WorldWideScience

Sample records for water environment downstream

  1. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  2. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  3. DOWNSTREAM ECOCIDE FROM UPSTREAM WATER PIRACY

    OpenAIRE

    Miah Muhammad Adel

    2012-01-01

    Upstream India and downstream Bangladesh share more than 50 international rivers. India has set up water diversion constructions in more than 50% of these rivers, the largest one being on the Bangladeshâs northwest upon the Ganges River, puts Bangladeshâs Gangetic ecosystem at stake. In some border rivers, India has set up groins on her side of river banks. Also, Indian side pumps Bangladesh river water stealthily from border-rivers. Further, India is constructing another dam and reservoir up...

  4. Concentration of radionuclides in fresh water fish downstream of Rancho Seco Nuclear Generating Plant

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Dawson, J.M.; Brunk, J.L.; Wong, X.M.

    1984-01-01

    Fish were collected for radionuclide analysis over a 5-month period in 1984 from creeks downstream of the Rancho Seco Nuclear Generating Plant, which has been discharging quantities of some fission and activation products to the waterway since 1981. Among the fish, the bluegill was selected for intensive study because it is very territorial and the radionuclide concentrations detected should be representative of the levels in the local environment at the downstream locations sampled. Among the gamma-emitting radionuclides routinely released, only 134 Cs and 137 Cs were detected in the edible flesh of fish. Concentrations in the flesh of fish decreased with distance from the plant. The relationship between concentration and distance was determined to be exponential. Exponential equations were generated to estimate concentrations in fish at downstream locations where no site-specific information was available. Mean concentrations of 137 Cs in bluegill collected during April, May, July and August from specific downstream stations were not significantly different in spite of the release of 131 mCi to the creeks between April and August. The concentrations in fish are not responding to changes in water concentrations brought about by plant discharges. Diet appears to be a more significant factor than size or weight or water concentration in regulating body burdens of 137 Cs in these fish

  5. Physicochemical Characteristics of River Water Downstream of a Large Tropical Hydroelectric Dam

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2016-01-01

    Full Text Available Water quality in the downstream river of a hydroelectric dam may be affected by the structural design and operation. To date, little is known about the water quality downstream of the largest dam in Malaysia, the Bakun hydroelectric dam. Therefore, the objective of the study was to determine the water quality downstream of the dam when the spillway was closed and when it was opened. Results of the study indicate that the dam plays a significant role in regulating the water quality downstream of it. When the spillway was closed, pH and oxygen were lower in the river where DO was below 5 mg/L. When the spillway was opened, the water quality improved in terms of oxygen content (>8.0 mg/L, total sulphide (TS, and chemical oxygen demand (COD but deteriorated in terms of five-day biochemical oxygen demand (BOD5, total ammonia nitrogen (TAN, and total phosphorus (TP. Additionally, the intensity of the impacts, particularly BOD5, COD, and TAN, shows a declining trend as distance from the dam increases. This study shows that impacts on the water quality extend to a distance of 32 km from the dam particularly turbidity and DO and opening the spillway changes the water quality significantly.

  6. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  7. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  8. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  9. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    Science.gov (United States)

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  10. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  11. Operating multireservoir hydropower systems for downstream water quality

    International Nuclear Information System (INIS)

    Hayes, D.F.

    1990-01-01

    Hydropower reservoir operations often impact tailwater quality and water quality in the stream or river below the impoundment for many miles. Determining optimal operating strategies for a system of hydropower reservoirs involves solving a highly dimensional nonlinear, nonconvex optimization problem. This research adds the additional complexities of downstream water quality considerations within the optimization formulation to determine operating strategies for a system of hydropower reservoirs operating in series (tandem) or parallel. The formulation was used to determine operating strategies for six reservoirs of the upper Cumberland river basin in Tennessee and Kentucky. Significant dissolved oxygen (DO) violations occur just upstream of Nashville, Tennessee below Old Hickory dam during the months of August and September. Daily reservoir releases were determined for the period of June through September which would produce the maximum hydropower revenue while meeting downstream water quality objectives. Optimal releases for three operational strategies were compared to historical operations for the years 1985, 1986, and 1988. These strategies included: spilling as necessary to meet water quality criteria, near normal operation (minimal spills), and drawdown of reservoirs as necessary to meet criteria without spills. Optimization results showed an 8% to 15% hydropower loss may be necessary to meet water quality criteria through spills and a 2% to 9% improvement in DO below Old Hickory may be possible without significant spills. Results also showed that substantial increases in initial headwater elevations would be necessary to meet daily DO criteria and avoid spills. The optimal control theory algorithm used to solve the problem proved to be an efficient and robust solver of this large optimization problem

  12. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  13. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2017-01-01

    Full Text Available This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.

  14. Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

    Science.gov (United States)

    Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluv...

  15. Tracing the source of emerging seepage water at failure slope downstream, Kampung Bharu Bukit Tinggi, Bentong, Pahang

    International Nuclear Information System (INIS)

    Lakam Mejus; Wan Zakaria Wan Mohd Tahir; Md Shahid Ayub; Jeremy Andy; Johari Latif

    2006-01-01

    This paper discusses method and monitoring result of the source of seepage water emerging (mud flow) at downstream toe of the failure slope at Kampung Bharu Bukit Tinggi, Bentong Pahang. In this investigation, a saline-tracer experiment was conducted by injecting its solution into a drain at an upstream section (old road to Janda Baik town) where a pipeline was found leaking in the vicinity of the roadside and flowing towards hill slopes. Some parts of flowing water was left undetected and seeped through the soil on its way to downstream area. Seepage water downstream was monitored by using a conductivity sensor hooked up to a CR10X data logger and optical back scattering conductivity probes. From the result, it is believed that the source of seepage water is related to the water from the leaking pipeline upstream. The travelling time for the leaking water to reach downstream slope failure was within 16-17 hours. Based on this preliminary investigation, one can conclude that seepage water is one of the main contributing factors that cause slope failure in the vicinity of the investigated hill slopes. Further investigation to understand the failure mechanism at this place by conducting multi-experimental approaches in different seasons, particularly during continuous rain storms. (Author)

  16. Cs-137 and Co-60 concentrations in water from the Savannah River and water-treatment plants downstream of SRP

    International Nuclear Information System (INIS)

    1983-01-01

    In preparation for restart of L-Reactor, a comprehensive environmental sampling and analysis program was initiated in March 1983 to determine Cs-137 concentrations in off-site water downstream from Savannah River Plant (SRP). Concentrations of Co-60 also are determined in this sampling and analysis program. This report summarizes the first three months of results. Cesium-137 concentrations are reported for finished water from the Beaufort-Jasper, Port Wentworth and North Augusta water treatment plants for weekly continuous samples during April through June 1983. The very low concentrations of cesium-137 in finished water from downstream water treatment plants showed significant changes during this time. The changes in concentration occurred smoothly and correlate with changes in river flow. No changes in concentration during April through June can be attributed to L-Reactor's only cold water test which occurred June 8 and 9. No Co-60 was observed in any samples

  17. Featured collection introduction: Connectivity of streams and wetlands to downstream waters

    Science.gov (United States)

    Alexander, Laurie C.; Fritz, Ken M.; Schofield, Kate; Autrey, Bradley; DeMeester, Julie; Golden, Heather E.; Goodrich, David C.; Kepner, William G.; Kiperwas, Hadas R.; Lane, Charles R.; LeDuc, Stephen D.; Leibowitz, Scott; McManus, Michael G.; Pollard, Amina I.; Ridley, Caroline E.; Vanderhoof, Melanie; Wigington, Parker J.

    2018-01-01

    Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.

  18. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    Science.gov (United States)

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  19. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    Science.gov (United States)

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-07-15

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impact on Water Quality of Nandoni Water Reservoir Downstream of Municipal Sewage Plants in Vhembe District, South Africa

    Directory of Open Access Journals (Sweden)

    Jabulani Ray Gumbo

    2016-06-01

    Full Text Available The deterioration of water quality in our freshwater sources is on the increase worldwide and, in South Africa, mostly due to the discharge of municipal sewage effluent. Here we report on the use of principal component analysis, coupled with factor and cluster analysis, to study the similarities and differences between upstream and downstream sampling sites that are downstream of municipal sewage plants. The contribution of climatic variables, air temperature, humidity, and rainfall were also evaluated with respect to variations in water quality at the sampling sites. The physicochemical and microbial values were higher than the Department of Water Affairs and Forestry (DWAF and World Health Organization (WHO guidelines. The cluster analysis showed the presence of two clusters for each of the Mvudi, Dzindi, and Luvuvhu Rivers and Nandoni reservoir sampling sites. The principal component analysis (PCA accounted for 40% of the water quality variation and was associated strongly with pH, electrical conductivity, calcium, magnesium, chloride, bromide, nitrate, and total coliform, and negatively with rainfall, which represented Mvudi downstream and was attributed to the Thohoyandou sewage plant. The PCA accounted for 54% of the variation and was associated strongly with electrical conductivity, sulfate; total dissolved solids, fluoride, turbidity, nitrate, manganese, alkalinity, magnesium, and total coliform represented Dzindi downstream, with inflows from the Vuwani sewage plant and agriculture. The PCA accounted for 30% of the variation and was associated strongly with total dissolved solids, electrical conductivity, magnesium, fluoride, nitrate, sulfate, total coliform average air temperature, and total rainfall, and negatively associated with manganese and bromide represented Luvuvhu upstream and was associated with commercial agriculture. The PCA accounted for 21% of the variation and was associated strongly with turbidity, alkalinity, magnesium

  1. Preliminary screening analysis of the off-site environment downstream of the US Department of Energy Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1990-01-01

    Operations and waste disposal activities at the Y-12 Plant, the Oak Ridge National Laboratory (ORNL), and the Oak Ridge Gaseous Diffusion Plant (ORGDP), located on the US Department of Energy (DOE) Oak Ridge Reservation (ORR) in eastern Tennessee, have introduced airborne, liquid, and solid wastes into the surrounding environment. Some of these wastes may affect off-site areas by entering local streams that ultimately drain into the Clinch River. Previously reported concentrations of radionuclides, metals, and organic compounds in water, sediment, and biota of the Clinch River and Watts Bar Reservoir suggest the presence of contaminants of possible concern to the protection of human health and the environment. A preliminary screening was conducted of contaminants in the off-site surface water environments downstream of the DOE ORR. This screening analysis represents part of a scoping phase of the Clinch River Resource Conservation and Recovery Facilities Investigation (CRRFI). The purpose of this preliminary screening analysis is to use existing data on off-site contaminant concentrations to identify and prioritize potential contaminants of concern for further evaluation and investigation. The primary objective of this screening analysis is to ensure that CRRFI sampling and analysis efforts focus on those contaminants that may possibly contribute to human health or environmental risk. 8 refs., 3 figs., 6 tabs

  2. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    Science.gov (United States)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  3. Water Scarcity Hotspots Travel Downstream Due to Human Interventions in the 20th and 21st Century

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Doell, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; hide

    2017-01-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971 - 2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8%(7.4 - 16.5 %) ) of the global population but alleviating it for another 8.3 % (6.4 -15.8 %). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  4. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Döll, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P. J.

    2017-06-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  5. 77 FR 74985 - Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for...

    Science.gov (United States)

    2012-12-18

    ... Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for Lakes... its numeric water quality standards for nutrients in Florida that were promulgated and published on.... Water Quality Criteria D. EPA Determination Regarding Florida and EPA's Rulemaking E. EPA Promulgation...

  6. Incidental potable water reuse in a Catalonian basin: living downstream

    Directory of Open Access Journals (Sweden)

    R. Mujeriego

    2017-09-01

    Full Text Available A preliminary assessment of incidental potable water reuse (IPR in the Llobregat River basin has been conducted by estimating the dilution factor of treated effluent discharges upstream of six river flow measurement sections. IPR in the Llobregat River basin is an everyday occurrence, because of the systematic discharge of treated effluents upstream of river sections used as drinking water sources. Average river flows at the Sant Joan Despí measurement section increased from 400,000 m3/d (2007 to 864,000 m3/d (2008 and to 931,000 m3/d (2013, while treated effluent discharges upstream of that section ranged from 109,000 m3/d to 114,000 m3/d in those years. The highest degree of IPR occurs downstream of the Abrera and Sant Joan Despí flow measurement sections, from where about half of the drinking water supplied to the Barcelona Metropolitan Area is abstracted. Based on average annual flows, the likelihood that drinking water produced from that river stretch contained treated effluent varied from 25% (2007 to 13% (2008 and to 12% (2013. Water agencies and drinking water production utilities have strived for decades to ensure that drinking water production satisfies applicable quality requirements and provides the required public health protection.

  7. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    Science.gov (United States)

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  8. Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply

    Science.gov (United States)

    Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.

    2017-09-01

    Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.

  9. Hydrological Effects of Chashm Dam on the Downstream of Talar River Watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khaleghi

    2017-02-01

    Full Text Available Introduction: In the last century, dams have constructed with the objective of water supplies for agriculture, drinking water and industry. However, the results from the performance review of dams show adverse effects on the downstream environment and the availability of water resources. The purpose of the Chashm dam construction on the TalarRiver's tributaries is the water supply for Semnan city. Materials and Methods: This study was conducted in TalarRiver watershed. TalarRiveroriginatesfrom AlborzMountains in Mazandaran province, in the southern Caspian Sea basin, in north of Iran and flows parallel with the Firouzkooh-Ghaemshahr road and it arrives to the Caspian beach area in the Malek Kala village. In order to supply the water requirements of Semnan city, the construction of Chashm dam on the TalarRiver's tributaries placed on the agenda of the Ministry of Energy. However, because of the uncontrolled exploitation of agricultural streams and invasion of privacy riverbed, the TalarRiver has acute and critical conditions from the point of hydrologic and environmental. To study the hydrological impacts of Chashm dam, Talar watershed was considered with an area of approximately 1057 square kilometers of the Pole Sefid gauging station using a rainfall-runoff model. Results and Discussion: Simulation of the study area hydrological behavior shows that the Chashm Dam average water discharge is near to 8.6 million m3. This figure will be significant changes during wet and droughtperiods. The minimum and maximum monthly discharge of the Chashm Dam watershed in August and February is equal to 0.31 and 0.55 m3/s respectively. The minimum and maximum monthly water demand in turn in October and August is equal to 0.015 and 0.4 m3/s respectively and this shows that the river discharge in June is lower than the downstream water demand. Based on confirmed studies of the Kamandab Consulting Engineers, drinking water requirement of Semnan province, water

  10. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    Science.gov (United States)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  11. Impact of curved shaped energy dissipaters downstream of head structures on both water energy dissipation and irrigation water quality

    Directory of Open Access Journals (Sweden)

    Ashour Mohamed A.

    2015-03-01

    Full Text Available Using energy dissipaters on the soled aprons downstream of head structures is the main technique for accelerating hydraulic jump formation and dissipating a great amount of the residual harmful kinetic energy occurring downstream of head structures. In this paper, an experimental study was conducted to investigate some untested shapes of curved dissipaters with different angles of curvature and arrangements from two points of view. The first is to examine its efficiency in dissipating the kinetic water energy. The second is to examine the most effective shape and arrangement obtained from the aforementioned step in enriching the flow with dissolved oxygen for enhancement of the irrigation water quality. The study was held in the irrigation and hydraulic laboratory of the Civil Department, Faculty of Engineering, Assiut University, using a movable bed tilting channel 20 m long, 30 cm wide, and 50 cm high, using 21 types of curved dissipaters with different arrangements. A total of 660 runs were carried out. Results were analysed, tabulated and graphically presented, and new formulas were introduced to estimate the energy dissipation ratio, as well as the DO concentrations. Results in general showed that the dissipater performance is more tangible in dissipating the residual energy when the curvature is in the opposite direction to that of the flow. Also, the energy loss ratio increases with an increase in curvature angle (θ, until it reaches (θ = 120°, then it decreases again. The study also showed that using three rows of dissipaters give nearly the same effect as using four rows, concerning both the relative energy dissipation and dissolved oxygen content. So, it is recommended to use three rows of the curved dissipater with the angle of curvature (θ = 120° in the opposite direction to that of the flow to obtain the maximum percentage of water energy dissipation downstream of head structures, and maximum dissolved oxygen content too

  12. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  13. Upstream-downstream cooperation approach in Guanting Reservoir watershed.

    Science.gov (United States)

    Yang, Zhi-Feng; Zhang, Wen-Guo

    2005-01-01

    A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

  14. Using Lagrangian sampling to study water quality during downstream transport in the San Luis Drain, California, USA

    Science.gov (United States)

    Volkmar, E.C.; Dahlgren, R.A.; Stringfellow, W.T.; Henson, S.S.; Borglin, S.E.; Kendall, C.; Van Nieuwenhuyse, E. E.

    2011-01-01

    To investigate the mechanism for diel (24h) changes commonly observed at fixed sampling locations and how these diel changes relate to downstream transport in hypereutrophic surface waters, we studied a parcel of agricultural drainage water as it traveled for 84h in a concrete-lined channel having no additional water inputs or outputs. Algal fluorescence, dissolved oxygen, temperature, pH, conductivity, and turbidity were measured every 30min. Grab samples were collected every 2h for water quality analyses, including nutrients, suspended sediment, and chlorophyll/pheophytin. Strong diel patterns were observed for dissolved oxygen, pH, and temperature within the parcel of water. In contrast, algal pigments and nitrate did not exhibit diel patterns within the parcel of water, but did exhibit strong diel patterns for samples collected at a fixed sampling location. The diel patterns observed at fixed sampling locations for these constituents can be attributed to algal growth during the day and downstream transport (washout) of algae at night. Algal pigments showed a rapid daytime increase during the first 48h followed by a general decrease for the remainder of the study, possibly due to sedimentation and photobleaching. Algal growth (primarily diatoms) was apparent each day during the study, as measured by increasing dissolved oxygen concentrations, despite low phosphate concentrations (<0.01mgL-1). ?? 2011 Elsevier B.V.

  15. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: Supporting policy making in the Green Water Credits program of Kenya

    NARCIS (Netherlands)

    Hunink, J.E.; Droogers, P.; Kauffman, J.H.; Mwaniki, B.M.; Bouma, J.

    2012-01-01

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to

  16. The downstream externalities of harvesting rainwater in semi-arid watersheds: an Indian case study

    NARCIS (Netherlands)

    Bouma, J.A.; Biggs, T.W.; Bouwer, L.M.

    2011-01-01

    Water-related investment projects affect downstream water availability, and therefore should account for these externalities. Few projects do, however, owing to lack of awareness, lack of data and difficulty in linking upstream investments to downstream effects. This article assesses the downstream

  17. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the downstream standards for GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downstream location other than at a retail outlet or wholesale purchaser-consumer facility, and during the...

  18. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    Science.gov (United States)

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Salinization may attack you from behind: upconing and related long-term downstream salinization in the Amsterdam Water Supply Dunes (Invited)

    Science.gov (United States)

    Olsthoorn, T.

    2010-12-01

    Groundwater from the Amsterdam Water Supply Dunes (GE: 52.35°N 4.55°E) has been used for the drinking water supply of Amsterdam since 1853. During the first half of the 20th century, severe intrusion and upconing occurred, with many of the wells turning brackish or saline. Already in 1903, the hydrologist/director of the Amsterdam Water Supply, Pennink, predicted this, based on his unique sand-box modeling, which he published in 1915 in the form of a large-size hard-bound book in four languages showing detailed black and white photographs of his tests. This book is now on the web: http://www.citg.tudelft.nl/live/pagina.jsp?id=68e12562-a4d2-489a-b82e-deca5dd32c42&lang=en Pennink devoted much of his work on saltwater upconing below wells, which he so feared. He simulated simultaneous flow of fresh and salt water, using milk to represent the saltwater having about the same density. With our current modeling tools, we can simulate his experiments, allowing to better understand his setup and even to verify our code. Pennink took interest in the way these cones form and in the point at which the salt water enters the screen. Surprizing, at least to many, is that this entry point is not necessarily the screen bottom. Measurements of the salinity distribution in salinized wells in the Amsterdam Water Supply Dune area confirmed this thirty years later when salinzation was severely occurring. The curved cone shape under ambient flow conditions provides part of the explanation why a short-term shut down of a well almost immediately diminishes salt concentrations, but salinization downstream of the wells in case with substantial lateral groundwater flow is not affected. Downstream salinization due to extraction was clearly shown in Pennink's experiments. However, the phenomenon seems still largely unknown or ignored. Downstream salinization also affects downstream heads for years after extraction has stopped. The presentation demonstrates and explains these local and more

  20. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  1. Willingness of upstream and downstream resource managers to engage in compensation schemes for environmental services

    Directory of Open Access Journals (Sweden)

    Chapika Sangkapitux

    2009-04-01

    Full Text Available Providing compensation for agricultural conservation practices adopted by upstream farmers is still an alien concept in the Thai political context. The governance of common-pool natural resources, such as forest and water, has traditionally been under the control of powerful government line agencies, while the contribution of local communities to natural resource conservation have been hardly recognized by policy-makers. Drawing on a case study in Mae Sa watershed, Chiang Mai province, northern Thailand, this paper discusses the potential of developing compensation schemes in a socio-political context where upland farmers – mostly belonging to ethnic minority groups – tend to be considered a threat to the natural resource base rather than providers of environmental services. Based on data obtained from 371 households in the upstream communities and 151 households in the downstream communities of the watershed, upstream resource managers’ willingness to accept compensation for the conservation measures and downstream resource managers’ willingness to pay for water resource improvements were estimated through the use of choice experiments. Results from the study suggest that downstream resource managers would be willing to provide on average nearly 1% of their annual income for a substantial improvement of the quantity and quality of water resources, which could be achieved by compensating upstream farmers’ change of their agricultural systems towards more environment-friendly practices. Both willingness to pay of downstream respondents and willingness of upstream resource managers to accept compensation were positively correlated with age, education, participation in environmental conservation activities and previous experiences with droughts and/or erosion. The paper concludes that there is a clear potential for establishing compensation schemes for provision of environmental services in northern Thai watersheds. The important policy

  2. Integrated landscape-based approach of remote sensing, GIS, and physical modelling to study the hydrological connectivity of wetlands to the downstream water: progress and challenge

    Science.gov (United States)

    Yeo, I. Y.

    2015-12-01

    We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).

  3. Downstream Yangtze River levels impacted by Three Gorges Dam

    International Nuclear Information System (INIS)

    Wang, Jida; Sheng, Yongwei; Gleason, Colin J; Wada, Yoshihide

    2013-01-01

    Changes in the Yangtze River level induced by large-scale human water regulation have profound implications on the inundation dynamics of surrounding lakes/wetlands and the integrity of related ecosystems. Using in situ measurements and hydrological simulation, this study reveals an altered Yangtze level regime downstream from the Three Gorges Dam (TGD) to the Yangtze estuary in the East China Sea as a combined result of (i) TGD’s flow regulation and (ii) Yangtze channel erosion due to reduced sediment load. During the average annual cycle of TGD’s regular flow control in 2009–2012, downstream Yangtze level variations were estimated to have been reduced by 3.9–13.5% at 15 studied gauging stations, manifested as evident level decrease in fall and increase in winter and spring. The impacts on Yangtze levels generally diminished in a longitudinal direction from the TGD to the estuary, with a total time lag of ∼9–12 days. Chronic Yangtze channel erosion since the TGD closure has lowered water levels in relation to flows at most downstream stations, which in turn counteracts the anticipated level increase by nearly or over 50% in winter and spring while reinforcing the anticipated level decrease by over 20% in fall. Continuous downstream channel erosion in the near future may further counteract the benefit of increased Yangtze levels during TGD’s water supplement in winter and accelerate the receding of inundation areas/levels of downstream lakes in fall. (letter)

  4. Environmental radiological studies downstream from the Rancho Seco Nuclear Power Generating Station, 1985

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Brunk, J.L.; Jokela, T.A.

    1986-01-01

    Information compiled in 1985 while assessing the environmental impact of radionuclides previously discharged with aqueous releases from the Rancho Seco Nuclear Power Generating Plant is presented. In October 1984, the quantities of gamma-emitting radionuclides in water discharged to Clay Creek from the plant were reduced below operationally defined detection limits for liquid effluents. However, radionuclides previously discharged persist in the downstream environment and are found in many aquatic dietary components. 134 Cs and 137 Cs are the primary gamma-emitting radionuclides detected in the edible flesh of different fish, crayfish, and frogs. Coefficients for exponential equations are generated, from a least square analysis, that relate the change in concentration of 137 Cs in fish to distance downstream and time between March and October 1985. Concentrations of 137 Cs in surface creek sediments also decreased in the downstream direction much in the same manner as concentrations decreased in fish. However, there was no significant difference in the radiocesium concentrations in surface sediements collected from comparable locations during both 1984 and 1985

  5. Cladding Heatup Prediction between Spacer Grids for the Downstream Effect Evaluation

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, M. W.

    2009-01-01

    Since a recirculation sump clogging issue by debris generated from high energy pipe line break had been invoked as GSI-191 in the US, many researches on this issue have been undertaken. Previous researches on this topic are well summarized in Bang et al. Due to comprehensive nature of the issue, it includes many area of research and one of them is the area of downstream effect evaluation. The downstream effect is involved with adverse effects of debris passing the sump screen on the downstream systems, components and piping including core and it can be further divided into an ex-vessel downstream effect and an in-vessel downstream effect. In the ex-vessel downstream effect, focus is laid on plugging of spray nozzle, wearing and abrasion of moving parts of pump and valve and etc. Otherwise, a debris effect on reactor core is focused in the in-vessel downstream effect. Since debris can be ingested in the core or the systems of downstream of sump screen during recirculation, basically the downstream effect influences long-term core cooling phase. With respect to the in-vessel downstream effect, an up-to-date evaluation methodology is well summarized in a topical report submitted to the US nuclear regulatory commission by the pressurized water reactor owners group (PWROG). The report evaluates various aspects of debris ingestion in the core such as blockage at the core inlet, collection of debris on fuel grids, plating-out of fuel, chemical precipitants, protective coatings effect and etc. Most of them are evaluated qualitative manner based on previous research results and geometrical consideration on fuel rod bundles but some of them are also backed up by quantitative calculations to corroborate the qualitative decisions. One of them is a cladding heatup calculation between spacer grids. This is done to demonstrate that the cladding temperature of a fuel rod between grids with debris deposited on the clad surface in a post- LOCA recirculation environment is below

  6. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  7. Electrical guidance efficiency of downstream-migrating juvenile Sea Lamprey decreases with increasing water velocity

    Science.gov (United States)

    Miehls, Scott M.; Johnson, Nicholas; Haro, Alexander

    2017-01-01

    We tested the efficacy of a vertically oriented field of pulsed direct current (VEPDC) created by an array of vertical electrodes for guiding downstream-moving juvenile Sea Lampreys Petromyzon marinus to a bypass channel in an artificial flume at water velocities of 10–50 cm/s. Sea Lampreys were more likely to be captured in the bypass channel than in other sections of the flume regardless of electric field status (on or off) or water velocity. Additionally, Sea Lampreys were more likely to be captured in the bypass channel when the VEPDC was active; however, an interaction between the effects of VEPDC and water velocity was observed, as the likelihood of capture decreased with increases in water velocity. The distribution of Sea Lampreys shifted from right to left across the width of the flume toward the bypass channel when the VEPDC was active at water velocities less than 25 cm/s. The VEPDC appeared to have no effect on Sea Lamprey distribution in the flume at water velocities greater than 25 cm/s. We also conducted separate tests to determine the threshold at which Sea Lampreys would become paralyzed. Individuals were paralyzed at a mean power density of 37.0 µW/cm3. Future research should investigate the ability of juvenile Sea Lampreys to detect electric fields and their specific behavioral responses to electric field characteristics so as to optimize the use of this technology as a nonphysical guidance tool across variable water velocities.

  8. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  9. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  10. Iodine-125 in the fresh water environment in England; measurements along the pathway from sewage discharge to thyroid glands and determinations of absorbed dose to humans

    International Nuclear Information System (INIS)

    Howe, J.R.; Bowlt, C.

    1992-01-01

    Iodine-125 has been measured in the fresh water supply in England, particularly in the Thames Valley. 125 I discarded into the sewage drainage system, travels in the liquid effluent into rivers. When mains water is abstracted downstream from such discharges low levels of 125 I ( 125 I. However it was never possible to establish more than a semi-quantitative relationship between their activity levels and those of their surroundings. In general, levels of 125 I have shown a 3-4 fold increase in the fresh water environment during the 1980's. (Author)

  11. The role of grazers and shredders in the retention and downstream transport of a PCB in lotic environments

    International Nuclear Information System (INIS)

    Sallenave, R.M.; Kreutzweiser, D.P.

    1994-01-01

    Field studies using flow-through artificial stream channels were conducted between May and October 1992 to study the role of the feeding activity of grazing and shredding invertebrates in promoting downstream transport of 2,2',4,4',5,5'-hexachlorobiphenyl (HCBP). Plant material was labeled with [ 14 C]HCBP and fed to selected invertebrate species, and accrual of radioactivity by downstream collector species (Hydropsyche spp.) was measured. Downstream transport of HCBP was significantly increased by the presence of the grazer Elimia livescens in the upstream sections of the channels as demonstrated by significantly higher levels of radioactivity in hydropsychid larvae located downstream. Similarly, movement of HCBP downstream was significantly greater in channels containing the shredder Hydatophylax argus than in channels without shredders. These results suggest that the feeding processes of benthic invertebrates may play an important role in the downstream transport of particle-bound hydrophobic organic compounds

  12. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Designation and downstream requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sold or dispensed for use in motor vehicles at a retail outlet or wholesale purchaser-consumer facility...

  13. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  14. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  15. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    Science.gov (United States)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  16. Operational optimization in the downstream; Otimizacao operacional no downstream

    Energy Technology Data Exchange (ETDEWEB)

    Silberman, Luis; Cunha, Filipe Silveira Ramos da [Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    On the present competitive down stream's market, there is a great necessity of optimization aiming to guarantee the best price and quality of our clients. Our goal is to attend these expectations while we guarantee an efficient operation. The greatest question is how far we are from the ideal model. This way, a lot of projects have been executed during the last years aiming the operational optimization of all our activities. We divide the projects in 4 areas: Logistic (new modals distribution), Transport (transport optimization - quality and more deliveries with less trucks), Client Support (Internet Ipiranga and Support Center), Distribution Terminals Productivity (automation and environment). This work intend to present our ideal, perfect and complete Downstream Operation model. We will talk about how close we are of this ideal model and we will present the projects that we had already developed and implanted on the automation of the terminals and the logistics area. (author)

  17. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability

    Directory of Open Access Journals (Sweden)

    D. Finger

    2013-08-01

    Full Text Available Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

  19. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  20. The chemistry of Magela Creek. A baseline for assessing change downstream of Ranger. Supervising Scientist report 151

    International Nuclear Information System (INIS)

    Klessa, D.A.

    2000-01-01

    The compositions of waters in Magela Creek upstream and downstream of Ranger uranium mine were reviewed. The water quality parameters examined were pH, electrical conductivity (EC) and turbidity, and dissolved calcium, magnesium, sodium, potassium, chloride, sulphate, ammonium, nitrate, copper, lead, manganese, zinc, uranium and radium-226. The frequency distributions of each of these parameters in waters upstream of the mine were characterised and statistically described to provide a baseline which allows a change in water chemistry downstream of the mine to be assessed. With the exception of pH, EC, turbidity, magnesium, calcium, sodium and manganese, data that comprise the baseline are not normally distributed. The frequency distributions of copper, lead, zinc, uranium and radium-226 forming the baseline are characterised by a large proportion of values at or near analytical detection limits and contamination in a relatively large proportion of the remainder. A comparison of upstream and downstream data shows that there is good conformity in pH, EC, turbidity, sodium, potassium and chloride. For calcium, nitrate, ammonium, lead, uranium, radium and zinc less than 40% of the downstream data fall outside the 20th and 80th baseline percentiles but in the ease of U, data are biased towards relatively high values. More than 40% of downstream magnesium and sulphate data are outside these percentile boundaries and are skewed towards relatively high concentrations. Copper, lead and zinc in mine waters (characterised by the composition of waters contained in the former RP4) do not appear to pose a risk as contaminants based upon the results of toxicity testing and water quality guideline trigger levels with risk minimised for greater than 1 in 20 dilution

  1. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    Science.gov (United States)

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  2. Downstream cumulative effects of land use on freshwater communities

    Science.gov (United States)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  3. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and

  4. Proceedings of the technical meetings 'Water, radioactivity and environment'

    International Nuclear Information System (INIS)

    Perceval, Olivier; Foulquier, Luc; Canneva, Guillem; Jedor, Beatrice; Genthon, Benedicte; Vicaud, Alain; Skrzypczak, Julien; Gibeaux, Audrey; Phrommavanh, Vannapha; Descostes, Michael; Tognelli, Antoine; Calmet, Dominique; Leprieur, Fabrice; Pignol, David; Thybaud, Eric; Feray, Christine; Leclerc, Elisabeth; Maitre, Melanie; Calmon, Philippe; Marang, Laura; Beaugelin-Seiller, Karine; Garnier-Laplace, Jacqueline; Leprieur, Fabrice; Philippot, Benoit; Hemidy, Pierre-Yves; Devin, Patrick; Perrier, Gilles; CALVEZ, Marianne; Descamps, E.; Preveral, S.; Brutesco, C.; Ginet, N.; Escofier, C.; Garcia, D.; Pignol, D.; Ansaldi, M.; Rodrigue, A.; Bazin, I.; Cholat, P.; Bailly-Du-Bois, Pascal; Fievet, Bruno; Godinot, Claire; Eyrolle-Boyer, Frederique; Antonelli, Christelle; Tournieux, Damien; Augeray, Celine; Galliez, Kevin; Baconet, I.; Cavaliere, N.; Dias Varela, D.; Foulon, L.; Laconici, C.; Lorand, H.; Mouton, M.; Siscard, N.; Tarlette, L.; Loyen, Jeanne; Gleizes, Marc; Vidal, R.; Borgia, Cecile; Hemidy, Pierre-Yves; Fouchet, Loic; Gontier, G.; Grignard, G.; Drozdzak, Jegodz; Leermakers, Martine; Brun, Frederic; Ameon, Roselyne; Gleizes, Marc; Maulard, Alain; Moine, Jerome; Tchilian, Nathalie; Paillard, Herve; Gaid, Abdelkader; Wittmann, Erich; Boucherie, Christophe; Devin, Patrick

    2014-12-01

    These technical days were organized by the 'Environment section' of the French Society of Radiation Protection (SFRP). Their aim was to review the current state of water use, management and monitoring, in particular in the nuclear industry, both on the radiological and chemical aspects. This document brings together the available presentations (slides) together with their corresponding abstracts (in French) and dealing with: 1 - Environmental issues linked to water and aquatic ecosystems contamination by micropollutants (O. Perceval); 2 - 50 years of radioecology in aquatic environments (L. Foulquier); 3 - Regulation and organisation of the French administration for water and aquatic ecosystems management (G. Canneva); 4 -European and French regulations about the radiological quality of drinking water (B. Jedor); 5 - Water samplings and liquid effluents from nuclear facilities: regulation, authorisations, prescriptions (B. Genthon); 6 - Water needs of a NPP (A. Vicaud); 7 - Water management at old uranium mining sites (A. Gibeaux); 8 - Mobile system for liquid effluents treatment (J. Skrzypczak); 9 - Water: an essential vector for the transfer of radioactive and chemical compounds in the underground (A. Tognelli); 10 - Environmental guide values for aquatic ecosystems protection (E. Thybaud); 11 - Prioritisation work for radioactive and chemical compounds to be monitored in aquatic environments in the framework of the environment perennial lab (E. Leclerc); 12 - Liquid radioactive effluents in continental aquatic environments: why and how estimating the impact? (K. Beaugelin-Seiller); 13 - Sustainable water management: standards, a compulsory tool (D. Calmet); 14 - Water sampling: from theory to practice (F. Leprieur, B. Philippot); 15 - Prototype for the detection of toxic compounds in the environment (D. Pignol); 16 - Nuclear metrology and water: new available and developing techniques (C. Augeray, K. Galliez); 17 - Measurement of the uranium and radium bio

  5. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  6. Analysis of water hammer in a penstock in the case of valve closure. Part 2: Pressure losses concentrated downstream

    Directory of Open Access Journals (Sweden)

    Hocine HAMMOUM

    2017-06-01

    Full Text Available In our previous study (Part 1; by using the graphic of Bergeron, we have drawn the relationships which allow calculating flows and pressures at the valve and the reservoir, considering that pressure losses are negligible. Now, we assume in this second contribution that these pressure losses are concentrated downstream of the pipe, just at the entry of the valve. The study will focus on water hammer-induced by a slow closing of the valve. A practical example will be presented at the end of this work in order to illustrate the exposed method.

  7. Total resistance of native bacteria as an indicator of changes in the water environment

    Energy Technology Data Exchange (ETDEWEB)

    Harnisz, Monika [Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn (Poland)

    2013-03-15

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX{sup R}) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX{sup R} isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress.

  8. Total resistance of native bacteria as an indicator of changes in the water environment

    International Nuclear Information System (INIS)

    Harnisz, Monika

    2013-01-01

    This study analyzes changes in the total (intrinsic and acquired) resistance of autochthonous bacteria in a river which is a receiver of treated wastewater. In the analyzed samples, tetracycline contamination levels were low and characteristic of surface water bodies. An increase in the populations of tetracycline-resistant and fluoroquinolone-resistant microorganisms was noted in downstream river water samples in comparison with upstream river water samples, but the above trend was not observed in bacteria resistant to macrolides and β-lactams. The counts of doxycycline-resistant bacteria (DOX R ) were significantly correlated with doxycycline levels. The minimum inhibitory concentrations (MICs) for doxycycline in DOX R isolates were higher in downstream river water than in upstream river water samples. The discharge of treated wastewater had no effect on the multi-drug resistance of oxytetracycline-resistant and doxycycline-resistant isolates. The results of the experiment indicate that the presence of doxycycline-resistant bacteria is a robust indicator of anthropogenic stress in river water. -- Highlights: ► The total resistance of native bacteria in river which is a receiver of treated wastewater was analyzed. ► Tetracyclines contamination levels were low. ► The counts of doxycycline-resistant bacteria were correlated with doxycycline levels. -- The presence of doxycycline-resistant bacteria in rivers can be a robust indicator of anthropogenic stress

  9. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  10. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F., E-mail: higorfabiano@gmail.com, E-mail: mdora@nuclear.ufmg.br, E-mail: vitors@cdtn.br, E-mail: aacs@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  11. 5 X 5 rod bundle flow field measurements downstream a PWR spacer grid

    International Nuclear Information System (INIS)

    Castro, Higor F.P.; Silva, Vitor V A.; Santos, André A.C.; Veloso, Maria A.F.

    2017-01-01

    The spacer grids are structures present in nuclear fuel assembly of Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. Understanding the flow dynamics downstream the spacer grid is paramount for fuel element design and analysis. This paper presents water flow velocity profiles measurements downstream a spacer grid in a 5 x 5 rod bundle test rig with the objective of highlighting important fluid dynamic behavior near the grid and supplying data for CFD simulation validation. These velocity profiles were obtained at two different heights downstream the spacer grid using a LDV (Laser Doppler Velocimetry) through the top of test rig. The turbulence intensities and patterns of the swirl and cross flow were evaluated. The tests were conducted for Reynolds numbers ranging from 1.8 x 10"4 to 5.4 x 10"4. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center – CDTN. Results show great repeatability and low uncertainties (< 1.24 %). Details of the flow field show how the mixture and turbulence induced by the spacer grid quickly decays downstream the spacer grid. It is shown that the developed methodology can supply high resolution low uncertainty results that can be used for validation of CFD simulations. (author)

  12. Water, energy and agricultural landuse trends at Shiroro hydropower station and environs

    Science.gov (United States)

    Adegun, Olubunmi; Ajayi, Olalekan; Badru, Gbolahan; Odunuga, Shakirudeen

    2018-02-01

    The study examines the interplay among water resources, hydropower generation and agricultural landuse at the Shiroro hydropower station and its environs, in north-central Nigeria. Non-parametric trend analysis, hydropower footprint estimation, reservoir performance analysis, change detection analysis, and inferential statistics were combined to study the water-energy and food security nexus. Results of Mann-Kendall test and Sen's slope estimator for the period 1960 to 2013 showed a declining rainfall trend at Jos, around River Kaduna headwaters at -2.6 mm yr-1, while rainfall at Kaduna and Minna upstream and downstream of the reservoir respectively showed no trend. Estimates of hydropower footprint varied between 130.4 and 704.1 m3 GJ-1 between 1995 and 2013. Power generation reliability and resilience of the reservoir was 31.6 and 38.5 % respectively with year 2011 being the most vulnerable and least satisfactory. In addition to poor reliability and resilience indices, other challenges militating against good performance of hydropower generation includes population growth and climate change issues as exemplified in the downward trend observed at the headwaters. Water inflow and power generation shows a weak positive relationship with correlation coefficient (r) of 0.48, indicating less than optimal power generation. Total area of land cultivated increased from 884.59 km2 in 1986 prior to the commissioning of the hydropower station to 1730.83 km2 in 2016 which signifies an increased contribution of the dam to ensuring food security. The reality of reducing upstream rainfall amount coupled with high water footprint of electricity from the reservoir, therefore requires that a long term roadmap to improve operational coordination and management have to be put in place.

  13. Monitoring Thermal Pollution in Rivers Downstream of Dams with Landsat ETM+ Thermal Infrared Images

    Directory of Open Access Journals (Sweden)

    Feng Ling

    2017-11-01

    Full Text Available Dams play a significant role in altering the spatial pattern of temperature in rivers and contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding the temporal and spatial variation of thermal pollution caused by dams is important to prevent or mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice because of the inaccessibility of water temperature records and the scarcity of gauges along rivers. By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal pollution downstream of dams in large rivers, because it can cover a large area and observe the same zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+ thermal infrared imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes acquired in the period from 2000 to 2014. The results show that water temperatures downstream of both dams are much cooler than those upstream of both dams in summer, and the water temperature remains stable along the river in winter, showing evident characteristic of the thermal pollution caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+ imagery, the proposed technique in the current study provides a promising method for globally monitoring the thermal pollution caused by dams in large rivers.

  14. Comparison of hyporheic flow and water quality in open and tree-covered banks downstream of Xin'an River dam, China

    Science.gov (United States)

    Liu, D.

    2017-12-01

    Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.

  15. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    Science.gov (United States)

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  16. Radium-228 and -226 levels in a river environment and its modification by human activities

    International Nuclear Information System (INIS)

    Paul, A.C.; Londhe, V.S.; Pillai, K.C.

    1978-01-01

    The river Periyar is of prime importance in the economy of Kerala State due to the anifold utility of its waters. Consistently high background levels of radium-228 in the river water amounting to 10% of (MPC)sub(w) during the peak and lean flow periods suggest geochemical transport from the drainage areas. Industrial discharges enhance Ra levels by an order of magnitude in downstream locations. Monazite and rockp2hosphate processes, predominently contributing radium-228 and radium-226 respectively, change the nuclide ratio in the river environment due to differential inputs. Contribution of radium-226 through liquid effluents to the river from either process is of the same order of magnitude which together account for only 5% of the process output, the remaining 95%, held in the fertilizer sludges of CaCO 3 /CaCO 4 , disposed off on land, is a potential source of this activity in the environment. River bed sediments carrying bulk of Ra get displaced to backwaters where partial solubilisation takes place due to monsoon flushes. Uptake of Ra by fish in industrial and downstream locations in the river were evident. Analysis of paddy indicates higher uptake by soil and hay due to irrigation by river water drawn from downstream and marginal increase of activity in the fertilizer applied field. (author)

  17. Modulation of Extreme Flood Levels by Impoundment Significantly Offset by Floodplain Loss Downstream of the Three Gorges Dam

    Science.gov (United States)

    Mei, Xuefei; Dai, Zhijun; Darby, Stephen E.; Gao, Shu; Wang, Jie; Jiang, Weiguo

    2018-04-01

    River flooding—the world's most significant natural hazard—is likely to increase under anthropogenic climate change. Most large rivers have been regulated by damming, but the extent to which these impoundments can mitigate extreme flooding remains uncertain. Here the catastrophic 2016 flood on the Changjiang River is first analyzed to assess the effects of both the Changjiang's reservoir cascade and the Three Gorges Dam (TGD), the world's largest hydraulic engineering project on downstream flood discharge and water levels. We show that the Changjiang's reservoir cascade impounded over 30.0 × 103 m3/s of flow at the peak of the flood on 25 July 2016, preventing the occurrence of what would otherwise have been the second largest flood ever recorded in the reach downstream of the TGD. Half of this flood water storage was retained by the TGD alone, meaning that impoundment by the TGD reduced peak water levels at the Datong hydrometric station (on 25 July) by 1.47 m, compared to pre-TGD conditions. However, downstream morphological changes, in particular, extensive erosion of the natural floodplain, offset this reduction in water level by 0.22 m, so that the full beneficial impact of floodwater retention by the TGD was not fully realized. Our results highlight how morphological adjustments downstream of large dams may inhibit their full potential to mitigate extreme flood risk.

  18. Solution of tasks concerning protection of underground waters and environment

    International Nuclear Information System (INIS)

    Dubinchuk, V.T.; Polyakov, V.A.

    1988-01-01

    Use of environment isotopes and indicators in solving problems concerning protection of underground waters and environment is discussed. The applied methods permit to study dynamics of underground waters and to estimate risk of their contamination; to follow the surface and underground waters interrelations using data on infiltration recharge estimation etc. Complex nuclear-geophysical and isotope studies may be applied to detect hindered water exchange zones where liquid industrial waste disposals could be placed with minimum damage to environment. 48 refs.; 74 figs.; 22 tabs

  19. How much water flows? Examining water allocations using a mobile decision lab

    Science.gov (United States)

    Strickert, G. E.; Gober, P.; Bradford, L. E.; Phillips, P.; Ross, J.

    2016-12-01

    Management of freshwater resources is a complex and multifaceted issues. Big challenges like scarcity, conflicts over water use and access, and ecosystem degradation are widespread around the world. These issues reflects ineffective past practices and signals the need for a fundamental change. Previous actions to mitigate these problems have been incremental rather than innovative, in part because of inherent conservatism in the water management community and an inability to experiment with water allocations in a safe environment. The influence of transboundary water policies was tested using a mobile decision lab which examined three theory areas: limited territorial sovereignty, absolute territorial sovereignty, and shared risk. The experiment allowed people engaged in the water sector to allocate incoming flows to different sectors: agriculture, municipal, industrial and environmental flows in two flow scenarios; slight shortage and extreme water shortage, and to pass on the remaining water to downstream regions. Mandatory sharing 50% of the natural flows between provinces (i.e. limited territorial sovereignty) achieved the most equitable allocation based on water units and points across the three regions. When there were no allocation rules (i.e. absolute territorial sovereignty) the downstream region received significantly less water (e.g. 8-11%. p affect on the amount of water flowing through the region. It is also notable that most participants sought a trade-off of water allocations, minimizing the allocations to agriculture and industry and prioritizing the municipal sector particularity under the severe drought scenario.

  20. A novel virtual hub approach for multisource downstream service integration

    Science.gov (United States)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  1. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  2. Transient Localization in Shallow Water Environments

    National Research Council Canada - National Science Library

    Brune, Joachim

    1998-01-01

    .... A full-wave PE model is used to produce broadband replicas. Both model-generated synthetic signals, which provide baseline results, and measured pulses in a shallow water environment are analyzed...

  3. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  4. Isotope method to study the replenishment the lakes and downstream groundwater in Badain Jaran desert

    International Nuclear Information System (INIS)

    Chen Jiansheng; Fan Zhechao; Gu Weizu; Zhao Xia; Wang Jiyang

    2003-01-01

    In the paper, the sources of spring water and well water of Qilian Mountain's north side, Longshou Mountain, Badain Jaran Desert, Gurinai, Guaizi Lake, and Ejina Basin are studied by the methods of environmental isotopes and water chemistry. The groundwater of downstream areas (such as Badain Jaran Desert) is found that it is recharged by the precipitation of Qilian Mountain, and the average recharge elevation is 3300 m. Lots of naked limestones layers exist at the mountaintop of Qilian Mountain. The snow water of Qilian Mountain melts and directly infiltrates into deep layer passing through karst stratum or Big Fault in Front of the Mountain, and directly recharges into Badain Jaran Desert and its downstream areas passing through Longshou Mountain. The calcareous cementation and travertine, found in the lakes of the desert, approve that the groundwater passed the limestone layer. Confined water recharges shallow aquifer by means of leakage. The groundwater recharge volume is six hundreds millions cubic meters per year by calculating the evaporation amount, and the age of confined groundwater is 20-30 years. (authors)

  5. Water - The radiological health of rivers: releases are very much controlled downstream power plants. What do hospital releases represent? The Seine reserves a surprise

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    After a brief presentation of the role of the IRSN in the control of the radioactivity present in waters and in the control and follow-up of all sources of radioactivity, a first article briefly present the hydro-collector network, indicates that some point samplings of sediment and aquatic species are performed, that a national network of beacons for a continuous radioactivity measurement is installed in the main French rivers, downstream nuclear installations, and that advanced measurement techniques are used to detect very small level of tritium. Maps giving a brief indication of the radiological condition of the Loire and Rhone are provided. A second article addresses the control of releases downstream power plants, and evokes the legal context and the associated objectives and produced documents. The third article discusses the risk associated with hospital wastes and releases (liquid and solid effluents), how radioactivity is controlled between the hospital and tap water distribution. The last article reports and comments the results obtained by an analysis of historical pollutions trapped in the sediments of the Seine: 40 year-old traces of plutonium have been discovered, due to an accidental release from a CEA installation in Fontenay-aux-Roses, with no detrimental impact on population or on sewer workers

  6. Research on IoT-based water environment benchmark data acquisition management

    Science.gov (United States)

    Yan, Bai; Xue, Bai; Ling, Lin; Jin, Huang; Ren, Liu

    2017-11-01

    Over the past more than 30 years of reform and opening up, China’s economy has developed at a full speed. However, this rapid growth is under restrictions of resource exhaustion and environmental pollution. Green sustainable development has become a common goal of all humans. As part of environmental resources, water resources are faced with such problems as pollution and shortage, thus hindering sustainable development. The top priority in water resources protection and research is to manage the basic data on water resources, and determine what is the footstone and scientific foundation of water environment management. By studying the aquatic organisms in the Yangtze River Basin, the Yellow River Basin, the Liaohe River Basin and the 5 lake areas, this paper puts forward an IoT-based water environment benchmark data management platform which can transform parameters measured to electric signals by way of chemical probe identification, and then send the benchmark test data of the water environment to node servers. The management platform will provide data and theoretical support for environmental chemistry, toxicology, ecology, etc., promote researches on environmental sciences, lay a solid foundation for comprehensive and systematic research on China’s regional environment characteristics, biotoxicity effects and environment criteria, and provide objective data for compiling standards of the water environment benchmark data.

  7. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?

    Science.gov (United States)

    Van Khanh Triet, Nguyen; Viet Dung, Nguyen; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2017-08-01

    In the Vietnamese part of the Mekong Delta (VMD) the areas with three rice crops per year have been expanded rapidly during the last 15 years. Paddy-rice cultivation during the flood season has been made possible by implementing high-dyke flood defenses and flood control structures. However, there are widespread claims that the high-dyke system has increased water levels in downstream areas. Our study aims at resolving this issue by attributing observed changes in flood characteristics to high-dyke construction and other possible causes. Maximum water levels and duration above the flood alarm level are analysed for gradual trends and step changes at different discharge gauges. Strong and robust increasing trends of peak water levels and duration downstream of the high-dyke areas are found with a step change in 2000/2001, i.e. immediately after the disastrous flood which initiated the high-dyke development. These changes are in contrast to the negative trends detected at stations upstream of the high-dyke areas. This spatially different behaviour of changes in flood characteristics seems to support the public claims. To separate the impact of the high-dyke development from the impact of the other drivers - i.e. changes in the flood hydrograph entering the Mekong Delta, and changes in the tidal dynamics - hydraulic model simulations of the two recent large flood events in 2000 and 2011 are performed. The hydraulic model is run for a set of scenarios whereas the different drivers are interchanged. The simulations reveal that for the central VMD an increase of 9-13 cm in flood peak and 15 days in duration can be attributed to high-dyke development. However, for this area the tidal dynamics have an even larger effect in the range of 19-32 cm. However, the relative contributions of the three drivers of change vary in space across the delta. In summary, our study confirms the claims that the high-dyke development has raised the flood hazard downstream. However, it is not

  8. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use.

    Science.gov (United States)

    Kröger, R; Dunne, E J; Novak, J; King, K W; McLellan, E; Smith, D R; Strock, J; Boomer, K; Tomer, M; Noe, G B

    2013-01-01

    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized by management with the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  10. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  11. Contrasting morphodynamics in alluvial fans and fan deltas: effect of the downstream boundary

    NARCIS (Netherlands)

    Dijk, M. van; Kleinhans, M.G.; Postma, G.; Kraal, E.

    2012-01-01

    Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward

  12. Water absorption of superabsorbent polymers in a cementitious environment

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2011-01-01

    This paper focuses on the water absorption of superabsorbent polymers in a cementitious environment. The paper discusses different techniques to measure the water absorption capacity, and in particular it describes a technique which enables a simple and quick estimation of the water absorption...... capacity in a cementitious environment. The challenges met in defining the concept of water absorption capacity are treated, and the appropriateness of different types of superabsorbent polymers is also briefly dealt with. The concept “water absorption capacity” and its measurement seem straightforwardly...... simple, but a closer examination of the topic discloses many, significant difficulties. However, given proper cautiousness it is possible both to quickly estimate the water absorption capacity through a simple measurement as well as to examine how it will be influenced by different factors....

  13. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  14. Who Delivers without Water? A Multi Country Analysis of Water and Sanitation in the Childbirth Environment.

    Directory of Open Access Journals (Sweden)

    Giorgia Gon

    Full Text Available Hygiene during childbirth is essential to the health of mothers and newborns, irrespective of where birth takes place. This paper investigates the status of water and sanitation in both the home and facility childbirth environments, and for whom and where this is a more significant problem.We used three datasets: a global dataset, with information on the home environment from 58 countries, and two datasets for each of four countries in Eastern Africa: a healthcare facility dataset, and a dataset that incorporated information on facilities and the home environment to create a comprehensive description of birth environments in those countries. We constructed indices of improved water, and improved water and sanitation combined (WATSAN, for the home and healthcare facilities. The Joint Monitoring Program was used to construct indices for household; we tailored them to the facility context-household and facility indices include different components. We described what proportion of women delivered in an environment with improved WATSAN. For those women who delivered at home, we calculated what proportion had improved WATSAN by socio-economic status, education and rural-urban status.Among women delivering at home (58 countries, coverage of improved WATSAN by region varied from 9% to 53%. Fewer than 15% of women who delivered at home in Sub-Saharan Africa, had access to water and sanitation infrastructure (range 0.1% to 37%. This was worse among the poorest, the less educated and those living in rural areas. In Eastern Africa, where we looked at both the home and facility childbirth environment, a third of women delivered in an environment with improved water in Uganda and Rwanda; whereas, 18% of women in Kenya and 7% in Tanzania delivered with improved water and sanitation. Across the four countries, less than half of the facility deliveries had improved water, or improved water and sanitation in the childbirth environment.Access to water and

  15. Downstream passage of fish larvae and eggs through a small-sized reservoir, Mucuri river, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo S. Pompeu

    2011-12-01

    Full Text Available In South America, one important symptom of the failure of fish passages to sustain fish migratory recruitment is the inability of eggs and larvae to reach the nurseries. This is especially so when the breeding areas are located upstream of a reservoir, and the floodplain is downstream of the dam. Therefore, the transport of fish larvae and eggs across reservoir barriers is a key factor in the development of effective conservation strategies. In this paper, we evaluate the potential for migratory fish larvae and egg transportation across a small size reservoir in eastern Brazil. We sampled fish daily between 15th October 2002 and 15th February 2003 (spawning period in the Mucuri River, immediately upstream of the reservoir and downstream of the Santa Clara Power Plant dam. Our study was the first to indicate the possibility of successful larval passage through the reservoir of a hydroelectric reservoir and dam in South America, and showed that the passage of migratory fish larvae was associated significantly with residence time of water in the reservoir. The relatively short water residence time and elevated turbidity of the Santa Clara's reservoir waters during the rainy season certainly contributed to the successful passage, and can be considered as key factors for a priori evaluations of the feasibility of a downstream larval passage.

  16. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-01-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments

  17. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon

    2017-01-01

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A

  18. Propagation of temperature disturbances in bounded flows downstream of a nozzle block

    International Nuclear Information System (INIS)

    Krebs, L.

    1979-12-01

    The early detection of cooling disturbances in a fuel element of a sodium cooled reactor is a must for safety reasons. One possibility of achieving this goal is by measuring and analyzing the coolant temperature at the fuel element outlet. Assessment of the potential of this method requires knowledge of the flow phenomena downstream of the fuel element. As a fluid dynamics model of a fuel element a nozzle block is used, the bores of which correspond to the subchannels between the fuel rods. The studies are conducted in water which has kinematic properties comparable to those of sodium. The velocity and temperature fields downstream of the nozzle block are examined for two REYNOLDS numbers. To simulate a disturbed cooling condition, water with a temperature higher by ΔT anti T = 10 K is injected through one subchannel of the nozzle block. At the same time, the volume injected is varied. The central channel and one side channel close to the wall are selected as injection sites. Statisticl analysis of the measured velocity and temperature signals covers the following parameters: Linear averages, intensities, probability densities, spectral power densities, autocorrelation functions, integral turbulence lengths, dissipation lengths, dissipation, skewness and flatness values. On the basis of FOURIER's differential equation of heat conduction a theoretical model is developed to describe both the average temperature field and the intensity field in the flow downstream of the nozzle block. Comparison of measurements and calculations furnishes good agreement and indicates that extrapolation of the model to sodium as a fluid is possible. Supplementary to the measurements and calculations details of the water test rig and the anemometer measuring system used for velocity and temperature measurements are shown in the Appendix. (orig.) 891 GL/orig. 892 KN [de

  19. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  20. Problems of the water environment and water consumption

    International Nuclear Information System (INIS)

    Raetsep, Aavo

    1999-01-01

    Water extraction and consumption in Ida-Viru County are based mainly on the groundwater and surface water. The major part of the surface water is consumed by power engineering, while households and industry are the main consumers of groundwater. The difference between water extraction and consumption shows that the unused mine water pumped up for draining the oil shale mines and open pits and discharged into rivers forms an essential part (on the average 86%, quantitatively 159-226 millions m 3 /yr.). Serious water supply problems have risen in connection with oil shale mining: numerous village and household wells have been depleted due to a deep drawdown cone, the groundwater of the upper aquifers is polluted with nitrates, phenols and oil products. The poor condition of water-pipes and great leakages (up to 60%) make it difficult to supply townspeople and villagers with high-grade drinking water meeting the Estonian general standard EVS 663:1995. Water pollution is conditioned by poorly treated wastewaters and sewage directed practically into all the major rivers and lakes of the county by industrial and power engineering enterprises and towns and rural settlements. The rivers of the Purtse basin have been continuously under a heavy pollution load: both the mine waters with high minerality and phenolic wastewaters (so-called ash hill waters) of the oil shale thermal processing have been discharged into the rivers. Various water contamination from land areas has led to excessive pollution of Northeast Estonian coastal waters of the Gulf of Finland with toxic organic compounds and nutrients, specially in the regions of Purtse, Saka, Sillamaee and Narva-Joesuu. Up to now, Estonia has not managed completely fulfil the recommendations of the Helsinki Commission (HELCOM) of the Convention on the Protection of the Marine Environment of the Baltic Sea Area. In 1998-2010, water management in Ida-Viru County should be directed towards achieving two Principal objectives

  1. Water Fountains in Environment Transformation Correcting

    Science.gov (United States)

    Sidorenko, M. Yu; Ponomareva, Zh V.

    2017-11-01

    The article provides information on the means and principles for adjusting the process of the urban environment transformation. The interest in the topic is caused by the fact that the surrounding artificial environment is turning into a dangerous factor in the mechanism of human visual perception which requires immediate, effective intervention in the adjustment of the existing modern buildings. The paper considers The correction with the help of new dominants, small architectural forms, in particular, water fountains. Fountains are an important part of the measures to create a comfortable, environmentally friendly urban human environment. Their planning and functional links with the system of streets, squares, traffic arteries can create the urban plan basis.

  2. Automated corrosion fatigue crack growth testing in pressurized water environments

    International Nuclear Information System (INIS)

    Ceschini, L.J.; Liaw, P.K.; Rudd, G.E.; Logsdon, W.A.

    1984-01-01

    This paper describes in detail a novel approach to construct a test facility for developing corrosion fatigue crack growth rate (FCGR) properties in aggressive environments. The environment studied is that of a pressurized water reactor (PWR) at 288 0 C (550 0 F) and 13.8 MPa (200 psig). To expedite data generation, each chamber was designed to accommodate two test specimens. A common water recirculation and pressurization system was employed to service two test chambers. Thus, four fatigue crack propagation rate tests could be conducted simultaneously in the pressurized water environment. The data analysis was automated to minimize the typically high labor costs associated with corrosion fatigue crack propagation testing. Verification FCGR tests conducted on an ASTM A469 rotor steel in a room temperature air environment as well as actual PWR environment FCGR tests performed on an ASTM A533 Grade B Class 2 pressure vessel steel demonstrated that the dual specimen test facility is an excellent system for developing the FCGR properties of materials in adverse environments

  3. Effects of modifying water environments on water supply and human health

    Science.gov (United States)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water

  4. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?

    Directory of Open Access Journals (Sweden)

    N. V. K. Triet

    2017-08-01

    Full Text Available In the Vietnamese part of the Mekong Delta (VMD the areas with three rice crops per year have been expanded rapidly during the last 15 years. Paddy-rice cultivation during the flood season has been made possible by implementing high-dyke flood defenses and flood control structures. However, there are widespread claims that the high-dyke system has increased water levels in downstream areas. Our study aims at resolving this issue by attributing observed changes in flood characteristics to high-dyke construction and other possible causes. Maximum water levels and duration above the flood alarm level are analysed for gradual trends and step changes at different discharge gauges. Strong and robust increasing trends of peak water levels and duration downstream of the high-dyke areas are found with a step change in 2000/2001, i.e. immediately after the disastrous flood which initiated the high-dyke development. These changes are in contrast to the negative trends detected at stations upstream of the high-dyke areas. This spatially different behaviour of changes in flood characteristics seems to support the public claims. To separate the impact of the high-dyke development from the impact of the other drivers – i.e. changes in the flood hydrograph entering the Mekong Delta, and changes in the tidal dynamics – hydraulic model simulations of the two recent large flood events in 2000 and 2011 are performed. The hydraulic model is run for a set of scenarios whereas the different drivers are interchanged. The simulations reveal that for the central VMD an increase of 9–13 cm in flood peak and 15 days in duration can be attributed to high-dyke development. However, for this area the tidal dynamics have an even larger effect in the range of 19–32 cm. However, the relative contributions of the three drivers of change vary in space across the delta. In summary, our study confirms the claims that the high-dyke development has raised the flood

  5. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  6. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    Science.gov (United States)

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Changes in the Mountain Cryosphere and Potential Risks to Downstream Communities: Insights from the Indian Himalayan Region

    Science.gov (United States)

    Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus

    2017-04-01

    Mountain environments around the world are often considered to be amongst the most sensitive to the impacts of climate change. For people living in mountain communities, there are clear challenges to be faced as their livelihoods and subsistence are directly dependent on their surrounding natural environment. But what of the wider implications for societies and large urban settlements living downstream - why should they care about the climate-driven changes occurring potentially hundreds of kilometers away in the snow and ice capped mountains? In this contribution we address this question, drawing on studies and experiences gained within joint Indo-Swiss research collaborations focused on the Indian Himalayan states of Himachal Pradesh and Uttarakhand. With the Intergovernmental Panel on Climate Change currently embarking on the scoping of their 6th Assessment Cycle, which includes a planned Special Report on Oceans and the Cryosphere, this contribution provides a timely reminder of the importance of mountain regions, and potential far-reaching consequences of changes in the mountain cryosphere. Our studies highlight several key themes which link the mountain environment to the lowland populated areas, including the role of the mountain cryosphere as a water source, far-reaching hazards and disasters that can originate from mountain regions, the role of mountains in providing essential ecosystem services, the economic importance of tourism in mountain regions, and the importance of transportation routes which pass through mountain environments. These themes are intricately linked, as for example demonstrated during the 2013 Uttarakhand flood disaster where many of the approximately 6000 fatalities were tourists visiting high mountain pilgrimage sites. As a consequence of the disaster, tourists stayed away during subsequent seasons with significant economic impacts felt across the State. In Himachal Pradesh, a key national transportation corridor is the Rohtang pass

  8. Discussion of the enabling environments for decentralised water systems.

    Science.gov (United States)

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).

  9. Antiquarian books as source of environment historical water data.

    Science.gov (United States)

    Schram, Jürgen; Schneider, Mario; Horst, Rasmus; Thieme, Hagen

    2009-05-01

    Historical environment considerations are inevitable also for modern environmental analysis. They alone allow evaluation of anthropogenic impact into the environment. To receive information about the historical environment situation in inhabited regions, we approached this task by examining historical well dated and locatable products of the Homo faber. The work introduced here uses books as a source of environment historical data specially for the environmental compartment of water. The paper of historical books, dated by their printing and allocated by their watermark(1) (Wasserzeichensammlung Piccard, Piccard online, Hauptstaatsarchiv Stuttgart, ) is a trap for traces of heavy metals contaminating their production water in historical times. Great amounts of water were brought into contact with the paper pulp in the historical paper mill process. The cellulose of the pulp acts as an ion exchange material for heavy metals, forming a dynamic equilibrium. A well defined pulp production process, starting with used clothes, allows estimation of the concentration of historical heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) in the production water (river water). Ancient papers from well dated books are eluted without destruction of their paper and the resulting solution is analysed by ETAAS and inverse stripping voltammetry to determine the historical impact of metals. Afterwards in a flow system the eluted paper spot is equilibrated with different concentrations of heavy metals (Cu(2+), Pb(2+), Zn(2+), Cd(2+)) to plot the adsorption isotherm of that very spot. Both data together allows a calculation of the heavy metal content of the historical river. For different waters of Germany and the Netherlands of the 16th-18th Century the heavy metal load could be estimated. The resulting concentrations were mostly similar to the level of modern surface waters, but in the case of the Dutch waters of the 17th Century, they were e.g. for Pb(2+) significantly higher than modern

  10. Evaluating the Invasion of Red Cedar (Juniperus viriginiana) Downstream of Gavins Point Dam, Missouri National Recreational River

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2013-12-01

    Gavins Point Dam, the final dam on the main-stem Missouri River, alters downstream river form and function. Throughout a 59-mile downstream reach, the dam reduces overbank flooding and lowers the water surface by 1-3 meters. Under the dam-created hydro-geomorphic conditions, native cottonwood trees are unable to regenerate. The limited regeneration of native riparian cottonwoods, the lowered water surface, and the reduced overbank flooding creates a terrace environment within the riparian habitat. Consequently, red cedars, a native upland tree, are invading this new terrace-like riparian environment. To this end, we apply Bayesian statistical models to investigate patterns of red cedar riparian invasion and assess ecosystem function patterns along this flow-regulated reach. We set up plots within cottonwood stands along a 59-km reach downstream of Gavins Point Dam. Within each plot, we collected soil samples, litter samples, stem densities of trees, and collected cores of the largest cottonwood and largest red cedar in each plot. To assess influences of red cedar on soil indicators of ecosystem function and general patterns of ecosystem function within the study area, we measured organic carbon, nitrogen, pH, electrical conductivity, and hydrophobicity. To determine drivers and patterns of invasion and ecosystem function we conducted Bayesian linear regressions and means comparison tests. Red cedars existed along the floodplain prior to regulation. However, according to our tree age data and stem density data red cedars existed at a lower population than today. We found that 2 out of 565 red cedars established before the dam was completed. Also, we found no significant difference in soil properties between soils with established red cedar and soils with established cottonwood. By studying soil texture data, and interpreting fluvial geomorphic surfaces in the field and via aerial photography, we found soil texture generally reflects the type of fluvial surface

  11. Small larvae in large rivers: observations on downstream movement of European grayling Thymallus thymallus during early life stages.

    Science.gov (United States)

    Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J

    2017-06-01

    Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.

  12. Pharmaceuticals in the Built and Natural Water Environment of the United States

    Directory of Open Access Journals (Sweden)

    Randhir P. Deo

    2013-09-01

    Full Text Available The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows, and improving efficiency of treatment facilities.

  13. Water and environment news. No. 16

    International Nuclear Information System (INIS)

    2002-11-01

    This issue of the Water and Environment Newsletter covers the status of the Global Network of Isotopes in Precipitation (GNIP), highlights of the Coordinated Research Project on 'Isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate' and perspectives on river basin hydrology and monitoring

  14. Simulation of hanging dams downstream of Ossauskoski power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, J.; Huokuna, M. [Finnish Environment Inst., Helsinki (Finland); Severinkangas, K.; Talvensaari, M. [Kemijoki Oy, Rovaniemi (Finland)

    2008-07-01

    Sixteen power plants have been constructed along Finland's Kemijoki River for hydroelectric power production. The Ossauskoski facility has recently undergone major renovations and upgrade, making it the sixth largest hydroelectric power plant in Finland, with a new capacity of 124 MW and an annual energy output of 501 GWh. The increase in power output and discharge may cause changes in ice conditions downstream of the power plant. The section of the river is already subjected to frazil ice problems and hanging dam formation. Discharges and adverse effects of frazil ice phenomena are likely to increase due to climate change, resulting in harm for hydropower production and the environment, particularly in flow regulated rivers where winter discharges are higher than natural discharges. As such, a study was launched to investigate a dredge plan suggested by by the electric utility Kemijoki Oy. The project involved mapping the river bed topography to identify the location and extent of hanging dams. A sounding device and ground penetrating radar was used to find the thaw regions in the ice cover. The JJT numerical river ice model was effectively used to study the effect of hanging dams on water levels. However, the ice bridging phenomena was not modelled in a reliable way by the JJT model and will be modelled in the future using the CRISSP2D numerical model. 5 refs., 11 figs.

  15. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  16. Zinc sacrificial anode behavior at elevated temperatures in sodium chloride and tap water environments

    International Nuclear Information System (INIS)

    Othman, Othman Mohsen

    2005-01-01

    Zinc sacrificial anode coupled to mild steel was tested in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified for this study. This was partly due to the high resistivity of the medium. The temperature factor did not help to activate the anode in water tap medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. In tap water environment the anode weight loss was negligible. The zinc anode suffered intergranular corrosion in sodium chloride environment and this was noticed starting at 40 degree centigrade. In tap water environment the zinc anode demonstrated interesting behavior beyond 60 degree centigrade, that could be attributed to the phenomenon of reversal of potential at elevated temperatures. It also showed shallow pitting spots in tap water environment without any sign of intergranular corrosion. Zinc anodes would suffer intergranular corrosion at high temperatures. (author)

  17. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  18. Biodegradation of poly(ε-caprolactone in natural water environments

    Directory of Open Access Journals (Sweden)

    Heimowska Aleksandra

    2017-03-01

    Full Text Available The environmental degradation of poly(ε-caprolactone[PCL] in natural fresh water (pond and in The Baltic Sea is presented in this paper. The characteristic parameters of both environments were measured during experiment and their influence on the biodegradation of the samples was discussed. The loss of weight and changes of surface morphology of polymer samples were tested during the period of incubation. The poly(ε-caprolactone was more biodegradable in natural sea water than in pond. PCL samples were completely assimilated over the period of six weeks incubation in The Baltic Sea water, but after forty two weeks incubation in natural fresh water the polymer weight loss was about 39%. The results have confirmed that the investigated polymers are susceptible to an enzymatic attack of microorganisms, but their activity depends on environments.

  19. Antecedent conditions control carbon loss and downstream water quality from shallow, damaged peatlands.

    Science.gov (United States)

    Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E

    2014-09-15

    Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by

  20. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    Science.gov (United States)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  1. Flow behavior of droplets downstream of the spacer

    International Nuclear Information System (INIS)

    Kodama, Eiichiro; Morishita, Kiyohide; Aritomi, Masanori; Yano, Takashi

    1998-01-01

    The fuel spacer, of which role is to maintain an appropriate rod-to-rod clearance, is one of the components of a Boiling Water Reactor (BWR) fuel rod bundles. The fuel spacer influences flow characteristics of the liquid film in fuel rod bundles, so that its geometry influences greatly thermal hydraulics such as critical power and pressure drop therein. The purpose of this study is to clarify the effect of the spacer geometry on the core flow split downstream of the spacer. Phase Doppler Anemometry (PDA) was used for their meausrement under the conditions of a small amount of droplets in mist flows. From the experimental results, the normalized droplet velocity profiles with a spacer were split by the spacer and were different between a wider and a narrower regions in the channel, however, they became uniform at the distance far 100mm from the spacer. In the case without a spacer, the velocity was monotonously increasing nearer the rod surface with going toward the center of the channel. In the case with a spacer, the velocity profile downstream of the spacer changed in the narrower region of the channel. This tendency became more remarkable with thickening the spacer and widening clearance between the spacer and the wall. In this paper, 'drift' velocity effect was applied for the spacer model, due to the gas flows were split by the spacer which is based on the momentum balance between the narrower and wider channels. This model was confirmed from the experimental results that the droplet flowed from a wider region to a narrower one. This drift effect appeared more strongly as the spacer became thicker and the clearance did narrower. The analytical results explained qualitatively the measured ones. It is clarified that the drift effect proposed in this work was a dominant factor on droplet deposition downstream of the spacer

  2. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  3. Effects of abandoned arsenic mine on water resources pollution in north west of iran.

    Science.gov (United States)

    Hajalilou, Behzad; Mosaferi, Mohammad; Khaleghi, Fazel; Jadidi, Sakineh; Vosugh, Bahram; Fatehifar, Esmail

    2011-01-01

    Pollution due to mining activities could have an important role in health and welfare of people who are living in mining area. When mining operation finishes, environ-ment of mining area can be influenced by related pollution e.g. heavy metals emission to wa-ter resources. The present study was aimed to evaluate Valiloo abandoned arsenic mine ef-fects on drinking water resources quality and possible health effects on the residents of min-ing area in the North West of Iran. Water samples and some limited composite wheat samples in downstream of min-ing area were collected. Water samples were analyzed for chemical parameters according to standard methods. For determination of arsenic in water samples, Graphite Furnace Atomic Absorption Spectrometric Method (GFAAS) and for wheat samples X - Ray Fluorescence (XRF) and Inductively Coupled Plasma Method (ICP) were used. Information about possible health effects due to exposure to arsenic was collected through interviews in studied villages and health center of Herris City. The highest concentrations of arsenic were measured near the mine (as high as 2000 µg/L in Valiloo mine opening water). With increasing distance from the mine, concentration was decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no health effects had been reported between residents of studied area due to exposure to arsenic. Valiloo abandoned arsenic mine has caused release of arsenic to the around en-vironment of the mine, so arsenic concentration has been increased in the groundwater and also downstream river that requires proper measures to mitigate spread of arsenic.

  4. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses......), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6. billion. CNY/year. Compliance to water quality grade III causes a relatively...

  5. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  6. Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Ramli, Mohammad Firuz; Juahir, Hafizan

    2012-01-01

    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.

  7. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen

    2012-05-01

    Maximizing the optical network unit’s (ONU) sleep time is an effective approach for achieving maximum energy conservation in green Ethernet passive optical networks (EPONs). While overlapping downstream and upstream ONU transmissions can maximize the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green EPONs under the limited service discipline and the upstream-based overlapped time window. Specifically, we first derive the expected mean packet delay, and then present a closed-form expression of the ONU sleep time, setting identical upstream/downstream transmission cycle times based on a maximum downstream traffic delay re-quirement. With the proposed system model, we present a novel downstream bandwidth allocation scheme for energy conservation in green EPONs. Simulation results verify the proposed model and highlight the advantages of our scheme over conventional approaches.

  8. Emerging and potentially emerging viruses in water environments

    Directory of Open Access Journals (Sweden)

    Giuseppina La Rosa

    2012-12-01

    Full Text Available Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments.

  9. Water Environment Evolution along the China Grand Canal

    International Nuclear Information System (INIS)

    Mao, F; Wu, Y X; Yang, B F; Li, X J

    2014-01-01

    The China Grand Canal is one of the earliest canals in the world, having lasted for nearly 3000 years. Even its section canals have a rich history, such as the North-South Grand Canal that was established during the Sui Dynasty, whereas the Beijing-Hangzhou Canal was excavated during the Yuan Dynasty and the east line of the South-to-North Water Diversion. As one of the longest in the world, the China Grand Canal's total length is over 3500 kilometers. This length includes the navigable, unnavigable, and underground sections. Making the best use of situations and according to local conditions, the Chinese people harmoniously constructed the Beijing-Hangzhou Canal with nature. Tens of millions of workers took nearly 3000 years to complete the great shipping system. Navigable sections still exist for up to 900 kilometers and the volume of freight traffic is approximately 300 million tons. The canal remains the main logistical channel of the North-to-South Coal Transportation, South-to-North Water Diversion, and resources circulation. To date, China is promoting the success of heritage application. Part of these efforts is the declaration of the China Grand Canal as a World Cultural Heritage by 2014. In addition, the east route of the South-to-North Water Transfer project is planned to be navigable by 2016. The ancient Beijing-Hangzhou Grand Canal will usher in the new ecological civilization and cultural revival along the canal. This paper presents technical methods of water environment evolution research on the river system, river, and water quality along the Beijing-Hangzhou Canal through the integration of historical literature and modern remote sensing image data. The study carried out water environment investigation and analysis along the Beijing-Hangzhou canal by using ETM, SPOT image data, and GPS measurement data. Spatial and temporal evolution characteristics and regulations of the Beijing-Hangzhou Grand Canal regional water environment in the span of

  10. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    Science.gov (United States)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  11. Research on the water environment capacity of Qingyi River (Xuchang Section with GIS technology

    Directory of Open Access Journals (Sweden)

    Wang Li

    2017-01-01

    Full Text Available Water environment capacity calculation is the foundation of basin environment management. Due to lack of basic materials and data, the water environment capacity in small basin was not massively researched with appropriate calculating method. This paper mentioned a water capacity calculating method suitable for environment management. The method was based on the study of Xuchang Section of Qingyi River and described with details as follows: Xuchang Section was divided into four control units with GIS technology. The river pollution loads of non-point source pollutants from farmland runoff, rural life, livestock and poultry were calculated with the in-site and statistical data of pollution resource. Meanwhile the calculated river pollution loads of non-point / point source pollutants were statistically analyzed on the basis of control units. Then a water quality module was tested and verified, in which the predicted value tallied with the measured value. The parameter of this water quality module corresponds to the in-site data within relative error ±14%. This module was used to estimate and calculate water environment capacity. With this module the available water environment capacity of each control unit and pollutant reduction amount can be earned through deducting the river pollutant load of point pollutant. The results showed that the utilized method in this paper can satisfy the requirement for the calculating accuracy of small basin water environment capacity.

  12. Environment purification using microorganisms. Biseibutsu ni yoru kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H [Asahi Glass Co. Ltd., Tokyo (Japan); Harada, S

    1993-12-01

    Technologies to purify polluted soils vary with kinds of pollutants, spread of pollution, and shapes of water veins. A method is used often that several wells are drilled in a polluted area, and water is circulated between upstream wells and downstream wells, where activities of microorganisms living in that particular environment are utilized to biodegrade the pollutants. This technology is called bioremediation. This paper deals with soil pollution by chemical substances, and describes development of a technology to remove pollution caused by PCB and petroleum which is thought difficult to apply the bioremediation technology among environment purifying technologies using microorganisms. The bioremediation of petroleum pollution assumes petroleum pollution on seashores. Discussions have been given on separation from sea water of petroleum decomposing microorganisms to be used in the bioremediation, and the number of petroleum decomposing bacteria in seas near Japan. As a result, it was made clear that a few kinds of bacteria will suffice for decomposition of main components in a mixture as complex as petroleum. 5 refs., 4 figs.

  13. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range?

    Directory of Open Access Journals (Sweden)

    Russell G. DEATH

    2011-09-01

    Full Text Available Reduced thermal amplitude has been highlighted as a limiting factor for aquatic invertebrate diversity in springs. Moving downstream water temperature range increases and invertebrate richness is expected to change accordingly. In the present study temperature patterns were investigated in seven spring-fed streams, between April 2001 and November 2002, and compared to five run-off-fed streams to assess the degree of crenic temperature constancy. Temperature and physico-chemical characteristics of the water, and food resource levels were measured, and the invertebrate fauna collected at 4 distances (0, 100, 500 m and 1 km from seven springs in the North and South Islands of New Zealand. Temperature variability was greater for run-off-fed streams than for springs, and increased in the spring-fed streams with distance from the source. Periphyton and physico-chemical characteristics of the water did not change markedly over the 1 km studied, with the exception of water velocity and organic matter biomass, which increased and decreased, respectively. The rate of increase in temperature amplitude differed greatly for the studied springs, probably being affected by flow, altitude, and the number and type of tributaries (i.e., spring- or run-off-fed joining the spring-fed stream channel. Longitudinal changes in the number and evenness of invertebrate taxa were positively correlated to thermal amplitude (rs = 0.8. Moving downstream, invertebrate communities progressively incorporated taxa with higher mobility and taxa more common in nearby run-off-fed streams. Chironomids and non-insect taxa were denser at the sources. Chironomid larvae also numerically dominated communities 100 and 500 m downstream from the sources, together with Pycnocentria spp. and Zelolessica spp., while taxa such as Hydora sp. and Hydraenidae beetles, the mayflies Deleatidium spp. and Coloburiscus humeralis, and the Trichoptera Pycnocentrodes spp., all had greater abundances 1 km

  14. Economic valuation of the downstream hydrological effects of land use change: Large hydroelectric reservoirs

    Science.gov (United States)

    Aylward, Bruce Allan

    1998-12-01

    Land use change that accompanies economic development and population growth is intended to raise the economic productivity of land. An inevitable by product of this process is the alteration of natural vegetation and downstream hydrological function. This dissertation explores hydrological externalities of land use change in detail, particularly with regard to their economic impact on large hydroelectric reservoirs (LHRs). A review of the linkages between land use, hydrological function and downstream economic activity suggests that on theoretical grounds the net welfare effect of land use change on hydrological function will be indeterminate. Review of the literature suggests that, though the effects of downstream sedimentation will typically be negative, they may often be of little practical significance. The literature on water quantity impacts is sparse at best. This is most surprising in the case of the literature on LHRs where the potentially important and positive effects of increased water yield are typically ignored in favor of simplistic efforts to document the negative effects of reservoir sedimentation. In order to improve the methodological basis for the economic valuation of hydrological externalities, the dissertation considers existing techniques for the evaluation of non-marketed goods and services, clarifying the manner in which they have been and, in the future, may be applied to the topic at hand. A deterministic simulation model is then constructed for the case of LHRs. The model incorporates the effect of changes in water yield, the seasonal pattern of water yield and sedimentation of live and dead storage volumes as they affect reservoir operation and the production of hydroelectricity. The welfare effects of changes in the productivity of the LHR in the short run and changes to the power system expansion plan in the long run are evaluated using the marginal opportunity costs of alternative power sources and power plants, respectively. A case

  15. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  16. Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River

    Directory of Open Access Journals (Sweden)

    Kong Fanbin

    2015-07-01

    Full Text Available The appropriate economic compensation from downstream to upstream watershed is important to solve China’s social and economic imbalances between regions and can potentially enhance water resources protection and ecological security. The study analyzes the implementation of ecological compensation policy and related legal basis under ecological compensation mechanism theory and practice patterns, based on current natural environment and socio-economic development of national origin in Dongjiang water conservation areas. Under the principle of “Users pay”, the Dongjiang River is the subject of ecological compensation and recipient. By using the “cost-benefit analysis” and “cost method of industrial development opportunity”, we estimate that the total ecological compensation amounted to 513.35 million yuan. When estimated by the indicators such as water quantity, water quality and water use efficiency, we establish the “environmental and ecological protection cost sharing model” and measure the total cost of protecting downstream watershed areas, the Guangdong Province, is about 108.61 million yuan. The implementation of the Dongjiang source region that follows the principles of ecological compensation and approaches are also designed

  17. Research on the water environment capacity of Qingyi River (Xuchang Section) with GIS technology

    OpenAIRE

    Wang Li; Yu Luji; Liu Chunxiao; Sun Nan; Feng Minquan

    2017-01-01

    Water environment capacity calculation is the foundation of basin environment management. Due to lack of basic materials and data, the water environment capacity in small basin was not massively researched with appropriate calculating method. This paper mentioned a water capacity calculating method suitable for environment management. The method was based on the study of Xuchang Section of Qingyi River and described with details as follows: Xuchang Section was divided into four control units ...

  18. An assessment of the parameters and experimental data of the continuous water activity monitors operating in the upstream and downstream channels of the Paks nuclear power plant

    International Nuclear Information System (INIS)

    Nagy, Gy.; Feher, I.

    1986-03-01

    A NaI(Tl) scintillator was placed into a measuring vessel of 8 msup(3) volume for monitoring the effluents in the upstream and downstream channels of the Paks nuclear power plant. The effects of radioactivity, meteorological parameters, and the atmospheric pressure on the counting rates, and their daily and monthly average values in both channels were analyzed. The short-term increases of the monitor signals could be attributed to rainy weather. The sup(222)Rn countent of water was also evaluated. (author)

  19. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    Science.gov (United States)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  20. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Tominaga, Akira; Fukano, Tohru

    2007-01-01

    If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t Fm is approximately the same before and behind the spacer

  1. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)], E-mail: morisho@ynu.ac.jp; Tominaga, Akira [Ube National College of Technology, Ube 755-8555 (Japan)], E-mail: tominaga@ube-k.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)], E-mail: fukanot@cc.kurume-it.ac.jp

    2007-12-15

    If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t{sub Fm} is approximately the same before and behind the spacer.

  2. Rapid reservoir erosion, hyperconcentrated flow, and downstream deposition triggered by breaching of 38 m tall Condit Dam, White Salmon River, Washington

    Science.gov (United States)

    Wilcox, Andrew C.; O'Connor, James E.; Major, Jon J.

    2014-01-01

    Condit Dam on the White Salmon River, Washington, a 38 m high dam impounding a large volume (1.8 million m3) of fine-grained sediment (60% sand, 35% silt and clay, and 5% gravel), was rapidly breached in October 2011. This unique dam decommissioning produced dramatic upstream and downstream geomorphic responses in the hours and weeks following breaching. Blasting a 5 m wide hole into the base of the dam resulted in rapid reservoir drawdown, abruptly releasing ~1.6 million m3 of reservoir water, exposing reservoir sediment to erosion, and triggering mass failures of the thickly accumulated reservoir sediment. Within 90 min of breaching, the reservoir's water and ~10% of its sediment had evacuated. At a gauging station 2.3 km downstream, flow increased briefly by 400 m3 s−1during passage of the initial pulse of released reservoir water, followed by a highly concentrated flow phase—up to 32% sediment by volume—as landslide-generated slurries from the reservoir moved downstream. This hyperconcentrated flow, analogous to those following volcanic eruptions or large landslides, draped the downstream river with predominantly fine sand. During the ensuing weeks, suspended-sediment concentration declined and sand and gravel bed load derived from continued reservoir erosion aggraded the channel by >1 m at the gauging station, after which the river incised back to near its initial elevation at this site. Within 15 weeks after breaching, over 1 million m3 of suspended load is estimated to have passed the gauging station, consistent with estimates that >60% of the reservoir's sediment had eroded. This dam removal highlights the influence of interactions among reservoir erosion processes, sediment composition, and style of decommissioning on rate of reservoir erosion and consequent downstream behavior of released sediment.

  3. A coupled modelling effort to study the fate of contaminated sediments downstream of the Coles Hill deposit, Virginia, USA

    Directory of Open Access Journals (Sweden)

    C. F. Castro-Bolinaga

    2015-03-01

    Full Text Available This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.

  4. The impact of a hydroelectric power plant on the sediment load in downstream water bodies, Svartisen, northern Norway.

    Science.gov (United States)

    Bogen, J; Bønsnes, T E

    2001-02-05

    When the Svartisen hydroelectric power plant was put into operation, extensive sediment pollution was observed in the downstream fjord area. This paper discusses the impact of the power plant and the contribution from various sources of sediment. Computation of the sediment load was based on samples collected one to four times per day. Grain size distribution analyses of suspended sediments were carried out and used as input in a routing model to study the movement of sediments through the system. Suspended sediment delivered to the fjord before the power station was constructed was measured as 8360 metric tons as an annual mean for a 12-year period. During the years 1995-1996 when the power plant was operating, the total suspended load through the power station was measured as 32609 and 30254 metric tons, respectively. Grain size distribution analyses indicate a major change in the composition of the sediments from 9% clay before the power plant was operative to 50-60% clay afterwards. This change, together with the increase in sediment load, is believed to be one of the main causes of the drastic reduction in secchi depths in the fjord. The effect of the suspended sediment load on the fjord water turbidity was evaluated by co-plotting secchi depth and power station water discharge. Measurements during 1995 and 1996 showed that at the innermost of these locations the water failed to attain the minimum requirement of 2 m secchi depth. In later years secchi depths were above the specified level. In 1997 and 1998 the conditions improved. At the more distal locality, the conditions were acceptable with only a few exceptions. A routing model was applied to data acquired at a location 2 km from the power station in order to calculate the contributions from various sediment sources. This model indicated that the contribution from reservoir bed erosion dominated in 1994 but decreased significantly in 1995. Future operation of the power station will mostly take place with

  5. Differences in sedge fen vegetation upstream and downstream from a managed impoundment

    Science.gov (United States)

    Kowalski, Kurt P.; Wilcox, Douglas A.

    2003-01-01

    The U.S. Fish and Wildlife Service proposed the restoration of wetlands impacted by a series of drainage ditches and pools located in an extensive undeveloped peatland in the Seney National Wildlife Refuge, Michigan. This study examined the nature and extent of degradation to the Marsh Creek wetlands caused by alteration of natural hydrology by a water-storage pool (C-3 Pool) that intersects the Marsh Creek channel. We tested the hypothesis that a reduction in moderate-intensity disturbance associated with natural water-level fluctuations below the C-3 dike contributed to lower species richness, reduced floristic quality and a larger tree and shrub component than vegetation upstream from the pool. Wetland plant communities were sampled quantitatively and analyzed for species richness, floristic quality and physiognomy. Aerial photographs, GIS databases and GPS data contributed to the characterization and analysis of the Marsh Creek wetlands. Results showed that there was lower species richness in vegetated areas downstream from the pool, but not the anticipated growth in shrubs. Wetland vegetation upstream and downstream from the pool had similar floristic quality, except for a greater number of weedy taxa above the pool. Seepage through the pool dike and localized ground-water discharge created conditions very similar to those observed around beaver dams in Marsh Creek. In essence, the dike containing the C-3 Pool affected hydrology and wetland plant communities in a manner similar to an enormous beaver dam, except that it did not allow seasonal flooding episodes to occur. Management actions to release water from the pool into the original Marsh Creek channel at certain times and in certain amounts that mimic the natural flow regime would be expected to promote greater plant species richness and minimize the negative impacts of the dike.

  6. Study benefit value of utilization water resources for energy and sustainable environment

    Science.gov (United States)

    Juniah, Restu; Sastradinata, Marwan

    2017-11-01

    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  7. Sustainable development of energy, water and environment systems

    International Nuclear Information System (INIS)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav; Klemeš, Jiří Jaromír; Mathiessen, Brian vad; Yan, Jinyue

    2013-01-01

    Highlights: ► This special issue of contributions presented at the 6th SDEWES Conference. ► Buildings are becoming energy neutral. ► Process integration enables significant improvements of energy efficiency. ► The electrification of transport and measures to increase its efficiency are needed. ► Renewable energy is becoming more viable while being complicated to integrate. -- Abstract: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations.

  8. Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert J. Gonzales

    2008-05-12

    Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) and common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties

  9. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    uptake distribution based on the labeling experiments implies main water uptake occurring in the upper two meters of the soil; however, infrequent uptake up to four meters depth was registered. The HYDRUS 1D model reveals a strong impact of the implemented root distribution on unsaturated zone water transport and transpiration to evaporation rates of 3:1. Lessons learned from this field and modeling study for semiarid environments are: i) Using soil profiles from the dry season are suitable for investigating groundwater use by certain plant species. Soil profiles from or shortly after the rainy season as input for mixing models lead to ambitious results, mainly due to the fact that water sources are too similar; ii) A variety of techniques is required in order to improve the understanding of water uptake in deep unsaturated zones; and iii) Characteristic parameters such as deep percolation are subject to large uncertainties and cannot be modeled accurately if the root distribution on site is not represented correctly. There is an urgent need to incorporate these aspects into any modeling approach and for investigating ecohydrological separation across environments.

  10. Imaging optical probe for pressurized steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.

    1979-01-01

    An air-cooled imaging optical probe, with an outside diameter of 25.4 mm, has been developed to provide high resolution viewing of flow regimes in a steam-water environment at 343 0 C and 15.2 MPa. The design study considered a 3-m length probe. A 0.3-m length probe prototype was fabricated and tested. The optical probe consists of a 3.5-mm diameter optics train surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optics train will exceed 93 0 C when a 3-m length probe is immersed in a 343 0 C environment. Computer stress analysis plus actual tests show that the probe can operate successfully with conservative safety factors. The imaging optical probe was tested five times in the design environment at the semiscale facility at the INEL. Two-phase flow regimes in the high temperature, high pressure, steam-water blowdown and reflood experiments were recorded on video tape for the first time with the imaging optical probe

  11. Pavement-Watering for Cooling the Built Environment: A Review

    OpenAIRE

    Hendel , Martin

    2016-01-01

    Pavement-watering is being considered by decision-makers in many cities as a means of cooling the built environment and of adapting to rising extreme heat events due to climate change. In this article we review the existing literature on the topic of pavement-watering. We first focus on the methodological choices made in the literature, including study approach and scale, watering methods used as well as how results are analyzed. We then discuss the cooling effects reported, separating micro-...

  12. Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.

    Science.gov (United States)

    Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M

    2013-08-01

    The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.

  13. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  14. Anthropogenic phosphorus (P) inputs to a river basin and their impacts on P fluxes along its upstream-downstream continuum

    Science.gov (United States)

    Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert

    2017-04-01

    Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.

  15. Corrosion mechanisms downstream the nuclear cycle: from processing-recycling to transmutation

    International Nuclear Information System (INIS)

    Balbaud-Celerier, F.

    2010-01-01

    The author gives a detailed overview of his scientific and research activities in the field of material behaviour in environments met during the downstream part of the nuclear cycle. In the first part, he presents his works on material corrosion in concentrated and high temperature nitric acid, and more particularly on the phenomenon which governs this corrosion: the nitric acid reduction mechanism. In the second part, he reports researches performed within the frame of hybrid reactor development for the processing of future fuels. In both parts, he also discusses the perspectives for new researches and developments

  16. Sustainable development of energy, water and environment systems

    DEFF Research Database (Denmark)

    Duić, Neven; Guzović, Zvonimir; Kafarov, Vyatcheslav

    2013-01-01

    The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems (SDEWES Conference), attended by 418 scientists from 55 countries representing six continents. It was held in 2011 and dedicated to the improvement and dissemination of knowledge on methods, policies...

  17. Direct methods for radionuclides measurement in water environment

    International Nuclear Information System (INIS)

    Chernyaev, A.; Gaponov, I.; Kazennov, A.

    2004-01-01

    The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90 Sr detection are considered

  18. Philippines' downstream sector poised for growth

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector

  19. Water and environment news. No. 1

    International Nuclear Information System (INIS)

    1997-09-01

    This news bulletin will brief the reader on news related to isotope applications in the water and environment sector. It will bring the reader up to date on what is going on in the various projects constituting the IAEA sub programme entitled D evelopment and Management of Water Resources , and will highlight new results and achievements made in implementing the programme activities, including those jointly carried out with other organizations and institutes. Furthermore, the news bulletin will serve as an international open forum for the exchange of information in isotope hydrology and related fields. The first issue will make readers acquainted with general aspects of the Agency's sub-programme mentioned above, give an overview on past activities and achievements, and highlight current ones. The Agency's staff involved in all these activities is briefly introduced

  20. Emerging pollutants in the environment: A challenge for water resource management

    Directory of Open Access Journals (Sweden)

    Violette Geissen

    2015-03-01

    A combination of regulations and management measures with respect to use/emissions of EPs into the environment, as well as to their occurrence in the environment are fundamental to reach an efficient water resource management.

  1. Continuous downstream processing of biopharmaceuticals.

    Science.gov (United States)

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A floating trap for sampling downstream migrant fishes.

    Science.gov (United States)

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  3. Downstream ecological effects of dams: A geomorphic perspective

    International Nuclear Information System (INIS)

    Ligon, F.K.; Dietrich, W.E.; Trush, W.J.

    1995-01-01

    The damming of a river changes the flow of water, sediment, nutrients, energy, and biota, interrupting and altering most of a river's ecological processes. This article discusses the importance of geomorphological analysis in river conservation and management. To illustrate how subtle geomorphological adjustments may profoundly influence the ecological relationships downstream from dames, three case studies are presented. Then a geomorphically based approach for assessing and possibly mitigating some of the environmental effects of dams by tailoring dam designed and operation is outlined. The cases are as follows: channel simplification and salmon decline on the McKenzie River in Oregon; Channel incision and reduced floodplain inundation on the Oconee river in Georgia; Increased stability of a braided river in New Zealand's south island. 41 refs., 10 figs., 1 tab

  4. Modelling in waters geochemistry. Concepts and applications in environment

    International Nuclear Information System (INIS)

    Windt, L. de; Lee, J.V.D.; Schmitt, J.M.

    2005-01-01

    The aim of this work is to give the main point of the physico-chemical concepts and of the mathematical laws on which are based the geochemical modelling of waters, while presenting concrete and typical applications examples to the problems of environment and of water resources management. In a table (Doc. AF 6530) are gathered the distribution sources of softwares and of thermodynamic data banks. (O.M.)

  5. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  6. [Assessment of ecological environment benefits of reclaimed water reuse in Beijing].

    Science.gov (United States)

    Fan, Yu-Peng; Chen, Wei-Ping

    2014-10-01

    With the rapid development of the social economy and the sustained growth of population, China is facing increasingly serious water problems, and reclaimed water utilization has become an effective measure to solve water shortage problem and to control further deterioration of the ecological environment. Reclaimed water utilization can not only save a lot of fresh water, but also reduce the environmental impact of wastewater discharge, and thus has great ecological environmental benefits, including resource, environmental and human health benefits and so on. This study used the opportunity cost method to construct an evaluation system for ecological environmental benefits of reclaimed water utilization, and Beijing was taken as an example to conduct an estimation of ecological environmental benefits of reclaimed water utilization. Research results indicated that the reclaimed water utilization in Beijing had considerable environmental benefits for ¥ 1.2 billion in 2010, in which replacement of fresh water accounted for the largest share. The benefits of environmental improvement and groundwater recharge were large, while the other benefits were small or negative. The ecological environment benefits of reclaimed water utilization in Beijing was about 1.8 times that of its direct economic benefits, showing that reclaimed water utilization was in accordance with sustainable development. Related methods and results will provide scientific basis to promote the development of reclaimed water utilization in our country.

  7. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  8. Past and present management of water resources in karst environments

    Science.gov (United States)

    Parise, Mario

    2010-05-01

    Karst is a very peculiar environment, and has a number of intrinsic features that clearly distinguish it from any other natural setting. Hydrology of karst is dominated by absence or very scarce presence of surface runoff, since water rapidly infiltrates underground through the complex network of conduits and fissures that are at the origin of the development of karst caves. The limited presence of water at the surface represented the main problem to be faced by man, starting from the very first historic phases of establishing settlements in karst territories. As often happens in areas with limited natural resources, man was however able to understand the local environment through observations and direct experience, develop technique in order to collect the limited available water resources, and adapt his way of life to the need of the natural environment. In a few words, a sustainable use of the water resources was reached, that went on for many centuries, allowing development of human settlements and agriculture, and, at the same time, protecting and safeguarding the precious hydric resources. Some of the most typical rural architectures built in karst areas of the Mediterranean Basin can be described as examples of such efforts: from the dry stone walls, to many types of storage-houses or dwellings, known with different names, depending upon the different countries and regions. Dry stone walls, in particular, deserve a particular attention, since they had multiple functions: to delimit the fields and properties, to act as a barrier to soil erosion, to allow terracing the high-gradient slopes, to collect and store water. At this latter aim, dry stone walls were build in order to create a small but remarkable micro-environment, functioning as collectors of moisture and water vapour. In the last centuries, with particular regard to the last decades of XX century, the attention paid by man to the need of the natural environment has dramatically changed. This

  9. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment.

    Science.gov (United States)

    Li, Yinghui; Huang, Shuaijin; Qu, Xuexin

    2017-10-27

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter "Reservoir Area"). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  10. Journal of Sustainable Development of Energy, Water and Environment Systems - Volume II

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2014-12-01

    Full Text Available The Journal of Sustainable Development of Energy, Water and Environment Systems – JSDEWES is an international journal dedicated to the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water, environment and food production systems and their many combinations. In total 32 manuscripts were published in Volume II, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  11. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  12. Use of aquatic mosses for monitoring artificial radionuclides downstream of the nuclear power plant of Bugey (River Rhone, France)

    International Nuclear Information System (INIS)

    Beaugelin-Seiller, K.; Brottet, D.

    1994-01-01

    The detection of radionuclides in water, downstream of nuclear installations located on river banks, is often very difficult notably because of their low concentrations. Thus the use of biological indicators is an interesting process to detect radioactive contamination of an aquatic ecosystem. From 1986 to 1990, artificial radionuclides were measured in freshwater mosses sampled downstream of the nuclear power station of Bugey. These field data on the whole, have shown a comparatively good qualitative and quantitative relationship between radioactive composition of liquid waste and radionuclides detected in mosses. In other respects, the results showed up a relatively clear hierarchical structure in the affinity of the different radionuclides for the mosses. To specify these relations, mesh bags containing allochtonous mosses were immersed at four stations downstream of the power plant and regularly sampled during a 10-h waste discharge period. (author)

  13. The Effects of Dams on Downstream Channel Characteristics in Pennsylvania and Maryland: Assessing the Potential Consequences of Dam Removal

    Science.gov (United States)

    Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.

    2003-12-01

    The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.

  14. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE) Model of Water Resources and Water Environments

    OpenAIRE

    Guohua Fang; Ting Wang; Xinyi Si; Xin Wen; Yu Liu

    2016-01-01

    To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE) model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and out...

  15. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen; Dhaini, Ahmad R.; Ho, Pin-Han; Shihada, Basem; Shen, Gangxiang; Lin, Chih-Hao

    2012-01-01

    the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green

  16. Sustainability, Water and Environment in Spain; Sostenibilidad, Agua y Medio Ambiente en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Arias, M. M.

    2003-07-01

    The past June 5, Worldwide Day of the Environment, dedicated to the sweet water, the Spanish Club of the Environment realized, as every year, its particular celebration, with a lunch-colloquium over the situation of the sweet water in Spain. This article purports to order the debate, reflecting the degree of diversity of the discussed subjects. (Author)

  17. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Directory of Open Access Journals (Sweden)

    Yinghui Li

    2017-10-01

    Full Text Available The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”. However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1 model, and build a new GM (1,1 model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1 model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area.

  18. Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment

    Science.gov (United States)

    Huang, Shuaijin; Qu, Xuexin

    2017-01-01

    The Three Gorges Project was implemented in 1994 to promote sustainable water resource use and development of the water environment in the Three Gorges Reservoir Area (hereafter “Reservoir Area”). However, massive discharge of wastewater along the river threatens these goals; therefore, this study employs a grey prediction model (GM) to predict the annual emissions of primary pollution sources, including industrial wastewater, domestic wastewater, and oily and domestic wastewater from ships, that influence the Three Gorges Reservoir Area water environment. First, we optimize the initial values of a traditional GM (1,1) model, and build a new GM (1,1) model that minimizes the sum of squares of the relative simulation errors. Second, we use the new GM (1,1) model to simulate historical annual emissions data for the four pollution sources and thereby test the effectiveness of the model. Third, we predict the annual emissions of the four pollution sources in the Three Gorges Reservoir Area for a future period. The prediction results reveal the annual emission trends for the major wastewater types, and indicate the primary sources of water pollution in the Three Gorges Reservoir Area. Based on our predictions, we suggest several countermeasures against water pollution and towards the sustainable development of the water environment in the Three Gorges Reservoir Area. PMID:29077006

  19. Water and environment news. No. 5

    International Nuclear Information System (INIS)

    1998-10-01

    This issue provides information on the Agency's involvement in a topical field, the application of isotope techniques in climate change studies. It also contains contributions on noble gas isotopes and applications and on the Canadian network for isotopes in precipitation. the issue also highlights the scientific forum on 'Nuclear Technology in Relation to Water Resources and the Aquatic Environment' held from 22 to 24 September 1998 at the IAEA in Vienna and the achievements of the Agency's Co-ordinated Research Project on 'Use of isotopes for analyses of flow and transport dynamics in groundwaer systems'

  20. Surface water - groundwater relationship in the downstream part of the Komadougou Yobe River (Eastern Sahelian Niger)

    Science.gov (United States)

    Hector, B.; Genthon, P.; Luxereau, A.; Descloîtres, M.; Moumouni Moussa, A.; Abdou, H.

    2012-04-01

    The Komadougou Yobe (KY) is a temporary river meandering on nearly 100 km along the Niger/Nigeria border in its lower part, before reaching the endoreic Lake Chad. There, seasonal flow from July to January is related to rainfall amount on the upstream Jos Plateau, Nigeria. In the semi-arid downstream area (350 mm annual rainfall in Diffa, Niger) the KY is the main source of recharge for the sandy quaternary aquifer which is used both for irrigation and for drinking water supply. The borders of the KY in Niger are subjected to an agricultural development involving intensive irrigated cropping of sweet pepper mainly produced for sale in Nigeria. Irrigation waters are mainly extracted from the KY, and therefore irrigation must stop when the River runs dry, but irrigation from wells is now developing with an increased risk of soil salinization. The flow rate of the KY has been impacted both by the 80s and 90s droughts, also underwent by the entire Sahel, and by the building up of a series of dams starting from the 70s in Nigeria. Therefore the KY and its relations with the underlying groundwaters should be carefully monitored to provide guidelines for policy makers in charge of the development of this area. However, in this remote area, data are scarce and often discontinuous : there are for example no continuous groundwater level data from before the drought. As part of the Lake Chad French IRD project, series of campaigns involving water level, exploration geophysics, gravity, soil sampling and social studies have been carried out between 2008 and 2011. They allowed to build a numerical model for groundwater-river interactions which in some instances has been compared with previously recorded data. This model is then forced with theoretical climatic senarii based on humid 60s data and data from the drought period. This allows discussing the relationships between the river and groundwaters in a changing climate. Our results militate for the setting up of a limited

  1. Investigation of wall mass transfer characteristics downstream of an orifice

    International Nuclear Information System (INIS)

    El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.

    2012-01-01

    Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .

  2. Rice production with less irrigation water is possible in a Sahelian environment

    NARCIS (Netherlands)

    Vries, de M.E.; Rodenburg, J.; Bado, B.V.; Sow, A.; Leffelaar, P.A.; Giller, K.E.

    2010-01-01

    We investigated the possibility of saving irrigation water in rice production in a Sahelian environment with different nitrogen rates and weed control treatments. A series of field experiments was conducted at Ndiaye (shallow water table, dry and wet season) and at Fanaye (deep water table, wet

  3. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    Science.gov (United States)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  4. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    Science.gov (United States)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  5. The fate of copepod populations in the Paranapanema River (São Paulo, Brazil, downstream from the Jurumirim dam

    Directory of Open Access Journals (Sweden)

    Mitsuka Patricia Maria

    2002-01-01

    Full Text Available The longitudinal changes in the structure of copepod populations were examined during the dry and rainy seasons in a 42 km stretch of the Paranapanema River downstream from the dam of the Jurumirim Reservoir. Samples were taken in the "lacustrine" zone of the reservoir near the dam, and also at 12 stations distributed in the middle and the lateral regions of the channel of the Paranapanema River downstream from the dam. The following species of Cyclopoida were found at the sites: Thermocyclops decipiens, Thermocyclops minutus, Paracyclops sp., Tropocyclops sp and Mesocyclops sp., and of Calanoida: Argyrodiaptomus furcatus, Notodiaptomus iheringi and Notodiaptomus conifer. In the reservoir sampling station, the copepod abundance during the dry and rainy seasons corresponded to 41 and 51% of the total zooplankton, respectively. This difference could be related to the rainfall and water level variations, and especially to the influence of variables such as water temperature, dissolved oxygen and chlorophyll-a contents. No significant differences in organism numbers were recorded among samples of zooplankton taken in the middle and near-bank parts of the river. In relation to longitudinal variation in the Paranapanema River stretch, a significant decrease in density and disappearance of some species were recorded 11km downstream of the dam during the dry season. At the stations 32km from the dam, a drastic reduction in copepod abundance was observed in the rainy season. These observations could be linked not only to environmental changes from lentic to lotic conditions, but also to the combination of certain factors such as current velocity, water outflow of the reservoir, and rainfall.

  6. Water and environment news. No. 15

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    This issue of Water and Environment Newsletter is being released to coincide with World Water Day on 22 March 2002. The UN General Assembly in 1992 resolved to observe 22 March of each year as the World Water Day to raise public awareness of freshwater issues. The theme for the WWD this year is 'Water for Development' and the IAEA, for the first time, is the lead agency for coordinating UN system's activities for this day. By being the lead agency, a greater awareness is also being achieved on the role of IAEA in the water sector and on the role of isotopes in hydrology. The IAEA has played a pivotal role in promoting and expanding the field of isotope hydrology over the last four decades. Isotope hydrology today is practiced in most countries although the field began nearly 50 years ago with a few research centres in the developed countries involved in understanding the distribution of isotopes in natural waters. The number of analytical facilities has increased steadily as indicated by the increasing number of laboratories participating in IAEA's inter-laboratory comparisons. A significant number of these laboratories in the developing countries have been established with IAEA's support. In addition to geographical spread, the sheer number of hydrological studies with isotopes has shown a substantial increase. Isotopes were used in less than 100 reports of hydrological research and applications in major scientific journals in the period 1960 to 1954. During 1995-2000, however, more than 7000 such reports were published. The primary field of application in the early reports was related to groundwater, but applications in climate change studies, that were nearly nonexistent in 1960, grew to nearly equal to groundwater applications in 1995-2000.

  7. Water and environment news. No. 15

    International Nuclear Information System (INIS)

    2002-03-01

    This issue of Water and Environment Newsletter is being released to coincide with World Water Day on 22 March 2002. The UN General Assembly in 1992 resolved to observe 22 March of each year as the World Water Day to raise public awareness of freshwater issues. The theme for the WWD this year is 'Water for Development' and the IAEA, for the first time, is the lead agency for coordinating UN system's activities for this day. By being the lead agency, a greater awareness is also being achieved on the role of IAEA in the water sector and on the role of isotopes in hydrology. The IAEA has played a pivotal role in promoting and expanding the field of isotope hydrology over the last four decades. Isotope hydrology today is practiced in most countries although the field began nearly 50 years ago with a few research centres in the developed countries involved in understanding the distribution of isotopes in natural waters. The number of analytical facilities has increased steadily as indicated by the increasing number of laboratories participating in IAEA's inter-laboratory comparisons. A significant number of these laboratories in the developing countries have been established with IAEA's support. In addition to geographical spread, the sheer number of hydrological studies with isotopes has shown a substantial increase. Isotopes were used in less than 100 reports of hydrological research and applications in major scientific journals in the period 1960 to 1954. During 1995-2000, however, more than 7000 such reports were published. The primary field of application in the early reports was related to groundwater, but applications in climate change studies, that were nearly nonexistent in 1960, grew to nearly equal to groundwater applications in 1995-2000

  8. DARHT-II Downstream Transport Beamline

    International Nuclear Information System (INIS)

    Westenskow, G A; Bertolini, L R; Duffy, P T; Paul, A C

    2001-01-01

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 18.4-MeV, 2000-Amperes, 2-(micro)sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 22-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 12 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented

  9. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry

    International Nuclear Information System (INIS)

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U.

    2007-01-01

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS-bar 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9ng/L detection limit) and analyzed low-volume water samples (200mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110ng/L) were significantly higher (P w/w each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC

  10. Downstream impacts of dams: shifts in benthic invertivorous fish assemblages

    Science.gov (United States)

    Granzotti, Rafaela Vendrametto; Miranda, Leandro E.; Agostinho, Angelo A.; Gomes, Luiz Carlos

    2018-01-01

    Impoundments alter connectivity, sediment transport and water discharge in rivers and floodplains, affecting recruitment, habitat and resource availability for fish including benthic invertivorous fish, which represent an important link between primary producers and higher trophic levels in tropical aquatic ecosystems. We investigated long-term changes to water regime, water quality, and invertivorous fish assemblages pre and post impoundment in three rivers downstream of Porto Primavera Reservoir in south Brazil: Paraná, Baía and Ivinhema rivers. Impacts were distinct in the Paraná River, which is fully obstructed by the dam, less evident in the Baía River which is partially obstructed by the dam, but absent in the unimpounded Ivinhema River. Changes in water regime were reflected mainly as changes in water-level fluctuation with little effect on timing. Water transparency increased in the Paraná River post impoundment but did not change in the Baía and Ivinhema rivers. Changes in fish assemblages included a decrease in benthic invertivorous fish in the Paraná River and a shift in invertivorous fish assemblage structure in the Baía and Paraná rivers but not in the unimpounded Ivinhema River. Changes in water regime and water transparency, caused by impoundment, directly or indirectly impacted invertivorous fish assemblages. Alterations of fish assemblages following environmental changes have consequences over the entire ecosystem, including a potential decrease in the diversity of mechanisms for energy flow. We suggest that keeping existing unimpounded tributaries free of dams, engineering artificial floods, and intensive management of fish habitat within the floodplain may preserve native fish assemblages and help maintain functionality and ecosystem services in highly impounded rivers.

  11. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  12. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  13. Electrochemistry of lead in simulated ground water environments

    International Nuclear Information System (INIS)

    Joerg, E.A.; Devereux, O.F.

    1996-01-01

    Lead and lead alloys are used commonly as moisture barriers for underground cables. Lead exhibits excellent corrosion resistance in a variety of environments, but areas of localized attack have been found. These can result in able failures. The susceptibility of lead to pitting in several simulated ground water (SGW) environments was assessed using cyclic potentiodynamic pitting scans (PPS) and microscopy. Although general corrosion was observed, PPS demonstrated pitting did not occur in the same sense as in alloys known to be susceptible to pitting (i.e., very localized pit formation without general corrosion). However, areas of nonuniform general attack did occur, resulting in pitted surface morphologies

  14. Stable lead isotope ratios and metals in freshwater mussels from a uranium mining environment in Australia’s wet-dry tropics

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas

    2012-01-01

    Highlights: ► Lead isotope ratios in mussels from Magela more uranogenic than from Sandy catchment. ► Additional input of Broken Hill type lead further downstream of mine site. ► Lead isotope ratios in mussels ideal for source apportionment of lead into waterways. - Abstract: Concentrations of Fe, Mn, Cu, Zn, U and Pb, and stable Pb isotopes 206 Pb, 207 Pb and 208 Pb were measured via inductively coupled plasma mass spectrometry in sediments, water and freshwater mussels (Velesunio angasi) from two catchments in the Alligator Rivers Region, Australia. Sediment U and Pb concentrations were higher in Magela Creek downstream than upstream of the Ranger U mine due to the mineralised nature of the catchment and potential local input of sediment from the mine site. Water metal concentrations were highest in Georgetown Creek, which is a tributary of Magela Creek and part drains the Ranger mine site, but there was little difference in concentrations between the Magela Creek upstream and downstream sites. Metal concentrations in mussels collected immediately upstream and downstream of the mine site also showed little difference, whereas Pb isotope ratios displayed a very distinct pattern. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb isotope ratios were more uranogenic downstream than upstream of the site and also more uranogenic than ratios measured in Sandy Billabong, a reference billabong in a catchment not influenced by U mineralisation. Isotope ratios were also more uranogenic in younger mussels, potentially due to the increasing footprint of the mine site over the past decade. The most uranogenic ratios were found in mussels from Georgetown Creek and at a site approximately 2 km downstream. At Mudginberri Billabong, approximately 12 km downstream of the Ranger mine, the relative contribution of uranogenic Pb to the total Pb concentration in mussels was small and overwhelmed by the input of industrial Pb with a Broken Hill type Pb signature. Whereas metal uptake by and

  15. Nuclear power plants and the environment. Water samplings and releases

    International Nuclear Information System (INIS)

    Hartmann, Philippe; Bordet, Francois; Chevalier, Christian; Colin, Jean-Luc; Khalanski, Michel

    2013-01-01

    This voluminous and illustrated guide aims at giving detailed information on the nature of waters used by nuclear power plants and of releases, on how these samplings and controls are performed, on the associated risks for the environment and public health, and on how public is informed. After a general overview of these issues, a chapter addresses the protection of nature and biodiversity and the actions performed by EDF in this respect. The next chapter deals with public information. The next chapters discuss the water needs of a nuclear power plant, effluent releases and their impacts. Two chapters are dedicated to the monitoring and control of the environment, and to the various techniques of environmental metrology. Legal and regulatory aspects are then presented

  16. Tailings transport and deposition downstream of the Northern Hercules (Moline) mine in the catchment of the Mary River, Northern Territory

    International Nuclear Information System (INIS)

    Cull, R.F.; East, T.J.; Marten, R.; Murray, A.S.; Duggan, K.

    1986-01-01

    Milling of uraniferous and other metalliferous ores at the Northern Hercules (Moline) Mine near Pine Creek produced some 246,000 tonnes of tailings between 1959 and the closure of the mill in 1972. During this period tailings were contained by several bunds which later failed resulting in the erosion and transport of tailings by tributaries of the Mary River. Suspended sediment concentrations as high as 94 g/L were recorded in Tailings Creek immediately downstream of the eroding tailings pile during the 1984/85 wet season and the total yield was equivalent to a mean erosion rate for the tailings area of 4 mm/yr. This erosion rate is about two orders of magnitude higher than natural rates in the Pine Creek area. Erosion rates of the tailings pile have, however, decreased perhaps by as much as a factor of eight since the last bund was breached. Radioactive dose rates recorded along a series of transects across floodplains downstream of the mill are consistently related to the sedimentary environment. The main channel is associated with low dose rates, and the relatively low energy environments of backswamps and flood bypass channels are characterised by higher dose rates. Longitudinally, dose rates on the floodplain generally decrease with distance downstream although the rate of decrease is not constant, and appears to be dependent upon the hydrological and geomorphic character of the catchment

  17. Academy President Sadykov on environment, water

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    Soviet scholars, supported by doctrines of Marxism-Leninism, propose to use natural resources without harming the environment. Institutes work on the use of nontraditional but productive ways to protect plants, filter industrial wastes and convert them to other uses, protect soil resources, set up plant and animal preserves, and protect geological conditions in steppe and semi-steppe areas. Scientific research on equipment to clean up wastes is not well established in the Soviet Union. When asked about the ecological harm of land reclamation, the president noted that newly reclaimed lands increase the demand for and increase the salt content of fresh water.

  18. 48 CFR 952.223 - Clauses related to environment, energy and water efficiency, renewable energy technologies...

    Science.gov (United States)

    2010-10-01

    ... environment, energy and water efficiency, renewable energy technologies, occupational safety, and drug-free workplace. 952.223 Section 952.223 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CLAUSES AND... related to environment, energy and water efficiency, renewable energy technologies, occupational safety...

  19. Transfer factor for 137Cs in fresh water aquatic environment

    International Nuclear Information System (INIS)

    Varughese, K.G.; Ramkumar, S.; John, Jaison T.; Rajan, M.P.; Gurg, R.P.

    2002-01-01

    137 Cs is one of the most abundant radionuclides produced in nuclear fission and due to its long radiological half-life and chemical similarity to potassium it has greater biological significance. Radioactive waste materials generated at nuclear facilities are generally disposed within the plant premises under its administrative control for effective radiation protection practices. However trace quantities of radionuclides are released into the environment through liquid and gaseous releases under the guidelines of regulatory agencies. The concentration of these radioactive elements in the environment is not detectable under normal circumstances due to the large dispersion and dilutions available in the environment. But these radionuclides can get accumulated in environmental matrices like silt, weed etc. and indicate the presence of radioactivity in the environment. This paper presents the results of a face-controlled studies conducted at Environmental Survey Laboratories at the Rajasthan Atomic Power Station (RAPS) and Kakrapar Atomic Power Station (KAPS) to estimate distribution of low-level radioactivity in the fresh water system. An attempt has been made to derive the Transfer Factor for 137 Cs in fish, weed, and silt and to evaluate the concentration of 137 Cs in water samples, which is otherwise not detectable under normal procedure of measurement. (author)

  20. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  1. Environment sensitive cracking in light water reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Haenninen, H.; Aho-Mantila, I.

    1985-01-01

    The purpose of the paper is to review the available methods and the most promising future possibilities of preventive maintenance to counteract the various forms of environment sensitive cracking of pressure boundary materials in light water reactors. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strenght Ni-base alloys, as well as on corrosion fatigue of low alloy and stainless steels. Finally, some general ideas how to predict, reduce or eliminate environment sensitive cracking in service are presented

  2. A Comparison of the Water Environment Policy of Europe and South Korea in Response to Climate Change

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2018-02-01

    Full Text Available Climate change not only increases the atmospheric temperature, but also changes the precipitation conditions and patterns, which can lead to an increase in the frequency of occurrence of natural disasters, such as flooding and drought. The Intergovernmental Panel on Climate Change (IPCC has reported fluctuations in the precipitation levels for each country from 1900 to 2005, based on global climate change, suggesting that environmental changes due to climate change manifest very differently based on the region. According to the results of studies that have been carried out recently, changes in the precipitation patterns based on climate change result in changes in the water environment, including alterations to the vegetation, land use, and river flow, while considerably influencing the rate of development of groundwater as well. In this study, the 3Is, which are the important variables of Ideas, Institutions, and Interests that are universal to the international field of political science, were used to comparatively analyze the water environment policies of South Korea and Europe. The first variable, Ideas, examined the influence of awareness on establishing the water environment policy in response to climate change. In particular, differences in the conceptual awareness of the water environment with regard to hyporheic zones were studied. The second variable, Institutions, examined the differences in the water environment policy within the national administration in response to climate change. The South Korean administration’s Ministry of Land, Infrastructure, and Transport and the Ministry of Environment were used in a case study. Finally, the results drawn from the third variable, i.e., Interests, for South Korea appear to differ from those of Europe, in terms of water environment policy. In this study, the water environment policy of South Korea was analyzed and compared to that of Europe in order to identify problems in South Korea

  3. Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia.

    Science.gov (United States)

    Chenu, K; Cooper, M; Hammer, G L; Mathews, K L; Dreccer, M F; Chapman, S C

    2011-03-01

    Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.

  4. Quantitative analysis on the environmental impact of large-scale water transfer project on water resource area in a changing environment

    Directory of Open Access Journals (Sweden)

    D. H. Yan

    2012-08-01

    Full Text Available The interbasin long-distance water transfer project is key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatio-temporal change of water resources to secure the amount of water available. Large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes uncertainty and additive effect of the environmental impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of megaprojects in both construction and operation phases has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis, we identified the influencing factors and established the diagnostic index system. The climate-hydrology-ecology coupled simulation model was used to simulate and predict ecological and environmental responses of the water resource area in a changing environment. The emphasis of impact evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment below the dam sites. In the end, an overall evaluation of the comprehensive influence of the project was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects: the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water extraction. The impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.

  5. Quantitative analysis on the environmental impact of large-scale water transfer project on water resource area in a changing environment

    Science.gov (United States)

    Yan, D. H.; Wang, H.; Li, H. H.; Wang, G.; Qin, T. L.; Wang, D. Y.; Wang, L. H.

    2012-08-01

    The interbasin long-distance water transfer project is key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatio-temporal change of water resources to secure the amount of water available. Large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes uncertainty and additive effect of the environmental impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of megaprojects in both construction and operation phases has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis, we identified the influencing factors and established the diagnostic index system. The climate-hydrology-ecology coupled simulation model was used to simulate and predict ecological and environmental responses of the water resource area in a changing environment. The emphasis of impact evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment below the dam sites. In the end, an overall evaluation of the comprehensive influence of the project was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects: the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water extraction. The impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.

  6. Passage of downstream migrant American eels through an airlift-assisted deep bypass

    Science.gov (United States)

    Haro, Alexander J.; Watten, Barnaby J.; Noreika, John

    2016-01-01

    Traditional downstream guidance and bypass facilities for anadromous fishes (i.e., surface bypasses, surface guidance structures, and behavioral barriers) have frequently been ineffective for anguillid eels. Because eels typically spend the majority of their time near the bottom in the vicinity of intake structures, deep bypass structures with entrances near the bottom hold promise for increased effectiveness, thereby aiding in the recovery of this important species. A new design of a deep bypass system that uses airlift technology (the Conte Airlift Bypass) to induce flow in a bypass pipe was tested in a simulated intake entrance environment under controlled laboratory conditions. Water velocities of 0.9–1.5 m s−1 could be generated at the bypass entrance (opening with 0.073 m2 area), with corresponding flows through the bypass pipe of 0.07–0.11 m3 s−1. Gas saturation and hydrostatic pressure within the bypass pipe did not vary appreciably from a control (no air) condition under tested airflows. Migratory silver-phase American eels (Anguilla rostrata) tested during dark conditions readily located, entered, and passed through the bypass; initial avoidance rates (eels approaching but not entering the bypass entrance) were lower at higher entrance velocities. Eels that investigated the bypass pipe entrance tended to enter headfirst, but those that then exited the pipe upstream did so more frequently at lower entrance velocities. Eels appeared to swim against the flow while being transported downstream through the pipe; median transit times through the bypass for each test velocity ranged from 5.8 to 12.2 s, with transit time decreasing with increasing entrance velocity. Eels did not show strong avoidance of the vertical section of the pipe which contained injected air. No mortality or injury of bypassed eels was observed, and individual eels repeatedly passed through the bypass at rates of up to 40 passes per hour, suggesting that individuals do not

  7. Critical effects of downstream boundary conditions on vortex breakdown

    Science.gov (United States)

    Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.

  8. THE INFLUENCE OF SPECIFIC EXPENSES OF SPILLWAY DAM ON NOT ROCK THE BASIS OF THE MAGNITUDE OF THE EROSION OF THE RIVERBED DOWNSTREAM

    Directory of Open Access Journals (Sweden)

    Z. A. Kurbanova

    2013-01-01

    Full Text Available When you select a specific consumption of the dam, the corresponding minimum Noah value crest front of the dam, it is necessary to take into account possible changes of the water level regime due to a General erosion of the river channel for attaching in the downstream. Considering this circumstance, has developed a methodology and computer program for calculation of total washout of the bottom of the riverbed downstream waterworks depending on the specific consumption of the dam. In the course of the research were graphic and analytical depending on the impact of specific economical expenditure on the depth of the total washout for fastening downstream of the spillway dam.

  9. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  10. The adjustment of avian metabolic rates and water fluxes to desert environments

    NARCIS (Netherlands)

    Tieleman, BI; Williams, JB

    2000-01-01

    We tested the hypothesis that birds in arid environments, where primary productivity is low and surface water is scarce, have reduced energy expenditure and water loss compared with their mesic counterparts. Using both conventional least squares regression and regression based on phylogenetically

  11. Interactions between water, energy, food and environment: evolving perspectives and policy issues

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Steduto, P.; Mc. Cornick, P.

    2008-01-01

    Major changes are occurring with far reaching implications for the existing equilibria or disequilibria in the water-energy-food-environment interface. The increased demand of energy worldwide will reflect directly and indirectly on water-dependent systems. Direct implications will come from higher

  12. Metal concentrations of river water and sediments in West Java, Indonesia.

    Science.gov (United States)

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.

  13. Mercury exposure in terrestrial birds far downstream of an historical point source

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Allyson K., E-mail: allyson.jackson@briloon.org [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Evers, David C.; Folsom, Sarah B. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Condon, Anne M. [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Diener, John; Goodrick, Lizzie F. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); McGann, Andrew J. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Schmerfeld, John [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Cristol, Daniel A. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States)

    2011-12-15

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: > We report blood mercury levels for terrestrial songbirds downstream of contamination. > Blood mercury levels remain elevated above reference for at least 137 km downstream. > Trends vary based on foraging guild and migration strategy. > Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  14. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    International Nuclear Information System (INIS)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett's initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream

  15. Environmental impacts of Sheba tannery (Ethiopia effluents on the surrounding water bodies

    Directory of Open Access Journals (Sweden)

    Abraha Gebrekidan

    2009-08-01

    Full Text Available The levels of hexavalent chromium from direct and treated Sheba tannery effluents, downstream river and spring water samples and upstream river water samples were determined spectrophotometrically by the s-diphenylcarbazide method at 540 nm. Temporal and representative samples were collected from the untreated tannery effluent (S1, sedimentation pond (S2, chromium oxidation pond (S3, downstream river (S4, downstream spring (S5 and 5 kms upstream river (S6. The mean levels of hexavalent chromium in S1, S2, S3, S4, S5 and S6 were 10.54, 9.15, 7.82, 0.58, 0.54 and 0.015 mg/L, respectively. The levels of hexavalent chromium in the downstream river and spring water samples exceed the World Health Organization (WHO permissible limit of total chromium in drinking waters (0.05 mg/L as opposed to the levels in the upstream waters. The increased concentrations of Cr(VI in the water samples indicate the possible environmental pollution of the downstream water bodies by the Sheba tannery effluents. In view of the toxicity and related environmental hazards, the levels of hexavalent chromium from the Sheba tannery effluents must be reduced to a permissible limit before discharging into the down stream waters being used for domestic purposes by the nearby communities.

  16. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    Science.gov (United States)

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  17. Heavy metal contamination of water and fish in peri-urban dams ...

    African Journals Online (AJOL)

    Heavy metals were measured in water, sediment and fish in dams located downstream of effluent discharge zones in Bulawayo and were compared to those in a pristine upstream dam. Water conductivity indicated pollution of downstream dams. Levels of lead (0.13 – 0.28 ppm) and cadmium (0.02 – 0.06 ppm) in water from ...

  18. Utilization of water by buffaloes in adapting to a wet-tropical environment

    International Nuclear Information System (INIS)

    Ranawana, S.S.E.; Tilakaratne, M.; Srikandakumar, A.

    1984-01-01

    In a series of experiments some of the characteristics that might enable water buffaloes to adapt to hot and humid environments were investigated. Total body water and water turnover were related to measurements of respiratory and cutaneous evaporation rates and to rectal temperature. These measurements were made during different seasons in animals maintained in several agro-ecological zones. Water turnover was measured in unweaned Murrah buffalo calves; in growing, pregnant and lactating Surti buffaloes grazed under coconut with wallowing denied and drinking water restricted; in Murrah buffaloes and in Zebu and European cattle during different seasons in the 'wet zone', and on Murrah, Surti and Lanka buffaloes compared under 'dry-zone' conditions. Rates of water turnover in milk-fed buffalo calves were low but in adult buffaloes were higher than in other domestic ruminants. Water turnover was higher at higher air temperatures and during the monsoon when forage contained more water. Lactation and grazing in the sun also increased water turnover. A high rate of cutaneous water loss in buffaloes, apparently due to passive diffusion rather than to true sweating, may have contributed to the high water turnover in this species. A relatively labile body temperature enabled buffaloes to 'store' body heat which was dissipated quickly by wallowing, which was shown to be a major route of heat loss and to help in the maintenance of skin condition. If allowed adequate water for drinking and wallowing, buffaloes can apparently withstand hot humid environments but, in contrast to camels, sheep and goats, they seem unable to conserve water and their productivity is affected by any restriction of water supply. (author)

  19. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  20. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE Model of Water Resources and Water Environments

    Directory of Open Access Journals (Sweden)

    Guohua Fang

    2016-09-01

    Full Text Available To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and output sources of the National Economic Production Department. Secondly, an extended Social Accounting Matrix (SAM of Jiangsu province is developed to simulate various scenarios. By changing values of the discharge fees (increased by 50%, 100% and 150%, three scenarios are simulated to examine their influence on the overall economy and each industry. The simulation results show that an increased fee will have a negative impact on Gross Domestic Product (GDP. However, waste water may be effectively controlled. Also, this study demonstrates that along with the economic costs, the increase of the discharge fee will lead to the upgrading of industrial structures from a situation of heavy pollution to one of light pollution which is beneficial to the sustainable development of the economy and the protection of the environment.

  1. Water and environment news. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This issue of Water and Environment Newsletter is being released on the occasion of the 3rd World Water Forum in Kyoto, Japan from 16-23 March 2003. The Isotope Hydrology Section is contributing to the Forum through various theme sessions, in particular those related to groundwater and partnerships with other organizations. The Forum aims to increase political commitments for concrete action to improve water availability and sustainable resource management worldwide. A successful Forum will go a long way in improving the present and future water availability on a global scale. The Kyoto Forum will build on the outcomes of the recent World Summit on Sustainable Development (WSSD) held in Johannesburg, South Africa. The Agency participated in the WSSD and its side events, and announced a partnership initiative with UNESCO and others on improved capacity building and technology applications for water resource and coastal zone management. The WSSD implementation plan recognizes the following four actions for the sustainable development and management of water resources: 'Develop integrated water resources management and water efficiency plans by 2005, with support to developing countries, through actions at all levels to develop and implement national/regional strategies, plans and programmes with regard to integrated river basin, watershed and groundwater management, ...'; 'Support developing countries and countries with economies in transition in their efforts to monitor and assess the quantity and quality of water resources, ...'; 'Improve water resource management and scientific understanding of the water cycle through cooperation in joint observation and research, ...'; 'Promote effective coordination among the various international and intergovernmental bodies and processes working on water-related issues, both within the United Nations system and between the United Nations and international financial institutions, ...' Through recent re-alignments in the Agency

  2. Water and environment news. No. 17

    International Nuclear Information System (INIS)

    2003-03-01

    This issue of Water and Environment Newsletter is being released on the occasion of the 3rd World Water Forum in Kyoto, Japan from 16-23 March 2003. The Isotope Hydrology Section is contributing to the Forum through various theme sessions, in particular those related to groundwater and partnerships with other organizations. The Forum aims to increase political commitments for concrete action to improve water availability and sustainable resource management worldwide. A successful Forum will go a long way in improving the present and future water availability on a global scale. The Kyoto Forum will build on the outcomes of the recent World Summit on Sustainable Development (WSSD) held in Johannesburg, South Africa. The Agency participated in the WSSD and its side events, and announced a partnership initiative with UNESCO and others on improved capacity building and technology applications for water resource and coastal zone management. The WSSD implementation plan recognizes the following four actions for the sustainable development and management of water resources: 'Develop integrated water resources management and water efficiency plans by 2005, with support to developing countries, through actions at all levels to develop and implement national/regional strategies, plans and programmes with regard to integrated river basin, watershed and groundwater management, ...'; 'Support developing countries and countries with economies in transition in their efforts to monitor and assess the quantity and quality of water resources, ...'; 'Improve water resource management and scientific understanding of the water cycle through cooperation in joint observation and research, ...'; 'Promote effective coordination among the various international and intergovernmental bodies and processes working on water-related issues, both within the United Nations system and between the United Nations and international financial institutions, ...' Through recent re-alignments in the Agency

  3. Mercury exposure in terrestrial birds far downstream of an historical point source

    International Nuclear Information System (INIS)

    Jackson, Allyson K.; Evers, David C.; Folsom, Sarah B.; Condon, Anne M.; Diener, John; Goodrick, Lizzie F.; McGann, Andrew J.; Schmerfeld, John; Cristol, Daniel A.

    2011-01-01

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: → We report blood mercury levels for terrestrial songbirds downstream of contamination. → Blood mercury levels remain elevated above reference for at least 137 km downstream. → Trends vary based on foraging guild and migration strategy. → Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  4. [Study on the types and water pollution driving forces of the typical and medium-small-sized cities in the southern China based on the analysis of water environment].

    Science.gov (United States)

    Jiao, Shi-Xing; Wang, La-Chun; Huo, Yu; Chen, Chang-Chun; Teng, Juan

    2009-07-15

    According to the major pollution sources of urban water environment, 10 indexes such as industrial sewage quantity were closen to establish evaluation indexes system about the types and influencing factors of the typical and medium-small-sized cities in the southern China. Case studies of 16 typical and medium-small-sized cities were taken in Jiangsu, Zhejiang, Hubei and Anhui provinces. Combined with SPSS 11.0 cluster analysis results, city types were divided in reference to the values of water resources comprehensive pollution indexes and economical development indexes. The driving forces about city water environment pollution were studied by principal component analysis method. The result indicates that the 16 cities belong to two categories and four sub-categories, which are rich economy as well as light pollution of water environment and poor economy as well as heavy pollution of water environment. The influencing factors of water environment pollution are in sequence of industrial water pollution, agricultural no-point source pollution and urban domestic water pollution. The main factors of water environment pollution influenced I category cities, II as well as IV category cities and III category cities are industrial water pollution, urban domestic pollution and agricultural no-point source pollution respectively.

  5. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  6. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    Science.gov (United States)

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  7. Sustainability concept for energy, water and environment systems

    International Nuclear Information System (INIS)

    Afgan, N.H.

    2004-01-01

    This review is aimed to introduce historical background for the sustainability concept development for energy, water and environment systems. In the assessment of global energy and water resources attention is focussed in on the resource consumption and its relevancy to the future demand. In the review of the sustainability concept development special emphasize is devoted to the definition of sustainability and its relevancy to the historical background of the sustainability idea. In order to introduce measuring of sustainability the attention is devoted to the definition of respective criteria. There have been a number of attempts to define the criterions for the assessment of the sustainability of the market products. Having those criterions as bases, it was introduced a specific application in the energy system design

  8. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Devendra; Tomar, Vikas, E-mail: tomar@purdue.edu

    2014-11-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water.

  9. An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton

    International Nuclear Information System (INIS)

    Verma, Devendra; Tomar, Vikas

    2014-01-01

    The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment. - Highlights: • Environment dependent (dry-wet) properties of shrimp exoskeleton are analyzed. • Mechanical properties are correlated with the structure and composition. • Presence of water leads to lower reduced modulus and hardness. • SEM images shows the Bouligand pattern based structure. • Creep-relaxation of polymer chains, interface slip is high in presence of water

  10. Influence of Upstream and Downstream Compressor Stators on Rotor Exit Flow Field

    Directory of Open Access Journals (Sweden)

    Nicole L. Key

    2014-01-01

    Full Text Available Measurements acquired at the rotor exit plane illuminate the interaction of the rotor with the upstream vane row and the downstream vane row. The relative phase of the upstream and downstream vane rows is adjusted using vane clocking so that the effect of the upstream propagating potential field from the downstream stator can be distinguished from the effects associated with the wakes shed from the upstream stator. Unsteady absolute flow angle information shows that the downstream potential field causes the absolute flow angle to increase in the vicinity of the downstream stator leading edge. The presence of Stator 1 wake is also detected at this measurement plane using unsteady total pressure data. The rotor wakes are measured at different circumferential locations across the vane passage, and the influence of Stator 1 wake on the suction side of the rotor wake is evident. Also, the influence of the downstream stator is detected on the pressure side of the rotor wake for a particular clocking configuration. Understanding the role of the surrounding vane rows on rotor wake development will lead to improved comparison between experimental data and results from computational models.

  11. Empirical investigation on the dependence of TCP downstream throughput on SNR in an IEEE802.11b WLAN system

    Directory of Open Access Journals (Sweden)

    Ikponmwosa Oghogho

    2017-04-01

    Full Text Available The dependence of TCP downstream throughput (TCPdownT on signal to noise ratio (SNR in an IEEE802.11b WLAN system was investigated in various environments and varieties of QoS traffic. TCPdownT was measured for various SNR observed. An Infrastructure based IEEE802.11b WLAN system having networked computers on which measurement software were installed, was set up consecutively in various environments (open corridor, small offices with block walls and plaster boards and free space. Empirical models describing TCPdownT against SNR for different signal ranges (all ranges of signals, strong signals only, grey signals only and weak signals only were statistically generated and validated. As the SNR values changed from high (strong signals through low (grey signals to very low (weak signals, our results show a strong dependence of TCPdownT on the received SNR. Our models showed lower RMS errors when compared with other similar models. We observed RMS errors of 0.6734791 Mbps, 0.472209 Mbps, 0.9111563 Mbps and 0.5764460 Mbps for general (all SNR model, strong signals model, grey signals model and Weak signals model respectively. Our models will provide researchers and WLAN systems users with a tool to estimate the TCP downstream throughput in a real network in various environments by monitoring the received SNR.

  12. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  13. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Tsai, Yu-Ting; Yu, Tsung-Hsien

    2014-05-01

    The current article maps perfluoroalkyl acids (PFAAs) contamination in the largest Science Park of Taiwan. The occurrence of ten target PFAAs in the effluent of an industrial wastewater treatment plant (IWWTP), its receiving rivers, rainwater, sediment, and the muscles and livers of fish was investigated. All target PFAAs were found in effluent of IWWTP, in which perfluorooctane sulfonate (PFOS) (6,930 ng/L), perfluorohexyl sulfonate (PFHxS) (2,662 ng/L) and perfluorooctanoic acid (PFOA) (3,298 ng/L) were the major constituents. Concentrations of PFBS and PFOS in the IWWTP downstream areas have exceeded safe concentration levels of avian and aquatic life, indicating a potential risk to wildlife in those areas. In sediment samples, predominant contaminants were PFOS (1.5-78 ng/g), PFOA (0.5-5.6 ng/g), and perfluorododecanoic acid (PFDoA) (nd-5.4 ng/g). In biological tissue samples, concentrations as high as 28,933 ng/g of PFOS were detected in tilapia and catfish liver samples. A positive correlation for log (C sediment/C water) and log (C tissue/C water) was found. The concentration and proportion (percentage of all PFAAs) of PFOS found in biotissue samples from the Keya River (which receives industrial wastewater) were found to be much greater (200 times) than those of samples from the Keelung River (which receives mainly domestic wastewater). These findings suggest that the receiving aquatic environments and, in turn, the human food chain can be significantly influenced by industrial discharges.

  14. Change of water environment in the inner bay in consideration of heat balance

    International Nuclear Information System (INIS)

    Wada, Akira; Miyaike, Katsuto

    1983-01-01

    The study on the effect of warm water discharged from large capacity thermal and nuclear power stations on the local climate around the power stations is necessary for promoting the development of power resources in harmony with natural environment. In this study, Mikawa Bay was selected as the object of research, and the simulation analysis of water temperature was carried out by the water column model, based on the result of analysis of the local weather and sea observation data. Thus, the amount of heat exchange between the atmosphere and sea water in natural sea area was grasped, and how the change in the amount of heat exchange when the thermal load due to warm water discharge was imposed is ranked in natural sea environment was examined. The variation of surface water temperature in Mikawa Bay tended to be large in summer and small in winter. It was clarified that the factor controlling the water temperature in the bay was the variation of climatic factors. In the sea area where the effect of open sea water was relatively small, the variation of water temperature was able to be expressed by the water column model. The change in the amount of heat exchange in the range of warm water diffusion with 2 deg C temperature rise was determined. (Kato, I.)

  15. Downstream anastomotic hyperplasia. A mechanism of failure in Dacron arterial grafts.

    Science.gov (United States)

    LoGerfo, F W; Quist, W C; Nowak, M D; Crawshaw, H M; Haudenschild, C C

    1983-01-01

    The precise location and progression of anastomotic hyperplasia and its possible relationship to flow disturbances was investigated in femoro-femoral Dacron grafts in 28 dogs. In 13 grafts, the outflow from the end-to-side downstream anastomosis was bidirectional (BDO), and in 15 it was unidirectional (UDO) (distally). Grafts were electively removed at intervals of two to 196 days or at the time of thrombosis. Each anastomosis and adjacent artery was perfusion-fixed and sectioned sagittally. The mean sagittal section was projected onto a digitized pad, and the total area of hyperplasia internal to the arterial internal elastic lamina and within the adjacent graft was integrated by computer. The location of the hyperplasia was compared with previously established sites of flow separation and stagnation. The observation was made that hyperplasia is significantly greater at the downstream, as compared with the upstream, anastomosis in both groups (BDO = p less than 0.001 and UDO = p less than 0.001) (analysis of variance for independent groups). Furthermore, this downstream hyperplasia was progressive with time (BDO p less than 0.01) (UDO p less than 0.01); Spearman Rank Correlation. There was no significant increase in the extent of downstream hyperplasia where flow separation was known to be greater (BDO). Five grafts failed (three BDO, two UDO), as a result of complete occlusion of the downstream anastomosis by fibrous hyperplasia. Transmission electron microscopy showed the hyperplasia to consist of collagen-producing smooth muscle cells. Anastomotic hyperplasia is significantly greater at the downstream anastomosis, is progressive with time, and is the primary cause of failure of Dacron arterial grafts in this model. Quantitative analysis of downstream anastomotic hyperplasia may be a valuable measure of the biocompatibility of Dacron grafts. Images Fig. 2. Fig. 3. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6219641

  16. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia

    DEFF Research Database (Denmark)

    Butinar, Lorena; Frisvad, Jens Christian; Gunde-Cimerman, Nina

    2011-01-01

    Previous studies of hypersaline environments have revealed the dominant presence of melanized yeast-like fungi and related Cladosporium spp. In this study, we focused on the genera Aspergillus and Penicillium and their teleomorphic forms. From oligotrophic and eutrophic hypersaline waters around...... herbariorum, as they were quite evenly distributed among the sampled sites, and Aspergillus candidus, which was abundant, but more locally distributed. These species and their byproducts can accumulate downstream following evaporation of brine, and they can become entrapped in the salt crystals. Consequently...

  17. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Eun; Yoon, Sung Ho [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2012-10-15

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly.

  18. Hygrothermal effect of salt water environments on mechanical properties of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Hwang, Young Eun; Yoon, Sung Ho

    2012-01-01

    In this study, salt water immersion tests were experimentally performed for up to 12 months to investigate the hygrothermal effect of salt water environments on the mechanical properties of carbon/epoxy composites. The composites were manufactured by laminating prepregs composed of carbon plain woven fabric and epoxy resin. The specimens were subjected to temperatures of 35, 55, and 75 .deg. C while being exposed to the salt water environments. Mechanical test results showed that the tensile modulus and tensile strength decreased at a small rate, and the compressive modulus and compressive strength decreased at a relatively larger rate, as the exposure temperature and time increased. The rate of decrease in compressive strength became larger as the exposure temperature became higher. This is because a higher environmental temperature accelerates the salt water uptake; this, in turn, reduces the compressive strength more rapidly

  19. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  20. Advances in energy and environment. Vol. 2: Air quality, water quality

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. This second volume covers papers presented on the subjects air pollution, environmental protection, solid and hazardous wastes, water and wastewater treatment. tabs., figs

  1. Controlling Chemical Reactions in Confined Environments: Water Dissociation in MOF-74

    Directory of Open Access Journals (Sweden)

    Erika M. A. Fuentes-Fernandez

    2018-02-01

    Full Text Available The confined porous environment of metal organic frameworks (MOFs is an attractive system for studying reaction mechanisms. Compared to flat oxide surfaces, MOFs have the key advantage that they exhibit a well-defined structure and present significantly fewer challenges in experimental characterization. As an example of an important reaction, we study here the dissociation of water—which plays a critical role in biology, chemistry, and materials science—in MOFs and show how the knowledge of the structure in this confined environment allows for an unprecedented level of understanding and control. In particular, combining in-situ infrared spectroscopy and first-principles calculations, we show that the water dissociation reaction can be selectively controlled inside Zn-MOF-74 by alcohol, through both chemical and physical interactions. Methanol is observed to speed up water dissociation by 25% to 100%, depending on the alcohol partial pressure. On the other hand, co-adsorption of isopropanol reduces the speed of the water reaction, due mostly to steric interactions. In addition, we also investigate the stability of the product state after the water dissociation has occurred and find that the presence of additional water significantly stabilizes the dissociated state. Our results show that precise control of reactions within nano-porous materials is possible, opening the way for advances in fields ranging from catalysis to electrochemistry and sensors.

  2. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    Science.gov (United States)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  3. Opposite hysteresis of sand and gravel transport upstream and downstream of a bifurcation during a flood in the River Rhine, the Netherlands

    NARCIS (Netherlands)

    Kleinhans, M.G.; Wilbers, A.W.E.; Brinke, W.B.M. ten

    2007-01-01

    At river bifurcations water and sediment is divided among the downstream branches. Prediction of the sediment transport rate and divisionthereof at bifurcations is of utmost importance for understanding the evolution of the bifurcates for short-term management purposes and forlong-term fluvial plain

  4. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    Science.gov (United States)

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Environment sensitive cracking in pressure boundary materials of light water reactors

    International Nuclear Information System (INIS)

    Hanninen, H.; Aho-Mantila, I.; Torronen, K.

    1987-08-01

    A review of the various forms of environment sensitive cracking in pressure boundary materials of light water reactors is presented. The available methods and the most promising future possibilities of preventive maintenance to counteract the environmental degradation are evaluated. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strength Ni-base alloys as well as on corrosion fatigue of low alloy and stainless steels. Additionally, some general ideas on how to predict, reduce, monitor or eliminate environment sensitive cracking in service are presented

  6. Large Dam Effects on Flow Regime and Hydraulic Parameters of river (Case study: Karkheh River, Downstream of Reservoir Dam

    Directory of Open Access Journals (Sweden)

    Farhang Azarang

    2017-06-01

    Full Text Available Introduction: The critical role of the rivers in supplying water for various needs of life has led to engineering identification of the hydraulic regime and flow condition of the rivers. Hydraulic structures such dams have inevitable effects on their downstream that should be well investigated. The reservoir dams are the most important hydraulic structures which are the cause of great changes in river flow conditions. Materials and Methods: In this research, an accurate assessment was performed to study the flow regime of Karkheh river at downstream of Karkheh Reservoir Dam as the largest dam in Middle East. Karkheh River is the third waterful river of Iran after Karun and Dez and the third longest river after the Karun and Sefidrud. The Karkheh Dam is a large reservoir dam built in Iran on the Karkheh River in 2000. The Karkheh Reservoir Dam is on the Karkheh River in the Northwestern Khouzestan Province, the closest city being Andimeshk to the east. The part of Karkheh River, which was studied in this research is located at downstream of Karkheh Reservoir Dam. This interval is approximately 94 km, which is located between PayePol and Abdolkhan hydrometric stations. In this research, 138 cross sections were used along Karkheh River. Distance of cross sections from each other was 680m in average. The efficient model of HEC-RAS has been utilized to simulate the Karkheh flow conditions before and after the reservoir dam construction using of hydrometric stations data included annually and monthly mean discharges, instantaneous maximum discharges, water surface profiles and etc. Three defined discharges had been chosen to simulate the Karkheh River flow; maximum defined discharge, mean defined discharge and minimum defined discharge. For each of these discharges values, HEC-RAS model was implemented as a steady flow of the Karkheh River at river reach of study. Water surface profiles of flow, hydraulic parameters and other results of flow regime in

  7. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    Science.gov (United States)

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  8. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  9. Imaging optical probe for pressurized 6200K steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.; Merrill, S.K.

    1979-01-01

    An air-cooled imaging optical probe, 0.3 m long with a 25.4-mm outside diameter, has been built to provide high resolution viewing of flow regimes in a steam-water environment at 620 0 K and 15.5 MPa. The probe consists of a 3.5-mm-diameter rod lens borescope, surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optical borescope will exceed 366 0 K when the probe is immersed in a 620 0 K environment. The objective lens is protected by a sapphire window which tests have shown can survive over 200 hours in 620 0 K water or steam with negligible loss of resolution and contrast. Condensation on the protective window is boiled off by electrically heating the window. Computer stress analysis, plus actual tests, shows that the probe can operate successfully with conservative safety factors

  10. Reservoir impacts downstream in highly regulated river basins: the Ebro delta and the Guadalquivir estuary in Spain

    Directory of Open Access Journals (Sweden)

    M. J. Polo

    2016-05-01

    Full Text Available Regulation by reservoirs affects both the freshwater regime and the sediment delivery at the area downstream, and may have a significant impact on water quality in the final transitional water bodies. Spain is one the countries with more water storage capacity by reservoirs in the world. Dense reservoir networks can be found in most of the hydrographic basins, especially in the central and southern regions. The spatial redistribution of the seasonal and annual water storage in reservoirs for irrigation and urban supply, mainly, has resulted in significant changes of water flow and sediment load regimes, together with a fostered development of soil and water uses, with environmental impacts downstream and higher vulnerability of these areas to the sea level rise and drought occurrence. This work shows these effects in the Guadalquivir and the Ebro River basins, two of the largest regulated areas in Spain. The results show a 71 % decrease of the annual freshwater input to the Guadalquivir River estuary during 1930–2014, an increase of 420 % of the irrigated area upstream the estuary, and suspended sediment loads up to 1000 % the initial levels. In the Ebro River delta, the annual water yield has decreased over a 30 % but, on the contrary, the big reservoirs are located in the main stream, and the sediment load has decreased a 99 %, resulting in a delta coastal regression up to 10 m per year and the massive presence of macrophytes in the lower river. Adaptive actions proposed to face these impacts in a sea level rise scenario are also analyzed.

  11. Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts

    Science.gov (United States)

    Zydlewski, Gayle B.; Stich, Daniel S.; McCormick, Stephen D.

    2014-01-01

    This study provides the first direct observations that photoperiod controls the initiation of downstream movement in Atlantic salmon Salmo salar smolts. Under simulated natural day length (LDN) conditions and seasonal increases in temperature, smolts increased their downstream movements five-fold for a period of 1 month in late spring. Under the same conditions, parr did not show changes in downstream movement behaviour. When given a shortened day length (10L:14D) beginning in late winter, smolts did not increase the number of downstream movements. An early increase in day length (16L:8D) in late winter resulted in earlier initiation and termination of downstream movements compared to the LDN group. Physiological status and behaviour were related but not completely coincident: gill Na+/K+-ATPase activity increased in all treatments and thyroid hormone was elevated prior to movement in 16L:8D treatment. The most parsimonious model describing downstream movement of smolts included synergistic effects of photoperiod treatment and temperature, indicating that peak movements occurred at colder temperatures in the 16L:8D treatment than in LDN, and temperature did not influence movement of smolts in the 10L:14D treatment. The complicated interactions of photoperiod and temperature are not surprising since many organisms have evolved to rely on correlations among environmental cues and windows of opportunity to time behaviours associated with life-history transitions. These complicated interactions, however, have serious implications for phenological adjustments and persistence ofS. salar populations in response to climate change.

  12. Effects of a surface oriented travelling screen and water abstraction practices on downstream migrating Salmonidae smolts in a lowland stream

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Aarestrup, Kim; Deacon, Michael G.

    2010-01-01

    Downstream migration of immature salmonids (smolts) may be associated with severe mortalities in anthropogenically altered channels. In Pacific salmon, several investigations have suggested the use of the dominating surface orientation of smolts to improve fish by-pass structures in large and dee...

  13. Downstream Processability of Crystal Habit-Modified Active Pharmaceutical Ingredient

    DEFF Research Database (Denmark)

    Pudasaini, Nawin; Upadhyay, Pratik Pankaj; Parker, Christian Richard

    2017-01-01

    Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability and tablet......Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability...

  14. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  15. Integrated urban water management for residential areas: a reuse model.

    Science.gov (United States)

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  16. Analysis of Petroleum Downstream Industry Potential in Riau Province

    Directory of Open Access Journals (Sweden)

    Tomi Erfando

    2017-06-01

    Full Text Available Petroleum downstream industry in Riau Province is still not optimal. The data shows that from 98,892,755 barrels lifting oil each year only 62,050,000 barrels could be processed in refinery unit II Dumai operated by PT Pertamina. There is a potential of 35-40% of downstream industry. Indonesian Government through The Ministry of Energy and Mineral Resources declared the construction of a mini refinery to boost oil processing output in the downstream sector. A feasibility study of development plan mini refinery is needed. The study includes production capacity analysis, product analysis, development & operational refinery  analysis and economic analysis. The results obtained by the mini refinery capacity is planned to process crude oil 6000 BOPD with the products produced are gasoline, kerosene, diesel and oil. Investment cost consist of is capital cost US $ 104419784 and operating cost US $ 13766734 each year with net profit earned US $ 12330063/year and rate of return from investment 11.63%

  17. The hydrodynamics of plant spacing distance: Optimizing consumptive and non-consumptive water use in water-limited environments

    Science.gov (United States)

    Trautz, A.; Illangasekare, T. H.; Rodriguez-Iturbe, I.; Howington, S. E.

    2017-12-01

    The availability of soil moisture in water-stressed environments is one of the primary factors controlling plant performance and overall plant community productivity and structure. The minimization of non-consumptive water loss, or water not utilized by plants (i.e. consumptive use), to bare soil evaporation is a key plant survival strategy and important agricultural consideration. Competitive (negative) and facilitative (positive) interactions between individual plants play a pivotal role in controlling the local coupled soil-plant-atmosphere hydrodynamics that affect both consumptive and non-consumptive water use. The strength of these two types of interactions vary with spacing distance between individuals. In a recent PNAS publication, we hypothesized that there exists a quantifiable spacing distance between plants that optimizes the balance between competition and facilitation, and hence maximizes water conservation. This study expands upon on our previous work, for which only a subset of the data generated was used, through the development and testing of a numerical model that can test a conceptual model we presented. The model simulates soil-plant-atmosphere continuum heat and mass transfer hydrodynamics, taking into account the complex feedbacks that exist between the near-surface atmosphere, subsurface, and plants. This model has been developed to explore the combined effects of subsurface competition and micro-climatic amelioration (i.e., facilitation) on local soil moisture redistribution and fluxes in the context of water-stressed environments that experienced sustained winds. We believe the results have the potential to provide new insights into climatological, ecohydrological, and hydrological problems pertaining to: the extensively used and much debated stress-gradient hypothesis, plant community population self-organization, agricultural best practices (e.g., water management), and spatial heterogeneity of land-atmosphere fluxes.

  18. Hydrochemistry, mineralogy and sulfur isotope geochemistry of acid mine drainage at the Mt. Morgan mine environment, Queensland, Australia

    International Nuclear Information System (INIS)

    Edraki, M.; Golding, S.D.; Baublys, K.A.; Lawrence, M.G.

    2005-01-01

    Mineralogical, hydrochemical and S isotope data were used to constrain hydrogeochemical processes that produce acid mine drainage from sulfidic waste at the historic Mount Morgan Au-Cu mine, and the factors controlling the concentration of SO 4 and environmentally hazardous metals in the nearby Dee River in Queensland, Australia. Some highly contaminated acid waters, with metal contents up to hundreds of orders of magnitude greater than the Australia-New Zealand environmental standards, by-pass the water management system at the site and drain into the adjacent Dee River. Mine drainage precipitates at Mt. Morgan were classified into 4 major groups and were identified as hydrous sulfates and hydroxides of Fe and Al with various contents of other metals. These minerals contain adsorbed or mineralogically bound metals that are released into the water system after rainfall events. Sulfate in open pit water and collection sumps generally has a narrow range of S isotope compositions (δ 34 S = 1.8-3.7%o) that is comparable to the orebody sulfides and makes S isotopes useful for tracing SO 4 back to its source. The higher δ 34 S values for No. 2 Mill Diesel sump may be attributed to a difference in the source. Dissolved SO 4 in the river above the mine influence and 20 km downstream show distinctive heavier isotope compositions (δ 34 S = 5.4-6.8%o). The Dee River downstream of the mine is enriched in 34 S (δ 34 S = 2.8-5.4%o) compared with mine drainage possibly as a result of bacterial SO 4 reduction in the weir pools, and in the water bodies within the river channel. The SO 4 and metals attenuate downstream by a combination of dilution with the receiving waters, SO 4 reduction, and the precipitation of Fe and Al sulfates and hydroxides. It is suggested here that in subtropical Queensland, with distinct wet and dry seasons, temporary reducing environments in the river play an important role in S isotope systematics

  19. Hydrodynamic properties and distribution of bait downstream of a zooplankton trap

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Larsson, Ann I.

    2017-01-01

    The flow regime around a chemically baited trap is crucial for the trapping process and distribution of bait downstream of traps. We measured the flow field downstream of a trap prototype in flume experiments and mapped the distribution of bait using laser induced fluorescence. The trap produced ...

  20. The potential water buffering capacity of urban green infrastructure in an arid environment

    Science.gov (United States)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  1. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  2. Numerical Simulation of the Effects of Water Surface in Building Environment

    Science.gov (United States)

    Li, Guangyao; Pan, Yuqing; Yang, Li

    2018-03-01

    Water body could affect the thermal environment and airflow field in the building districts, because of its special thermal characteristics, evaporation and flat surface. The thermal influence of water body in Tongji University Jiading Campus front area was evaluated. First, a suitable evaporation model was selected and then was applied to calculate the boundary conditions of the water surface in the Fluent software. Next, the computational fluid dynamics (CFD) simulations were conducted on the models both with and without water, following the CFD practices guidelines. Finally, the outputs of the two simulations were compared with each other. Results showed that the effect of evaporative cooling from water surface strongly depends on the wind direction and temperature decrease was about 2∼5°C. The relative humidity within the enclosing area was affected by both the building arrangement and surrounding water. An increase of about 0.1∼0.2m/s of wind speed induced by the water evaporation was observed in the open space.

  3. The downstream industry compared to market

    International Nuclear Information System (INIS)

    Chevallier, B.

    2010-01-01

    J.L. Schilansky introduces here the difficult question of the downstream industry compared to market in recalling the recent structural changes (behaviour of customers, behaviour of the USA- and China-governments), the increase of the European and French regulations, the climatic change and the conjectural impact of the crisis on the refining industry. (O.M.)

  4. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  5. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  6. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  7. From gravel to sand. Downstream fining of bed sediments in the lower river Rhine

    NARCIS (Netherlands)

    Frings, R.M.

    2007-01-01

    A common characteristic of many rivers is the tendency for bed sediments to become finer in downstream direction. This phenomenon, which is generally known as downstream fining, has a strong effect on the morphologic and hydrodynamic behaviour of a river. The fundamental causes of downstream

  8. Ion energy characteristics downstream of a high power helicon

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory

    2008-01-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  9. Ion energy characteristics downstream of a high power helicon

    Energy Technology Data Exchange (ETDEWEB)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory [University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310 (United States)], E-mail: jprager@u.washington.edu

    2008-05-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  10. Quantifying the Impact of geographically isolated wetlands on the downstream hydrology of a Canadian Prairie watershed

    Science.gov (United States)

    Muhammad, A.; Evenson, G. R.; Boluwade, A.; Jha, S. K.; Rasmussen, P. F.

    2016-12-01

    Hydrological processes are highly complex and strongly nonlinear and cannot be represented through simple means. Models are built to replicate these processes. However, models due to various sources of uncertainty including their structural capability often lead to inaccurate results. The aim of this study is to setup the soil water assessment tool (SWAT) for a watershed that is dominated by potholes in the Prairie region of Canada. The potholes not connected to the stream, also known as geographically isolated wetlands (GIWs), are dynamic in nature leading to a fill and spill situation due to varying surface runoff conditions. Significant land use changes have resulted in almost 70% of wetlands being lost and have posed threat of flooding to downstream areas. While some studies were devoted to identify the presence of potholes only few have explored the impacts of wetlands on the downstream hydrology. In this study, we follow Evenson et al., (2016) approach of modifying SWAT model. The modification enhances structural capability of SWAT while depicting the dynamics of wetlands at HRUs level. Redefining the formation of HRUs in such way effectively captures the spatial presence of potholes. We then routed the potholes' fill and spill hydrology to direct the flow to the potholes immediately downstream. The model was calibrated for 2005-2008 and verified over 2009-2011 at a daily time step. We tested our model with three land use change scenarios by varying the presence of potholes and evaluated its impact on the downstream hydrograph. We foresee a significant improvement in replicating stream flow using this novel approach. We believe that it will effectively improve the predictive power of SWAT for this highly complex sub basin (Upper Assiniboine catchment at Kamsack) located in Canadian Prairie.

  11. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  12. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  13. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    Science.gov (United States)

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  14. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    Science.gov (United States)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  16. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences

    Science.gov (United States)

    Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.

    2018-01-01

    Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.

  17. Heat dissipation in controlled environment enclosures through the application of water screens

    Energy Technology Data Exchange (ETDEWEB)

    Warrington, I.J.; Halligan, E.A.; Ruby, L.C.; McNaughton, K.G. [Horticulture and Food Research Institute of New Zealand Ltd., Palmerston North (New Zealand)

    1994-12-31

    The use of plate glass-water thermal barriers in controlled environment facilities effectively reduces the thermal load within the plant growth chamber. This allows high PPFs to be provided for plant growth and development studies, adequate simulation of daily light integrals, and simulation of peak PPFs. Further, substantial amounts of incandescent lamp supplementation can be used to achieve simulation of daylight R:FR ratios which are needed to ensure adequate stem development in some species. While the focus in this paper has been on the use of entire thermal barriers which separate the lighting enclosure from the plant growth chamber, the same principles apply to the use of water jackets for cooling individual lamps (such as can occur with xenon-arc lamps). In this instance, the barrier separating the lamps from the plant chamber can be much simpler (e.g., plexiglas) as the main function of the barrier is to separate the air ventilation of the lamp enclosure from the air system within the plant growth chamber. The main advantage of water as a thermal barrier is the negligible absorption of radiation in the photosynthetically-active and near infra-red wavebands. Consequently, plate glass-water barriers typically allow transmission of approximately 90% of radiation in these regions. While ventilated double and triple glazing systems appear to be attractive alternative to water barriers from an operating standpoint, their significant absorption in the biologically-important wavebands (7 - 12 %) with each glass layer and longer-wave cut-offs (typically 2500 - 4000 nm) makes them a much less attractive alternative. The data presented demonstrate clearly that measurement of PPF alone is not an adequate representation of the radiation environment being used in a controlled environment study.

  18. Water and environment news. No. 18

    International Nuclear Information System (INIS)

    2004-08-01

    The international symposium on Isotope Hydrology was held in May 2003. This symposium marked the 40th anniversary of these quadrennial IAEA symposia first convened in 1963 and was one of the contributions of the Agency to the International Year of Freshwater. The symposium drew a record 274 participants from 69 countries. The state-of-the-art in isotope techniques and their application to water resources management were reviewed, confirming that groundwater sustainability issues remain the mainstay for isotope applications, while application in climate modelling and watershed management is also becoming increasingly important. Water cycle research is one of the key elements of the Johannesburg Plan of Implementation resulting from the World Summit on Sustainable Development. As a result of the Agency's efforts since 2001, isotopes are now being integrated into the GEWEX (Global Energy and Water Cycle Experiment) project of WMO/ICSU's World Climate Research Programme project. An IAEA/GEWEX workshop evaluated the potential means of integrating precipitation isotope data in moisture source tracing models and, as a first step, initiated an international inter-comparison of the isotopic modules in different global circulation models. Two new research coordinated projects (CRPs) were recently initiated aimed at investigating the use of isotopes for groundwater sustainability assessment by characterizing the age of river baseflow, and for improved quantification of evaporation-transpiration fluxes by measuring isotopes in air, leaf and stem moisture. Each of these evinced tremendous response for participation by more than 20 research groups. Partnerships with other international agencies and programmes were further strengthened. A strong link was established with the UNEP/Global Environment Monitoring System/Water Programme (GEMS/Water) through a joint project to undertake inter-laboratory comparison exercises for water chemistry aimed at improving the quality of chemical

  19. Experimental and numerical study on the flow pattern of the ADS windowless spallation target with a second free surface downstream using model fluid water

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Gong, Shenjie

    2015-01-01

    Highlights: • A windowless spallation target with a buffer tank is tested. • Shape of the main free surface is recorded. • Streamline is obtained with the planar laser induced fluorescence method. • Stability of free surface is improved by the buffer tank. • Flow structure is simulated using RNG k-e turbulence model and VOF model. - Abstract: The windowless spallation targets are a promising design solution for accelerator driven system (ADS) due to their extended life compared to the spallation targets with a window. Keeping the stability of the free surface and reducing the recirculation zone is one of the key tasks for the design of a windowless spallation target. A windowless spallation target with a second free surface downstream (which is a buffer used to stabilize the main free surface of the flow) is studied experimentally and numerically using water at atmospheric pressure. By using planar laser induced fluorescence technique (LIF), the flow pattern inside the target zone is visualized for Reynolds numbers varying between 3.5 × 10 4 and 7.0 × 10 4 and pressure differences from 100 to 804 Pa. The experimental results reveal that the stability of the free surface is improved by adding a buffer in the downstream thus making it easier to control the height of the surface. The effect of the pressure difference between the void above the second free surface (high pressure side) and beam pipe (low pressure side) on the flow pattern is analyzed, as well as the inlet flow rate. The height of the surface length decreases with an increase in the pressure difference. The formation of the spallation zone is simulated with Fluent using the LES turbulence model and VOF model. The interface predicted agrees well with the experimental results

  20. Zwitterionization of glycine in water environment: Stabilization mechanism and NMR spectral signatures

    Science.gov (United States)

    Valverde, Danillo; da Costa Ludwig, Zélia Maria; da Costa, Célia Regina; Ludwig, Valdemir; Georg, Herbert C.

    2018-01-01

    At physiological conditions, myriads of biomolecules (e.g., amino acids, peptides, and proteins) exist predominantly in the zwitterionic structural form and their biological functions will result in these conditions. However these geometrical structures are inaccessible energetically in the gas phase, and at this point, stabilization of amino-acids in physiological conditions is still under debate. In this paper, the electronic properties of a glycine molecule in the liquid environment were studied by performing a relaxation of the glycine geometry in liquid water using the free energy gradient method combined with a sequential quantum mechanics/molecular mechanics approach. A series of Monte Carlo Metropolis simulations of the glycine molecule embedded in liquid water, followed by only a quantum mechanical calculation in each of them were carried out. Both the local and global liquid environments were emphasized to obtain nuclear magnetic resonance (NMR) parameters for the glycine molecule in liquid water. The results of the equilibrium structure in solution and the systematic study of the hydrogen bonds were used to discard the direct proton transfer from the carboxyl group to the ammonium group of the glycine molecule in water solution. The calculations of the Density Functional Theory (DFT) were performed to study the polarization of the solvent in the parameters of nuclear magnetic resonance of the glycine molecule in liquid water. DFT calculations predicted isotropic chemical changes on the H, C, N, and O atoms of glycine in liquid water solution which agree with the available experimental data.

  1. Zoning Of Pollutant Dispersion Came From IJEN Crater In The Downstream Region Of BANYUPUTIH River Using Oxygen-18 (18O) Natural Isotope Technique

    International Nuclear Information System (INIS)

    Susiati, Heni; Yarianto, S.B.S.; Sjarmufni, A.; Suprijadi; Wibagyo

    2002-01-01

    The research should be arranged for natural isotope composition of Oxygen-18 ( 18 O) in the water catchments of Banyupahit -Banyuputih river. Aim of the research are determine zoning of pollutant dispersion and be clarified that the pollution really come from lien crater as more surely above mentioned by the result of investigation previously. Research method be used field survey and characteristic analysis of Oksigen-18 isotope. Zoning of pollutant dispersion in the downstream side covers settlement. agricultural, plantation, and sugar factory area have conducted by analyzing Oksigen-18 isotope characteristic. Based on the result of the research pollutant dispersion area in the downstream region. the Eastern side of water catchments area were categorized as pollution level l was more dominant rather than in the Western side and pollution level II came from water pound area of Banyuputih. This phenomena caused of an irrigation system using by Liwung Water Pound of Banyuputih river which should be polluted by Sulfur. Geological factor in the Eastern (lithology) were most of sand rock also induce the dispersion of Sulfur rather than in the Western area. Present research has clarified previous investigation that Banyupahit river were polluted by Sulfur as a result of ijen crater leakage

  2. A Miniaturized Sensor for Microbial Monitoring of Spacecraft Water Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate real-time microbial monitoring of water environment is of paramount importance to crew health as well as to ensure proper functioning and control of the...

  3. Analyses of flow modification on water quality on Nechako River

    International Nuclear Information System (INIS)

    Mitchell, A.C.; James, C.B.; Edinger, J.E.

    1995-01-01

    Alcan Smelters and Chemicals Ltd. initiated construction of the final phase of the Kemano Completion Project in north-central British Columbia to divert additional water from the Nechako Reservoir to the existing powerhouse. The Nechako Reservoir was created by the construction of the Kenney Dam in Nechako Canyon, a natural barrier to salmon migration. The Nechako River downstream of Nechako Canyon supports important runs of sockeye and chinook salmon. This additional diversion of Nechako River flow creates the potential of high water temperatures and increased thermal stress to migrating sockeye salmon enroute to their spawning grounds in Nechako River tributaries. To achieve specific downstream water temperature objectives during sockeye salmon migration each summer, a two-level outlet facility adjacent to Kenney Dam is to be constructed to release cooling water at 10 C to the Nechako River. Results of mathematical modeling of Nechako River water temperatures show that, based on specified design criteria, a maximum Kenney Dam release of 167 m 3 /s at 10 C would be required to meet the downstream water temperature objectives

  4. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Science.gov (United States)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  5. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    International Nuclear Information System (INIS)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na + , Ca 2+ , SO 4 2- and HCO 3 - , and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author)

  6. Modern technologies and equipment for environment and sustainable development at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian; Patrascu, Mihai; Pop, Artimisia; Chilom, Rodica

    2004-01-01

    At ROMAG-PROD Heavy Water Plant, the sustainable development concept incorporates as a priority the environmental protection through the production process technology. Norway's Prime Minister, Mr. Gro Harlem Brundtland used the concept of 'sustainable development' in 1987, when as President of International Commission for Environment and Sustainable Development, he presented his report 'Our common future'. Sustainable development means that development that allows satisfying our present needs without spoiling the next generation capacity to meet their own needs. Any technology has both advantages and disadvantages; when considering the concept of sustainable development we have to take into account all the aspects, namely: - causes identification and review; - results evaluation; - corrective and preventive actions. Thus, ROMAG-PROD Heavy Water Plant has implemented a typical environment management system by means of what the general and specific objectives have been established, these objectives being stated in an Environment Policy Declaration: - Environment Management System as per SR EN ISO 14001/1997; - Quality Management System as per SR EN ISO 9001/2000; - IQNet- The International Certification Network. The paper presents the modern equipment for emissions and in-missions management with real time data transmission, for air and water as environment elements. Section two deals with trial of modern technology for industrial discharged wastewater treatment using the method of controlled batching of surface-active materials. Investigations on method application and laboratory testing as well as findings are given. As a conclusion, one can state that ROMAG-PROD Heavy Water Plant, has as one of its main concern keeping on high standards the safety of its equipment operation, sustainable development and risk eliminating so that neither environment or the population in vicinity is affected. (authors)

  7. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Science.gov (United States)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  8. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U

    2007-01-01

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS# 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9 ng/L detection limit) and analyzed low-volume water samples (200 mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110 ng/L) were significantly higher (P1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS# 4300-43-0). Both newly detected compounds were present as impurities (0.2%(w/w) each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

  9. Hazardous substances in Europe's fresh and marine waters

    DEFF Research Database (Denmark)

    Collins, Robert; Brack, Werner; Lützhøft, Hans-Christian Holten

    Chemicals are an essential part of our daily lives. They are used to produce consumer goods, to protect or restore our health and to boost food production, to name but a few examples — and they are also involved in a growing range of environmental technologies. Europe's chemical and associated...... on their pattern of use and the potential for exposure. Certain types of naturally occurring chemicals, such as metals, can also be hazardous. Emissions of hazardous substances to the environment can occur at every stage of their life cycle, from production, processing, manufacturing and use in downstream...... regarding chemical contamination arising from the exploitation of shale gas has grown recently. Hazardous substances in water affect aquatic life… Hazardous substances are emitted to water bodies both directly and indirectly through a range of diffuse and point source pathways. The presence of hazardous...

  10. Electron-induced hydrogen loss in uracil in a water cluster environment

    International Nuclear Information System (INIS)

    Smyth, M.; Kohanoff, J.; Fabrikant, I. I.

    2014-01-01

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A ′ -resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons

  11. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  12. Hydro-electric power and the environment

    International Nuclear Information System (INIS)

    Claughton, M.H.

    1993-01-01

    Environmental effects occur at the dam or reservoir site, upstream and downstream of the project area during and after the completion of any hydropower project. The environmental factors also have either positive or negative cost impact on the production of hydropower. Various factors which require careful consideration while undertaking hydropower projects are: land losses, resettlement, flora and fauna, fish and aquatic life, water quality, proliferation of weeds, loss of vegetation, erosion, downstream damage and induced seismicity. After identifying the factors relevant to a hydropower project, the necessary adjustments should be made in the location and design of the project. (M.G.B.)

  13. Silicon isotope fractionation during silica precipitation from hot-spring waters

    Science.gov (United States)

    Geilert, Sonja; Vroon, Pieter; Keller, Nicole; Gudbrnadsson, Snorri; Stefánsson, Andri; van Bergen, Manfred

    2014-05-01

    Hot-spring systems in the Geysir geothermal area, Iceland, have been studied to explore silicon isotope fractionation in a natural setting where sinter deposits are actively formed over a temperature interval between 20° and 100° C. The SiO2(aq)concentrations in spring and stream waters range between 290 and 560ppm and stay relatively constant along downstream trajectories, irrespective of significant cooling gradients. The waters are predominantly oversaturated in amorphous silica at the temperatures measured in the field. Correlations between the saturation indices, temperature and amounts of evaporative water loss suggest that cooling and evaporation are the main causes of subaqueous silica precipitation. The δ30Si values of dissolved silica in spring water and outflowing streams average around +1o probably due to the small quantities of instantaneously precipitating silica relative to the dissolved amount. Siliceous sinters, in contrast, range between -0.1o to -4.0o consistent with a preferred incorporation of the light silicon isotope and with values for precipitated silica becoming more negative with downstream decreasing temperatures. Larger fractionation magnitudes are inversely correlated with the precipitation rate, which itself is dependent on temperature, saturation state and the extent of a system. The resulting magnitudes of solid-fluid isotopic fractionation generally decline from -3.5o at 10° C to -2.0o at 90° C. These values confirm a similar relationship between fractionation magnitude and temperature that we found in laboratory-controlled silica-precipitation experiments. However, a relatively constant offset of ca. -2.9o between field and experimental fractionation values indicates that temperature alone cannot be responsible for the observed shifts. We infer that precipitation kinetics are a prominent control of silicon isotope fractionation in aqueous environments, whereby the influence of the extent of the system on the precipitation

  14. Effects of modern and ancient human activities on mercury in the environment in Xi'an area, Shannxi Province, P.R. China

    International Nuclear Information System (INIS)

    Jin Yongqing; Wang Xiaojuan; Lu Julia; Zhang Chengxiao; Duan Qingbo

    2008-01-01

    Samples of water, soil, sediment, and pomegranate were collected from Xi'an and the Qinshihuang Mausoleum in Shaanxi Province, China to assess the effects of human activities on mercury in the environment. The total mercury concentrations ranged from 3.9 to 992.7 ng L -1 for the water samples, 40.6 to 2204.0 ng g -1 for the soil samples, 14.2 to 376.7 ng g -1 for the sediment samples, and 0.22 to 1.74 ng g -1 for the pomegranates samples. The higher values in the water samples collected from the rivers closer to and downstream of the city resulted from wastewater discharges. The effects of the mercury buried in the Qinshihuang Mausoleum thousands of years ago on the environment were neither significant nor widespread. Immediate actions should be taken to stop the direct and continuous discharges of industrial and residential wastewaters to prevent mercury and other pollutants from accumulating and spreading in the area. - Urban activities are sources of mercury to the environment and the pomegranates grown over the burial mound of the Qinshihuang Mausoleum are not mercury-contaminated

  15. Water policy: Science versus political realities

    Science.gov (United States)

    Ryan, Mark A.

    2017-11-01

    Debate rages over which water bodies in the US are protected under federal law by the Clean Water Act. Science shows that isolated wetlands and headwater systems provide essential downstream services, but convincing politicians is another matter.

  16. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  17. Investigation for Water Propagation at PEMFC with Single Channel by Neutron Imaging Technique

    International Nuclear Information System (INIS)

    Kim, Tae Joo; Sim, Cheul Muu; Kim, Jong Rok; Kim, Moo Hwan

    2008-01-01

    Effective water management increases performance and durability of the Polymer Electrolyte Membrane Fuel cell(PEMFC). The membrane in PEMFC must be sufficiently hydrated because its conductivity relies primarily on the humidity state of the membrane. Since water is generated as a by-product when the fuel cell is generating power, this water source can be said to be a 'disturbance' to any water management system, which is trying to maintain proper humidity level without flooding. Since water is generated throughout the active area, the downstream area can be flooded even when the upstream area is under-saturated. This creates a challenging environment for water management, which adversely affects the efficiency and reliability in the operation of the PEMFC. Although there are many researches for the water management, their interests are limited on the performance. However, the fundamental information of water propagation characteristics is needed to make a scheme for water management. In this study, we used specially designed PEMFC with only single channel, and the water propagation was investigated according to the channel location by neutron imaging technique

  18. Water and Environment News, No. 28, February 2011

    International Nuclear Information System (INIS)

    2011-02-01

    The IAEA Director General has selected Water to be his priority theme for 2011 in order to promote the role of IAEA in this field. The Director General intends to increase Member State awareness in this area of IAEA's work and strengthen partnerships with bi-lateral and other donor agencies. This is an excellent development for our programme and we aim to make use of this opportunity to help Member States integrate isotope hydrology into their water resource management efforts. To this end, we hosted a Side Event at the 2010 General Conference of the IAEA to inform Member States of the importance of using groundwater age for aquifer assessment and modelling of large, regional aquifers. Guest speakers included senior representatives from India and the USA. A 'water tasting' was held with water ranging in age from modern to approximately one million years and a physical model demonstrated the concept of groundwater age. The event attracted a large number of visitors and based on feedback from them, it is considered to be successful in conveying the intended message. During this 'water year', the Section will focus on implementation of the IAEA's WAVE project. This project is aimed at comprehensive assessment of water resources. The first pilot study of this project will be conducted in the Philippines. After several years in development, the noble gas laboratory this year will begin to be used for a number of field studies to estimate groundwater age and recharge in shallow aquifers. We will also convene the quadrennial IAEA Symposium on Isotope Hydrology in March. This year's symposium will be held jointly with our Marine Environment Laboratory in Monaco on the occasion of the Laboratory's 50th anniversary

  19. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    Science.gov (United States)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  20. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  1. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  2. Characterization of the Ignition Over-Pressure/Sound Suppression Water in the Space Launch System Mobile Launcher Using Volume of Fluid Modeling

    Science.gov (United States)

    West, Jeff

    2015-01-01

    The Space Launch System (SLS) Vehicle consists of a Core Stage with four RS-25 engines and two Solid Rocket Boosters (SRBs). This vehicle is launched from the Launchpad using a Mobile Launcher (ML) which supports the SLS vehicle until its liftoff from the ML under its own power. The combination of the four RS-25 engines and two SRBs generate a significant Ignition Over-Pressure (IOP) and Acoustic Sound environment. One of the mitigations of these environments is the Ignition Over-Pressure/Sound Suppression (IOP/SS) subsystem installed on the ML. This system consists of six water nozzles located parallel to and 24 inches downstream of each SRB nozzle exit plane as well as 16 water nozzles located parallel to and 53 inches downstream of the RS-25 nozzle exit plane. During launch of the SLS vehicle, water is ejected through each water nozzle to reduce the intensity of the transient pressure environment imposed upon the SLS vehicle. While required for the mitigation of the transient pressure environment on the SLS vehicle, the IOP/SS subsystem interacts (possibly adversely) with other systems located on the Launch Pad. One of the other systems that the IOP/SS water is anticipated to interact with is the Hydrogen Burn-Off Igniter System (HBOI). The HBOI system's purpose is to ignite the unburned hydrogen/air mixture that develops in and around the nozzle of the RS-25 engines during engine start. Due to the close proximity of the water system to the HBOI system, the presence of the IOP/SS may degrade the effectiveness of the HBOI system. Another system that the IOP/SS water may interact with adversely is the RS-25 engine nozzles and the SRB nozzles. The adverse interaction anticipated is the wetting, to a significant degree, of the RS-25 nozzles resulting in substantial weight of ice forming and water present to a significant degree upstream of the SRB nozzle exit plane inside the nozzle itself, posing significant additional blockage of the effluent that exits the nozzle

  3. Gellan Gum: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Ishwar B. Bajaj

    2007-01-01

    Full Text Available The microbial exopolysaccharides are water-soluble polymers secreted by microorganisms during fermentation. The biopolymer gellan gum is a relatively recent addition to the family of microbial polysaccharides that is gaining much importance in food, pharmaceutical and chemical industries due to its novel properties. It is commercially produced by C. P. Kelco in Japan and the USA. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available information on the gellan gum synthesized by Sphingomonas paucimobilis with special emphasis on its fermentative production and downstream processing. Rheological behaviour of fermentation broth during fermentative production of gellan gum and problems associated with mass transfer have been addressed. Information on the biosynthetic pathway of gellan gum, enzymes and precursors involved in gellan gum production and application of metabolic engineering for enhancement of yield of gellan gum has been specified. Characteristics of gellan gum with respect to its structure, physicochemical properties, rheology of its solutions and gel formation behaviour are discussed. An attempt has also been made to review the current and potential applications of gellan gum in food, pharmaceutical and other industries.

  4. Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments.

    Science.gov (United States)

    Mdletshe, Zwelethu Mfanafuthi; Ndlela, Sithembile Zenith; Nsahlai, Ignatius Verla; Chimonyo, Michael

    2018-05-09

    The objective of the study was to compare factors influencing water scarcity for goats in areas where there are seasonal and perennial rivers under resource-limited communal farming environments. Data were collected using a structured questionnaire (n = 285) administered randomly to smallholder goat farmers from areas with seasonal and perennial rivers. Ceremonies was ranked as the major reason for keeping goats. Water scarcity was ranked the major constraint to goat production in areas with seasonal rivers when compared to areas with perennial rivers (P goat drinking in areas with seasonal and perennial river systems during cool dry and rainy seasons. Rivers were ranked as an important water source for goat drinking where there are seasonal and perennial river systems during the cool dry season. Households located close (≤ 3 km) to the nearest water source reported drinking water for goats a scarce resource. These results show that river systems, season and distance to the nearest water source from a household were factors perceived by farmers to influence water scarcity for goats in resource-limited communal farming environments. Farmers should explore water-saving strategies such as recycling wastewater from kitchens and bathrooms as an alternative water source. The government may assist farmers through sinking boreholes to supply water for both humans and livestock.

  5. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  6. Electron-induced hydrogen loss in uracil in a water cluster environment

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; Kohanoff, J. [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Fabrikant, I. I., E-mail: ifabrikant1@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA and Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A{sup ′}-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  7. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  8. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-06-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  9. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  10. Effect on water resources from upstream water diversion in the Ganges basin.

    Science.gov (United States)

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  11. Effects of modern and ancient human activities on mercury in the environment in Xi'an area, Shannxi Province, P.R. China

    Energy Technology Data Exchange (ETDEWEB)

    Jin Yongqing; Wang Xiaojuan [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3 (Canada); Lu Julia [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3 (Canada)], E-mail: julialu@ryerson.ca; Zhang Chengxiao [Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)], E-mail: cxzhang@snnu.edu.cn; Duan Qingbo [Shaanxi Archaeology Institute, Xi' an 710054 (China)

    2008-05-15

    Samples of water, soil, sediment, and pomegranate were collected from Xi'an and the Qinshihuang Mausoleum in Shaanxi Province, China to assess the effects of human activities on mercury in the environment. The total mercury concentrations ranged from 3.9 to 992.7 ng L{sup -1} for the water samples, 40.6 to 2204.0 ng g{sup -1} for the soil samples, 14.2 to 376.7 ng g{sup -1} for the sediment samples, and 0.22 to 1.74 ng g{sup -1} for the pomegranates samples. The higher values in the water samples collected from the rivers closer to and downstream of the city resulted from wastewater discharges. The effects of the mercury buried in the Qinshihuang Mausoleum thousands of years ago on the environment were neither significant nor widespread. Immediate actions should be taken to stop the direct and continuous discharges of industrial and residential wastewaters to prevent mercury and other pollutants from accumulating and spreading in the area. - Urban activities are sources of mercury to the environment and the pomegranates grown over the burial mound of the Qinshihuang Mausoleum are not mercury-contaminated.

  12. Principle and design of hatch operation system for fish migrating upstream-downstream of the discharge sill

    Directory of Open Access Journals (Sweden)

    Răzvan G.Voicu

    2016-09-01

    Full Text Available To improve fish migration and restore local lotic ecosystems, it is necessary to consider the various current hydro-construction methods. There have been partial successes in systems that improve fish passage over various obstacles but new approaches that present more efficient solutions and international collaboration among specialists are required. This article deals with European themes of great interest; issues related to interruption of longitudinal connectivity in heavily modified water courses, and improving the ecological status of damaged lotic systems, with the goal of achieving the environmental objectives set forth by the Water Framework Directive 2000/60/EC (WFD and the national legislative framework regarding water policy (which reflects the European directives Water Law no. 107, with subsequent amendments, NT No. / 2006 OM 1163/2007, and discusses the obligation to ensure that construction works protect fish migration to maintain ecological balance in the reservoirs. It is possible to use this system in almost any fish-bearing stream, both upstream and downstream of maximum circulation, which makes the system an excellent solution for assisting and improving migration.

  13. Effects of Coordinated Operation of Weirs and Reservoirs on the Water Quality of the Geum River

    Directory of Open Access Journals (Sweden)

    Jung Min Ahn

    2017-06-01

    Full Text Available Multifunctional weirs can be used to maintain water supply during dry seasons and to improve downstream water quality during drought conditions through discharge based on retained flux. Sixteen multifunctional weirs were recently constructed in four river systems as part of the Four Rivers Restoration Project. In this study, three multifunctional weirs in the Geum River Basin were investigated to analyze the environmental effects of multifunctional weir operation on downstream flow. To determine seasonal vulnerability to drought, the basin was evaluated using the Palmer Drought Severity Index (PDSI. Furthermore, the downstream flow regime and the effect on water quality improvement of a coordinated dam–multifunctional weir operation controlled by: (a a rainfall–runoff model; (b a reservoir optimization model; and (c a water quality model, were examined. A runoff estimate at each major location in the Geum River Basin was performed using the water quality model, and examined variation in downstream water quality depending on the operational scenario of each irrigation facility such as dams and weirs. Although the water quality was improved by the coordinated operation of the dams and weirs, when the discharged water quality is poor, the downstream water quality is not improved. Therefore, it is necessary to first improve the discharged water quality on the lower Geum River. Improvement of the water quality of main stream in the Geum River is important, but water quality from tributaries should also be improved. By applying the estimated runoff data to the reservoir optimization model, these scenarios will be utilized as basic parameters for assessing the optimal operation of the river.

  14. River flow availability for environmental flow allocation downstream of hydropower facilities in the Kafue Basin of Zambia

    Science.gov (United States)

    Kalumba, Mulenga; Nyirenda, Edwin

    2017-12-01

    The Government of the Republic Zambia (GRZ) will install a new hydropower station Kafue Gorge Lower downstream of the existing Kafue Gorge Station (KGS) and plans to start operating the Itezhi-Tezhi (ITT) hydropower facility in the Kafue Basin. The Basin has significant biodiversity hot spots such as the Luangwa National park and Kafue Flats. It is described as a Man-Biosphere reserve and the National Park is a designated World Heritage Site hosting a variety of wildlife species. All these natural reserves demand special protection, and environmental flow requirements (e-flows) have been identified as a necessary need to preserve these ecosystems. Implementation of e-flows is therefore a priority as Zambia considers to install more hydropower facilities. However before allocation of e-flows, it is necessary to first assess the river flow available for allocation at existing hydropower stations in the Kafue Basin. The river flow availability in the basin was checked by assessing the variability in low and high flows since the timing, frequency and duration of extreme droughts and floods (caused by low and high flows) are all important hydrological characteristics of a flow regime that affects e-flows. The river flows for a 41 year monthly time series data (1973-2014) were used to extract independent low and high flows using the Water Engineering Time Series Processing Tool (WETSPRO). The low and high flows were used to construct cumulative frequency distribution curves that were compared and analysed to show their variation over a long period. A water balance of each hydropower station was used to check the river flow allocation aspect by comparing the calculated water balance outflow (river flow) with the observed river flow, the hydropower and consumptive water rights downstream of each hydropower station. In drought periods about 50-100 m3/s of riverflow is available or discharged at both ITT and KGS stations while as in extreme flood events about 1300-1500 m3/s

  15. Conversion of tritium gas to tritiated water in the environment

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kato, Shohei

    1985-01-01

    The literature on conversion of tritium gas to tritiated water in various environments is reviewed. The conversion mechanisms and the conversion rates are as follows. 1. In the oxidation with oxygen and the isotopic exchange with water, tritium β-rays and metal catalyst are effective. The oxidation rate is ∼ 0.02 %/day at initial tritium concentration ≤ 10 -2 Ci/l and ∼ 2 %/day at 1 Ci/l. In the presence of oxygen and water, it is not clear whether the exchange reaction occurs or not because of the small amount of data. 2. For biological conversion, soil microorganisms contribute significantly. The conversion rate is greater than 10 %/hr. The tritium gas deposition velocity, which includes the uptake rate of tritium gas by soil and the conversion rate, ranges from 0.0025 to 0.11 cm/sec and is influenced by temperature and moisture of the soil. 3. Tritium gas is converted to the tritiated water through the reaction with hydroxyl radical produced by sunlight in the atmosphere. (author)

  16. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    International Nuclear Information System (INIS)

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C.; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  17. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Kassotis, Christopher D., E-mail: christopher.kassotis@duke.edu [Nicholas School of the Environment, Duke University, Durham, NC 27708 (United States); Iwanowicz, Luke R. [U.S. Geological Survey, Leetown Science Center, Fish Health Branch, 11649 Leetown Road, Kearneysville, WV 25430 (United States); Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam C. [U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Drive, MS 430, Reston, VA 20192 (United States); Orem, William H. [U.S. Geological Survey, Eastern Energy Resources Science Center, 12201 Sunrise Valley Drive, MS 956, Reston, VA 20192 (United States); Nagel, Susan C., E-mail: nagels@health.missouri.edu [Department of Obstetrics, Gynecology and Women' s Health, University of Missouri, Columbia, MO 65211 (United States)

    2016-07-01

    Currently, > 95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. - Highlights: • Oil and gas wastewater disposal may increase endocrine disrupting activity in water. • Tested EDC activity in surface water near oil and gas wastewater injection site. • Water downstream had significantly

  18. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities.

    Science.gov (United States)

    Wang, Tieyu; Zhou, Yunqiao; Bi, Cencen; Lu, Yonglong; He, Guizhen; Giesy, John P

    2017-07-01

    There is a need to formulate water environment standards (WESs) from the current water quality criteria (WQC) in China. To this end, we briefly summarize typical mechanisms applied in several countries with longer histories of developing WESs, and three limitations to formulating WESs in China were identified. After analyzing the feasibility factors including economic development, scientific support capability and environmental policies, we realized that China is still not ready for a complete change from its current nation-wide unified WES system to a local-standard-based system. Thus, we proposed a framework for transformation from WQC to WESs in China. The framework consists of three parts, including responsibilities, processes and policies. The responsibilities include research authorization, development of guidelines, and collection of information, at both national and local levels; the processes include four steps and an impact factor system to establish water quality standards; and the policies include seven specific proposals. Copyright © 2016. Published by Elsevier B.V.

  19. Detection and tracing of the medical radioisotope 131I in the Canberra environment

    Directory of Open Access Journals (Sweden)

    Gilfillan Nathan R.

    2012-10-01

    Full Text Available The transport and radioecology of the therapeutical radioisotope 131I has been studied in Canberra, Australia. The isotope has been detected in water samples and its activity quantified via characteristic J-ray photo peaks. A comparison of measurements on samples from upstream and downstream of the Canberra waste water treatment plant shows that 131I is discharged from the plant outflow into the local Molonglo river. This is consistent with observations in other urban environments. A time-correlation between the measured activities in the outflow and the therapeutical treatment cycle at the hospital identifies the medical treatment as the source of the isotope. Enhanced activity levels of 131I have been measured for fish samples. This may permit conclusions on 131I uptake by the biosphere. Due to the well-defined and intermittent input of 131I into the sewage, the Canberra situation is ideally suited for radioecological studies. Furthermore, the 131I activity may be applied in tracer studies of sewage transport to and through the treatment plant and as an indicator of outflow dilution following discharge to the environment.

  20. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  1. Effects of Backpacker Use, Pack Stock Trail Use, and Pack Stock Grazing on Water-Quality Indicators, Including Nutrients, E. coli, Hormones, and Pharmaceuticals, in Yosemite National Park, USA

    Science.gov (United States)

    Forrester, Harrison; Clow, David; Roche, James; Heyvaert, Alan; Battaglin, William

    2017-09-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012-2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL-1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL-1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL-1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  2. Diphasic flow downstream of circulation-water condenser during priming

    International Nuclear Information System (INIS)

    Ibler, B.; Sabaton, M.; Canavelis, R.

    1982-01-01

    The experimental study presented here describes the experiments for visualizing diphasic flow carried out on a 1/10 model of a circulation-water condenser for a 1,300-MW nuclear power unit. The essential object of the experiments was to validate the layout for the tubing proposed by the Design Office, from the point of view of its incidence on the stability of the flows and the mechanical solidity of the structures during the relatively anarchical phase of automatic priming of the condenser. The observations made have rendered it possible firstly to analyse the pattern of flows in greater detail and secondly to conclude that a simplified and cheaper layout of pipes is acceptable without great risk [fr

  3. Efficient Assessment of the Environment for Integral Urban Water Management

    Science.gov (United States)

    Rost, Grit; Londong, Jörg

    2015-04-01

    required subjects/disciplines implies first sight expert knowledge or provided open access data. In the case of the need for a more detailed screening the next steps consist of scientifically based analysis and legal statutory analysis. Indexes (indicators) or benchmarks for each assessment scale will be summarized and linked to suitable measures. The trans- and interdisciplinary approach makes sure that technical, informative and administrative measures will be involved. A rating between the current situation and the determined target situation will help for effective derivation of measures. Conclusion: The claim of the stepwise assessment is to make the data possible to handle, and to summarize the knowledge of expert's effective environmental assessment methods. The universe, comprehensive assessment will be feasible by using the toolbox. The toolbox will be a planning tool for sustainable urban water management and closed loop recycling water management. GWP, INBO (2009) A Handbook for Integrated Water Resources Management in Basins. 104. Karthe D, Heldt S, Rost G, et al (2014) Modular Concept for Municipal Water Management in the Kharaa River Basin, Mongolia. Environ. Sci. Price RK, Vojinović Z (2011) Urban Hydroinformatics Data, Models and Decision Support for Integrated Urban Water Management. 520. Rost G, Londong J, Dietze S, Osor G (2013) Integrated urban water management - an adapted management approach for planning and implementing measures: Case study area Darkhan , Kharaa catchment, Mongolia. Submitt to Environ Earth Sci 19. Stäudel J, Schalkwyk B Van, Gibbens M (2014) Methods and strategies for community-based enhancement & up-scaling of sanitation & waste management in peri-urban areas in South Africa. SANO. Rhombos-Verlag, Weimar, pp 1-13

  4. Feasibility of Rainwater Harvesting to fulfill potable water demand using quantitative water management in low-lying delta regions of Asia

    Science.gov (United States)

    Mahmood, A.; Hossain, F.

    2016-12-01

    Low-lying deltas of Asian region are usually densely populated and located in developing countries situated at the downstream end of major rivers. Extensive dam construction by the upstream countries has now caused water scarcity in large portions of low-lying deltas. Most inhabitants depend on shallow tube well for safe drinking water that tend to suffer from water quality issues (e.g. Arsenic contamination). In addition, people also get infected from water borne diseases like Cholera and Typhoid due to lack of safe drinking water. Developing a centralized piped network based water supply system is often not a feasible option in rural regions. Due to social acceptability, environment friendliness, lower capital and maintenance cost, rainwater harvesting can be the most sustainable option to supply safe drinking water in rural areas. In this study, first we estimate the monthly rainfall variability using long precipitation climatology from satellite precipitation data. The upper and lower bounds of monthly harvestable rainwater were estimated for each satellite precipitation grid. Taking this lower bound of monthly harvestable rainwater as input, we use quantitative water management concept to determine the percent of the time of the year potable water demand can be fulfilled. Analysis indicates that a 6 m³ reservoir tank can fulfill the potable water demand of a 6 person family throughout a year in almost all parts of this region.

  5. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  6. Modelling the role of transmission companies in the downstream European gas market

    International Nuclear Information System (INIS)

    Boots, M.A.; Rijkers, F.A.M.

    2000-07-01

    This paper describes the empirical model GASTALE and shows several analyses of the European gas market using this model. These analyses are mainly focused on the role of the downstream transmission companies. Producers of natural gas are assumed to form an oligopoly throughout the paper. Considering an oligopolistic transmission structure our model results show that the level of transmitters' profits strongly depends on the possibilities of discrimination on the border prices. If price discrimination by producers is allowed, these producers collect the main part of the margins on end-use prices. Without price discrimination the transmission companies collect most of the margins. Assuming an oligopolistic downstream structure, end-use prices converge to prices corresponding to perfect competition when the number of transmitters increases. Given the oligopolistic structure of the upstream industry, it is of importance to prevent (or abolish) monopolistic structures in the downstream gas market. In the case where oligopolistic competition between downstream gas companies cannot be prevented, vertical integration should be supported (or at least not be discouraged). 14 refs

  7. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  8. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  9. Microbial production of scleroglucan and downstream processing

    Directory of Open Access Journals (Sweden)

    Natalia Alejandra Castillo

    2015-10-01

    Full Text Available Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a beta-1,3-beta-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc., and biomedical (immunoceutical, antitumor, etc. applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high EPS concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined.

  10. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  11. Imaging for monitoring downstream processing of fermentation broths

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Baum, Andreas; Jørgensen, Thomas Martini

    In relation to downstream processing of a fermentation broth coagulation/flocculation is a typical pretreatment method for separating undesirable particles/impurities from the wanted product. In the coagulation process the negatively charged impurities are destabilized by adding of a clarifying...

  12. THEORY OF ACTIVE HITTINGS IS IN PROCESSES OF ELECTRO-COAGULATION THE ADMIXTURES IN WATER TECHNOLOGICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    В.В. Березуцький

    2012-10-01

    Full Text Available  In the article theoretical bases of electro-coagulation of admixtures are examined in a water technological environment with the use of theory of the active hittings, which are based on the results of the executed researches and analysis of scientific information. Application of theory of the active hittings is in coagulation, provides high efficiency of process of extraction of admixtures from water environments during minimization of energy consumption and expenses of materials.

  13. Pollution of the environment by tannery and textile waste waters in the areas of Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E.O.; Raoelina Andriambololona; Andrianarivo, R.R.; Randriamanivo, L.V.; Raboanary, R.

    2007-01-01

    Waste water pollution is a major problem throughout the world. It has affected the health and the environment in Antananarivo (capital of Madagascar). Undesirable and toxic heavy metals contained in waste water samples are measured by the technique of total reflection X-ray fluorescence. Chromium is a toxic metal for the environment associated to the tannery. Its concentration (2712.1 μg.L -1 ) is superior to the national norm (2000 μg.L -1 ). Regarding textile factories, the highest value of the conductivity (4670 μS.cm -1 ) is 23 times the national norm (200 μS.cm -1 ). The concentration of lead (251.0 μg.L -1 ) is higher than the national norm (200 μg.L -1 ) and the Belgium norm (100 μg.L -1 ). The present study illustrates the importance of the treatment of waste water of the factories before pouring them in the environment.

  14. Water cooled type nuclear power plant

    International Nuclear Information System (INIS)

    Arai, Shigeki.

    1981-01-01

    Purpose: To construct high efficiency a PWR type nuclear power plant with a simple structure by preparing high temperature and pressure water by a PWR type nuclear reactor and a pressurizer, converting the high temperature and high pressure water into steam with a pressure reducing valve and introducing the steam into a turbine, thereby generating electricity. Constitution: A pressurizer is connected downstream of a PWR type nuclear reactor, thereby maintaining the reactor at high pressure. A pressure-reducing valve is provided downstream of the pressurizer, the high temperature and pressure water is reduced in pressure, thereby producing steam. The steam is fed to a turbine, and electric power is generated by a generator connected to the turbine. The steam exhausted from the turbine is condensed by a condenser into water, and the water is returned through a feedwater heater to the reactor. Since the high temperature and pressure water in thus reduced in pressure thereby evaporating it, the steam can be more efficiently produced than by a steam generator. (Sekiya, K.)

  15. Paradigm Shift in Transboundary Water Management Policy: Linking Water Environment Energy and Food (weef) to Catchment Hydropolitics - Needs, Scope and Benefits

    Science.gov (United States)

    RAI, S.; Wolf, A.; Sharma, N.; Tiwari, H.

    2015-12-01

    The incessant use of water due to rapid growth of population, enhanced agricultural and industrial activities, degraded environment and ecology will in the coming decades constrain the socioeconomic development of humans. To add on to the precarious situation, political boundaries rarely embrace hydrological boundaries of lakes, rivers, aquifers etc. Hydropolitics relate to the ability of geopolitical institutions to manage shared water resources in a politically sustainable manner, i.e., without tensions or conflict between political entities. Riparian hydropolitics caters to differing objectives, needs and requirements of states making it difficult to administer the catchment. The diverse riparian objectives can be merged to form a holistic catchment objective of sustainable water resources development and management. It can be proposed to make a paradigm shift in the present-day transboundary water policy from riparian hydropolitics (in which the focal point of water resources use is hinged on state's need) to catchment hydropolitics (in which the interest of the basin inhabitants are accorded primacy holistically over state interests) and specifically wherein the water, environment, energy and food (WEEF) demands of the catchment are a priority and not of the states in particular. The demands of the basin pertaining to water, food and energy have to be fulfilled, keeping the environment and ecology healthy in a cooperative political framework; the need for which is overwhelming. In the present scenario, the policy for water resources development of a basin is segmented into independent uncoordinated parts controlled by various riparians; whereas in catchment hydropolitics the whole basin should be considered as a unit. The riparians should compromise a part of national interest and work in collaboration on a joint objective which works on the principle of the whole as against the part. Catchment hydropolitics may find greater interest in the more than 250

  16. Reliving the past in a changed environment: Hydropower ambitions, opportunities and constraints in Tajikistan

    International Nuclear Information System (INIS)

    Wegerich, Kai; Olsson, Oliver; Froebrich, Jochen

    2007-01-01

    In Central Asia, various arguments, ranging from a unifying purpose to political control to conflict potential, have been made about the relationship between downstream water utilisation and the upstream water control infrastructure. This paper analyses the construction and utilisation of the Nurek dam in Tajikistan during and after the break-up of the Soviet Union. The political and socio-economic changes that ensued after independence influenced the utilisation of the water control infrastructure. The new economic reorientation of Tajikistan demanded by the break-up caused concerns to downstream riparian states. The conflict potential is based not on water resource allocation, but on the utilisation of water for energy production, its control and transmission infrastructure. Even though there is conflict potential, the situation could be turned into a win-win situation for all the riparian states

  17. Water repellence assessment in humid mediterranean carbonated environments: influence of shrubland species

    Science.gov (United States)

    Oscar, Gonzalez-Pelayo; Vicente, Andreu; Luis, Rubio Jose; Carla Sofia, Ferreira; Dinis, Ferreira Antonio Jose

    2010-05-01

    The importance of natural or induced (fire) water repellence in terms of water redistribution in the soil profile, reduction in soil infiltration capacity and thus, in runoff magnification, is well established. Hydrophobicity has been identified around the world in different climatic conditions, land covers, soil and vegetation types. Regarding soil and vegetation, many studies are based on coarse acidic soils with pine forest, eucalyptus, deciduous trees, grassland, cropland, chaparral vegetation type, and lately in shrublands. However, few studies are related to shrubland in wet Mediterranean carbonated environments. This work is oriented to the study of soil water repellence in these environments by means of WDPT. The study was carried out in Podentes (Coimbra), central Portugal, on 4 ha of shrubland (mainly Quercus coccifera, Pistacia lentiscus and Arbutus unedo), developed on Umbric leptosol and Calcaric cambisol soil types (WRB). The WDPT was assessed depending on the shrubland type, slope orientation, soil depth (0-2 cm and 2-5 cm) and on different soil fractions (unedo. Soil water repellence decreased with depth. The studied shrubland species showed an increasing trend on the soil hydrophobicity persistence: A. unedo > Q. coccifera ≈ P. lentiscus; and depending on the orientation: NE > SW. Direct relationships were obtained between the soil organic matter content and the log WDPT on almost all the surface soil samples. The soil pH and carbonate content did not display correlation with soil water repellence. The different hydrophobic compounds generated by waxes and resins of the different shrubland types, which could be incorporated to the soil as binding agents, seem to be the explanation for the differences of the WDPT data. The patchy distribution of the vegetation rules the persistence of the natural soil water repellence, restraining water infiltration mainly by micropore flow, being then the soil hydrology controlled by the macropore flow, cracks

  18. A Preliminary Study of Water Quality Index in Terengganu River Basin, Malaysia

    International Nuclear Information System (INIS)

    Suratman, S.; Mohd, S.M.I.; Hee, Y.Y.; Bedurus, E.A.; Latif, M.T.

    2015-01-01

    The Malaysian Department of Environment-Water Quality Index (DOE-WQI) was determined for the Terengganu River basin which is located at the coastal water of the southern South China Sea between July and October 2008. Monthly samplings were carried out at ten sampling stations within the basin. Six parameters listed in DOE-WQI were measured based on standard methods: pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and ammonical nitrogen (AN). The results indicated the impact of various anthropogenic activities which contribute to high values of BOD, COD, TSS and AN at middle and downstream stations, as compared with the upstream of the basin. The reverses were true for the pH and DO values. The DOE-WQI ranged from 71.5-94.6 % (mean 86.9 %), which corresponded to a classification status range from slightly polluted to clean. With respect to the Malaysia National Water Quality Standards (NWQS), the level of most of the parameters measured remained at Class I which is suitable for the sustainable conservation of the natural environment, for water supply without treatment and as well as for very sensitive aquatic species. It is suggested that monitoring should be carried out continuously for proper management of this river basin. (author)

  19. Scleroglucan: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Shrikant A. Survase

    2007-01-01

    Full Text Available Exopolysaccharides produced by a variety of microorganisms find multifarious industrial applications in foods, pharmaceutical and other industries as emulsifiers, stabilizers, binders, gelling agents, lubricants, and thickening agents. One such exopolysaccharide is scleroglucan, produced by pure culture fermentation from filamentous fungi of genus Sclerotium. The review discusses the properties, fermentative production, downstream processing and applications of scleroglucan.

  20. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  1. Effects of backpacker use, pack stock trail use, and pack stock grazing on water-quality indicators, including nutrients, E. coli, hormones, and pharmaceuticals, in Yosemite National Park, USA

    Science.gov (United States)

    Forrester, Harrison; Clow, David W.; Roche, James W.; Heyvaert, Alan C.; Battaglin, William A.

    2017-01-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012–2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL−1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL−1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL−1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  2. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    Science.gov (United States)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  3. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    Science.gov (United States)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  4. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    Science.gov (United States)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was

  5. Remote Mine Detection Technologies for Land and Water Environments

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Eddie R.

    1999-05-11

    The detection of mines, both during and after hostilities, is a growing international problem. It limits military operations during wartime and unrecovered mines create tragic consequences for civilians. From a purely humanitarian standpoint an estimated 100 million or more unrecovered mines are located in over 60 countries worldwide. This paper presents an overview of some of the technologies currently being investigated by Sandia National Laboratories for the detection and monitoring of minefields in land and water environments. The three technical areas described in this paper are: 1) the development of new mathematical techniques for combining or fusing the data from multiple sources for enhanced decision-making; 2) an environmental fate and transport (EF&T) analysis approach that is central to improving trace chemical sensing technique; and 3) the investigation of an underwater range imaging device to aid in locating and characterizing mines and other obstacles in coastal waters.

  6. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data.

    Science.gov (United States)

    Laurenson, James P; Bloom, Raanan A; Page, Stephen; Sadrieh, Nakissa

    2014-03-01

    Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.

  7. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.

  8. Detection of Emerging and Re-Emerging Pathogens in Surface Waters Close to an Urban Area

    Directory of Open Access Journals (Sweden)

    Stefania Marcheggiani

    2015-05-01

    Full Text Available Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV, noroviruses GI (NoGGI and GII (NoGII and human adenovirus 41 (ADV 41 were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than

  9. Resilience of the Nexus of Competitive Water Consumption between Human Society and Environment Development: Regime Shifts and Early Warning Signals

    Science.gov (United States)

    Li, Z.; Liu, P.; Feng, M.; Zhang, J.

    2017-12-01

    Based on the modeling of the water supply, power generation and environment (WPE) nexus by Feng et al. (2016), a refined theoretical model of competitive water consumption between human society and environment has been presented in this study, examining the role of technology advancement and social environmental awareness growth-induced pollution mitigation to the environment as a mechanism for the establishment and maintenance of the coexistence of both higher social water consumption and improved environment condition. By coupling environmental and social dynamics, both of which are represented by water consumption quantity, this study shows the possibility of sustainable situation of the social-environmental system when the benefit of technology offsets the side effect (pollution) of social development to the environment. Additionally, regime shifts could be triggered by gradually increased pollution rate, climate change-induced natural resources reduction and breakdown of the social environmental awareness. Therefore, in order to foresee the pending abrupt regime shifts of the system, early warning signals, including increasing variance and autocorrelation, have been examined when the system is undergoing stochastic disturbance. ADDIN EN.REFLIST Feng, M. et al., 2016. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. J. Hydrol., 543: 344-359.

  10. Quality of water in an inactive uranium mine and its effects on the quality of water in Blue Creek, Stevens County, Washington, 1984-85. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sumioka, S.S.

    1991-01-01

    The purpose of the report is to present the results of a study done to determine (1) the monthly and annual water budgets and probable variation in runoff for the drainage basin in which the mine is located; (2) if precipitation is the source of low pH water found in pit 3 and the retention pond; (3) the quality of water in pits 3 and 4, the retention pond, streamflow from the basin, Blue Creek upstream and downstream of the point the drainage enters, and near the mouth of Blue Creek; (4) the quality of ground water discharged from the basin into Blue Creek; and (5) the daily mean values of discharge, water temperature, specific conductance, and pH for mine drainage from the basin, Blue Creek upstream and downstream of the mine drainage, and near the mouth of Blue Creek. The report also describes a potential water-quality monitoring program that would allow the determination of annual loads of selected chemical constituents entering Blue Creek from the mine basin and information about the type of ground-water tracers and procedures needed to examine flow paths near the retention pond

  11. Interactions between Channel Morphology and the Propagation of Coarse Sediment Augmentations Downstream from Dams

    Science.gov (United States)

    Gaeuman, D. A.; Dickenson, S.; Pyles, M.

    2009-12-01

    Gravel augmentations are being implemented in a number of streams where natural recruitment of gravel is impeded by dams. Uncertainties relevant to the management of gravel augmentations include the quantities of gravel needed to achieve habitat benefits at downstream locations and the temporal and spatial scales over which those benefits that will be realized. The solution to such questions depends to a large extent on how gravel slugs evolve as the material is transported downstream, i.e., whether the gravel translates downstream as a coherent wave or whether it tends to disperse. A number of recent studies conducted in laboratory flumes or by numerical simulation that gravels slugs tend to disperse rather than translate. However, these studies do not consider the influence of channel morphology on slug behavior. Initial monitoring results based from 2 California streams suggest that natural channel morphology suppresses slug dispersion because the gravel tends to accumulate in discrete deposition zones. Field mapping and about 200 tracer stones implanted with passive integrated transponder (PIT) tags show that gravel recruitment piles of about 80 tons each placed in Grass Valley Creek in 2007 and 2008 were deposited as 2 new bars immediately downstream. The more upstream of the 2 bars formed during the 2007 winter and spring flood season, whereas the more downstream bar did not appear until the following year. A sharp deposition front and an absence of tracers in the reaches downstream strongly suggest that none of the added gravel was transported downstream beyond the area of bar formation in either year. A relatively small proportion of the mobilized tracer particles (59%) were located following the 2007 flood season, probably due to deep burial in the newly deposited bar and to radio interference caused by the high concentration of tracers in a small area. The proportion of newly introduced or previously-located tracers that were relocated in 2009 was

  12. Research on the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River

    Science.gov (United States)

    Wang, Y.; Fang, D., VI; Xu, J.; Dong, Q.

    2017-12-01

    The Lancang-Mekong River is an important international river, cascaded hydropower stations development in which attracts the attention of downstream countries. In this paper, we proposed a coordination framework for water resources utilization on the interests of mutual compensation to relieve the conflict of upstream and downstream countries. Firstly, analyze the benefits and risks caused by the cascaded hydropower stations development and the evolution process of water resources use conflict between upstream and downstream countries. Secondly, evaluate the benefits and risks of flood control, water supply, navigation and power generation based on the energy theory of cascaded hydropower stations development in Lancang-Mekong River. Thirdly, multi-agent cooperation motivation and cooperation conditions between upstream and downstream countries in Lancang-Mekong River is given. Finally, the coordination framework for water resources utilization on the interests of mutual compensation in Lancang-Mekong River is presented. This coordination framework for water resources utilization can increase comprehensive benefits in Lancang-Mekong River.

  13. The movement of a redox front downstream from a repository for nuclear waste

    International Nuclear Information System (INIS)

    Neretnieks, I.

    1982-01-01

    In a final repository for nuclear waste it is envisaged that the waste will eventually come in contact with water. When this happens the α-radiation will radiolyse water. The main products will be hydrogen and hydrogen peroxide. The hydrogen is fairly nonreactive and will be transported away by diffusion and convection. The hydrogen peroxide is a strong oxidizing agent and will oxidize any ferrous iron it encounters to ferric iron. This will change the electrochemical potential of the water in the region, from reducing to oxidizing conditions. In oxidizing waters many of the potentially hazardeous radionuclides - actinides and technetium - will have a high solubility and low sorption compared to conditions. The movement of the redox front along the fissures downstream of a repository has been investigated theoretically. The rock is modelled as having parallel fissures where the water flows. The rock matrix has a connected porosity into which the hydrogen peroxide diffuses and quickly reacts with the minerals containing ferrous iron. The movements of the sharp boundary between oxidizing and reducing conditions in the fissures as well as in the matrix of the rock is described mathematically. A calculated example based on expected flowrate of water, rate of α-radiolysis, fissure spacing and measured values of matrix diffusivity and ferrous iron content of the bedrock is made. The results indicate that under some conditions the redox front may move tens of meters downstraem during 10 6 years in fairly good rock, poor in ferrous iron. It is conceivable that the extension of the redox front is larger as well as shorter because many of the importhat factors governing teh front movement may vary considerably. (Author)

  14. Assessment of Heavy Metals in the Water of Sahastradhara Hill Stream at Dehradun, India

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Bharti

    2014-09-01

    Full Text Available A study on heavy metals assessment in the water of Sahastradhara hill-stream was conducted with different five sites at significant differences. The present paper deals with the water quality status of Sahastradhara stream by the assessment of heavy metals. Heavy Metals were found in fluctuated trend from first upstream to last downstream. The values of almost all Heavy Metals were found in increasing manner especially after the fourth sampling site. After the third sampling station, a solid waste dumping site was found. So, there may be a relation between heavy metals in stream water and solid waste dumping site. Concentrations of all Heavy Metals at fourth and fifth sampling site were found very high. DOI: http://dx.doi.org/10.3126/ije.v3i3.11076 International Journal of Environment Vol.3(3 2014: 164-172

  15. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships

  16. Ecohydrology in water-limited environment using quantitative remote sensing - the Heihe River basin (China) case

    NARCIS (Netherlands)

    Jin, X.

    2009-01-01

    Water-limited environments exist on all continents of the globe and they cover more than
    30% of the Earth’s land surface. The eco-environments of these regions tend to be fragile and
    they are changing in a dramatic way through processes like land desertification, shrinking of

  17. Potential GLOF Hazards and Initiatives taken to minimize its Impacts on Downstream Communities and Infrastructures in Nepal Himalaya

    Science.gov (United States)

    Regmi, D.; Kargel, J. S.; Leonard, G. J.; Haritashya, U. K.; Karki, A.; Poudyal, S.

    2017-12-01

    With long-term temperature increases due to climate change, glacier lakes in several parts of the world are a fast-developing threat to infrastructure and downstream communities. There are more than 2000 glacier lakes in Nepal; while most pose no significant hazard to people, a comparative few are very dangerous, such as Tso Rolpa, Imja, Barun and Thulagi glacier lakes. The objectives of this study are to present 1) a review of prior glacier lake studies that have been carried out in the Nepal Himalaya; 2) recent research results, including bathymetric studies of the lakes; 3) a summary of possible infrastructure damages, especially multi-million-dollar hydropower projects, that are under threat of glacier lake outburst floods (GLOFs); 4) to present the outcome of the recently completed Imja lake lowering project, which is the highest altitude lake ever controlled by lowering the water level. This project is being undertaken as a response to a scientific ground-based bathymetric and geophysical survey funded by the United Nations Development Program and a satellite-based study of the long-term development of the lake (funded by NASA's SERVIR program, J. Kargel, PI). The objective of the Imja Lake GLOF mitigation project is to lower the water level by three meters to reduce the lake volume, increase the freeboard, and improve the safety of tourism, downstream communities, and the infrastructure of Nepal's Everest region. This GLOF mitigation step taken by Nepal's government to reduce the risk of an outburst flood is a good step to reduce the chances of a GLOF, and to reduce the magnitude of a disaster if a GLOF nonetheless occurs despite our best efforts. We will also present the prospects for the future of Imja Lake, including an outline of possible steps that could further reduce the hazards faced by downstream communities and infrastructure. Key words: Glacier Lakes; GLOF; Hydropower; Imja lake; lake lowering

  18. SOLUTION FOR ICHTHYOFAUNA MIGRATION UPSTREAM- DOWNSTREAM OF THE TWO SPILLWAYS LOCATED NEAR MANASTUR DAM ON THE SOMESUL MIC RIVER IN THE CLUJ NAPOCA CITY (ROMÂNIA

    Directory of Open Access Journals (Sweden)

    Razvan VOICU

    2015-06-01

    Full Text Available Longitudinal connectivity represent the way in which organisms move the energy and material exchanges located throughout the water. Fragmentation the longitudinal connectivity of watercourses caused by dams or other hydrotechnical constructions represent a major impact on sediment transport, hydrological regime, downstream moving and biota migration. The hydromorphological elements (river continuity, as well as chemical, biological, physicochemical elements characterize the ecological status of rivers.Migratory fish species: nase (Chondrostoma nasus - protected by Bern Convention - Appendix III and barbel (Barbus barbus - rare species, protected Habitats Directive (Annex V, annex 4A of Low nr.462 and Red List of RBDD are blocked but the Hydrotechnical constructions (discharge sills, dams etc located across the watercourse Somes Mic River. One of the important think of this system is the gravitational fall of water. This solution will lead to the restoration of the longitudinal connection of the Someşul Mic River in the Manastur neighborhood. România is part of the European Union and it has the obligation to implement the provisions of the Water Framework Directive 2000/60/EC, transposed into Romanian legislation by the Water Law 107/1996 as supplemented and amended (Act 310/2004. This engineering solution for fish fauna migration upstream – downstream of the spillways supports the Water Framework Directive 2000/60/EC, transposed into Romanian legislation by the Water Law 107/1996 as supplemented and amended (Act 310/2004.

  19. Where there is no toilet: water and sanitation environments of domestic and facility births in Tanzania.

    Directory of Open Access Journals (Sweden)

    Lenka Benova

    Full Text Available Inadequate water and sanitation during childbirth are likely to lead to poor maternal and newborn outcomes. This paper uses existing data sources to assess the water and sanitation (WATSAN environment surrounding births in Tanzania in order to interrogate whether such estimates could be useful for guiding research, policy and monitoring initiatives.We used the most recent Tanzania Demographic and Health Survey (DHS to characterise the delivery location of births occurring between 2005 and 2010. Births occurring in domestic environments were characterised as WATSAN-safe if the home fulfilled international definitions of improved water and improved sanitation access. We used the 2006 Service Provision Assessment survey to characterise the WATSAN environment of facilities that conduct deliveries. We combined estimates from both surveys to describe the proportion of all births occurring in WATSAN-safe environments and conducted an equity analysis based on DHS wealth quintiles and eight geographic zones.42.9% (95% confidence interval: 41.6%-44.2% of all births occurred in the woman's home. Among these, only 1.5% (95% confidence interval: 1.2%-2.0% were estimated to have taken place in WATSAN-safe conditions. 74% of all health facilities conducted deliveries. Among these, only 44% of facilities overall and 24% of facility delivery rooms were WATSAN-safe. Combining the estimates, we showed that 30.5% of all births in Tanzania took place in a WATSAN-safe environment (range of uncertainty 25%-42%. Large wealth-based inequalities existed in the proportion of births occurring in domestic environments based on wealth quintile and geographical zone.Existing data sources can be useful in national monitoring and prioritisation of interventions to improve poor WATSAN environments during childbirth. However, a better conceptual understanding of potentially harmful exposures and better data are needed in order to devise and apply more empirical definitions of

  20. Where there is no toilet: water and sanitation environments of domestic and facility births in Tanzania.

    Science.gov (United States)

    Benova, Lenka; Cumming, Oliver; Gordon, Bruce A; Magoma, Moke; Campbell, Oona M R

    2014-01-01

    Inadequate water and sanitation during childbirth are likely to lead to poor maternal and newborn outcomes. This paper uses existing data sources to assess the water and sanitation (WATSAN) environment surrounding births in Tanzania in order to interrogate whether such estimates could be useful for guiding research, policy and monitoring initiatives. We used the most recent Tanzania Demographic and Health Survey (DHS) to characterise the delivery location of births occurring between 2005 and 2010. Births occurring in domestic environments were characterised as WATSAN-safe if the home fulfilled international definitions of improved water and improved sanitation access. We used the 2006 Service Provision Assessment survey to characterise the WATSAN environment of facilities that conduct deliveries. We combined estimates from both surveys to describe the proportion of all births occurring in WATSAN-safe environments and conducted an equity analysis based on DHS wealth quintiles and eight geographic zones. 42.9% (95% confidence interval: 41.6%-44.2%) of all births occurred in the woman's home. Among these, only 1.5% (95% confidence interval: 1.2%-2.0%) were estimated to have taken place in WATSAN-safe conditions. 74% of all health facilities conducted deliveries. Among these, only 44% of facilities overall and 24% of facility delivery rooms were WATSAN-safe. Combining the estimates, we showed that 30.5% of all births in Tanzania took place in a WATSAN-safe environment (range of uncertainty 25%-42%). Large wealth-based inequalities existed in the proportion of births occurring in domestic environments based on wealth quintile and geographical zone. Existing data sources can be useful in national monitoring and prioritisation of interventions to improve poor WATSAN environments during childbirth. However, a better conceptual understanding of potentially harmful exposures and better data are needed in order to devise and apply more empirical definitions of WATSAN

  1. Studies on the behaviour of some radioactive pollutants into soil-fresh water environment

    International Nuclear Information System (INIS)

    Sayed, M.S.

    1989-01-01

    The overwhelming increase in the use of nuclear power plants comes to cover many purposes, such as generating of electricity, desalination of sea water, and producing radioactive isotopes in large quantities. There is no doubt that the continuous increase in the production of radioisotope, presents an outstanding potential health hazard to man and its environment. Many radio-nuclide wastes, may be released to the environment from nuclear research reactors, hospitals, universities etc in large quantities and low radioactive level which can contaminate drinking and underground water, plants, animals and air. The present work includes introduction which is a literature survey of uses of natural minerals and clays in the treatment of low level radioactive wastes and the different chemical methods used for their treatment e.g. co-participation, adsorption chromatography, ion exchange , solvent extraction, coagulation and flocculation etc

  2. Tensile properties of ADI material in water and gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Rajnovic, Dragan, E-mail: draganr@uns.ac.rs [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Balos, Sebastian; Sidjanin, Leposava [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Eric Cekic, Olivera [Innovation Centre, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade (Serbia); Grbovic Novakovic, Jasmina [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000 Belgrade (Serbia)

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  3. Chemometric perspectives on plankton community responses to natural iron fertilisation over and downstream of the Kerguelen Plateau in the Southern Ocean

    Science.gov (United States)

    Trull, T. W.; Davies, D. M.; Dehairs, F.; Cavagna, A.-J.; Lasbleiz, M.; Laurenceau-Cornec, E. C.; d'Ovidio, F.; Planchon, F.; Leblanc, K.; Quéguiner, B.; Blain, S.

    2015-02-01

    We examined phytoplankton community responses to natural iron fertilisation at 32 sites over and downstream from the Kerguelen Plateau in the Southern Ocean during the austral spring bloom in October-November 2011. The community structure was estimated from chemical and isotopic measurements (particulate organic carbon - POC; 13C-POC; particulate nitrogen - PN; 15N-PN; and biogenic silica - BSi) on size-fractionated samples from surface waters (300, 210, 50, 20, 5, and 1 μm fractions). Higher values of 13C-POC (vs. co-located 13C values for dissolved inorganic carbon - DIC) were taken as indicative of faster growth rates and higher values of 15N-PN (vs. co-located 15N-NO3 source values) as indicative of greater nitrate use (rather than ammonium use, i.e. higher f ratios). Community responses varied in relation to both regional circulation and the advance of the bloom. Iron-fertilised waters over the plateau developed dominance by very large diatoms (50-210 μm) with high BSi / POC ratios, high growth rates, and significant ammonium recycling (lower f ratios) as biomass built up. In contrast, downstream polar frontal waters with a similar or higher iron supply were dominated by smaller diatoms (20-50 μm) and exhibited greater ammonium recycling. Stations in a deep-water bathymetrically trapped recirculation south of the polar front with lower iron levels showed the large-cell dominance observed on the plateau but much less biomass. Comparison of these communities to surface water nitrate (and silicate) depletions as a proxy for export shows that the low-biomass recirculation feature had exported similar amounts of nitrogen to the high-biomass blooms over the plateau and north of the polar front. This suggests that early spring trophodynamic and export responses differed between regions with persistent low levels vs. intermittent high levels of iron fertilisation.

  4. Use of cyanobacteria to assess water quality in running waters

    International Nuclear Information System (INIS)

    Douterelo, I.; Perona, E.; Mateo, P.

    2004-01-01

    Epilithic cyanobacterial communities in rivers in the province of Madrid (Spain) and their relationship with water quality were studied. Sampling locations above and below outlets for sewage effluent and other wastes from human settlements were selected. We aimed to evaluate the use of cyanobacteria as potential indicators of pollution in running waters. Large increases in nutrient concentrations were always observed at downstream sampling sites. A decrease in species richness and the Margalef diversity index were associated with these increases in nutrient load. Differences in cyanobacterial community structure were also observed. A higher proportion of cyanobacteria belonging to the Oscillatoriales order predominated at sampling sites with higher nutrient content. However, Nostocales species were more abundant at upstream sites characterized by lower nutrient load than at downstream locations. The soluble reactive phosphate (SRP) had a threshold effect on cyanobacterial biomass: a decrease in phycobiliprotein content as SRP increased, reaching a minimum, followed by an increase in abundance. This increase may be attributed to hypertrophic conditions in those locations. Our results and literature data confirm the suitability of this phototroph community for monitoring eutrophication in rivers - Taxonomic composition of cyanobacteria is a sensitive indicator of river water quality

  5. Use of cyanobacteria to assess water quality in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Douterelo, I.; Perona, E.; Mateo, P

    2004-02-01

    Epilithic cyanobacterial communities in rivers in the province of Madrid (Spain) and their relationship with water quality were studied. Sampling locations above and below outlets for sewage effluent and other wastes from human settlements were selected. We aimed to evaluate the use of cyanobacteria as potential indicators of pollution in running waters. Large increases in nutrient concentrations were always observed at downstream sampling sites. A decrease in species richness and the Margalef diversity index were associated with these increases in nutrient load. Differences in cyanobacterial community structure were also observed. A higher proportion of cyanobacteria belonging to the Oscillatoriales order predominated at sampling sites with higher nutrient content. However, Nostocales species were more abundant at upstream sites characterized by lower nutrient load than at downstream locations. The soluble reactive phosphate (SRP) had a threshold effect on cyanobacterial biomass: a decrease in phycobiliprotein content as SRP increased, reaching a minimum, followed by an increase in abundance. This increase may be attributed to hypertrophic conditions in those locations. Our results and literature data confirm the suitability of this phototroph community for monitoring eutrophication in rivers - Taxonomic composition of cyanobacteria is a sensitive indicator of river water quality.

  6. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na{sup +}, Ca{sup 2+}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -}, and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author).

  7. Patents and Downstream Innovation Suppression - Facts or Fiction?

    DEFF Research Database (Denmark)

    Howells, John

    the value of Kitch's prospect theory of patents, a theory that the social value of patents is that they enable the efficient coordination of technological development.    I re-examine history and legal sources bearing on Merges and Nelson's illustrative cases and find no case to illustrate downstream...

  8. Enhancement of fatigue crack growth rates in pressure boundary materials due to light-water-reactor environments

    International Nuclear Information System (INIS)

    VanDerSluys, W.A.; Emanuelson, R.H.

    1988-01-01

    The high level of reliability required of the primary-coolant pressure boundary in a nuclear reactor system leads to a continuing interest in the interaction among the coolant, pressure boundary materials, and service loadings. One area of concern involves the possible enhancement of the growth rate of fatigue cracks due to the coolant. Advances have occurred recently toward a better understanding of the variables influencing the material/environment interactions and methods of addressing this interaction. Sulfur now appears to be one of the principal agents responsible for the observed enhancement of the fatigue crack growth rates in light-water-reactor (LWR) environments. This paper presents the results of investigations on the effect of sulfur in the steel, bulk water environment, and at the crack tip

  9. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Muscatello, J.R.; Belknap, A.M.; Janz, D.M.

    2008-01-01

    The objective of this study was to investigate the accumulation of selenium in lakes downstream of a uranium mine operation in northern Saskatchewan, Canada. Selenium concentrations in sediment and biota were elevated in exposure areas even though water concentrations were low (<5 μg/L). The pattern (from smallest to largest) of selenium accumulation was: periphyton < plankton and filterer invertebrates < detritivore and predator invertebrates < small bodied (forage) fish and predatory fish. Biomagnification of selenium resulted in an approximately 1.5-6 fold increase in the selenium content between plankton, invertebrates and forage fish. However, no biomagnification was observed between forage fish and predatory fish. Selenium content in organisms from exposure areas exceeded the proposed 3-11 μg/g (dry weight) dietary toxicity threshold for fish, suggesting that the selenium released into these aquatic systems has the potential to bioaccumulate and reach levels that could impair fish reproduction. - Selenium bioaccumulation patterns in a north temperate, cold water aquatic ecosystem were similar to those reported from warm water systems

  10. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    Science.gov (United States)

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  11. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Science.gov (United States)

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.

    2016-12-01

    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  12. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    Science.gov (United States)

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  13. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments

    Directory of Open Access Journals (Sweden)

    Folkard Asch

    2012-12-01

    Full Text Available Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source for agriculture in the vicinity of cities. Water scarcity often occurs in arid and semiarid regions affected by droughts and large climate variability and where the choice of crop to be grown is limited by the environmental factors. Jatropha has been introduced as a potential renewable energy resource since it is claimed to be drought resistant and can be grown on marginal sites. Sewage effluents provide a source for water and nutrients for cultivating jatropha, a combined plant production/effluent treatment system. Nevertheless, use of sewage effluents for irrigation in arid climates carries the risk of salinization. Thus, potential irrigation with sewage effluents needs to consider both the water requirement of the crop and those needed for controlling salinity build-up in the top soil. Using data from a case study in Southern Morocco, irrigation requirements were calculated using CROPWAT 8.0. We present here crop evapotranspiration during the growing period, required irrigation, the resulting nutrient input and the related risk of salinization from the irrigation of jatropha with sewage effluent.

  14. Interactions of forests, climate, water resources, and humans in a changing environment: research needs

    Science.gov (United States)

    Ge Sun; Catalina Segura

    2013-01-01

    The aim of the special issue “Interactions of Forests, Climate, Water Resources, and Humans in a Changing Environment” is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial...

  15. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

    Science.gov (United States)

    Stefania, Gennaro A.; Rotiroti, Marco; Fumagalli, Letizia; Simonetto, Fulvio; Capodaglio, Pietro; Zanotti, Chiara; Bonomi, Tullia

    2018-02-01

    A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ˜80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

  16. Environmental radiological studies downstream from Rancho Seco Nuclear Power Generating Station

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Dawson, J.W.; Brunk, J.L.; Jokela, T.A.

    1985-01-01

    This report summarizes the information compiled in 1984 while assessing the environmental impact of radionuclides in aquatic releases from the Rancho Seco Nuclear Power Generating Station. Gamma-emitting radionuclides discharged since 1981 are found in many of the dietary components derived from the creeks receiving the effluent wastewater. Some soils and crops are found to contain radionuclides that originate from the contaminated water that was transferred to land during the irrigation season. 134 Cs and 137 Cs are the primary gamma-emitting radionuclides detected in the edible flesh of fish from the creeks. Concentrations in the flesh of fish decreased exponentially with distance from the plant. No significant differences in the 137 Cs activity were found between male and female fish of equal size, but concentrations may vary in fish of different size, with the season and diet. 21% of the total 137 Cs and 134 Cs discharged between 1981 and 1984 is associated with the creek sediments to a distance of 27 km from the plant. Fractions of the missing inventory have been transferred to land during the irrigation season or to downstream regions more distant than 27 km from the plant. The radiocesium content of the sediments in 1984 decreased significantly in a downstream direction, much in the same manner as concentrations decreased in fish. Radioactivity originating from the plant was not above detection limits in any terrestrial food item sampled beyond 6.5 km from the plant. Based on the usage factors provided by individuals interviewed in a 1984 survey, the fish and aquatic-organism ingestion pathway contributed the largest radiological dose to humans utilizing products contaminated with the radionuclides in the liquid wastes discharged from the Rancho Seco Nuclear Power Generating Station in 1984

  17. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  18. We All Live Downstream. A Guide to Waste Treatment That Stops Water Pollution.

    Science.gov (United States)

    Costner, Pat; And Others

    Based on the idea that the prevention and treatment of water pollution should begin at its source, this document focuses on some methods that individuals can use in their homes and businesses to treat wastewater. Chapter one, "What Is the Water Crisis?" explains the basic concepts of the hydrologic cycle, evapotranspiration, and the quantity of…

  19. Thermodynamic properties of water in confined environments: a Monte Carlo study

    Science.gov (United States)

    Gladovic, Martin; Bren, Urban; Urbic, Tomaž

    2018-05-01

    Monte Carlo simulations of Mercedes-Benz water in a crowded environment were performed. The simulated systems are representative of both composite, porous or sintered materials and living cells with typical matrix packings. We studied the influence of overall temperature as well as the density and size of matrix particles on water density, particle distributions, hydrogen bond formation and thermodynamic quantities. Interestingly, temperature and space occupancy of matrix exhibit a similar effect on water properties following the competition between the kinetic and the potential energy of the system, whereby temperature increases the kinetic and matrix packing decreases the potential contribution. A novel thermodynamic decomposition approach was applied to gain insight into individual contributions of different types of inter-particle interactions. This decomposition proved to be useful and in good agreement with the total thermodynamic quantities especially at higher temperatures and matrix packings, where higher-order potential-energy mixing terms lose their importance.

  20. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    Science.gov (United States)

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and

  1. Ecological effects and potential risks of the water diversion project in the Heihe River Basin.

    Science.gov (United States)

    Zhang, Mengmeng; Wang, Shuai; Fu, Bojie; Gao, Guangyao; Shen, Qin

    2018-04-01

    To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km 2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  3. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jan [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Kurkova, Romana; Klanova, Jana [RECETOX, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Klan, Petr, E-mail: klan@sci.muni.c [Dept of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno (Czech Republic); Halsall, Crispin J., E-mail: c.halsall@lancaster.ac.u [Lancaster Environment Centre, Centre for Chemicals Management, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2009-12-15

    Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 deg. C) and ice (-15 deg. C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments. - Photodegradation of methyl-parathion and fenitrothion in water and ice under environmentally-relevant conditions is described.

  4. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    Science.gov (United States)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  5. Occurrence of Legionella pneumophila and Hartmannella vermiformis in fresh water environments and their interactions in biofilms

    NARCIS (Netherlands)

    Kuiper, M.W.

    2006-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, is widespread in natural fresh water environments and is also frequently found in man-made water systems. Microbial biofilms and protozoa are known to play a major role in the proliferation of L. pneumophila. Biofilms provide

  6. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  7. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    Science.gov (United States)

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and Sb were associated with organic material and appeared mobile in the root zone. In the zone below active plant growth, As and Sb were associated primarily with inorganic phases suggesting a release and reprecipitation of these elements upon plant death. The co-existence of reduced

  8. Journal of Sustainable Development of Energy, Water and Environment Systems – Volume IV

    Directory of Open Access Journals (Sweden)

    Neven Duić

    2016-12-01

    In total 32 manuscripts were published in Volume IV, all of them reviewed by at least two reviewers. The Journal of Sustainable Development of Energy, Water and Environment Systems would like to thank reviewers for their contribution to the quality of the published manuscripts.

  9. 14. Internal symposium on secular change of structural materials for nuclear energy. Secular change mechanism in light water reactor environment

    International Nuclear Information System (INIS)

    1993-01-01

    At this symposium, lectures were given on the embrittlement by neutron irradiation of LWR pressure vessel steel, the effect that neutron irradiation exerts to austenitic stainless steel becoming sensitive, the mechanism of the occurrence and development of stress corrosion cracking in the water environment of LWRs, the effect that the water environment of LWRs exerts to fatigue life, and the environment-promoted cracking in LWR environment and its forecast. Thereafter, panel discussion was held by the lecturers. In this book, the summaries of the lectures are collected. (K.I.)

  10. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance.

    Science.gov (United States)

    Guo, Mei-Ting; Zhang, Guo-Sheng

    2017-09-01

    In recent years, the influence of new materials like nanoparticles in the water environment on biological substances has been widely studied. Antibiotic resistance genes (ARGs) represent a new type of pollutant in the environment. Graphene oxide (GO), as a nano material, because of its unique structure, may have an impact on antibiotic resistance bacteria (ARB) and ARGs; however the research in this area is rarely reported. Therefore, this study mainly investigated the effects of GO on bacterial antibiotic resistance. The results showed that GO had a limited effect on ARB inactivation. A high concentration of GO (>10 mg/L) can damage resistant plasmids to reduce bacterial resistance to antibiotics, but low concentrations of GO (antibiotic resistance needs further investigation. Copyright © 2017. Published by Elsevier Ltd.

  11. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    Science.gov (United States)

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  12. Long-term nitrate and phosphate loading of river water in the Upper ...

    African Journals Online (AJOL)

    High nitrate and phosphate concentrations were recorded directly downstream of residential, municipal and industrial areas suggesting that these were the major sources of the pollutants found in the river water. For example, phosphate concentration at 2 sites along Mukuvisi River (downstream of domestic and industrial ...

  13. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  14. Natural Origin Lycopene and Its "Green" Downstream Processing.

    Science.gov (United States)

    Papaioannou, Emmanouil H; Liakopoulou-Kyriakides, Maria; Karabelas, Anastasios J

    2016-01-01

    Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.

  15. Environmental Impact on the Quality of Water from Hand-Dug Wells in Yola Environs

    Directory of Open Access Journals (Sweden)

    David Onoja PATRICK

    2007-01-01

    Full Text Available The impact of environmental conditions on the quality of water from seven hand-dug wells in Vinikilang, Shinko, Demsawo and Girei was studied. Monthly physical and chemical analyses were carried out on the well water samples. The results revealed that the environment has direct impact on the quality of water and also the type of contamination of the well water samples. Water samples from the wells have higher levels of heavy metals: Fe, Zn, Cu and Pb, above the permissible limits of (0.1 mg/l, 5 mg/l, 0.5 mg/l and 0.05 mg/l for Fe, Zn, Cu and Pb respectively WHO specifications, except well 1 whose Zn level was lower than the permissible limit. Wells close to abattoir, pit latrine, domestic refuse dumps, stagnant water and drainage showed higher amounts of coliform bacteria.

  16. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  17. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  18. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  19. Where There Is No Toilet: Water and Sanitation Environments of Domestic and Facility Births in Tanzania

    Science.gov (United States)

    Benova, Lenka; Cumming, Oliver; Gordon, Bruce A.; Magoma, Moke; Campbell, Oona M. R.

    2014-01-01

    Background Inadequate water and sanitation during childbirth are likely to lead to poor maternal and newborn outcomes. This paper uses existing data sources to assess the water and sanitation (WATSAN) environment surrounding births in Tanzania in order to interrogate whether such estimates could be useful for guiding research, policy and monitoring initiatives. Methods We used the most recent Tanzania Demographic and Health Survey (DHS) to characterise the delivery location of births occurring between 2005 and 2010. Births occurring in domestic environments were characterised as WATSAN-safe if the home fulfilled international definitions of improved water and improved sanitation access. We used the 2006 Service Provision Assessment survey to characterise the WATSAN environment of facilities that conduct deliveries. We combined estimates from both surveys to describe the proportion of all births occurring in WATSAN-safe environments and conducted an equity analysis based on DHS wealth quintiles and eight geographic zones. Results 42.9% (95% confidence interval: 41.6%–44.2%) of all births occurred in the woman's home. Among these, only 1.5% (95% confidence interval: 1.2%–2.0%) were estimated to have taken place in WATSAN-safe conditions. 74% of all health facilities conducted deliveries. Among these, only 44% of facilities overall and 24% of facility delivery rooms were WATSAN-safe. Combining the estimates, we showed that 30.5% of all births in Tanzania took place in a WATSAN-safe environment (range of uncertainty 25%–42%). Large wealth-based inequalities existed in the proportion of births occurring in domestic environments based on wealth quintile and geographical zone. Conclusion Existing data sources can be useful in national monitoring and prioritisation of interventions to improve poor WATSAN environments during childbirth. However, a better conceptual understanding of potentially harmful exposures and better data are needed in order to devise and apply

  20. Experimental investigation of fish downstream passage and turbine related fish mortality at an innovative hydro power setup

    International Nuclear Information System (INIS)

    Geiger, Franz; Cuchet, Mathilde; Rutschmann, Peter

    2016-01-01

    The fish downstream passage of small fish at the innovative TUM hydro shaft power plant concept was investigated experimentally. The behavior of 1974 inserted individuals of brown trout, grayling, barbel, minnow and bullhead of 45 mm to 220 mm body length was observed in a fully functional test setup which included a 35 kW Kaplan turbine and a horizontal screen with 20 mm bar clearance. The 24 h tests were conducted under nature like conditions whereas the laboratory environment also enabled targeted hydraulic situations and modifications of the bypass during the test series. A recapture rate of the fish of 99% and a subsequent 96 h observation period yielded detailed information about the migration behavior and instant as well as long term mortality. The results reveal the actual passage distribution of small fish between bypass and turbine and the turbine related injury and mortality rates in dependency of fish species, fish length, turbine discharge and bypass arrangement. General trends as well as species specific particularities could be deduced. The work confirms the suitability of the employed experimental approach and the ecological potential of the investigated hydro power plant concept. The behavioral barrier effect of the screen on small fish and the necessary of appropriate downstream migration corridor were proved and quantified. (authors)

  1. Evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula environment by NAA method

    International Nuclear Information System (INIS)

    Muryono, H.; Sumining; Agus Taftazani; Kris Tri Basuki; Sukarman, A.

    1999-01-01

    The evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula by NAA method were done. The nuclear power plant (NPP) and the coal power plant (CPP) will be built in Muria peninsula, so, the Muria peninsula is an important site for samples collection and monitoring of environment. River-water, sediment, dryland-soil and cassava plant were choosen as specimens samples from Muria peninsula environment. The analysis result of trace elements were used as a contributed data for environment monitoring before and after NPP was built. The trace elements in specimens of river-water, sediment, dryland-soil and cassava plant samples were analyzed by INAA method. It was found that the trace elements distribution were not evenly distributed. Percentage of trace elements distribution in river-water, sediment, dryland-soil and cassava leaves were 0.00026-0.037% in water samples, 0.49-62.7% in sediment samples, 36.29-99.35% in soil samples and 0.21-99.35% in cassava leaves. (author)

  2. Evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula environment by NAA method

    Energy Technology Data Exchange (ETDEWEB)

    Muryono, H.; Sumining; Agus Taftazani; Kris Tri Basuki; Sukarman, A. [Yogyakarta Nuclear Research Center, Yogyakarta (Indonesia)

    1999-10-01

    The evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula by NAA method were done. The nuclear power plant (NPP) and the coal power plant (CPP) will be built in Muria peninsula, so, the Muria peninsula is an important site for samples collection and monitoring of environment. River-water, sediment, dryland-soil and cassava plant were choosen as specimens samples from Muria peninsula environment. The analysis result of trace elements were used as a contributed data for environment monitoring before and after NPP was built. The trace elements in specimens of river-water, sediment, dryland-soil and cassava plant samples were analyzed by INAA method. It was found that the trace elements distribution were not evenly distributed. Percentage of trace elements distribution in river-water, sediment, dryland-soil and cassava leaves were 0.00026-0.037% in water samples, 0.49-62.7% in sediment samples, 36.29-99.35% in soil samples and 0.21-99.35% in cassava leaves. (author)

  3. Measurements of gaseous mercury exchanges at the sediment-water, water-atmosphere and sediment-atmosphere interfaces of a tidal environment (Arcachon Bay, France).

    Science.gov (United States)

    Bouchet, Sylvain; Tessier, Emmanuel; Monperrus, Mathilde; Bridou, Romain; Clavier, Jacques; Thouzeau, Gerard; Amouroux, David

    2011-05-01

    The elemental mercury evasion from non-impacted natural areas is of significant importance in the global Hg cycle due to their large spatial coverage. Intertidal areas represent a dynamic environment promoting the transformations of Hg species and their subsequent redistribution. A major challenge remains in providing reliable data on Hg species variability and fluxes under typical transient tidal conditions found in such environment. Field experiments were thus carried out to allow the assessment and comparison of the magnitude of the gaseous Hg fluxes at the three interfaces, sediment-water, sediment-atmosphere and water-atmosphere of a mesotidal temperate lagoon (Arcachon Bay, Aquitaine, France) over three distinct seasonal conditions. The fluxes between the sediment-water and the sediment-atmosphere interfaces were directly evaluated with field flux chambers, respectively static or dynamic. Water-atmosphere fluxes were evaluated from ambient concentrations using a gas exchange model. The fluxes at the sediment-water interface ranged from -5.0 to 5.1 ng m(-2) h(-1) and appeared mainly controlled by diffusion. The occurrence of macrophytic covers (i.e.Zostera noltii sp.) enhanced the fluxes under light radiations. The first direct measurements of sediment-atmosphere fluxes are reported here. The exchanges were more intense and variable than the two other interfaces, ranging between -78 and 40 ng m(-2) h(-1) and were mostly driven by the overlying atmospheric Hg concentrations and superficial sediment temperature. The exchanges between the water column and the atmosphere, computed as a function of wind speed and gaseous mercury saturation ranged from 0.4 to 14.5 ng m(-2) h(-1). The flux intensities recorded over the intertidal sediments periodically exposed to the atmosphere were roughly 2 to 3 times higher than the fluxes of the other interfaces. The evasion of elemental mercury from emerged intertidal sediments is probably a significant pathway for Hg evasion in

  4. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    International Nuclear Information System (INIS)

    Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam

    2012-01-01

    Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very

  5. Effects of aquifer storage and recovery activities on water quality in the Little Arkansas River and Equus Beds Aquifer, south-central Kansas, 2011–14

    Science.gov (United States)

    Stone, Mandy L.; Garrett, Jessica D.; Poulton, Barry C.; Ziegler, Andrew C.

    2016-07-18

    characteristics were noted after the ASR Phase II facility began discharging. Macroinvertebrate community composition (evaluated using functional feeding, behavioral, and tolerance metrics) generally was similar between sites during the study period. Fewer macroinvertebrate metrics were significant between the upstream and downstream sites post-ASR (6) than pre-ASR (14), which suggests that macroinvertebate communities were more similar after the ASR facility began discharging. Upstream-downstream comparisons in macroinvertebrate aquatic-life-support metrics had no significant differences for the post-ASR time period and neither site was fully supporting for any of the Kansas Department of Health and Environment aquatic-life-support metrics (Macroinvertebrate Biotic Index; Kansas Biotic Index with tolerances for nutrients and oxygen-demanding substances; Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness; and percentage of EPT species). Overall, using macroinvertebrate aquatic life-support criteria from the Kansas Department of Health and Environment, upstream and downstream sites were classified as partially supporting before and after the onset of ASR facility operations. Fish community trophic status and tolerance groups generally were similar among sites during the study period. Fish community Little Arkansas River Basin Index of Biotic Integrity scores at the upstream and downstream sites were indicative of fair-to-good conditions before the facility began operating and decreased to fair conditions after the facility began operating.Groundwater physicochemical changes concurrent with the beginning of recharge operations at the Sedgwick basin were more pronounced in shallow groundwater. No constituent concentrations in the pre-recharge period in comparison to the post-recharge period increased to concentrations exceeding drinking water regulations; however, nitrate decreased significantly from a pre-recharge exceedance of the U.S. Environmental Protection Agency

  6. Dead zone area at the downstream flow of barrages

    Directory of Open Access Journals (Sweden)

    Mohamed F. Sauida

    2016-12-01

    Full Text Available Flow separation is a natural phenomenon encountered at some cases downstream of barrages. The main flow is divided into current and dead zone flows. The percentage area of dead zone flow must be taken into consideration downstream of barrages, due to its negative effect on flow characteristics. Experimental studies were conducted in the Hydraulic Research Institute (HRI, on a physical regulator model with five vents. Theoretically the separation zone is described as a part of an ellipse which is practically verified by plotting velocity vectors. The results show that the percentage area of dead zone to the area through length of separation depends mainly on the expansion ratio [channel width to width of opened vents], with maximum value of 81% for operated side gates. A statistical analysis was derived, to predict the percentage area of dead zone flow to the area through length of separation.

  7. Downstream management practices of transnational companies in institutionally vulnerable countries

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Milanez, Bruno

    2017-01-01

    Analyses of social and environmental management in transnational product chains focus often upstream on suppliers in socially and institutionally vulnerable countries and these suppliers' hazardous processes. Furthermore focus is on transnational companies' responsibility when they source from...... such suppliers. On the contrary, not much focus has been on transnational companies' downstream export of hazardous products to vulnerable countries and the product use in those countries. The article uses pesticides as case of hazardous products and identifies mechanisms in the downstream social...... and environmental management of a Danish pesticide company in vulnerable countries and especially in Brazil. The identified mechanisms are: the transnational company's on-going interpretation of the regulatory and ethical obligations for development and use of its hazardous products in vulnerable countries, path...

  8. Water-Energy Nexus: Examining The Crucial Connection Through Simulation Based Optimization

    Science.gov (United States)

    Erfani, T.; Tan, C. C.

    2014-12-01

    With a growing urbanisation and the emergence of climate change, the world is facing a more water constrained future. This phenomenon will have direct impacts on the resilience and performance of energy sector as water is playing a key role in electricity generation processes. As energy is becoming a thirstier resource and the pressure on finite water sources is increasing, modelling and analysing this closely interlinked and interdependent loop, called 'water-energy nexus' is becoming an important cross-disciplinary challenge. Conflict often arises in transboundary river where several countries share the same source of water to be used in productive sectors for economic growth. From the perspective of the upstream users, it would be ideal to store the water for hydropower generation and protect the city against drought whereas the downstream users need the supply of water for growth. This research use the case study on the transboundary Blue Nile River basin located in the Middle East where the Ethiopian government decided to invest on building a new dam to store the water and generate hydropower. This leads to an opposition by downstream users as they believe that the introduction of the dam would reduce the amount of water available downstream. This calls for a compromise management where the reservoir operating rules need to be derived considering the interdependencies between the resources available and the requirements proposed by all users. For this, we link multiobjective optimization algorithm to water-energy use simulation model to achieve effective management of the transboundary reservoir operating strategies. The objective functions aim to attain social and economic welfare by minimizing the deficit of water supply and maximizing the hydropower generation. The study helps to improve the policies by understanding the value of water and energy in their alternative uses. The results show how different optimal reservoir release rules generate different

  9. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  10. WATERPROTECT: Innovative tools enabling drinking water protection in rural and urban environments

    Science.gov (United States)

    Seuntjens, Piet; Campling, Paul; Joris, Ingeborg; Wauters, Erwin; Lopez de Alda, Miren; Kuczynska, Anna; Lajer Hojberg, Anker; Capri, Ettore; Brabyn, Cristina; Boeckaert, Charlotte; Mellander, Per Erik; Pauwelyn, Ellen; Pop, Edit

    2017-04-01

    High-quality, safe, and sufficient drinking water is essential for life: we use it for drinking, food preparation and cleaning. Agriculture is the biggest source of pesticides and nitrate pollution in European fresh waters. The overarching objective of the recently approved H2020 project WATERPROTECT is to contribute to effective uptake and realisation of management practices and mitigation measures to protect drinking water resources. Therefore WATERPROTECT will create an integrative multi-actor participatory framework including innovative instruments that enable actors to monitor, to finance and to effectively implement management practices and measures for the protection of water sources. We propose seven case studies involving multiple actors in implementing good practices (land management, farming, product stewardship, point source pollution prevention) to ensure safe drinking water supply. The seven case studies cover different pedo-climatic conditions, different types of farming systems, different legal frameworks, larger and smaller water collection areas across the EU. In close cooperation with actors in the field in the case studies (farmers associations, local authorities, water producing companies, private water companies, consumer organisations) and other stakeholders (fertilizer and plant protection industry, environment agencies, nature conservation agencies, agricultural administrations) at local and EU level, WATERPROTECT will develop innovative water governance models investigating alternative pathways from focusing on the 'costs of water treatment' to 'rewarding water quality delivering farming systems'. Water governance structures will be built upon cost-efficiency analysis related to mitigation and cost-benefit analysis for society, and will be supported by spatially explicit GIS analyses and predictive models that account for temporal and spatial scaling issues. The outcome will be improved participatory methods and public policy instruments

  11. Novel indirect enzyme-linked immunosorbent assay (ELISA) method to detect Total E. coli in water environment

    International Nuclear Information System (INIS)

    Wang Na; He Miao; Shi Hanchang

    2007-01-01

    In order to establish ELISA (enzyme-linked immunosorbent assay) method to detect Total E. coli in water environment, E. coli multi-characters antigens in water environment were prepared according to the characters of kinds of E. coli serotypes, including antigen of whole cell, antigen of disrupted whole cell, somatic antigen, flagellar antigen and fimbrial antigen. Total E. coli polyclonal antibodies were obtained from the New Zealand rabbits immunized with these five antigens, respectively. Antibodies generated in this research are with high titers and good purity, can conjugate with antigens, specifically, stably and strongly. Indirect ELISA shows the titers of antibody of whole cell and antibody of disrupted whole cell are both over 1 x 10 5 . The cross-reactivity of the antibody is from 12 to 30% which indicate the specificity of the antibody against Total E. coli. Based on these antibodies, we established indirect ELISA method to detect Total E. coli in water environment. The matrix effects were studied and the results show that there is no significant influence by all the factors. The ELISA result shows that the detection limitation could be 10 4 CFU (colony forming units) L -1 . The indirect ELISA method developed in this study is well suited for Total E. coli analysis in real water samples as a rapid screen method

  12. Alfven waves and associated energetic ions downstream from Uranus

    International Nuclear Information System (INIS)

    Zhang, Ming; Belcher, J.W.; Richardson, J.D.; Smith, C.W.

    1991-01-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10 -3 Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location

  13. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  14. The interaction of wind and water in the desertification environment

    Science.gov (United States)

    Jacobberger, P. A.

    1987-01-01

    An appropriate process/response model for the physical basis of desertification is provided by the interactions of wind and water in the desert fringe environment. Essentially, the process of desertification can be thought of as a progressive environmental transition from predominantly fluvial to aeolian processes. This is a simple but useful way of looking at desertification; in this context, desertification is morphogenetic in character. To illustrate the model, a study of drought-related changes in central Mali will serve to trace the interrelated responses of geomorphologic processes to drought conditions.

  15. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  16. Downstream behavior of fission products

    International Nuclear Information System (INIS)

    Johnson, I.; Farahat, M.K.; Settle, J.L.; Johnson, C.E.; Ritzman, R.

    1986-01-01

    The downstream behavior of fission products has been investigated by injecting mixtures of CsOH, CsI, and Te into a flowing steam/hydrogen stream and determining the physical and chemical changes that took place as the gaseous mixture flowed down a reaction duct on which a temperature gradient (1000 0 to 200 0 C) had been imposed. Deposition on the wall of the duct occurred by vapor condensation in the higher temperature regions and by aerosol deposition in the remainder of the duct. Reactions in the gas stream between CsOH and CsI and between CsOH and Te had an effect on the vapor condensation. The aerosol was characterized by the use of impingement tabs placed in the gas stream

  17. Comparison of pitot traverses taken at varying distances downstream of obstructions.

    Science.gov (United States)

    Guffey, S E; Booth, D W

    1999-01-01

    This study determined the deviations between pitot traverses taken under "ideal" conditions--at least seven duct diameter's lengths (i.e., distance = 7D) from obstructions, elbows, junction fittings, and other disturbances to flows--with those taken downstream from commonplace disturbances. Two perpendicular 10-point, log-linear velocity pressure traverses were taken at various distances downstream of tested upstream conditions. Upstream conditions included a plain duct opening, a junction fitting, a single 90 degrees elbow, and two elbows rotated 90 degrees from each other into two orthogonal planes. Airflows determined from those values were compared with the values measured more than 40D downstream of the same obstructions under ideal conditions. The ideal measurements were taken on three traverse diameters in the same plane separated by 120 degrees in honed drawn-over-mandrel tubing. In all cases the pitot tubes were held in place by devices that effectively eliminated alignment errors and insertion depth errors. Duct velocities ranged from 1500 to 4500 ft/min. Results were surprisingly good if one employed two perpendicular traverses. When the averages of two perpendicular traverses was taken, deviations from ideal value were 6% or less even for traverses taken as close as 2D distance from the upstream disturbances. At 3D distance, deviations seldom exceeded 5%. With single diameter traverses, errors seldom exceeded 5% at 6D or more downstream from the disturbance. Interestingly, percentage deviations were about the same at high and low velocities. This study demonstrated that two perpendicular pitot traverses can be taken as close as 3D from these disturbances with acceptable (< or = 5%) deviations from measurements taken under ideal conditions.

  18. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol

  19. Fate of antimony and arsenic in contaminated waters at the abandoned Su Suergiu mine (Sardinia, Italy)

    Science.gov (United States)

    Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk

    2018-01-01

    We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently

  20. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, Jeffrey D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  1. Gene expression programming for prediction of scour depth downstream of sills

    Science.gov (United States)

    Azamathulla, H. Md.

    2012-08-01

    SummaryLocal scour is crucial in the degradation of river bed and the stability of grade control structures, stilling basins, aprons, ski-jump bucket spillways, bed sills, weirs, check dams, etc. This short communication presents gene-expression programming (GEP), which is an extension to genetic programming (GP), as an alternative approach to predict scour depth downstream of sills. Published data were compiled from the literature for the scour depth downstream of sills. The proposed GEP approach gives satisfactory results (R2 = 0.967 and RMSE = 0.088) compared to the existing predictors (Chinnarasri and Kositgittiwong, 2008) with R2 = 0.87 and RMSE = 2.452 for relative scour depth.

  2. Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland).

    Science.gov (United States)

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2016-04-01

    Immunosuppresive therapy following organ transplant frequently includes treatment with tacrolimus and mycophenolic acid derivatives. These pharmaceuticals may enter the environment through wastewater treatment plant (WWTP) effluents and may have a potentially harmful effect on aquatic biota. Tacrolimus, mycophenolic acid and their metabolites were measured at specific points of a large Polish river (Vistula), a smaller river (Utrata) and in tap water samples from the Warsaw region. Analysis was performed using liquid chromatography tandem mass spectrometry, after solid phase extraction for water samples, or QuEChERS extraction for sediments. Residues of tacrolimus were below quantitation limits in both water and sediment samples. However, in water samples mycophenolic acid concentrations were measured at up to 180 ng L(-1) downstream of WWTP outfalls. No immunosuppressive drugs were detected in tap water. Concentrations of mycophenolic acid exceeded the predicted no effect concentration (PNEC) value in some Polish surface water, and risk calculations predicted at least twice higher concentrations in some other countries of the European Union. To the best of the authors' knowledge, this is the first report of these immunosuppressive drug concentrations in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Innovative in-line separators: removal of water or sand in oil/water and gas/liquid/solid pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Jepson, Paul; Cheolho Kang; Gopal, Madan [CC Technologies, Dublin, OH (United States)

    2003-07-01

    In oil and gas production, multiphase mixtures are often separated before downstream processing. The separators are large, often 20 - 40 feet long and large diameter and use sophisticated internals. The costs are in the millions of dollars. Further, the sand and water in the flow can cause severe internal erosion and corrosion respectively before the flow reaches the separators. The CC Technologies/MIST In line Separation System is a cost-effective, efficient device for use in multiphase environments. The device is applicable for gas/solid, gas/liquid/solid and oil/water systems and offers exceptional separation between phases for a fraction of the cost of expensive gravity separators and hydro cyclones. The System contains no moving parts and is designed to be of the same diameter as the pipe, and experiences low shear forces. It can be fabricated with standard pipes. The efficiency of the separator has been determined in an industrial scale, pilot plant test facility at CC Technologies in 4-inch diameter pipes and has been found to be in excess of 98-99% for the removal of sand. Two phase oil/water separation effectiveness is in excess of 90% in 1-stage and 95% in 2 - stage. (author)

  4. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica.

    Science.gov (United States)

    Sanyal, Aritri; Antony, Runa; Samui, Gautami; Thamban, Meloth

    2018-03-01

    Cryoconite holes (cylindrical melt-holes on the glacier surface) are important hydrological and biological systems within glacial environments that support diverse microbial communities and biogeochemical processes. This study describes retrievable heterotrophic microbes in cryoconite hole water from three geographically distinct sites in Antarctica, and a Himalayan glacier, along with their potential to degrade organic compounds found in these environments. Microcosm experiments (22 days) show that 13-60% of the dissolved organic carbon in the water within cryoconite holes is bio-available to resident microbes. Biodegradation tests of organic compounds such as lactate, acetate, formate, propionate and oxalate that are present in cryoconite hole water show that microbes have good potential to metabolize the compounds tested. Substrate utilization tests on Biolog Ecoplate show that microbial communities in the Himalayan samples are able to oxidize a diverse array of organic substrates including carbohydrates, carboxylic acids, amino acids, amines/amides and polymers, while Antarctic communities generally utilized complex polymers. In addition, as determined by the extracellular enzyme activities, majority of the microbes (82%, total of 355) isolated in this study (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Basidiomycota) had ability to degrade a variety of compounds such as proteins, lipids, carbohydrates, cellulose and lignin that are documented to be present within cryoconite holes. Thus, microbial communities have good potential to metabolize organic compounds found in the cryoconite hole environment, thereby influencing the water chemistry in these holes. Moreover, microbes exported downstream during melting and flushing of cryoconite holes may participate in carbon cycling processes in recipient ecosystems. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks

    Science.gov (United States)

    Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue

    2013-03-01

    With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.

  6. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  7. Radium 226 in waters of the Magela creek, Northern Australia

    International Nuclear Information System (INIS)

    Sauerland, C.; Medley, P.; Martin, P.

    2004-01-01

    The Magela Creek is located in the tropical monsoonal belt of Australia, which is characterised by contrasting wet (December to March) and dry (April to November) seasons. Magela Creek drains a catchment of which about half of the total area lies upstream of the open-cut Ranger uranium mine. The main risk identified for ecosystems surrounding this mine site is from dispersion of mine waste waters during the wet season. Monitoring of biological indicator organisms, water quality (physical and chemical) and radionuclide concentrations in surface water, groundwater and biota is conducted upstream and downstream of the Ranger mine to measure possible environmental impacts of mining. Of special interest is the radionuclide radium-226, as it is predicted to dominate the effective dose to members of the critical group (i.e. the Aboriginal population living downstream of the mining site) resulting from any release of waters from the mine site, in particular through intake of food items such as freshwater mussels and fish. Receiving water standards for radium-226 have been set for the mine on the basis of radiological dose assessments in accordance with the recommendations of the International Commission on Radiological Protection (ICRP 1996). It is proposed in this paper to compare trigger values based on ICRP recommendations with trigger values developed in line with the philosophy of the new Australian Water Quality Guidelines (ANZECC and ARMCANZ 2000). Total Ra-226 activity concentrations were determined in Magela creek both upstream and downstream of the Ranger uranium mine, using alpha spectrometry with a detection limit of about 0.5 mBq/L. According to the new Water Quality Guidelines site-specific trigger values for total Ra-226 activity concentrations were statistically derived from a reference dataset. They are intended to provide an early warning system for the management of a pollutant source for the purpose of environmental protection of downstream ecosystems

  8. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    Science.gov (United States)

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  9. Annual and seasonal variations In the gamma activities in Sava river sediments upstream and downstream of NPP Krsko

    International Nuclear Information System (INIS)

    Stipe, Lulic

    2006-01-01

    Results of the five years monitoring of artificial and natural occurring radionuclides in the Sava river sediments are presented. Measurements were conducted as a part of the regular Krsko Nuclear Power Plant radioactivity control and the independent supervisions of the input of radionuclides into larger environment (immission). In order to estimate seasonal variations samples were taken from seven locations (one upstream and five downstream of the Krsko NPP) during four sampling period (seasonal) in each year. Selected radionuclides in the sediment fraction less than 0.5 mm were determined with gamma spectrometer equipped with BE3830 model High Purity Ge detector with 30% relative efficiency. (authors)

  10. Annual and seasonal variations In the gamma activities in Sava river sediments upstream and downstream of NPP Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Results of the five years monitoring of artificial and natural occurring radionuclides in the Sava river sediments are presented. Measurements were conducted as a part of the regular Krsko Nuclear Power Plant radioactivity control and the independent supervisions of the input of radionuclides into larger environment (immission). In order to estimate seasonal variations samples were taken from seven locations (one upstream and five downstream of the Krsko NPP) during four sampling period (seasonal) in each year. Selected radionuclides in the sediment fractiess than 0.5 mm were determined with gamma spectrometer equipped with BE3830 model High Purity Ge detector with 30% relative efficiency. (authors)

  11. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    Science.gov (United States)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  12. AN ENVIRON-ECONOMICAL MATHEMATICAL MODELING OF WATER POLLUTION IMPACT ASSESSMENT IN REFERENCE TO INDIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Hemant PATHAK

    2013-06-01

    Full Text Available This paper presents the application of the mathematical modeling to such a specific area as environ-economical interaction in prospect of big countries like India. A model of mutual interaction of dirty drinking water resulting water borne diseases, badly affected economy is proposed. For the description of some of these models illustrates drinking water resources, incapable municipal water treatment consequently expansion of diseases, World Bank loan, affected biggest labour forces (mankind and ultimate results in the form of decrease in GDP. These mathematical models may be used in the solving of similar type problems exist in south and eastern Asian economies.

  13. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  14. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Pengcheng Li

    2018-02-01

    Full Text Available Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL population under well-watered (WW and water stress (WS conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype–environment interaction (GEI in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME and multi-trait (MT QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI. QTLs associated with crown root angle (CRA2 and crown root length (CRL1 were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN, including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM was associated with the length of crown root (CR, primary root (PR, and seminal root (SR and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

  15. Constraining the Q10 of respiration in water-limited environments

    Science.gov (United States)

    Collins, A.; Ryan, M. G.; Xu, C.; Grossiord, C.; Michaletz, S. T.; McDowell, N. G.

    2016-12-01

    If the current rate of greenhouse emissions remains constant over the next few decades, projections of climate change forecast increased atmospheric temperatures by a least 1.1°C by the end of the century. Warmer temperatures are expected to largely influence the exchange of energy, carbon and water between plants and the atmosphere. Several studies support that terrestrial ecosystems currently act as a major carbon sink, however warmer temperatures may amplify respiration processes and shift terrestrial ecosystems from a sink to a source of carbon in the future. Most Earth System Models incorporate the temperature dependence of plant respiration (Q10) to estimate and predict respiration processes and associated carbon fluxes. Using a temperature and precipitation manipulation experiment in natural conditions, we present evidence that this parameter is poorly constrained especially in water-limited environments. We discuss the utility of the Q10 framework and suggest improvements for this parameter along with trait-based approaches to better resolve models.

  16. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  17. How Natural Water Retention Measures (NWRM) can help rural and urban environments improve their resilience?

    Science.gov (United States)

    Siauve, Sonia

    2016-04-01

    The challenges related to water resources management are exacerbated by climate change which implies additional complexity and uncertainty. The impacts of climate change have thus to be taken into account, from today on the next decades, to ensure a sustainable integrated water resources management. One of the main environmental objective of the Water Framework Directive (2000/30/CE) was to achieve and maintain a good status for all water bodies by the target date of 2015. Unfortunately, Member States didn't manage to reach this goal and in this context, the European Commission (EC), since many years, have started many initiatives and reforms to improve the global situation. In 2012 the DG Environment (DGENV) of the EC published a "Blueprint to safeguard Europe's water resources" that states the need for further implementation of water resource management measures and in particular Natural Water Retention Measures (NWRMs). NWRM are measures that aim to safeguard and enhance the water storage potential of landscape, soils and aquifers, by restoring ecosystems, natural features and characteristics of water courses, and by using natural processes. They are Nature-Based Solutions supporting adaptation and reducing vulnerability of water resources. Their interest lies with the multiple benefits they can deliver, and their capacity to contribute simultaneously to the achievement of the objectives of different European policies (WFD, FD, Biodiversity strategy …). However the knowledge on NWRM is scattered and addressed differently in the countries, whereas the NWRM potential for improving the state of the environment and resilience (drought, flood, biodiversity…) in a changing environment is high. In 2013, all EU countries started the elaboration of the second River Basin Management Plan and associated Programme of Measures. To support MS authorities and local implementers of these measures DGENV launched a 14 month project for collaboratively building knowledge and

  18. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    Science.gov (United States)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  19. Spread of Hepatitis E virus from pig slurry to the water environment

    DEFF Research Database (Denmark)

    Krog, Jesper Schak; Forslund, Anita; Breum, Solvej Østergaard

    Objectives: Spread of pig slurry as an organic fertilizer is commonly used in Danish agriculture. The slurry is spread untreated so pathogens able to survive in slurry tanks will be widely distributed in the environment. The objective of this study was to examine if hepatitis E virus (HEV), which......), and hence could present a risk for virus transmission to wildlife and shellfish. We tested the presence of HEV in water drained from a test field where slurry from a Danish pig farm had been applied and in mussels from different regions in Denmark with fields in close proximity. Methods: Slurry from......). In addition, samples of water collected from wells located along the field and groundwater. Archived mussels from different regions in Denmark were included in the study. Virus was concentrated from water using Poly Ethylene Glycol precipitation and virus from the digestive tissue of the mussels was extracted...

  20. Water quality and toxicity of river water downstream of the uranium mining facility at Pocos de Caldas, MG, Brazil

    International Nuclear Information System (INIS)

    Lauria, Dejanira C.; Vascocnellos, Luisa M.H.; Simoes, Francisco F. Lamego; Clain, Almir F.; Scassiotti, Walter F.; Antunes, Ivan; Ferreira, Ana M.; Nascimento, Marcos R.L.

    2009-01-01

    The uranium mining site of Pocos de Caldas consists of open mine pit, tailings, waste rock dumps and an acid rock drainage problem, which has the potential to impact upon freshwater of the Ribeirao das Antas catchment. The high level of manganese (value of 1.8 mg/L) contained in the discharge water (DW) is an important factor affecting the water quality of the river (water quality criterion for aquatic life for Mn is 0.1 mg/L). Water quality criteria (WQC) are used for regulatory purpose and intended to define concentrations of chemicals in water that are protective of aquatic life and human health. WQC is a standard, although it is recognized that in some instances these criteria may be overprotective as metal bioavailability and hence toxicity is dependent on water chemistry. The toxicity assessment of WD was performed by bioassays with Daphnia similis and Ceriodaphnia dubia as bioindicators. As DW showed no toxicity to the organisms and the chemical analysis and dose assessments pointed U and Mn as the most important metals for water toxicity, the U and Mn toxicities were evaluated in the DW spiked with U and Mn. Acute uranium toxicity (48 h immobilisation test) for Daphnia similis was determined as a LC50 value (concentration that is toxic to 50% of test organisms) around 0.05-0.06 mg/L, value close to the one found for effects on reproduction, a 7 day LOEC (lowest observed effect concentration) of 0.062 mg/L for Ceriodaphnia dubia. The value of NOEC (no-observed effect concentration) for U was 0.03 mg U/L, which is higher than the concentration corresponded to the authorized dose limit for 238 U (0.004 mg/L) and higher than the uranium WQC (0.02 mg U/L). The manganese concentration in the DW is lower than the found value of LC50 (11.5 mg/L), LOEC (10 mg/L) and NOEC (5 mg Mn/L). (author)

  1. Water and environment news. No. 19

    International Nuclear Information System (INIS)

    2005-09-01

    The integral role of water in international development has been acknowledged during the last two decades, with several international initiatives specifying goals that include water-related issues. The United Nations proclaimed the period 2005-2015 as the International Decade for Action, (Water for Life), to place a greater focus on water. It recommits countries to achieve the water-related targets of the Johannesburg Plan of Implementation from the 2002 World Summit on Sustainable Development as well as the United Nations Millennium Development Goals set in 2000. The IAEA, through its Water Resources Programme, is responding to global water issues, providing its Member States with science-based information and technical skills to better understand and manage their water resources

  2. A computational fluid dynamics modeling study of guide walls for downstream fish passage

    Science.gov (United States)

    Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.

    2017-01-01

    A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.

  3. Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Fawcett, Skya E.; Jamieson, Heather E.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2015-01-01

    Highlights: • Antimony and arsenic were speciated in sediments and pore waters near Giant Mine. • Sediments will continue to be a source of arsenic and antimony to overlying water. • Aquatic vegetation traps contaminated sediment and takes up antimony and arsenic. - Abstract: Elevated levels of arsenic (As) and antimony (Sb) in water and sediments are legacy residues found downstream from gold-mining activities at the Giant Mine in Yellowknife, Northwest Territories (NWT), Canada. To track the transport and fate of As and Sb, samples of mine-waste from the mill, and surface water, sediment, pore-water, and vegetation downstream of the mine were collected. Mine waste, pore-water, and sediment samples were analyzed for bulk chemistry, and aqueous and solid-state speciation. Sediment and vegetation chemistry were evaluated using scanning electron microscope imaging, synchrotron-based element mapping and electron microprobe analysis. The distributions of As and Sb in sediments were similar, yet their distributions in the corresponding pore-waters were mostly dissimilar, and the mobility of As was greater than that of Sb. Competition for sorption sites is the most likely cause of elevated Sb concentrations in relatively oxidized pore-water and surface water. The aqueous and solid-state speciation of As and Sb also differed. In pore-water, As(V) dominated in oxidizing environments and As(III) in reducing environments. In contrast, the Sb(V) species dominated in all but one pore-water sample, even under reducing conditions. Antimony(III) appears to preferentially precipitate or adsorb onto sulfides as evidenced by the prevalence of an Sb(III)-S secondary solid-phase and the lack of Sb(III)(aq) in the deeper zones. The As(V)–O solid phase became depleted with depth below the sediment–water interface, and the Sb(V)–O phase persisted under relatively reducing conditions. In the surficial zone at a site populated by Equisetum fluviatile (common horsetail), As and

  4. Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina).

    Science.gov (United States)

    Forastier, Marina Elizabet; Zalocar, Yolanda; Andrinolo, Dario; Domitrovic, Hugo Alberto

    2016-03-01

    Cyanobacteria constitute the main toxin producers in inland water ecosystems and have extensive global distribution. The presence of hepatotoxins in aquatic environments is hazardous to human and animal health; even though the presence and identification of hepatotoxic microcystins in rivers and reservoirs of the world have been confirmed by several studies in the last few years. Herein, we studied the abundance and toxicity of Microcystis aeruginosa in the Argentine section of the Paraná River at the beginning of the Middle Paraná (Corrientes Hydrometer), near Corrientes city (27º28´ S - 58º51´ W) and approximately 220 km downstream of the Yacyretá dam (High Paraná). The Paraná River basin, with a drainage area of 3.1 x 10(6) km(2) and 3 965 km in length, is the second largest catchment of South America, after that of the Amazon. The Paraná River is the main source of drinking water supply for the Northeastern Argentine region. Phytoplankton samples were collected and environmental variables were measured in a monthly basis (exceptionally fortnightly), from March 2004 to June 2008. Fifty-eight samples were analyzed for phytoplankton density and biomass. Five samples were used for toxicity testing; the latter were obtained during the cyanobacteria blooms from 2005 to 2008. Phytoplankton counts were performed with an inverted microscope, and biomass was expressed as biovolume. Bioassays with mice and high-performance liquid chromatography (HPLC) analysis were performed to evaluate the presence of cyanotoxins. Phytoplankton mainly consisted of Cryptophyta, Chlorophyta and Bacillariophyta. Microcystis aeruginosa was identified during the warmer months each year (November to March). Density varied between 189 and 25 027 cells/mL (1-10 colonies/mL) and biomass from 0.34 to 44 mm(3)/L. Taking into account the number of cells, the highest abundance occurred in April 2004 (25 027 cells/mL), coinciding with the largest biovolume (44 mm(3)/L). All mice subjected to

  5. Dissection of Signaling Events Downstream of the c-Mpl Receptor in Murine Hematopoietic Stem Cells Via Motif-Engineered Chimeric Receptors.

    Science.gov (United States)

    Saka, Koichiro; Lai, Chen-Yi; Nojima, Masanori; Kawahara, Masahiro; Otsu, Makoto; Nakauchi, Hiromitsu; Nagamune, Teruyuki

    2018-02-01

    Hematopoietic stem cells (HSCs) are a valuable resource in transplantation medicine. Cytokines are often used to culture HSCs aiming at better clinical outcomes through enhancement of HSC reconstitution capability. Roles for each signal molecule downstream of receptors in HSCs, however, remain puzzling due to complexity of the cytokine-signaling network. Engineered receptors that are non-responsive to endogenous cytokines represent an attractive tool for dissection of signaling events. We here tested a previously developed chimeric receptor (CR) system in primary murine HSCs, target cells that are indispensable for analysis of stem cell activity. Each CR contains tyrosine motifs that enable selective activation of signal molecules located downstream of the c-Mpl receptor upon stimulation by an artificial ligand. Signaling through a control CR with a wild-type c-Mpl cytoplasmic tail sufficed to enhance HSC proliferation and colony formation in cooperation with stem cell factor (SCF). Among a series of CRs, only one compatible with selective Stat5 activation showed similar positive effects. The HSCs maintained ex vivo in these environments retained long-term reconstitution ability following transplantation. This ability was also demonstrated in secondary recipients, indicating effective transmission of stem cell-supportive signals into HSCs via these artificial CRs during culture. Selective activation of Stat5 through CR ex vivo favored preservation of lymphoid potential in long-term reconstituting HSCs, but not of myeloid potential, exemplifying possible dissection of signals downstream of c-Mpl. These CR systems therefore offer a useful tool to scrutinize complex signaling pathways in HSCs.

  6. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    Science.gov (United States)

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  7. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    Science.gov (United States)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  8. Dynamical nexus of water supply, hydropower and environment based on the modeling of multiple socio-natural processes: from socio-hydrological perspective

    Science.gov (United States)

    Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.

    2017-12-01

    In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.

  9. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  10. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos.

    Science.gov (United States)

    Takahashi, Hiroki; Hotta, Kohji; Takagi, Chiyo; Ueno, Naoto; Satoh, Nori; Shoguchi, Eiichi

    2010-02-01

    Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.

  11. OGJ group weathered tough times upstream and downstream in 1991

    International Nuclear Information System (INIS)

    Biggs, J.B.; Price, R.B.

    1992-01-01

    With an upstream sector hit by low oil and gas prices and downstream operations squeezed by weak petroleum demand, 1991, was a tough year for the group of 22 major integrated U.S. companies Oil and Gas Journal tracks. This paper reports that the brief respite caused by the oil price spike in second half 1990 ended abruptly early in first half 1991, and it turned into a year of buckling down for most companies. They shed non-core assets, implemented strategic restructuring moves, and reduced staff. Although low prices slowed overall drilling activity for the group, oil and gas production increased slightly, and most companies reported reserves gains. Recession in the U.S. and Europe depressed demand for the group's fined products enough to pinch downstream earnings even as buoyant Asia-Pacific demand helped jack up world product sales

  12. Downstream impacts of a Central Amazonian hydroelectric dam on tree growth and mortality in floodplain forests

    Science.gov (United States)

    Resende, A. F. D.; Silva, T. S. F.; Silva, J. D. S.; Piedade, M. T. F.; Streher, A. S.; Ferreira-Ferreira, J.; Schongart, J.

    2017-12-01

    The flood pulse of large Amazonian Rivers is characterized by predictable high- and low-water periods during the annual cycle, and is the main driving force in the floodplains regulating decomposition, nutrient cycles, productivity, life cycles and growth rhythms of floodplains' biota. Over at least 20 millions of years, tree species in these ecosystems developed complex adaptative mechanisms to tolerate flooding, such as the tree species Macrolobium acaciifolium (Fabaceae) and Eschweilera tenuifolia (Lecythidaceae) occupying the lower topographic positions in the floodplain forests along the oligothrophic black-water rivers. Tree growth occurs mainly during terrestrial phase, while during the aquatic phase the anoxic conditions result into a cambial dormancy and formation of annual tree rings. The hydroelectric dam Balbina which was installed in the Uatumã River (central Amazonia) during the 1980s altered significantly the flood pulse regime resulting into higher minimum and lower maximum annual water levels. The suppression of the terrestrial phase caused large-scale mortality of flood-adapted trees growing on the lower topographic positions, as evidenced by radiocarbon dating and cross-dating techniques (dendrochronology). In this study we estimated the extension of dead forests using high resolution ALOS/PALSAR radar images, for their detection along a fluvial distance of more than 280 km downstream of the power plant. Further we analyzed tree growth of 60 living individuals of E. tenuifolia by tree-ring analyses comparing the post- and pre-dam periods. We evaluated the impacts of the altered hydrological regime on tree growth considering ontogenetic effects and the fluvial distance of the trees to the dam. Since the Balbina power plant started operating the associated igapó forests lost about 11% of its cover. We found a significant reduction of tree growth of E. tenuifolia during the post-dam period as a consequence of the increasing aquatic phase duration

  13. Nitrates in drinking water: relation with intensive livestock production.

    Science.gov (United States)

    Giammarino, M; Quatto, P

    2015-01-01

    An excess of nitrates causes environmental pollution in receiving water bodies and health risk for human, if contaminated water is source of drinking water. The directive 91/676/ CEE [1] aims to reduce the nitrogen pressure in Europe from agriculture sources and identifies the livestock population as one of the predominant sources of surplus of nutrients that could be released in water and air. Directive is concerned about cattle, sheep, pigs and poultry and their territorial loads, but it does not deal with fish farms. Fish farms effluents may contain pollutants affecting ecosystem water quality. On the basis of multivariate statistical analysis, this paper aims to establish what types of farming affect the presence of nitrates in drinking water in the province of Cuneo, Piedmont, Italy. In this regard, we have used data from official sources on nitrates in drinking water and data Arvet database, concerning the presence of intensive farming in the considered area. For model selection we have employed automatic variable selection algorithm. We have identified fish farms as a major source of nitrogen released into the environment, while pollution from sheep and poultry has appeared negligible. We would like to emphasize the need to include in the "Nitrate Vulnerable Zones" (as defined in Directive 91/676/CEE [1]), all areas where there are intensive farming of fish with open-system type of water use. Besides, aquaculture open-system should be equipped with adequate downstream system of filtering for removing nitrates in the wastewater.

  14. The impact of two fluoropolymer manufacturing facilities on downstream contamination of a river and drinking water resources with per- and polyfluoroalkyl substances.

    Science.gov (United States)

    Bach, Cristina; Dauchy, Xavier; Boiteux, Virginie; Colin, Adeline; Hemard, Jessica; Sagres, Véronique; Rosin, Christophe; Munoz, Jean-François

    2017-02-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been detected in the environment, biota, and humans. Drinking water is a route of exposure for populations consuming water contaminated by PFAS discharges. This research study reports environmental measurement concentrations, mass flows, and the fate of dozens of PFASs in a river receiving effluents from two fluoropolymer manufacturing facilities. In addition to quantified levels of PFASs using LC- and GC-MS analytical methods, the total amount of unidentified PFASs and precursors was assessed using two complementary analytical methods, absorbable organic fluorine (AOF) determination and oxidative conversion of perfluoroalkyl carboxylic acid (PFCA) precursors. Several dozen samples were collected in the river (water and sediment) during four sampling campaigns. In addition, samples were collected in two well fields and from the outlet of the drinking water treatment plants after chlorination. We estimated that 4295 kg PFHxA, 1487 kg 6:2FTSA, 965 kg PFNA, 307 kg PFUnDA, and 14 kg PFOA were discharged in the river by the two facilities in 2013. High concentrations (up to 176 ng/g dw) of odd long-chain PFASs (PFUnDA and PFTrDA) were found in sediment samples. PFASs were detected in all 15 wells, with concentrations varying based on the location of the well in the field. Additionally, the presence of previously discharged PFASs was still measurable. Significant discrepancies between PFAS concentration profiles in the wells and in the river suggest an accumulation and transformation of PFCA precursors in the aquifer. Chlorination had no removal efficiency and no unidentified PFASs were detected in the treated water with either complementary analytical method. Although the total PFAS concentrations were high in the treated water, ranging from 86 to 169 ng/L, they did not exceed the currently available guideline values.

  15. 40 CFR 80.210 - What sulfur standards apply to gasoline downstream from refineries and importers?

    Science.gov (United States)

    2010-07-01

    ... combined with non-S-RGAS for the sole purpose of producing midgrade gasoline. (6) Where S-RGAS is being... of the gasoline. (f) Downstream standards applicable to S-RGAS when produced or imported. (1) The downstream standard applicable to any gasoline classified as S-RGAS when produced or imported shall be...

  16. Predicting the downstream impact of ensembles of small reservoirs with special reference to the Volta Basin, West Africa

    Science.gov (United States)

    van de Giesen, N.; Andreini, M.; Liebe, J.; Steenhuis, T.; Huber-Lee, A.

    2005-12-01

    After a strong reduction in investments in water infrastructure in Sub-Saharan Africa, we now see a revival and increased interest to start water-related projects. The global political willingness to work towards the UN millennium goals are an important driver behind this recent development. Large scale irrigation projects, such as were constructed at tremendous costs in the 1970's and early 1980's, are no longer seen as the way forward. Instead, the construction of a large number of small, village-level irrigation schemes is thought to be a more effective way to improve food production. Such small schemes would fit better in existing and functioning governance structures. An important question now becomes what the cumulative (downstream) impact is of a large number of small irrigation projects, especially when they threaten to deplete transboundary water resources. The Volta Basin in West Africa is a transboundary river catchment, divided over six countries. Of these six countries, upstream Burkina Faso and downstream Ghana are the most important and cover 43% and 42% of the basin, respectively. In Burkina Faso (and also North Ghana), small reservoirs and associated irrigation schemes are already an important means to improve the livelihoods of the rural population. In fact, over two thousand such schemes have already been constructed in Burkina Faso and further construction is to be expected in the light of the UN millennium goals. The cumulative impact of these schemes would affect the Akosombo Reservoir, one of the largest manmade lakes in the world and an important motor behind the economic development in (South) Ghana. This presentation will put forward an analytical framework that allows for the impact assessment of (large) ensembles of small reservoirs. It will be shown that despite their relatively low water use efficiencies, the overall impact remains low compared to the impact of large dams. The tools developed can be used in similar settings elsewhere

  17. Comparative study of carbonic anhydrase activity in waters among different geological eco-environments of Yangtze River basin and its ecological significance.

    Science.gov (United States)

    Nzung'a, Sila Onesmus; Pan, Weizhi; Shen, Taiming; Li, Wei; Qin, Xiaoqun; Wang, Chenwei; Zhang, Liankai; Yu, Longjiang

    2018-04-01

    This study provides the presence of carbonic anhydrase (CA) activity in waters of the Yangtze River basin, China, as well as the correlation of CA activity with HCO 3 - concentration and CO 2 sink flux. Different degrees of CA activity could be detected in almost all of the water samples from different geological eco-environments in all four seasons. The CA activity of water samples from karst areas was significantly higher than from non-karst areas (PP3 - concentration (r=0.672, P2 sink flux (r=0.602, P=0.076) in karst areas. This suggests that CA in waters might have a promoting effect on carbon sinks for atmospheric CO 2 in karst river basins. In conditions of similar geological type, higher CA activity was generally detected in water samples taken from areas that exhibited better eco-environments, implying that the CA activity index of waters could be used as an indicator for monitoring ecological environments and protection of river basins. These findings suggest that the role of CA in waters in the karst carbon sink potential of river basins is worthy of further in-depth studies. Copyright © 2017. Published by Elsevier B.V.

  18. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways....... Our results indicate that amplification and/or overexpression of EGFR is an unsatisfactory predictor for response to cetuximab....

  19. Impact on the aquatic environment of hydro-peaking in hydroelectric plants

    International Nuclear Information System (INIS)

    Sabaton, C.; Lauters, F.; Valentin, S.

    1996-01-01

    There are a number of types of hydroelectric installations on French rivers. Some of these intermittently turbine water stored in dammed reservoirs, in order to use available reserves at the most opportune moment for power generation. These plants, run under 'hydro-peaking' management procedures, cause variations in discharge in river sections downstream of the restitution, on a daily or weekly scale. To answer questions concerning the impact of such variations in discharge on the aquatic environment, EDF launched a research program aimed at describing and better understanding the physical and biological phenomena related to hydro-peaking and assessing the possible impact of this type of plant management on French streams. Seven sites subjects to hydro-peaking were studied on rivers with mean flow rates lower than 20 m 3 /s (which corresponds to over 65 % of EDF hydro-peaking sites). Four themes in particular were examined: hydraulic characterization of hydro-peaking, modifications in thermal regime and water quality, response of benthic invertebrates and response of fish populations to hydro-peaking. For fish as well as for invertebrates, the role of the base discharge - in the absence of peaking flow - and that of the morphology of the river bed (and, in particular, the presence of shelter for fish) during periods of strong discharge were clearly highlighted. Impact assessment requires a precise diagnosis of the state of biocenoses. To carry out such a diagnosis, one must reason in terms of species, life phase (particularly the most sensitive phases) and population structure as well as the type of stream and the faunizone involved. A risk assessment is possible by means of simultaneous study of the morphology of the river bed and the response of the signal generated by hydro-peaking in terms of hydrology and physical characteristics downstream of the restitution. (authors)

  20. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  1. Storm water runoff-a source of emerging contaminants in urban streams

    Science.gov (United States)

    Xia, K.; Chen, C.; FitzGerald, K.; Badgley, B.

    2016-12-01

    Emerging contaminants (ECs) that refers to prescription, over-the-counter, veterinary, and illicit drugs in addition to products intended to have primary effects on the human body, such as sunscreens and insect repellants. Historically municipal wastewater treatment effluent has been considered to be the main source of ECs in aquatic environment. However, recent investigations have suggested urban storm water runoff as an important source of ECs in the environment. The objective of this multi-year study was to investigate the occurrence of a wide range of ECs and the special and temporal change of 4-Nonlyphenol (4-NP), an endocrine disruptor, in a stream solely impacted by the storm water runoff from Blacksburg, VA. Urban land cover has doubled during the past 15 years surrounding this. Water and sediment samples were collected periodically along the stream during a 3-year period and analyzed for 4-NP using a gas chromatography/tandem mass spectrometry and for EC screening using an ultra- performance liquid chromatography/tandem mass spectrometry. In addition, human-associated Bacteroides sp. (HF183) was analyzed to explore possible cross contamination between the sewer system and storm water collection system of the city. Fifteen ECs were detected in water samples from various locations along the stream at estimated levels ranging from low ppt to low ppb. The levels of 4-NP in the storm water sediment samples, ranging from 30-1500 µg/kg (d.w.), positively correlated with the levels of Human-associated Bacteroides sp. (HF183) in the storm water. Our study suggested: 1) collective urban activity and leaky urban sewer systems are significant sources of ECs in storm water runoff that are often untreated or with minimum treatment before flowing into urban streams; and 2) sediment transport and re-suspension can further releases accumulated ECs back into stream water during rain events, resulting in occurrence of ECs downstream and possibly in the receiving river. This

  2. The use of stable isotopes to trace the impact of landfill gases on environmental waters

    International Nuclear Information System (INIS)

    Kennel, P.; Hendy, C.H.

    1997-01-01

    The process of anaerobic fermentation leading to methanogenisis in landfills produces isotopically depleted methane and isotopically enriched carbon dioxide. While the inflammability of methane is a recognised environmental hazard, the impact of the carbon dioxide produced has not been recognised. Unlike methane, the carbon dioxide is very soluble in waters it comes in contact with and unlike leachates it is not contained by the engineered structure of modern landfills. The carbon dioxide gas has the potential of dissolving in ground waters, lowering their pH and degrading their water quality. We have used up to +13 per thousand delta/sup 13/C values of the CO/sub 2/ gas to trace and quantify the effect of the enhanced P/sub CO2/ on groundwater. The downstream consequences of enhanced P/sub CO2/ on groundwater quality also depend on matrix lithology, being more significant for basaltic environments such as those typical of Auckland landfills than for the rhyolitic sands and gravels common in Waikato landfills. (author)

  3. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  4. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery

    NARCIS (Netherlands)

    Gilbert-López, B.; Mendiola, J.A.; Fontecha, J.; Broek, van den L.A.M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E.

    2015-01-01

    An algae-based biorefinery relies on the efficient use of algae biomass through its fractionation of several valuable/bioactive compounds that can be used in industry. If this biorefinery includes green platforms as downstream processing technologies able to fulfill the requirements of green

  5. Water and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Water and Pesticides Related Topics: What Happens to Pesticides Released into the Environment? Water Solubility Drinking Water and Pesticides Fact Sheet

  6. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  7. Control options for river water quality improvement: a case study of ...

    African Journals Online (AJOL)

    Using a simple conceptual dynamic river water quality model, the effects of different basin-wide water quality management options on downstream water quality improvements in a semi-arid river, the Crocodile River (South Africa) were investigated. When a river is impacted by high rates of freshwater withdrawal (in its ...

  8. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology

  9. Multispacecraft observations of energetic ions upstream and downstream of the bow shock

    International Nuclear Information System (INIS)

    Scholer, M.; Mobius, E.; Kistler, L.M.; Klecker, B.; Ipavich, F.M.; Department of Physics and Astronomy, University of Maryland, College Park)

    1989-01-01

    We present simultaneous measurements of energetic protons and alpha particles inside and outside of the magnetopause, immediately upstream, and downstream as well as further upstream of the bow shock. A comparison between the intensity at the bow shock and further upstream results in an e-folding distance at 30 keV of similar to 6.2 R/sub E/. After transformation of the angular distribution into the solar wind frame a diffusion coefficeint of κ/sub parallel/similar to 3 R/sub E/ is obtained from the anisotropy and the intensity gradient. Immediately downstream of the bow shock the anisotropy in the shock frame is directed toward the magnetopause. After transformation into the plasma rest frame the distribution is isotropic. The intensity in the magnetosheath just outside the magnetopause is smaller than the intensity behind the bow shock. Thus, in the magnetosheath there is no gradient or streaming in the upstream direction. The spectra, intensities, and relative abundances in the magnetosheath and inside the magnetosphere are totally different. These observations are consistent with first order Fermi acceleration at the bow shock and subsequent downstream convection, and exclude a magnetospheric source for these particles. Copyright American Geophysical Union 1989

  10. Ecosystem services and livelihoods in deltaic environments

    Science.gov (United States)

    Nicholls, R. J.; Rahman, M. M.; Salehin, M.; Hutton, C.

    2015-12-01

    While overall, deltas account for only 1% of global land area, they are home to more than a half billion people or ca. 7% of the world's population. In many deltas, livelihoods and food security are strongly dependent on ecosystem services, which in turn are affected by various environmental change factors, including climate variability and change, modifications to upstream river, sediment and nutrient fluxes, evolving nearshore ecosystems, and delta-level change factors such as subsidence, changing land use and management interventions such as polders. Key limits include scarcity of fresh water, saline water intrusion and the impacts of extreme events (e.g. river floods, cyclones and storm surges), which constrain land use choices and livelihood opportunities for the deltaic populations. The ESPA Deltas project takes a systemic perspective of the interaction between the coupled bio-physical environment and the livelihoods of rural delta residents. The methods emphasise poverty reduction and use coastal Bangladesh as an example. This includes a set of consistent biophysical analyses of the delta and the upstream catchments and the downstream Bay of Bengal, as well as governance and policy analysis and socio-demographic analysis, including an innovative household survey on ecosystem utilization. These results are encapsulated in an integrated model that analyses ecosystem services and livelihood implications. This integrated approach is designed to support delta-level policy formulation. It allows the exploration of contrasting development trajectories, including issues such as robustness of different governance options on ecosystem services and livelihoods. The method is strongly participatory including an ongoing series of stakeholder workshops addressing issue identification, scenario development and consideration of policy responses. The methods presented are generic and transferable to other deltas. The paper will consider the overall ESPA Deltas project and

  11. Monitoring of Trichloroethene and Tetrachloroethene Content in Soil-Water Environment in Third Phase of Ecological Audit of Land

    Directory of Open Access Journals (Sweden)

    Pusz Agnieszka

    2014-07-01

    Full Text Available Trichloroethene (TCE and tetrachloroethene (PCE are chemical compounds which pose a serious threat for human health. Their specific properties make it possible that these substances may linger in soil and water for many years. These are the reasons why wells with water designed for drinking purposes have been subject of monitoring since 2006. This paper presents the results of monitoring research conducted in the soil-water environment within the framework in third phase of an ecological audit of land. The ecological audit of land made it possible to identify the cause and degree of the degradation, and helped formulate rationale for remedy decisions pertaining to the land (remediation/reclamation. The objective of the paper was to determine the pollution status of the soil-water environment and, subsequently, monitor (in years 2008-2010 the contents of the hazardous substances, namely trichloroethene and tetrachloroethene, within the area of the potential impact of metallurgical plant located in borders of the Main Underground Water Reservoir Wierzbica-Ostrowiec (GZWP 420 in in voivodeship Świętokrzyskie.

  12. Human health and the water environment: using the DPSEEA framework to identify the driving forces of disease.

    Science.gov (United States)

    Gentry-Shields, Jennifer; Bartram, Jamie

    2014-01-15

    There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.

  13. Monitoring of gross beta radioactivities on water sample environment in the surrounding of kartini reactor at 2011

    International Nuclear Information System (INIS)

    Siswanti; Munandar, A. Aris

    2013-01-01

    Measurement of gross beta radioactivities on water environment were done in the PTAPB BATAN has a goal for routine monitoring, with the result that fill RPL has been made and the result equivalented with quality standard were decided by BAPETEN. The water sample taken as much as 2 liter at 18 area were definited on radius 100 m to 5000 m in the surrounding of kartini reactor, vaporin on electric stove till the volume been ± 10 ml, and than pick out to the aluminium planset and drying on hot plate. Sample in the plancet were counted with a Low Background Counter (LBC) for 30 minutes and accounted of gross beta radioactivity water system. The result of gross beta radioactivity water environment at 2011 has a lowest 009, ± 0,06 Bq/I on Tambak Bayan area at june and in the Janti area highest 0,39 ± 0,08 Bq/ at December. The result still under of quality standard were decided by SK BAPETEN. No. 02/Ka- BAPETEN/V-99 is 0,4 Bq/I. (author)

  14. Evidence of Atlantic salmon Salmo salar fry movement between fresh water and a brackish environment.

    Science.gov (United States)

    Taal, I; Rohtla, M; Saks, L; Svirgsden, R; Kesler, M; Matetski, L; Vetemaa, M

    2017-08-01

    This study reports descent of Atlantic salmon Salmo salar fry from their natal streams to brackish waters of the Baltic Sea and their use of this environment as an alternative rearing habitat before ascending back to freshwater streams. To the authors' knowledge, residency in a brackish environment has not previously been demonstrated in S. salar fry. Recruitment success and evolutionary significance of this alternative life-history strategy are presently not known. © 2017 The Fisheries Society of the British Isles.

  15. Shale gas development impacts on surface water quality in Pennsylvania

    Science.gov (United States)

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  16. Analysis of the policy effects of downstream Feed-In Tariff on China’s solar photovoltaic industry

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zheng, Shilin; Zhang, Yanhua; Zhang, Kai

    2016-01-01

    The Chinese government initiated the Feed-In Tariff (“FIT”) policy for downstream power generation in August 2013. The effectiveness of the downstream FIT policy has attracted the attention of academia and government. Using the quarterly data of listed solar PV companies between 2009 and 2015, this paper provides an empirical analysis regarding the effects of the downstream FIT policy. We find that (1) the FIT policy has significantly enhanced the inventory turnover of listed PV firms and improved their profitability; (2) the FIT policy has significant effects on the inventory turnover of midstream companies and mixed industry-chain companies mainly engaged in downstream operations; (3) FIT policy is more favorable towards increasing the inventory turnover of private enterprises. Our results indicate that the FIT policy can have substantial effects on the sustainable development of China's solar photovoltaic industry. - Highlights: •The article focuses on the analysis of the effect of downstream FIT policy. •We test how FIT policy affects overcapacity and profitability of solar PV companies. •We find FIT policy significantly solved the overcapacity of China’s solar PV industry. •We find FIT policy improved profitability of listed solar PV companies. •FIT policy can’t be played alone and should be combined with taxation and R&D policy.

  17. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards: Chapter 6

    Science.gov (United States)

    Mothes, Patricia A; Vallance, James W.

    2015-01-01

    Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.

  18. Estimating Subcatchment Runoff Coefficients using Weather Radar and a Downstream Runoff Sensor

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate...... the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over...... the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level....

  19. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    Science.gov (United States)

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level.

  20. Introduction to sump screen downstream effect analysis of AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Qinghua; Liu Yu; Chai Guohan

    2010-01-01

    The design of AP1000 takes into account the potential impact of debris clogging on sump screen. In this article, the technical background of sump screen issue and the design characteristics of AP1000 to address the sump screen blockage issue are introduced. The article focuses on the 'downstream effect' analysis method, acceptance criteria and analysis result of AP1000 sump screen. Although the design of AP1000 is different with traditional PWR, the author expects to bring some reference to advance the downstream effect analysis in China through the introduction. (authors)

  1. Water and Environment News, No. 32, September 2013

    International Nuclear Information System (INIS)

    2013-09-01

    This edition of water and environment news focuses on aspects of isotope data collection and dissemination related to precipitation and groundwater resources. The IAEA's global network of isotopes in precipitation (GNIP) continues to be an invaluable resource for the traditional application areas of hydrology and climatology, and increasingly for a growing range of disciplines in ecology and forensics, creating new challenges for network operation and data management. We strive to facilitate as wide a use of GNIP data as possible and to expand the network, as feasible. To this end, user needs were gauged with a survey, and new methods of spatial analysis were applied to identify gaps in the network. Together with the new version of WISER - the IAEA's web application for GNIP data dissemination - we hope to be able to assure accessibility and long term sustainability of the network. Adequate characterization of groundwater flow remains a challenge in for most aquifer systems, particularly for large and deep aquifers with limited hydrogeological information. We are making significant efforts to expand the use of isotope age dating methods. Aquifers under study include two sectors of the Guarani aquifer in Brazil and Argentina, the Mekong delta aquifers in Vietnam and the aquifers under the Bangkok metropolitan area in Thailand. We have also made substantial progress in the IAEA Water Availability Enhancement Project (IWAVE) which aims to integrate the use of isotope hydrology for resource assessments, and in particular, aquifer mapping

  2. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  3. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    Science.gov (United States)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  4. Plutonium, cesium, uranium, and thorium series radionuclides in the Hudson River estuary and other environments. Annual technical progress report, December 1, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Simpson, H.J.; Trier, R.M.; Anderson, R.F.

    1983-01-01

    We have measured radionuclide activities in a large number of sediment cores and suspended particle samples throughout the salinity range of the Hudson River estuary. Activities of 137 Cs, 134 Cs and 60 Co determined by gamma spectrometry and 239 240 Pu and 238 Pu determined by alpha spectrometry indicate reasonably rapid accumulation rates in the sediments of marginal cove areas, and very rapid deposition in the harbor region adjacent to New York City, resulting in 239 240 Pu accumulations there more than an order of magnitude greater than the fallout delivery rate. Fallout 239 240 Pu moving downstream in the Hudson appears to be almost completely retained within the system by particle deposition, while more than 50% of the 137 Cs derived from both reactor releases and fallout has been exported from the tidal Hudson to coastal waters. Measurements of fallout 239 240 Pu in a saline lake with a high carbonate ion concentration yielded water column activities about two orders of magnitude greater than has been found for fallout plutonium in other continental waters, indicating extensive mobility in some natural water environments. Experiments using lake water suggest that carbonate ion is likely to be a critical factor in regulating plutonium solubility in some environments and that low molecular weight complexes are primarily responsible for enhanced plutonium solubility. 5 references

  5. Exploratory study on pervaporation membranes for removal of water from water-crude oil emulsions: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Study to explore the feasibility of removing water from oil/water (O/W) and water/oil (W/O) emulsions by means of pervaporation. Initial study involved preparation of simulated O/W and W/O emulsions prepared by mixing water and kerosene of various concentrations and stabilized by adding sodium lauryl sulfate. Preliminary experiments were conducted on 12 membranes fabricated from 2 different materials. One membrane of each type of material was chosen for further work based on the results of the preliminary tests. All experiments were carried out under 2 different downstream pressures and various temperatures.

  6. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  7. Hydrodynamics and Water Quality forecasting over a Cloud Computing environment: INDIGO-DataCloud

    Science.gov (United States)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; García, Daniel; Monteoliva, Agustín

    2017-04-01

    Algae Bloom due to eutrophication is an extended problem for water reservoirs and lakes that impacts directly in water quality. It can create a dead zone that lacks enough oxygen to support life and it can also be human harmful, so it must be controlled in water masses for supplying, bathing or other uses. Hydrodynamic and Water Quality modelling can contribute to forecast the status of the water system in order to alert authorities before an algae bloom event occurs. It can be used to predict scenarios and find solutions to reduce the harmful impact of the blooms. High resolution models need to process a big amount of data using a robust enough computing infrastructure. INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is an European Commission funded project that aims at developing a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The project addresses the development of solutions for different Case Studies using different Cloud-based alternatives. In the first INDIGO software release, a set of components are ready to manage the deployment of services to perform N number of Delft3D simulations (for calibrating or scenario definition) over a Cloud Computing environment, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator, AAI (Authorization, Authentication) and OneData (Distributed Storage System). Moreover, the Future Gateway portal based on Liferay, provides an user-friendly interface where the user can configure the simulations. Due to the data approach of INDIGO, the developed solutions can contribute to manage the full data life cycle of a project, thanks to different tools to manage datasets or even metadata. Furthermore, the cloud environment contributes to provide a dynamic, scalable and easy-to-use framework for non-IT experts users. This framework is potentially capable to automatize the processing of

  8. A novel cell autolysis system for cost-competitive downstream processing.

    Science.gov (United States)

    Hajnal, Ivan; Chen, Xiangbin; Chen, Guo-Qiang

    2016-11-01

    The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products. We here report the implementation of the first synthetic biology standard part based on the lambda phage SRRz genes and a synthetic ribosome binding site (RBS) that works in Escherichia coli and Halomonas campaniensis, which enables the producer strains to induce lysis after the addition of small amounts (1-5 %) of solvents or to spontaneously lyse during the stresses of downstream processing, and thus has the potential to eliminate the mechanical cell disruption step as both an efficiency bottleneck and a significant capex barrier when implementing downstream bioprocesses.

  9. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    Science.gov (United States)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  10. Enhancement of fatigue crack growth rates in pressure boundary materials due to light-water-reactor environments

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1987-01-01

    Sulfur now appears to be one of the principal agents responsible for the observed enhancement of the fatigue crack growth rates in light-water-reactor (LWR) environments. This paper presents the results of investigations on the effect of sulfur in the steel, in the bulk water environment, and at the crack tip. A time-based format of data presentation is used in this paper along with the conventional crack growth rate based on cycle format. The time-based format is a useful method of data presentation. When presented in the conventional format, an apparent substantial amount of scatter in the data is eliminated and the data fall within a relatively narrow scatter band. This model permits extrapolation from the frequency and ΔK regions where experiments were conducted into previously unexplored regions. (orig./GL)

  11. A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia)

    Science.gov (United States)

    Žic, E.; Arbanas, Ž.; Bićanić, N.; Ožanić, N.

    2015-02-01

    Mudflows regularly generate significant human and property losses. Analyzing mudflows is important to assess the risks and to delimit vulnerable areas where mitigation measures are required. The smoothed-particle hydrodynamics (SPH) model adopted here considers, in two phases, a granular skeleton with voids filled with either water or mud. The SPH depth-integrated numerical model (Pastor et al., 2009a) used for the present simulations is a 2-D model capable of predicting the runout distance, flow velocity, deposition pattern and the final volume of mudflows. It is based on mathematical and rheological models. In this study, the main characteristics of mudflow processes that have emerged in the past (1908) in the area downstream of the Grohovo landslide are examined, and the more relevant parameters and attributes describing the mudflow are presented. Principal equations that form the basis of the SPH depth-integrated model are reviewed and applied to analyze the Grohovo landslide and the propagation of the mudflow wave downstream of the landslide. Based on the SPH method, the runout distance, quantities of the deposited materials and the velocity of mudflow progression which occurred in the past at the observed area are analyzed and qualitatively compared to the recorded consequences of the actual event. Within the SPH simulation, the Newtonian rheological model in the turbulent flow regime and the Bingham rheological model were adopted and a comparison was made of the application of the Egashira and Hungr erosion law.

  12. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    Science.gov (United States)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  13. The Socio-hydrology of Bangalore's Lake System and implications for Urban Water Security

    Science.gov (United States)

    Srinivasan, V.; Roy, S.

    2017-12-01

    Bengaluru city has experienced unprecedented growth in recent decades. If the city is to sustain growth and claim its position as a "global" high-tech city, it must be able to secure sufficient water supply and also create a healthy livable environment. With the city's many lakes vanishing due to rapid urbanisation, depletion of groundwater as a result of overuse in the peri-urban areas, and lack of proper underground drainage system and sewage treatment plants, Bangalore is now grappling with issues of imminent water crisis, inequitable access to water supply, and public health hazards. In this context, the restoration of Bangalore's lakes has been promoted as a panacea for its flooding, water stress, and wastewater problems. It has been argued that lakes can store storm water and recycled wastewater and avoid the need for potentially destructive, expensive schemes that may destroy biodiversity rich aquatic ecosystems and forests. Bangalore's lakes are linked by the drainage channels to form a cascade; overflow from each lake flows to the next lake downstream. Yet, most efforts have tended to view the lakes in isolation. This study of the hydrology of Bangalore's lake system in its entirety simulates the lake system as a whole. The study explores approaches to management and theor impact on urban water security.

  14. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  15. Earth Trek...Explore Your Environment.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This booklet for children emphasizes the exploration and protection of the environment. An introduction discusses the interaction between humankind and the environment, emphasizing that the earth is a closed system. Chapter 1, "Mission: Protect the Water," addresses human dependence on water, water pollution, and water treatment. Chapter…

  16. Subsequent to suppression: Downstream comprehension consequences of noun/verb ambiguity in natural reading

    Science.gov (United States)

    Stites, Mallory C.; Federmeier, Kara D.

    2015-01-01

    We used eye-tracking to investigate the downstream processing consequences of encountering noun/verb (NV) homographs (i.e., park) in semantically neutral but syntactically constraining contexts. Target words were followed by a prepositional phrase containing a noun that was plausible for only one meaning of the homograph. Replicating previous work, we found increased first fixation durations on NV homographs compared to unambiguous words, which persisted into the next sentence region. At the downstream noun, we found plausibility effects following ambiguous words that were correlated with the size of a reader's first fixation effect, suggesting that this effect reflects the recruitment of processing resources necessary to suppress the homograph's context-inappropriate meaning. Using these same stimuli, Lee and Federmeier (2012) found a sustained frontal negativity to the NV homographs, and, on the downstream noun, found a plausibility effect that was also positively correlated with the size of a reader's ambiguity effect. Together, these findings suggest that when only syntactic constraints are available, meaning selection recruits inhibitory mechanisms that can be measured in both first fixation slowdown and ERP ambiguity effects. PMID:25961358

  17. How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

    Science.gov (United States)

    Munia, Hafsa Ahmed; Guillaume, Joseph H. A.; Mirumachi, Naho; Wada, Yoshihide; Kummu, Matti

    2018-05-01

    Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status - i.e. they are not yet dependent on upstream water to avoid stress - but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning

  18. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  19. Effect of soil and water environment on typeability of PowerPlex Y (Promega) in selected tissue samples.

    OpenAIRE

    Ewa Koc-Zorawska; Jerzy Janica; Malgorzata Skawronska; Jacek Robert Janica; Witold Pepinski; Anna Niemcunowicz-Janica; Ireneusz Stolyszewski

    2008-01-01

    In cases of decomposed bodies Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability PowerPlex Y (Promega) loci in tissue material stored in water and soil environment. Tissue material was collected during autopsies of five persons aged 20-30 years with time of death determined within the limit of 14 hours. Heart muscle, liver and lung specimens were stored in pond water, sea water, sand and peat soil. DNA was extracted by organic method...

  20. Contributions of the CEA-Valduc Centre control to the understanding of the transfers of atmospheric tritiated water into the different parts of the environment

    International Nuclear Information System (INIS)

    Guetat, P.; Vichot, L.; Tognelli, A.

    2009-01-01

    After a description of the geological environment of the Valduc Centre dedicated to tritium purification and tritiated waste processing and storage, this document presents the assessment of quantities of tritiated water released by the Valduc Centre and of their evolution in the hydro-geological environment. It provides in situ macroscopically observed data on the transfer mechanisms of water into the different parts of the environment and into the food chain by means. This is made possible by the exceptional traceability of tritiated water. Finally, a comparison between computational models and experimental measurements is given