WorldWideScience

Sample records for water faucets

  1. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Water Consumption of... Appendix S to Subpart B of Part 430—Uniform Test Method for Measuring the Water Consumption of Faucets and... water consumption value shall be rounded to one decimal place for non-metered faucets, or two decimal...

  2. Faucet: streaming de novo assembly graph construction.

    Science.gov (United States)

    Rozov, Roye; Goldshlager, Gil; Halperin, Eran; Shamir, Ron

    2018-01-01

    We present Faucet, a two-pass streaming algorithm for assembly graph construction. Faucet builds an assembly graph incrementally as each read is processed. Thus, reads need not be stored locally, as they can be processed while downloading data and then discarded. We demonstrate this functionality by performing streaming graph assembly of publicly available data, and observe that the ratio of disk use to raw data size decreases as coverage is increased. Faucet pairs the de Bruijn graph obtained from the reads with additional meta-data derived from them. We show these metadata-coverage counts collected at junction k-mers and connections bridging between junction pairs-contain most salient information needed for assembly, and demonstrate they enable cleaning of metagenome assembly graphs, greatly improving contiguity while maintaining accuracy. We compared Fauceted resource use and assembly quality to state of the art metagenome assemblers, as well as leading resource-efficient genome assemblers. Faucet used orders of magnitude less time and disk space than the specialized metagenome assemblers MetaSPAdes and Megahit, while also improving on their memory use; this broadly matched performance of other assemblers optimizing resource efficiency-namely, Minia and LightAssembler. However, on metagenomes tested, Faucet,o outputs had 14-110% higher mean NGA50 lengths compared with Minia, and 2- to 11-fold higher mean NGA50 lengths compared with LightAssembler, the only other streaming assembler available. Faucet is available at https://github.com/Shamir-Lab/Faucet. rshamir@tau.ac.il or eranhalperin@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  3. 75 FR 33765 - Foreign-Trade Zone 77-Memphis, TN, Application for Subzone, Delta Faucet Company (Faucets...

    Science.gov (United States)

    2010-06-15

    ... between 36-40% of the value of the finished faucets) would include: Parts of faucets, hoses, plastic sanitary ware, plastic bags, stoppers, lids, plastic builders' ware, handles/knobs, tubes/ pipes of rubber... payments on the foreign components used in export production. The company would be exempt from duty...

  4. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  5. Methicillin resistant Staphylococcus aureus contamination of phlebotomy tourniquets and faucets

    Science.gov (United States)

    Abeywickrama, T; Amarasinghe, K; Wijerathne, S; Dharmaratne, C; Fernando, D; Senaratna, B C; Gunasekera, H A K M

    2018-03-31

    Methicillin resistant Staphylococcus aureus (MRSA) is transmitted through direct contact or fomites. The most important means of nosocomial spread is by hospital personnel. However, fomites are being increasingly recognized as sources of nosocomial infection. Our aim was to describe the MRSA contamination rate of phlebotomy tourniquets and faucets in a tertiary care hospital and to compare the contamination of plastic tourniquets with that of fabric tourniquets. A cross-sectional study was carried out in the general wards of a tertiary care hospital in the Colombo District. Two hundred tourniquets were collected and 100 faucets were swabbed and cultured on CHROMagar™ MRSA medium (CHROMagar Microbiology). Contamination rates of 50 plastic tourniquets and 50 fabric tourniquets were compared. MRSA grew in 26% of tourniquets. Majority were plastic tubes. MRSA contamination of tourniquets did not significantly differ by ward (p>0.4). MRSA was found on 26% of faucets. Contamination rate was highest in the common wards for dermatology, dental, rheumatology, and neurology (55.6%), followed by gynaecology (45.2%), cardiology (33.3%), surgery (18.8%), psychiatry (11.1%), and medicine (5.6%). There was a significant difference in rates of contamination of faucets in the different wards (pcontamination rates of tourniquets and faucets were high. Single-use plastic tourniquets were much less contaminated with MRSA than reused tourniquets.

  6. Effect of use of socially marketed faucet fitted earthen vessel/sodium hypochlorite solution on diarrhea prevention at household level in rural India

    Directory of Open Access Journals (Sweden)

    AR Dongre

    2008-07-01

    Full Text Available Objective: To evaluate the effect of socially marketed faucet fitted to earthen vessel / sodium hypochlorite solution on diarrhea prevention at rural household level as a social intervention for diarrhea prevention under ‘Community Led Initiatives for Child Survival (CLICS program. Methods: Unmatched case-control study was carried out in 10 villages of Primary Health Centre, Anji, located in rural central India. During the study period, 144 households used either faucet fitted earthen vessel to store drinking water or used sodium hypochlorite solution (SH for keeping drinking water safe. These served as case households for the present study. 213 neighborhood control households from same locality who used neither of the methods were also selected. Results: Odds ratio for households who used faucets fitted to earthen vessel was 0.49 (95% CI= 0.25 – 0.95. Odds ratio for households who used sodium hypochlorite solution was 0.55 (95% CI= 0.31 – 0.98. Use of these methods by the community, would prevent about 27 percent and 22 percent cases of the diarrhea (Population attributable risk proportion = 0.25 by faucets fitted to earthen vessels and 0.22 by use of sodium hypochlorite solution respectively. Conclusion: To ensure safe drinking water at household level, the effective and cheap methods like fitting faucet to traditionally used earthen vessel and/or use of sodium hypochlorite solution must be promoted through community participation at household level for cost and culture sensitive rural people in India.

  7. Field evaluation of a new point-of-use faucet filter for preventing exposure to Legionella and other waterborne pathogens in health care facilities.

    Science.gov (United States)

    Baron, Julianne L; Peters, Tammy; Shafer, Raymond; MacMurray, Brian; Stout, Janet E

    2014-11-01

    Opportunistic waterborne pathogens (eg, Legionella, Pseudomonas) may persist in water distribution systems despite municipal chlorination and secondary disinfection and can cause health care-acquired infections. Point-of-use (POU) filtration can limit exposure to pathogens; however, their short maximum lifetime and membrane clogging have limited their use. A new faucet filter rated at 62 days was evaluated at a cancer center in Northwestern Pennsylvania. Five sinks were equipped with filters, and 5 sinks served as controls. Hot water was collected weekly for 17 weeks and cultured for Legionella, Pseudomonas, and total bacteria. Legionella was removed from all filtered samples for 12 weeks. One colony was recovered from 1 site at 13 weeks; however, subsequent tests were negative through 17 weeks of testing. Total bacteria were excluded for the first 2 weeks, followed by an average of 1.86 log reduction in total bacteria compared with controls. No Pseudomonas was recovered from filtered or control faucets. This next generation faucet filter eliminated Legionella beyond the 62 day manufacturers' recommended maximum duration of use. These new POU filters will require fewer change-outs than standard filters and could be a cost-effective method for preventing exposure to Legionella and other opportunistic waterborne pathogens in hospitals with high-risk patients. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    Science.gov (United States)

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-11-01

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Water Filtration. Grades 3-5.

    Science.gov (United States)

    Rushton, Erik; Ryan, Emily; Swift, Charles

    One of our most valuable and often overlooked resources is water. We can survive for a couple of weeks without food but only a few days without water. Having clean water to drink is a luxury. The water that comes out of our faucets does not always start off safe to drink. Most often it has visited a treatment plant prior to reaching our glasses.…

  10. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    OpenAIRE

    Tomasz Cichoń; Jadwiga Królikowska

    2016-01-01

    A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing ar...

  11. WATER SUPPLY MEASUREMENTS IN MULTI-FAMILY BULDINGS AND DISCREPANCIES IN A WATER BALANCE

    Directory of Open Access Journals (Sweden)

    Tomasz Cichoń

    2016-06-01

    Full Text Available A large-scale implementation of individual water meters in water charging systems has created problems with a water shortage that have to be settled between real estate managers and water and sewage utilities. The article presents the observations and experiences from operation of a water metering system at the Krakow agglomeration. The studies have confirmed that many small leaks in installations, taps, faucets, flush toilets as well as system failures and the incidences of water stealing are still the factors responsible for significant differences in the water balance in the apartment buildings.

  12. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals.

    Science.gov (United States)

    Mietzner, S; Schwille, R C; Farley, A; Wald, E R; Ge, J H; States, S J; Libert, T; Wadowsky, R M; Miuetzner, S

    1997-12-01

    Thermal treatment and copper-silver ionization are often used for controlling Legionella pneumophila in high-volume hospital plumbing systems, although the comparative efficacies of these measures in high-volume systems are unknown. Thermal treatment of a hot water circuit was accomplished by flushing hot water (> 60 degrees C) through distal fixtures for 10 minutes. Copper-silver ionization was conducted in three circuits by installing units into return lines immediately upstream from hot water tanks. Recovery rates of L. pneumophila were monitored by culturing swab samples from faucets. Concentrations of copper and silver in water samples were determined by atomic absorption spectrophotometry. Four heat-flush treatments failed to provide long-term control of L. pneumophila. In contrast, ionization treatment reduced the rate of recovery of L. pneumophila from 108 faucets from 72% to 2% within 1 month and maintained effective control for at least 22 months. Only three samples (1.9%) of hot water from faucets exceeded Environmental Protection Agency standards for silver, and none exceeded the standards for copper. Of 24 samples obtained from hot water tanks, 42% and 50% exceeded the silver and copper standards, respectively. Copper-silver ionization effectively controls L. pneumophila in high-volume plumbing systems and is superior to thermal treatment; however, high concentrations of copper and silver can accumulate at the bottom of hot water tanks.

  13. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Science.gov (United States)

    2010-01-01

    ... its true energy consumption characteristics, or water consumption characteristics (in the case of... the energy consumption characteristics, or water consumption characteristics (in the case of faucets... true energy consumption characteristics, or water consumption characteristics (in the case of faucets...

  14. 76 FR 52644 - Faucets, Showerheads, Water Closets and Urinals

    Science.gov (United States)

    2011-08-23

    ... for energy conservation standards under 42 U.S.C. 6297(c) with respect to any State regulation... December 15, 2010 final rule; market data; and any new or emerging water-efficient product designs or...: Authority and Background Title III, Part B of the Energy Policy and Conservation Act (EPCA), Public Law 94...

  15. Farm Water Supply and Sanitation--Pipe, Plumbing, Skills and Symbols. Student Materials. V.A. III. V-D-1, V-D-2.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Designed for use by individuals enrolled in vocational agricultural classes, these student materials deal with farm water supply, sanitation, and plumbing skills. Topics covered in the unit are maintaining the farm water supply; repairing faucets and valves, leaks in pipes and storage tanks, and water closets; clearing clogged drains and traps;…

  16. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  17. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  18. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Science.gov (United States)

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  19. Turning Minds On and Faucets Off: Water Conservation Education in Jordanian Schools.

    Science.gov (United States)

    Middlestadt, Susan; Grieser, Mona; Hernandez, Orlando; Tubaishat, Khulood; Sanchack, Julie; Southwell, Brian; Schwartz, Reva

    2001-01-01

    An evaluation was conducted to measure the impact of a curriculum implemented through the Jordan Water Conservation Education Project. Examines the effect of recommending water conservation at the household level and the impact of using interactive teaching methods to promote conservation behaviors among students and their families. (Author/SAH)

  20. Sustainability of portable water services in the Philippines

    Science.gov (United States)

    Bohm, Robert A.; Essenburg, Timothy J.; Fox, William F.

    1993-07-01

    Financial sustainability of rural water systems in the Philippines is evaluated based on a comparison of willingness to pay for improved water and the costs of service delivery. Willingness to pay estimates indicate that user fees are unlikely to be sufficient to cover the full cost of service and subsidies are necessary, at least for a major portion of capital costs, or the water systems will become unsustainable because of insufficient resources. Sustainability is more probable when care is exercised in selecting villages for improved water services. Economies of scale lead to lower unit costs in larger villages. Willingness to pay is greater for household connections than for public faucets. Willingness to pay increases with income and wealth, family size, education, and dissatisfaction with traditional water sources.

  1. SWEEP - Save Water & Energy Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  2. SWEEP - Save Water and Energy Education Program; FINAL

    International Nuclear Information System (INIS)

    Sullivan, Gregory P; Elliott, Douglas B; Hillman, Tim C; Hadley, Adam; Ledbetter, Marc R; Payson, David R

    2001-01-01

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits

  3. Water Quality Study on the Hot and Cold Water Supply Systems at Vietnamese Hotels

    Directory of Open Access Journals (Sweden)

    Kanako Toyosada

    2017-04-01

    Full Text Available This study was conducted as part of the Joint Crediting Mechanism (JCM of the Japanese Ministry of Economy, Trade and Industry, and the Ministry of the Environment project’s preparation in Vietnam. Samples were taken from hot and cold water supplies from guest rooms’ faucets in 12 hotels in Hanoi city, Vietnam, and 13 hotels in Japan for comparison. A simple water quality measurement and determination of Legionella was carried out. The results showed that residual effective chlorine—which guarantees bactericidal properties—was not detected in tap water supplied in hotel rooms in Vietnam, and nitrite (an indicator of water pollution was detected in 40% of buildings. In the hotels in Japan, the prescribed residual chlorine concentration met the prescribed levels, and nitrite was not detected. Additionally, while there was no Legionella detected in the Japanese cases, it was detected in most of the Vietnamese hotels, which were found to manage the hot water storage tank at low temperatures of 40–50 °C. It was found that there were deficiencies in cold and hot water supply quality, and that there was no effective system in place for building operation maintenance and management.

  4. 24 CFR 1003.202 - Eligible rehabilitation and preservation activities.

    Science.gov (United States)

    2010-04-01

    ... the efficient use of water through such means as water saving faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  5. 24 CFR 570.202 - Eligible rehabilitation and preservation activities.

    Science.gov (United States)

    2010-04-01

    ... increase the efficient use of water through such means as water savings faucets and shower heads and repair of water leaks; (6) Connection of residential structures to water distribution lines or local sewer...

  6. A hospital outbreak of Legionella from a contaminated water supply.

    Science.gov (United States)

    Tercelj-Zorman, Marjeta; Seljak, Marija; Stare, Janez; Mencinger, Joze; Rakovec, Joze; Rylander, Ragnar; Strle, Franc

    2004-03-01

    The authors performed a cross-sectional epidemiological survey to investigate the source of a hospital Legionella outbreak originating in contaminated water. Water temperature and air humidity were measured around possible contamination sources. A dead-end pipe was found to contain Legionella pneumophila serogroup 1. All individuals who acquired legionellosis had spent at least 30 min within 2 m of the contamination source. Among staff, 41 of 71 were exposed, and 31 of these fell ill. All 7 patients exposed to the contaminated water acquired legionellosis. None of the 94 bed-ridden patients from the same units developed the disease. An aerosol with 60% relative air humidity was formed near the suspect water faucets, but the humidity fell rapidly farther from the water source, suggesting that desiccation decreased the risk of infection. The healthy personnel and patients closest to the source acquired legionellosis, suggesting that risk was related less to compromised patients than to exposure.

  7. Recreational Vehicle Water Tanks as a Possible Source for Legionella Infections

    Directory of Open Access Journals (Sweden)

    Christine M. Litwin

    2013-01-01

    Full Text Available We investigated recreational vehicle (RV water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24% faucets, 1/11 (9% water tanks from 4/20 (20% RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6, L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals.

  8. Multi-family Buildings

    Science.gov (United States)

    Apartments and condos that have earned the label will have WaterSense labeled toilets, faucets, and showerheads that have been independently certified to be high-performing and water-efficient, saving 20 percent more water than standard models.

  9. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches

    Directory of Open Access Journals (Sweden)

    Davide Carboni

    2016-05-01

    Full Text Available Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included.

  10. Toward a sustainable faucet design: effects of sound and vision on perception of running water

    NARCIS (Netherlands)

    Golan, Aidai; Fenko, Anna

    2015-01-01

    People form their judgments of everyday phenomena based on multisensory information. This study investigates the relative impact of visual and auditory information on the perception of running tap water. Two visual and two auditory stimuli were combined to create four different combinations of high

  11. Dripping Faucet and Bubbling Faucet: An Analogy

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek

    2009-01-01

    Roč. 87, č. 10 (2009), s. 1366-1370 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110; GA AV ČR(CZ) IAA200720801 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * drop formation * oscillations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.223, year: 2009

  12. Mycobacterium avium complex--the role of potable water in disease transmission.

    Science.gov (United States)

    Whiley, H; Keegan, A; Giglio, S; Bentham, R

    2012-08-01

    Mycobacterium avium complex (MAC) is a group of opportunistic pathogens of major public health concern. It is responsible for a wide spectrum of disease dependent on subspecies, route of infection and patients pre-existing conditions. Presently, there is limited research on the incidence of MAC infection that considers both pulmonary and other clinical manifestations. MAC has been isolated from various terrestrial and aquatic environments including natural waters, engineered water systems and soils. Identifying the specific environmental sources responsible for human infection is essential in minimizing disease prevalence. This paper reviews current literature and case studies regarding the wide spectrum of disease caused by MAC and the role of potable water in disease transmission. Potable water was recognized as a putative pathway for MAC infection. Contaminated potable water sources associated with human infection included warm water distribution systems, showers, faucets, household drinking water, swimming pools and hot tub spas. MAC can maintain long-term contamination of potable water sources through its high resistance to disinfectants, association with biofilms and intracellular parasitism of free-living protozoa. Further research is required to investigate the efficiency of water treatment processes against MAC and into construction and maintenance of warm water distribution systems and the role they play in MAC proliferation. No claim to Australian Government works Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. Thermal disinfection of hotels, hospitals, and athletic venues hot water distribution systems contaminated by Legionella species.

    Science.gov (United States)

    Mouchtouri, Varvara; Velonakis, Emmanuel; Hadjichristodoulou, Christos

    2007-11-01

    Legionella spp. (> or = 500 cfu liter(-1)) were detected in 92 of 497 water distribution systems (WDS) examined. Thermal disinfection was applied at 33 WDS. After the first and second application of the disinfection procedure, 15 (45.4%) and 3 (9%) positive for remedial actions WDS were found, respectively. Legionella pneumophila was more resistant to thermal disinfection than Legionella non-pneumophila spp. (relative risk [RR]=5.4, 95% confidence intervals [CI]=1-35). WDS of hotels with oil heater were more easily disinfected than those with electrical or solar heater (RR=0.4 95% CI=0.2-0.8). Thermal disinfection seems not to be efficient enough to eliminate legionellae, unless repeatedly applied and in combination with extended heat flushing, and faucets chlorine disinfection.

  14. Frequency of legionella contamination in conditional & water distribution systems of Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Davod Esmaieli

    2008-09-01

    Full Text Available Background: Legionella species are ubiquitous in natural aquatic environments, capable of existing in waters with varied temperatures, PH levels, and nutrient and oxygen contents. Of 49 known legionella species, 20 species have been linked to pneumonia in humans. Contamination by legionella has occurred in the distribution systems of many hospitals. Aerosol-generating systems such as faucets, showerheads, cooling towers, and nebulizers are responsible for their transmission from water to air. Methods: A total of 113 water samples were gathered from different wards of 32 hospitals in different geographical regions of Tehran city. These samples were concentrated by filtration, treated with the acid and temperature buffers, and isolated on a BCYE agar culture medium. Results: A total of 22 hospitals out of 33 (26.5% were contaminated by legionella species, and 30 samples (26.5% out of 113 were positive. Chlorine concentration and pH level of the water samples were 0.18-2.2 mg/l and 6.6-7.6, respectively. Conclusion: The high rate of waste water contamination in Tehran hospitals with Legionella indicates the resistance of this microorganism to chlorine and other disinfectants, or inadequate disinfection process, representing the insufficiency of the current decontamination of hospital water distribution system. Thus identifying legionella species and their controlling in water distribution system of hospitals is of great importance.

  15. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  16. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wadowsky, R.M.; Yee, R.B.; Mezmar, L.; Wing, E.J.; Dowling, J.N.

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions, and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pnenumophila serogroups 1.5, and 6 were recovered from plubming fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54/sup 0/C, but not in those maintained at 71 and 77/sup 0/C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated.

  17. 16 CFR 305.10 - Ranges of comparability on the required labels.

    Science.gov (United States)

    2010-01-01

    ... efficiency ratings for each covered product (except fluorescent lamp ballasts, metal halide lamp fixtures, lamps, showerheads, faucets, water closets, urinals, or ceiling fans) shall be taken from the... are revised, all information disseminated after 90 days following the publication of the revision...

  18. Second order numerical method of two-fluid model of air-water flow

    International Nuclear Information System (INIS)

    Tiselj, I.; Petelin, S.

    1995-01-01

    Model considered in this paper is six-equation two-fluid model used in computer code RELAP5. Air-water equations were taken in a code named PDE to avoid additional problems caused by condensation or vaporization. Terms with space derivatives were added in virtual mass term in momentum equations to ensure the hyperbolicity of the equations. Numerical method in PDE code is based on approximate Riemann solvers. Equations are solved on non-staggered grid with explicit time advancement and with upwind discretization of the convective terms in characteristic form of the equations. Flux limiters are used to find suitable combinations of the first (upwind) and the second order (Lax-Wendroff) discretization s which ensure second order accuracy on smooth solutions and damp oscillations around the discontinuities. Because of the small time steps required and because of its non-dissipative nature the scheme is suitable for the prediction of the fast transients: pressure waves, shock and rarefaction waves, water hammer or critical flow. Some preliminary results are presented for a shock tube problem and for Water Faucet problem - problems usually used as benchmarks for two-fluid computer codes. (author)

  19. Water sanitation, access, use and self-reported diarrheal disease in rural Honduras.

    Science.gov (United States)

    Halder, Gabriela E; Bearman, Gonzalo; Sanogo, Kakotan; Stevens, Michael P

    2013-01-01

    Only 79% of individuals living in rural Honduras use improved water sources. Inadequate drinking water quality is related to diarrheal illness, which in Honduras contributes to 18.6 episodes of diarrhea per child year in children under five years of age. The purpose of this study was to examine and compare access to drinking water and sanitation, as well as self-reported diarrheal disease incidence among three proximal communities in the Department of Yoro area of Honduras. An 11-item language-specific, interviewer-administered, anonymous questionnaire was administered to 263 randomly selected adults attending a June 2011 medical brigade held in the communities of Coyoles, La Hicaca, and Lomitas. Chi-square with Fisher exact tests were utilized to compare water access, sanitation, and self-reported diarrheal incidence among these communities. Coyoles and La Hicaca used private faucets as their primary water sources. Coyoles had the greatest use of bottled water. Lomitas used rivers as their primary water source, and did not use bottled water. Mostly, females were responsible for acquiring water. Usage of multiple water sanitation methods was most common in Coyoles, while no sanitation method was most common in Lomitas. In Lomitas and La Hicaca, water filters were mostly provided via donation by non-governmental organizations. Lomitas had the highest reported incidence of diarrhea among self and other household members. Critical differences in water access, sanitation, and self-reported diarrheal incidence among three geographically distinct, yet proximal, communities highlights the need for targeted interventions even in geographically proximal rural areas.

  20. Chemical and microbiological analysis of public school water in Uberaba Municipality

    Directory of Open Access Journals (Sweden)

    Sérgio Marcos Sanches

    2015-07-01

    Full Text Available This study evaluated the quality of water consumed by schoolchildren in the city of Uberaba, relying upon chemical analyzes to determine the levels of free-residual chlorine and levels of chromium, copper, manganese, lead and cadmium. Microbiological analysis was also performed in order to determine total coliforms and Escherichia coli, using the values established by Ordinance n0 . 2914 of 2011 of the Ministry of Health as parameters for safe drinking water. Water samples were analyzed from the drinking fountains and kitchen faucets of eight public schools that serve children aged 0-5 years. Sampling was conducted quarterly from December 2011 to September 2012, resulting in four collections. The results revealed the presence of Escherichia coli and total coliforms above the valued permitted by legislation in more than 50% of the samples. It was also observed that concentrations of free-residual chlorine were below the minimum value required by law in nearly half of the samples analyzed. In relation to the concentration of metals, some samples had water contents of copper, cadmium, chromium, manganese and lead above the permissible levels. Statistical tests revealed that when analyzing the period of sampling, only the values for the concentrations of free-residual chlorine, chromium and lead showed no significant difference (p> 0.05. The results show the need for corrective actions at the water supply point for the school population, in addition to monitoring and controlling the quality of water for human consumption.

  1. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  2. Mapping New Terrain: Climate Change and America's West. Report of the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT)

    Science.gov (United States)

    Henry F. CIRMOUNT Committee (Diaz; Constance I. Millar; Daniel R. Cayan; Michael D. Dettinger; Daniel B. Fagre; Lisa J. Graumlich; Greg Greenwood; Malcolm K. Hughes; David L. Peterson; Frank L. Powell; Kelly T. Redmond; Nathan L. Stephenson; Thomas W. Swetnam; Connie) Woodhouse

    2006-01-01

    Climate variability and sustained change presage far-reaching transformations across America’s West, an expanse dominated by immense mountain ranges and interspersed with important urban centers. These mountains provide the region’s life blood—water that courses through its streams and runs out its faucets, power that fuels its industries...

  3. Tailoring strain in microelectronic devices

    NARCIS (Netherlands)

    van Hemert, T.

    2013-01-01

    The central device of this thesis is the transistor. It acts like a faucet, but hen for electric charge. There is a connection that is called the source, just like the water company. And the charge flows into the drain. Finally there is a handle, here called the gate, to control the flow of charge.

  4. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  5. Private forests, housing growth, and America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects

    Science.gov (United States)

    M. H. Mockrin; R. L. Lilja; E. Weidner; S. M. Stein; M. A. Carr

    2014-01-01

    America’s private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions...

  6. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    Science.gov (United States)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  7. Biofilm formation in surface and drinking water distribution systems in Mafikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-11-01

    Full Text Available Poor quality source water and poorly treated reused wastewater may result in poor quality drinking water that has a higher potential to form biofilms. A biofilm is a group of microorganisms which adhere to a surface. We investigated biofilm growth in the drinking water distribution systems in the Mafikeng area, in the North- West Province of South Africa. Analysis was conducted to determine the presence of faecal coliforms, total coliforms, Pseudomonas spp. and Aeromonas spp. in the biofilms. Biofilms were grown on a device that contained copper and galvanised steel coupons. A mini tap filter – a point-of-use treatment device which can be used at a single faucet – was also used to collect samples. Scanning electron microscopy demonstrated that multi-species biofilms developed on all the coupons as well as on the point-of-use filters. Galvanised steel and carbon filters had the highest density of biofilm. Total coliforms, faecal coliforms and Pseudomonas spp. were isolated from raw water biofilm coupons only. Aeromonas spp. and Pseudomonas spp. were isolated from filters. The susceptibility of selected isolates was tested against 11 antibiotics of clinical interest. The most prevalent antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. The presence of virulence genes was determined using the polymerase chain reaction. These results indicate that bacteria present in the water have the ability to colonise as biofilms and drinking water biofilms may be a reservoir for opportunistic bacteria including Pseudomonas and Aeromonas species.

  8. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections-A Systematic Review of the Literature.

    Science.gov (United States)

    Kizny Gordon, Alice E; Mathers, Amy J; Cheong, Elaine Y L; Gottlieb, Thomas; Kotay, Shireen; Walker, A Sarah; Peto, Timothy E A; Crook, Derrick W; Stoesser, Nicole

    2017-05-15

    Over the last 20 years there have been 32 reports of carbapenem-resistant organisms in the hospital water environment, with half of these occurring since 2010. The majority of these reports have described associated clinical outbreaks in the intensive care setting, affecting the critically ill and the immunocompromised. Drains, sinks, and faucets were most frequently colonized, and Pseudomonas aeruginosa the predominant organism. Imipenemase (IMP), Klebsiella pneumoniae carbapenemase (KPC), and Verona integron-encoded metallo-β-lactamase (VIM) were the most common carbapenemases found. Molecular typing was performed in almost all studies, with pulse field gel electrophoresis being most commonly used. Seventy-two percent of studies reported controlling outbreaks, of which just more than one-third eliminated the organism from the water environment. A combination of interventions seems to be most successful, including reinforcement of general infection control measures, alongside chemical disinfection. The most appropriate disinfection method remains unclear, however, and it is likely that replacement of colonized water reservoirs may be required for long-term clearance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. A primer on water

    Science.gov (United States)

    Leopold, Luna Bergere; Langbein, Walter Basil

    1960-01-01

    When you open the faucet you expect water to flow. And you expect it to flow night or day, summer or winter, whether you want to fill a glass or water the lawn. It should be clean and pure, without any odor.You have seen or read about places where the water doesn't have these qualities. You may have lived in a city where you were allowed to water the lawn only during a few hours of certain days. We know a large town where the water turns brown after every big rainstorm.Beginning shortly after World War II, large areas in the Southwestern United States had a 10-year drought, and newspapers published a lot of information about its effects. Some people say that the growing demand for water will cause serious shortages over much of the country in the next 10 to 40 years. But it has always been true that while water wells and springs dry up in some places, floods may be occurring in other places at the same time.Nearly every month news stories are published describing floods somewhere in the country. In fact, every year, on the average, 75,000 persons are forced from their homes by floods. In some years, as in 1951 when the lower Kansas River experienced a great flood, half a million people are affected. To understand the reasons for such recurring distress, it is necessary to know something about rivers and about the flat land or flood plain that borders the river.Interest in water and related problems is growing as our population increases and as the use of water becomes steadily greater. To help meet this heightened interest in general information about water and its use and control is the reason this primer was written. The primer is in two parts. The first part tells about hydrology, or the science that concerns the relation of water to our earth, and the second part describes the development of water supplies and the use of water. The Geological Survey is publishing this primer in nontechnical language in the hope that it will enable the general reader to

  10. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    Science.gov (United States)

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Hot water supply system; 1999 nendo gakujutsu koenkai gaiyo. Kyuto

    Energy Technology Data Exchange (ETDEWEB)

    Oze, H. [Toyo University, Tokyo (Japan)

    1999-12-05

    G-5 and 6 measure and investigate actual state of use of hot water supply systems in dormitories used by persons living alone without their families and by unmarried persons to collect fundamental data. G-5 considers how hot water is used, by making a questionnaire survey on the subject houses, and identifies the consumption trend of heat, water and hot water in the hot water supply systems as a whole. G-6 selected eleven houses from among the houses discussed in the previous report to identify the trend of use of hot water by each house. Also, quantity of hot water used in every day of the week is estimated. G-7 discusses methods for estimating water temperatures at faucets of water pipes from the water sources. This is intended to raise the accuracy of tap water temperature conversion coefficient by districts used for calculating estimated heat quantity as a parameter 'hot water supply energy consumption coefficient' to evaluate energy saving performance of a hot water supply facility. G-8 performs numerical simulations changing different parameters in the hot water supply piping system by using a heat loss calculation model for the existing household hot water supply piping. It executes evaluation on energy conservation performance of each model. G-9 estimates efficiency of instantaneous household gas hot water supply devices, not only on thermal efficiency of devices during steady state combustion, but also on non-steady state such as start-up, and discusses methods to derive actual efficiency by using calculations. (translated by NEDO)

  12. Development of New Micro Hydropower Turbine

    OpenAIRE

    Dousith, Phommachanh; Kurokawa, Junichi; Matsui, Jun; Choi, Young-Do

    2005-01-01

    There is a huge of available hydropower potential in the water supply system (WSS) that has been abandoned.Each time when we use a water faucet, the power of 10 to 80 watts is dissipated.In fact, this dissipated energy can be converted to useful energy by hydraulic turbine. Presently, there is not suitable turbine to use in WSS. Therefore, the new type turbine is needed to explore. In this study, Positive Displacement Turbine (PDT) is proposed. The main objective of this study is to develop n...

  13. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  14. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  15. A study of DNA damage in buccal cells of consumers of well- and/or tap-water using the comet assay: Assessment of occupational exposure to genotoxicants.

    Science.gov (United States)

    Vazquez Boucard, Celia; Lee-Cruz, Larisa; Mercier, Laurence; Ramírez Orozco, Martín; Serrano Pinto, Vania; Anguiano, Gerardo; Cazares, Linette; Díaz, Daniel

    2017-10-01

    Because of concerns that natural aquifers in the region of Todos Santos (Baja California Sur, Mexico) might be contaminated by organochlorine pesticides and heavy metals, a case-control study was conducted among consumers and non-consumers of well- and/or tap-water to determine risks to human health. This study was based on a genotoxic evaluation of buccal cells using the Comet assay technique. Levels of DNA damage in the consumers group were significantly higher than those of the control group. However, occupational exposure to genotoxicants showed to be the critical factor rather than water consumption. Taking into account the professions of well- and/or tap-water consumers, agricultural workers exposed directly (those who fumigated) or indirectly (those not involved in fumigating) to agrochemicals showed greater genetic damage than controls. This difference persisted even when age, and whether the person smoked or consumed alcoholic drinks were considered. These factors were not associated with the level of genetic damage observed. Chemical analyses of organochlorine pesticides and heavy metals were carried out to evaluate the water quality of wells, faucets, and surface water of canals consumed by the population and/or used for irrigation. High concentrations of α and β endosulfan were detected in water of surface canals. Although our inventory of agrochemicals employed in the region showed the use of products considered carcinogenic and/or mutagenic, they were not detected by the analytical techniques used. Heavy metals (arsenic, mercury, and lead) were detected in water of some wells used for irrigation and human consumption. Environ. Mol. Mutagen. 58:619-627, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Applications of high-resolution spatial discretization scheme and Jacobian-free Newton–Krylov method in two-phase flow problems

    International Nuclear Information System (INIS)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2015-01-01

    Highlights: • Using high-resolution spatial scheme in solving two-phase flow problems. • Fully implicit time integrations scheme. • Jacobian-free Newton–Krylov method. • Analytical solution for two-phase water faucet problem. - Abstract: The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists

  17. 78 FR 42719 - Test Procedures for Showerheads, Faucets, Water Closets, Urinals, and Commercial Prerinse Spray...

    Science.gov (United States)

    2013-07-17

    ... flow control insert of showerheads for purposes of amending DOE test procedures. In addition, DOE... may be publicly available, such as information that is exempt from public disclosure. A link to the docket Web page can be found at www.regulations.gov . The www.regulations.gov Web page contains a link to...

  18. Alluvial and riparian soils as major sources of lead exposure in young children in the Philippines: the role of floods.

    Science.gov (United States)

    Ostrea, Enrique M; Ostrea, Angelo M; Villanueva-Uy, Ma Esterlita; Chiodo, Lisa; Janisse, James

    2015-04-01

    The objective of this paper was to determine the prevalence and sources of high lead (Pb) exposure among children in Bulacan, Philippines. A total of 150 children (6-7 years old) and their caregivers were studied. Lead was analyzed in children hair and deciduous teeth. Sources of lead exposure were determined by caregiver interview and Pb analysis of house soil, drinking faucet water, air, and water from seven Bulacan rivers. Lead was positive in 91.3% of children's hair (MC or median concentration = 8.9 μg/g; range = 0-38.29), in 46.2% of the teeth (MC = 0.000 μg/mg in positive samples; range = 0.00-0.020), in 100% of soil (MC = 27.06 mg/kg; range = 3.05-1155.80), in 21.1% of air (MC = 0 μg/Ncm; range = 0-0.10), in 4% of house, faucet water (MC = 0.0 ppm; range = 0-40). There was a significant correlation (Spearman's rho) between Pb in children's hair and soil (r = 0.195; p = 0.017) and between Pb in house water and outdoor air (r = 0.616; p = 0.005). There is no significant correlation between Pb in children's hair and teeth. None of the potential sources of Pb from interview were related to lead exposure in the children. Water from seven Bulacan rivers was 100% positive for lead (MC = 70.00 ppb; range = 30-90). Widespread flooding with river overflow occurred in Bulacan in 2009 which likely caused lead contamination of the soil. There was no significant difference in the lead concentration of the soil whether near or far from the river (p = 0.205, Mann-Whitney U test). High lead exposure in children in Bulacan is likely from soil contaminated by lead-polluted rivers during flooding. In areas where flooding is common, alluvial and riparian soils from polluted rivers are important sources of lead exposure in children.

  19. Empedobacter brevis Meningitis in a Neonate: A Very Rare Case of Neonatal Meningitis and Literature Review

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    2016-01-01

    Full Text Available Empedobacter brevis is gram-negative bacilli that belongs to Flavobacteriaceae family. It was previously known with name of Flavobacterium breve. The reservoir of these bacteria is soil, plants, water, food, hospital water sources, including incubators, sinks, faucets, tap water, hemodialysis systems, saline solutions, and other pharmaceutical solutions. We report a case of term female newborn, admitted with complaint of respiratory distress developing soon after birth and developed clinical features of sepsis at age of 92 hours of postnatal life. The sepsis screen was positive and blood culture and cerebrospinal fluid showed growth of Empedobacter brevis that was resistant to multiple antibiotics. The neonate was treated with appropriate antibiotics and was discharged successfully. The novelty of the case report is that this is the first case report of neonatal sepsis caused by Empedobacter brevis.

  20. 76 FR 2082 - Notice of Petitions by Firms for Determination of Eligibility To Apply for Trade Adjustment...

    Science.gov (United States)

    2011-01-12

    ... IceAge Manufacturing, Inc. MN 56751. various other components for snowmobiles. Concept Works, Inc... kitchen faucets, commercial hardware, bathroom fixtures and motorcycle components. RW Chang & Co. Inc 1202...

  1. Water saving in modern townhouse villages ВОДОСБЕРЕЖЕНИЕ В СОВРЕМЕННЫХ ПОСЕЛКАХ ТАУНХАУСОВ

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2013-08-01

    Full Text Available It is appropriate and in some cases necessary, to arrange a special fire fighting reservoir, the size of which would vary depending on the number of buildings in a townhouse village. In case of fire, water can be taken out of it with the help of a fire pump, which is sometimes the only possible solution due to the pressure reduction in the networks of domestic water supply of villages.A water tank may also be useful for a household, as it offers a water reserve for a water supply network to assure continuous water supply to consumers in case of an accident (pump malfunction, power outage, or in case of discrepancy between regimes of water supply outside the network and water consumption inside a building. The tank is to be placed in a heated room, located as high as possible inside a building, for example, in the attic, in order to prevent water freezing. The tank volume may be about 200 300 liters; the tank is often made of steel. For the purpose of fire safety, there should always be an emergency ten-minute water supply in the tank for fire extinguishing purposes. It is worth mentioning that a free-flow water tank is preferable to a power-driven hydropneumatic one to assure an emergency supply of water for a particular period of time even in case of power failure.An electronic no-touch faucet can be even more efficient; it is activated by placing hands under a special sensor. It also has a function of maintaining a pre-set temperature, thus preventing hot water burns. It is desirable to install this a faucet in the bathroom close to the bath tub.Проблемы водосбережения выходят на первый план как в больших городах, так и в поселках малоэтажной застройки. Рассмотрены технические решения, позволяющие снизить потребление воды в несколько раз для сокращения

  2. Gardening from a Wheelchair

    Science.gov (United States)

    ... Paralysis > Health > Staying active > Gardening from a wheelchair Gardening from a wheelchair ☷ ▾ Page contents Tips from community ... round handles) on gate latches, doors, and faucets. Gardening as therapy For Gene Rothert gardening is a ...

  3. Exploring chaos a guide to the new science of disorder

    CERN Document Server

    1994-01-01

    Chaos Theory is giving scientists fresh insights into all sorts of unruly phenomena--from dripping faucets to swinging pendulums, from the vagaries of the weather to the movements of the planets, from heart rhythms to gold futures.

  4. Common cold - how to treat at home

    Science.gov (United States)

    ... your fingernails. Dry your hands with a clean paper towel and turn faucet off with paper towel. You can also use alcohol-based hand ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  5. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  6. 77 FR 5865 - American Unity Investments, Inc., China Display Technologies, Inc., China Wind Energy, Inc., Fuda...

    Science.gov (United States)

    2012-02-06

    ... Display Technologies, Inc., China Wind Energy, Inc., Fuda Faucet Works, Inc., Greater China Media & Entertainment Corp., and Xechem International, Inc.; Order of Suspension of Trading February 2, 2012. It appears... Technologies, Inc. because it has not filed any periodic reports since the period ended September 30, 2008. It...

  7. Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows

    International Nuclear Information System (INIS)

    Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June

    2008-08-01

    The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities

  8. Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June

    2008-08-15

    The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.

  9. Predicting severe enterovirus 71 infection: Age, comorbidity, and parental behavior matter.

    Science.gov (United States)

    Huang, Wen-Chan; Shih, Wei-Liang; Yang, Shun-Cheng; Yen, Ting-Yu; Lee, Jian-Te; Huang, Yi-Chuan; Li, Chung-Chen; Hsieh, Yu-Chia; Lin, Tzou-Yin; Chang, Luan-Yin; Huang, Li-Min

    2017-02-01

    Enterovirus 71 (EV71) is one of the major pathogens that cause severe enteroviral infections. Our aim was to study the behavioral and household risk factors for its serious complications. Between May 2011 and November 2012, we enrolled children who had symptoms of EV71 infection from six hospitals in Taiwan. The caregivers of each patient were interviewed to determine their hand hygiene habits in relation to EV71 infection. The severity of EV71 infection was classified as follows: Stage 1, hand-foot-mouth disease or herpangina; Stage 2, meningitis or myoclonic jerk; Stage 3A, encephalitis; Stage 3B, cardiopulmonary failure. Stages 2 to 3B were defined as severe EV71 infection. Children with Stages 3A and 3B infection were designated as the critical group. A total of 399 patients had laboratory-confirmed EV71 infection. Three risks factors were associated with the different degrees of severity in EV71 infection. Children <2 years old had much greater risks for severe EV71 infection [odds ratio (OR) 1.8; 95% confidence interval (CI), 1.2-2.8], delayed medical evaluation for critical infection (OR 9.4; 95% CI, 3.6-24.1), and developmental retardation for cardiopulmonary failure (OR 8.3; 95% CI, 2.0-33.7). Among all the habits and household factors, caregivers in the critical group had a significantly lower rate in terms of cleaning the faucet after washing their hands (OR 2.63; 95% CI, 1.14-6.08). Children <2 years old, developmental retardation, and delayed medical intervention were associated with severe EV71 infection. Cleaning water faucets after hand washing was a protective habit that reduced the risk of complications. Copyright © 2015. Published by Elsevier B.V.

  10. Knowledge Pipeline: A Task Oriented Way to Implement Knowledge Management

    International Nuclear Information System (INIS)

    Pan Jiajie

    2014-01-01

    Concept of knowledge pipeline: There are many pipelines named by tasks or business processes in an organization. Knowledge contributors put knowledge to its corresponding pipelines. A maintenance team could keep the knowledge in pipelines clear and valid. Users could get knowledge just like opening a faucet in terms of their tasks or business processes

  11. Sanitary status and incidence of methicillin-resistant Staphylococcus aureus and Clostridium difficile within Canadian hotel rooms.

    Science.gov (United States)

    Xu, Changyun; Weese, Scott J; Namvar, Azadeh; Warriner, Keith

    2015-04-01

    The study described in this article aimed at establishing a baseline assessment of the sanitary status of ice and guest rooms within Canadian hotels. Collectively, 54 hotel rooms belonging to six different national chains were sampled. High-contact surfaces (comforter, alarm clock, bedside lamp, TV remote, bathroom countertop, faucet, and toilet seat) were sampled using adenosine triphosphate (ATP) swabs and replicate organism detection and counting plates. ATP swab readings ranged from 2.12 to 4.42 log relative light units. Coliforms were recovered from 36% of surfaces with high prevalence being recovered from the comforter, TV remote, bathroom countertop, faucet, and toilet seat. Oxacillin-resistant bacteria were recovered from 19% of surfaces with 46% of isolates confirmed as methicillin-resistant Staphylococcus aureus. Two toxigenic Clostridium difficile isolates were recovered in the course of the study. Collectively, 24% of the ice samples harbored coliforms with a single sample testing positive for E. coli. The authors' study demonstrates that hotel rooms represent a potential source of community-acquired infections and the need for enhanced sanitation practices.

  12. Deterministic Chaos: Proposal of an Informal Educational Activity Aimed at High School Students

    Science.gov (United States)

    Greco, Valeria; Spagnolo, Salvatore

    2016-01-01

    Chaos theory is not present in the Italian school curricula and textbooks in spite of being present in many topics of classical physics and in everyday life. Chaotic dynamics, in fact, are involved in phenomena easily accessible to everyone or in events experienced by most people in their lives (the dripping of a faucet which keeps people awoken…

  13. How did the fracking controversy emerge in the period 2010-2012?

    Science.gov (United States)

    Mazur, Allan

    2016-02-01

    In 2010-2012, the controversy over fracking grew rapidly, first in the United States, and then internationally. An important step was the anti-fracking documentary film Gasland. With help from celebrity sources, the film was produced and won a prize at the Sundance Film Festival by early 2010 and had an Oscar nomination by early 2011, in the meantime popularizing potent images of hazard including tainted aquifers and ignitable water running from kitchen faucets. During this period, major US news organizations paid little attention to the issue. The offshore Deepwater Horizon disaster of April 2010 spurred The New York Times to prolific reporting on potential risks of the new onshore technique for extracting shale gas. With flagship news coverage, the controversy had by 2012 gained wide media attention that evoked public concern and opposition, spreading from the United States to other nations. © The Author(s) 2014.

  14. Ovos e larvas de helmintos nos sanitários de pré-escolas municipais de Sorocaba, SP e suas freqüências nas fezes das crianças Helminth eggs and larvs in the water closet of some city nursery schools (Infant Educational Center from Sorocaba, SP, Brazil, and their frequency in children feces

    Directory of Open Access Journals (Sweden)

    Lina Maria De Petrini da Silva Coelho

    1999-12-01

    Full Text Available O objetivo desta pesquisa foi relacionar a presença de ovos e/ou larvas de helmintos em elementos dos sanitários com a freqüência dos mesmos nas fezes de seus usuários. Três amostras das fezes de 1050 crianças em idade pré-escolar, examinadas pelo método de sedimentação, foram positivas para 184 ovos ou larvas de helmintos, em 162 crianças. Dos 465 elementos dos sanitários (assento, descarga, trinco, maçanetas e registro de torneira de 12 pré-escolas municipais de Sorocaba examinados com fita adesiva transparente sobre lâmina de microscopia estavam contaminados, sendo encontrados 18 ovos de Ascaris lumbricoides, 1 de Enterobius vermicularis e 4 larvas de nematóides parcialmente alteradas. Não houve correlação significante entre a contaminação de elementos de sanitários e das fezes de seus usuários.The purpose of this research was to establish a relationship between the presence of helminth eggs in the water closet elements and the frequency of these eggs in the feces of their users. 1050 kindergarden children's feces were examinated by the spontaneous sedimentation method in three samples of feces, which were positive in 162 children presenting 184 eggs or helmints larvs. From the 465 water closet elements, constituted of : toilet seat, internal and external door knobs, latch, faucet handle and discharge valve, of 12 Infant Educational Centers of Sorocaba, examinated by sticking some transparent adhesive tape on microscopy slides, were found 18 eggs of Ascaris lumbricoides; 1 of Enterobius vermicularis and 4 larvs of nemathoids partially deformed were found in 23 infected elements. There wasn't significance relationship between the elements of water closets and user's feces contamination.

  15. St. Louis River Estuary 2011 - 2013 Faucet snail location data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset consists of GPS coordinates for benthic invertebrate collections made in the St. Louis River Estuary in 2011 through 2013, and information on whether and...

  16. Radon -- an environmental hazard

    International Nuclear Information System (INIS)

    Faheem, M.; Rahman, R.; Rahman, S.; Matiullah

    2005-01-01

    Humans have always been exposed throughout its period of experience to naturally occurring sources of ionizing radiation or natural background radiation, It is an established fact that even these low background doses are harmful to man and cause increased cancer risk. About half of our radiation comes from radon, a radioactive gas coming from normal materials in the ground. Several building materials such as granite, bricks, sand, cement etc., contain uranium in various amounts. The radioactive gas /sup 222/Rn produced in these materials due to decay of 226Ra is transported to indoor air through diffusion and convective flow. It seeps out of soil and rocks, well water, building materials and other sources at a varied rate. Amongst the naturally occurring radioisotopes, radon is the most harmful one that can be a cause of lung cancer. Radon isotopes are born by the decay of radium and radium production in turns comes from uranium or thorium decay. For humans the greatest importance among Radon isotopes is attributed to /sup 222/Rn because it is the longest lived of the three naturally produced isotopes. Drinking water also poses a threat. Radon gas is dissolved in water and is released into the air via water faucets, showerheads, etc. the lack of understanding has so far lead to speculative estimates of pollutant related health hazards. (author)

  17. Beyond the Classroom: The Impact of Informal STEM Experiences on Student Attitudes and Interest

    Science.gov (United States)

    Scinski, Lidia

    A lack of social capital can be a critical factor impeding underrepresented minority (URM) students from obtaining the mathematical and scientific background required to achieve educational and career success in STEM fields. In this study, the effects of generating and utilizing social capital within an informal STEM outreach summer camp are examined as resources in strengthening the academic pipeline for Hispanic students towards careers in STEM. Empirical studies have shown that economically disadvantaged and minority students experience larger learning losses during "unschooled" periods of time than their middle-class and White counterparts. The "faucet theory" explains how the achievement gap widens during unschooled periods of time when the resource faucet is turned off and families of students from disadvantaged backgrounds are unable to make up for these resources. Consequently, minority and students of disadvantaged backgrounds are quickly shortcircuited in taking advantage of opportunities to pursue careers in STEM fields. To address the research questions, this study employed a qualitative research design, specifically an instrumental case study design using mixed methods within a bounded program. The methods included multiple measures to collect and analyze data from focus group interviews, electronic documents, observations, and survey administrations. The sample population included forty-nine Hispanic 7th and 8th grade students from middle schools in San Diego County. Results of the study demonstrated that the informal STEM outreach summer camp positively impacted Hispanic students and increased interest and attitudes toward STEM choices. STEM programs offered during out-of-school time need to be relationship based to support young students' social and emotional development (Goldstein, Lee, & Chung, 2010). The resource faucet continued to flow during the summer for iQUEST science camp participants because they were able to tap into social capital in

  18. The ironic effect of guessing: increased false memory for mediated lists in younger and older adults

    Science.gov (United States)

    Coane, Jennifer H.; Huff, Mark J.; Hutchison, Keith A.

    2016-01-01

    Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks. PMID:26393390

  19. Explaining money creation by commercial banks

    DEFF Research Database (Denmark)

    Ravn, Ib

    2015-01-01

    Educators and economists concerned with monetary reform face the extraordinary challenge of explaining to the public and its elected representatives not only what a reformed system would look like, but also how the current system works. Centrally, the point that in a modern economy money is largely...... created by commercial banks, as explained by the Bank of England recently (McLeay, Radia & Thomas, 2014b), is often met with incredulity: “What do you mean, created?” This paper introduces five easy-to-grasp analogies that educators and reformers may use to convey key money-creation concepts to a lay...... audience. The analogies offered include (1) money as patches in an expandable patchwork quilt that covers a nation’s real assets, (2) the money supply as water in a bathtub with a faucet and a drain, (3) money understood as debt in a model economy run by schoolchildren, (4) the misleading concept of a bank...

  20. A multicentre randomised controlled trial and economic evaluation of ion-exchange water softeners for the treatment of eczema in children: the Softened Water Eczema Trial (SWET).

    Science.gov (United States)

    Thomas, K S; Koller, K; Dean, T; O'Leary, C J; Sach, T H; Frost, A; Pallett, I; Crook, A M; Meredith, S; Nunn, A J; Burrows, N; Pollock, I; Graham-Brown, R; O'Toole, E; Potter, D; Williams, H C

    2011-02-01

    To determine whether installation of an ion-exchange water softener in the home could improve atopic eczema in children and, if so, to establish its likely cost and cost-effectiveness. An observer-blind, parallel-group randomised controlled trial of 12 weeks duration followed by a 4-week observational period. Eczema was assessed by research nurses blinded to intervention at baseline, 4 weeks, 12 weeks and 16 weeks. The primary outcome was analysed as intent-to-treat, using the randomised allocation rather than actual treatment received. A secondary per-protocol analysis excluded participants who failed to receive their allocated treatment and who were deemed to be protocol violators. Secondary and primary care referral centres in England (UK) serving a variety of ethnic and social groups and including children living in both urban and periurban homes. Three hundred and thirty-six children (aged 6 months to 16 years) with moderate/severe atopic eczema, living in homes in England supplied by hard water (≥ 200 mg/l calcium carbonate). Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care (group A) for 12 weeks or usual eczema care alone (group B) for 12 weeks. This was followed by a 4-week observational period, during which water softeners were switched off/removed from group A homes and installed in group B homes. Standard procedure was to soften all water in the home, but to provide mains (hard) water at a faucet-style tap in the kitchen for drinking and cooking. Participants were therefore exposed to softened water for bathing and washing of clothes, but continued to drink mains (hard) water. Usual care was defined as any treatment that the child was currently using in order to control his or her eczema. New treatment regimens used during the trial period were documented. Primary outcome was the difference between group A and group B in mean change in disease severity at 12 weeks compared with baseline, as

  1. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-01-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion

  2. The Prevalence Of Careers And Microbial Spectrum Of Health Care Worker,s Hand And Relation Between Detergent Used For Washing

    Directory of Open Access Journals (Sweden)

    Khodada A

    2004-09-01

    Full Text Available Background: Many of hospital acquired infections that cause so much morbidity and mortality and have great economical burden are transmitted via contaminated hands of health care workers (HCW.Prevalence of these infections can decrease up to 30% with hygienic measures. In this study we assessed the prevalence of careers and microbial spectrum of HCW,s hand and relation between detergent used for washing and reduction of microbial load of HCW, s hand. Materials and Methods: This study was done in two part: Descriptive part (cross sectional and analytical part (before –after. Cases were Consist of all staff Working in wards of center of pediatrics hospital (Including attends, residents, interns, nurses and workers. In first part ,we assess hand microbial spectrum and contamination load of 72 staff and in second part, we assessed and compared hand microbial spectrum and load before and after of washing with four detergent : plain soap (60 staff , liquid soap (60 staff , betadin scrub in ward (60 staff and betadin scrub in operating room manner (26 staff. Results: %87.5 of personnel had positive cultures-.The most prevalent bacteria were staph. epidermidis (%79.4, staph. oreus (%42.9, klebsiella (%12.7, E-coli (%12.7. The rate of reduction or negative cultures in groups used betadin were greater than the first two group (P-value <0/05.Thirty staff (10 with plain soap,10 with liquid soap and 10 with operating room betadin scrub dried their hands after washing. Forty percent of first, fifty percent of second and ninety percent of third group have negative culture after drying. Also 11 samples were drawn from faucets that all of them were positive. Conclusion: Prevalence of careers is high among HCWS and drying of hands can an important role in hospital infection rate. Faucets have heavy contamination and can transmit bacteria to hands after washing. For theses reasons education and of staff to correct hand washing and drying before every contact

  3. PRODUKSI BIOENERGI ALTERNATIF DALAM BIODIGESTER MOBILE MELALUI PEMANFAATAN LIMBAH TERNAK SAPI BALI UNTUK MENUNJANG PETERNAKAN BERKELANJUTAN

    Directory of Open Access Journals (Sweden)

    I.A.G. Widihati

    2013-12-01

    Full Text Available The Community Service was conducted in Penglipuran village, involving the cattle breeders of Subak Suka MajuSidewahas. The activity was done initially by intoducing device of biodigester mobile for the place of ferment. Andthen, explaining about potency of feces standard upon which biogas, fermentation teory, technique preparationof raw materials including mixing of feses with water in certain comparison, explaining also the system workbiodigester. Activity phase was continued by demonstration at one of breeder cage. Demonstration started fromphase mixing of feces with water at comparison of 2:3, squealer till put into digester and fermented during 10-15 days. On the day of 16th, it was continued by opening faucet of biodigester for the fella of polutan gas, andthen ignition match to have formed of gas (biogas. The conclusion of this activity showed that the participantwere very enthusiastic attending such valuable activity and manage to form biogas. Biogas which already formedis ready to be interfaced to stove which have been modified. The cattle breeders in Subak Suka Maju Sidewahasalso succeeded to follow technique making of biogas starting from preparing the raw material, perception duringfermentation until the day of 15th production. At last biogas start being used on the day of 20th till the 30th.

  4. Contaminación del agua en fuentes cercanas a campos petrolíferos de Bolivia Water pollution in sources close to oil-producing fields of Bolivia

    Directory of Open Access Journals (Sweden)

    Silvia González Alonso

    2010-10-01

    standards contained in the Bolivian, European, and United States regulations, as well as the recommendations of the World Health Organization, were analyzed. RESULTS: In 76.19% of the samples, some petrochemical contaminant was found in concentrations higher than permissible in any of the four sets of regulations mentioned. The water samples with the highest contamination levels were from faucets and rivers. The most common contaminants were TPH, PAH, aluminum, arsenic, manganese, and iron. CONCLUSIONS: Communities within a 30 km radius of the oil-producing fields in the Bolivian Chaco region consume water with TPH, PAH, and metal concentrations well above the levels permitted in the Bolivian regulations and international standards, putting the public health of their residents at serious risk.

  5. 222 Rn determination and physicochemical characteristic and biological in aquifers in the Toluca Valley

    International Nuclear Information System (INIS)

    Hernandez A, A.

    1998-01-01

    Concentration levels of 222 Rn and 226 Rn have been analyzed in water samples from boreholes belonging to the drinking water supply system around Toluca, Mexico. The 222 Rn source is the decay of 226 Rn within the solid matrix of the aquifer. The study was performed during the dry and rainy seasons. 222 Rn concentration was determined by the liquid scintillation technique, 226 Rn was determined by gamma spectrometry, the physicochemical parameters and bacteriological analysis were performed by conventional chemical techniques. Solubilized trace elements were determined by Inductively Coupled Plasma - Mass Spectrometry (Icp-Ms). The radon level fluctuations at the boreholes in Toluca city and Almoloya spring indicated differences in the radon content. At borehole Lodos Prietos 2, the temperature and radon level were systematically the highest in comparison with the other boreholes and the spring indicating a contribution of a regional flow to the water of this particular borehole. The result for 226 Rn, the average 222 Rn observed during the sampling period, no correspondence occurs between the radium and the radon content indicating that, radon is not supported by radium, but is incorporated into the water through fissures in the rocks in contact with the water. The radon levels obtained in house faucets which water is supplied by boreholes decrease as a function of the distance from the source borehole to the house. With the chemical composition of each one of the studied boreholes and spring a Piper diagram was draw indicating the kind of water. The boreholes and spring can be classified as bicarbonate calcium/magnesium. Almost no fluctuation on time was observed in the chemical species and trace elements only a slight increase was observed at the end of the rain season. At Almoloya, spring pollution with coliform bacteria and nitrates showed an anthropogenic contribution to the water deterioration probable and fertilizers and detritus. Most of the studied water

  6. {sup 222} Rn determination and physicochemical characteristic and biological in aquifers in the Toluca Valley; Determinacion de {sup 222} Rn y caracteristicas fisicoquimicas y biologicas en acuiferos del Valle de Toluca

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez A, A

    1998-10-01

    Concentration levels of {sup 222} Rn and {sup 226} Rn have been analyzed in water samples from boreholes belonging to the drinking water supply system around Toluca, Mexico. The {sup 222} Rn source is the decay of {sup 226} Rn within the solid matrix of the aquifer. The study was performed during the dry and rainy seasons. {sup 222} Rn concentration was determined by the liquid scintillation technique, {sup 226} Rn was determined by gamma spectrometry, the physicochemical parameters and bacteriological analysis were performed by conventional chemical techniques. Solubilized trace elements were determined by Inductively Coupled Plasma - Mass Spectrometry (Icp-Ms). The radon level fluctuations at the boreholes in Toluca city and Almoloya spring indicated differences in the radon content. At borehole Lodos Prietos 2, the temperature and radon level were systematically the highest in comparison with the other boreholes and the spring indicating a contribution of a regional flow to the water of this particular borehole. The result for {sup 226} Rn, the average {sup 222} Rn observed during the sampling period, no correspondence occurs between the radium and the radon content indicating that, radon is not supported by radium, but is incorporated into the water through fissures in the rocks in contact with the water. The radon levels obtained in house faucets which water is supplied by boreholes decrease as a function of the distance from the source borehole to the house. With the chemical composition of each one of the studied boreholes and spring a Piper diagram was draw indicating the kind of water. The boreholes and spring can be classified as bicarbonate calcium/magnesium. Almost no fluctuation on time was observed in the chemical species and trace elements only a slight increase was observed at the end of the rain season. At Almoloya, spring pollution with coliform bacteria and nitrates showed an anthropogenic contribution to the water deterioration probable and

  7. Water, Water Everywhere

    Science.gov (United States)

    Keeler, Rusty

    2009-01-01

    Everybody knows that children love water and how great water play is for children. The author discusses ways to add water to one's playscape that fully comply with health and safety regulations and are still fun for children. He stresses the importance of creating water play that provides children with the opportunity to interact with water.

  8. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  9. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  10. Ground subsidence Wadden Sea 1977-2011. Precision and reliability of measurements; Bodemdaling Waddenzee 1977-2011. Precisie en betrouwbaarheid uit metingen

    Energy Technology Data Exchange (ETDEWEB)

    Houtenbos, A.P.E.M.

    2011-12-15

    What about the subsidence caused by gas exploitation around the Wadden Sea? Is subsidence on the Wadden Sea really manageable by extraction with the 'hand on the faucet'? These and other questions are examined in an analysis of the measurements around the Wadden Sea in the period 1977-2011 [Dutch] Hoe staat het met de bodemdaling door gaswinning rond de Waddenzee? Is bodemdaling op de Waddenzee werkelijk beheersbaar door winning met de 'Hand aan de kraan'? Deze en andere vragen zijn onderzocht in een analyse van de metingen rond de Waddenzee tot over de periode 1977-2011.

  11. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  12. Coliformes em água de abastecimento de lojas fast-food da Região Metropolitana de Recife (PE, Brasil Coliforms in the water supply of fast-food chains in the Metropolitan Region of Recife, in the state of Pernambuco (Brazil

    Directory of Open Access Journals (Sweden)

    Maria Anunciada Leal Porto

    2011-05-01

    Full Text Available A garantia do fornecimento de água potável nos serviços de alimentação é uma questão relevante para a saúde pública. Assim, o objetivo deste estudo foi avaliar a qualidade microbiológica da água destinada ao abastecimento de uma rede de lojas fast-food da cidade de Recife (PE e Região Metropolitana e comparar os resultados aos padrões estabelecidos pela Portaria nº 518/2004 do Ministério da Saúde. Mensalmente, foi analisada uma amostra proveniente de uma das torneiras da área de manipulação das oito lojas investigadas, perfazendo 96 amostras ao longo de um ano, todas coletadas em duplicata. As análises seguiram a metodologia estabelecida na American Public Health Association (APHA para realização do ensaio presuntivo utilizando o Teste Presença-Ausência, considerando-se o padrão de potabilidade determinado na legislação pertinente. Os resultados revelaram que 11,46% de todas as amostras apresentaram água contaminada por coliformes totais e 1,04% contaminação por coliformes termotolerantes. Conclui-se, portanto, que a qualidade da água disponível nos estabelecimentos produtores de alimentos estudados encontra-se em estado de alerta, uma vez que o percentual significativo das amostras analisadas mostrava-se impróprio para o consumo humano de acordo com a legislação vigente, a qual preconiza ausência de coliformes totais e termotolerantes.A guaranteed supply of clean drinking water in food outlets is a relevant subject for public health. The scope of this study was to assess the microbiological quality of 96 water samples of a network of fast-food stores in the city of Recife (state of Pernambuco, Brazil and Metropolitan Area and to compare the results to the standards established by Brazilian Health Ministry decree nº 518/2004. Every month, a double sample from one of the faucets in the food preparation area of the eight stores investigated was analyzed, totaling 96 samples over one year. The analyses followed

  13. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  14. An Evaluation of the Quality of the Desinfection Process in Inanimated Surfaces of Basic Health Units by Biomarkers Research

    Directory of Open Access Journals (Sweden)

    Ana Paula Bandeira Fucci

    2013-06-01

    Full Text Available Infection Related Health Care – IRHC may occur by exogenous transmission through the contamination of contaminated surfaces. This study aimed at verifying the quality of the process of disinfecting inanimate surfaces of Basic Health Units – BHU in a northeastern city in São Paulo state, through the presence of biomarkers, Staphylococcus aureus and Escherichia coli. We evaluated 7 UBS in random times and days, covering the following areas: dressing-room doorknob, drinking fountains and faucets, office desk, reception counter. Sterile swabs were rubbed on a 20 cm2 surface and transported to the laboratory in Stuart medium to the Clinical Analyses Didactic Laboratory of UNIFEV. The samples were cultured on Blood agar and MacConkey agar at 35 ± 1oC for 24 hours in aerobic and microaerophilic jar, respectively. Staphylococcus aureus was identified by the production of hemolysin, catalase and coagulase. Escherichia coli was identified using the biochemical tests: TSI, citrate, urease, indole, lysine, ornithine and arginine. Of the 105 samples analyzed, 6.66% of the samples were positive for Staphylococcus aureus and Escherichia coli to 2.85%. The Areas which showed the presence of biomarkers were: the reception booth, booth pharmacy, handles of the dressing room, dressing room faucet and drinking fountain. These results corroborate other studies that show that inanimate surfaces are important sources of contamination in the healthcare environment, contributing to crosscontamination and, consequently, to the increase of infection to the patient who is subjected to procedures in this environment. Within this context, government, by means of public health policies, is responsible for the training of health professionals, contributing to the promotion and prevention of public health

  15. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  16. Water Technology Lecture 3: Water Distribution

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is the third lecture in the course Water Technology dealing with water distribution. This is a PowerPoint lecture which is free to use and modify. It was designed to be used in conjunction with the course text Gray, N.F. (2017) Water Science and Technology: An Introduction, published by CRC Press, Oxford. The basis of water distribution is explored including water pipe materials, distribution systems, leakage, water quality problems, pressure issue, water hydrants, effect of floods,...

  17. Water, water everywhere

    International Nuclear Information System (INIS)

    Moxon, Suzanne

    1999-01-01

    Although there is an abundance of water in Lesotho, it is argued that future development of the Lesotho Highlands water project is not yet required. Lesotho exports water to arid regions in South Africa. However, some South Africans believe that further development of the scheme is unnecessary and they argue that Gauteng Province has enough water for the immediate future provided the demand is managed effectively - this being the case, there would be no urgency for completing what is termed phase 1B. It is argued that if 1B is completed before the water is required, then costs to the consumer would increase. It was also argued that proceeding with 1B would give South Africa greater flexibility in augmenting supply to the Vaal river system. Some disadvantages to Lesotho if 1B does not proceed would be loss of royalties and job opportunities and a curb on development of its infrastructure

  18. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  19. Drinking Water - National Drinking Water Clearinghouse

    Science.gov (United States)

    Savings Septic Unsafe Disposable Wipe Woes FacebookLogo FOCUS AREAS Drinking Water Wastewater Training Security Conservation & Water Efficiency Water We Drink Source Water Protection SORA/COI EPA MOU CartIcon Links Listserv Educators Homeowners Operators Small Systems Drinking Water Read On Tap Latest

  20. Water Power Research | Water Power | NREL

    Science.gov (United States)

    Water Power Research Water Power Research NREL conducts water power research; develops design tools ; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the

  1. Iowa Water Center | Iowa Water Center

    Science.gov (United States)

    Home Iowa State University Extension Iowa Water Center Submitted by mollyd on April 24, 2012 - 09 :42 Advancing the state of water knowledge and management The Iowa Water Center is a part of a nationwide network of university-based water centers created to encourage interdisciplinary water research

  2. Water stress, water salience, and the implications for water supply planning

    Science.gov (United States)

    Garcia, M. E.; Islam, S.

    2017-12-01

    Effectively addressing the water supply challenges posed by urbanization and climate change requires a holistic understanding of the water supply system, including the impact of human behavior on system dynamics. Decision makers have limits to available information and information processing capacity, and their attention is not equally distributed among risks. The salience of a given risk is higher when increased attention is directed to it and though perceived risk may increase, real risk does not change. Relevant to water supply planning is how and when water stress results in an increased salience of water risks. This work takes a socio-hydrological approach to develop a water supply planning model that includes water consumption as an endogenous variable, in the context of Las Vegas, NV. To understand the benefits and limitations of this approach, this model is compared to a traditional planning model that uses water consumption scenarios. Both models are applied to project system reliability and water stress under four streamflow and demographic scenarios, and to assess supply side responses to changing conditions. The endogenous demand model enables the identification of feedback between both supply and demand management decisions on future water consumption and system performance. This model, while specific to the Las Vegas case, demonstrates a prototypical modeling framework capable of examining water-supply demand interactions by incorporating water stress driven conservation.

  3. Surface-Water Data, Georgia, Water Year 1999

    Science.gov (United States)

    Alhadeff, S. Jack; Landers, Mark N.; McCallum, Brian E.

    1999-01-01

    Water resources data for the 1999 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 121 gaging stations; stage for 13 gaging stations; stage and contents for 18 lakes and reservoirs; continuous water quality records for 10 stations; and the annual peak stage and annual peak discharge for 75 crest-stage partial-record stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological water-supply papers entitled, 'Surface-Water Supply of the United States.' Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled, 'Quality of Surface Waters of the United States.' Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled, 'Ground-Water Levels in the United States.' Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the U.S. Geological Survey in annual reports on a State-boundary basis prior to the two 5-year series water-supply papers, which cover this period. The data contained in the water-supply papers are considered the official record. Water-quality records for water years 1964 through 1970 were similarly released

  4. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  5. Water Footprint and Virtual Water Trade of Brazil

    Directory of Open Access Journals (Sweden)

    Vicente de Paulo R. da Silva

    2016-11-01

    Full Text Available Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual water trade focused on virtual water importers or water-scarce countries, this is the first study to concentrate on a water-abundant virtual water-exporting country. Besides, it is the first study establishing international virtual water trade balances per state, which is relevant given the fact that water scarcity varies across states within the country, so the origin of virtual water exports matters. The results show that the average water footprint of Brazilian food consumption is 1619 m3/person/year. Beef contributes most (21% to this total. We find a net virtual water export of 54.8 billion m3/year, mainly to Europe, which imports 41% of the gross amount of the virtual water exported from Brazil. The northeast, the region with the highest water scarcity, has a net import of virtual water. The southeast, next in terms of water scarcity, shows large virtual water exports, mainly related to the export of sugar. The north, which has the most water, does not show a high virtual water export rate.

  6. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  7. Perceptions of Water Ownership, Water Management, and the Responsibility of Providing Clean Water

    Directory of Open Access Journals (Sweden)

    Jacqueline Noga

    2013-11-01

    Full Text Available Perceptions of water and water related issues still render many under-researched topics. This study aims to further our knowledge regarding people’s perceptions of water and our understanding about the different ways individuals use water. The authors asked the question: Does the way an individual perceives water (i.e., as a commodity, a human right, private resource, public resource and/or natural resource influence consumption and conservation of water, and sentiments towards control and allocation of water? An exploratory online questionnaire was designed to generate qualitative and quantitative data of survey participants’ perceptions, beliefs and actions towards water issues, such as overconsumption and scarcity. Data analysis included comparison of the quantitative data regarding the non-statistical association between how an individual perceives water and the individual’s beliefs, as well as qualitative analysis of the comments using an iterative pattern coding technique. One hundred and sixty four individuals participated in the survey (75% completion rate and over 430 comments were made. Themes that emerged from the comments included: responsibility, scarcity, the value of water, knowledge gained and education needed. Comparison of the different perceptions of water revealed that different perceptions of what water is resulted in different beliefs about what the cost of water should be. These findings have implications for future water use, including what needs to change in order to increase appreciation for water issues.

  8. Water, Water, Everywhere.

    Science.gov (United States)

    Selinger, Ben

    1979-01-01

    Water is a major component in many consumer products. Azeotropic distillation of products such as detergents and foodstuffs to form a two-phase distillate is a simple experimental method to determine the percentage of water in the product. (Author/GA)

  9. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  10. Water markets between Mexican water user associations

    NARCIS (Netherlands)

    Kloezen, W.H.

    1998-01-01

    Internationally, introducing water markets is regarded as a strong alternative institutional arrangement for managing irrigation water more effectively. Also in Mexico, the National Water Law of 1992 allows individual farmers as well as water user associations (WUA) to trade water. Although farmer

  11. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  12. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  13. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  14. Water Footprints and Sustainable Water Allocation

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2015-12-01

    Full Text Available Water Footprint Assessment (WFA is a quickly growing research field. This Special Issue contains a selection of papers advancing the field or showing innovative applications. The first seven papers are geographic WFA studies, from an urban to a continental scale; the next five papers have a global scope; the final five papers focus on water sustainability from the business point of view. The collection of papers shows that the historical picture of a town relying on its hinterland for its supply of water and food is no longer true: the water footprint of urban consumers is global. It has become clear that wise water governance is no longer the exclusive domain of government, even though water is and will remain a public resource with government in a primary role. With most water being used for producing our food and other consumer goods, and with product supply chains becoming increasingly complex and global, there is a growing awareness that consumers, companies and investors also have a key role. The interest in sustainable water use grows quickly, in both civil society and business communities, but the poor state of transparency of companies regarding their direct and indirect water use implies that there is still a long way to go before we can expect that companies effectively contribute to making water footprints more sustainable at a relevant scale.

  15. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  16. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  17. Estudo da freqüência de ovos de helmintos intestinais em sanitários de uso público de Sorocaba, SP

    Directory of Open Access Journals (Sweden)

    Tuffi Aidar Sobrinho

    1995-03-01

    Full Text Available Foram pesquisados 405 sanitários sendo 11 de praças, 2 da estação ferroviária, 4 da estação rodoviária, 55 de bares e restaurantes, 146 de escolas estaduais, 116 de escolas municipais, 8 de escolas particulares, 36 de postos de saúde, 16 de centros esportivos, 8 de orfanatos e 3 de shopping. Foram usadas lâminasde microscopia comfita adesiva. O material foi coletado pela colagem da fita nos seguintes elementos: 4 campos do assento, maçanetas interna e externa, trinco, registro de torneira e descarga (botão epuxador. Dos 405 sanitários pesquisados, 22 (5,43% estavam contaminados. Foram encontrados ovos de: Ascaris lumbricoides, ancilostomídeos, Enterobius vermicularis, Taenia sp e Hymenolepis nana, sendo que em 2 sanitários foram encontrados, concomitantemente, ovos de 2 parasitas.Four hundred and five water closets were investigated: 11 located at public squares, 2 at the railroad station, 4 at the bus station, 55 at bars and restaurants, 146 at state schools, 116 at municipal schools, 8 at private schools, 36 at public health centers, 16 at sports centers, 8 at orphanages and 3 at shopping malls. Microscopy slides with adhesive tape were used. The material was obtained by sticking the tape onto the following elements: 4 spots on the toilet seat, internal and external door knobs, latch, faucet handle and discharge valve (push button or pulling string. Out of the 405 water closets studied, 22 (5,43% were contaminated. Eggs of Ascaris lumbricoides, Ancylostomatidae, Enterobius vermiculares, Taenia sp and Hymenolepis nana were found. In 2 water closets eggs of 2 parasites were found simultaneously.

  18. Some Interesting Facts about Water and Water Conservation

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  19. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  20. Global monthly water scarcity: blue water footprints versus blue water availability.

    Science.gov (United States)

    Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.

  1. Water

    Science.gov (United States)

    ... drink and water in food (like fruits and vegetables). 6. Of all the earth’s water, how much is ocean or seas? 97 percent of the earth’s water is ocean or seas. 7. How much of the world’s water is frozen? Of all the water on earth, about 2 percent is frozen. 8. How much ...

  2. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  3. Water dependency and water exploitation at global scale as indicators of water security

    Science.gov (United States)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  4. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  5. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  6. World Water Day 2002: Water for development

    International Nuclear Information System (INIS)

    2002-01-01

    Agriculture consumes about 70 per cent of the world's available water but experts say that where there are competing demands for water use, and groundwater sources have been depleted, small farmers are the first to lose their supply. As a consequence farmers are displaced from their land and the landless, who help them, are made jobless. Environmental damage to wetlands and estuaries from upstream depletion, as well as an increase of water-borne disease, also occurs.There must be more emphasis towards increasing the efficiency of water management systems and increasing water productivity, getting more crops per drop, says the Food and Agriculture Organization (FAO). Water stress leaves women the most vulnerable. Without a ready source of water they may have to walk for several hours every day to find it, or send their children to fetch it. Child nurturing and education suffer and the water available maybe unfit for human use. The U.N. estimates that 1.2 billion people lack access to safe water and about 2.5 billion are without access to proper sanitation. The absence of safe water translates into a tremendous burden of disease, linked to gastro-intestinal infection, making it a key water associated development issue, the World Health Organization (WHO) says. 'Access to sanitation facilities is a basic human right that safeguards health and human dignity,' said Sir Richard Jolly, Chair of the Geneva-based Water Supply and Sanitation Collaborative Council (WSCC). 'We know from experience that clean water alone leads only to minor health improvements. Sound hygiene behaviour must be recognized as a separate issue in its own right, with adequate sanitation and clean water as supporting components.' This year, water pollution, poor sanitation and water shortages will kill over 12 million people, said Klaus Toepfer, Executive Director of the United Nations Environment Programme (UNEP). Millions more are in bad health and trapped in poverty, said Mr. Toepfer, much of

  7. Water Footprint and Virtual Water Trade of Brazil

    OpenAIRE

    da Silva, Vicente de Paulo R.; de Oliveira, Sonaly D.; Hoekstra, Arjen Ysbert; Neto, Jose Dantas; Campos, João Hugo B.C.; Braga, Celia C.; Araújo, Lincoln Eloi; Oliveira Aleixo, Danilo; de Brito, Jose Ivaldo B.; de Souza, Marcio Dionisio; de Holanda, Romildo M.

    2016-01-01

    Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual w...

  8. Water repellents and water-repellent preservatives for wood

    Science.gov (United States)

    R. Sam. Williams; William C. Feist

    1999-01-01

    Water repellents and water-repellent preservatives increase the durability of wood by enabling the wood to repel liquid water. This report focuses on water-repellent finishes for wood exposed outdoors above ground. The report includes a discussion of the effects of outdoor exposure on wood, the characteristics of water repellent and water-repellent preservative...

  9. Sustainable Water Distribution Strategy with Smart Water Grid

    Directory of Open Access Journals (Sweden)

    Seongjoon Byeon

    2015-04-01

    Full Text Available Many problems that are encountered in regards to water balance and resources management are related to challenges of economic development under limited resources and tough competition among various water uses. The development of major infrastructure like airports in remote areas that have limited water resources is becoming a common problem. In order to overcome these difficulties, water management has to articulate and combine several resources in order to respond to various demands while preserving the ecological quality of the environment. The paper discusses the interest in implementing the Smart Water Grid concept on Yeongjongdo Island, which is the location of Korea’s main airport. This new concept is based on the connection of various water resources and their optimized management with new information technology solutions. The proposed system integrates water generated through rainfall, external water resources (i.e., metropolitan water distribution system, gray water and other types of alternative water resources. The paper analyses the feasibility of this approach and explores interest in the Smart Water Grid concept.

  10. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  11. Global monthly water scarcity: Blue water footprints versus blue water availability

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Chapagain, Ashok; Mathews, R.E.; Richter, B.D.

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than

  12. Water tight.

    Science.gov (United States)

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  13. Water citizenship

    DEFF Research Database (Denmark)

    Paerregaard, Karsten; Stensrud, Astrid Bredholt; Andersen, Astrid Oberborbeck

    2016-01-01

    This article examines the implementation of Peru’s new water law and discusses how it produces new forms of water citizenship. Inspired by the global paradigm of “integrated water resources management,” the law aims to include all citizens in the management of the country’s water resources...... by embracing a “new water culture.” We ask what forms of water citizenship emerge from the new water law and how they engage with local water practices and affect existing relations of inequality. We answer these questions ethnographically by comparing previous water legislation and how the new law currently...... is negotiated and contested in three localities in Peru’s southern highlands. We argue that the law creates a new water culture that views water as a substance that is measurable, quantifiable, and taxable, but that it neglects other ways of valuing water. We conclude that water citizenship emerges from...

  14. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  15. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  16. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  17. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  18. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  19. Branding water.

    Science.gov (United States)

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-06-15

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water - specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks - are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Branding water

    Science.gov (United States)

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-01-01

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water – specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks – are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. PMID:24742528

  1. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  2. Accounting for Water Insecurity in Modeling Domestic Water Demand

    Science.gov (United States)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  3. Scientific Outreach for K-6 Students: The LTER Schoolyard Children's Book Series

    Science.gov (United States)

    Williams, M.; McKnight, D.

    2009-04-01

    Here we present information on the many steps involved in writing and publishing a science book for children. This talk builds on the success of the children's' book: My Water Comes from the Mountains, written by Tiffany Fourment and illustrated by Dorothy Emerling, and sponsored by the NWT LTER outreach program. The narrative of the book takes children of ages 7-10 on an illustrative journey from glacial and snowpack sources high on the Continental Divide to the plains and water in their faucet tap, introducing them to the distinctive wildlife and ecosystems along the way, including the diverse uses and human impact of water in Boulder Creek and St. Vrain watersheds. We then talk about developing and distributing a teachers guide and materials packet developed for instructional use in the classroom and based on the children's book: MY H2O: My Water Comes from the Mountains Teacher's Curriculum Guide and Kit; edited by Colleen Flanagan, organizational authors Colleen Flanagan, Kenneth Nova, and Tiffany Fourment. The Teacher's Guide adds accompanying lessons, incorporation of water-wise sustainability in the classroom and community, and improvement of environmental education teaching skills with exemplary projects and practical edification. Direct feedback from the teachers was incorporated into the Guide, and their questions about the water cycle in the Front Range were addressed thoroughly. Utilizing local expertise and resources, the Guide encompassed four themes: 1) Water cycle, 2) Watershed, 3) Flora/Fauna/Life Zones, and 4) Human Interaction/Impact with Water. Each section includes a thorough explanation of 7-8 interactive projects, along with corresponding background information, suggested approaches and the book's parallel page number(s) for supplementary purposes. We end by showing how this model was used to develop the children's book "The Lost Seal (http://www.mcmlter.org/lostseal/) as the next stage in a national program. The Lost Seal children's story

  4. Nationwide water availability data for energy-water modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zemlick, Katie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  5. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  6. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  7. Clean Water State Revolving Fund (CWSRF): Water Conservation

    Science.gov (United States)

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  8. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  9. Water Contamination

    Science.gov (United States)

    ... Statistics Training & Education Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... type=”submit” value=”Submit” /> Healthy Water Home Water Contamination Recommend on Facebook Tweet Share Compartir On ...

  10. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  11. Branding water

    OpenAIRE

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-01-01

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water – specifically recycled water, desalinated water, tap water and ra...

  12. Tips and traps in the 14C bio-AMS preparation laboratory

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Freeman, Stewart P.H.T.; Haack, Kurt W.; Vogel, John S.

    2000-01-01

    Maintaining a contamination free sample preparation lab for biological 14 C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14 C ratios of 1 amol 14 C/mg C. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14 C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross-contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipettors

  13. Tips and traps in the 14C Bio-AMS preparation laboratory (WSam 7)

    International Nuclear Information System (INIS)

    Buchholz, B A; Haack, K W; Stewart, P H; Vogel, J S

    1999-01-01

    Maintaining a contamination free sample preparation lab for biological 14 C AMS requires the same or more diligence as a radiocarbon dating prep lab. Isotope ratios of materials routinely range over 4-8 orders of magnitude in a single experiment, dosing solutions contain thousands of DPM and gels used to separate proteins possess 14 C ratios of 1pMC. Radiocarbon contamination is a legacy of earlier tracer work in most biological laboratories, even if they were never hot labs. Removable surface contamination can be found and monitored using swipes. Contamination can be found on any surface routinely touched: door knobs, light switches, drawer handles, water faucets. In general, all surfaces routinely touched need to be covered with paper, foil, or plastic that can be changed frequently. Shared air supplies can also present problems by distributing hot aerosols throughout a building. Aerosols can be monitored for 14 C content using graphitized coal or fullerene soot mixed with metal powder as an absorber. The monitors can be set out in work spaces for 1-2 weeks and measured by AMS with regular samples. Frequent air changes help minimize aerosol contamination in many cases. Cross contamination of samples can be minimized by using disposable plastic or glassware in the prep lab, isolating samples from the air when possible and using positive displacement pipetters

  14. Water Footprint Symposium: where next for water footprint and water assessment methodology?

    NARCIS (Netherlands)

    Tillotson, M.R.; Kiu, J.; Guan, D.; Wu, P.; Zhao, Xu; Zhang, Guoping; Pfister, S.; Pahlow, Markus

    2014-01-01

    Recognizing the need for a comprehensive review of the tools and metrics for the quantification and assessment of water footprints, and allowing for the opportunity for open discussion on the challenges and future of water footprinting methodology, an international symposium on water footprint was

  15. Water Footprint Symposium : where next for water footprint and water assessment methodology?

    NARCIS (Netherlands)

    Tillotson, Martin R.; Liu, Junguo; Guan, Dabo; Wu, Pute; Zhao, Xu; Zhang, Guoping; Pfister, Stephan; Pahlow, Markus

    2014-01-01

    Recognizing the need for a comprehensive review of the tools and metrics for the quantification and assessment of water footprints, and allowing for the opportunity for open discussion on the challenges and future of water footprinting methodology, an international symposium on water footprint was

  16. Problems of the water environment and water consumption

    International Nuclear Information System (INIS)

    Raetsep, Aavo

    1999-01-01

    Water extraction and consumption in Ida-Viru County are based mainly on the groundwater and surface water. The major part of the surface water is consumed by power engineering, while households and industry are the main consumers of groundwater. The difference between water extraction and consumption shows that the unused mine water pumped up for draining the oil shale mines and open pits and discharged into rivers forms an essential part (on the average 86%, quantitatively 159-226 millions m 3 /yr.). Serious water supply problems have risen in connection with oil shale mining: numerous village and household wells have been depleted due to a deep drawdown cone, the groundwater of the upper aquifers is polluted with nitrates, phenols and oil products. The poor condition of water-pipes and great leakages (up to 60%) make it difficult to supply townspeople and villagers with high-grade drinking water meeting the Estonian general standard EVS 663:1995. Water pollution is conditioned by poorly treated wastewaters and sewage directed practically into all the major rivers and lakes of the county by industrial and power engineering enterprises and towns and rural settlements. The rivers of the Purtse basin have been continuously under a heavy pollution load: both the mine waters with high minerality and phenolic wastewaters (so-called ash hill waters) of the oil shale thermal processing have been discharged into the rivers. Various water contamination from land areas has led to excessive pollution of Northeast Estonian coastal waters of the Gulf of Finland with toxic organic compounds and nutrients, specially in the regions of Purtse, Saka, Sillamaee and Narva-Joesuu. Up to now, Estonia has not managed completely fulfil the recommendations of the Helsinki Commission (HELCOM) of the Convention on the Protection of the Marine Environment of the Baltic Sea Area. In 1998-2010, water management in Ida-Viru County should be directed towards achieving two Principal objectives

  17. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  18. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  19. WATER LAW AND MODEL OF RESPONSIBLE WATER USAGE

    Directory of Open Access Journals (Sweden)

    Dmitri Olegovitch Sivakov

    2017-03-01

    Full Text Available As it is known, the water law regulates dynamic social relationships concerning study, usage and protection of water objects, as well as their transformation. The water law explicitly regulates water economic activities. The regulatory method of the water law has a mixed nature and thus is not distinctive. It predetermines in some cases equality and independence of subjects of relationships (water usage agreement and in other – power and submission (permissive nature of water usage. The aim of the publication is to promote scientific ideas about the fate of the water law in order to make a further polygonal and productive discussion in which the reader is invited to participate. Scientific novelty. In 2016 the monograph of D.O. Sivakov “Water law: dynamics, problems, perspectives: monograph” (second edition, reviewed and updated. Moscow: Stolitsa, 2016. 540 p. was published. In 2017 the author reconsidered some conclusions of his monograph and applied scientific achievements of theory of state and law in water sphere. In accordance with this, it is important to mention research of Petrov D.E. related to issues of differentiation and integration of structural formations of Russian legal system. The scientific novelty of the article includes the synthesis of ideas of the monograph and some achievements of theory of state and law. Methods of research. The author of the article relies on some collective and individual monographic studies in the sphere of theory of state and law, natural resource law, arctic law, financial law. Basic results of research. The author promotes the model of responsible water usage. This model shall be based not on the unstable balance of economic and environmental interests (which shall practically lead to the domination of economic interests, but on the obligatory combination of economic activities with technologies, ensuring maximal preservation of water resources. Responsible water usage shall mean a system of

  20. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  1. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  2. Virtual water: Virtuous impact? : the unsteady state of virtual water

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2008-01-01

    “Virtual water,” water needed for crop production, is now being mainstreamed in the water policy world. Relying on virtual water in the form of food imports is increasingly recommended as good policy for water-scarce areas. Virtual water globalizes discussions on water scarcity, ecological

  3. The application of water poverty mapping in water management

    Directory of Open Access Journals (Sweden)

    Charles van der Vyver

    2012-07-01

    Full Text Available Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply water to people (Sullivan et al., 2005. Water resources will steadily decline because of population growth, pollution and expected climate change (Hemson et al., 2008. It has been estimated that the global demand for water doubles approximately every two decades (Meyer, 2007 and that water will even become as expensive as oil in the future (Holland, 2005. “In the year 2000, global water use was twice as high as it was in 1960” (Clarke and King, 2004:19. Unfortunately this trend is expected to continue. The aim of this paper is to describe how water poverty mapping as a process can be used to assist the management of our already scarce water resources. It constructs a water poverty map after which it describes its application at various management levels. The research indicates that the mapping process can be used to obtain more accurate predictions, as well as to form part of the master plan and integrated development plan documents. Keywords: Water management, water poverty mapping Disciplines: Water management, geographical information systems (GIS, poverty studies, decision support

  4. WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  5. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  6. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  7. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  8. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  9. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  10. The preference for water nipples vs. water bowls in dairy goats

    Directory of Open Access Journals (Sweden)

    Andersen Inger L

    2011-09-01

    Full Text Available Abstract Background Previous studies have reported that the design of the water dispensers can influence the water intake in farm animals. Horses and dairy cows seem to prefer to drink from an open surface whereas sheep and pigs apparently prefer water nipples, probably because of the worse water quality in water bowls. The aim of the present study was to examine the preference of dairy goats for water nipples or water bowls. Methods In each of the two experiments (exp. 1, dry goats, exp. 2 lactating goats, 42 dairy goats were allotted into 6 groups of 7 goats. In period 1, the goats had access to a water nipple. In period 2, they had access to a water bowl and in period 3 (preference test they had access to both a water nipple and a water bowl. Water usage and wastage was recorded and water intake (water usage - water wastage was calculated for each group for the two last days of each period. In experiment 2, water samples from each dispenser were analyzed for heterotrophy germs at 22°C, Escherichia coli and turbidity. Results Water usage was higher from water nipples than from water bowls both in experiment 1 (dry goats and experiment 2 (lactating goats. There was however, no difference in water intake from water nipples and water bowls. In the preference test (period 3, the water intake tended to be higher from the water nipple than from the water bowl both for the dry goats (exp. 1 and lactating goats (exp. 2. Especially for the dry goats, the differences between groups were large. Turbidity and heterotrophy germs were much higher in the samples from the water bowls than from the water nipples. Water wastage from the water bowls was negligible compared to the water nipples. From the water nipples the water wastage was 30% and 23% of water usage for the dry and lactating goats respectively. Conclusions We conclude that type of water dispenser (nipple or bowl was probably of minor importance for water intake in goats, but water bowls had a

  11. Water Scarcity and Water Policy in Mexico

    OpenAIRE

    Facchini, Gianluca

    2009-01-01

    This thesis addresses the possible solutions to control demand and supply of water for a sustainable environment in Mexico, along with a detailed analyses of economic implications related to the water sector. At the same time it focuses on the opportunities and constraints to improve the use of water and the allocation in the agricultural sector, by a system of transferable water-use permits. Actual examples are provided nationwide to the current situation in Mexico, focusing on problems rela...

  12. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    Science.gov (United States)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  13. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  14. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  15. Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages

    Science.gov (United States)

    ... Food Resources for You Consumers FDA Regulates the Safety of Bottled Water Beverages Including Flavored Water and Nutrient-Added Water Beverages ... addition, the flavorings and nutrients added to these beverages must comply with all applicable FDA safety requirements and they must be identified in the ...

  16. New England's Drinking Water | Drinking Water in New ...

    Science.gov (United States)

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  17. Water neutral: reducing and ofsetting water footprints

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    During the past few years the concept of the ‘water footprint’ has started to receive recognition within governments, non-governmental organizations, businesses and media as a useful indicator of water use. The increased interest in the water-footprint concept has prompted the question about what

  18. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  19. Setting water quality criteria for agricultural water reuse purposes

    Directory of Open Access Journals (Sweden)

    K. Müller

    2017-06-01

    Full Text Available The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

  20. Water and future

    International Nuclear Information System (INIS)

    2010-03-01

    This is material of the 18th world water day in 2010 which reports current situation of water resources such as water world, in water in Korea and water dispute, water and disaster like climate change, flood, drought, historical report about drought and flood, water resources facilities in Korea, disaster management system, development and management of eco-friendly water resources, eco-friendly water resources management and river maintenance, renovating four rivers and supply and procure of safe water.

  1. Water accounting implementation: water footprint and water efficiency of the coffee shop in Indonesia

    Science.gov (United States)

    Hendratno, S. P.; Agustine, Y.

    2018-01-01

    The purpose of this paper is for understand the water accounting practice in the company, especially beverage industry in Indonesia. The sample in this study is one coffee shop near Jakarta. Case study has been choosen as the method in this study. We collect data with semi-structured interview, observation, and survey about the water efficiency in the coffee shop. The operational officers such as barista, cashier, supervisor, and store manager are the respondents in this study. Operational management already understand about the importance of water efficiency in the coffee shop operation, but it can’t be implemented because their standard operation haven’t use the water efficiency as part of their procedures. The coffee shop’s operational standard in cleaning always takes much time and use so much water. The cleaning itself takes one until two hours each day only for cleaning bar and all operational equipment. This paper is for understand the water efficiency in the coffee shop with the focus is in their water footprint, operational standard that used every day in the coffee shop, and the connection between operational standard and the water efficiency.

  2. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  3. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  4. Water hammer

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The overall NRC program for the resolution of the water hammer issue is divided into four tasks: water hammer summary reports; revision of CP and OL review procedures; water hammer positions for operating reactors; and water hammer safety studies

  5. Water Technology Lecture 1: Introducing Water Technology

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is a full set of PowerPoint lectures for a course in Water Technology currently given at Trinity College, University of Dublin by professor N.F. Gray. The lectures cover all aspects of water and wastewater treatment and are available for use to lecturers or those interested in the subject. The lecture series is to be used in conjunction with the new textbook ?Water Science and Technology? (4th edition) published by CRC Press in 2017. Lecture 1 is an introduction to the water indust...

  6. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  7. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  8. Water Label to Improve Water Billing in Spanish Households

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2014-05-01

    Full Text Available A significant decrease in water consumption has been achieved in recent years thanks to different campaigns run by different institutions in Spain. However, most citizens do not have a very clear idea about whether or not they are efficiently using water. To solve this situation, this paper aims is to develop two water labels in order to improve the current water billing. These water labels evaluate the total water consumption and the domestic hot water consumption. To make the tags, several research studies were tackled for establishing consumer trends and behavior patterns. Furthermore, a survey and data collection were conducted to obtain updated values to validate information obtained from previous studies. The result are two water labels that establish six different levels to graphically show the efficiency, and they also include a comparison with the average consumption by customers of the same province. To ensure that the benefits of this evaluation are available to citizens, its inclusion on the water bill is proposed.

  9. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  10. Water underground

    Science.gov (United States)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  11. Reusing Water

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management System Environmental Outreach Feature Stories Individual Permit for Storm Water Public Reading Room Sustainability » Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by

  12. Concentration data for anthropogenic organic compounds in ground water, surface water, and finished water of selected community water systems in the United States, 2002-05

    Science.gov (United States)

    Carter, Janet M.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.

    2007-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems (CWSs) in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that is treated and ready to be delivered to consumers. Finished water is collected before entering the distribution system. SWQA studies are conducted in two phases, and the objectives of SWQA studies are twofold: (1) to determine the occurrence and, for rivers, seasonal changes in concentrations of a broad list of anthropogenic organic compounds (AOCs) in aquifers and rivers that have some of the largest withdrawals for drinking-water supply (phase 1), and (2) for those AOCs found to occur most frequently in source water, characterize the extent to which these compounds are present in finished water (phase 2). These objectives were met for SWQA studies by collecting ground-water and surface-water (source) samples and analyzing these samples for 258 AOCs during phase 1. Samples from a subset of wells and surface-water sites located in areas with substantial agricultural production in the watershed were analyzed for 19 additional AOCs, for a total of 277 compounds analyzed for SWQA studies. The 277 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and

  13. Evaluation of seasonality on total water intake, water loss and water balance in the general population in Greece.

    Science.gov (United States)

    Malisova, O; Bountziouka, V; Panagiotakos, D Β; Zampelas, A; Kapsokefalou, M

    2013-07-01

    Water balance is achieved when water intake from solid and fluid foods and drinking water meets water losses, mainly in sweat, urine and faeces. Seasonality, particularly in Mediterranean countries that have a hot summer, may affect water loss and consequently water balance. Water balance has not been estimated before on a population level and the effect of seasonality has not been evaluated. The present study aimed to compare water balance, intake and loss in summer and winter in a sample of the general population in Greece. The Water Balance Questionnaire (WBQ) was used to evaluate water balance, estimating water intake and loss in summer (n = 480) and in winter (n = 412) on a stratified sample of the general population in Athens, Greece. In winter, mean (SD) water balance was -63 (1478) mL/day(-1) , mean (SD)water intake was 2892 (987) mL/day(-1) and mean (quartile range) water loss was 2637 (1810-3922) mL/day(-1) . In summer, mean (SD) water balance was -58 (2150) mL/day(-1) , mean (SD) water intake was 3875 (1373) mL/day(-1) and mean (quartile range) water loss was 3635 (2365-5258) mL/day(-1) . Water balance did not differ between summer and winter (P = 0.96); however, the data distribution was different; in summer, approximately 8% more participants were falling in the low and high water balance categories. Differences in water intake from different sources were identified (P balance in summer and winter was not different. However, water intake and loss were approximately 40% higher in summer than in winter. More people were falling in the low and high water balance categories in summer when comparing the distribution on water balance in winter. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  14. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  15. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic......The water resource is under increasing pressure, both from the increase in population and from the wish to improve the living standards of the individual. Water scarcity is defined as the situation where demand is greater than the resource. Water scarcity has two distinctly different dimensions......: water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...

  16. WaterML: an XML Language for Communicating Water Observations Data

    Science.gov (United States)

    Maidment, D. R.; Zaslavsky, I.; Valentine, D.

    2007-12-01

    One of the great impediments to the synthesis of water information is the plethora of formats used to publish such data. Each water agency uses its own approach. XML (eXtended Markup Languages) are generalizations of Hypertext Markup Language to communicate specific kinds of information via the internet. WaterML is an XML language for water observations data - streamflow, water quality, groundwater levels, climate, precipitation and aquatic biology data, recorded at fixed, point locations as a function of time. The Hydrologic Information System project of the Consortium of Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) has defined WaterML and prepared a set of web service functions called WaterOneFLow that use WaterML to provide information about observation sites, the variables measured there and the values of those measurments. WaterML has been submitted to the Open GIS Consortium for harmonization with its standards for XML languages. Academic investigators at a number of testbed locations in the WATERS network are providing data in WaterML format using WaterOneFlow web services. The USGS and other federal agencies are also working with CUAHSI to similarly provide access to their data in WaterML through WaterOneFlow services.

  17. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  18. From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Guangwei Huang

    2015-07-01

    Full Text Available A water allocation policy that aimed to balance water demand with water availability to ensure sustainability was implemented in an arid region of China over ten years ago. This policy’s success was assessed across three dimensions: society, the environment, and the economy. While the assessment was not intended to be comprehensive, it highlighted the best outcomes of the policy intervention while revealing some hidden issues. It was found that although the policy was successful in placing a ceiling on water use in the middle reaches of the Heihe River, the Water User Association, one of the main actors in water policy implementation, was under-recognized, even though it functioned well. Moreover, the economic structural adjustment at the macro level had not led to any significant reduction in water use, the reasons for which were explored.

  19. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware... or ``Commission'') approved amendments to its Water Quality Regulations, Water Code and Comprehensive...

  20. Water Quality Assessment of Selected Domestic Water Sources

    African Journals Online (AJOL)

    Nwokem et al.

    @yahoo.com ... were collected in clean sterilized plastic bottles in the rainy ... centers often depend on the water vendors for domestic water supply ... MATERIALS AND METHODS .... water balance problems for individual aquatic organisms.

  1. Review of 'plant available water' aspects of water use efficiency ...

    African Journals Online (AJOL)

    Review of 'plant available water' aspects of water use efficiency under ... model relating the water supply from a layered soil profile to water demand; the ... and management strategies to combat excessive water losses by deep drainage.

  2. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  3. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  4. Virtual water transfers unlikely to redress inequality in global water use

    International Nuclear Information System (INIS)

    Seekell, D A; D'Odorico, P; Pace, M L

    2011-01-01

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  5. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  6. Virtual water transfers unlikely to redress inequality in global water use

    Energy Technology Data Exchange (ETDEWEB)

    Seekell, D A; D' Odorico, P; Pace, M L [Department of Environmental Sciences, University of Virginia, Charlottesville, VA (United States)

    2011-04-15

    The distribution of renewable freshwater resources between countries is highly unequal and 80% of humanity lives in regions where water security is threatened. The transfer of agricultural and industrial products to areas where water is limited through global trade may have potential for redressing water imbalances. These transfers represent 'virtual water' used in commodity production. We evaluated the current water-use inequality between countries and the potential of virtual water transfers to equalize water use among nations using multiple statistical measures of inequality. Overall, the actual use of renewable water resources is relatively equal even though the physical distribution of renewable water resources is highly unequal. Most inequality (76%) in water use is due to agricultural production and can be attributed to climate and arable land availability, not social development status. Virtual water use is highly unequal and is almost completely explained by social development status. Virtual water transfer is unlikely to increase water-use equality primarily because agricultural water use dominates national water needs and cannot be completely compensated by virtual water transfers.

  7. Water rod

    International Nuclear Information System (INIS)

    Kashiwai, Shin-ichi; Yokomizo, Osamu; Orii, Akihito.

    1992-01-01

    In a reactor core of a BWR type reactor, the area of a flow channel in a lower portion of a downcoming pipe for downwardly releasing steams present at the top portion in a water rod is increased. Further, a third coolant flow channel (an inner water rod) is disposed in an uprising having an exit opened near the inlet of the water rod and an inlet opened at the outside near the top portion of the water and having an increase flow channel area in the upper portion. The downcoming pipe in the water rod is filled with steams, and the void ratio is increased by so much as the flow channel area of the downcoming pipe is increased. Since the pressure difference between the inlet and the exit of the inner water rod is greater than the pressure difference between the inlet and the exit of the water rod, most of water flown into the inner water rod is discharged out of the exit in the form of water as it is. Since the area of the flow channel is increased in the portion of the inner water rod, void efficiency in the upper portion of the reactor core is decreased by so much. Since the void ratio is thus increased in the lower portion and the void efficiency is decreased in the upper portion of the reactor core, axial void distribution can be flattened. (N.H.)

  8. The water-energy nexus at water supply and its implications on the integrated water and energy management.

    Science.gov (United States)

    Khalkhali, Masoumeh; Westphal, Kirk; Mo, Weiwei

    2018-09-15

    Water and energy are highly interdependent in the modern world, and hence, it is important to understand their constantly changing and nonlinear interconnections to inform the integrated management of water and energy. In this study, a hydrologic model, a water systems model, and an energy model were developed and integrated into a system dynamics modeling framework. This framework was then applied to a water supply system in the northeast US to capture its water-energy interactions under a set of future population, climate, and system operation scenarios. A hydrologic model was first used to simulate the system's hydrologic inflows and outflows under temperature and precipitation changes on a weekly-basis. A water systems model that combines the hydrologic model and management rules (e.g., water release and transfer) was then developed to dynamically simulate the system's water storage and water head. Outputs from the water systems model were used in the energy model to estimate hydropower generation. It was found that critical water-energy synergies and tradeoffs exist, and there is a possibility for integrated water and energy management to achieve better outcomes. This analysis also shows the importance of a holistic understanding of the systems as a whole, which would allow utility managers to make proactive long-term management decisions. The modeling framework is generalizable to other water supply systems with hydropower generation capacities to inform the integrated management of water and energy resources. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The water-water cycle as alternative photon and electron sinks.

    OpenAIRE

    Asada, K

    2000-01-01

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of...

  10. Regional water footprint and water management: the case of Madrid region (Spain)

    OpenAIRE

    Soler Rovira, José; Arroyo Sanz, Juan Manuel; Conde Marcos, Hugo; Sanz Zudaire, Carlos; Mesa Moreno, Alfredo; Gil Pascual, Sergio

    2010-01-01

    Water resources and water footprint of the production and consumption in Madrid region were estimated, considering blue water (water resources), green water (soil moisture), grey water (polluted water) and virtual water (water trade in products imported and exported in the region). Water resources in Madrid relay mainly in surface waters and rainfall, so the periodic occurrence of meteorological droughts implies the scarcity of water supply. The main users of blue water are households, munici...

  11. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  12. Lunchtime School Water Availability and Water Consumption Among California Adolescents.

    Science.gov (United States)

    Bogart, Laura M; Babey, Susan H; Patel, Anisha I; Wang, Pan; Schuster, Mark A

    2016-01-01

    To examine the potential impact of California SB 1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 years were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, body mass index, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, bivariate (standard error) = .67 (.28), p = .02. School water access did not significantly vary across the 2 years. Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  13. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  14. Water quality and MTBE water pollution

    International Nuclear Information System (INIS)

    Buiatti, M.; Mascini, M.; Monanni, R.; Filipponi, M.; Piangoloni, A.; Mancini, G.

    2001-01-01

    The research project, here presented, was defined with the aim of evaluating the eventual presence of MTBE and the possible relative impact in water destined to human use; the territorial valence of the project was extended to the competence region n. 4 of the Tuscany water authority (AATO n. 4). University of Florence, ARPAT, AATO n. 4 and Nuove Acque SpA, in this role of manager for the integrated water cycle in the country, have productively contributed to the project [it

  15. Selective intake of down-pit water and separating potable water from water-bearing seams at the Rydultowy mine

    Energy Technology Data Exchange (ETDEWEB)

    Musiolik, H; Sikora, A; Murek, R

    1987-06-01

    Discusses problems of pit water selection. Describes the method of water intake, down-pit transport, pumping the separated potable water and its treatment at the Rydultowy mine. Stresses the usefulness of pit water selection in view of the existing shortage of potable water. Geologic and mining conditions at the mine are described along with the amount of water influx into the mine. Advantages arising from mine water utilization are outlined.

  16. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  17. Dose in a recreational water park with thermal water

    International Nuclear Information System (INIS)

    Thomassin, A.

    2006-01-01

    This paper assesses the annual effective dose received by the public due to baths in thermal water of a recreational water park in Royat (France) with significant levels of natural radionuclides. After the context be specified and the measurements of radioactivity presented, an assessment of radiological consequences is performed, based on an hypothetical scenario for persons of the public. Context The french commune of Royat in the Massif Central (centre of France) intends to build a recreational water park, using thermal water from a local source, out of the public water supply network. With this aim in view, the operator builds up a technical file to get a prefectorial authorization. Considering that many waters and thermal waters in this area have significant levels of natural radionuclides (granitic subsoil) on the one hand, and that the operator of establishments receiving public is requested by L 1333-10 article of the Public Health Code to supervise the exposure if an impact on health is possible on the other hand, the operator asked I.R.S.N. to measure the level of radioactivity in the water. Considering the level of radioactivity measured, the competent authority then asks I.R.S.N. if this level is compatible with its use in a recreational water park. After calculations it appears that in the particular case of the commune of Royat, the level of activity of natural radionuclides of the thermal water (22 Bq.L -1 for 222 Rn) is compatible with its use in a recreational water park, the annual effective dose being about 40 μSv with a conservative approach. For other thermal waters in France winch could have much higher levels of natural radioactivity, it is recommended to pay attention to their use in recreational water park. (N.C.)

  18. Wind effect on water surface of water reservoirs

    Directory of Open Access Journals (Sweden)

    Petr Pelikán

    2013-01-01

    Full Text Available The primary research of wind-water interactions was focused on coastal areas along the shores of world oceans and seas because a basic understanding of coastal meteorology is an important component in coastal and offshore design and planning. Over time the research showed the most important meteorological consideration relates to the dominant role of winds in wave generation. The rapid growth of building-up of dams in 20th century caused spreading of the water wave mechanics research to the inland water bodies. The attention was paid to the influence of waterwork on its vicinity, wave regime respectively, due to the shoreline deterioration, predominantly caused by wind waves. Consequently the similar principles of water wave mechanics are considered in conditions of water reservoirs. The paper deals with the fundamental factors associated with initial wind-water interactions resulting in the wave origination and growth. The aim of the paper is thepresentation of utilization of piece of knowledge from a part of sea hydrodynamics and new approach in its application in the conditions of inland water bodies with respect to actual state of the art. The authors compared foreign and national approach to the solved problems and worked out graphical interpretation and overview of related wind-water interaction factors.

  19. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  20. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  1. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  2. Potential Effects of a Water Market on Enhancing Water Productivity and Reducing Water-Related Conflicts in Fars Province, Iran

    Directory of Open Access Journals (Sweden)

    Mansour Zibaei

    2017-03-01

    Full Text Available The growing demand for water and the declining trend in renewable water resources in most regions has led to serious limitations on water availability calling for the sustainable management of the harvestable resources. This has, in turn, encouraged most planners in the water sector to focus on demand management. A number of tools are already available for realizing water demand management goals; one such tool is establishing a water market. The present study is designed and implemented in two stages to investigate the role of a water market in water resources management. In the first stage, the creation of a water market at the farm and basin levels is simulated using a mathematical planning model. The second stage involves the investigation of the combined effects of the water market and water extraction rationing policies. It is found that rationing policies lead to reduced extractions from groundwater resources. The two-stage random cluster sampling method is used to collect the required data. Pilot villages are selected based on the data obtained from the first sampling stage. Pilot farms are then selected in the second stage based on water availability in each place. The input-output data, quantities of available water, and any other data required are finally collected through interviews with local farmers. Results reveal that the volume of exchanged water accounts for 9.5% of the total water consumed and the average improvement gained in farmers’ income ranges from 15 to as high as 42%. This clearly provides enough incentives for the farmers to enter the water market. Like all other water saving policies and measures, establishing a water market might increase consumption, contrary to the national objectives, in the absence of proper supplementary preventive measures. Thus, a second scenario is designed to investigate the combined effects of both water extraction rationing and water marketing. According to this scenario, the total

  3. The water energy nexus, an ISO50001 water case study and the need for a water value system

    Directory of Open Access Journals (Sweden)

    Brendan P. Walsh

    2015-06-01

    Full Text Available The world’s current utilisation of water, allied to the forecasted increase in our dependence on it, has led to the realisation that water as a resource needs to be managed. The scarcity and cost of water worldwide, along with water management practices within Europe, are highlighted in this paper. The heavy dependence of energy generation on water and the similar dependence of water treatment and distribution on energy, collectively termed the water–energy nexus, is detailed. A summary of the recently launched ISO14046 Water Footprint Standard along with other benchmarking measures is outlined and a case history of managing water using the Energy Management Standard ISO50001 is discussed in detail. From this, the requirement for a methodology for improvement of water management has been identified, involving a value system for water streams, which, once optimised will improve water management including efficiency and total utilisation.

  4. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  5. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  6. Importance of calcium and magnesium in water - water hardening

    Science.gov (United States)

    Barloková, D.; Ilavský, J.; Kapusta, O.; Šimko, V.

    2017-10-01

    Basic information about importance of calcium and magnesium in water, about their properties, effect to human health, problems what can cause under the lower ( 5 mmol/L) concentrations in water supply distribution systems, the most commonly used methods of water hardening are presented. The article contains the water hardening results carried out during the pilot plant experiments in WTP Hriňová and WTP Turček. For water hardening, treated water at the end of the process line, i.e., after coagulation, sedimentation and filtration, saturated with CO2 and filtrated through half-burnt dolomite material (PVD) was used. The results show that the filtration rate is 17.1 m/h in the case of WTP Hriňová and 15.2 m/h in the case of WTP Turček to achieve the recommended concentration of Ca and Mg in the treated water after the addition of CO2 and filtration through PVD. The longer the water contact time with PVD (depending on the CO2 content), the more water is enriched with magnesium, but the calcium concentration has not so much increased.

  7. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  8. China's water scarcity.

    Science.gov (United States)

    Jiang, Yong

    2009-08-01

    China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.

  9. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  10. Water Footprint and Virtual Water Trade of Brazil

    NARCIS (Netherlands)

    da Silva, Vicente de Paulo R.; de Oliveira, Sonaly D.; Hoekstra, Arjen Ysbert; Neto, Jose Dantas; Campos, João Hugo B.C.; Braga, Celia C.; Araújo, Lincoln Eloi; Oliveira Aleixo, Danilo; de Brito, Jose Ivaldo B.; de Souza, Marcio Dionisio; de Holanda, Romildo M.

    2016-01-01

    Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international

  11. From water to energy. The virtual water content and water footprint of biofuel consumption in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Elena, Galan-del-Castillo [Universitat Autonoma de Barcelona (Spain); Esther, Velazquez [Pablo de Olavide University, Department of Economics, Crta. Utrera, Km.1, 41013 Seville (Spain)

    2010-03-15

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

  12. From water to energy: The virtual water content and water footprint of biofuel consumption in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Galan-del-Castillo, Elena [Universitat Autonoma de Barcelona (Spain); Velazquez, Esther, E-mail: evelalo@upo.e [Pablo de Olavide University, Department of Economics, Crta. Utrera, Km.1, 41013 Seville (Spain)

    2010-03-15

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector.

  13. From water to energy. The virtual water content and water footprint of biofuel consumption in Spain

    International Nuclear Information System (INIS)

    Elena, Galan-del-Castillo; Esther, Velazquez

    2010-01-01

    Energy diversification and the use of renewable energy sources are key points in the European energy strategy. Biofuels are the most popular renewable resource option for the transport sector, and the European Union has established objectives that the Member States must adopt and implement. However, biofuel production at such a scale requires a considerable amount of water resources, and this water-energy nexus is rarely taken into account. This paper shows the strong nexus between water and energy in biofuel production and estimates the virtual water (VW) content and the water footprint (WF) from the raw material production that will be needed to reach the Spanish targets for biofuel consumption by 2010. The results show how the impact of such targets on the global and local water situation could be reduced through virtual water imports and, at the same time, how these imports could increase Spain's water and energy dependence. Hence, in order to manage water from an integral perspective of the territory, the inclusion of biofuel consumption objectives should go hand in hand with measures to reduce the demand of energy in the transport sector. (author)

  14. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  15. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  16. Water requirement and total body water estimation as affected by species, pregnancy and lactation using tritiated water

    International Nuclear Information System (INIS)

    Kamal, T.H.; El Banna, I.M.; Ayad, M.A.; Kotby, E.A.

    1978-01-01

    Radiotracer dilution technique was used to determine total body water (TBW) and the water turnover rate (WTR) estimate of water requirements in water buffaloe, Red Dannish cattle, fat tailed Osemi sheep and Camellus Dromedarius. Water buffaloes were found to have highest TBW, followed by camels, sheep and cattle in a descending order. The WTR ranking was highest for sheep followed by water buffaloe endurance to heat was found inseperable to high water usage, while in camels, an intericate water retention mechanism help animals to thrive in deserts. Fat tailled Osemi sheep and cattle failed to cope with high environmental temperature resulting in temporary dehydration. TBW was 17% and 6% higher in pregnant cattle and sheep than non-pregnant animals respectively, while there was no observed change in pregnant buffaloes. Water retention of pregnant cattle was associated with an appriciable increase in WTR, which was not noticable in buffaloe or sheep. Lactating buffaloe have had a higher TBW and WTR than lactating cattle. Milk yield per day during the period of measurement was higher in buffalo than cattle. Wallowing of buffalo in water pools during grazing, represents a behavioural adaptation for life in hot regions, aside of tendency for higher WTR with concomitant water retention

  17. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  18. The real water consumption behind drinking water: the case of Italy.

    Science.gov (United States)

    Niccolucci, V; Botto, S; Rugani, B; Nicolardi, V; Bastianoni, S; Gaggi, C

    2011-10-01

    The real amount of drinking water available per capita is a topic of great interest for human health and the economic and political management of resources. The global market of bottled drinking water, for instance, has shown exponential growth in the last twenty years, mainly due to reductions in production costs and investment in promotion. This paper aims to evaluate how much freshwater is actually consumed when water is drunk in Italy, which can be considered a mature bottled-water market. A Water Footprint (WF) calculation was used to compare the alternatives: bottled and tap water. Six Italian brands of water sold in PET bottles were inventoried, analysed and compared with the public tap water of the city of Siena, as representative of the Italian context. Results showed that more than 3 L of water were needed to provide consumers with 1.50 L of drinking water. In particular, a volume of 1.50 L of PET-bottled water required an extra virtual volume of 1.93 L of water while an extra 2.13 L was necessary to supply the same volume of tap water. These values had very different composition and origin. The WF of tap water was mainly due to losses of water during pipeline distribution and usage, while WF of bottled water was greatly influenced by the production of plastic materials. When the contribution of cooling water was added to the calculation, the WF of bottled water rose from 3.43 to 6.92 L. Different strategies to reduce total water footprint are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  20. Modeling water demand when households have multiple sources of water

    Science.gov (United States)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  1. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  2. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    Science.gov (United States)

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.

  3. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  4. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  5. Water and water use in southern Nevada [Chapter 3

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and groundwaters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for the study area.

  6. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    OpenAIRE

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report...

  7. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    . In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water...... transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support...... to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity...

  8. Fluoridated Water

    Science.gov (United States)

    ... Genetics Services Directory Cancer Prevention Overview Research Fluoridated Water On This Page What is fluoride, and where is it found? What is water fluoridation? When did water fluoridation begin in the ...

  9. Physical and virtual water transfers for regional water stress alleviation in China.

    Science.gov (United States)

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  10. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  11. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  12. Water quality monitoring: a case study of water pollution in minna ...

    African Journals Online (AJOL)

    This work investigates the level of purity in Minna water and its environs. Water samples were collected from four water sources; Federal University of Technology (FUT), Minna water tank (Treated water), Maikunkele (Borehole), Chanchaga (Water treatment plant) and Tagwai dam (Raw). The following analyses of pH, Total ...

  13. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    Science.gov (United States)

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  14. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  15. Colorado Water Institute

    Science.gov (United States)

    Colorado Water Institute Colorado State University header HomeMission StatementGRAD592NewslettersPublications/ReportsCSU Water ExpertsFunding OpportunitiesScholarshipsSubscribeEmploymentAdvisory BoardStaffContact UsCommentsLinks Water Center Logo Water Resources Archive Office of Engagement Ag Water

  16. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Growing water scarcity in agriculture: future challenge to global water security.

    Science.gov (United States)

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  18. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  19. Coconut Water

    Science.gov (United States)

    ... water because the immature coconuts are green in color. Coconut water is different than coconut milk. Coconut milk is produced from an emulsion of the grated meat of a mature coconut. Coconut water is commonly ...

  20. Parasites: Water

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  1. Dosimetric characteristics of water equivalent for two solid water phantoms

    International Nuclear Information System (INIS)

    Wang Jianhua; Wang Xun; Ren Jiangping

    2011-01-01

    Objective: To investigate the water equivalent of two solid water phantoms. Methods: The X-ray and electron beam depth-ion curves were measured in water and two solid water phantoms, RW3 and Virtual Water. The water-equivalency correction factors for the two solid water phantoms were compared. We measured and calculated the range sealing factors and the fluence correction factors for the two solid water phantoms in the case of electron beams. Results: The average difference between the measured ionization in solid water phantoms and water was 0.42% and 0.16% on 6 MV X-ray (t=-6.15, P=0.001 and t=-1.65, P=0.419) and 0.21% and 0.31% on 10 MV X-ray (t=1.728, P=0.135 and t=-2.296, P=0.061), with 17.4% and 14.5% on 6 MeV electron beams (t=-1.37, P=0.208 and t=-1.47, P=0.179) and 7.0% and 6.0% on 15 MeV electron beams (t=-0.58, P=0.581 and t=-0.90, P=0.395). The water-equivalency correction factors for the two solid water phantoms varied slightly largely, F=58.54, P=0.000 on 6 MV X-ray, F=0.211, P=0.662 on 10 MV X-ray, F=0.97, P=0.353 on 6 MeV electron beams, F=0.14, P=0.717 on 15 MeV electron beams. However, they were almost equal to 1 near the reference depths. The two solid water phantoms showed a similar tread of C pl increasing (F=26.40, P=0.014) and h pl decreasing (F=7.45, P=0.072) with increasing energy. Conclusion: The solid water phantom should undergo a quality control test before being clinical use. (authors)

  2. National water summary 1987: Hydrologic events and water supply and use

    Science.gov (United States)

    Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.; Moody, David W.

    1990-01-01

    Water use in the United States, as measured by freshwater withdrawals in 1985, averaged 338,000 Mgal/d (million gallons per day), which is enough water to cover the 48 conterminous States to a depth of about 2.4 inches. Only 92,300 Mgal/d, or 27.3 percent of the water withdrawn, was consumptive use and thus lost to immediate further use; the remainder of the withdrawals (72.7 percent) was return flow available for reuse a number of times as the water flowed to the sea. The 1985 freshwater withdrawals were much less than the average 30 inches of precipitation that falls on the conterminous States each year; consumptive use accounted for only 7 percent of the estimated annual runoff of 1,230,000 Mgal/d. Nonetheless, as the State summaries on water supply and use clearly show, water is not always available when and where it is needed. Balancing water demands with available water supplies constitutes one of the major resource allocation issues that will face the United States in the coming decade.Of the 1985 freshwater withdrawals, 78.3 percent (265,000 Mgal/d) came from surface-water sources (streams and lakes), and 21.7 percent (73,300 Mgal/d) came from ground water. Surface water provided drinking water for about 47 percent of the Nation's total population. It was the source of 59.9 percent of the Nation's public-supply systems. For self-supplied withdrawals, surface water accounted for 1.6 percent of the domestic and commercial uses; 64.0 percent of the industrial and mining use; 99.4 percent of the thermoelectric generation withdrawals, mainly for cooling water; and 65.6 percent of the agricultural withdrawals. Eight States accounted for 43 percent of the surface-water use; California, Colorado, and Idaho used surface water primarily for irrigation, and Dlinois, Michigan, Ohio, Pennsylvania, and Texas used surface-water primarily for cooling condensers or reactors in thermoelectric plants.Ground water provided drinking water for 53 percent of the Nation's total

  3. Water chemistry in boiling water reactors - A Leibstadt-specific overview

    International Nuclear Information System (INIS)

    Sarott, F.-A.

    2005-01-01

    The boiling water reactor (BWR) consists of two main water circuits: the water-steam cycle and the main cooling water system. In the introduction, the goals and tasks of the BWR plant chemistry are described. The most important objectives are the prevention of system degradation by corrosion and the minimisation of radiation fields. Then a short description of the BWR operation principle, including the water steam cycle, the transport of various impurities by the steam, removing impurities from the condensate, the reactor water clean-up system, the balance of plant and the main cooling water system, is given. Subsequently, the focus is set on the water-steam cycle chemistry. In order to fulfil the somewhat contradictory requirements, the chemical parameters must be well balanced. This is achieved by the water chemistry control method called 'normal water chemistry'. Other additional methods are used for the solution to different problems. The 'zinc addition method' is applied to reduce high radiation levels around the recirculation loops. The 'hydrogen water chemistry method' and the 'noble metal chemical addition method' are used to protect the reactor core components and piping made of stainless steel against stress corrosion cracking. This phenomenon has been observed for about 40 years and is partly due to the strong oxidising conditions in the BWR water. Both mitigation methods are used by the majority of the BWR plants all over the world (including the two Swiss NPPs Muehleberg and Leibstadt). (author)

  4. Water inventory management in condenser pool of boiling water reactor

    International Nuclear Information System (INIS)

    Gluntz, D.M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs

  5. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware... hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality...

  6. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  7. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  8. Water Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Water Safety KidsHealth / For Parents / Water Safety What's in ... remains your best measure of protection. Making Kids Water Wise It's important to teach your kids proper ...

  9. Water

    Science.gov (United States)

    ... can be found in some metal water taps, interior water pipes, or pipes connecting a house to ... reduce or eliminate lead. See resources below. 5. Children and pregnant women are especially vulnerable to the ...

  10. Perceptions of Tap Water and School Water Fountains and Association with Intake of Plain Water and Sugar-Sweetened Beverages

    Science.gov (United States)

    Onufrak, Stephen J.; Park, Sohyun; Sharkey, Joseph R.; Merlo, Caitlin; Dean, Wesley R.; Sherry, Bettylou

    2014-01-01

    Background: Little is known regarding youth perceptions of tap water and school water fountains and how these relate to water and sugar-sweetened beverage (SSB) intake. Methods: We used national 2010 YouthStyles data to assess perceptions of tap water and school water fountains and associations with water and SSB intake. Results: Nearly 1 in 5…

  11. Water and energy: a symbiotic marriage. [Looming water shortages

    Energy Technology Data Exchange (ETDEWEB)

    Mageed, Y A

    1977-02-01

    The United Nations Water Conference held in Mar del Plata, Argentina, March 14-25, 1977 dealt with all aspects of the world's use of water: community supply, agriculture, industry, energy production, preservation of life and property through flood control, and transportation. The symbiosis between energy and water carries over into atomic power field--nuclear reactors are both users and a potential source of freshwater through desalination. The purpose of the conference was to call the attention of all concerned governments, opinion leaders, and public at large to the looming water crisis; to establish that the world's water problems cannot be solved by the lone water engineer or community water board, or even the scientist or administrator, but can be tackled with any hope of success only through a broad collaboration not only among all of these but of environmentalists, farm leaders, industrialists, and above all by governments, their planners, their budget officers, and their political leaders. The end of the explosive rise in water demand is nowhere in sight. Two-thirds of the world's people live in developing countries--most lacking in minimum public sanitation and hygiene. In summarizing all uses of water and its correlation with energy, the author expressed a desire that the conference would spark renewed initiative to accelerate capture of water from sources that are untapped or stress water conservation. Specifically, he calls on the nuclear community to improve efficiency of heat cycles so that generating units can cut down on the amount of water needed for cooling purposes; encourage utilization of take-off heat of nuclear power stations and its use in industry, agriculture, or municipal heating systems in the vicinity of the generating plant; and plan and construct nuclear plants in such a way that they form a part of comprehensive area or river valley development schemes in which the total investment is addressed to the area's total needs.

  12. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  13. Water en Land

    Directory of Open Access Journals (Sweden)

    P.J.E.M. van Dam

    2009-01-01

    Full Text Available Water and Dry LandWater management has always been a major concern. Dutch pragmatism certainly has roots in water management, but it is also rooted in the culture of meetings of the Dutch cities and in the attitude of the peasant who produced for the market very early on. Water control reached its height when we introduced reinforced concrete for hydraulic engineering. Around 1970, the ecological turning point caused a change in focus. Water managers became concerned about the quality of water, the creation of ‘new nature’ and the adaptation to water. In this way, we did not discard the assets of the Industrial Revolution, but rather put them into a new framework: more green in the blue. Water is by definition international. The Netherlands co-parented the international cooperation of the Rhine countries. Is this history part of our national consciousness? Can the water history of the South- and Eastern Netherlands also join in the national water history of the twentieth century?

  14. Social Water

    OpenAIRE

    Krause, Franz; Salverda, Tijo; Hollington , Andrea; Tappe, Oliver; Kloß, Sinah; Schneider, Nina

    2017-01-01

    We encounter water every day. It is a vital substance biologically as much as socially. We may notice this in art exhibitions and university courses communicating submersed and subversive facts about water; the rhythms of floods and tides resonating with fishing techniques and conflict patterns; inundations carrying moral and political weight as much as water and pollution; and particular mixtures of water and land generating wealth, anxieties and memories. In short, wherever people deal with...

  15. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  16. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  17. Water Service Areas - MDC_WaterServiceArea

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — The Water and Sewer Service Area layer was derived from the original paper based sketches which contained both water and sewer utility boundary information. This...

  18. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  19. Water Justice

    NARCIS (Netherlands)

    Boelens, R.A.; Perreault, T.; Vos, J.M.C.

    2018-01-01

    Water justice is becoming an ever-more pressing issue in times of increasing water-based inequalities and discrimination. Megacities, mining, forestry, industry and agribusiness claim an increasingly large share of available surface and groundwater reserves. Water grabbing and pollution generate

  20. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  1. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  2. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  3. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  4. Quantifying the economic water savings benefit of water hyacinth ...

    African Journals Online (AJOL)

    Quantifying the economic water savings benefit of water hyacinth ... Value Method was employed to estimate the average production value of irrigation water, ... invasions of this nature, as they present significant costs to the economy and ...

  5. The preference for water nipples vs. water bowls in dairy goats

    OpenAIRE

    B?e, Knut E; Ehrlenbruch, Rebecca; Andersen, Inger L

    2011-01-01

    Abstract Background Previous studies have reported that the design of the water dispensers can influence the water intake in farm animals. Horses and dairy cows seem to prefer to drink from an open surface whereas sheep and pigs apparently prefer water nipples, probably because of the worse water quality in water bowls. The aim of the present study was to examine the preference of dairy goats for water nipples or water bowls. Methods In each of the two experiments (exp. 1, dry goats, exp. 2 l...

  6. Clean Water Action Plan: Restoring and protecting America`s waters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    On October 18, 1997, the 25th anniversary of the enactment of the Clean Water Act, the Vice President called for a renewed effort to restore and protect water quality. The Vice President asked that the Secretary of Agriculture and the Administrator of the Environmental Protection Agency (EPA), working with other affected agencies, develop a Clean Water Action Plan that builds on clean water successes and addresses three major goals: (1) enhanced protection from public health threats posed by water pollution; (2) more effective control of polluted runoff; and (3) promotion of water quality protection on a watershed basis.

  7. Irrigation water as a source of drinking water: is safe use possible?

    Science.gov (United States)

    van der Hoek, W; Konradsen, F; Ensink, J H; Mudasser, M; Jensen, P K

    2001-01-01

    In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water reservoirs is to use the water that has seeped from the irrigation canals and irrigated fields and that has formed a small layer of fresh water on top of the brackish groundwater. The objective of this study was to assess whether use of irrigation seepage water for drinking results in less diarrhoea than direct use of irrigation water and how irrigation water management would impact on health. The study was undertaken in an irrigated area in the southern Punjab, Pakistan. Over a one-year period, drinking water sources used and diarrhoea episodes were recorded each day for all individuals of 200 households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained by the generally poor quality of water in the in-house storage vessels, reflecting considerable in-house contamination of drinking water. Risk factors for diarrhoea were absence of a water connection and water storage facility, lack of a toilet, low standard of hygiene, and low socio-economic status. The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water was used (relative risk 1.68; 95% CI 1.31-2.15). For people with less water available the direction of the association between water quality and diarrhoea was different (relative risk 0.80; 95% CI 0

  8. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  9. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  10. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  11. Air-water screen

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Kutepov, A.I.

    1980-12-08

    The air-water screen based on inventor's certificate No. 577364 contains horizontal water and air lines with water and air nozzles. The air line is situated inside the water line eccentrically and contracts it in the area of the nozzle, whose orifices are situated along the line of contact, while the orifices of the water nozzle are situated symmetrically relative to the air orifices and are located at an acute angle to them. To raise the protective properties, on the end of the water line is a lateral nozzle water distributor is an additional nozzle, connected to this container.

  12. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  13. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... effort into providing customers with a reliable level of service, often via poor water ... budgets. There are many factors contributing to water losses in water .... given relationship does not reflect the impact of pressure on.

  14. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  15. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  16. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  17. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  18. Water use efficiency and integrated water resource management for river basin

    Science.gov (United States)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  19. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  20. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    Science.gov (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  1. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  2. Water conservation by 3 R's - case histories of Heavy Water Plants

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.

    2005-01-01

    The basics of water conservation revolve around three R's of Reduce, Recycle, and Reuse. The Heavy Water Plants are an excellent example of water savings, and these case studies will be of interest to the chemical industry. The issues involved with water conservation and re-use in different Heavy Water Plants are of different nature. In H 2 S-H 2 O process plants the water consumption has been substantially decreased as compared to the design water needs. To quote the figures HWP (Kota) was designed to consume 2280 m 3 /hr water, which included 453 m 3 /hr water as feed for deuterium extraction. Today the plant operates with only 1250 m 3 /hr water while processing 500 m 3 /hr feed; and is headed to decrease the total water consumption to 700 m 3 /hr. Similarly at HWP (Manuguru) the design had provided 5600 m 3 /hr water consumption, which is today operating with only 1750 m 3 /hr and poised to operate with 1600 m 3 /hr. The issues of water conservation in Ammonia Hydrogen exchange plants have an additional dimension since water losses mean direct loss of heavy water production. In adjoining ammonia plants deuterium shifts to steam in the reformer and shift converter, and this excess steam is condensed as rich condensate. It becomes incumbent on the fertilizer plant to maintain a tight discipline for conserving and re-using the rich condensate so that deuterium concentration in the synthesis gas is maintained. Efforts are also underway to utilize rich condensate of GSFC in the newly developed technology of water ammonia exchange at HWP (Baroda) and we are targeting 20% production gains by implementation of this scheme and with no increase in the pollution load. These case histories will be of interest to Chemical Process Industry. (author)

  3. Water brief — Wastewater Reuse for Water Demand Management ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-01-04

    Jan 4, 2011 ... Water Demand Management (WDM) is a water management approach that aims to ... WDM is simply defined as 'getting the most of the water that we have', while taking into ... Villages in Nepal prepare for weather extremes.

  4. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  5. The application of water poverty mapping in water management

    OpenAIRE

    Jordaan, Dawid Benjamin; Van Der Vyver, Charles

    2012-01-01

    Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance) and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply wat...

  6. Municipal water reclamation of industrial water use in Mexico

    International Nuclear Information System (INIS)

    Gamez, G.; Ramos, R.; Aerts, P.; Guzman, E.; Pachecho, J. c.

    2009-01-01

    This article describes how treated domestic wastewater in a Mexican desert area is reused by a local mining and metallurgical company for process water make-up. With increasing production of treated domestic wastewater, the company's water reuse facilities were continuously expanded over the last ten years. Today, four water reuse plants run with reverse osmosis membranes. With water being a limiting factor, they have enabled the scale-up of mining operations. (Author)

  7. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  8. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  9. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  10. Relationships demand-supply of water and the rate of water shortage as tools for evaluating water resources in Colombia

    International Nuclear Information System (INIS)

    Dominguez Calle, Efrain Antonio; Gonzalo Rivera, Hebert; Vanegas, Sarmiento Raquel; Moreno, Pedro

    2008-01-01

    This paper shows updated results about Colombian water resources and their requirements by the economic sectors. Water demand water availability relationship is used as a pressure index on water resources. This relationship is expressed through the water scarcity index, which applies constraints over water availability; due to the runoff temporal variability and to the low levels of water during the dry season each year and for each geographic region to characterize average and low runoff years. Different water availability scenarios were building. One for modal runoff values and another for 95 percents for 2025 also were prepared. To the results call our attention to problems caused by the concentration of high density settlements and the presence of economics sectors in regions with low water availability. The infrastructure lag for management of a scarce high variable and over pressured resources emerges as a key factor to avoid a looming crisis in the process of water management

  11. Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model

    Directory of Open Access Journals (Sweden)

    Zhigong Peng

    2016-08-01

    Full Text Available Irrigation is facing increasing pressure from other competitive water users to reduce water consumption in a water scarce region. Based on the Basin-wide Holistic Integrated Water Assessment (BHIWA model, the effects of water management strategies on water balance in the dry regions of North China were analyzed. The results show that, with the decrease of irrigation water supply reliability (IWSR and the increase of irrigation water use efficiency (WUE, irrigation water use decreased significantly, leading to reduced agriculture water consumption, and sustained ground water levels. Compared with the increase of WUE, the decrease of IWSR contributes more to reducing irrigation water consumption and protecting groundwater. Sensitivity tests show that among various water cycle components, irrigation water use is most sensitive to changes, followed by agriculture water consumption, and then groundwater level. Reducing IWSR is an effective strategy to reduce irrigation water consumption and promote sustainable water resources management, which could be the support of basic data and theory for regional water resources planning.

  12. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  13. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  14. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  15. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. About Body Water

    Science.gov (United States)

    ... Video) Thyroid Disease Additional Content Medical News About Body Water By James L. Lewis, III, MD, Attending ... here for the Professional Version Water Balance About Body Water Dehydration Overhydration Water accounts for about one ...

  17. Effects of water-channel attractions on single-file water permeation through nanochannels

    International Nuclear Information System (INIS)

    Xu, Yousheng; Zheng, Youqu; Tian, Xingling; Lv, Mei; He, Bing; Deng, Maolin; Xiu, Peng; Tu, Yusong

    2016-01-01

    Single-file transportation of water across narrow nanochannels such as carbon nanotubes has attracted much attention in recent years. Such permeation can be greatly affected by the water-channel interactions; despite some progress, this issue has not been fully explored. Herein we use molecular dynamics simulations to investigate the effects of water-channel attractions on occupancy, translational (transportation) and orientational dynamics of water inside narrow single-walled carbon nanotubes (SWNTs). We use SWNTs as the model nanochannels and change the strength of water-nanotube attractions to mimic the changes in the hydrophobicity/polarity of the nanochannel. We investigate the dependence of water occupancy inside SWNTs on the water-channel attraction and identify the corresponding threshold values for drying states, wetting-drying transition states, and stably wetting states. As the strength of water-channel attractions increases, water flow increases rapidly first, and then decreases gradually; the maximal flow occurs in the case where the nanochannel is predominately filled with the 1D water wire but with a small fraction of ‘empty states’, indicating that appropriate empty-filling (drying-wetting) switching can promote water permeation. This maximal flow is unexpected, since in traditional view, the stable and tight hydrogen-bonding network of the water wire is the prerequisite for high permeability of water. The underlying mechanism is discussed from an energetic perspective. In addition, the effect of water-channel attractions on reorientational dynamics of the water wire is studied, and a negative correlation between the flipping frequency of water wire and the water-channel attraction is observed. The underlying mechanism is interpreted in term of the axial total dipole moment of inner water molecules. This work would help to better understand the effects of water-channel attractions on wetting properties of narrow nanochannels, and on single

  18. Water

    OpenAIRE

    Hertie School of Governance

    2010-01-01

    All human life depends on water and air. The sustainable management of both is a major challenge for today's public policy makers. This issue of Schlossplatz³ taps the streams and flows of the current debate on the right water governance.

  19. Hydrology, water resources and the epidemiology of water-related diseases

    Science.gov (United States)

    Bertuzzo, Enrico; Mari, Lorenzo

    2017-10-01

    Water-borne and water-based diseases are infections in which the causative agent (or one of its hosts) spends at least part of its lifecycle in water [1]. They still represent a major threat to human health, especially in the developing world. As an example, diarrhoea, commonly linked to water-borne diseases like cholera, is responsible for the death of about 525,000 children under five every year (out of nearly 1.7 billion cases globally), thus representing one of the leading causes of death among infants and children in low-income countries [2]. A wide range of micro- (protozoa, bacteria, viruses, algae) and macro-parasites (mostly flatworms and roundworms) is associated with water-borne and water-based diseases. Infection is generally caused by ingestion of, or exposure to, contaminated water, and is thus tightly linked to water excess, scarcity, availability or quality. More broadly, the term water-related diseases may also include vector-borne infections in which the ecology of the vector population is closely related to the presence of environmental water. This is the case, for instance, of mosquitoes acting as vectors of deadly diseases like malaria, dengue fever and yellow fever. Malaria alone exacted a toll of 429,000 deaths in 2015 (out of 212 million cases globally), according to the latest WHO estimates [3].

  20. Today's virtual water consumption and trade under future water scarcity

    International Nuclear Information System (INIS)

    Orlowsky, B; Gudmundsson, L; Seneviratne, Sonia I; Hoekstra, A Y

    2014-01-01

    The populations of most nations consume products of both domestic and foreign origin, importing together with the products the water which is expended abroad for their production (termed ‘virtual water’). Therefore, any investigation of the sustainability of present-day water consumption under future climate change needs to consider the effects of potentially reduced water availability both on domestic water resources and on the trades of virtual water. Here we use combinations of Global Climate and Global Impact Models from the ISI–MIP ensemble to derive patterns of future water availability under the RCP2.6 and RCP8.5 greenhouse gas (GHG) concentrations scenarios. We assess the effects of reduced water availability in these scenarios on national water consumptions and virtual water trades through a simple accounting scheme based on the water footprint concept. We thereby identify countries where the water footprint within the country area is reduced due to a reduced within-area water availability, most prominently in the Mediterranean and some African countries. National water consumption in countries such as Russia, which are non-water scarce by themselves, can be affected through reduced imports from water scarce countries. We find overall stronger effects of the higher GHG concentrations scenario, although the model range of climate projections for single GHG concentrations scenarios is in itself larger than the differences induced by the GHG concentrations scenarios. Our results highlight that, for both investigated GHG concentration scenarios, the current water consumption and virtual water trades cannot be sustained into the future due to the projected patterns of reduced water availability. (letter)

  1. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  2. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  3. Water demand management in times of drought: What matters for water conservation

    Science.gov (United States)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  4. Water resources data for Florida, water year 1992. Volume 1B. Northeast Florida ground water. Water-data report (Annual) October 1, 1991-September 30, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Water resources data for the 1992 for northeast Florida include continuous or daily discharge for 140 streams, periodic discharge for 10 streams, miscellaneous discharge for 14 streams, continuous or daily stage for 32 streams, continuous or daily tide stage for 3 sites, periodic stage for 23 streams, peak discharge for 3 streams, and peak stage for 11 streams; continuous or daily elevations for 36 lakes, periodic elevations for 47 lakes; continuous ground-water levels for 75 wells, periodic ground-water levels for 123 wells, and miscellaneous water-level measurements for 864 wells; and quality-of-water data for 38 surface-water sites and 66 wells

  5. Spatial distribution of water supply reliability and critical links of water supply to crucial water consumers under an earthquake

    International Nuclear Information System (INIS)

    Wang Yu; Au, S.-K.

    2009-01-01

    This paper describes a process to characterize spatial distribution of water supply reliability among various consumers in a water system and proposes methods to identify critical links of water supply to crucial water consumers under an earthquake. Probabilistic performance of water supply is reflected by the probability of satisfying consumers' water demand, Damage Consequence Index (DCI) and Upgrade Benefit Index (UBI). The process is illustrated using a hypothetical water supply system, where direct Monte Carlo simulation is used for estimating the performance indices. The reliability of water supply to consumers varies spatially, depending on their respective locations in the system and system configuration. The UBI is adopted as a primary index in the identification of critical links for crucial water consumers. A pipe with a relatively large damage probability is likely to have a relatively large UBI, and hence, to be a critical link. The concept of efficient frontier is employed to identify critical links of water supply to crucial water consumers. It is found that a group of links that have the largest UBI individually do not necessarily have the largest group UBI, or be the group of critical links

  6. Designing water supplies: Optimizing drinking water composition for maximum economic benefit

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Bath, A.

    2011-01-01

    to water quality aspects, costs of water production, fresh water abstraction and CO2-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.......3 ± 0.2 per delivered m3 for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water...... includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition...

  7. Water futures

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2016-01-01

    This article explores the potential construction of a water reservoir in Peru’s Cordillera Blanca. Proposed by a peasant group, it would have served important productive purposes but have its intake within the perimeter of a national park. Thus, different notions about water and landscape emerge...... in the encounters between place-based practices and state-sponsored conservation efforts. Empirically tracing the efforts to construct the reservoir, the analytical focus of the article is on how different ways of knowing water within a particular landscape conjure and collide in the process. It is argued...... that the movement of water extends itself beyond the physical properties of the reservoir and irrigation channels as these are produced in encounters between different notions of the role of water in the landscape....

  8. Features of internal water supply and water disposal of shopping centers

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2014-01-01

    Full Text Available Pipeline from an external system should be inlet in the part of the building where a large number of water folding devices will be concentrated. As a rule, for shopping centers with a lot of water consumers it is necessary to make not less than three inputs, each of them should be connected to different areas of an external ring water supply system in order to make the work of the system more reliable.The places for water folding fittings in shopping centers are the following. The water folding devices: mixers are placed in sanitary cabins of shopping centers. Usually, for for water saving in buildings with a big pass-through capacity per hour it is reasonable to use contactless mixers, which are turned on upon raising a hand with a help of motion sensor or light sensor. Another important argument in favor of such mixers is prevention of infections spread for the reason that the consumer doesn't touch the device, so, the risk of bacteria transmission via the device decreases. Such mixer supplies water with a demanded expense and temperature. As a rule, water for such mixers moves from the centralized internal water supply system of hot water, mixing up with cold water. If there is no centralized hot water supply system, it is possible to use hot water storage heaters in case of a small number of visitors or to reject mixers at all in favor of the cranes giving water of only one temperature (cold, which is also practiced.For the branch of economic and household the water receivers are used, which are present in sanitary cabins in most cases by toilet bowls, wash basins, urinals.

  9. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  10. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  11. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  12. Joint management of water and electricity in State Water Project

    Science.gov (United States)

    Yang, T.

    2013-12-01

    Understanding the relationship between California's water and electrical power is important for improving the management and planning of these two vital resources to the state's economy development and people's well-being. It is often unclear for consumers, managers and decision-makers that water and electricity in California are inextricably connected. In the past, insufficient considerations of electricity production, consumption and cost in the State Water Project (SWP) - the world's largest publicly built and operated water and power development and conveyance system-has led to significant water rate and electricity rate increase. An innovative concept of this proposed study is developing new technology capable of managing and planning water and power jointly in SWP to promote its operation efficiency, sustainability and resilience to potential water shortage caused by climate change and population increase. To achieve this goal, a nonlinear, two-fold network model describing water delivery in company with power consumption and generation will be constructed, and a multi-objective optimization scheme is to be used to resolve this complex nonlinear network problem.

  13. Water risk assessment in China based on the improved Water Risk Filter

    Science.gov (United States)

    Hong, G.; Yaqin, Q.; Qiong, L.; Cunwen, N.; Na, W.; Jiajia, L.; Jongde, G.; Na, Z.; Xiangyi, D.

    2014-09-01

    Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs). The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  14. Water risk assessment in China based on the improved Water Risk Filter

    Directory of Open Access Journals (Sweden)

    G. Hong

    2014-09-01

    Full Text Available Finding an effective way to deal with the water crisis and the relationship between water and development is a major issue for all levels of government and different economic sectors across the world. Scientific understanding of water risk is the basis for achieving a scientific relationship between water and development, and water risk assessment is currently an important research focus. To effectively deal with the global water crisis, the World Wide Fund for Nature and German Investment and Development Company Limited proposed the concept of water risk and released an online Water Risk Filter in March 2012, which has been applied to at least 85 countries. To comprehensively and accurately reflect the situation of water risk in China, this study adjusts the water risk assessment indicators in the Water Risk Filter, taking the actual situation in China and the difficulty of obtaining the information about the indicators into account, and proposes an index system for water risk evaluation for China which consists of physical risk, regulatory risk and reputational risk. The improved Water Risk Filter is further used to assess the sources and causes of the water risks in 10 first-class and seven second-class water resource areas (WRAs. The results indicate that the water risk for the whole country is generally medium and low, while those for different regions in the country vary greatly, and those for southern regions are generally lower than those for northern regions. Government regulatory and policy implementation as well as media supervision in northern regions should be strengthened to reduce the water risk. The research results may provide decision support and references for both governments and industrial enterprises in identifying water risks, formulating prevention and control policies, and improving water resources management in China.

  15. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  16. Water addition, evaporation and water holding capacity of poultry litter.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  18. Water and water use in southern Nevada [Chapter 3] (Executive Summary)

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and ground waters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for southern Nevada. Chapter 3 outlines...

  19. The evolution of the CUAHSI Water Markup Language (WaterML)

    Science.gov (United States)

    Zaslavsky, I.; Valentine, D.; Maidment, D.; Tarboton, D. G.; Whiteaker, T.; Hooper, R.; Kirschtel, D.; Rodriguez, M.

    2009-04-01

    The CUAHSI Hydrologic Information System (HIS, his.cuahsi.org) uses web services as the core data exchange mechanism which provides programmatic connection between many heterogeneous sources of hydrologic data and a variety of online and desktop client applications. The service message schema follows the CUAHSI Water Markup Language (WaterML) 1.x specification (see OGC Discussion Paper 07-041r1). Data sources that can be queried via WaterML-compliant water data services include national and international repositories such as USGS NWIS (National Water Information System), USEPA STORET (Storage & Retrieval), USDA SNOTEL (Snowpack Telemetry), NCDC ISH and ISD(Integrated Surface Hourly and Daily Data), MODIS (Moderate Resolution Imaging Spectroradiometer), and DAYMET (Daily Surface Weather Data and Climatological Summaries). Besides government data sources, CUAHSI HIS provides access to a growing number of academic hydrologic observation networks. These networks are registered by researchers associated with 11 hydrologic observatory testbeds around the US, and other research, government and commercial groups wishing to join the emerging CUAHSI Water Data Federation. The Hydrologic Information Server (HIS Server) software stack deployed at NSF-supported hydrologic observatory sites and other universities around the country, supports a hydrologic data publication workflow which includes the following steps: (1) observational data are loaded from static files or streamed from sensors into a local instance of an Observations Data Model (ODM) database; (2) a generic web service template is configured for the new ODM instance to expose the data as a WaterML-compliant water data service, and (3) the new water data service is registered at the HISCentral registry (hiscentral.cuahsi.org), its metadata are harvested and semantically tagged using concepts from a hydrologic ontology. As a result, the new service is indexed in the CUAHSI central metadata catalog, and becomes

  20. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  1. Organic and inorganic species in produced water: Implications for water reuse

    Science.gov (United States)

    Kharaka, Yousif K.; Rice, Cynthia A.

    2004-01-01

    Currently 20-30 billion barrels of formation water are co-produced annually in the USA with conventional oil and natural gas. The large database on the geochemistry of this produced water shows salinities that vary widely from ~5,000 to >350,000 mg/L TDS. Chloride, Na and Ca are generally the dominant ions, and concentrations of Fe, Mn, B, NH3 and dissolved organics, including, BTEX, phenols and poly aromatic hydrocarbons (PAHs) may be relatively high. Hazardous concentrations of NORMs, including Ra-226 and Rn-222 have been reported in produced water from several states.Coal-bed methane (CBM) wells currently produce close to a billion barrels of water and deliver ~8% of total natural gas. The salinity of this produced water generally is lower than that of water from petroleum wells; salinity commonly is 1,000-20,000 mg/L, but ranges to150,000 mg/L TDS. Most CBM wells produce Na-HCO3-Cl type water that is low in trace metals and has no reported NORMs. This water commonly has no oil and grease and has relatively low DOC, but its organic composition has not been characterized in detail. The water is disposed of by injection into saline aquifers, through evaporation and/or percolation in disposal pits, road spreading, and surface discharge. Water that has an acceptable salinity and sodium absorption ratio (SAR) is considered acceptable for surface discharge and for injection into freshwater aquifers.As an alternative to costly disposal, low salinity produced water is being considered for reclamation, especially in the arid western USA. The cost of reclaiming this water to meet irrigation, industrial and drinking water standards was evaluated in a 10 gpm pilot field study at Placerita oil field, California. This produced water had a low salinity of ~8,000 mg/L, but high concentration of Si and organics. Removal of B, Si, NH3 and especially organics from this water proved difficult, and the estimated treatment cost was high at $0.08-$0.39/bbl for water treated for

  2. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  3. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  4. Water You Engineering? An Activity to Develop Water-Quality Awareness

    Science.gov (United States)

    Riskowski, Jody; Todd, Carrie Davis

    2009-01-01

    Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…

  5. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  6. Water security in Southern Africa: Discourses securitising water and the implications for water governance and politics

    CSIR Research Space (South Africa)

    Meissner, Richard

    2016-01-01

    Full Text Available In the South African water discourse, the water security concept is a complex notion that not only covers the quantitative aspects of water demand and supply but is also linked to national security and political stability, as well as human well...

  7. Water-Borne Illnesses. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water-Borne…

  8. Water leakage management by district metered areas at water distribution networks.

    Science.gov (United States)

    Özdemir, Özgür

    2018-03-01

    The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.

  9. Physical and Chemical Status of Drinking Water from Water ...

    African Journals Online (AJOL)

    Erbil, Kurdistan, Iraq, for human consumptions, water samples were collected from three water treatment plants (WTP) on that river. The following water quality parameters were determined which were chosen as the major indicators namely PH, Total Dissolved Solid(TDS), Electrical conductivity(EC), Total Hardness(TH), Cl- ...

  10. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  11. Water hardness and cardiovascular disease. Elements in water and human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Sharrett, A R

    1977-05-01

    The hypothesis that the hardness of drinking water has a causal role in the development of cardiovascular disease will be strengthened if it can be demonstrated that elements in drinking water find their way into human tissues in significant amounts. For biologically important metals, the evidence is reviewed for a relationship of tissue levels to levels in drinking water. Hard water can contribute significantly to daily magnesium intake. Residents of hard-water areas may have raised levels of magnesium in coronary arteries, bone, and myocardial tissue. Lead levels in bone and in blood have been shown to be elevated in individuals living in homes with lead plumbing and soft water. Cadmium intake from water is probably small compared to that from other sources, and there is no convincing evidence of alteration in human tissue levels via drinking water cadmium. Human zinc and copper tissue levels are of interest but have not been adequately studied in relation to drinking water levels.

  12. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  13. Water crisis: the metropolitan Atlanta, Georgia, regional water supply conflict

    KAUST Repository

    Missimer, Thomas M.

    2014-07-01

    Many large population centres are currently facing considerable difficulties with planning issues to secure future water supplies, as a result of water allocation and environmental issues, litigation, and political dogma. A classic case occurs in the metropolitan Atlanta area, which is a rapidly growing, large population centre that relies solely on surface water for supply. Lake Lanier currently supplies about 70% of the water demand and has been involved in a protracted legal dispute for more than two decades. Drought and environmental management of the reservoir combined to create a water shortage which nearly caused a disaster to the region in 2007 (only about 35 days of water supply was in reserve). While the region has made progress in controlling water demand by implementing a conservation plan, per capita use projections are still very high (at 511 L/day in 2035). Both non-potable reuse and indirect reuse of treated wastewater are contained in the most current water supply plan with up to 380,000 m3/day of wastewater treated using advanced wastewater treatment (nutrient removal) to be discharged into Lake Lanier. The water supply plan, however, includes no additional or new supply sources and has deleted any reference to the use of seawater desalination or other potential water sources which would provide diversification, thereby relying solely on the Coosa and Chattahoochee river reservoirs for the future. © 2014 IWA Publishing.

  14. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  15. Developing a methodological framework for estimating water productivity indicators in water scarce regions

    Science.gov (United States)

    Mubako, S. T.; Fullerton, T. M.; Walke, A.; Collins, T.; Mubako, G.; Walker, W. S.

    2014-12-01

    Water productivity is an area of growing interest in assessing the impact of human economic activities on water resources, especially in arid regions. Indicators of water productivity can assist water users in evaluating sectoral water use efficiency, identifying sources of pressure on water resources, and in supporting water allocation rationale under scarcity conditions. This case study for the water-scarce Middle Rio Grande River Basin aims to develop an environmental-economic accounting approach for water use in arid river basins through a methodological framework that relates water use to human economic activities impacting regional water resources. Water uses are coupled to economic transactions, and the complex but mutual relations between various water using sectors estimated. A comparison is made between the calculated water productivity indicators and representative cost/price per unit volume of water for the main water use sectors. Although it contributes very little to regional economic output, preliminary results confirm that Irrigation is among the sectors with the largest direct water use intensities. High economic value and low water use intensity economic sectors in the study region include Manufacturing, Mining, and Steam Electric Power. Water accounting challenges revealed by the study include differences in water management regimes between jurisdictions, and little understanding of the impact of major economic activities on the interaction between surface and groundwater systems in this region. A more comprehensive assessment would require the incorporation of environmental and social sustainability indicators to the calculated water productivity indicators.

  16. Greenhouse gas and energy co-benefits of water conservation[Water Sustainability Project

    Energy Technology Data Exchange (ETDEWEB)

    Maas, C.

    2009-03-15

    Energy is needed to deliver water to, within and from communities to remove contaminants from water and wastewater, and to heat water in homes. The interconnections between water and energy are referred to as the water-energy nexus. Large volumes of water are needed to generate energy, notably to power turbines, to cool thermal or nuclear energy plants, and to extract oil from tar sands. At the same time, large amounts of energy are needed to pump, treat, heat and distribute water for urban, industrial and agricultural use and to collect and treat the resulting wastewater. The two sides of the water-energy nexus are generating new research and policy proposals to address the challenges of climate change, energy security and increasing water scarcity. This report demonstrated that a large untapped opportunity exists for water conservation to reduce energy, municipal costs and greenhouse gas (GHG) emissions. The water-energy research in this study was based on a Soft Path for Water approach that incorporated facets of water demand management while moving beyond a short-term focus on cost-benefit criteria to examine how the services currently provided by water can be delivered to meet the need for economic, social and ecological sustainability. Although the research was conducted using data for municipalities in Ontario, the report is relevant to the rest of Canada and much of North America. Water conservation strategies included water efficiency measures such as high efficiency toilets and washing machines, as well as water saving measures such as xeriscaping and rainwater harvesting. The objectives of the study were to quantify the energy use associated with each component of the urban water use cycle and to determine the potential for energy and GHG emissions reductions associated with water conservation strategies. This report provided an overview of energy inputs needed for water provision. It outlined the methodology used to achieve the project objectives and

  17. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  18. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  19. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  20. Model of urban water management towards water sensitive city: a literature review

    Science.gov (United States)

    Maftuhah, D. I.; Anityasari, M.; Sholihah, M.

    2018-04-01

    Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.

  1. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  2. Central Asia's raging waters the prospects of water conflict in Central Asia

    OpenAIRE

    Hartman, William B.

    2007-01-01

    This thesis examines the prospects of conflict caused by water scarcity in Central Asia. The thesis analyzes the three most recent political eras of Central Asia, Tsarist Russia, the Soviet Union and independence, utilizing indicators of water tensions including: water quality, water quantity, the management of water for multiple uses, the political divisions and geopolitical setting, state institutions and national water ethos. Although water is not likely to be the sole cause of a majo...

  3. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  4. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  5. Urbanizing rural waters

    NARCIS (Netherlands)

    Hommes, Lena; Boelens, Rutgerd

    2017-01-01

    This article studies how urbanization processes and associated rural-urban water transfers in the Lima region (Peru) create water control hierarchies that align the municipal drinking water company, hydropower plants and rural communities on unequal positions. By scrutinizing the history of water

  6. Water and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Water and Pesticides Related Topics: What Happens to Pesticides Released into the Environment? Water Solubility Drinking Water and Pesticides Fact Sheet

  7. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  8. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  9. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  10. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  11. Schools water efficiency and awareness project | Wilson | Water SA

    African Journals Online (AJOL)

    The City of Cape Town's Water Demand Management (WDM) department has been involved in school projects for several years, although these have generally been restricted to educational activities during Water Week and school competitions, due mainly to limited resources. Cape Town is a water scarce area, and ...

  12. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  13. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    Science.gov (United States)

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sustainable water services and interaction with water resources in Europe and in Brazil

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  15. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  16. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  17. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  18. Water and waste water reclamation in a 21st century space colony

    Science.gov (United States)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  19. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water...

  20. Water absorption and mechanical properties of water-swellable natural rubber

    Directory of Open Access Journals (Sweden)

    Diew Saijun

    2009-11-01

    Full Text Available Water-swellable rubber (WSR was prepared by blending superabsorbent polymer (SAP of crosslinked poly(acrylamide-co-sodium acrylate with natural rubber in latex condition. The crosslinked poly(acrylamide-co-sodium acrylate was first prepared by inverse suspension polymerization from acrylamide and sodium acrylate monomers with potassiumpersulfate initiator and N,N-methylenebisacrylamide crosslinker. The reaction was carried out at 60oC for 40 mins. Water absorption properties, such as the degree of water absorption, water absorption rate, degree of weight loss, and mechanicalproperties of WSR were then investigated. It was found that the degree of water absorption, water absorption rate, and thedegree of weight loss increased, while tensile strength and elongation at break decreased with increasing quantity of SAP inthe blends. However, the degree of water absorption, degree of weight loss, and elongation at break decreased, but tensilestrength increased with increasing quantity of the N-tert-butyl-2-benzothiazyl sulphenamide (TBBS accelerator used in thecompounds formulation.

  1. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Science.gov (United States)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  2. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Directory of Open Access Journals (Sweden)

    Kordach A.

    2018-01-01

    Full Text Available The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS, and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  3. How More Data About Direct and Virtual Water Use Could Help People Understand Their Water Footprints and Save More Water

    Science.gov (United States)

    Madel, R.; Olson-Sawyer, K.; Hanlon, P.; Rabin, K.

    2017-12-01

    Attari (2014) has shown through online surveys that Americans underestimate their water use, don't know what their water footprint is and don't know how much water it takes to produce food. The more people know about their water use, the better decisions they are capable of making and the more likely they are to conserve, which is especially important during periods of water stress. To increase awareness and help people decrease their daily water use, GRACE Communications Foundation created a Water Footprint Calculator [watercalculator.org] using US-oriented data and presented in US units in both English and Spanish. The calculator is based on direct water use data as well as the water consumed to create food, consumer goods and energy (also known as virtual or indirect water use). We learned that there is a lack of comparably-scaled, consumer-level virtual water research available. The direct use data gathered for the calculator came primarily from a study of residential water use in the US by Mayer et al. (1999), who conducted surveys of households in different US cities and averaged data for both inside and outside the home. The indirect use data came from various sources including the US government (USGS, EPA, EIA, NREL, Energy Star, etc.), the Water Footprint Network and the UN FAO. Much of the indirect use data was aggregated at a national level or came from combinations of various data sets. For all users, the food category accounts for the largest part of their water footprints. Gathering data of comparable scale at a personal consumption level proved to be a challenging exercise and provided several takeaways. While there is recent residential direct water use data at a consumer level, there is a lack of data at the personal, consumer level about indirect water use in manufacturing, energy production and agriculture. Because of this, we had to use national averages and generalized calculations. The resulting tool gives people a sense of the impacts of

  4. Irrigation water as a source of drinking water: is safe use possible?

    DEFF Research Database (Denmark)

    Hoek, Wim van der; Konradsen, F; Ensink, J H

    2001-01-01

    BACKGROUND: In arid and semi-arid countries there are often large areas where groundwater is brackish and where people have to obtain water from irrigation canals for all uses, including domestic ones. An alternative to drawing drinking water directly from irrigation canals or village water...... households in 10 villages. Separate surveys were undertaken to collect information on hygiene behaviour, sanitary facilities, and socio-economic status. RESULTS: Seepage water was of much better quality than surface water, but this did not translate into less diarrhoea. This could only be partially explained....... The association between water quality and diarrhoea varied by the level of water availability and the presence or absence of a toilet. Among people having a high quantity of water available and a toilet, the incidence rate of diarrhoea was higher when surface water was used for drinking than when seepage water...

  5. Chemical composition of water extracts from shungite and shungite water

    International Nuclear Information System (INIS)

    Charykova, M.V.; Bornyakova, I.I.; Polekhovskij, Yu.S.; Charykov, N.A.; Kustova, E.V.; Arapov, O.V.

    2006-01-01

    Chemical analysis of water extracts from shungite-3 of Zagozhino deposit (Karelia) and natural water contacting with shungite rocks are done. Chemical composition and bactericide properties of shungite water are studied [ru

  6. How Does Silicon Mediate Plant Water Uptake and Loss Under Water Deficiency?

    Directory of Open Access Journals (Sweden)

    Daoqian Chen

    2018-03-01

    Full Text Available In plants, water deficiency can result from a deficit of water from the soil, an obstacle to the uptake of water or the excess water loss; in these cases, the similar consequence is the limitation of plant growth and crop yield. Silicon (Si has been widely reported to alleviate the plant water status and water balance under variant stress conditions in both monocot and dicot plants, especially under drought and salt stresses. However, the underlying mechanism is unclear. In addition to the regulation of leaf transpiration, recently, Si application was found to be involved in the adjustment of root hydraulic conductance by up-regulating aquaporin gene expression and concentrating K in the xylem sap. Therefore, this review discusses the potential effects of Si on both leaf transpiration and root water absorption, especially focusing on how Si modulates the root hydraulic conductance. A growing number of studies support the conclusion that Si application improves plant water status by increasing root water uptake, rather than by decreasing their water loss under conditions of water deficiency. The enhancement of plant water uptake by Si is achievable through the activation of osmotic adjustment, improving aquaporin activity and increasing the root/shoot ratio. The underlying mechanisms of the Si on improving plant water uptake under water deficiency conditions are discussed.

  7. Water Pollution

    International Nuclear Information System (INIS)

    Goni, J.

    1984-01-01

    This work is about the water pollution. The air and the water interaction cycles is the main idea of the geochemical pollution conception. In the water surface as well as in the deep aquifers we can found cough metals or minerals from the athmosferic air. The activities of mercury fluor and nitrates are important to the pollution study

  8. Water supply

    International Nuclear Information System (INIS)

    Peterson, F.L.

    1986-01-01

    Options and methodologies for the development of fresh water supplies on Bikini Atoll are much the same as those practiced in the rest of the Marshall Islands and for that matter, most atolls in the central Pacific Ocean Basin. That is, rainfall distribution on Bikini produces a distinct wet season, lasting from about May through November, with the remaining months being generally dry. As a result, fresh water from surface catchments tends to be plentiful during the wet season? but is usually scarce during the dry months, and alternative sources such as groundwater must be utilized during this time. On Bikini the problems of fresh water supply are somewhat more difficult than for most Marshall Island atolls because rainfall is only about half the Marshall Island's average. Tus water supply is a critical factor limiting the carrying capacity of Bikini Atoll. To address this problem BARC has undertaken a study of the Bikini Atoll water supply. Te primary objectives of this work are to determine: (1) alternatives available for fresh water supply, 2 the amounts, location and quality of available supplies and 3 optimal development methods. The study planned for one's year duration, has been underway only since the summer of 1985 and is thus not yet fully completed. However, work done to date, which is presented in this report of preliminary findings, provides a reasonably accurate picture of Bikini's fresh water supplies and the various options available for their development. The work remaining to be completed will mainly add refinements to the water supply picture presented in the sections to follow

  9. Flashing of high-pressure saturated water into the pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Aya, Izuo.

    1997-01-01

    This paper presents an experimental study on a saturated high-pressure water discharging into a water pool. The purpose of the experiment is to clarify the phenomena that occur by a blow-down of the water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in a passive safety reactor. The results show that a flashing oscillation (FO) occurs when the water discharges into the pool, under specified experimental conditions. The range of the flashing location oscillates between a point very close to and some distance away from the vent hole. The pressures in the vent tube and water pool constantly fluctuate due to the flashing oscillation. The pressure oscillation and alternating flashing location might be caused by the balancing action between the supply of saturated water, flashing at the control volume and steam condensation on the steam-water interface. The frequencies of FO, or frequencies of pressure oscillation and alternating flashing location, increased as water subcooling increased, and as discharging pressure and vent hole diameter decreased. A linear analysis was conducted using a spherical flashing bubble model in which the motion of bubble is controlled by steam condensation. The effects of these parameters on the period of FO in the experiments can be predicted well by the analysis. (author)

  10. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  11. Water Reserves Program. An adaptation strategy to balance water in nature

    Science.gov (United States)

    Lopez Perez, M.; Barrios, E.; Salinas-Rodriguez, S.; Wickel, B.; Villon, R. A.

    2013-05-01

    Freshwater ecosystems occupy approximately 1% of the earth's surface yet possess about 12% of all known animal species. By virtue of their position in the landscape they connect terrestrial and coastal marine biomes and provide and sustain ecosystem services vital to the health and persistence of human communities. These services include the supply of water for food production, urban and ind ustrial consumption, among others. Over the past century many freshwater ecosystems around the world have been heavily modified or lost due to the alteration of flow regimes (e.g. due to damming, canalization, diversion, over-abstraction). The synergistic impacts of land use change, changes in flows, chemical deterioration, and climate change have left many systems and their species very little room to adjust to change, while future projections indicate a steady increase in water demand for food and energy production and water supply to suit the needs of a growing world population. In Mexico, the focus has been to secure water for human development and maximize economic growth, which has resulted in allocation of water beyond available amounts. As a consequence episodic water scarcity severely constrains freshwater ecosystems and the services they provide. Climatic change and variability are presenting serious challenges to a country that already is experiencing serious strain on its water resources. However, freshwater ecosystems are recognized by law as legitimate user of water, and mandate a flow allocation for the environment ("water reserve" or "environmental flows"). Based on this legal provision the Mexican government through the National Water Commission (Conagua), with support of the Alliance WWF - Fundación Gonzalo Río Arronte, and the Interamerican Development Bank, has launched a national program to identify and implement "water reserves": basins where environmental flows will be secured and allocated and where the flow regime is then protected before over

  12. Treating mine water

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, E S; Kochegarova, L V; Zaslavskaya, I Yu

    1980-10-01

    Taking into account the negative influence of mine waters with suspended matter on the natural environment on the surface, the maximum treatment of mine water underground, is proposed. It is noted that full treatment of mine water, using conventional filtration methods, would be rather expensive, but a limited treatment of mine water is possible. Such treated mine water can be used in dust suppression and fire fighting systems. Mine water treated underground should be free of any odor, with pH level ranging from 6 to 9.5, with suspended matter content not exceeding 50 mg/l and coli-titre not less than 300 cm$SUP$3. It is suggested that water treatment to produce water characterized by these parameters is possible and economical. Recommendations on construction of underground sedimentation tanks and channels, and a hydraulic system of cleaning sedimentation tanks are proposed. The settling would be stored underground in abandoned workings. (2 refs.) (In Russian)

  13. MINERAL WATER FROM SUPERMARKET VS. TAP WATER. SOME CONSIDERATIONS RELATED TO INNOCUITY

    Directory of Open Access Journals (Sweden)

    Ciprian – Nicolae POPA

    2015-04-01

    Full Text Available 15 Romanian brands of mineral water were purchased from hypermarket. For each of the 15 mineral waters were determined the content of nitrates, nitrites and pH. The data obtained were compared with the content of nitrates, nitrites and pH of the tap water collected in 15 locations in Bucharest, according to data released by the Apa Nova operator. The results showed that the mean of tap water pH in Bucharest, although slightly higher than the tested mineral waters pH, did not differ significantly from the mean of mineral waters pH, being situated in the alkaline domain. The mean content of nitrates in tap water in Bucharest, did not differ significantly from that of the tested mineral waters (t = 0.811. Nitrates content of tap water in Bucharest was significantly distinct less, as the pH was higher (r = 0.68**. Basically, the change in pH by one unit, lowers the amount of nitrate by 46%. Bucharest tap water nitrites content was significantly lower than that of tested mineral waters (0.005 mg/l to 0.0124; t = 2.674*. Basically, Bucharest tap water contained up to 2.5 times less nitrites than the nitrites mean of tested mineral waters.

  14. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  15. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.

    Science.gov (United States)

    Dong, Huijuan; Geng, Yong; Fujita, Tsuyoshi; Fujii, Minoru; Hao, Dong; Yu, Xiaoman

    2014-12-01

    With rapid economic development in China, water crisis is becoming serious and may impede future sustainable development. The uneven distribution of water resources further aggravates such a problem. Under such a circumstance, the concepts of water footprint and virtual water have been proposed in order to respond water scarcity problems. This paper focuses on studying provincial disparity of China's water footprints and inter-provincial virtual water trade flows by adopting inter-regional input-output (IRIO) method. The results show that fast developing areas with larger economic scales such as Guangdong, Jiangsu, Shandong, Zhejiang, Shanghai and Xinjiang had the largest water footprints. The most developed and water scarce areas such as Shanghai, Beijing, Tianjin and Shandong intended to import virtual water, a rational choice for mitigating their water crisis. Xinjiang, Jiangsu, Heilongjiang, Inner Mongolia, Guangxi and Hunan, had the largest per GDP water intensities and were the main water import regions. Another key finding is that agriculture water footprint was the main part in water footprint composition and water export trade. On the basis of these findings, policy implications on agriculture geographical dispersion, consumption behavior changes, trade structure adjustment and water use efficiency improvement are further discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  17. Water Banks: Using Managed Aquifer Recharge to Meet Water Policy Objectives

    Directory of Open Access Journals (Sweden)

    Sharon B. Megdal

    2014-05-01

    Full Text Available Innovation born of necessity to secure water for the U.S. state of Arizona has yielded a model of water banking that serves as an international prototype for effective use of aquifers for drought and emergency supplies. If understood and adapted to local hydrogeological and water supply and demand conditions, this could provide a highly effective solution for water security elsewhere. Arizona is a semi-arid state in the southwestern United States that has growing water demands, significant groundwater overdraft, and surface water supplies with diminishing reliability. In response, Arizona has developed an institutional and regulatory framework that has allowed large-scale implementation of managed aquifer recharge in the state’s deep alluvial groundwater basins. The most ambitious recharge activities involve the storage of Colorado River water that is delivered through the Central Arizona Project (CAP. The CAP system delivers more than 1850 million cubic meters (MCM per year to Arizona’s two largest metropolitan areas, Phoenix and Tucson, along with agricultural users and sovereign Native American Nations, but the CAP supply has junior priority and is subject to reduction during declared shortages on the Colorado River. In the mid-1980s the State of Arizona established a framework for water storage and recovery; and in 1996 the Arizona Water Banking Authority was created to mitigate the impacts of Colorado River shortages; to create water management benefits; and to allow interstate storage. The Banking Authority has stored more than 4718 MCM of CAP water; including more than 740 MCM for the neighboring state of Nevada. The Nevada storage was made possible through a series of interrelated agreements involving regional water agencies and the federal government. The stored water will be recovered within Arizona; allowing Nevada to divert an equal amount of Colorado River water from Lake Mead; which is upstream of CAP’s point of diversion

  18. Water footprint assessment to inform water management and policy ...

    African Journals Online (AJOL)

    One method to inform decisions with respect to sustainable, efficient and equitable water allocation and use is water footprint assessment (WFA). This paper presents a preliminary WFA of South Africa (SA) based on data for the period 1996–2005. Crop production was found to contribute about 75% of the total water ...

  19. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  20. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  1. Water, agriculture, energy: a growing interweaving. Towards an extended water security

    International Nuclear Information System (INIS)

    Taithe, Alexandre

    2009-01-01

    In this paper, the author first notices that the definition of water security according to the United Nations Development Program (UNDP) is a rather restrictive one. Thus, the search for a global security takes all forms of insufficiencies and (military or not) instabilities into account, and is then related to strategic stakes of State stability such as agriculture production, water or energy. He discusses the determining factors and vulnerabilities of a renewed water security and its implications. He highlights how internal political and social constraints are sources of local and regional tensions. In this respect, agriculture is at the heart of use conflicts (difficult and necessary reform of the sector, rivalries between rural and urban users), and water stress directly affects daily domestic uses. The author then outlines the necessary integration stakes related to water, food and energy by discussing the use of water in energy production, the use of energy to produce drinkable water, the relationship between agriculture and energy, and, of course between agriculture and water as agriculture is the main water consumer

  2. Global water scarcity: the monthly blue water footprint compared to blue water availability for the world's major river basins

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Mekonnen, Mesfin

    Conventional blue water scarcity indicators suffer from four weaknesses: they measure water withdrawal instead of consumptive water use, they compare water use with actual runoff rather than natural (undepleted) runoff, they ignore environmental flow requirements and they evaluate scarcity on an

  3. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana

    2017-01-01

    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  4. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  5. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  6. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  7. Potable water supply

    Science.gov (United States)

    Sauer, R. L.; Calley, D. J.

    1975-01-01

    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  8. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  9. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  10. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  11. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  12. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  13. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  14. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. III. Vegetation water stress

    Science.gov (United States)

    Porporato, A.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I.

    The reduction of soil moisture content during droughts lowers the plant water potential and decreases transpiration; this in turn causes a reduction of cell turgor and relative water content which brings about a sequence of damages of increasing seriousness. A review of the literature on plant physiology and water stress shows that vegetation water stress can be assumed to start at the soil moisture level corresponding to incipient stomatal closure and reach a maximum intensity at the wilting point. The mean crossing properties of these soil moisture levels crucial for water stress are derived analytically for the stochastic model of soil moisture dynamics described in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe. Adv. Water Res. 24 (7) (2001) 707-723). These properties are then used to propose a measure of vegetation water stress which combines the mean intensity, duration, and frequency of periods of soil water deficit. The characteristics of vegetation water stress are then studied under different climatic conditions, showing how the interplay between plant, soil, and environment can lead to optimal conditions for vegetation.

  15. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  16. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    Science.gov (United States)

    Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas

    2017-04-01

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  17. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  18. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  19. Army Installations Water Sustainability Assessment: An Evaluation of Vulnerability to Water Supply

    Science.gov (United States)

    2009-09-01

    hogs and pigs, horses and poultry . These categories represent varying levels of consumptive water use. Not all of the water that is withdrawn... dressing issues of present or future water rights. Though Army installations retain rights to any required water through the Federal reserved water

  20. Managing water use

    International Nuclear Information System (INIS)

    Unterberger, G.L.

    1991-01-01

    This article addresses meeting and maintaining water pollution controls while keeping up with the new regulations. The topics discussed in the article include discharge regulations, stormwater discharges, wetlands regulation, water use, water-related programs, and keeping an inventory of water pollution regulations, especially those involving pre-approvals, permits or registrations

  1. From energy water use towards integration of multi-purpose water at the local scale. Modelling water resources and water uses for adapting to global changes

    International Nuclear Information System (INIS)

    Poulhe, P.; Hendrickx, F.; Samie, R.; SAUQUET, E.; Vidal, J.P.; Perrin, C.

    2012-01-01

    Water management within large catchments is a complex question related to local issues, with a high-impact potential for the EDF Group. That is why EDF R and D carried out a scientific study in the Garonne river basin upstream to Golfech, under the framework of a research program partly funded by the French Ministry of Ecology and in partnership with Irstea and the Adour-Garonne Water Agency. This project aims at assessing water availability under present-day conditions and under climate change scenarios in the 2030's, including a detailed analysis of pressure on water resources and actual management rules. Down-scaled IPCC AR4 precipitation and temperature scenarios for 2030 forecast a significant increase in summer temperatures (+ 4 deg. C), more limited in winter (+ 2 deg. C) and a less pronounced decrease in precipitation. This leads to a reduction of natural flows in summer as a result of increased potential evapotranspiration, a reduction in snow contribution and a shift towards earlier snow melt in the mountain basins. Regarding evolution of water uses, the results suggest a decrease of hydropower production, an increase in summer water releases to sustain low water and a lesser flexibility to meet needs of the electrical system. In parallel, a 20% increase in demand for irrigation is projected under 'business-as-usual' practices. This project highlights the challenges of water allocation policy-making that should be considered in a collective way. It opens the way towards a more operational consideration of a 'water resources' risk for both electrical production manager and producers. However, technical issues related to necessary tools for decision support remain. The extension of this type of study encompassing climate, water resources, water uses and socio-economic aspect is considered in other river basins. (authors)

  2. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  3. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  4. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    Science.gov (United States)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  5. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  6. The Potential of in situ Rain Water Harvesting for Water Resources ...

    African Journals Online (AJOL)

    Key words: In situ Rain water harvesting, Malaria, Anopheles arabiensis, Tigray, Ethiopia. 1. INTRODUCTION .... heating the water in the vials to be preserved in 70% alcohol after draining the excess water. The immature ..... (eds.). Integrated water and land management research and capacity building priorities for Ethiopia.

  7. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  8. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  9. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    Science.gov (United States)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  10. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Science.gov (United States)

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    Half of the planet's population is severely impacted by severe water issues including absent or unreliable water supply, sanitation, poor water quality, unmitigated floods and droughts, and degraded water environments. In recent years, global water security has been highlighted not only by the science community but also by business leaders as one of the greatest threats to sustainable human development for different generations. How can we ensure the well-being of people and ecosystems with limited water, technology and financial resources? To evaluate this, IIASA's Water Futures and Solutions Initiative (WFaS) is identifying a portfolios of robust and cost-effective options across different economic sectors including agriculture, energy, manufacturing, households, and environment and ecosystems. Options to increase water supply and accessibility are evaluated together with water demand management and water governance options. To test these solution-portfolios in order to obtain a clear picture of the opportunities but also of the risks and the trade-offs we have developed the Community Water Model (CWATM) which joins IIASA's integrated assessment modeling framework, coupling hydrology with hydro-economics (ECHO model), energy (MESSAGE model) and land use (GLOBIOM model). CWATM has been developed to work flexibly with varying spatial resolutions from global to regional levels. The model is open source and community-driven to promote our work amongst the wider water and other science community worldwide, with flexibility to link to other models and integrate newly developed modules such as water quality. In order to identify the solution portfolios, we present a global hotspots assessment of water-related risks with the ability to zoom in at regional scale using the example of the Lake Victoria basin in E. Africa. We show how socio-economic and climate change will alter spatial patterns of the hydrological cycle and have regional impacts on water availability. At

  11. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  12. Confronting South Africa’s water challenge: A decomposition analysis of water intensity

    Directory of Open Access Journals (Sweden)

    Marcel Kohler

    2016-12-01

    Full Text Available Water is a vital natural resource, demanding careful management. It is essential for life and integral to virtually all economic activities, including energy and food production and the production of industrial outputs. The availability of clean water in sufficient quantities is not only a prerequisite for human health and well-being but the life-blood of freshwater ecosystems and the many services that these provide. Water resource intensity measures the intensity of water use in terms of volume of water per unit of value added. It is an internationally accepted environmental indicator of the pressure of economic activity on a country’s water resources and therefore a reliable indicator of sustainable economic development. The indicator is particularly useful in the allocation of water resources between sectors of the economy since in waterstressed countries like South Africa, there is competition for water among various users, which makes it necessary to allocate water resources to economic activities that are less intensive in their use of water. This study focuses on economy-wide changes in South Africa’s water intensity using both decomposition and empirical estimation techniques in an effort to identify and understand the impact of economic activity on changes in the use of the economy’s water resources. It is hoped that this study will help inform South Africa’s water conservation and resource management policies

  13. Water Policies of Turkey

    Directory of Open Access Journals (Sweden)

    Hakan Istanbulluoglu

    2011-06-01

    Full Text Available Water is one of our most critical resources. Civilization has historically flourished around major waterways. The most important uses of water are; agricultural, industrial and domestic use. This critical resource is under threat around the world. In the next 20 years, the quantity of water available to everyone is predicted to decrease by 30%. 40% of the world\\\\\\\\\\\\\\'s inhabitants currently have insufficient fresh water for minimal hygiene. In 2000 more than 2.2 million people died from waterborne diseases. Water politics is politics affected by water and water resources. There are connections between water resources, water systems, and international security and conflict. Today, water is a strategic resource in the globe and an important element in many political conflicts. Turkey can be faced severe water-stress in the near future. Therefore Turkey has to develop realistic and feasible water policy for future generations. [TAF Prev Med Bull 2011; 10(3.000: 327-338

  14. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    CERN’s drinking water is monitored on a regular basis. A certified independent laboratory takes and analyses samples to verify that the water complies with national and European regulations for safe drinking water. Nevertheless, the system that supplies our drinking water is very old and occasionally, especially after work has been carried out on the system, the water may become cloudy or discoloured, due to traces of corrosion. For this reason, we recommend: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap and heat it. Only drink or cook with cold water. Let the cold water run until it is clear before drinking or making your tea or coffee. If you have any questions about the quality of CERN’s drinking water, please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  15. CERN’s Drinking Water

    CERN Multimedia

    GS Department

    2009-01-01

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed:   Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear.   If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  16. CERN’s Drinking Water

    CERN Multimedia

    GS Department

      CERN’s drinking water is monitored, with regular samples being taken and analysed by a certified independent laboratory, which checks on compliance with national and European regulations for safe drinking water. Nevertheless, the drinking water network is very old and occasionally, especially after work has been carried out on the network, the clarity and colour of the water can be adversely affected due to high levels of corrosion in suspension. Some basic recommendations should always be followed: Never use hot water from the tap for drinking or cooking. If you need hot water, then draw water from the cold water tap before heating it. Only drink or cook with cold water. Let the cold water run until you notice that the water has become clear. If you have questions about the quality of CERN’s drinking water, then please contact: Jerome Espuche (GS/SEM), Serge Deleval (EN/CV) or Jonathan Gulley (DG/SCG).

  17. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  18. Managing Water Scarcity: Why Water Conservation Matters to Business

    Science.gov (United States)

    Spiwak, Stephen M.

    2013-01-01

    The issue of water scarcity has often hit the headlines in the past several years. Some states have gone to court over water rights and access even as others have agonized over scarce supplies. University presidents and their staff of directors understand that the days of unlimited, inexpensive water are almost over. While it remains inexpensive…

  19. Wood–water interactions

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2011-01-01

    Predicting the performance of wood for decades ahead is important when using the material for structural purposes. The performance is closely related to the hierarchical material structure of wood and the dependent interaction with water in the structure. Accurately predicting wood performance...... therefore requires an understanding of material structure from molecular to macroscopic level as well as of the impact of water molecules. The objective of this work is to investigate the performance of wood in terms of mechanical response of the material and effect of water. To understand the latter, one...... must first know in which parts of the wood structure, water is located. If parts of the water in wood are held in capillaries in the wood structure, these water molecules interact with the material differently than those held within wood cell walls. In this study, the occurrence of capillary water...

  20. Water states and types of water in materials from different argillaceous formations

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Melon, A.

    2010-01-01

    Document available in extended abstract form only. Depending of their structure and degree of compaction, clays can be hydrated by a variable amount of water molecules in the inter-lamellar space and on external surfaces. Due to the fact that the structure and nature of water molecules (properties of liquid water) is influenced by the clay surfaces; different types of waters are involved in clayey systems (internal/external water, adsorbed/free water) giving a double porosity structure. The water volume accessible to ions is a key parameter in order to determine the pore water chemistry affecting the radionuclide transport in clay-rocks. In the case of argillaceous formations, natural consolidation induces significant physical and structural changes to clays as a function of time, leading to a progressive compaction and agglomeration of particles, reduction of crystallinity and an increase of micro-strain, which affects both the tetrahedral and octahedral layers. Structure and dynamics of water are modified when water molecules are close to interfaces or confined in porous spaces. At high degrees of compaction, the diffusive transport of the solvated ions and the solvent molecules in clays is substantially retarded compared with the free electrolyte solution because of the surface complexation of ions and the strong ordering of solvent molecules at the solid-liquid interface. Besides, mud-rocks contain a variable amount of different types of clays, such as illite, kaolinite, chlorites, smectite and illite/smectite mixed layers; as well as other main and accessory minerals which influence also the amount of water adsorbed and types of waters in these systems. Structural and dynamic properties of water confined among basal planes of clays have been extensively studied by means of water adsorption isotherms, neutron scattering, molecular dynamics (MD) and Monte- Carlo simulations. However, most of the works are related to purified clays and dispersed systems. In real

  1. Water hammer simulator

    International Nuclear Information System (INIS)

    Sinha, S.K.; Madia, J.; Dixon, S.

    1995-01-01

    The Consolidated Edison Company of New York, Inc. (Con Edison) has constructed a first-of-a-kind water hammer events simulator for use at its training center. The Learning Center, Con Edison's central training facility, intends to use the simulator as an educational tool to demonstrate the various mechanisms of the water hammer phenomenon to power plant designers, engineers and operators. The water hammer phenomenon has been studied extensively for the past 15 years for the nuclear industry. However, the acknowledge of the various water hammer mechanisms and the measures to prevent or mitigate water hammer have not been widely disseminated among the operators of fossil-fueled power plants. Con Edison personnel who operate the various generation stations and the New York City steam distribution systems are expected to benefit from the new simulator. Knowledge gained from interacting with the simulator will be very important in helping the Con Edison prevent, mitigate, or accommodate water hammer at its facilities. The water hammer simulator was fabricated in Con Edison's central machine shop. Details of the design and construction of the simulator were finalized in consultation with Creare, Inc., an engineering research firm, located in Hanover, New Hampshire. The simulator seeks to recreate the essential features of water hammer in steam mines following the buildup of cold (subcooled) water by condensation and steam-water interaction. This paper describes the fabrication, design, testing, and operation of the Con Edison water hammer simulator. A discussion of how Con Edison plans to use the facility at The Learning Center is included

  2. Water conservation in agriculture -a step in combating the water crisis

    International Nuclear Information System (INIS)

    Prinz, D.; Malik, A.H.

    2005-01-01

    In Pakistan, the agricultural sector is the largest water user with 95%, leaving only marginal quantities for households and industry. On one hand, agriculture is a very important sector in Pakistan's economic development, contributing about 23 % to the national GDP -but industry contributes slightly more using only about 2 % of the available water resources. As Pakistan faces a growing problem of water shortage, significant achievements in water conservation have to be materialized, predominantly on the agricultural sector. There is scope for a higher degree of efficiency in water use, as water losses, namely in irrigation, are still rather high. There is another good reason for water conservation in agriculture: Over-irrigation results in rising water tables and increased soil salinity, which has reduced Pakistan's agricultural output during the last 2 decades by nearly 25%. Water conservation measures can be divided into (1) measures which are only applicable under rain-fed agricultural conditions, (2) measures which are relevant to save water in rain-fed agriculture as well as in irrigated agriculture and (3) measures, which are relevant in irrigated agriculture only. The first group centres around efficient rainwater management, which can be either 'in-situ moisture conservation' or 'rainwater harvesting'. The second group includes (1) improving crop selection, (2) improving crop husbandry, (3) combining cropping with animal husbandry, (4) reduction of transpiration losses, (5) reduction of evaporation losses and (6) reduction of percolation losses. Efficient irrigation can be accomplished by (1) reduction of conveying and distribution losses, (2) reduction of application losses, (3) use of efficient irrigation methods, (4) use of efficient application techniques, (5) application of supplemental and deficit irrigation and (6) improving water availability. The awareness of the problem, the knowledge of adapted and affordable techniques, the creation of suitable

  3. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  4. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  5. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  6. Book Review: Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks

    Science.gov (United States)

    Hossain, Faisal

    2013-01-01

    All nations have built their economies around water that is naturally available. Almost all sectors of the economy depend on water. Yet there is conflict among various users for the finite amount of water that is available. Managers and practitioners have long held the notion that competition rather than collaboration is the solution when there is conflict. Water Diplomacy: A Negotiated Approach to Managing Complex Water Networks, by Shafiqul Islam and Lawrence Susskind, provides a refreshingly compelling alternative to overcoming water conflicts. The book argues that the dynamic sociopolitical and socioeconomic constraints of water resources are best addressed in a "diplomacy" framework. The book rebuts, using several case studies, the technically rigid competition approach of today's water sharing practice.

  7. Water users associations and irrigation water productivity in northern China

    NARCIS (Netherlands)

    Zhang, L.; Heerink, N.; Dries, L.K.E.; Qu, F.

    2013-01-01

    Traditional irrigation water management systems in China are increasingly replaced by user-based, participatory management through water users associations (WUAs) with the purpose to promote, economically and ecologically beneficial, water savings and increase farm incomes. Existing research shows

  8. National Water Model: Providing the Nation with Actionable Water Intelligence

    Science.gov (United States)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  9. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  10. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  11. Workshop summary: Water as hazard and water as heritage

    Science.gov (United States)

    Bostenaru-Dan, Maria

    2017-04-01

    Rationale: In a changing climate, hydrological and meteorological hazards related to water provoke more and more losses. Water courses are also causing other types of hazards, as alluvionar soil deposits are raising vulnerability to earthquakes through the Mexico City effect. On the other hand, water itself is a vulnerable habitat. To deal with the later, living museums including acquaria are planned, to raise awareness to protect the ecological diversity of water and water sites. Protecting water sites can be, at times, also protection against water related hazards, as landscape architecture begun to recognise recently. Floodplains are an alternative to dams and dikes. This would be already enough to underline water as dual element, but the duality goes futher. Having to think about duality, we think of Chinese philosophy. Water (or the lack of it, as in drought) destroys life as a hazard, but gives life as well. To this symbology of giving life is connected to role of water as heritage, to building culture next to the water. Architecture of river and coastalscapes underline this. Leisure architecture is connected to this, and includes also architectural objects such as bathes. Workshop I was a two day workshop, first day presentations and second day study tours. The morning session included introduction of the topic and then in chronological order approaches from archaeology of water sites, Ottoman time, and late 19th century. The Ottoman time approach was connected to an initiative shown in the introduction, from riverbed to seashore. The 19th century presentation was on the villa Gamberaia, a villa of a Romanian princess in Italy, featured on the poster of the workshop. In the 1966 floods in Florence which have an anniversary this year it was used as a symbol to maintain the positive significance of water. Places in the villa garden also make reference to hazards, as the earthquake shaped water fountain behind. The second part of presentations featured the

  12. Central Asia's Raging Waters: The Prospects of Water Conflict in Central Asia

    National Research Council Canada - National Science Library

    Hartman, William B

    2007-01-01

    .... The thesis analyzes these three political eras of Central Asian history using indicators of water conflict, including water quality, water quantity, water management for multiple uses, political...

  13. Hubungan Kemelimpahan Chlorella sp Dengan Kualitas Lingkungan Perairan Pada Skala Semi Masal di BBBPBAP Jepara

    Directory of Open Access Journals (Sweden)

    Siska Aprilliyanti

    2016-10-01

      ABSTRACT Chlorella sp is one of the microalgae are often cultivated for various purposes such as pharmaceuticals, cosmetics, or for alternative biodiesel Chlorella sp an agent of bioremediation good, but can live in a polluted environment can also wear a heavy metal as the metal essential for metabolism. The many benefits that will be taken if it can develop Chlorella sp on a mass scale. With the emergence of Chlorella sp author conducted research using Chlorella sp as its object. The purpose of this study was to determine the relationship between the abundance of Chlorella sp with the quality of the water environment in the district of Jepara.Chlorella sp is cultivated outdoors with a light source coming from direct sunlight, aeration for mixing media using a blower that flowed through the hose and faucet aeration to mix media. Aeration used in this study with the aim of Chlorella sp cells can obtain nutrients evenly in cultivation media for their water circulation in the culture vessel (Amini, 2006. From the analysis of data obtained by the coefficient of determination (R2 = 0.995. This illustrates that there is a very strong relationship between the independent variables namely the five parameters of water quality (nitrates, phosphates, temperature, pH and salinity with the dependent variable abundance of Chlorella sp. Furthermore, multiple linear regression equation as follows: Y = -5323.54 -16.80 -60.78 nitrate phosphate + 111.09 + temperature; 997.26 -191.92 pH salinity. From the regression equation shows that the water quality parameters that have a unidirectional relationship (proportional is temperature and pH. While water quality parameters which have an inverse relationship, namely; nitrate, phosphate and salinity. Chlorella sp abundance relationships with water environmental quality semi massive scale strong, the results of the regression analysis obtained Adjusted R2 value of 0.995, meaning that the percentage contribution of variables influence

  14. Water management for development of water quality in the Ruhr River basin.

    Science.gov (United States)

    Klopp, R

    2000-01-01

    On the Ruhr, a small river running through hilly country and with a mean flow of 76 m3/s, 27 water works use the method of artificial groundwater recharge to produce 350 million m3 of drinking water annually. On the basis of a special act, the Ruhr River Association is responsible for water quality and water quantity management in the Ruhr basin. The present 94 municipal sewage treatment plants ensure that the raw water is sufficiently good to be turned into drinking water. In the Ruhr's lower reaches, where dry weather results in a 20% share of the entire water flow being treated wastewater, comparatively high concentration of substances of domestic or industrial origin are likely, including substances which municipal wastewater treatment measures cannot entirely remove. These substances include ammonium, coliform bacteria or pathogens, boron and organic trace substances. Although water treatment measures have greatly contributed to the considerable improvement of the Ruhr's water quality in the last few decades, it is desirable to continue to aim at a high standard of drinking water production technologies since the Ruhr is a surface water body influenced by anthropogenic factors. However, in the case of substances infiltrating into drinking water, legislation is required if a reduction of pollution appears to be necessary.

  15. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  16. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  17. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  18. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  19. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  20. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  1. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Cotrim, Marycel Elena Barboza

    2006-01-01

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g -1 , respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  2. Alabama Water Use, 2005

    Science.gov (United States)

    Hutson, Susan S.; Littlepage, Thomas M.; Harper, Michael J.; Tinney, James O.

    2009-01-01

    Water is one of Alabama's most precious natural resources. It is a vital component of human existence and essential to the overall quality of life. Wise stewardship of this valuable resource depends on a continuing assessment of water availability and water use. Population growth in many parts of the State has resulted in increased competition for available water resources. This competition includes offstream uses, such as residential, agricultural, and industrial, and instream uses for maintenance of species habitat and diversity, navigation, power generation, recreation, and water quality. Accurate water-use information is required for sound management decisions within this competitive framework and is necessary for a more comprehensive understanding of the link between water use, water supply, and overall water availability. A study of water use during 2005 was conducted by the U.S. Geological Survey (USGS), in cooperation with the Alabama Department of Economic and Community Affairs, Office of Water Resources, Water Management Branch (ADECA-OWR), to provide water-use data for local and State water managers. The results of the study about the amount of water used, how it was used, and where it was used in Alabama have been published in 'Estimated use of water in Alabama in 2005' by Hutson and others, 2009, and is accessible on the Web at http://pubs.usgs.gov/sir/2009/5163 and available upon request as a CD-ROM through USGS and ADECA-OWR.

  3. The use of packed water in urban drinking water and its advantages to other methods of separating drinking water from undrinkable water (The case study : Ferdows city in south Khorasan)

    OpenAIRE

    Mehdi Akhgari; Ahmad Mansuri; Saeed Mansuri; Sara Mirzaei

    2014-01-01

    Today,more than one billion people of the world don't have access to safe drinking water.  Therefore, due to the population increase andconsequently increasing water needs, and the reduction of drinking watersources available, separating drinking water and non-drinking water seemsnecessary. In this article, the use of packed water is compared to other methods,such as two networks (drinkable and non-drinkable) water supply, public waterstations, purifying drinking water, and transferring high ...

  4. Solvation in supercritical water

    International Nuclear Information System (INIS)

    Cochran, H.D.; Cummings, P.T.; Karaborni, S.

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs

  5. Water curtain

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Fedotov, I.N.; Prokopov, O.I.

    1982-01-01

    The patented water curtain is used to eliminate gas-oil gushers and is distinguished by the fact that in order to simplify operation, the water-line collector is made out of two symmetrical parts installed with the possibility of relative rotation. The collector is equipped with at least one pipe arranged in the zone of the collector and has openings for the supply of water.

  6. Integrated water resources management and infrastructure planning for water security in Southern Africa

    Science.gov (United States)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2017-08-01

    This volume has brought together papers that are peer reviewed emanating from the WaterNet/WARFSA/GWP-SA 16th Symposium. The papers cover the following themes: Hydrology, Water and Environment, Water and Land, Water and Society, Water Supply and Sanitation and Water Resources Management.

  7. Assessing Water and Carbon Footprints for Green Water Resource Management

    Science.gov (United States)

    This slide presentation will focus on the following points: (1) Water footprint and carbon footprint are two criteria evaluating the greenness in urban development, (2) Two cases are examined and presented: water footprints in energy productions and carbon footprints in water ...

  8. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  9. Options for decoupling economic growth from water use and water pollution: A report of the Water Working Group of the International Resource Panel Options for decoupling economic growth from water use and water pollution

    Science.gov (United States)

    Global trends have pointed to a relative decoupling of water – that is, the rate of water resource use is increasing at a rate slower than that of economic growth. Despite this progress at the global level, it is projected that by 2030 there will be a 40% gap between water supply and water demand if...

  10. Water for Survival, Water for Pleasure – A Biopolitical Perspective on the Social Sustainability of the Basic Water Agenda

    Directory of Open Access Journals (Sweden)

    Sofie Hellberg

    2017-02-01

    Full Text Available This article explores the social sustainability of the basic water agenda. It does so through a biopolitical analysis of water narratives from eThekwini municipality, South Africa, where a policy of Free Basic Water (FBW has been implemented. The article addresses the question of what water 'is' and 'does' and shows that water and water governance are productive of lifestyles, people’s self-understanding and how they view their place in the social hierarchy. The analysis brings to light that a differentiated management system, that provides different levels of water services to different populations and individuals, becomes part of (reproducing social hierarchies and deepens divisions between communities. Based on these findings, the article argues that while the basic water agenda has brought successful results globally and remains important in terms of guaranteeing health and survival for the most vulnerable, it should not be confused with efforts of social sustainability. Social sustainability would not only involve a situation where basic needs are met but would also have to address effects of water systems on the relationships between individuals and populations in society.

  11. Enhancing the water management schemes of H08 global hydrological model to attribute human water use to six major water sources

    Science.gov (United States)

    Hanasaki, N.; Yoshikawa, S.; Pokhrel, Y. N.; Kanae, S.

    2017-12-01

    Humans abstract water from various sources to sustain their livelihood and society. Some global hydrological models (GHMs) include explicit schemes of human water management, but the representation and performance of these schemes remain limited. We substantially enhanced the human water management schemes of the H08 GHM by incorporating the latest data and techniques. The model enables us to estimate water abstraction from six major water sources, namely, river flow regulated by global reservoirs (i.e., reservoirs regulating the flow of the world's major rivers), aqueduct water transfer, local reservoirs, seawater desalination, renewable groundwater, and nonrenewable groundwater. All the interactions were simulated in a single computer program and the water balance was always strictly closed at any place and time during the simulation period. Using this model, we first conducted a historical global hydrological simulation at a spatial resolution of 0.5 x 0.5 degree to specify the sources of water for humanity. The results indicated that, in 2000, of the 3628 km3yr-1 global freshwater requirement, 2839 km3yr-1 was taken from surface water and 789 km3yr-1 from groundwater. Streamflow, aqueduct water transfer, local reservoirs, and seawater desalination accounted for 1786, 199, 106, and 1.8 km3yr-1 of the surface water, respectively. The remaining 747 km3yr-1 freshwater requirement was unmet, or surface water was not available when and where it was needed in our simulation. Renewable and nonrenewable groundwater accounted for 607 and 182 km3yr-1 of the groundwater total, respectively. Second, we evaluated the water stress using our simulations and contrasted it with earlier global assessments based on empirical water scarcity indicators, namely, the Withdrawal to Availability ratio and the Falkenmark index (annual renewable water resources per capita). We found that inclusion of water infrastructures in our model diminished water stress in some parts of the world, on

  12. Social Norms in Water Services: Exploring the Fair Price of Water

    Directory of Open Access Journals (Sweden)

    Ossi Heino

    2015-02-01

    Full Text Available The aim of this article is to analyse price fairness in water services. Although a considerable amount of literature has been published on water pricing, these studies have mainly approached the question from instrumental and rational perspectives. Little attention has been paid to the human side of water pricing. Therefore, the general objective of this research is to shed light on these softer factors, filling the gap in knowledge of the emotional connections with water services. In this research, we explored peopleʼs ideas and views about water pricing by conducting 74 interviews in 11 municipalities in Finland. The results suggest that people are not just rational consumers of a good but also have emotional ties to water utilities and municipal decision-making. The general attitude towards a water utility is confident and sympathetic if its operations and municipal decision-making processes are considered as fair, and conversely, unsympathetic if operations and decision-making are considered unfair. This is a topical issue as many water utilities are facing pressures to increase water prices; being fair appeared to be a crucial way to gain appreciation and support through difficult times. Because fairness seems to be an emergent property of social experiences, special attention should be paid to the 'soft side' of water services.

  13. Investigations into the water flow and water conduction in spruce trees

    International Nuclear Information System (INIS)

    Strack, S.; Unger, H.

    1988-02-01

    The water-flow systems in the xylem of healthy and ailing spruce trees, based on the distribution patterns of tritiated water (HTO), were compared. In case of the ailing tree a severely altered water-flow system was observed. Whereas in the healthy tree the injected HTO spread in the apex in a distinctly differentiated manner following the spiral pattern of the ligneous fibers, no comparable spreading pattern was detected in the ailing tree. Also the labeled water molecules distributed twice as fast in the ailing as in the healthy tree. We conclude that the water conducting cross section of the diseased tree is reduced. Indeed, heartwood formation was about 60% in the ailing as compared to 5-20% in healthy trees. The methods of determining water content in the annual rings are described. The tissue water of needles from the healthy tree showed a distinct gradation of tritium concentrations according to age. This finding suggests that there is an age specific stomatal regulation in the healthy but not in the diseased needles. Water potential measurements at various times during the vegetation period provided evidence of a tighter water budget in diseased trees; however, a chronically enhanced water stress was not evident. The role of pathological heartwood formation during the disease is discussed. (orig.) With 27 figs., 38 refs [de

  14. Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies

    NARCIS (Netherlands)

    Yan, Dan; Yao, Mingtian; Ludwig, Fulco; Kabat, Pavel; Huang, He Qing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2018-01-01

    Climate change and socio-economic development increase variations in water availability and water use in the Pearl River Basin (PRB), China. This can potentially result in conflicts over water resources between water users, and cause water shortage in the dry season. To assess and manage water

  15. State of Art About water Uses and Waste water Management in Lebanon

    International Nuclear Information System (INIS)

    Geara, D.; Moilleron, R.; Lorgeoux, C.; El Samarani, A.; Chebbo, Gh.

    2010-01-01

    This paper shows the real situation about management of water and waste water in Lebanon and focuses on problems related to urban water pollution released in environment. Water and waste water infrastructures have been rebuilt since 1992. However, waste water management still remains one of the greatest challenges facing Lebanese people, since water supply projects have been given priority over wastewater projects. As a consequence of an increased demand of water by agricultural, industrial and household sectors in the last decade, waste water flows have been increased. In this paper, the existing waste water treatment plants (WWTP) operating in Lebanon are presented. Most of them are small-scale community-based ones, only two large-scale plants, constructed by the government, are currently operational. Lebanese aquatic ecosystems are suffering from the deterioration of water quality because of an insufficient treatment of waste water, which is limited mostly to pre-treatment processes. In fact, domestic and industrial effluents are mainly conducted together in the sewer pipes to the WWTP before being discharged, without adequate treatment into the rivers or directly into the Mediterranean Sea. Such discharges are threatening the coastal marine ecosystem in the Mediterranean basin. This paper aims at giving the current state of knowledge about water uses and wastewater management in Lebanon. The main conclusion drawn from this state of art is a lack of data. In fact, the available data are limited to academic research without being representative on a national scale. (author)

  16. Radiating water

    International Nuclear Information System (INIS)

    Bakker, J.; Harle, N.; Heijkers, H.; Schoene, S.

    1987-04-01

    From a nuclear power plant in operation radioactivity is continuously effusing into the environment, through the chimney, cooling waters and the loss of solid waste. In this account attention is concentrated on tritium which enters, in the form of gas and tritiated water from nuclear power plants under 'normal' operation, the aquatic environment and which, because it can not be purified from the water and because its effluences in surface waters are larger than those of other radioactive waste products, forms the largest threat for the drinking-water supply. In ch. 1 the health risks of tritium are outlined. In particular the genetic risks are insufficiently known until now. In ch. 2 the amount of tritium effluences are estimated, which appears to be many times higher than was generally accepted until now. What does this imply for the Dutch surface waters? In ch. 3 the question of the source term is discussed and in ch. 4 the source term is translated into the effects upon the aquatic environment and especially upon the drinking-water supply. In ch. 5 advisements for policies are formulated. The policy of the Dutch government until now is viewed and nuclear power is judged on the base of three starting points of radiation policy. Therein the demands are included which are inevitable in order to protect the Dutch aquatic environment from a too large radioactivity burden. 91 refs.; 5 figs.; 1 table

  17. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    NARCIS (Netherlands)

    van Oel, P.R.

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These

  18. Implications of bulk water transfer on local water management institutions: A case study of the Melamchi Water Supply Project in Nepal

    OpenAIRE

    Pant, Dhruba; Bhattarai, Madhusudan; Basnet, Govinda

    2008-01-01

    "To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implic...

  19. Water Under Fire: A Seven Part Video Series on Canada's Water

    Science.gov (United States)

    Mrazek, R.; Byrne, J.; Rabe, N.; Gallant, G.

    2003-12-01

    Canada's water is under escalating pressure from a host of threats. Increasingly, our water is being tainted, misused and over allocated. Experts have identified a multitude of threats to water quantity and quality. Among them, climate change impacts on water supply, and the effects of pesticides, pathogens, industrial waste, urban runoff, and rising demands. These and other threats are the roots to a serious shortage of high quality, safe water sources. In the 1990s, waterborne diseases have re-emerged as one of the primary health issues on a national and global scale. This seven-part video series brings science voices together and provides a nationwide context. The first six programs in the series explore regional concerns: Rocky Mountains, Prairie Waters, Northern Waters, Great Lakes Basin, St. Lawrence and Atlantic Canada. The final program covers the national and international perspectives.

  20. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    Science.gov (United States)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    The estimation of the World's water resources has a long tradition and numerous methods for quantification exists. The resulting numbers vary significantly, leaving room for improvement. Since some decades, global hydrological models (GHMs) are being used for large scale water budget assessments. GHMs are designed to represent the macro-scale hydrological processes and many of those models include human water management, e.g. irrigation or reservoir operation, making them currently the first choice for global scale assessments of the terrestrial water balance within the Anthropocene. The Water - Global Assessment and Prognosis (WaterGAP) is a model framework that comprises both the natural and human water dimension and is in development and application since the 1990s. In recent years, efforts were made to assess the sensitivity of water balance components to alternative climate forcing input data and, e.g., how this sensitivity is affected by WaterGAP's calibration scheme. This presentation shows the current best estimate of terrestrial water balance components as simulated with WaterGAP by 1) assessing global and continental water balance components for the climate period 1971-2000 and the IPCC reference period 1986-2005 for the most current WaterGAP version using a homogenized climate forcing data, 2) investigating variations of water balance components for a number of state-of-the-art climate forcing data and 3) discussing the benefit of the calibration approach for a better observation-data constrained global water budget. For the most current WaterGAP version 2.2b and a homogenized combination of the two WATCH Forcing Datasets, global scale (excluding Antarctica and Greenland) river discharge into oceans and inland sinks (Q) is assessed to be 40 000 km3 yr-1 for 1971-2000 and 39 200 km3 yr-1 for 1986-2005. Actual evapotranspiration (AET) is close to each other with around 70 600 (70 700) km3 yr-1 as well as water consumption with 1000 (1100) km3 yr-1. The

  1. Valuing water gains in the Eastern Cape's Working for Water ...

    African Journals Online (AJOL)

    drinie

    2002-01-01

    Jan 1, 2002 ... reason it is crucial that the pricing of this water be an accurate reflection of its relative ..... conservation projects, but it is not the best way of pricing water ... Establishment of a Pricing Strategy for Water Use Charges in Terms.

  2. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  3. Water Management Strategies against Water Shortage in the Alps (Invited)

    Science.gov (United States)

    de Jong, C.

    2009-12-01

    In the European Alps water has been perceived as ubiquitous and not the subject of management. Climate change and anthropogenic pressures have changed demand and supply relations rapidly and over the last 10 years, water problems have increasingly become apparent over temporal and spatial hotspots. Stakeholders in the Alpine Space have been confronted with water management problems in agriculture, tourism and hydropower to such an extent that they approached scientists to create solution strategies based on adaptation and mitigation. In this context, Alp-Water-Scarce, a European project on Water Management Strategies against Water Scarcity in the Alps was funded by the Alpine Space programme as part of the "European Territorial Cooperation" scheme. It has 17 project partners from Austria Switzerland, France, Italy and Slovenia from local governments, provinces, federal institutes and offices, universities, regional agencies, alpine societies, geological surveys, and chambers of agriculture and forestry. The Lead Partner is the Mountain Institute in Savoy, Rhone-Alpes, France. The main challenges of this project are to create local Early Warning Systems against Water Scarcity in the Alps. This system is based on strengthening existing long-term monitoring and modeling and creating new measuring networks in those countries where they do not yet exist. It is anchored strongly and actively within a Stakeholder Interaction Forum linked across comparative and contrasting regions across the Alps. The Early Warning System is based on the linkage and improvement of field monitoring and assemblage of qualitative and quantitative data derived both from natural water reservoirs as well as from anthropogenic water use in 28 selected pilot regions selected in France, Italy, Austria, Slovenia and Switzerland. The objectives are to improve water management at the short term (annual scale) and long term (using future scenarios) based on modelling and application of climate change

  4. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    Science.gov (United States)

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss.

  5. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  6. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  7. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  8. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  9. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  10. Water Loss Reduction as the Basis of Good Water Supply Companies’ Management

    Directory of Open Access Journals (Sweden)

    Ociepa-Kubicka Agnieszka

    2017-01-01

    Full Text Available Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK. The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI, as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  11. Water Loss Reduction as the Basis of Good Water Supply Companies' Management

    Science.gov (United States)

    Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof

    2017-10-01

    Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.

  12. Body composition and water metabolism in tropical ruminants using tritiated water

    International Nuclear Information System (INIS)

    Ranjhan, S.K.; Kalanidhi, A.P.; Gosh, T.K.; Singh, U.B.; Saxena, K.K.

    1982-01-01

    Experiment 1. Studies were conducted on Muzaffarnagri, Muzaffarnagri x Dorset and Muzaffarnagri x Suffolk breeds of sheep to determine the water turnover rates and body composition. The native Muzaffarnagri and crossbred animals did not differ significantly in body composition. The water turnover rates were not significantly different between breeds within the same season, but a significant difference was observed between the two seasons (winter and summer). Experiment 2. Nine animals, three each of crossbred cattle (Hariana x Holstein), buffalo and crossbred sheep (Muzaffarnagri x Suffolk), were used to determine the body composition by the indirect method in the two seasons. There was a reduction in the TOH space and total body water during the summer season in cattle and buffalo as compared with the winter season. Experiment 3. Four adult Barbari goats were used to study body composition by direct (slaughter) and indirect (isotope dilution) techniques. There was a significant correlation between corrected TOH space and total body water, fat and protein. Experiment 4. Twelve animals, three each of buffalo, crossbred cattle (Hariana x Holstein), crossbred sheep (Muzaffarnagri x Suffolk) and Barbari goats, were used to determine the water requirements during the two seasons (winter and summer) by the tritiated water (TOH) dilution technique. There were significant differences (P < 0.01) in the water requirement and water turnover between seasons and between species within a season. The lowest water turnover and water requirement were found in goats, followed by sheep, crossbred cattle and buffalo when expressed as ml/kgsup(0.82).d. The metabolic water production was 10% of the total water input in the case of buffalo and crossbred cattle, but it was more in sheep and goats in both seasons

  13. Sustainable Water Infrastructure

    Science.gov (United States)

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  14. An optical method to assess water clarity in coastal waters.

    Science.gov (United States)

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2015-12-01

    Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.

  15. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  16. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  17. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  18. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  20. Water and wars

    Science.gov (United States)

    Gleick, Peter H.

    In “Challenging the Rhetoric of Water Wars” (Eos, In Brief, September 5, 2000, p. 410) Randy Showstack reported on the speech given by Minister Kader Asmal upon receiving the 2000 Stockholm Water Prize. This prize was well deserved for the tremendous progress South Africa has made under Minister Asmal's leadership in addressing basic water needs after apartheid. Indeed, I was one of his nominators for this prize and am an ardent fan of his bold programs. But his remarks about water-related conflicts need to be qualified. In his speech, Minister Asmal noted that water scarcity is a “crisis of biblical proportion,” but also suggested “there is not a shred of evidence” to back up arguments that there are water “wars.”