procedures were determined by a professional  rigger; a video of the procedures is  available  from NSRDEC

  19. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, Angus [Colorado School of Mines, Golden, CO (United States); Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States); Collins, Robert [Univesity of Toledo

    2018-04-15

    Te devices. We demonstrated the conduction mechanism by which CdTe polycrystals improve the performance of the devices relative to single crystal devices. The mechanism shows that grain boundaries are conduction pathways for photogenerated electrons and that the corresponding holes are confined to the grains and therefore do not contribute to recombination.

  20. Enhanced Emission Performance and Fuel Efficiency for HD Methane Engines. Literature Study. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Broman, R.; Staalhammar, P.; Erlandsson, L.

    2010-05-15

    A literature survey has been conducted in order to define state-of-the-art for methane fuelled engines to be used in heavy duty vehicles. Use of methane can be favourable to increase security of supply and mitigate CO2 emissions, especially when the methane origins from biomass. Furthermore, methane used as a fuel in heavy duty engines has a potential to reduce toxic exhaust emissions. Historically, use of methane in heavy duty engines has often been hampered by poor efficiency, i.e. high fuel consumption when using the Otto-cycle. However, current generation technology engines might be within 5-10 % of the efficiency of Diesel engine technology. In this context it is worth mentioning that compliance-driven changes for meeting future emission regulations for Diesel engines may have a negative impact on fuel efficiency, thereby narrowing the gap. This may present an opportunity for heavy methane fuelled engines. The reliability and durability of the exhaust aftertreatment devices for methane fuelled engines has also given rise to some concerns. Some concepts are performing acceptable while others do not meet expectations. This is partly due to difficulties in handling methane in the aftertreatment device and partly to issues in the design of the ignition system. Methane is a fuel used worldwide and has a potential to be an important complement to Diesel oil. There are two categories of HD methane engines available to end-users: Retrofitted engines, which often include computer controlled retrofit systems developed as 'bolt-on' technologies that can be removed if necessary, to resell the vehicle with a normal diesel engine, and those developed specifically for and in conjunction with engine manufacturers and delivered to customers as factory-built engines or vehicles (OEM). Additionally, both these categories can include engines that use the Otto- or Diesel combustion cycles. When adapting a HD Diesel engine to run on methane there are two options, either

  1. FLOAT - development of new flexible UHPC. Final report. [Ultra High Performance Fibre Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    The current project is a preliminary study intended to clarify the background and give a better basis for an evaluation of the risks and possible rewards of funding a full project with the overall purpose of developing and testing a new concept for wave energy floaters, made of Ultra High Performance Fibre Reinforced Concrete (UHPC), as an enabling technology for the establishment of competitive wave energy production (FLOAT). As an initial step for this preliminary study of FLOAT an investigation has been undertaken in relation to preliminary design of 2 types of floaters, essential properties of UHPFRC - and identification of necessary developments, compilation of existing data from off shore applications and analysis of effect on Cost Of Energy. Preliminary float design and economical considerations - is a theoretical and numerical study including preliminary float designs and cost estimates. It aims at making a first comparison between the different materials options for DEXA and Wave Star floats and giving a first judgement about the suitability of CRC concrete. This is done through a qualitative assessment of pros and cons of different materials for both types of floats and a design study of the Dexa Wave float. It is concluded that the requirements for the Dexa Wave float are so that CRC is not able to compete with conventional concrete for the best and most cost effective solution. The good durability (leading to low maintenance costs), the mechanical properties and the ductility of CRC are not important enough to offset the increased cost for this float. For Wave Star on the other hand, there are significant advantages in using CRC as the only other option in this case is fibre glass, which is a much more expensive product. An investigation was made of methods of optimizing the properties of CRC - customizing them for particular applications in WEC's. The method of optimization has been to change the types of fibres in the mix, and it is demonstrated

  2. Effect of water electrolyte supplementation on performance, serum ...

    African Journals Online (AJOL)

    Under heat stress, 0.5% KCl and 0.5%NaCl supplementation in water reduced rectal temperature, increased body weight, improved FCR, and reduced blood pH. Electrolyte supplementation also influenced red blood cell count as well as serum levels of sodium, potassium and bicarbonate. Supplementing KCl and NaCl in ...

  3. Proceedings of the water chemistry and materials performance conference

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D [ed.; Atomic Energy of Canada Ltd., Sheridan Park, ON (Canada). CANDU Operations

    1987-12-31

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately.

  4. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  5. Proceedings of the water chemistry and materials performance conference

    International Nuclear Information System (INIS)

    Barber, D.

    1986-01-01

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately

  6. A scientometric examination of the performance of water research in ...

    African Journals Online (AJOL)

    2014-09-03

    Sep 3, 2014 ... Regular assessment of the state of water research and development (R&D) in South Africa is a necessary ... require intelligent allocation of resources, which presupposes ..... search strategy identifying keywords in the titles (TTL) of .... POURIS A (2008) Energy & fuels research in South Africa: A compara-.

  7. Investigating water meter performance in developing countries: A ...

    African Journals Online (AJOL)

    2011-10-07

    Oct 7, 2011 ... ing world water utility in Kampala city, Uganda. The influence .... network and make up about 76% of all the small meters of size. 15 mm ..... Medium (ℓ/h) ..... ARREGUI F, CABRERA Jr. E and COBACHO R (2006b) Integrated.

  8. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  9. Storm Water Management Model (SWMM): Performance Review and Gap Analysis

    Science.gov (United States)

    The Storm Water Management Model (SWMM) is a widely used tool for urban drainage design and planning. Hundreds of peer-reviewed articles and conference proceedings have been written describing applications of SWMM. This review focused on collecting information on model performanc...

  10. Performance Evaluation of Produced Water Quality from a ...

    African Journals Online (AJOL)

    Michael Horsfall

    1Department of Chemical Engineering, Federal University of Technology, Owerri, Nigeria, ... ABSTRACT: Produced water, which is a mixture of organic and inorganic compounds, is a major waste ... from one viewpoint, an approach to reducing adverse environmental ... pipette onto a glass-fiber filter with applied vacuum.

  11. Energy and water saving measures at the Arloev sugar mill. Final report; Energi- och vattenbesparande aatgaerder vid Arloevs Sockerbruk. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wamsler, M. [AAF-Processdesign AB, Malmoe (Sweden)

    2001-10-01

    The project comprised several, mutually dependent, sub-projects; mapping, investigation of ways to reduce water consumption, membrane tests aiming to find ways to recover sugar, and pinch analysis to evaluate the possibilities for improved process integration. This final report deals with the overall project results. Identified savings opportunities and savings potentials are presented. The presented measures represent an overall optimisation based on the results of all the project parts. Already during the project, measures have been implemented that are calculated to save 65 000 m{sup 3} water annually, corresponding to 10 % of the total water consumption. This saving is in level with the goals for the project. In the table below, these and additional measures are presented with a total savings potential at approximately 200 000 m{sup 3} /year water. The project will then achieve a saving of just below 35 % of present water consumption. Also in the membrane study the results surpassed the expectations. It was found that with nano filtering a sugar concentration of more than 10 %(W) could be reached in the retentate at a flux 50al/m{sup 2}h. The total sugar losses were less than 5 %, i.e. 95 % should be possible to recover. In total, a savings potential of more than 300 tonnes sugar per year is indicated. The Energy savings in the project are calculated to 7,4 GWh/year, of which 0,2 GWh/year by reduced water consumption, 0,6 GWh/year by water recovery, 1,4 GWh/year by membrane technology and 5,2aGWh/year as a result of process integration. This should be compared to the target 2,5 GWh/year. Hence, the results are almost three times the expected. The savings in monetary terms are estimated at just under SEK 5 million per year. The investment is roughly estimated at between SEK 5 and 6 million, of which SEK 4 million for the membrane equipment and SEK 0,5 million for a process water buffer tank. The remaining investment costs cover heat exchangers, control equipment

  12. Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1

    International Nuclear Information System (INIS)

    Smith, T.H.; Sussman, M.E.; Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D.

    1995-08-01

    This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study

  13. The effect of intake of water on the final values of body composition parameters in active athletes using two different bioimpedance analyzers

    Directory of Open Access Journals (Sweden)

    Petr Kutáč

    2014-06-01

    Full Text Available Background:The method of bioelectrical impedance (BIA is frequently used to estimate body composition in sports. The total body water (TBW is the basic variable that BIA measures. That implies the degree of sensitivity of BIA to the hydration of the organism, which is also demonstrated by the principles of measurement that primarily relate to the hydration of the organism. It is difficult to provide standard hydration of the organism of subjects prior to measurements when taking the measurements in the field. Objective:The objective of the study is to assess the changes in the final values of the selected body composition parameters in soccer players caused by intake of water, using two devices commonly used in the field. Methods:The research was performed in a group of 33 soccer players (mean age 20.30 ± 1.18 years. The measurements were taken using Tanita BC 418 MA (frequency 50 kHz and Nutriguard-M (frequency 100 kHz. To evaluate the effect of water intake, we took two measurements before and after the intake of 500 ml of water. The parameters measured by Tanita BC 418 MA were body weight (BW, total body water (TBW, body fat (BF, fat free mass (FFM. Nutriguard-M was used to measure total body water (TBW, intra and extracellular water (ICW and ECW, body fat (BF, fat free mass (FFM, intra and extracellular mass (BCM and ECM. The differences in the means (M1 and M2 of the monitored parameters were evaluated using the Paired Samples t-test. In statistically significant differences in the mean, the practical significance was also verified using the effect of size (Cohen's d. Results:The Tanita device showed statistically significant differences after the intake of 500 ml in parameters BW (+0.42 kg, BF (+0.39 kg, +0.53% and TBW (-0.38%. As for the Nutriguard device, statistically significant differences were found in parameters TBW (+0.77 kg, ICW (+0.83 kg, FFM (+1.05 kg, BCM (+0.79 kg and ECM/BCM (-0.01. Conclusion

  14. Solar water-heating performance evaluation-San Diego, California

    Science.gov (United States)

    1981-01-01

    Report describes energy saved by replacing domestic, conventional natural gas heater with solar-energy subsystem in single-family residence near San Diego, California. Energy savings for 6 month test period averaged 1.089 million Btu. Collector array covered 65 square feet and supplied hot water to both 66-gallon solar storage tank and 40-gallon tank for domestic use. Natural gas supplied house's auxiliary energy.

  15. Isotope based assessment of groundwater renewal in water scarce regions. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-10-01

    The isotopic composition and chemical constituents of water infiltrating through the soil zone (unsaturated zone, or zone of aeration) into groundwater can be employed to determine the moisture transport in the unsaturated zone, thus enabling estimation of the water infiltration rate to the underlying aquifer. This was the basis on which this CRP was initiated in 1996. The overall results obtained from three years of applied field research related to study of moisture transport dynamics and estimation of natural recharge through use of isotope/hydrochemical depth profiles of the soil moisture in the unsaturated zone were presented and discussed at the final Research Co-ordination Meeting held in Vienna from 18 to 21 October 1999. A total of 44 sites were involved in the project on which detailed information on physiography, lithology, rainfall, unsaturated moisture content and a variety of chemical and isotopic determinants is now available. This publication contains 11 individual reports presented by CRP participants at the Meeting. Each of the reports have been indexed separately

  16. Performance characterization of water recovery and water quality from chemical/organic waste products

    Science.gov (United States)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  17. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  18. Ambient water and sediment quality of Galveston Bay: Present status and historical trends. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, G.H.; Armstrong, N.E.

    1992-08-01

    For many years, data relating to the quality of water and sediment have been collected in the Galveston Bay system by a variety of organizations and individuals. The purpose of the project was to compile these data, and to perform a quantitative assessment of water and sediment quality of Galveston Bay and its evolution over time. The study focused on the following categories of parameters: temperature, salinity and related parameters, suspended sediments and turbidity, pH, dissolved oxygen, nutrients as measured by nitrogen, phosphorous and organic carbon, organics as measured by oil and grease, volatile solids and biochemical oxygen demand, chlorophyll-a, coliforms, metals (total and dissolved), and trace organics, including pesticides, herbicides, PAH's, PCB's, and priority pollutants.

  19. Scientific-technical cooperation with Russia. Transient analyses for alternative types of water-cooled reactors. Final report; WTZ mit Russland. Transientenanalysen fuer wassergekuehlte Kernreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Kozmenkov, Yaroslav [Forschungszentrum Dresden-Rossendorf (Germany). Inst. fuer Sicherheitsforschung; Institute of Physics and Power Engineering, Obninsk (Russian Federation); Pivovarov, Valeri; Matveev, Yurij [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2010-12-15

    The recently developed multi-group version DYN3D-MG of the reactor dynamics code DYN3D has been qualified for applications to water-cooled reactor concepts different from industrial PWR and BWR. An extended DYN3D version was applied to the graphite-moderated pressure tube reactor EGP-6 (NPP Bilibino) and conceptual design studies of an advanced Boiling Water Reactor with reduced moderation (RMWR) as well as the RUTA-70 reactor for low temperature heat supply. Concerning the RUTA reactor, safe heat removal by natural circulation of the coolant at low pressure has to be shown. For the corresponding validation of thermo-hydraulic system codes like ATHLET and RELAP5, experiments on flashing-induced natural circulation instabilities performed at the CIRCUS test facility at the TU Delft were simulated using the RELAP5 code. For the application to alternative water-cooled reactors, DYN3D model extensions and modifications were implemented, in particular adaptations of heat conduction and heat transfer models. Performing code-to-code comparisons with the Russian fine-mesh neutron diffusion code ACADEM contributed to the verification of DYN3D-MG. Validation has been performed by calculating reactor dynamics experiments at the NPP Bilibino. For the reactors EGP-6, RMWR and RUTA, analyses of various protected and unprotected control rod withdrawal and ejection transients were performed. The beyond design basis accident (BDBA) scenario ''Coast-down of all main coolant pumps at nominal power without scram'' for the RUTA reactor was analyzed using the code complexes DYN3D/ATHLET and DYN3D/RELAP5. It was shown, that the reactor passes over to a save asymptotic state at reduced power with coolant natural circulation. Analyzing the BDBA ''Unprotected withdrawal of a control rod group'' for the RMWR, the safety against Departure from Nucleate Boiling (DNB) could not be shown with the necessary confidence. Finally, conclusions have been drawn

  20. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks...

  1. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  2. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  3. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    International Nuclear Information System (INIS)

    Pope, Michael A.; Sen, R. Sonat; Boer, Brian; Ougouag, Abderrafi M.; Youinou, Gilles

    2011-01-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  4. Probabilistic assessment of light water reactor fuel performance

    International Nuclear Information System (INIS)

    Misfeldt, I.

    1978-10-01

    A computer system for the statistical evaluation of LWR fuel performance has been developed. The computer code FRP, Fuel Reliability Predictor, calculates the distributions for parameters characterizing the fuel performance and failure probability. The statistical methods employed are either Monte Carlo simulations or low order Taylor approximation. Included in the computer system is a deterministic fuel performance code, which has been verified by comparison with data from irradiation experiments. The distributions for all material data utilized in the fuel simulations are estimations from the best available information in the literature. For the failure prediction, a stress corrosion failure criterion has been derived. The failure criterion is based on data from out-of-reactor stress corrosion experiments performed on unirradiated and irradiated zircaloy with iodine present. By means of an example the typical distributions of the variables characterizing the fuel performance and the accuracy of the methods themselves have been investigated. The application of the computer system is illustrated by a number of examples, these include the evaluation of irradiation experiments, design comparisons, and analyses of minor accidents. (author)

  5. Statistical modeling of dental unit water bacterial test kit performance.

    Science.gov (United States)

    Cohen, Mark E; Harte, Jennifer A; Stone, Mark E; O'Connor, Karen H; Coen, Michael L; Cullum, Malford E

    2007-01-01

    While it is important to monitor dental water quality, it is unclear whether in-office test kits provide bacterial counts comparable to the gold standard method (R2A). Studies were conducted on specimens with known bacterial concentrations, and from dental units, to evaluate test kit accuracy across a range of bacterial types and loads. Colony forming units (CFU) were counted for samples from each source, using R2A and two types of test kits, and conformity to Poisson distribution expectations was evaluated. Poisson regression was used to test for effects of source and device, and to estimate rate ratios for kits relative to R2A. For all devices, distributions were Poisson for low CFU/mL when only beige-pigmented bacteria were considered. For higher counts, R2A remained Poisson, but kits exhibited over-dispersion. Both kits undercounted relative to R2A, but the degree of undercounting was reasonably stable. Kits did not grow pink-pigmented bacteria from dental-unit water identified as Methylobacterium rhodesianum. Only one of the test kits provided results with adequate reliability at higher bacterial concentrations. Undercount bias could be estimated for this device and used to adjust test kit results. Insensitivity to methylobacteria spp. is problematic.

  6. Thermophysical properties database of materials for light water reactors and heavy water reactors. Final report of a coordinated research project 1999-2005

    International Nuclear Information System (INIS)

    2006-06-01

    The IAEA Coordinated Research Project (CRP) on the Establishment of a Thermo-physical Properties Database for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs) started in 1999. It was included in the IAEA's Nuclear Power Programme following endorsement in 1997 by the IAEA's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and the TWG-HWR). Furthermore, the TWG on Fuel Performance and Technology (TWG-FPT) also expressed its support. This CRP was conducted as a joint task within the IAEA's project on technology development for LWRs and HWRs in its nuclear power programme. Improving the technology for nuclear reactors through better computer codes and more accurate materials property data can contribute to improved economics of future plants by helping to remove the need for large design margins, which are currently used to account for limitations of data and methods. Accurate representations of thermo-physical properties under relevant temperature and neutron fluence conditions are necessary for evaluating reactor performance under normal operation and accident conditions. The objective of this CRP was to collect and systematize a thermo-physical properties database for light and heavy water reactor materials under normal operating, transient and accident conditions and to foster the exchange of non-proprietary information on thermo-physical properties of LWR and HWR materials. An internationally available, peer reviewed database of properties at normal and severe accident conditions has been established on the Internet. This report is intended to serve as a useful source of information on thermo-physical properties data for water cooled reactor analyses. The properties data have been initially stored in the THERSYST data system at the University of Stuttgart, Germany, which was subsequently developed into an internationally available Internet database named THERPRO at Hanyang University, Republic of Korea

  7. Studies of severe accidents in light water reactors. Containment performance

    International Nuclear Information System (INIS)

    Hayns, M.R.; Phillips, D.W.; Young, R.L.D.

    1987-01-01

    The containment system of a LWR is an obvious component of the plant which performs an important safety function in preventing the release of fission products to the environment in the event of design basis accidents. With over 260 LWRs in service worldwide, and others still under construction, there is a considerable diversity of containment types and combinations of containment safeguards systems. All of these satisfy local regulatory requirements which are principally aimed at the design basis accidents, and these requirements naturally have a considerable uniformity. However, their design diversity becomes more relevant to the performance of the containment in severe accident conditions, and this aspect of containment performance is reviewed in this paper. The ability of the containment to mitigate severe accident consequences introduces the potential for accident management and recovery and this in turn points towards a range of new containment systems and concepts. PSA helps in judging these possibilities and in forming policies and procedures for accident management. It is perhaps in accident management that severe accident containment performance will be most beneficial in the future, and where additional effort in containment analysis will be focused

  8. Water pollution control. High performances finishing processing; Lutte contre la pollution des eaux. Finitions a haute performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, P.

    1999-04-01

    The sewage recovery or recycling is an efficient way to control the water resources conservation. This paper characterizes in a first part the residual pollutants of an effluent rejected in the natural medium. It deals then the recycling and the water recovery objectives to present the possible processing. The author emphasizes some modern high performances engineering as, granular material filtration, membrane filtration, osmosis, UV disinfection, flocculation activated carbon or chemical oxidation. (A.L.B.)

  9. Is performance in pre-clinical assessment a good predictor of the final Doctor of Medicine grade?

    Science.gov (United States)

    Al-Wardy, Nadia M; Rizvi, Syed G; Bayoumi, Riad A

    2009-12-01

    To investigate if any correlation exists between students' grades on their final doctor of Medicine (MD) assessment and their overall preclinical grade point average (GPA) and its component parts. Student data available from the Deanship of Admissions and Registration were analyzed. Pearson correlation coefficient was obtained to assess the degree of linear relationship between performance in the preclinical and the MD assessment of 529 students who graduated from the College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Oman from June 1998 to June 2005. Simple and multiple regression analyses were performed to evaluate individual and combined impact of the preclinical courses' grades on MD grades. Preclinical GPA correlated highly with MD GPA (r=0.641). The science component taught early in the preclinical phase correlated more strongly (r=0.457) than student electives (r=0.246). This correlation was better in the good English group. Students' performance, however, was best in electives, but worst in English. Most students who had low MD GPA (2.5, and limiting the credit hour requirement of electives by the College seems to be justified.

  10. Radon removal using point-of-entry water-treatment techniques. Final report, October 1988-June 1990

    International Nuclear Information System (INIS)

    Kinner, N.E.; Malley, J.P.; Clement, J.A.

    1990-10-01

    The purpose of the EPA Cooperative Agreement was to evaluate the performance of POE granular activated carbon (GAC), and diffused bubble and bubble place aeration systems treating a ground water supply containing radon (35,620 + or - 6,717 pCi/L). The pattern of loading to the units was designed to simulate daily demand in a household. Each of the systems was evaluated with respect to three primary factors: radon removal efficiency, potential problems, and economics. The radon removal efficiencies of the POE GAC units gradually deteriorated over time from 99.7% to 79% for the GAC without pretreatment and 99.7% to 85% for the units preceded by ion exchange. The bubble plate and diffused bubble POE units were very efficient (99%) at removing radon from the water. The resilience is primarly due to the high air to water ratios supplied by the aeration blowers. One major problem associated with the aeration techniques is iron oxidation/precipitation

  11. The study of stability, combustion characteristics and performance of water in diesel emulsion fuel

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available A single cylinder diesel engine study of water in diesel emulsions was conducted to investigate the stability effect of emulsion fuel on three different fuel blends and the water emulsification effect on the engine performance. Emulsified fuels contained 2% of surfactant including Span 80 Tween 80 and tested 10 HLB number. The blends also varied of 5%, 10% and 15% of water in diesel ratios namely as BSW5, BSW10 and BSW15. The fuel blends performance was tested using a single cylinder, direct injection diesel engine, operating at 1860 rpm. The results on stability reveal that high shear homogenizer yields more stability on emulsion fuel than mechanical stirrer and ultrasonic water bath. The engine performance results show that the ignition delay and peak pressure increase with the increment of water percentage up to 15%. However, the results indicate the increment of water percentage is also shows a significant decrease in engine power.

  12. Influence of Stern Shaft Inclination on the Cooling Performance of Water-Lubricated Bearing

    Directory of Open Access Journals (Sweden)

    Zou Li

    2016-01-01

    Full Text Available The water film model of the marine water-lubricated stern bearing was established by FLUENT. The influence law of water flow rate on the cooling performance of water-lubricated bearing was studied in consideration of the stern shaft inclination. It will be helpful to improve the performance of marine water-lubricated stern bearing and both security and reliability of propulsion system. The simulation results show that the increase of cooling water flow rate in a certain range can effectively reduce bearing temperature. The bearing temperature rises sharply with thinning of water film thickness which is caused by the increase of inclination angle. Larger inclination angle can deteriorate the operating reliability of bearing.

  13. Performance of a Low Activity Beta-Sensitive SR{sup 90} Water Monitor for Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Zickefoose, J.; Bronson, F.; Ilie, G.; Jaderstrom, H.; Venkataraman, R. [Canberra Industries Inc. (United States)

    2015-07-01

    There are large volumes of contaminated water from the stabilization efforts at the damaged Fukushima Nuclear Power Plants. This water is being processed to remove radioactivity for eventual release to the environment. An on-line continuously operating system to confirm that the clean-up system is working properly, and to provide prompt feedback of the results is required by the system operator. While gamma emitting nuclides allow for the straight forward approach of gamma spectroscopy to identify and quantify radioactivity in water, pure beta emitting nuclides such as Sr{sup 90} pose a challenging problem. The relatively short range of beta radiation in water requires optimization of the measurement geometry in terms of the source-detector distance and source-detector interface while retaining a background sensitivity low enough to meet the Minimum Detectable Concentration (MDC) of 10 Bq/kg in 180 minutes. This issue is complicated by the continuum nature of the beta spectrum which does not allow for simple nuclide identification. The use of the Monte-Carlo code MCNP to estimate system performance before prototyping vastly increases the success of the end product. Various parameters such as detector size and thickness, water chamber size, water chamber construction materials were evaluated to help choose the optimum geometry. The final design was a system consisting of two large-area (16 x 35 cm) and thin (0.15 mm) plastic scintillators placed very close to a sealed a water chamber. The size of the chamber was optimized to obtain the maximum efficiency for the nuclide being measured (Sr/Y{sup 90}) but to minimize the efficiency for possible interferences (Ru/Rh{sup 106}, Cs{sup 137}). A thin carbon fiber window was selected with adequate material and thickness to contain the water under pressure, but also thin enough (0.5 mm) to allow enough beta radiation to pass through to the active detector volume. The entire measurement geometry is then housed in a thick lead

  14. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    F.T. Owoeye

    2016-05-01

    Full Text Available Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fabricated membranes were sintered at a temperature of 1100°C and characterized by an X-ray diffractometer and optical scanner. Compressibility tests and physical properties of the membranes were also examined. It was observed that, as the percentage composition of kaolin increased from 0 to 80% and the percentage composition of clay decreased from 80 to 0% respectively, the compressive stress of all the sample membranes increased, with an increase in compressive strain from 1.8 to 2.4. Sample A had the highest value of compressive stress from 1.8 to 2.2 compressive strain, but sample B had the highest value of compressive stress of 150MPa at a compressive strain of 2.4. Optical micrographs of all membranes showed the presence of uniformly distributed pores and no cracks were seen around them. It was concluded that, with increasing percentage of kaolin and decreasing percentage of clay, there was a decrease in porosity and water absorption, as well as a decrease in the mechanical properties of the fabricated membranes.

  15. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    Science.gov (United States)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  16. Self-perceived versus objectively measured competence in performing clinical practical procedures by final year medical students.

    Science.gov (United States)

    Katowa-Mukwato, Patricia; Banda, Sekelani

    2016-04-30

    To determine and compare the self-perceived and objectively measured competence in performing 14 core-clinical practical procedures by Final Year Medical Students of the University of Zambia. The study included 56 out of 60 graduating University of Zambia Medical Students of the 2012/2013 academic year. Self-perceived competence: students rated their competence on 14 core- clinical practical procedures using a self-administered questionnaire on a 5-point Likert scale. Objective competence: it was measured by Objective Structured Clinical Examination (OSCE) by faculty using predetermined rating scales. Rank order correlation test was performed for self-perceived and objectively measured competence. Two thirds 36 (66.7%) of the participants perceived themselves as moderately competent, 15 (27.8%) rated themselves as highly competent while 3 (5.6%) had low self-perception. With objective competence, the majority 52 (92.8%) were barely competent while 4 (7.2%) were absolutely competent. When overall self-perception was compared to objectively measured competence, there was a discordance which was demonstrated by a negative correlation (Spearman rho -.123). Significant numbers of students reported low self-competence in performing procedures such as endotracheal intubation, gastric lavage and cardiopulmonary resuscitation which most never performed during the clinical years of medical education. In addition, the negative correlation between self-perceived and objectively measured competence demonstrated the inability of students to assess and rate themselves objectively due to fear that others may know their weaknesses and realize that they are not as competent as expected at a specific level of training.

  17. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  18. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  19. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    International Nuclear Information System (INIS)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff's review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff's review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design

  20. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  1. Performance studies of an IR fiber optic sensor for chlorinated hydrocarbons in water

    International Nuclear Information System (INIS)

    Goebel, R.; Krska, R.; Neal, S.; Kellner, R.

    1994-01-01

    Chlorinated hydrocarbons (CHCs) were monitored using a recently presented infrared fiber-optic physico-chemical sensor consisting of an MIR transparent, polymer coated, silver halide fiber coupled to a commercial FTIR spectrometer. The aim of this study was to test the performance of this new fiber optic sensing device with respect to temperature dependence, simultaneous detection of several CHCs, sensitivity and dynamic response behavior. In addition the diffusion process of the CHCs into the polymer was analyzed in order to better understand and evaluate the obtained results. During the investigation of the temperature dependence of the sensor response to real trend could be observed in the temperature range of 0 to 22 C. The dynamic response of the sensor is in the minute range when experiencing an increase in concentration of the analyte while with a decrease in concentration, the response is relatively slow. The sensor enabled the detection of 10 environmentally relevant CHCs at concentrations of 1 to 50 ppm. The simulation of the experimental diffusion data revealed Fick's 1st law diffusion for CHCs into the polymer layers. Finally the sensing device was validated with head spacegas chromatography (HSGC) analyses and showed good agreement with these already established methods. This work shows the great potential of IR fiber optic sensors as early warning systems for a variety of CHCs in water (''threshold alarm sensor'') (orig.)

  2. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    International Nuclear Information System (INIS)

    Sanjuan, B.; Millot, R.

    2009-09-01

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact with

  3. Bibliographical review about Na/Li geo-thermometry and lithium isotopes applied to worldwide geothermal waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, B.; Millot, R.

    2009-09-15

    This study is performed within the framework of the FP6 European project HITI (High Temperature Instruments for supercritical geothermal reservoir characterization and exploitation). This research project, co-funded by EU and the different partners, aims to provide geophysical and geochemical sensors and methods to evaluate deep geothermal wells up to supercritical conditions (T > 370 deg. C), which are more cost-effective than those of the conventional wells. A deep geothermal well is currently being drilled for this purpose into the Krafla area, Iceland, as part of the IDDP ('Iceland Deep Drilling Project') and with joint funding from Icelandic industry and science Institutes. Another deep well will be drilled in the Reykjanes peninsula, Iceland, within the framework of the same project. This study, a bibliographical review about the Na/Li geo-thermometer and lithium isotopes applied on the world geothermal waters, is the first step of the task envisaged by BRGM to use and validate the sodium-lithium (Na-Li) chemical geo-thermometer on Icelandic geothermal waters at temperatures ranging from 25 to 500 deg. C. In this study, more than 120 temperature and chemical data from world geothermal and oil-fields, sedimentary basins, oceanic ridges, emerged rifts and island arcs have been collected and investigated. These additional data have allowed to confirm and refine the three existing Na/Li thermometric relationships. Moreover, a new Na/Li thermometric relationship relative to the processes of seawater or dilute seawater-basalt interaction occurring in the oceanic ridges and emerged rifts is proposed. Even if the running of Na/Li is still poorly understood, the existence of a new thermometric relationship confirms that the Na/Li ratios not only depend on the temperature but also on other parameters such as the fluid salinity and origin, or the nature of the reservoir rocks in contact with the geothermal fluids. For most of the geothermal waters in contact

  4. Performance of Fragema fuel in pressurized water reactors

    International Nuclear Information System (INIS)

    Dumont, A.; Ravier, G.; Ballot, B.

    1986-06-01

    FRAGEMA fuel operating experience in power reactors is very extensive. Performance over a range of power and burnup levels for various operating conditions is quite satisfactory. However significant development programs are presently in progress to further extend our knowledge under increasingly severe operating conditions. In particular, upcoming data acquisition programs (1985-1988) will cover site and hot cell measurements on Gd poison rods, 4.5 % overenriched fuel rods over four operating cycles, 17 x 17 AFA fuel assemblies. For these products the same surveillance strategy as the one used for the standard assembly has been adopted, in order to continuously provide more data which can be used to upgrade design models and pave the way for the development of future products

  5. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  6. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications. Final Report

    International Nuclear Information System (INIS)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-01-01

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water ((le) 0.1% by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m 2 s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  7. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter.

    Science.gov (United States)

    Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A

    2011-01-30

    The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  9. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  10. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  11. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC)

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  12. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    Science.gov (United States)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-12-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference ( p > 0.05).

  13. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  14. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, Joshua L. [Univ. of Delaware, Newark, DE (United States); Prasad, Ajay K. [Univ. of Delaware, Newark, DE (United States)

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  15. A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-07-01

    Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM

  16. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  17. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  18. A study on the performance valuation of small size water storage electric boiler

    International Nuclear Information System (INIS)

    Mo, Joung Gun; Shin, Jae Ho; Bae, Chul Whan; Suh, Jeong Se; Chung, Han Shik; Jeong, Hyo Min

    2003-01-01

    We was made 150L a water storage electric boiler and obtained various performances of the storage, radiant and keeping by experimentation. The storage performance is that the heat were off about 50 minutes after heating start. Then the temperature of outlet was arrived the stead state at 91 deg. C and the storage performance was appeared 93.64%. In the radiant performance, the water temperature was decreased from 90 .deg. C to 44.8 deg. C after 960 minutes. Then the calorific value changed from 675kcal/h to 72kcal/h and the temperature decreased about 50%. The keeping performance showed mean temperature, 67.06 .deg. C according to progress 800 minutes and the maximum temperature drop were 0.2 .deg. C. By the results of the performance valuation, the water storage electric boiler was verified fitted quality on the test prescription of KERI (Korea Electrotechnology Research Institute.)

  19. Evaluation of RSG-GAS purification system and pool warm water layer supplier performance

    International Nuclear Information System (INIS)

    Sudiyono; Suhadi; Diah-Erlina-Lestari

    2005-01-01

    Function of RSG-GAS purification system and warm water supplier (KBE 02) are to pick up dissolve activation result and another dirts of warm water layer. To keep quality of water at the decided level. The system is equipped by heater to supply warm water layer on the reactor pool surface the distribution is to reduce radiation level in the operation hall area a speciality on the reactor pool surface. Line KBE 02 tomord beam tube headitty system supplies water necessary to be shielding to beam tube in use off time. Of the RSG-GAS purification system and pool warm water layer performance date can be shown north of water is always in good condition. To require the dechded requirement. Resin live time is two years and then months

  20. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases